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Abstract This master’s thesis deals with Value at Risk (VaR). Estimations are done in
several different ways, using parametric and non-parametric volatility models. Underlying
distributions that are used are the Generalized Hyperbolic distribution, various special cases
of it, and the Generalized Pareto distribution. The models are fitted to three different data
sets, namely, DAX, Olsen USD/DM and Siemens stock prices. For one of the data sets,
we also look at how the mean-variance mixing relations between Non-Gaussian Ornstein-
Uhlenbeck (OU) process volatility and Brownian motion perform in a VaR setting. We show
that the Generalized Hyperbolic distribution, used together with the Nadaraya-Watson or the
Variance Window volatility model, may very well be used when calculating Value at Risk.

Keywords: Devolatization; FOEL; GARCH-AR; Generalized Hyperbolic distribution; Gen-
eralized Pareto distribution; Integrated Volatility; Lévy process; LPFA; Mixing relations;
Nadaraya-Watson estimator; Non-Gaussian OU process; Pearson VII distribution; Variance
Window.
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Chapter 1

Introduction

One of the main objectives of risk management, is to protect an institution against unaccept-
able losses. Further, as JP Morgan and Reuters, [40], put it:

Setting limits in terms of risk, helps business managers to allocate risk to those areas
which they feel offer the most potential, or in which their firms’ expertise is greatest.
This motivates managers of multiple risk activities to favor risk reducing diversification
strategies.

Firms (e.g. banks, financial institutions etc.) are faced with many risks in their daily business
activities. Some of these are (see [22]):

• Business Risks; the risks that are specific to a certain industry.

• Market Risks; the risks of losses arising from adverse movements in market prices (e.g.
equity prices) or market rates (e.g. interest rates and exchange rates).

• Credit Risks; the risks of loss arising from the failure of a counterpart to honour a
promised payment.

• Liquidity Risks; the risks arising from the cost of inconvenience of unwinding a position.

• Operational Risks; the risks arising from failure of internal systems or the people who
operate in them.

• Legal Risks; the risks arising from the prospect that contracts may not be enforced.

Managers must therefore manage their firms’ exposures to these various risks. They must
decide on which risks they want to bear, assess the risks they currently bear, and alter their
exposures accordingly, so that they bear the risks they want.

There are many examples of the effect of large losses incurred to companies or (and) in-
stitutions with inadequate risk management. Some of these are displayed in the table below,
taken from [30] and [34].
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Company Country Year Loss (Billion)
Pension Funds Sweden 2001-02 SEK 452
Banks Sweden 1991-94 $15.0
Orange County, (Public Fund) California, USA 1994 $1.64
Showa Shell Sekiyu Japan 1993 $1.58
Kashima Oil Japan 1994 $1.45
Metallgesellschaft Germany 1994 $1.34
Barings Bank UK 1995 $1.33

Table 1.1: Examples of great losses due to improper risk management.

We will focus on measuring market risk, which is the type of risk that is most easily quantifi-
able.

As stated above, market risk is the risk of loss resulting from a change in the value of tradable
assets. For example, if a person holds a position of 10000 Ericsson B stocks, this person is
exposed to the risk that the value of the stock decreases. Market risk thus arises from the
changes in prices of assets and liabilities. Market risk is also called Price Risk.

Remark It should be noted that, we will measure market risk from a mathematical point of
view. That is, we will not take into great account managerial perspectives (i.e. how proposed
models would work from a managers point of view). The main focus is; finding models that
work well in the backtesting procedures, which we work with, not caring about transaction
fees and courtages etc.
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Chapter 2

Risk Measures

Although we are often interested in the price of financial assets, the performance of securities
is measured in terms of price changes. Financial theory assumes that returns (not prices
or price changes) are the compensation for risk. That is, it is assumed that the higher the
expected return, the higher the risk.

Modern portfolio theory is also based on returns, using a mean-variance approach, see [25].
Here mean represents an asset’s expected return, and variance (or standard deviation) their
risk, ([43]).

There are two standard definitions of returns, percentage, Rp
t , and logarithmic, log-returns,

(or geometric), Rl
t. They are defined as follows:

Definition 1 Let Pt denote, the price at time t. Then percentage returns are defined as

Rp
t =

Pt − Pt−1

Pt−1
=

Pt

Pt−1
− 1,

and log-returns are defined as

Rl
t = log(

Pt

Pt−1
).

¤
Percentage returns, which arguably is the most intuitive return concept, fulfill the principle
of limited liabilities (i.e. you can not lose more than you have invested). On the other hand,
Rl

t may take values on the whole real line. (For percentage returns to have this property, it
would imply negative prices.)

Remark Although percentage returns only take values in [−1,∞), they are commonly mod-
elled as random variables taking values on the whole real line (e.g. Gaussian).

Standard results from interest rate theory, applied on returns, lead us to the following rela-
tionship between continuously compounded returns, Rc

t , and 1-period percentage returns, see
[43]

Rc
t = log

(
1 + Rp

t

)
= log

( Pt

Pt−1

)
= Rl

t.

Log-returns are therefore sometimes called continuously compounded returns.
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2.1. CLASSICAL APPROACHES TO MARKET RISK MEASUREMENT

Remark Since log-returns usually are small, we can use a first order Taylor expansion of
Rl

t. This gives,
Rl

t = log
(
1 + Rp

t

)
≈ Rp

t + o(Rp
t ),

which means, that the difference between Rl
t and Rp

t usually is relatively small.

Further, if we assume the price process to be of exponential type (i.e. Pt = eXt), log-returns
will coincide with the increments of the process Xt. As we will see later, this feature is very
convenient. Throughout this thesis we will use log-returns.

2.1 Classical Approaches to Market Risk Measurement

The most simple measure for the risk of an asset, A, is the standard deviation, σA. This idea
dates back to the 50’s, and was proposed by Markowitz, [38].

Further, if we follow the theory of CAPM (Capital Asset Pricing Model), we will run across
another risk measure, β. It follows from CAPM that risk can be divided into systematic and
nonsystematic risk. These are defined as follows, see [28]:

• Nonsystematic Risk The risk of price change due to the unique circumstances of a
specific security, as opposed to the overall market. This risk can be virtually eliminated
from a portfolio through diversification.

• Systematic Risk The risk which is common to an entire class of assets or liabili-
ties. The value of investments may decline over a given time period, simply because
of economic changes or other events that impact large portions of the market. Asset
allocation and diversification can protect against un-diversifiable risk, because different
portions of the market tend to under perform at different times.

The risk measure β of CAPM is defined as

βA =
ρA,M

σ2
M

,

where ρA,M is the covariance between the asset and the market portfolio, M, and σ2
M is the

variance of the market portfolio.

There are two portfolio performance measures built on these two risk measures, the Sharpe
ratio, SR, and the Treynor measure, T. These are sometimes used as risk measures as well.

The Sharpe ratio is a ratio of an assets expected excess return (i.e. return exceeding the
return on a risk free investment), to its standard deviation. That is,

SR =
R̄A −RF

σA
,

where R̄A is the assets expected return and RF is the return on a risk free asset.
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2.2. VALUE AT RISK

The Treynor measure is similar to the Sharpe ratio, except that σA is replaced by βA. In
other words, it is the ratio of excess return and non-diversifiable risk

T =
R̄A −RF

βA
.

The main problem when using the above mentioned risk measures, is that they are relative
measures. Thus, they do not express the exposure of risk in monetary terms. A risk measure
that expresses the exposure in monetary terms is Value at Risk (VaR).

2.2 Value at Risk

One question each portfolio owner/manager is faced with is,

How much can I lose during a normal trading period?

The obvious answer to that question, is of course, everything ! Though correct, it is not a very
constructive answer. One way of producing a more stimulating answer is the VaR methodol-
ogy.

VaR is an attempt to provide a single number, summarizing the total market risk in a portfo-
lio of financial assets. It has become widely used by corporate treasurers and fund managers,
as well as by financial institutions.

By using VaR, we can produce statements like, see [27]

”We are certain that, with probability α, we will not lose more than VaRα,D in the next
D days.”

VaRα,D is the D-day α-level VaR. If we let Rt,D be a random variable, whose outcome
determines the value of next D-day return, the definition of VaR is as follows, see e.g. [39]:
Definition 2

VaRα,D = − inf {x ∈ R : P(Rt,D ≤ x) ≥ α}
¤

The minus sign is there just to present VaR as a positive value. Calculations are often
performed for D = 1. To obtain the D-day VaR, the following approximation is often used

VaRα,D ≈
√

D ×VaRα,1

Note that this formula holds with equality, only when the returns are additive, i.i.d. Gaussian
with zero mean. Throughout this thesis we will restrict ourselves to the 1-day VaR, denoted
by VaRα. The second choice to be made when calculating VaR, is the probability level. Most
banks use α = 0.99 = 99%. This is mainly due to suggestions from the Basel Committee
on Banking Supervision, see [11]. We will estimate VaR for three probability levels, namely,
95%, 97.5% and 99%.

There are several different methods for calculating VaR (or estimating it, to be precise).
We now give a short explanation of the most popular three. See [12], [22] and [27] for more
information on these methods.
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2.2. VALUE AT RISK

2.2.1 Historical Simulation (HS)

This method uses historical data for predicting future VaR values. The first step is to identify
the market variables (i.e. market factors), that affect the value of the asset. Examples of
such variables are exchange rates, equity prices, interest rates and so on. After deciding on
the length of the time horizon, that the prediction will be based upon, historical values of
all market factors must be collected. If the time horizon is T days, we now have T different
scenarios for the future value of the asset. These scenarios are ranked by value, and the VaR
is then the 1− α percentile, of this data set.

2.2.2 Monte Carlo Simulation (MCS)

Instead of using past values of market factors for prediction, this method builds on an assumed
knowledge about the stochastic mechanism that generate the returns. Unkown parameters,
for this mechanism, are then estimated using historical values. A set of possible future values
of the asset are then generated, using stochastic simulation.

The main advantage of this method, is that it is possible to make the data set very large.
On the other hand, it is a serious drawback, that we have to make distributional assumptions
about the returns. In this case, as in many other, practitioners usually restrict themselves to
the univariate or the multivariate Gaussian distribution.

2.2.3 Model Building Approach (MBA)

This approach is sometimes referred to as the Variance-Covariance approach. It comes in
two versions, depending on what is assumed, about the distribution of the returns:

• Non Parametric This method uses a number of historical observations of returns
(and can therefore also be included in HS). The VaR is calculated as the empirical
(1−α)-percentile of these observations. An advantage of this method is that it doesn’t
make any particular assumption about distribution of returns. The obvious drawback
is that it is not possible to extrapolate beyond the range of the data at hand.

• Parametric The most widely used distribution is the Gaussian. This is mainly because
of the computational simplifications this implies. Since it is (or at least should be)
common knowledge that financial returns are not Gaussian, one must be highly aware
that an assumption of this kind greatly increases the risk of underestimating the VaR.

Distributions with heavier tails than the Gaussian are closer to the truth. In this thesis we
will use the MBA, and propose three alternative distributions, namely, the Generalized Pareto
distribution, the Pearson type VII and two special special cases (the Hyperbolical and the
Normal Inverse Gaussian), of the Generalized Hyperbolical distribution.

VaR is then calculated as

VaRα s.t. 1− α =
∫ −VaRα

−∞
fRt(s)ds = FRt(−VaRα),

where fRt and FRt are the assumed (continuous) density function and distribution function,
respectively, for the returns. In other words,

VaRα = −F−1
Rt

(1− α),
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2.2. VALUE AT RISK

and in most cases, the distribution function has to be inverted numerically.

It is well known that, though uncorrelated, returns exhibit dependence. We will model the
returns in two ways, each incorprating dependence. One approach is to model the price pro-
cess as an exponential semimartingale, and the stochastic volatility as a non-Gaussian OU
process. The second approach, is to assume that returns have the representation

Rt = µ + σtXt,

where Xt is a Lévy process. The dependency structure is, in both cases, incorporated in
the stochastic volatility, σt. Thus the devolatized innovations, Xt, are assumed independent.
This means that, assuming σt > 0,

Xt =
Rt − µ

σt
,

form an i.i.d. sequence.

The stochastic volatility, will be modelled using three different approaches, namely, non-
parametric (Nadaraya-Watson), Variance Window and GARCH-AR. These models will be
benchmarked against a constant volatility.

Denoting the α-level VaR for Rt and Xt, VaRRt
α and VaRXt

α , respectively, we work under
the assumption

VaRRt
α = µ + σtVaRXt

α .

2.2.4 VaR Limitations

VaR is not the final word in market risk management, but it is a step in the right direction.
This is the reason for the widespread use of VaR in the financial industry.

Drawbacks of VaR can be divided into two main groups ([43]):

• Limits intrinsic to the VaR concept

– VaR is only for traded assets or liabilities. That is, it does not work for deposits
or loans which, of course, is of great concern to banks.

– VaR does not incorporate credit risk. Credit risk is an active research field, and
there is a need for an integrated risk management system.

– VaR does not incorporate liquidity risk. This is one of VaR’s major limitations.
The problem can be very important for instruments traded in thin markets, where
the buying or sales of relatively small quantities of a single instrument can cause
large price variations.

– VaR only measures risk for unusual, but normal, events. Major chocks to the
financial system are not incorporated.
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2.2. VALUE AT RISK

• Limits due to the statistical methodology used to implement VaR A poet,
who lived in Rome in the nineteenth century, defined statistics as, that strange science
which states: “If you have eaten two chickens, and I am starving, we have both eaten
one chicken each.” The point made here, is that VaR is based on statistical assumptions
and methodologies. If these assumptions are unrealistic, the inference will probably lead
to the wrong conclusions.

The obvious examples here are, the far too often used Gaussian distribution, and models
that do not incorporate dependence. Models based on assumptions of independence,
are bound to fail when applied to dependent data.

It is important to note, that the critique of the use of Gaussian distribution does not threaten
the validity of VaR itself. This critique is directed against the practitioner, with the poor
judgement of using the Gaussian distribution. The Gaussian assumption can invalidate some
models used for calculating VaR, but not the utility of a measure of market risk, such as VaR.

The limitations in terms of credit and liquidity risk are of wider concern. It lies in the future
to show if VaR will be the foundation of an integrated risk management system, incorporating
market, credit and liquidity risk.
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Chapter 3

Lévy processes

3.1 Introduction to Lévy processes

Definition 3 ([47]) An R-valued stochastic process {Xt : t ≥ 0}, is a Lévy process, if the
following conditions are satisfied:

• For any choice of n ≥ 1 and 0 ≤ t0 ≤ t1 ≤ t2 ≤ ... ≤ tn, the random variables

Xt0 , Xt1 −Xt0 , Xt2 −Xt1 , ..., Xtn −Xtn−1

are independent (i.e. the process has independent increments);

• X0 = 0 a.s;

• The distribution of Xs+t−Xs does not depend on s, that is, the process has stationary
increments;

• For all ε > 0, it holds that, limt→s P(|Xs −Xt| > ε) = 0 (i.e. stochastic continuity);

• Xt is right-continuous for t ≥ 0, and has left limits for t > 0 a.s. This is also known as
càdlàg1.

¤

Definition 4 A Lévy process with non-negative increments is called a subordinator.

¤

Remark ([32]) The most important Lévy process is Brownian motion, which is a Lévy pro-
cess with Gaussian distributed increments. When botanist R. Brown described the movement
of a pollen particle in suspended in fluid in 1828, it was observed that it moved in an irregular,
random fashion. A. Einstein argued, in 1905, that the movement is due to bombardment of
the particle by the molecules of the fluid. He obtained the equations for Brownian motion.
In 1900 L. Bachelier used the Brownian motion as a model for movement of stock prices, see
[4]. The Mathematical foundation for Brownian motion as a stochastic process was laid by
N. Wiener in 1923, see [52]. Brownian motion is frequently also called the Wiener process.
However, in stochastic calculus, some authors give the concept of Brownian motion and the
Wiener process different meaning, see e.g. [35].

1Càdlàg stands for continú a droit avec limites a gauche.
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3.2. LÉVY PROCESSES USED IN THIS THESIS
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Figure 3.1: Realization of a Brownian motion, with µ = 0 and σ = 1.

3.2 Lévy Processes Used in this Thesis

We work under the assumption that the price of an asset can be modelled by an exponential
Lévy process. A special case is the Bachelier-Samuelson model, in which the price process St

is taken to be exponential Brownian motion;

St = S0eµt+σBt , 0 ≤ t ≤ T,

where µ is the mean and σ is the (constant) volatility.
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3
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Figure 3.2: Realization of an exponential Brownian motion, with µ = 0 and σ = 1.

This gives a model that is fairly easy to work with, but it does not really capture the behavior
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3.2. LÉVY PROCESSES USED IN THIS THESIS

of a stock price, exchange rate or an index. This is due to the fact that the Bachelier-
Samuelson model makes the log-returns,

Xt = log St − log St−∆t,

where ∆ typically is one day, of say a stock price at the time t, Gaussian distributed. The
Gaussian distribution is disadvantageous in that it does not permit skewness, and in that the
probability of extreme events is way too small.

A model that seems to better fit a price process, see [20], is the exponential Lévy motion

St = S0eµt+σtLt , 0 ≤ t ≤ T.

Here Lt is a more general Lévy process, than Brownian motion, and σt is stochastic volatility.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0
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4

Figure 3.3: Exponential Normal Inverse Gaussian Lévy process (see section 5 below), with
µ = 0 and σt ≡ 1.
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Chapter 4

Stochastic Volatility

Working under the assumption that the price process St of an asset follows an exponential
Levy process, we have, as mentioned above, that

St = S0eµt+σtLt , 0 ≤ t ≤ T.

Here Lt is a Lévy process, and σt a non-negative stationary stochastic process (volatility
process), independent of Lt. If we assume that σt moves slowly, compared to Lt, we have that

Xt = log St − log St−1 = µ + σtLt − σt−1Lt−1 ≈ µ + σt∆Lt = µ + σtAt
1

It is well known, that log-returns are not independent. Assumig that At is the increment
process of a Lévy process, it is a random walk. This implies that the dependency stucture
must be fully captured by the volatility process.

Definition 5 The devolatized log-returns of a price process, St, as above, are defined as

At =
Xt − µ

σt
.

¤

In order to fit a marginal distribution to At, it is necessary to estimate σt and µ. We estimate
µ by the sample mean, (i.e µ̂ = 1

T

∑T
j=1 Xt−j).

We will, under these assumptions, consider three models and hence estimators, σ̂t, for the
volatility process σt. Later on, we will also investigate a fourth volatility model (see section
4.4). We now give a presentation of the volatility models:

4.1 Variance Window

The most basic estimator for the volatility, is what we call the Variance Window. This is a
very natural estimator for volatility, and it is often used to estimate the constant volatility

1The notation At for the increment process comes from the French word augmentation.
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4.2. TIME SERIES MODEL

in the Bachelier-Samuelson model. The Variance Window is defined as the sample standard
deviation of the log-returns, over the last n trading days. That is,

σt =

√√√√ 1
n− 1

n∑

i=1

(Xt−i − µn)2,

where µn = 1
n

∑n
j=1 Xt−j .

In calculations, n differs between different data sets, and is optimized in each case to get
the best devolatization. That is, optimized to get the least dependence in the At process.
This is done by minimizing the Ljung-Box test statistic.

Definition 6 The autocorrelation function (acf) of a (weakly) stationary stochastic process,
Xt, is defined as

acf(s) = Corr(Xt+s, Xt).

¤

Definition 7 For a sample x1, x2, ..., xT , the sample autocorrelation function (sacf), is de-
fined as

sacf(i) =
1

Ts2

T∑

t=i+1

(xt − µ̂)(xt−i − µ̂).

Here, s2 is the sample variance, and µ̂ is the sample mean.

¤

Theorem 1 Let ri be the sacf, and T sample length. Then the Ljung-Box test statistic is
defined by, see [41]

Q(k) = T (T − 2)
k∑

i=1

r2
i

T − i
.

The statistic Q(k) is asymptotically χ2
k distributed, when data are uncorrelated.

¤

Remark The statistic Q(k) is a modification of the Portmanteau statistic Q∗(k) = T
∑k

i=1 r2
i ∼approx

χ2
k, for which Box and Pearce [16] showed the asymptotic properties. Ljung and Box [15] later

argued that the modified statistic has better asymptotic properties.

4.2 Time Series Model

A popular approach for modelling stochastic volatility, is to use autoregressive models. In
1982, Engle, see [24], introduced a model known as the first order autoregressive heteroschedas-
tic, ARCH(1), process. In 1986, Bollerslev, see [14], extended it to the Generalized ARCH,
(GARCH) process. This model is very popular, and is still widely used in the financial
industry.
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4.2. TIME SERIES MODEL

Definition 8 Consider the model, Xt = µ + σtεt, where Xt is the log-return process, σt is
a stationary stochastic process, and εt is noise, that is independent of the σt process, and of
Xs for s < t. We say that σ2

t is a GARCH(p, q) process, if

σ2
t = α0 +

q∑

i=1

αiX
2
t−i +

p∑

j=1

βjσ
2
t−j ,

where αi, βj > 0, ∀ i = 0, ..., p and j = 1, ..., q are parameters. The condition for the existence
of such a GARCH process is, see [14],

q∑

i=1

αi +
p∑

j=1

βj < 1.

¤
We will focus on the GARCH(1,1)-model, which simplifies the above expression to

σ2
t = α0 + α1X

2
t−1 + βσ2

t−1.

Contrary to our beliefs, we will assume the noise, εt, to be N(0, 1)-distributed. That is, Xt is
conditionally (on past observations) following a N(0, σ2

t )-law, i.e. Xt|Ft−1 ∼ N(0, σ2
t ), where

Ft−1 is the information up to time t− 1.

Remark This model could probably be improved by using other distributions for the noise.
We work under the assumption of Gaussianity, since it is what is most frequently used in the
financial industry, and we want to investigate how well this popular model works.

The process σt moves rapidly, and we would like to “cool it down” for better devolatiza-
tion. The cooling down is done using an AR(1)-process (Auto Regressive process of order
1).

Definition 9 The AR(p)-process is defined by

Xt =
p∑

i=1

ρiXt−1 + ηt,

where ηt is noise, with variance σ2, and independent of Xs for s < t.

¤
The parameters, ρi, can be estimated by the following scheme, see [2]:

Yule-Walker: AR(p)-process First we estimate the covariance function, rX(τ), for τ =
0, ..., p. Then we estimate σ2 and ρ1, ..., ρp by solving the following system of equations:
{

rX(j)− ρ1rX(j − 1)− ...− ρprX(j − p) = 0, for j = 1, ..., p
rX(0)− ρ1rX(1)− ...− ρprX(p) = σ2.

For an AR(1)-process, this simplifies to
{

ρ̂1 = rX(1)/rX(0)
σ̂2 = [rX(0)2 − rX(1)2]/rX(0).
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4.3. NONPARAMETRIC APPROACH, NADARAYA-WATSON

Estimating GARCH parameters Estimation of α0, α1 and β, can be done, using the
maximum likelihood (ML) method. Let Y1, ..., Yn be de-meaned log-returns, Yt = Xt−µ, that
is, we have that Yt is conditionally Gaussian w.r.t σ1, ..., σt−1, or equivalently, Y1, ..., Yt−1.
Then we have have a joint density function, given by

p (Y1, ..., Yn) = p (Yn|Y1, ..., Yn−1)p (Yn−1|Y1, ..., Yn−2)× ...× p (Y2, |Y1)p (Yn)

= p (Y1)
n∏

t=2

p (Yt|Y1, ..., Yt−1) =
n∏

t=1

1√
2πσt−1

exp
{
− σ2

t

2σ2
t−1

}
,

where the conditioning on α0, α1 and β has been dropped for notational reasons. The above
expression gives , the log-likelihood function, for observations y1, y2, ..., yn,

l(α0, α1, β; y1, y2, ..., yn) = −1
2

n∑

t=1

{
log(2πσ2

t ) +
y2

t

σ2
t

}
.

We estimate the parameters, α0, α1 and β, by numerical maximization of l(α0, α1, β; y1, y2, ..., yn).

Finally, the GARCH(1,1)-AR(1)-process, is given by

σ2
t = α0 + α1 (Xt−1 − ρ1Xt−2)

2 + βσ2
t−1.

4.3 Nonparametric Approach, Nadaraya-Watson

When trying to model volatility, it is crucial to determine how volatility evolves over time.
In statistical language, we want to investigate the association of an explanatory variable, t
(time), and a response variable (volatility or squared de-meaned log-returns) Y 2. Specifically,
we want to express a functional relation between t and Y 2, of the form

E(Y 2
t ) = σ2

t .

Here we assume that
Y 2

t = σ2
t + ε, E(ε) = 0, E(ε2) = c.

In this nonparametric approach, the task is to estimate σ2
t without making any distribution

assumptions on Y . This can be done by weighting and summing squared de-meaned log-
returns,

σ̂2
t =

n∑

i=1

wi(t, h)Y 2
i ,

in an appropriate manner. To do this, we need to determine the weights wi(t, h), where the
number h remains to be defined.

In 1964, Nadaraya, [42] and Watson, [51], independently proposed the weights

wi(t, h) =
K ((t− ti)/h)∑n

j=1 K ((t− ti)/h)
,

for appropriate kernels K(·). In our case, we decided to use the following volatility estimator,
see [49],

σ̂2
t =

∑t−1
i=1 Kh(i− t)Y 2

i∑t−1
i=1 Kh(i− t)

.
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4.4. INTEGRATED VOLATILITY

Here Yt = Xt − µ̂, µ̂ = 1
t

∑t
j=1 Xj and Kh(·) = h−1K(·/h), where K(x) = e−x2

.

The numbers h and n are known as the bandwidth and the window length, respectively.
Thus the task at hand is to optimize h and n, to get the best devolatization of log-returns.
This can be done in several different ways, and we will discuss a few of these next.

A rather primitive approach, is to run a loop over different values for h and n, and check
the devolatization properties with a Ljung-Box statistic. This approach empirically supports
that a larger n gives better devolitization. However, the differences are negligible for values
exceeding 40, say, and working with large windows increases computer time.

From a statistical point of view, we would like to set h and n to values that, at the same
time, minimize the bias and the variance of the volatility estimator, σ̂2

t . This can be done
using cross-validation , see [26]. We first decide on a window length, n, and then go from there.

The cross-validation test statistic is given by

CV (h) =
n∑

i=1

{Y 2
i − σ̂t,−i(h)2}2 ,

where σ̂t,−i(·)2 is the volatility estimate obtained by omitting the i:th data point. It can be
shown that

CV (h) =
n∑

i=1

{Y 2
i − σ̂t(h)2}2 Ξ (Wti(h)),

where
Ξ(u) = (1− u)−2 and Wti(h) =

K(0)∑n
j=1 K( tj−ti

h )
.

This means that cross-validation can be considered a residual sum of squares, and all that
has to be done, in order to obtain a good value for h, is to minimize this sum of squares.

4.4 Integrated Volatility

Here we are working under a new assumption about the price process. Namely, we assume
that the price process is an exponential semimartingale, see [5]. This means that

St = S0eMt

for a semimartingale Mt.

Remark A semimartingale has a decomposition, Mt = αt + mt, where αt has locally
bounded variation, and mt is a local martingale, such that α0 = m0 = 0. However, as
we make quite specific choices of αt and mt, there is no need to make formal definitions of
these concepts.

Here we assume that the semimartingale, Mt, is given by

Mt = µt + βσ∗2t + Bσ∗2t
,
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4.4. INTEGRATED VOLATILITY

where Bσ∗2t
denotes Brownian motion, time changed by σ∗2t .

If we build σ∗2t as

σ∗2t =
∫ t

0
σ2

sds,

for a non-negative stochastic process σ2
t , with the right properties, we can write this model

as a Stochastic Differential Equation (SDE)

dMt = (µ + βσ2
t )dt + σtdBt.

The process σ∗2t is called integrated variance. The increments

ξt =
∫ t

t−1
σ2

sds,

of σ∗2t are called actual variance, while σ2
t is called spot variance.

The solution to the above SDE is

Mt = µt + β

∫ t

0
σ2

sds +
∫ t

0
σsdBs.

Using the mentioned model, it follows that log-returns are given by,

Xt = µ + βξt + ξ
1/2
t εt,

where εt are i.i.d. N(0, 1)-distributed. If we, in the language of section 5 below, assume that
ξt ∼ GIG (λ, δ, γ), then the mixing property implies Xt ∼ GH(λ, α, β, µ, δ). We can also allow
dependency (or, rather, correlation) in ξt.

Using the semimartingale model, the devolatized log-returns are given by

εt =
Xt − µ− βξt

ξ
1/2
t

,

and should be i.i.d. N(0, 1). This means that we have to estimate the parameters, µ and β, as
well as the increments of the integrated variance, ξt. Parameter estimations are done by fitting
a Generalized Hyperbolic density to the log-returns (undevolatized). In order to estimate the
integrated variance, we first need to introduce the notion of the quadratic variation of a
stochastic process.

4.4.1 Quadratic Variation

Definition 10 ([32]) The quadratic variation of a process Xt, is defined as the following
limit in probability

[X]t = lim
n∑

i=1

(Xtni
−Xtni−1

)2.

Here the limit is taken over partitions

0 = tn0 < tn1 < ... < tnn = t,

with max1≤i≤n(tni − tni−1) → 0.

¤
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4.4. INTEGRATED VOLATILITY

Remark An alternative definition of quadratic variation, when Xt is a semimartingale, is,
see e.g. [46]:

[X]t = X2
t − 2

∫ t

0
Xs−dXs.

Now, if we assume that σ∗2t behaves nicely, see [5], it follows that

[M ]t = [
∫ ·

0
σsdBs]t =

∫ t

0
σ2

sds = σ∗2t ,

and further, trivially, the increments are

∆[M ]t = [M ]t − [M ]t−1 = ξt.

This means that we can estimate ξt, using an estimate of the increment of the quadratic
variation of the log-price process.

One natural estimator of ∆[M ]t, would be to take log-returns on smaller and smaller in-
tervals. This is done using intra-day observations, also called tick data, which we define
as

Xk,t = Mt−1+ k
N
−Mt−1+ k−1

N
.

Now, it can be shown that, see e.g. [29],

[XN ]t =
N∑

k=1

X2
k,t

converges in probability, to ξt (i.e. actual variance), as N → ∞. The sum is called the
(integrated) realized variance. Here N is the number of observations during one day. Further,
it can be shown that the convergence rate is

√
N .

What justifies (or spells the doom on) the use of the integrated volatility model, is the
availability (or non-availability) of intra-day observations, of the asset in consideration. So
to be able to get useful daily observations of the volatility, we need observations of the above
mentioned kind. Figure 4.1 show plots of the realized variance (from USD/DM data). The
realized variance is based on 144 intra-day log-returns (see section 6.1).

In order to make predictions we will now have to make assumptions about the process σ2
t (or

in fact ξt). These assumptions will be based on the correlation structure and the marginal
density.

For the marginal density we propose the General Inverse Gaussian (GIG) distribution. It is
defined as follows:
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4.4. INTEGRATED VOLATILITY

Definition 11 A random variable is said to have an GIG(λ, δ, γ)-distribution if its density
function is given by

fGIG(x;λ, δ, γ) =
(γ/δ)λ

2Kλ(δγ)
xλ−1 exp

{
− 1

2
(δ2x−1 + γ2x)

}
, x > 0,

where λ ∈ R and δ, γ ∈ R+ are constants.

Here, Kλ is the modified Bessel function of the third kind (see section 5.1).

¤

Two special cases of the GIG distribution, which we use, are; the Inverse Gaussian (IG), and
the Gamma (Γ) distribution. They are defined in the following way:

Definition 12 A random variable is said to have an IG(δ, γ)-distribution, if its density
function is given by

fIG(x; δ, γ) =
δeδγ

√
2π

x−
3
2 exp

{
− 1

2
(δ2x−1 + γ2x)

}
, x > 0,

where δ ∈ R+ \ { 0}, and γ ∈ R+ are constants.

¤

Definition 13 A random variable is said to have a Γ(ν, α)-distribution if its density function
is given by

fΓ(x; ν, α) =
αν

Γ(ν)
xν−1 exp {−αx} , x > 0,

where Γ(ν) =
∫∞
0 zν−1e−zdz, while α ∈ R+, and ν ∈ R+ \ { 0} are constants.

¤

For considerations in chapter 5, we also state,

Definition 14 A random variable is said to have an PH(δ, γ)-distribution if its density func-
tion is given by

fPH(x; δ, γ) =
(γ/δ)

2K1(δγ)
exp

{
− 1

2
(δ2x−1 + γ2x)

}
,

where δ ∈ R+ \ { 0}, and γ ∈ R+ are constants.

¤

Remark The IG(δ, γ)-distribution and the Γ(ν, α)-distribution coincide with the GIG(−1
2 , δ, γ)-

distribution, and the GIG(ν, 0, γ)-distribution, respectively, where α = γ2/2.
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Figure 4.1: Realized variance (top left), histogram of realized variance (top right), aggregated
realized variance (i.e. the chronometer) (bottom left) and sacf of the realized variance (bottom
right). (USD/DM)

The parameters of the IG and Gamma distributions, are estimated using ML. As displayed, in
Figure 4.2 below, an IG distribution seems to fit the USD/DM realized volatility data, much
better than a Gamma. The parameter estimates are: δ = 0.8472, γ = 1.6518, ν = 1.8711 and
α = 3.6481.

When it comes to the correlation structure, it seems reasonable to use processes with acf:s of
exponential damp-down type (i.e. acf1(s) = e−α|s|).

The sacf in figure 4.1, indicates that one such exponential term is not enough, so we need to
superpose two (or more) independent processes of this type. That is, we are looking for an
acf of the following kind

acfk(s) =
k∑

i=1

mie−αi|s|,

where
∑k

i=1 mi = 1. We will denote this process Pk.
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Figure 4.2: IG (top) and Γ (bottom) densities estimated from USD/DM realized variance data
(the jagged line represents the empirical density), together with the corresponding PP-plots.

For only two processes, this simplifies to

acf2(s) = me−α1|s| + (1−m)e−α2|s|.

The parameters (mi, αi, i = 1, 2, ..., k) are estimated by minimizing
n∑

i=1

[sacf(i)− acfk(i)]
2 ,

for n large enough.

The parameter estimates (for k = 1, 2, 3), are shown in table 4.1. The need for at least
two processes is clear. Making the model more complex, by adding a third process, does not
seem to enhance the fit to the correlation structure. However, one should be aware that this
does not necessarily carry over to the dependency structures. In figure 4.3, the estimated acf
using three processes, each with acf of exponential damp-down type, is almost indistinguish-
able from the acf with only two processes. It is clear though, that one is not enough.
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4.4. INTEGRATED VOLATILITY

Model m̂1 m̂2 m̂3 α̂1 α̂2 α̂3

P1 1.00 0.1694
P2 0.6499 0.3501 1.5192 0.0343
P3 0.0766 0.5734 0.3499 1.4174 1.5331 0.0343

Table 4.1: Estimated parameters for autocorrelation functions of Pk processes, k = 1, 2, 3,
(USD/DM volatility data).

We will proceed under the assumption, that the increments of the realized volatility is the
sum of two independent processes. Both having acf:s consisting of exponential damp-downs.

4.4.2 Ornstein-Uhlenbeck (OU) Processes

To get a process, with the above mentioned properties, we assume that ξt satisfies

dξt = −αξtdt + dZαt.

Here the process Zαt is a Lévy process, with non-negative increments, the so called BDLP
(Background Driving Lévy Process), which is a subordinator. The above SDE is a general-
ization, see e.g. [3], of the Langevin equation, see [36],

dUt = −βUtdt + σdBt, t > 0,

Here Bt is Brownian motion, σ ∈ R and β > 0 are constants. This equation has solution

Ut = e−βtU0 +
∫ t

0
σe−β(t−s)dBs,

which is known as the (Gaussian) Ornstein-Uhlenbeck (OU) process. This is the only stochas-
tic process that is simultaneously Gaussian, Markov and stationary.
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Figure 4.3: Sacf for USD/DM volatility data and superpositioning of acfs from one (–), two
(-) and three (-) independent processes.

Theorem 2 For an Ornstein-Uhlenbeck process

σ2
t =

∫ t

−∞
e−α(t−s)dZs,

the correlation function is given by

acf1(s) = e−α|s|.

¤

The, above mentioned, Gaussian OU process is not applicable in our situation, since its driv-
ing process (i.e. the Brownian motion) can have negative increments, which implies that Ut

can take negative values.

However, we can give the OU process a GIG marginal distribution, by choosing an appropriate
BDLP. As mentioned we use OU processes with either a Γ-marginal or an IG-marginal.

Theorem 3 ([10]) The BDLP of an OU process with IG(δ, γ) marginal distribution (IG-
OU), is the compound Poisson process given by

Zt = γ−2
Nt∑

k=0

u2
k + Qt,

where uk are i.i.d. N(0, 1) and independent of the Poisson process Nt. Further, Nt has rate
2/δγ and Q1 is IG(δ/2, γ)-distributed.

¤
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4.4. INTEGRATED VOLATILITY

Theorem 4 ([10]) The BDLP of an OU process with Γ(ν, α) marginal distribution (Γ-OU),
is the compound Poisson process given by

Zt =
Nt∑

k=0

rk,

where rk are i.i.d. Γ(1, α), and Nt is a Poisson process with rate ν.

¤

4.4.3 Superpositions of OU Processes

To capture the long range dependence in the realized variance process we can, as mentioned
above, use a superposition of OU processes. That is, we assume that

τt =
k∑

i=1

τ
(i)
t .

Here, for each i = 1, ..., k, τ
(i)
t , is an OU process, i.e. a solution to the SDE

dτ
(i)
t = −αiτ

(i)
t dt + dZ

(i)
αit

,

where Z
(i)
αit

are independent, not necessarily identically distributed, BDLP:s. We will denote
τt by OUk.

Both the IG and the Γ distributions are closed under convolution. More specifically, with
obvious notation,

∑k
i=1 IG(δi, γ) = IG(

∑k
i=1 δi, γ) and

∑k
i=1 Γ(δi, γ) = Γ(

∑k
i=1 δi, γ). There-

fore, fitting a superposition of IG-OU or Γ-OU processes, will generate a process with IG,
or Gamma distributed univariate marginals, respectively. However, the resulting process will
typically not be an OU process.

So, if we assume that
τ

(i)
t ∼ IG(δi, γ),

where
∑k

i=1 δi = δ, the resulting process, τt, will have IG(δ, γ)-distributed marginals. Since,
see e.g. [5], Var(τ (i)

t ) = δi/γ3, the acf for this process is given by

acfk(s) = Corr(τt+s, τt) =
∑k

i=1 Cov(τ (i)
t+s, τ

(i)
t )

Var(τt)
=

k∑

i=1

δi

δ
e−αi|s|.

We will call τt an IG-OUk process.

Remark For a Γ-OU process, there are similar results. If τ
(i)
t ∼ Γ(νi, α), where

∑k
i=1 νi = ν,

the resulting process will satisfy τt ∼ Γ(ν, α). (Γ-OUk processes).

Now, if we set each δi = miδ, where
∑k

i=1 mi = 1, it follows trivially that

acfk(s) =
k∑

i=1

mie−αi|s|,
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and further, that τt ∼ IG(δ, γ).

Using this result, and the results shown in table 4.1, we can assume that the USD/DM data
(see section 6.1), is the sum of two IG-OU processes, having marginal densities IG(0.6499δ, γ),
and IG(0.3501δ, γ), respectively. This gives an acf

acf2(s) = 0.6499e−1.5192|s| + 0.3501e−0.0343|s|,

which, as seen in figure 4.3, seems to fit the correlation structure very well.

For an IG-OU process, τ
(i)
t , the conditional distribution of τ

(i)
t given τ

(i)
0 (i.e. τ

(i)
t |τ (i)

0 ) has
mean, see also [5],

E[τ (i)
t |τ (i)

0 ] = e−αitτ
(i)
0 + δiγ

(
1− e−αit

)
.

If we were able to observe today’s value of both processes, τ
(1)
0 and τ

(2)
0 , we could use this

quantity to predict tomorrow’s volatility.

It is easily seen that, for a sum, τt, of two OU processes, τ
(1)
t and τ

(2)
t , it follows that

ηt = τt − e−α1τt−1 − e−α2
[
τt−1 − e−α1τt−2

]
, for t even,

is an i.i.d. sequence.

Unfortunately, when transforming our observations to ηt, in this manner, the BDS-test (see
section 6.3) indicates that the i.i.d. property is not fulfilled. Hence the data does not seem
to come from a superposition of two independent OU processes.

4.4.4 Integrated OU processes

Following O.E. Barndorff-Nielsen and N. Shepard, [6], we assume the spot variance, σ2
t , to be

an OU process.

So, we assume that σ2
t is a solution to

dσ2
t = −ασ2

t dt + dZαt.

Then it follows that, see [7]

σ∗2t =
∫ t

0
σ2

sds = α−1(1− e−αt)σ2
0 + α−1

∫ t

0
{1− e−α(t−s)}dZαs.

Curiously, though σ2
t might have jumps, the integrated variance σ∗2t has continuous sample

paths.

Further, it can be shown that, see [5], the increments of the process σ∗2t , ξt (i.e. actual
variance), have an acf with exponential decay. That is,

Corr(ξt+s, ξt) = e−α|s|,

which is precisely what we are looking for.
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If we assume σ2
t to be an IG-OU process, it follows, see [5], that σ∗2t also has IG marginal

density. We can then, by the same arguments as before, superpose several integrated OU
processes (intOU), (σ∗2t )(i), and get a resulting process having the right marginal density and
acf

acfk(s) =
k∑

i=1

mie−αi|s|.

As in the OU case, the conditional expectation seems to be a natural predictor. For the
intOU process, the conditional expectation is, see [6]

E[σ∗2t |σ∗20 ] = α−1
(
1− e−αt

)
σ0 + α−1δγ

(
αt− 1 + e−αt

)
,

where σ∗20 denotes today’s value. If we assume σ∗2t to be a superposition of, say, two indepen-
dent intOU processes, this predictor also requires that we can observe today’s value for both
of the underlying processes.

To solve the problems of prediction that we have run into, we will use today’s value as
an estimator for tomorrow’s integrated volatility.
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Chapter 5

Distributions

5.1 Generalized Hyperbolic Distribution

The GH distribution was introduced by Ole Barndorff-Nielsen, [8], in order to model the
spread of windblown sands. We use it to model both log-returns (see section 4.4), and
devolatized log-returns, of financial assets.

Definition 15 The density of a GH(x; λ, α, β, µ, δ)-distributed random variable is given by

fGH (x;λ, α, β, µ, δ) =

(
α2 − β2

)λ/2

√
2παλ− 1

2 δλKλ

(
δ
√

α2 − β2
)

(
δ2 + (x− µ)2

)(λ− 1
2)/2

× Kλ− 1
2

(
α

√
δ2 + (x− µ)2

)
exp {β (x− µ)} , x ∈ R,

where the Kλ is the modified Bessel function of the third kind, given by

Kλ(x) =
1
2

∫ ∞

0
yλ−1e−

1
2
x(y−1+y)dy.

The domains of the parameters are

δ ≥ 0, |β| < α if λ > 0

δ > 0, |β| < α if λ = 0

δ > 0, |β| ≤ α if λ < 0

¤

The plots in figure 5.1 and figure 5.2, illustrate the fit of the GH distribution and the Gaussian
distribution to the DAX data. There is no doubt that, at least when compared to the Gaussian
distribution, the GH distribution displays a superior fit.
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5.1. GENERALIZED HYPERBOLIC DISTRIBUTION
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Figure 5.1: Fit of GH distribution (–) to DAX data (-).
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Figure 5.2: Fit of Gaussian distribution (–) to DAX data (-).

If unfamiliar with the Generalized Hyperbolic distribution, one might ask, why all the pa-
rameters, and what happens if we vary them? And what role does the Bessel function play?

The answer to; why all the parameters? is, of course, flexibility. Using the GH-model,
we can get tails that are heavy enough to capture most extremal events. We can get skewness
and illustrate the so called leverage effect, which is, when a stock falls the volatility seems to
increase, which in turn gives a heavier left tail.

When it comes to the parameters, λ, is the index of the Bessel function, and affects the
weight of the tails (scaling), µ is a location parameter, β a skewness parameter, and both α
and δ are scale parameters. The plots in figure 5.3 below, demonstrate the effect of changing
one parameter at a time, ceteris paribus1.

1all else equal
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Figure 5.3: Top left: λ = 0.5 (high), λ = 1 and λ = 2 (low). Top right: β = −1 (left), β = 0
and β = 1 (right). Bottom left: α = 0.5 (high), α = 1 and α = 2 (low). Bottom right: δ = 0.5
(high), δ = 1 and δ = 2 (low)

A GH(λ, α, β, µ, δ)-distributed random variable has mean and variance, see [44],

E[X] = µ +
δβKλ+1(ζ)

γKλ(ζ)

Var(X) =
δKλ+1(ζ)
γKλ(ζ)

+
(

βδ

γ

)2 [Kλ+2(ζ)
Kλ(ζ)

− K2
λ+1(ζ)

K2
λ(ζ)

]
,

where γ =
√

α2 − β2 and ζ = δγ. For the special cases Hyperbolic and NIG the mean
simplifies to

E[X] = µ +
δβ

γ
,

and in the NIG case, it follows that

Var(X) = δ2
[1
ζ

+
(

β

γ

)2 1
ζ + 1

] ζ

ζ + 1
.
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5.1. GENERALIZED HYPERBOLIC DISTRIBUTION

5.1.1 The Mixing Property

As we have seen, we need the fact that a GH distribution can be expressed as a mean-
variance mixture, between a Generalized inverse Gaussian (GIG) distribution and a Gaussian
distribution, in the sense that, see [44]

fGH(x; λ, α, β, µ, δ) =
∫ ∞

0
fN (x;µ + βt, t) fGIG

(
t; λ, δ2, α2 − β2

)
dt,

where fN is the density function of a Gaussian random variable with mean µ+βt and variance
t, and fGIG is the density of a GIG distributed random variable.

Equivalently we can express the mixing property by, see [5],

X = µ + βσ2 + σε,

where, for α =
√

β2 + γ2, X ∼ GH(λ, α, β, µ, δ), σ2 ∼ GIG(λ, δ, γ) and
ε ∼ N(0,1), with σ2 and ε independent.

It can be shown that the mean-variance mixture of an IG(δ, γ)-distribution and a stan-
dard Gaussian gives the Normal Inverse Gaussian, NIG(α, β, µ, δ)-distribution, whereas the
variance-mean mixture of an Γ(ν, γ2/2)-distribution and a standard Gaussian gives the Nor-
mal Gamma, NΓ(ν, γ, β, µ)-distribution. Furthermore a mixture of a PH(δ, γ)-distribution and
a standard Gaussian gives the Hyperbolic, H(α, β, µ, δ)-distribution, where α =

√
β2 + γ2.

Definition 16 The density function of the NIG(α, β, µ, δ)-distributed random variable is
given by

fNIG(x; α, β, µ, δ) =
α

π
exp

{
δ
√

α2 − β2 − βµ
}

q

(
x− µ

δ

)−1

K1

(
δαq

(
x− µ

δ

))
eβx,

where
q(x) =

√
1 + x2 and α =

√
β2 + γ2.

¤

Definition 17 The density function of the NΓ(ν, γ, β, µ)-distributed random variable is
given by

fNΓ(x; ν, γ, β, µ) =
γ2ν

(
γ2/2

)1−2ν

√
2πδΓ (ν) 2ν−1

xν− 1
2 Kν− 1

2

(
γ2

2
|x− µ|

)
exp {β (x− µ)}.

¤

Definition 18 The density function of the H(α, β, µ, δ)-distributed random variable is given
by

fH(x;α, β, µ, δ) =

√
α2 − β2

2αδK1

(
δ
√

α2 − β2
) exp

{
− α

√
δ2 + (x− µ)2 + β (x− µ)

}
.

¤
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5.2. GAUSSIAN DISTRIBUTION

Remark It is readily shown that

NIG(α, β, µ, δ) = GH(−1
2
, α, β, µ, δ),

NΓ(ν, γ, β, µ) = GH(ν, α, β, µ, 0)

and
H(α, β, µ, δ) = GH(1, α, β, µ, δ).

Remark From a simulation point of view, the mixing properties of the various distributions
are most interesting. If we consider a price process, for which the log-returns have GH
marginal distribution, the mixing relations provide us with simple methods of simulating
that process, given that we have simulated the OU volatility process. Simulation of an OU
volatility process in turn, is done from the BDLP, so all we really have to do, to simulate
a price process with GH marginals, is to generate the BDLP of a GIG-OU process. Below
we see a simulation of an exponential NIG(1.8244,−0.02,−0.0069, 0.9117)-process, where the
parameter values come from fitting a NIG distribution to USD/DM data.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.92

0.94

0.96

0.98

1

1.02

1.04

Figure 5.4: Realization of an exponential NIG process.

Fitting log-returns to the GH distribution, along with special cases of the GH distribution, is
done by ML. Due to the complexity of the densities involved, this is done numerically.

Remark It should be noted that we use the GH distribution, along with special cases of the
GH distribution, in two different contexts: The first is to fit distributions of non-devolatized
log-returns, and the second is to fit distributions of devolatized log-returns.

5.2 Gaussian Distribution

Since it is the easiest to work with, and the one that is most often used in finance, the Gaussian
is the distribution against which all others are compared. The Gaussian distribution is the
cornerstone of the Bachelier-Samuelson model, and hence the price process model upon which
the Black-Scholes option pricing theory is built, see [13].
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5.3. PEARSON VII DISTRIBUTION

Remark The Gaussian distribution can be obtained from the GH as

N(µ, σ2) = lim
γ→∞GH(λ, γ, 0, µ, σ2γ).

5.3 Pearson VII Distribution

This distribution may not be well known, but it seems to fit financial log-returns quite well, see
also [49]. It coincides with a mixture of two GH distributions. The Pearson VII distribution
enables us to model the left and the right tail of the log-returns, each at a time. This can be
used to model skewness, that often is present in financial data. The density function for the
whole real line is given by

fPVII(x;m−, c−,m+, c+) =
1
2

(
f(−x;m−, c−)1(−∞,0)(x) + f(x;m+, c+)1[0,∞)(x)

)
.

The positive and negative sides, of the density function, of a Pearson VII distributed random
variable, are both given by

f(x; m, c) =
2Γ(m)

cΓ
(
m− 1

2

)√
π

(
1 +

(x

c

)2
)−m

, x > 0.

Here m is a shape parameter, and c a scale parameter. These parameters are estimated using
numerical maximum likelihood.

Remark The density function f(x; m, c), is the density function of a Student-t distributed
random variable, with ν = 2m − 1 degrees of freedom, multiplied by the scale parameter
cν−1/2. This gives a connection to the Gaussian distribution, since Student-t (with n degrees
of freedom) converges weakly to the Gaussian distribution as n →∞.

One “ugly” feature of the Pearson VII density is that you are most likely to get a discontinuity
at zero when you “glue” the positive and negative parts together.

Remark Either side of the Pearson VII distribution can be obtained from the GH as
PV II

+ (x; m+, c+) = GH(m+ + 1
2 , 0, 0, 0, c+) or PV II

− (x; m−, c−) = GH(m−+ 1
2 , 0, 0, 0, c−). This

indicates, by mixing properties , see [5], that if, say, the positive log-returns are distributed
PV II

+ (x; m+, c+), as above, then the volatility of the positive returns have a Reciprocal Gamma

RΓ(m+ − 1
2 ,

c2+
2 ) distribution, for which the density is given by

fRΓ(x; ν, α) =
αν

Γ (ν)
x−ν−1e−

α
x , x > 0.

Below we see a fit of the Pearson VII density to the log-returns of Siemens stock price series.
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5.4. GENERALIZED PARETO DISTRIBUTION
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Figure 5.5: Pearson VII density (–) fitted to Siemens data (-)

5.4 Generalized Pareto Distribution

In this section we consider an extreme value model, that uses Generalized Pareto (GP) dis-
tribution. First we look at some preliminaries from extreme value theory. See e.g. [21] as a
general reference, for the material on extremes that we present here.

For a sequence, X1, X2, ..., of independent and identically distributed random variables, with
distribution function F , we are interested in the variables that exceed some prescribed level
u. Expressed in terms of equations, we are dealing with the following

P (X > u + y |X > u) =
1− F (u + y)

1− F (u)
, y > 0.

That is, given the excess of a high threshold (level) u, what is the probability that this excess
is larger than y? Had we known F , we would have been done. However, this is not the case
in practice, and we need some theory to get around this obstacle.

Theorem 5 Let X1, X2, ... be an i.i.d. sequence with common distribution F , and let

Mn = max{X1, ..., Xn}.

Let X an arbitrary term in the Xi sequence, and suppose that F is such that, for some
sequences of constants (an > 0) and (bn), we have

P
(

Mn − bn

an
≤ z

)
→ G(z) as n →∞,

(where G is non-degenerate), so that for n large

P (Mn ≤ z) ≈ G(z).
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5.4. GENERALIZED PARETO DISTRIBUTION

Then we have

G(z) = exp

{
−

(
1 + ξ

z − µ

σ

)−1/ξ
}

for some µ, σ > 0 and ξ ∈ R.

¤

We will, though, assume that ξ 6= ±∞. For large enough u, the distribution function of
(X − u), conditional on X > u, is approximately

H(y) = 1−
(

1 +
ξy

σ̃

)−1/ξ

,

defined on {y : y > 0 and (1 + ξy
σ̃ ) > 0}, where

σ̃ = σ + ξ (u− µ) (∗).

The family of distributions given by H , is known as the Generalized Pareto family, and seems
to be well suited for our purposes, as will be seen below.

So, working with the GP model, we have

P(X > x |X > u) =
[
1 + ξ

(
x− u

σ

)]−1/ξ

, x > u.

In other words, the distribution function is

F (x) = 1− ζu

[
1 + ξ

(
x− u

σ

)]−1/ξ

, x > 0,

where ζu = P (X > u), ξ is a shape parameter, and σ is a scale parameter.

Remark Observations of the event (X > u), are Binomial(n, p) distributed, with p = ζu.
The probability ζu, is thus estimated by ζ̂u = k/n, where k is the number of excesses of u
among n observations.

One nice feature of the GP distribution is the existence of a closed expression for the in-
verse,

x = F−1(α) = u +
σ

ξ

[(
ζu

α

)ξ

− 1

]
.

This, as we have seen, comes in handy when calculating VaR.

The log-likelihood function is

l(ζu, ξ, σ; xi) = log ζu − log σ −
(

1
ξ

+ 1
)

log
(

1 + ξ

(
xi − u

σ

))
.

However, before making ML estimations, a main issue is to choose an appropriate threshold.
Of course, one wants as low a threshold as possible, to minimize the variance of parameter

39



5.4. GENERALIZED PARETO DISTRIBUTION

estimates. But choosing the threshold too low, might lead to bias problems, because of inclu-
sion of values that are not really “extreme”. The choice of threshold can be made in several
ways, and we work along the lines of Coles’ book , see [21]. It uses a so called mean residual
life plot, which is a method based on the mean of a GP distributed random variable.

If a random variable, Y , has GP distribution, with parameters σ and ξ, then

E(Y ) =
σ

1− ξ
,

for ξ < 1. Otherwise, the mean is infinite. If we assume that the GP distribution is a valid
model for excesses of a threshold σu0 , then we have that

E(X − u0 |X > u0) =
σu0

1− ξ
,

again given that ξ < 1. It follows from (∗) that

E(X − u |X > u) =
σu

1− ξ
=

σu0 + ξ (u− u0)
1− ξ

,

which implies that E(X − u |X > u) is a linear function in u. This expression, of course,
also is the mean of the excesses of u, and can be approximated by the sample mean of the
excesses of u. The above reasoning implies that these estimates depend linearly on u, at the
levels at which the GP model is appropriate. So we look at the following:

{(
u,

1
nu

nu∑

i=1

(
x(i) − u

)
)

: u < xmax

}
,

where x(1)...x(nu) are the ordered observations of excesses of the threshold u. This gives the
mean residual life plot, and we choose our threshold at the lowest u at which the plot becomes
linear. Hence, we obtain the largest number of observations, for which the model is valid.
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Figure 5.6: Fit of a GP density (smooth line) to devolatized returns of a DAX data (jagged
line). The devolatization is done using the Nadaraya-Watson estimator.
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Chapter 6

Test of Models

We have now come to the evaluation of our models. There are three main aspects that we
wish to analyze.

• Are the devolatized log-returns independent?

• How well do the marginal densities fit empirical data?

• How good are the VaR estimates?

First we take a look at the data sets we are working with.

6.1 Data

We have used three data sets, for our price process St, t ≥ 0:

• USD/DM; from 1 December 1986, and 2300 trading days forward. This data set also
contains realized variances.

• DAX1; From 5 November 1991 to 15 January 1999.

• Siemens; From 29 Mars 1995 to 23 May 2002.

Concerning the availability of the used data, the DAX and Siemens data can be downloaded
from e.g. Yahoo Finance. Also the USD/DM daily observations can be found here. The
USD/DM observations were kindly made available to us by Erik Brodin (ECMI, Chalmers
University of Technology).

The data sets are displayed in the following pages, and the plots are organized as follows:
The top plot shows St/S0, the middle plot shows log-returns (i.e Xt = log(St/St−1)) and
the bottom one shows the devolatized log-returns (i.e. At). The realized variance data is
displayed in figure 4.1, see section 4.4.

1der Deutsche Aktieindex

42



6.1. DATA
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Figure 6.1: USD/DM data. Top plot: Price process, middle: Log-returns, bottom: Log-
returns, devolatized using Variance Window volatility.
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Figure 6.2: DAX data. Top plot: Price process, middle: Log-returns, bottom: Log-returns,
devolatized using Nadaraya-Watson volatility.
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Figure 6.3: Siemens data. Top plot: Price process, middle: Log-returns, bottom: Log-returns,
devolatized using Nadaraya-Watson volatility.
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6.2. ARE THE DEVOLATIZED LOG-RETURNS INDEPENDENT?

6.2 Are the Devolatized Log-returns Independent?

Since we do not assume a simultaneous Gaussian law for the log-returns, zero autocorrelation
does not necessarily imply independence. We will therefore use the BDS-test (Brock, Dechert
& Scheinkman test for independence based on the correlation dimension.), an independence
test which reacts to accumulations of similar values in a time series, see [18]. The test is
carried out using MatLab code written by Ludwig Kanzler, see also [31]. To present the test,
we use notation from [45] and [50]. The BDS statistic, Wm, n(ε), for fixed parameters m ∈ N
and ε > 0, is defined as

Wm,n(ε) =
√

n
Cm,n(ε)− (C1,n(ε))m

σm,n(ε)
.

Here n is the number of observation. Further, for nm = n−m + 1, and

1ε(s, t) = 1[−ε,ε]

{
max

i∈ 0,...,m−1
|X(t + i)−X(s + i)|

}
,

we have
Cm,n(ε) =

∑

1≤t<s≤nm

1ε(s, t)
2

nm(nm − 1)
.

and

σ2
m,n(ε) = 4

(
Kn(ε) + 2

m−1∑

j=1

Kn(ε)m−jC1,n(ε)2j

+ (m− 1)2C1,n(ε)2m −m2Kn(ε)C1,n(ε)2m−2
)
,

where

Kn(ε) =
∑

1≤t<s<r≤nm

2(1ε(t, s)1ε(s, r) + 1ε(t, r)1ε(r, s) + 1ε(s, t)1ε(t, r))
nm(nm − 1)(nm − 2)

.

Under the null hypothesis, that of independence, we have that Wm,n(ε) is asymptotically
standard Gaussian distributed. As suggested in [19], we choose the parameter values m = 4
and ε = 1.5sL, where sL is the empirical standard deviation of At.

Below is a table with the results from the BDS-test, for each data set, and volatility model.
Regarding devolatization, we see that all stochastic volatility models seem to work well. As
one would expect, constant volatility fails for all three data sets.
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6.2. ARE THE DEVOLATIZED LOG-RETURNS INDEPENDENT?

USD/DM BDS statistic p-value i.i.d. hypothesis
Nadaraya-Watson -0.51 0.61 Not Rejected
Var-Win -0.47 0.64 Not Rejected
GARCH-AR -1.07 0.28 Not rejected
Constant 5.56 < 0.001 Rejected
DAX BDS statistic p-value i.i.d. hypothesis
Nadaraya-Watson 0.33 0.74 Not Rejected
Var-Win -0.47 0.64 Not Rejected
GARCH-AR 0.46 0.64 Not rejected
Constant -27.37 < 0.001 Rejected
SIEMENS BDS statistic p-value i.i.d. hypothesis
Nadaraya-Watson -0.32 0.74 Not Rejected
Var-Win 1.69 0.09 Not Rejected
GARCH-AR -1.37 0.17 Not rejected
Constant -27.37 < 0.001 Rejected

Table 6.1: BDS test for independency of devolatized returns.
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6.3. HOW WELL DO THE MARGINAL DENSITIES FIT DATA?

6.3 How Well do the Marginal Densities Fit Data?

To test the fit of univariate marginal distributions to data, we use the Kuiper test statistic
K, which is given by

K = max
x∈[0,1]

(Femp(x)− x) + max
x∈[0,1]

(x− Femp(x)).

Here, Femp denotes the empirical distribution of the sequence (Ut)t=1,...,T = (F̂ (Xt))t=1,...,T ,
where F̂ is the estimated distribution function of the log-returns. Asymptotically, the p-value
of the test is given by, see [45],

2
∞∑

j=1

(4j2λ2 − 1) exp{−2j2λ2},

where

λ = K

(√
T + 0.155 +

0.24√
T

)
.

We also use standard graphical procedures, such as PP-plots and QQ-plots, which are pre-
sented below. The PP-plots, QQ-plots and Kuiper tests are based only on observations in
the lower part of the dataset. The reason for this, is that we, in a VaR setting, are mainly
interested in how well the data fits the left tail of a given probability density function.

Remark Before making the PP-plots, we transform (Ut)t=1,...,T to standard Gaussian, and
then we present a normal Probability Plot. This gives a good indication of how well the lower
tail of the distribution fits the smallest observations.

We also display the evolvement of the probability density functions, of the devolatized log-
returns over time. Over a 1300 day period, the parameters of the probability density functions
are estimated every five days, using a 500 day window. Since parameter estimation for the
GH distribution is time consuming we have used the Hyperbolical distribution instead.

It should be noted that, throughout chapter 6, the Pearson VII distribution is referred to
as just the Pearson distribution.
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6.3. HOW WELL DO THE MARGINAL DENSITIES FIT DATA?

6.3.1 USD/DM

NIG α β γ δ λ

Constant 1.8253 -0.0000 0.9122 -0.0108 1/2

Hyperbolical α β γ δ λ

Nadaraya-Watson 1.7657 0.0193 1.0620 -0.0217 1
Variance Window 1.6005 0.0475 0.9460 -0.0588 1
GARCH-AR 1.9929 0.0673 1.0590 -0.0572 1
Constant 2.4638 0.1117 0.6761 -0.0598 1

GP ξ σ ζu u

Nadaraya-Watson 0.0047 0.6625 0.2337 0.7
Variance Window 0.0530 0.6352 0.2481 0.7
GARCH-AR -0.0249 0.6066 0.2454 0.6
Constant 0.0237 0.4317 0.2262 0.5

Pearson m− c−
Nadaraya-Watson 2.1982 3.6318
Variance Window 2.2038 3.4743
GARCH-AR 2.1947 4.1099
Constant 1.5639 3.7844

Gaussian µ σ

Nadaraya-Watson -0.0195 1.0685
Variance Window -0.0101 1.1242
GARCH-AR 0.0061 0.9760
Constant 0.0013 0.7459

Table 6.2: Estimated parameters for USD/DM data.

Hyperbolical K p value Hypothesis

Nadaraya-Watson 0.0617 0.6699 Not Rejected
Variance Window 0.0604 0.6973 Not Rejected
GARCH-AR 0.0650 0.5604 Not Rejected
Constant 0.0718 0.3845 Not Rejected

Gaussian

Nadaraya-Watson 0.1053 0.0202 Rejected
Variance Window 0.1102 0.0105 Rejected
GARCH-AR 0.0988 0.0372 Rejected
Constant 0.1091 0.0111 Rejected

Pearson

Nadaraya-Watson 0.0518 0.8958 Not Rejected
Variance Window 0.0534 0.8617 Not Rejected
GARCH-AR 0.0609 0.6739 Not Rejected
Constant 0.0676 0.4910 Not Rejected

GP

Nadaraya-Watson 0.0518 0.9198 Not Rejected
Variance Window 0.0314 1.0000 Not Rejected
GARCH-AR 0.0588 0.7351 Not Rejected
Constant 0.0496 0.9513 Not Rejected

NIG 0.0213 0.7484 Not Rejected

Table 6.3: Kuiper test for devolatilized log-returns (USD/DM).

Table 6.3 shows that, the Hyperbolical distribution, the Pearson distribution and the GP dis-

49



6.3. HOW WELL DO THE MARGINAL DENSITIES FIT DATA?

tribution, all pass the Kuiper test, regardless of the volatility model used (even the constant).
However, the Gaussian distribution fails in all four cases.
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Figure 6.4: Evolvement through time of the estimated Hyperbolical probability density function
for the devolatized log-returns of the USD/DM data. Volatility models used are: Nadaraya-
Watson (top left), Variance Window (top right), GARCH-AR (bottom left), Constant (bottom
right).

Looking at figure 6.4, the Nadaraya-Watson volatility model really seems to impose station-
arity for the distribution of the devolatized log-returns. The same goes for the Variance
Window, though not as clear as for the Nadaraya-Watson. In the constant volatility case, the
underlying distribution is clearly changing over time, (i.e. not stationary).

Also the plots, in figure 6.5, show a good fit for the Hyperbolical distribution. As seen, there
are a few “extreme”observations that are not captured by the Hyperbolical distribution.
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Figure 6.5: PP- and QQ-plots for USD/DM data, under assumption of Hyperbolical distri-
bution. Volatility models used are: Nadaraya-Watson (first row), Variance Window (second
row), GARCH-AR (third row), Constant (fourth row).
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Figure 6.6: Evolvement through time of the estimated Gaussian probability density function
for the devolatized log-returns of the USD/DM data. Volatility models used are: Nadaraya-
Watson (top left), Variance Window (top right), GARCH-AR (bottom left), Constant (bottom
right).

As seen in figure 6.6, the Nadaraya-Watson devolatization procedure, seems to make the
devolatized log-returns stationary. This is also the case, though not as clear, for both the
Variance Window and the GARCH-AR volatility models.

As expected, the plots in figure 6.7, indicate that the Gaussian distribution does not fit
the data very well.
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Figure 6.7: PP- and QQ-plots for USD/DM data, under assumption of Gaussian distribution.
Volatility models used are: Nadaraya-Watson (first row), Variance Window (second row),
GARCH-AR (third row), Constant (fourth row).
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Figure 6.8: Evolvement through time of the estimated Pearson probability density function
for the devolatized log-returns of the USD/DM data. Volatility models used are: Nadaraya-
Watson (top left), Variance Window (top right), GARCH-AR (bottom left), Constant (bottom
right).

Considering stationarity of the devolatized log-returns, the Nadaraya-Watson, and the Vari-
ance Window seem to be the best volatility models.

The plots, in figure 6.9, indicate that the Pearson density fits the USD/DM data well. How-
ever, there are a few extreme observations, that do not seem to be captured by this model.
For the USD/DM data, the Nadaraya-Watson seems to be the best volatility model, to use
together with the Pearson distribution.
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Figure 6.9: PP- and QQ-plots for USD/DM data, under assumption of Pearson distribution.
Volatility models used are: Nadaraya-Watson (first row), Variance Window (second row),
GARCH-AR (third row), Constant (fourth row).
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Figure 6.10: Evolvement through time of the estimated GP probability density function for the
devolatized log-returns of the USD/DM data. Volatility models used are: Nadaraya-Watson
(top left), Variance Window (top right), GARCH-AR (bottom left), Constant (bottom right).

Once again, devolatization using the Nadaraya-Watson and the Variance Window volatility
models, seems to result in stationary log-returns.

As seen in the top two plots, in figure 6.11, devolatized data using Nadaraya-Watson volatil-
ity, seems to fit the GP density very well. Overall, the GP density fits data well, just as the
Kuiper test indicates.
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Figure 6.11: PP- and QQ-plots for USD/DM data, under assumption of GP distribution.
Volatility models used are: Nadaraya-Watson (first row), Variance Window (second row),
GARCH-AR (third row), Constant (fourth row).
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6.3.2 DAX

Hyperbolical α β γ δ λ

Nadaraya-Watson 1.9790 0.0000 1.5238 0.0972 1
Variance Window 1.9680 -0.4753 1.5086 0.6555 1
GARCH-AR 2.1271 -0.5388 1.3480 0.5594 1
Constant 131.1511 -18.7622 0.0071 0.0036 1

GP ξ σ ζu u

Nadaraya-Watson 0.0647 0.7017 0.1476 1
Variance Window 0.0457 0.7713 0.1541 1
GARCH-AR 0.0574 0.7262 0.1554 0.95
Constant 0.1571 0.0081 0.1623 0.01

Pearson m− c−
Nadaraya-Watson 2.2245 3.1833
Variance Window 2.1954 2.9549
GARCH-AR 2.1585 3.3211
Constant 0.0170 2.1308

Gaussian µ σ

Nadaraya-Watson -0.0118 1.0937
Variance Window 0.0716 1.1619
GARCH-AR 0.0027 1.0745
Constant 0.0007 0.0130

Table 6.4: Estimated parameters for DAX data.

Hyp K p value Hypothesis

Nadaraya-Watson 0.0643 0.6082 Not Rejected
Variance Window 0.0507 0.9086 Not Rejected
GARCH-AR 0.0622 0.6383 Not Rejected
Constant 0.0494 0.9248 Not Rejected

Gaussian

Nadaraya-Watson 0.1026 0.0292 Rejected
Variance Window 0.0901 0.0937 Not Rejected
GARCH-AR 0.0931 0.0677 Not Rejected
Constant 0.0996 0.0342 Rejected

Pearson

Nadaraya-Watson 0.0593 0.7396 Not Rejected
Variance Window 0.0419 0.9891 Not Rejected
GARCH-AR 0.0618 0.6490 Not Rejected
Constant 0.0481 0.9412 Not Rejected

GP

Nadaraya-Watson 0.0796 0.6308 Not Rejected
Variance Window 0.0602 0.9218 Not Rejected
GARCH-AR 0.0783 0.6708 Not Rejected
Constant 0.0679 0.8011 Not Rejected

Table 6.5: Kuiper test for devolatilized log-returns (DAX).

As for The USD/DM data, the Hyperbolical distribution, the Pearson distribution and the
GP distribution, all seem to fit the DAX data extremely well. Since the Gaussian distribution
(barely) passes the Kuiper test for Variance Window and GARCH-AR volatility, it seems to
better fit the DAX data than the USD/DM data. However, the Gaussian distribution, once
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again, gives a poor overall impression.
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Figure 6.12: Evolvement through time of the estimated Hyperbolical probability density func-
tion for the devolatized log-returns of the DAX data. Volatility models used are: Nadaraya-
Watson (top left), Variance Window (top right), GARCH-AR (bottom left), Constant (bottom
right).

Regarding stationarity, the Nadaraya-Watson and the Variance Window volatility models
excel. Noticable is the ”peakiness” of the estimated Hyperbolical density function, in the
constant volatility case.

For the DAX data, looking at figure 6.14, the Hyperbolical distribution does not perform
as well as in the USD/DM case. The GARCH-AR volatility model together with the Hyper-
bolical marginal density, does not seem to work very well.
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Figure 6.13: PP- and QQ-plots for DAX data, under assumption of Hyperbolical distribution.
Volatility models used are: Nadaraya-Watson (first row), Variance Window (second row),
GARCH-AR (third row), Constant (fourth row).
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Figure 6.14: Evolvement through time of the estimated Gaussian probability density function
for the devolatized log-returns of the DAX data. Volatility models used are: Nadaraya-Watson
(top left), Variance Window (top right), GARCH-AR (bottom left), Constant (bottom right).

When it comes to stationarity, the Variance Window is the best choice of volatility model.
Remarkably, devolatization using the GARCH-AR volatility seems to remove log-returns from
stationarity, rather then take them closer to it.

Figure 6.15 shows that, the Gaussian distribution again fails miserably. It is reasonable
to believe, that the assumption of Gaussian distribution for devolatized log-returns will un-
derestimate the VaR, no matter what volatility model we use.
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Figure 6.15: PP- and QQ-plots for DAX data, under assumption of Gaussian distribution.
Volatility models used are: Nadaraya-Watson (first row), Variance Window (second row),
GARCH-AR (third row), Constant (fourth row).
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Figure 6.16: Evolvement through time of the estimated Pearson probability density function
for the devolatized log-returns of the DAX data. Volatility models used are: Nadaraya-Watson
(top left), Variance Window (top right), GARCH-AR (bottom left), Constant (bottom right).

The Nadaraya-Watson, and the Variance Window volatility models, makes the devloatized
log-returns stationary.

The plots, in figure 6.17, look really good. For the DAX data, the Pearson distribution
seems to outperform all the other distributions. This result was also indicated by the Kuiper
test. In this case, deciding what volatility model is best, is a close call.
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Figure 6.17: PP- and QQ-plots for DAX data, under assumption of Pearson distribution.
Volatility models used are: Nadaraya-Watson (first row), Variance Window (second row),
GARCH-AR (third row), Constant (fourth row).
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Figure 6.18: Evolvement through time of the estimated GP probability density function for the
devolatized log-returns of the DAX data. Volatility models used are: Nadaraya-Watson (top
left), Variance Window (top right), GARCH-AR (bottom left), Constant (bottom right).

Once again, devolatization using the Nadaraya-Watson, and the Variance Window volatility
models makes devolatized log-returns stationary.

As indicated by figure 6.19 ,the GP distribution seems to perform well with the three stochas-
tic volatility models. We also see that, for the DAX data, the GP is the only distribution
that seems to work well using constant volatility.
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Figure 6.19: PP- and QQ-plots for DAX data, under assumption of GP distribution. Volatility
models used are: Nadaraya-Watson (first row), Variance Window (second row), GARCH-AR
(third row), Constant (fourth row).
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6.3.3 SIEMENS

Hyperbolical α β γ δ λ

Nadaraya-Watson 1.8980 0.0008 1.3625 0.0251 1
Variance Window 1.7005 0.0019 1.1677 0.0287 1
GARCH-AR 1.7723 -0.0729 1.2377 0.1042 1
Constant 67.2131 -1.0169 0.0251 0.0014 1

GP ξ σ ζu u

Nadaraya-Watson 0.0260 0.5286 0.1078 1.3
Variance Window 0.0545 0.5445 0.0966 1.4
GARCH-AR 0.0334 0.6434 0.1615 1
Constant 0.0568 0.0153 0.1285 0.03

Pearson m− c−
Nadaraya-Watson 3.1464 5.8391
Variance Window 2.8622 4.8461
GARCH-AR 2.3203 3.6711
Constant 0.0562 3.6033

Gaussian µ σ

Nadaraya-Watson 0.0261 1.0956
Variance Window 0.0716 1.1619
GARCH-AR 0.0155 1.1181
Constant 0.0006 0.0274

Table 6.6: Estimated parameters for the Siemens data

Hyp K p value

Nadaraya-Watson 0.1062 0.4322
Variance Window 0.0976 0.5647
GARCH-AR 0.0808 0.8409
Constant 0.0888 0.7129

Gaussian

Nadaraya-Watson 0.1076 0.4085
Variance Window 0.0927 0.6544
GARCH-AR 0.0859 0.7631
Constant 0.1280 0.1352

Pearson

Nadaraya-Watson 0.0983 0.5713
Variance Window 0.0911 0.6833
GARCH-AR 0.0651 0.9809
Constant 0.0844 0.7873

GP

Nadaraya-Watson 0.0800 0.8712
Variance Window 0.0934 0.7190
GARCH-AR 0.0753 0.6676
Constant 0.0752 0.8231

Table 6.7: Kuiper test for devolatilized log-returns (Siemens).

In this case, all marginal distributions, including the Gaussian, pass the Kuiper test, with
high p-values as well. Except for the case of constant volatility, the Gaussian distribution
seems to perform almost as well (or as bad) as the Hyperbolical distribution. Regardless of
which volatility model used, both the Pearson distribution and the GP distribution fit the
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Siemens data better.
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Figure 6.20: Evolvement through time of the estimated Hyperbolical probability density func-
tion for the devolatized log-returns of the Siemens data. Volatility models used are: Nadaraya-
Watson (top left), Variance Window (top right), GARCH-AR (bottom left), Constant (bottom
right).

Here, the GARCH-AR volatility model competes with the Nadaraya-Watson for stationarity
honours. Noticeable is the ”peakiness” in the constant volatility case.

The Hyperbolical distribution does not fit the Siemens data as well as it fits the USD/DM
data or the DAX data. The Nadaraya-Watson volatility model seems to be the best in this
setting.
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Figure 6.21: PP- and QQ-plots for Siemens data, under assumption of Hyperbolical distri-
bution. Volatility models used are: Nadaraya-Watson (first row), Variance Window (second
row), GARCH-AR (third row), Constant (fourth row).
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Figure 6.22: Evolvement through time of the estimated Gaussian probability density function
for the devolatized log-returns of the Siemens data. Volatility models used are: Nadaraya-
Watson (top left), Variance Window (top right), GARCH-AR (bottom left), Constant (bottom
right).

None of the volatility models seem to make devolatized log-returns stationary.

Considering the result from the Kuiper test, the Hyperbolical and the Gaussian distributions
seem to fit the Siemens data equally well. However, comparing the plots in figure 6.23 to the
corresponding ones for the Hyperbolical distribution strongly suggests that the Hyperbolical
distribution should be chosen over the Gaussian distribution for the Siemens data.
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Figure 6.23: PP- and QQ-plots for Siemens data, under assumption of Gaussian distribution.
Volatility models used are: Nadaraya-Watson (first row), Variance Window (second row),
GARCH-AR (third row), Constant (fourth row).
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Figure 6.24: Evolvement through time of the estimated Pearson probability density function for
the devolatized log-returns of the Siemens data. Volatility models used are: Nadaraya-Watson
(top left), Variance Window (top right), GARCH-AR (bottom left), Constant (bottom right).

When it comes to stationarity, the Nadaraya-Watson and the GARCH-AR volatility models
seem to be the best.

For all volatility models, the Pearson distribution once again performs really well. However,
the Nadaraya-Watson seems to excel among volatility models.
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Figure 6.25: PP- and QQ-plots for Siemens data, under assumption of Pearson distribution.
Volatility models used are: Nadaraya-Watson (first row), Variance Window (second row),
GARCH-AR (third row), Constant (fourth row).
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Figure 6.26: Evolvement through time of the estimated GP probability density function for
the devolatized log-returns of the Siemens data. Volatility models used are: Nadaraya-Watson
(top left), Variance Window (top right), GARCH-AR (bottom left), Constant (bottom right).

For the GP distribution, as for the Pearson distribution, devolatization using the Nadaraya-
Watson, and the GARCH-AR volatility models seems to impose stationarity on the log-
returns.

For the Siemens data, as is the case with the Pearson distribution, the GP distribution
works really well with all volatility models. Using the plots in figures 6.26 and 6.27 to decide
what volatility model to use is not easily done.
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Figure 6.27: PP- and QQ-plots for Siemens data, under assumption of GP distribution.
Volatility models used are: Nadaraya-Watson (first row), Variance Window (second row),
GARCH-AR (third row), Constant (fourth row).
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6.4 Tails

The tail (lower) of a distribution is defined as

Tl
X(x) = P(X ≤ x) =

∫ x

−∞
fX(t)dt.

Remark Equivalently, the upper tail is defined as Tu
X(x) = P(X ≥ x) =

∫∞
x fX(t)dt.

In the following plots, we graph the estimated lower tails for each distribution, and each
volatility model. The Hyperbolical distribution is represented by a solid thick line (-), the
GP distribution by a solid line (−), the Pearson VII distribution by a dotted line (−.), and
the Gaussian distribution is represented by a broken line (−−).
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Figure 6.28: Tail-plots, USD/DM data. Top left: Nadaraya-Watson, top right: Variance
Window, lower left: GARCH-AR and lower right: Constant volatility.

It is obvious, that assuming Gaussian distribution for log-returns will underestimate the VaR.
Even when devolatized, the Gaussian tail is too light. The tails of the other three distributions
are much heavier.
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Figure 6.29: Tail-plots, DAX data. Top left: Nadaraya-Watson, top right: Variance Window,
lower left: GARCH-AR and lower right: Constant volatility.

Here, we see even bigger discrepancies between the Gaussian distribution and the other three
distributions, than we did for the USD/DM data. For the USD/DM data, the GP gave the
heaviest tail, but for the DAX data, the Pearson distribution has a heavier tail than all the
three other distributions. These tail plots further strengthen the case against using Gaussian
distributions in finance, especially in risk management.
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Figure 6.30: Tail-plots, Siemens data. Top left: Nadaraya-Watson, top right: Variance Win-
dow, lower left: GARCH-AR and lower right: Constant volatility.

When using Nadaraya-Watson and Variance Window volatility, the Gaussian tail is consid-
erably closer to the other three. Still, when it comes to the GARCH-AR, and the constant
volatility, there are quite big differences. For the constant volatility, the tails of the hyper-
bolic, the Pearson and the GP distribution are almost the same. This indicates that using
these three models will produce almost the same result.

6.5 Backtesting (Performance of VaR Estimates)

One might ask, how good is a VaR prediction? There are a few things that have to be
considered. We do not want a model that either overestimates or underestimates the risk of
holding a financial asset. This means that the model has to allow for a few excesses of the
limit specified by the VaR prediction, while keeping an as good as possible fit to the peaks
of the smallest log-returns. In the diagrams below, we see the performance of the various
models used. When studying an α percent VaR-plot, ideally one should observe a 100-α per-
cent frequency of excessive losses. Also the times of excessive losses should be independently
distributed.

We will use two methods to evaluate VaR estimates, namely, the Frequency of Excessive
Losses test (FOEL) and the Lopez Probability Forecasting Approach (LPFA).
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6.5.1 Frequency of Excessive Losses

One way to test the assumption of 100-α percent frequency of excessive losses, is to use
a FOEL test. It is a likelihood ratio test, proposed by Kupiec, see also [33]. The FOEL
test is based on the idea that if the predicted VaR is correct, then the number of excessive
losses follow a binomial distribution, with parameters p0 and T . Here 1− p0 is the predicted
VaR-level (i.e. 95-, 97.5- or 99%), and T is the sample length. The test statistic is defined as

R(f, T, p0) = −2 log
[
(1− p0)T−fpf

0

]
+ 2 log

[
(1− f

T
)T−f (

f

T
)f

]
,

where f is the number of days in the sample that exceeds the predicted VaR. Under the
null hypothesis, the statistic is χ2

1-distributed. The assumption of times of exceedances being
independent is often violated. This might negatively affect the power of the FOEL test.

The results of the FOEL test are presented in tables. First the VaR level (α) is specified,
then the frequency of excessive losses (FOEL), a confidence interval for the FOEL, the value
of the statistic (R) and finally the p-value. The test is performed for α-levels 95, 97.5, and
99. Throughout we set T = 1300.

6.5.2 Lopez Probability Forecasting Approach

Lopez, see [37], proposes a method, as an alternative to the FOEL test (and to other sta-
tistical evaluation methods, see also [22]). The LPFA is a procedure that is meant to gauge
the accuracy of VaR models, not by hypothesis testing, but by using a forecast evaluation
criterion. The idea is that we specify a forecast loss function and gauge the accuracy of the
VaR forecasts, by how well they score, in terms of this loss function. The higher the score,
the poorer the model.

We start by specifying the event of interest. In our case, such an event is an excessive loss (i.e.
loss that exceeds the VaR estimate). Then, we predict the probability of this event in the
next period (1 day). Theoretically, this should be 1−α for an VaRα estimate. We also keep a
record if this event happens in the period, or not. Finally, we choose a loss function, by which
to evaluate the goodness of these forecasts, against subsequently realized outcomes. The par-
ticular loss function that Lopez uses (which also we will use), is the Quadratic Probability
Score (QPS), due originally to Brier, see [17].

QPS =
2
T

T∑

t=1

(
pf

t − It

)2
,

where pf
t is the predicted probability of an excessive loss in period t, and

It =
{

1, if we observe an excessive loss in period t;
0, else.

Lopez compares the accuracy of this approach, against the accuracy of several statistical ap-
proaches, by means of a simulation experiment. His results suggest that the power of the
statistical procedures are generally rather low, and that such tests are likely to be inaccurate.
His results also show that his loss funciton correctly identifies the ”true” model in a large
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majority of simulated cases. A result that seems to confirm that the LPFA is likely to be
quite reliable.

The QPS scores are presented in tables. For each VaR level and each volatility model, the
density giving the lowest score is indicated.

6.5.3 USD/DM

Non-par. 95% 97.5% 99% Var. Win. 95% 97.5% 99%
Hyperbolic 0.0771 0.0514 0.0248 Hyperbolical 0.0771 0.0561 0.0321
Gaussian 0.0816 0.0441 0.0248 Gaussian 0.0747 0.0537 0.0370
Pearson 0.0656 0.0561 0.0248 Pearson 0.0656 0.0585 0.0075
GP 0.0797 0.0513 0.0150 GP 0.0773 0.0514 0.0175
GARCH-AR 95% 97.5% 99% Constant 95% 97.5% 99%
Hyperbolic 0.0794 0.0514 0.0272 Hyperbolic 0.0794 0.0514 0.0248
Gaussian 0.0770 0.0561 0.0321 Gaussian 0.0816 0.0465 0.0272
Pearson 0.0726 0.0561 0.0248 Pearson 0.0657 0.0514 0.0248
GP 0.0842 0.0513 0.0150 GP 0.0799 0.0489 0.0150

Table 6.8: Results from the LPFA.

The table shows that, both the Pearson and the GP distributions perform well. It is arguably
remarkable that the Gaussian distribution gets the lowest score on two occasions (for the
97.5% level.)

NIG

95%
Volatility model VaR FOEL Confidence R p-value VaR Level

Level Interval Hypothesis
Integrated Vol. 95% 5.6% [4.4%,6.9%] 1.00 0.318 Not Rejected
Integrated Vol. 97.5% 3.5% [2.5%,4.6%] 4.42 0.036 Rejected
Integrated Vol. 99% 2.1% [1.3%,2.9%] 11.6 < 0.001 Rejected

Table 6.9: FOEL test if returns are assumed to have a NIGlaw.

Though this approach works well at the 95%-level, it fails completely further out (i.e at
97.5 and 99% levels) in the tail. However, this may be due to insufficiently many intra-day
observations.
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Figure 6.31: VaR (97.5%) predictions, and actual losses, USD/DM data. Times of excessive
losses are seen, as plus signs, in the top of the plot. Log-retruns are assumed NIG distributed,
and the volatility model used is Integrated Volatility.
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Hyperbolical

95%
Volatility model VaR FOEL Confidence R p-value VaR Level

Level Interval Hypothesis
Nadaraya-Watson 95% 4.1% [3.0%,5.2%] 2.48 0.115 Not Rejected
Var-Win 95% 4.6% [3.5%,5.8%] 0.42 0.519 Not Rejected
GARCH-AR 95% 3.8% [2.8%,4.9%] 3.95 0.047 Rejected
Constant 95% 4.6% [3.5%,5.8%] 0.42 0.519 Not Rejected
Nadaraya-Watson 97.5% 2.4% [1.6%,3.2%] 0.07 0.79 Not Rejected
Var-Win 97.5% 2.2% [1.4%,2.9%] 0.67 0.413 Not Rejected
GARCH-AR 97.5% 2.5% [1.7%,3.4%] 0.01 0.929 Not Rejected
Constant 97.5% 2.5% [1.6%,3.3%] 0.01 0.929 Not Rejected
Nadaraya-Watson 99% 1.0% [0.5%,1.5%] 0 1.000 Not Rejected
Var-Win 99% 1.1% [0.5%,1.6%] 0.08 0.783 Not Rejected
GARCH-AR 99% 1.2% [0.6%,1.8%] 0.65 0.420 Not Rejected
Constant 99% 0.9% [0.4%,1.4%] 0.08 0.778 Not Rejected

Table 6.10: FOEL test under assumption of devolatized log-returns being Hyperbolically dis-
tributed, USD/DM data.

The Hyperbolical distribution works well with all volatility models. Note that the GARCH-
AR fails at the 95% level. For all volatility models, the Hyperbolical distribution seems to
overestimate the VaR at the 95% level (the FOEL lies between 3.8 − 4.6%). On the other
hand, it produces an excellent result at both the 97.5% and the 99% level.
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Figure 6.32: VaR (97.5%) predictions and actual losses, USD/DM data. Times of excessive
losses are seen, as plus signs, in the top of the plot. Devolatization is done using the Nadaraya-
Watson (upper), and the Variance Window (lower) volatility models. The devolatized log-
returns are assumed Hyperbolically distributed.
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Figure 6.33: VaR (97.5%) predictions and actual losses, USD/DM data. Times of excessive
losses are seen, as plus signs, in the top of the plot. Devolatization is done using the GARCH-
AR (upper) volatility model, and constant volatility (lower). The devolatized log-returns are
assumed Hyperbolically distributed.
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Gaussian

95%
Volatility model VaR FOEL Confidence R p-value VaR Level

Level Interval Hypothesis
Nadaraya-Watson 95% 4.2% [3.1%,5.2%] 2.07 0.150 Not Rejected
Var-Win 95% 3.9% [2.8%,5.0%] 3.41 0.065 Not Rejected
GARCH-AR 95% 3.8% [2.8%,4.9%] 3.95 0.047 Rejected
Constant 95% 4.3% [3.2%,5.4%] 1.37 0.241 Not Rejected
Nadaraya-Watson 97.5% 2.6% [1.7%,3.5%] 0.07 0.791 Not Rejected
Var-Win 97.5% 2.6% [1.7%,3.5%] 0.07 0.791 Not Rejected
GARCH-AR 97.5% 2.7% [1.8%,3.6%] 0.19 0.661 Not Rejected
Constant 97.5% 2.6% [1.7%,3.5%] 0.07 0.791 Not Rejected
Nadaraya-Watson 99% 1.5% [2.2%,3.3%] 3.26 0.071 Not Rejected
Var-Win 99% 1.6% [0.9%,2.3%] 4.19 0.041 Rejected
GARCH-AR 99% 0.4% [0.1%,0.7%] 6.50 0.011 Rejected
Constant 99% 1.2% [0.6%,1.7%] 0.30 0.586 Not Rejected

Table 6.11: FOEL test if devolatized returns are assumed to be Gaussian distributed, USD/DM
data.

As in the Hyperbolical distribution case, the Gaussian distribution, using the GARCH-AR
volatility model, fails the FOEL test at the 95%, but not at the 97.5% VaR level. Using
Variance Window or GARCH-AR volatility models, it also (as expected) fails, at the 99%
VaR level. Remarkably, with constant volatility, the Gaussian distribution passes the FOEL
test, at the 99% VaR level.
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Figure 6.34: VaR (97.5%) predictions and actual losses, USD/DM data. Times of excessive
losses are seen, as plus signs, in the top of the plot. Devolatization is done using the Nadaraya-
Watson (upper), and the Variance Window (lower) volatility models. The devolatized log-
returns are assumed Gaussian distributed.
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Figure 6.35: VaR (97.5%) predictions and actual losses, USD/DM data. Times of excessive
losses are seen, as plus signs, in the top of the plot. Devolatization is done using the GARCH-
AR (upper) volatility model, and constant volatility (lower). The devolatized log-returns are
assumed Gaussian distributed.
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Pearson

95%
Volatility model VaR FOEL Confidence R p-value VaR Level

Level Interval Hypothesis
Nadaraya-Watson 95% 4.2% [3.1%,5.2%] 2.07 0.150 Not Rejected
Var-Win 95% 4.6% [3.5%,5.8%] 0.42 0.519 Not Rejected
GARCH-AR 95% 4.1% [3.0%,5.2%] 2.48 0.115 Not Rejected
Constant 95% 4.6% [3.5%,5.8%] 0.42 0.519 Not Rejected
Nadaraya-Watson 97.5% 2.4% [1.6%,3.2%] 0.07 0.788 Not Rejected
Var-Win 97.5% 2.3% [1.5%,3.1%] 0.20 0.653 Not Rejected
GARCH-AR 97.5% 2.5% [1.7%,3.4%] 0.01 0.929 Not Rejected
Constant 97.5% 2.5% [1.6%,3.3%] 0.01 0.929 Not Rejected
Nadaraya-Watson 99% 1.1% [0.5%,1.6%] 0.08 0.783 Not Rejected
Var-Win 99% 1.2% [0.6%,1.8%] 0.65 0.420 Not Rejected
GARCH-AR 99% 1.2% [0.6%,1.8%] 0.65 0.420 Not Rejected
Constant 99% 0.9% [0.4%,1.4%] 0.08 0.778 Not Rejected

Table 6.12: FOEL test if devolatized returns are assumed to be Pearson distributed, USD/DM
data.

As seen in the table, the Pearson distribution performs really well. It seems to overestimate
the VaR at the 95% level. At both the 97.5% and 99% VaR levels, it looks excellent.
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Figure 6.36: VaR (97.5%) predictions and actual losses, USD/DM data. Times of excessive
losses are seen, as plus signs, in the top of the plot. Devolatization is done using the Nadaraya-
Watson (upper), and the Variance Window (lower) volatility models. The devolatized log-
returns are assumed Pearson distributed.
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Figure 6.37: VaR (97.5%) predictions and actual losses, USD/DM data. Times of excessive
losses are seen, as plus signs, in the top of the plot. Devolatization is done using the GARCH-
AR (upper) volatility model, and constant volatility (lower). The devolatized log-returns are
assumed Pearson distributed.
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6.5. BACKTESTING (PERFORMANCE OF VAR ESTIMATES)

GP

95%
Volatility model VaR FOEL Confidence R p-value VaR Level

Level Interval Hypothesis
Nadaraya-Watson 95% 4.2% [3.1%,5.3%] 1.70 0.192 Not Rejected
Var-Win 95% 4.1% [3.0%,5.2%] 2.48 0.115 Not Rejected
GARCH-AR 95% 3.9% [2.9%,5.0%] 3.42 0.065 Not Rejected
Constant 95% 4.8% [3.6%,5.9%] 0.15 0.701 Not Rejected
Nadaraya-Watson 97.5% 2.4% [1.6%,3.2%] 0.07 0.788 Not Rejected
Var-Win 97.5% 2.3% [1.5%,3.1%] 0.20 0.653 Not Rejected
GARCH-AR 97.5% 2.4% [1.6%,3.2%] 0.07 0.788 Not Rejected
Constant 97.5% 2.5% [1.6%,3.3%] 0.001 0.929 Not Rejected
Nadaraya-Watson 99% 1.0% [0.5%,1.5%] 0 1.000 Not Rejected
Var-Win 99% 1.2% [0.6%,1.8%] 0.65 0.420 Not Rejected
GARCH-AR 99% 1.2% [0.6%,1.8%] 0.65 0.42 Not Rejected
Constant 99% 0.9% [0.4%,1.4%] 0.08 0.778 Not Rejected

Table 6.13: FOEL test if devolatized returns are assumed to be GP distributed, USD/DM
data.

At the 95% VaR level, the GP distribution seems to greatly overestimate the VaR. Going
further out in the tail, the GP distribution works really well. As for the other distributions,
the GP distribution performs poorly together with the GARCH-AR volatility, at the 95% VaR
level. We see that the Nadaraya-Watson volatility model, combined with the GP distribution,
excels at the 99% VaR level.
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Figure 6.38: VaR (97.5%) predictions and actual losses, USD/DM data. Times of excessive
losses are seen, as plus signs, in the top of the plot. Devolatization is done using the Nadaraya-
Watson (upper), and the Variance Window (lower) volatility models. The devolatized log-
returns are assumed GP distributed.
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Figure 6.39: VaR (97.5%) predictions and actual losses, USD/DM data. Times of excessive
losses are seen, as plus signs, in the top of the plot. Devolatization is done using the GARCH-
AR (upper) volatility model, and constant volatility (lower). The devolatized log-returns are
assumed GP distributed.
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6.5.4 DAX

Non-par. 95% 97.5% 99% Var. Win. 95% 97.5% 99%
Hyperbolic 0.0933 0.0466 0.0199 Hyperbolical 0.1066 0.0655 0.0393
Gaussian 0.1020 0.0489 0.0272 Gaussian 0.1064 0.0702 0.0442
Pearson 0.0864 0.0441 0.0223 Pearson 0.0955 0.0653 0.0393
GP 0.1283 0.0676 0.0369 GP 0.1538 0.1172 0.0767
GARCH-AR 95% 97.5% 99% Constant 95% 97.5% 99%
Hyperbolic 0.0910 0.0442 0.0199 Hyperbolic 0.1023 0.0442 0.0199
Gaussian 0.1042 0.0489 0.0199 Gaussian 0.1020 0.0465 0.0199
Pearson 0.0842 0.0465 0.0174 Pearson 0.0911 0.0465 0.0174
GP 0.1436 0.0860 0.0345 GP 0.1475 0.0859 0.0440

Table 6.14: Results from the LPFA.

The LPFA indicates that the Pearson distribution should be used for the DAX data. Sur-
prisingly, the GP distribution is not a good choice, according to the LPFA.

Hyperbolical

95%
Volatility model VaR FOEL Confidence R p-value VaR Level

Level Interval Hypothesis
Nadaraya-Watson 95% 5.3% [4.1%,6.5%] 0.25 0.614 Not Rejected
Var-Win 95% 5.3% [4.1%,6.5%] 0.25 0.614 Not Rejected
GARCH-AR 95% 4.9% [3.7%,6.1%] 0.02 0.900 Not Rejected
Constant 95% 6.1% [4.8%,7.4%] 3.00 0.084 Not Rejected
Nadaraya-Watson 97.5% 2.7% [1.8%,3.6%] 0.19 0.661 Not Rejected
Var-Win 97.5% 2.5% [1.7%,3.4%] 0.01 0.929 Not Rejected
GARCH-AR 97.5% 2.5% [1.7%,3.4%] 0.01 0.929 Not Rejected
Constant 97.5% 3.4% [2.4%,4.4%] 3.76 0.052 Not Rejected
Nadaraya-Watson 99% 1.1% [0.5%,1.6%] 0.08 0.783 Not Rejected
Var-Win 99% 1.5% [0.8%,2.1%] 2.45 0.120 Not Rejected
GARCH-AR 99% 1.5% [0.8%,2.1%] 2.45 0.120 Not Rejected
Constant 99% 1.5% [0.8%,2.1%] 2.45 0.120 Not Rejected

Table 6.15: FOEL test if returns are assumed to be Hyperbolically distributed, DAX data.

At the 95% VaR level, the GARCH-AR volatility model works well. As for the 99% VaR
level, the Nadaraya-Watson volatility model, once again, excels.
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Figure 6.40: VaR (97.5%) predictions and actual losses, DAX data. Times of excessive losses
are seen, as plus signs, in the top of the plot. Devolatization is done using the Nadaraya-
Watson (upper), and the Variance Window (lower) volatility models. The devolatized log-
returns are assumed Hyperbolically distributed.
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Figure 6.41: VaR (97.5%) predictions and actual losses, DAX data. Times of excessive losses
are seen, as plus signs, in the top of the plot. Devolatization is done using the GARCH-
AR (upper) volatility model, and constant volatility (lower). The devolatized log-returns are
assumed Hyperbolically distributed.
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Gauss

95%
Volatility model VaR FOEL Confidence R p-value VaR Level

Level Interval Hypothesis
Nadaraya-Watson 95% 5.5% [4.3%,6.8%] 0.77 0.381 Not Rejected
Var-Win 95% 5.4% [4.2%,6.6%] 0.40 0.530 Not Rejected
GARCH-AR 95% 5.3% [4.1%,6.5%] 0.25 0.614 Not Rejected
Constant 95% 7.5% [6.0%,8.9%] 14.50 <0.001 Rejected
Nadaraya-Watson 97.5% 3.4% [2.4%,4.4%] 3.76 0.052 Not Rejected
Var-Win 97.5% 3.5% [2.5%,4.5%] 4.41 0.036 Rejected
GARCH-AR 97.5% 3.3% [2.3%,4.3%] 3.16 0.075 Not Rejected
Constant 97.5% 5.2% [4.0%,6.4%] 30.41 <0.001 Rejected
Nadaraya-Watson 99% 1.8% [1.1%,2.5%] 6.32 0.012 Rejected
Var-Win 99% 2.1% [1.3%,2.9%] 11.62 <0.001 Rejected
GARCH-AR 99% 2.2% [1.4%,3.0%] 14.74 <0.001 Rejected
Constant 99% 3.5% [2.5%,4.5%] 48.56 <0.001 Rejected

Table 6.16: FOEL test if returns are assumed to be Gaussian distributed, DAX data.

The Gaussian distribution works well at the 95% level, but it is really poor further out in the
tail.
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Figure 6.42: VaR (97.5%) predictions and actual losses, DAX data. Times of excessive losses
are seen, as plus signs, in the top of the plot. Devolatization is done using the Nadaraya-
Watson (upper), and the Variance Window (lower) volatility models. The devolatized log-
returns are assumed Gaussian distributed.
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Figure 6.43: VaR (97.5%) predictions and actual losses, DAX data. Times of excessive losses
are seen, as plus signs, in the top of the plot. Devolatization is done using the GARCH-
AR (upper) volatility model, and constant volatility (lower). The devolatized log-returns are
assumed Gaussian distributed.

99



6.5. BACKTESTING (PERFORMANCE OF VAR ESTIMATES)

Pearson

95%
Volatility model VaR FOEL Confidence R p-value VaR Level

Level Interval Hypothesis
Nadaraya-Watson 95% 5.2% [4.0%,6.4%] 0.06 0.800 Not Rejected
Var-Win 95% 5.4% [4.2%,6.6%] 0.40 0.530 Not Rejected
GARCH-AR 95% 4.9% [3.7%,6.1%] 0.02 0.900 Not Rejected
Constant 95% 7.2% [5.8%,8.6%] 11.30 < 0.001 Rejected
Nadaraya-Watson 97.5% 2.6% [1.7%,3.5%] 0.07 0.791 Not Rejected
Var-Win 97.5% 2.6% [1.7%,3.5%] 0.07 0.791 Not Rejected
GARCH-AR 97.5% 2.7% [1.8%,3.6%] 0.19 0.661 Not Rejected
Constant 97.5% 4.1% [3.0%,5.2%] 11.17 < 0.001 Rejected
Nadaraya-Watson 99% 1.1% [0.5%,1.6%] 0.08 0.783 Not Rejected
Var-Win 99% 1.2% [0.6%,1.7%] 0.30 0.586 Not Rejected
GARCH-AR 99% 1.4% [0.7%,2.0%] 1.73 0.188 Not Rejected
Constant 99% 1.8% [1.1%,2.5%] 6.32 0.012 Rejected

Table 6.17: FOEL test if returns are assumed to be Pearson distributed, DAX data.

The table indicates that, the Pearson distribution is a good choice, except for the constant
volatility case.
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Figure 6.44: VaR (97.5%) predictions and actual losses, DAX data. Times of excessive losses
are seen, as plus signs, in the top of the plot. Devolatization is done using the Nadaraya-
Watson (upper), and the Variance Window (lower) volatility models. The devolatized log-
returns are assumed Pearson distributed.
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Figure 6.45: VaR (97.5%) predictions and actual losses, DAX data. Times of excessive losses
are seen, as plus signs, in the top of the plot. Devolatization is done using the GARCH-
AR (upper) volatility model, and constant volatility (lower). The devolatized log-returns are
assumed Pearson distributed.
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GP

95%
Volatility model VaR FOEL Confidence R p-value VaR Level

Level Interval Hypothesis
Nadaraya-Watson 95% 5.8% [4.6%,7.1%] 1.86 0.172 Not Rejected
Var-Win 95% 5.3% [4.1%,6.5%] 0.25 0.614 Not Rejected
GARCH-AR 95% 5.3% [4.1%,6.5%] 0.25 0.614 Not Rejected
Constant 95% 7.2% [5.8%,8.6%] 12.00 < 0.001 Rejected
Nadaraya-Watson 97.5% 2.7% [1.8%,3.6%] 0.19 0.661 Not Rejected
Var-Win 97.5% 2.4% [1.6%,3.2%] 0.07 0.788 Not Rejected
GARCH-AR 97.5% 2.7% [1.8%,3.6%] 0.19 0.661 Not Rejected
Constant 97.5% 4.1% [3.0%,5.2%] 11.17 < 0.001 Rejected
Nadaraya-Watson 99% 1.1% [0.5%,1.6%] 0.08 0.783 Not Rejected
Var-Win 99% 1.2% [0.6%,1.7%] 0.30 0.586 Not Rejected
GARCH-AR 99% 1.2% [0.6%,1.8%] 0.65 0.420 Not Rejected
Constant 99% 2.1% [1.3%,2.9%] 11.62 < 0.001 Rejected

Table 6.18: FOEL test if returns are assumed to be GP distributed, DAX data.

At the 95% VaR level, the GARCH-AR seems to be the best volatility model, and at the 99%
VaR level, the Nadaraya-Watson is the best choice.
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Figure 6.46: VaR (97.5%) predictions and actual losses, DAX data. Times of excessive losses
are seen, as plus signs, in the top of the plot. Devolatization is done using the Nadaraya-
Watson (upper), and the Variance Window (lower) volatility models. The devolatized log-
returns are assumed GP distributed.

104



6.5. BACKTESTING (PERFORMANCE OF VAR ESTIMATES)

0 200 400 600 800 1000 1200 1400
0

0.02

0.04

0.06

0.08

0.1

0.12

               Trading Day               

V
aR

 a
nd

 A
ct

ua
l L

os
se

s

Time of excessive losses

0 200 400 600 800 1000 1200 1400
0

0.02

0.04

0.06

0.08

0.1

0.12

               Trading Day               

V
aR

 a
nd

 A
ct

ua
l L

os
se

s

Time of excessive losses

Figure 6.47: VaR (97.5%) predictions and actual losses, DAX data. Times of excessive losses
are seen, as plus signs, in the top of the plot. Devolatization is done using the GARCH-
AR (upper) volatility model, and constant volatility (lower). The devolatized log-returns are
assumed GP distributed.
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6.5.5 SIEMENS

Non-par. 95% 97.5% 99% Var. Win. 95% 97.5% 99%
Hyperbolic 0.0907 0.0369 0.0150 Hyperbolical 0.0816 0.0465 0.0174
Gaussian 0.0931 0.0441 0.0100 Gaussian 0.0907 0.0559 0.0174
Pearson 0.0795 0.0273 0.0075 Pearson 0.0725 0.0370 0.0050
GP 0.0771 0.0234 0.0103 GP 0.1067 0.0597 0.0302
GARCH-AR 95% 97.5% 99% Constant 95% 97.5% 99%
Hyperbolic 0.0977 0.0417 0.0125 Hyperbolic 0.0886 0.0393 0.0125
Gaussian 0.0908 0.0465 0.0100 Gaussian 0.0976 0.0560 0.0100
Pearson 0.0841 0.0321 0.0075 Pearson 0.0841 0.0273 0.0075
GP 0.1772 0.1170 0.0918 GP 0.1219 0.0523 0.0201

Table 6.19: Results of the LPFA.

The LPFA indicates that, at the 95% and 97.5% VaR levels, the GP distibution works well
together with the Nadaraya-Watson volatility model. However, considering the other volatility
models, and the Nadaraya-Watson at the 99% VaR level, the Pearson distribution is the best
choice.

Hyperbolic

95%
Volatility model VaR FOEL Confidence R p-value VaR Level

Level Interval Hypothesis
Nadaraya-Watson 95% 4.6% [3.5%,5.8%] 0.42 0.519 Not Rejected
Var-Win 95% 4.8% [3.7%,6.0%] 0.07 0.798 Not Rejected
GARCH-AR 95% 4.5% [3.4%,5.7%] 0.60 0.438 Not Rejected
Constant 95% 6.8% [5.5%,8.2%] 8.41 0.003 Rejected
Nadaraya-Watson 97.5% 2.0% [1.2%,2.8%] 1.43 0.232 Not Rejected
Var-Win 97.5% 2.1% [1.3%,2.9%] 1.01 0.314 Not Rejected
GARCH-AR 97.5% 1.8% [1.1%,2.5%] 3.17 0.075 Not Rejected
Constant 97.5% 3.4% [2.4%,4.4%] 3.76 0.05 Not Rejected
Nadaraya-Watson 99% 0.9% [0.4%,1.4%] 0.08 0.778 Not Rejected
Var-Win 99% 0.7% [0.2%,1.1%] 1.39 0.238 Not Rejected
GARCH-AR 99% 0.8% [0.3%,1.2%] 0.76 0.383 Not Rejected
Constant 99% 1.8% [1.1%,2.5%] 6.32 0.012 Rejected

Table 6.20: FOEL test if returns are assumed to be Hyperbolically distributed, Siemens data.

The FOEL test indicates that, at lower VaR levels, the Variance Window is the best volatility
model to use with the Hyperbolical distribution. At the 99% VaR level, the Nadaraya-Watson
volatility model excels once again.
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Figure 6.48: VaR (97.5%) predictions and actual losses, Siemens data. Times of excessive
losses are seen, as plus signs, in the top of the plot. Devolatization is done using the Nadaraya-
Watson (upper), and the Variance Window (lower) volatility models. The devolatized log-
returns are assumed Hyperbolically distributed.
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Figure 6.49: VaR (97.5%) predictions and actual losses, Siemens data. Times of excessive
losses are seen, as plus signs, in the top of the plot. Devolatization is done using the GARCH-
AR-AR (upper) volatility model, and constant volatility (lower). The devolatized log-returns
are assumed Hyperbolically distributed.
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6.5. BACKTESTING (PERFORMANCE OF VAR ESTIMATES)

Gauss

95%
Volatility model VaR FOEL Confidence R p-value VaR Level

Level Interval Hypothesis
Nadaraya-Watson 95% 4.1% [3.1%,5.2%] 2.07 0.150 Not Rejected
Var-Win 95% 4.6% [3.5%,5.8%] 0.42 0.519 Not Rejected
GARCH-AR 95% 4.1% [3.0%,5.2%] 2.48 0.115 Not Rejected
Constant 95% 7.8% [6.3%,9.2%] 18.09 < 0.001 Rejected
Nadaraya- Watson 97.5% 2.4% [1.6%,3.2%] 0.07 0.788 Not Rejected
Var-Win 97.5% 2.5% [1.6%,3.3%] 0.01 0.929 Not Rejected
GARCH-AR 97.5% 2.2% [1.4%,3.0%] 0.67 0.413 Not Rejected
Constant 97.5% 4.8% [3.7%,6.0%] 23.14 < 0.001 Rejected
Nadaraya-Watson 99% 1.2% [0.6%,1.7%] 0.30 0.586 Not Rejected
Var-Win 99% 1.0% [0.5%,1.5%] 0 1.000 Not Rejected
GARCH-AR 99% 0.5% [0.2%,0.9%] 3.36 0.067 Not Rejected
Constant 99% 2.9% [2.0%,3.8%] 32.00 < 0.001 Rejected

Table 6.21: FOEL test if returns are assumed to be Gaussian distributed, Siemens data.

The results from the FOEL test for the Siemens data, using the Gaussian distribution, are
quite surprising. The Gaussian distribution passes at all VaR levels, using the three stochastic
volatility models. Furthermore, the Variance Window volatility model seems to be best at all
VaR levels.
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6.5. BACKTESTING (PERFORMANCE OF VAR ESTIMATES)
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Figure 6.50: VaR (97.5%) predictions and actual losses, Siemens data. Times of excessive
losses are seen, as plus signs, in the top of the plot. Devolatization is done using the Nadaraya-
Watson (upper), and the Variance Window (lower) volatility models. The devolatized log-
returns are assumed Gaussian distributed.
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Figure 6.51: VaR (97.5%) predictions and actual losses, Siemens data. Times of excessive
losses are seen, as plus signs, in the top of the plot. Devolatization is done using the GARCH-
AR (upper) volatility model, and constant volatility (lower). The devolatized log-returns are
assumed Gaussian distributed.
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6.5. BACKTESTING (PERFORMANCE OF VAR ESTIMATES)

Pearson

95%
Volatility model VaR FOEL Confidence R p-value VaR Level

Level Interval Hypothesis
Nadaraya-Watson 95% 5.2% [4.0%,6.4%] 0.06 0.800 Not Rejected
Var-Win 95% 4.8% [3.7%,6.0%] 0.07 0.798 Not Rejected
GARCH-AR 95% 4.8% [3.7%,6.0%] 0.06 0.798 Not Rejected
Constant 95% 9.8% [8.2%,11.5%] 50.75 < 0.001 Rejected
Nadaraya-Watson 97.5% 2.2% [1.4%,2.9%] 0.67 0.413 Not Rejected
Var-Win 97.5% 2.3% [1.5%,3.1%] 0.20 0.653 Not Rejected
GARCH-AR 97.5% 2.0% [1.2%,2.8%] 1.43 0.232 Not Rejected
Constant 97.5% 5.2% [4.0%,6.4%] 30.40 < 0.001 Rejected
Nadaraya-Watson 99% 0.8% [0.3%,1.3%] 0.33 0.567 Not Rejected
Var-Win 99% 0.6% [0.2%,1.0%] 2.25 0.114 Not Rejected
GARCH-AR 99% 0.8% [0.3%,1.2%] 0.760 0.383 Not Rejected
Constant 99% 2.4% [1.6%,3.2%] 18.13 < 0.001 Rejected

Table 6.22: FOEL test if returns are assumed to be Pearson distributed, Siemens data.

At the 95% VaR level, it is a close call between the three stochastic volatility models. At the
97.5% VaR level, the Variance Window seems to work best, and at the 99% VaR level, the
Nadaraya-Watson volatility model is the best.
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Figure 6.52: VaR (97.5%) predictions and actual losses, Siemens data. Times of excessive
losses are seen, as plus signs, in the top of the plot. Devolatization is done using the Nadaraya-
Watson (upper), and the Variance Window (lower) volatility models. The devolatized log-
returns are assumed Pearson distributed.
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Figure 6.53: VaR (97.5%) predictions and actual losses, Siemens data. Times of excessive
losses are seen, as plus signs, in the top of the plot. Devolatization is done using the GARCH-
AR (upper) volatility model, and constant volatility (lower). The devolatized log-returns are
assumed Pearson distributed.
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6.5. BACKTESTING (PERFORMANCE OF VAR ESTIMATES)

GP

95%
Volatility model VaR FOEL Confidence R p-value VaR Level

Level Interval Hypothesis
Nadaraya-Watson 95% 4.9% [3.7%,6.1%] 0.02 0.900 Not Rejected
Var-Win 95% 5.2% [4.0%,6.4%] 0.06 0.800 Not Rejected
GARCH-AR 95% 4.8% [3.6%,5.9%] 0.15 0.701 Not Rejected
Constant 95% 8.6% [7.1%,10.1%] 29.69 < 0.001 Rejected
Nadaraya-Watson 97.5% 2.1% [1.3%,2.9%] 1.01 0.314 Not Rejected
Var-Win 97.5% 2.7% [1.8%,3.6%] 0.19 0.661 Not Rejected
GARCH-AR 97.5% 1.8% [1.1%,2.5%] 3.17 0.08 Not Rejected
Constant 97.5% 4.5% [3.3%,5.6%] 16.70 < 0.001 Rejected
Nadaraya-Watson 99% 0.8% [0.3%,1.2%] 0.80 0.383 Not Rejected
Var-Win 99% 0.6% [0.2%,1.0%] 2.25 0.133 Not Rejected
GARCH-AR 99% 0.8% [0.3%,1.2%] 0.86 0.383 Not Rejected
Constant 99% 2.0% [1.2%,2.8%] 10.18 0.001 Rejected

Table 6.23: FOEL test if returns are assumed to be GP distributed, Siemens data.

At the 95% VaR level, as for the Pearson distribution, it is a close call between the three
stochastic volatility models. At the 97.5% VaR level, the Variance Window seems to work
best, and at the 99% VaR level, the Nadaraya-Watson and the GARCH-AR volatility models
are the best.
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Figure 6.54: VaR (97.5%) predictions and actual losses, Siemens data. Times of excessive
losses are seen, as plus signs, in the top of the plot. Devolatization is done using the Nadaraya-
Watson (upper), and the Variance Window (lower) volatility models. The devolatized log-
returns are assumed GP distributed.
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Figure 6.55: VaR (97.5%) predictions and actual losses, Siemens data. Times of excessive
losses are seen, as plus signs, in the top of the plot. Devolatization is done using the GARCH-
AR (upper) volatility model, and constant volatility (lower). The devolatized log-returns are
assumed GP distributed.
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Chapter 7

Conclusion

We have shown that stochastic volatility models give far better VaR-estimates, than do models
with constant volatility. All three stochastic volatility models considered, seem to devolatize
data well.

However, considering the 99% VaR level, the Nadaraya-Watson volatility model is clearly
the best. This is attractive, from a practical point of view, since estimations needed to use
the Nadaraya-Watson volatility model are easily and rapidly made. For instance, fitting the
Nadaraya-Watson model is much less time consuming than, for instance, fitting the GARCH-
AR model.

We have seen, that the simple Variance Window volatility model, together with most of
the distributions, works very well for all the data sets. This result leads to the question; is it
worthwhile using more complex volatility models?

The integrated volatility model, used in the mixing relation, does not seem to work well
in a VaR situation. However, it might be too early to rule this model out, since data needed
to make thorough enough investigations was not available.

Regarding distributions to be used in a VaR setting, we have seen that the Hyperbolical,
Pearson VII and the Generalized Pareto, in most cases, perform better than the Gaussian.
What combination of distribution and volatility model to use, depends on the data to which
it is applied. Also, different evaluation methods give different answers to this question. The
LPFA indicates that the Pearson VII distribution is the best choice in most cases. On the
other hand, the FOEL gives no unambiguous answer to which distribution to use.

Further studies A natural extension of this work, would include investigation of multidi-
mensional volatility models, used on a portfolio of financial assets. Another extension, that
we would like to have done here, is more extensive studies of the mixing relations, provided
availability of tick data. Potentially, as justified by theory and empirical studies, see [5], there
are interesting things to be done in this area.
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Chapter 8

Background

The founding ideas of this master thesis are based on the paper Risk Management Based on
Stochastic Volatility, by Ernst Eberlein, Jan Kallsen and Jörn Kristen, see [23]. One of the
extensions found in this thesis, is that we investigate other stochastic volatility models than
in [23]. The studies in [23] are restricted to comparing the Hyperbolical and the Gaussian
distribution, while we also propose both the Pearson VII and the Generalized Pareto distri-
bution as marginal distributions for financial log-returns.

The GARCH-AR and the Variance Window stochastic volatility models are e.g. proposed in
Erik Brodin’s master thesis On the Empirical Distribution of Log-returns, see [20]. Further,
we got the idea of using the Nadaraya-Watson stochastic volatility model from the paper,
A simple non-stationary model for stock returns, see [49], by Cătălin Stărică and Holger
Drees. The authors suggest the Nadaraya-Watson stochastic volatility model to be suitable
for applications in risk management. It should be mentioned that, we have not seen the
Nadaraya-Watson stochastic volatility model used in risk management before.

Further, Stărică and Drees also suggest the Pearson VII distribution, for modelling financial
log-returns (i.e. log-returns, devolatized by using the Nadaraya-Watson stochastic volatility
model). They also show, concerning devolatization, that the Nadaraya-Watson model is supe-
rior to both the GARCH and the EGARCH stochastic volatility models. We believe, though,
that the GARCH-AR model works far better than the GARCH model.

The use of extreme value theory (i.e. the Generalized Pareto distribution), in risk man-
agement, has been suggested in many articles, papers and books. The Generalized Pareto
and the Gaussian distributions are the ones most commonly used in risk management (the
Gaussian probably even more so, than the Generalized Pareto). These distributions are often
used under the assumption of constant volatility.

The semimartingale model is greatly influenced by the work of Ole Barndorff-Nielsen, and
Neil Shephard, see e.g. [5]. We have not seen this model used in risk management before.

119



Bibliography

[1] P. Albin, On Basic Stochastic Calculus, Unpublished Manuscript, 2001.

[2] P. Albin, Stokastiska Processer, Studentlitteratur, 2003.
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[36] P. Langevin, Sur la théorie du mouvement brownien, Comptes Rendus de l’Académie des
Sciences, 146, pp. 530-533, 1908.

[37] H. Lopez, Regulatory valuation of value-at-risk models, Mimeo. Research and Market
Analysis Group, Federal Reserve Bank of New York, 1996.

[38] H. Markowitz, Portfolio Selection, Journal of Finance, 7, pp. 77-91, 1952.

[39] P.Y. Moix, The Measurement of Market Risk, Springer-Verlag, 2001.

[40] J.P. Morgan and Reuters, RiskmetricTM , www.riskmetrics.com

[41] T.C. Mills, The econometric modeling of financial time series, Cambridge University
Press, 1999.

[42] E.A. Nadaraya, On estimating regression, Theory of Probability and its Applications, 9,
pp. 141-142, 1964.

[43] P. Penza and V.K. Bansal, Measuring Market Risk with Value at Risk, John Wiley &
Sons, 2001.

[44] K. Prause, The Generalized Hyperbolic Model: Estimation, Financial Derivatives, and
Risk Measures, Ph.D. thesis, University of Freiburg, 1999.

[45] W. Press, S. Teukolsky, W. Vetterling and B. Flannery, Numerical Recipes in C, Cam-
bridge University Press, 1992.

[46] P. Protter, Stochastic Integration and Differential Equations, Springer-Verlag, 1990.
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