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Abstract

In this thesis we estimate parameters for discretely sampled stochastic differ-
entials which experience Volatility induced stationarity (VIS). The specific
process considered is of general CKLS-type where the volatility is large. The
estimations were performed using general method of moments (GMM), Ef-
ficient method of moments (EMM) and approximate maximum likelihood
based on Hermite polynomial expansion of the transition density. Because
of problem finding appropriate moment conditions in case of VIS, estima-
tion with GMM performed badly. In contrast both EMM approximate like-
lihood give accurate results although the computational burden increases
significantly.
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Chapter 1

Introduction

The need for accurate and reliable parameter estimation methods for Stochas-
tic Differential Equations (SDE) is strong in many fields of application. Inde-
pendently whether we are modeling particle dynamics in physics or interest
rate movement in finance we confront the problem of characterizing stochas-
tic behavior in terms of SDEs. Once the stochastic behavior is characterized
we could then use this model to explain physical properties or predict finan-
cial movements. In most cases the data is discretely sampled so that the
full (continuous) movement of the process is not known. Still the data from
the measurement is large enough to use statistical method for determine
parametric values in the model. In this thesis we estimate parameters for
the relatively general, one-dimensional, CKLS-model for the dynamic. This
model is represented by the SDE given in Equation (1.1) and concludes a
total of four unknown parameters. Especially it will be evaluated in cases
for high γ in which the process experience Volatility Induced Stationarity
(VIS).

Xt = Xs +
∫ t

s
α + βXudu +

∫ t

s
σXγ

udWu (1.1)

The history of parameter estimation dates back to the introduction of the
modern computer. In general the methods are computation demanding and
therefore the research on the subject began first in the late 1980s. Since then
many new approaches have been made. Roughly one can separate between
methods which uses some kind of method of moment approach from meth-
ods based on maximum likelihood theory. To the former class we recognize
the General Method of Moments (GMM) developed by Hansen [12] and Ef-
ficient Method of Moments (EMM) first presented by Gallant and Tauchen
[14]. In the latter class we count the Simulated Maximum Likelihood (SML)
by Pedersen and Transition Density approximation by Hermite polynomial
by Ait-Shalia [16].

The idea behind Method of Moments approaches is generally to express the
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2 CHAPTER 1. INTRODUCTION

parameters you want to estimate in terms on the moments. Estimates of the
parameters are then given by approximating the moments using statistical
inference of averages. In contrast the Maximum likelihood methods uses
the transition densities of the processes and find estimates of parameters by
maximizing the probability of the given data to occur. Given that the tran-
sition density for the process has a closed form expression the most efficient
way to estimate parameters is by using direct Maximum Likelihood (ML).
Unfortunately, closed form expressions are relatively rare and in the case
of the process given in (1.1) it only exists for some specific choices on the
parameters. In these cases one most often turn to GMM since it is still often
relatively easy to find moments conditions (se e.g. [6]). Examples of appli-
cation of GMM to the CKLS model in application to interest rate models
could be seen in Chan et al [4]. Assume now that the moments conditions
could be found. It then feels unnecessary to turn to more advanced methods
for determining parameters in (1.1). Why should one not be satisfied with
the estimation performed by GMM?

First, the GMM only requires specification of the moments rather than the
full transition density. Although the implementation is simple, this causes
a drawback in efficiency since it does not make use of all information in the
sample. Second, as has been explained by Muszta and Albin [1] [11] the
CKLS model shows extraordinary behaviour in cases when the process is
stationary and parameter γ becomes high. In this case the second term in
1.1 is no longer a martingale but only a local martingale and will affect the
mean reversion properties of the process and cause Volatility Induced Sta-
tionarity (VIS). More specifically the martingale approximation that is used
for finding moment conditions in the GMM does not longer hold and the
method does not give correct estimates of the parameters. It is this break-
down of the GMM that forces us to search for other estimation methods in
the specific case with high γ. The purpose with this thesis is to identify
the breakdown and conclude whether the use of other methods can over-
come this problem. The alternative methods that are evaluated are EMM
together with transition density approximation by Hermite polynomials.

The thesis is structured as follows: In Chapter 2 the preliminaries of stochas-
tic analysis and SDE is given in order to understand basic properties. These
are then used in Chapter 3 where the VIS effect is explained in greater de-
tail. In Chapter 4 the theory is applied to the specific CKLS process and
consequences of VIS are derived in terms of moment conditions. Chapter 5
then gives the background and theory of the estimation methods that will
be used. Chapter 6 explains the schemes that are used for simulation of the
processes that is estimated with special emphasises on the Implicit Euler
scheme. In Chapter 7 discussion about implementation are made. Finally
Chapter 8 and 9 discusses the results that was found from estimation.



Chapter 2

Preliminaries on stochastic
analysis and SDEs

This section gives a quick introduction to stochastic analysis with empha-
sises on stochastic differential equations (SDE). The general form of a SDE
that will be used is given by (2.1) with a standard notation for the drift
b(u,Xu) and diffusion σ(u, Xu). Although both drift and diffusion are al-
lowed to be time dependent we will primarily restrict our attention to the
time homogenous case b(u,Xu) = b(Xu) and σ(u,Xu) = σ(Xu).

Xt = Xs +
∫ t

s
b(u, Xu)du +

∫ t

s
σ(u,Xu)dWu (2.1)

Special attention will be on the existence and uniqueness of strong solu-
tions as well as conditions for stationary and absence of explosions. These
properties will further on be essential in order to understand the concept of
Volatility Induced Stationarity (VIS) in the subsequent chapter.

2.1 Existence and Uniqueness of Solutions to SDE

The first question to ask when studying properties of SDEs is the question
of existence and uniqueness of solutions. Once existence and uniqueness is
confirmed it is up to the user to choose an appropriate method of finding
this solution. The methodology of proving existence is quite similar to the
methodology used for ordinary differential equations where one use Picard-
Lindelf successive approximation to integral equations and show that the
problem converge. The existence and uniqueness is guaranteed locally once
we assume integral operators to fulfil Lipschitz-continuous. Further for exis-
tence and uniqueness to hold globally we must guarantee that solutions not
to explode at finite time. A sufficient condition for this to hold is to require
linear growth condition on the integral operators. In this section we shall
mention the corresponding theory of existence and uniqueness of solutions

3



4CHAPTER 2. PRELIMINARIES ON STOCHASTIC ANALYSIS AND SDES

to SDE given by (2.1). The non-deterministic character of the problem will
make it necessary to distinguish between weak and strong solutions to the
problem whether or not solutions exists for all probability spaces or just
under special restrictions. The treatment of theory will be based on the
one-dimensional case for simplicity. For higher dimensions the result follows
analogously. If not, it will be stated explicitly.

Strong and Weak solutions

As the name suggest we always strive to find strong solutions to SDE since
this enables more general treatment of properties for solutions. However in
many cases the solution may only exists under some appropriate measurable
space along with some probability measure.

Definition (Strong solutions to SDE): A strong solution to the SDE in
(2.1) on a given probability space (Ω,F , P ) and w.r.t Brownian motion W
is a process with continuous sample paths and following properties (Here x0

refers to the initial condition of SDE):

1. X is adapted to the (augmented) filtration {Ft} generated by the Brow-
nian motion W .

2. P [X0 = x0] = 1

3. P [
∫ t
s b(u,Xu) + σ2(u,Xu)du < ∞] = 1,∀0 ≤ s, t < ∞

4. Equation (2.1) holds with probability one.

Conditions 2 and 4 assure that the solution fulfils SDE P-a.s. This is the
only restrictions we demand in case of deterministic differential equations.
For the solutions to make sense for SDE we also impose conditions that the
solution should be independent of future values of the solution (causality)
by condition 1.The condition 3 further restrict strong solutions to behave
nicely by having finite drift and second moments on finite time. The only
difference in the definition of a weak solution to a SDE is that the conditions
in the above definition needs only to hold for a certain probability space.
That is, if we were able to find a measure under which the conditions holds,
we have a weak solution.

Definition (Strong Uniqueness of solutions): Assume X and X̂ are two
strong solutions to (2.1) with P [Xt = X̂t; 0 ≤ t < ∞] = 1 whenever W
is given Brownian motion with corresponding filtration Ft (augmented) on
some probability space (Ω,F , P ) and with initial condition x0. Then we say
that the strong uniqueness holds for equation (2.1).
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An even stronger uniqueness condition is obtained by strengthening the
condition P [Xt = X̂t; 0 ≤ t < ∞] = 1 to P [Xt = X̂t; ∀0 ≤ t < ∞] =
1in which we obtain pathwise uniqueness. This condition is necessary to
derive sufficient conditions for non exploding processes. We now present the
necessary theorems that guarantee that a unique strong solution exists.

Existence of Strong solutions

From the previous argument it is possible to make an analogue to the de-
terministic case when deriving conditions on existence and uniqueness of
solutions. The following theorem summarizes the argument.

Theorem 2.1.1 Suppose that coefficients in b(t, x), σ(t, x) in Equation 2.1
satisfy global Lipschitz and linear growth condition:

‖ b(t, x)− b(t, y) ‖ + ‖ σ(t, x)− σ(t, y) ‖≤ K ‖ x− y ‖ (2.2)

‖ b(t, x) ‖2 + ‖ σ(t, x) ‖2≤ K2(1− ‖ x ‖2) (2.3)

For every 0 ≤ t < ∞ and x,y ∈ <d and K is positive constant. If we have
a d-dimensional random initial condition x0 with bounded second moment,
independent of an r-dimensinal Brownian motion W = {Wt,FW

t ; 0 ≤ t <
∞}, then there exists a continuous adapted process X which is a strong
solution to (2.1) relative to W with initial condition x0

In case of one dimensional SDEs it is possible to relax the condition some-
what in order to prove have existence and strong uniqueness of solutions.
The modified conditions are given by Yamada and Watanabe theorem be-
low. More specifically the Lipschitz condition on the diffusion term can be
dropped. However the theorem does not include assumptions on the linear
growth of the coefficients and hence it cannot guarantee that the solution
will be infinite in finite time.

Theorem 2.1.2 (Yamada & Watanabe (1971)) Assume that the coef-
ficients b(t,Xt) and σ(t,Xt) in SDE given by (2.1) satisfy the following
conditions:

|b(t, x)− b(t, y)| ≤ K|x− y| (2.4)

|σ(t, x)− σ(t, y)| ≤ h(|x− y|) (2.5)

For every 0 ≤ t < ∞ and x,y ∈ <. Here K being a positive constant and
h : [0,∞) → [0,∞) is a strictly increasing function with h(0)=0 and

∫

(0,ε)
h−2(u)du = ∞,∀ε > 0 (2.6)

Then strong uniqueness holds for (2.1)
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Equations that fulfil Yamada and Watanabe can still go to infinity at finite
time. Since this is a non desirable property, we need necessary and suffi-
cient conditions for this to be avoided. In context with SDEs this is called
Explosions and will be considered next.

2.2 Explosion of time-homogenous diffusions

In the subsequent chapters we will only be interested in time homogenous
SDEs. That is continuous solutions to the time homogenous SDE given by
2.7 where the functions b and σ only depends on X.

Xt = Xs +
∫ t

s
b(Xu)du +

∫ t

s
σ(Xu)dWu (2.7)

We now seek conditions that guarantee that X behaves nicely in finite time.
By nice behavior we mean that the process will not take on infinite values
in finite time with positive probability. This property is known as explosion
and is given by:

Definition (Explosion of SDE): Let τn be the time at which X hits level
n, that is τn = inf(t > 0;Xt ≥ n). A solution to Equation 2.7 is said to
explode if P (τ∞ < ∞) > 0.

To derive sufficient conditions X not to explode we will first consider the case
without drift. The drift case is then only a matter of finding an appropriate
transformation of the process and then using the already established results.

Case without drift

To prove conditions for the existence and uniqueness of a strong, non ex-
ploding solution to the time homogenous case without drift in 2.7 we will
rely on the following theorem that could be found in Karatzas and Shreve
[8]:

Theorem 2.2.1 Pathwise uniqueness and the existence of a weak solution
imply strong existence and uniqueness

Hence it remains to find the conditions for pathwise uniqueness and existence
of non-exploding weak solutions. The latter is given by the theorem proven
by Engelbert & Smith in 1984.

Theorem 2.2.2 (Engelbert & Schmidt) The SDE in 2.7 with b(X)=0
has a non-exploding weak solution for every initial distribution µ iff

I(σ) ⊆ Z(σ) (2.8)
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where

I(σ) =
{

x ∈ <;
∫ ε

−ε

dy

σ2(x + y)
= ∞,∀ε > 0

}

Z(σ) = {x ∈ <;σ(x) = 0}

The outline of the proof is built on the fact that a new brownian motion can
always be defined in the case when the conditions are fulfilled. With this
specific brownian motion, strong uniqueness holds. It is obvious from the
definition of I(σ) and Z(σ) that the conditions are fulfilled once σ is contin-
uous. In this case, referring to Theorem 2.2.1, it remains to fulfil conditions
for pathwise uniqueness property in order to have sufficient conditions for
existence and uniqueness of strong solution that does not explode. These
conditions are given by the following theorem:

Theorem 2.2.3 Suppose that there exists functions f : < → [0,∞) and
h : [0,∞) → [0,∞) such that at every x ∈ I(σ)c there exists ε > 0 such that

1. ∫ x+ε

x−ε

(
f(y)
σ(y)

)2

dy < ∞ (2.9)

2. the function h is strictly increasing, h(0) = 0 and fulfils 2.6

3. there exists a constant a > 0 such that |σ(x+y)−σ(x)| ≤ f(x)h(|y|), ∀x ∈
<, y ∈ [−a, a]

In this case pathwise uniqueness holds for the 2.7 without drift

Case with drift

To treat the general case when the SDE does have a non-zero diffusion we
can remove the drift by using the removal of drift theorem given below. It
is based upon the simple idea that we create a new process Y(X) from the
original one and then use general Ito formula to obtain expression for Y(X).
If we choose the function Y=Y(X) in an appropriate way we can eliminate
drift and write Y(X) as a simple stochastic integral. To ensure existence of
integrals we will assume the non-degeneracy and local integrability condition
to hold:

σ2(x) > 0, ∀x ∈ < (2.10)

∫ x+ε

x−ε

|b(y)|dy

σ2(y)
< ∞,∀x ∈ <, ∃ε > 0 (2.11)
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Theorem 2.2.4 (Removal of Drift) Assume that conditions 2.10 and 2.11
hold and define the scale function by:

p(x) =
∫ x

ε
exp

{∫ ξ

ε

b(η)
σ2(η)

dη

}
dξ (2.12)

A process X = {Xt,Ft, 0 ≤ t < ∞} is a strong solution to 2.7 iff process
Y = {Yt = p(Xt), 0 ≤ t < ∞} is a strong solution to:

Yt = Y0 +
∫ t

0
σ̂(Ys)dWs (2.13)

σ̂(y) =
{

p′(q(y))σ(q(y)) p(−∞) < y < p(∞)
0 otherwise

(2.14)

p(−∞) < Y0 < p(∞) (2.15)

It is now possible to draw conclusions about sufficient conditions for non
explosion in the case when the process has drift. Since Y given by 2.13 does
not explode and Yt = p(Xt) we can guarantee that Xt does not explode
by demanding the condition p(±∞) = ±∞ to be fulfilled. Hence we have
the sufficient condition that the process does not explode. This condition
is however not necessary. Necessary and sufficient conditions are instead
summarized in what is normally called the Fellers test for explosion.

Theorem 2.2.5 (Feller’s test for explosions) Given that the condition
2.10 and 2.11 holds and we let X be a strong solution to the SDE in 4.1 in
a domain I = (l, r) with some nonrandom initial condition x0, then P [S :=
inf{t ≥: Xt 6∈ (l, r)} = ∞] = 1 if we can guarantee that v(r−) = v(l+) = ∞
where:

v(x) =
∫ x

x0

p′(y)
(∫ y

x0

dm(z)
)

dy =
∫ x

x0

(p(x)− p(y))dm(y) (2.16)

And the measure m is the speed measure of the process defined through:

dm(x)
dx

=
2

σ(x)2p′(x)
(2.17)

2.3 Stationarity of solutions to SDEs

Later on we will look at processes that experience stationarity. By this we
mean that there exists an invariant density π(x) that satisfies:

π(y) =
∫

p(t, x, y)π(x)dx (2.18)
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here p(t, x, y) being the transition density for the process to move from x to
y in time t. By this equation the probability inflow to a point y is equal to
the probability outflow. The stationary density is given by the solution to
the Fokker Planck-equation.

−∂π

∂t
+

1
2

∂2

∂x2

(
σ2(x)π(x)

)− ∂

∂x
(b(x)π(x)) = 0 (2.19)

Since π(x) is stationary the time derivative is zero. Using integrating factor
it is easy to obtain the solution

π(x) =
C

σ2(x)
exp(

∫ x

x0

2b(y)
σ2(y)

dy) (2.20)

Using the relation in 2.17 we see that the stationary is, except for a nor-
malisation constant, equal to the first derivative of the speed measure with
respect to x. This will later on when finding the stationary distribution of
the CKLS process.
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Chapter 3

Volatility Induced
Stationarity - VIS

In the previous section we summarised the theory behind existence and
uniqueness of solution. Perhaps most useful results was Feller’s test for ex-
plosions together with theorem 2.1.2. Together they provide us with the
tools for determine if a specific time homogenous SDE has a unique strong
solution and whether this solution will explode or not in finite time.

Most of the previous theory has been known for a decades and is mentioned
in introductory books on stochastic calculus such as [5]. We now turn to a
more recent field of research which deals with diffusions1 exhibiting Volatility
induced stationarity (VIS). These are strong solutions to SDE which fulfils
the Feller’s test for explosion but where the stationarity properties is causes
by high volatility. Even though the term VIS has not been used explicitly in
literature and research it has been studied by Conley et al [3] and a gener-
alized definition is given in Muszta [1] and Muszta et al [11]. In this section
the definition of VIS will be made and the general features will be described.

Normally when thinking of solutions to SDEs we can split up the problem
into a deterministic and a stochastic part (diffusion term). The deterministic
will then be an ordinary differential equation (ODE) and the corresponding
solution gives a rough indication of how the solution will behave. The full
solution is then obtained by adding the stochastic part to the deterministic.
This way of thinking is especially valid in cases when the stochastic part is
small compared to the solution of the ODE. In this case the stochastic part
will have limited influence on e.g. the convergence and long time stationar-
ity of the deterministic problem.

The concept of VIS was introduced for processes which opposed this tradi-

1By diffusions we mean solutions to SDE which has continuous sample paths

11



12 CHAPTER 3. VOLATILITY INDUCED STATIONARITY - VIS

tional way of thinking. In these types of processes the stochastic part cannot
longer be considered independently since it interacts with the deterministic
part. As a direct consequence it is possible for it to induce properties of the
solution that is not present in the absence of the stochastic term. The idea
behind the definition of VIS is to characterize SDEs where the stationarity
is partly or solely ensured by the structure of the diffusion function. Muszta
[1] make the following definition of VIS:

Definition (VIS) The stationary solution to the time homogenous SDE
given by 2.7 has vis at l (r) if p′(l+) ≤ ∞ (p′(r−) ≤ ∞). In this case we call
l (r) a vis-boundary.

Starting from this definition it is possible to explain how volatility can induce
stationarity. To do this we recall the definition of the speed measure:

m(dx) =
2dx

p′(x)σ(x)
(3.1)

The speed measure is recognized as the (unnormalized) distribution for the
process. For a process to be stationary we must have m(I) < ∞ where I is
the domain in which the process takes its values. For a stationary process
without drift (p′(x) = 1) we must have that σ(x) →∞ as x →∞ in order for
stationarity to hold. Assume now that such process moves to high numeric
values. In this case the σ(x) will increase and hence the speed measure will
decrease. In this case the process will tend to move back down to values
where the process is locally unbiased. In other words it is possible for the
process to take on large values, however the time spent at these values will
be very short thus causing the speed-measure to create mean reversion. This
mean reversion will result in the local martingale not being a martingale.

From the argument above it is obvious that there is a trade-off between the
martingale property and stationarity of the process. In order for a strict
diffusion process (no drift) to be stationary it is necessary one has a high
volatility to create mean reversion. The price we have to pay for it is that
the local martingale is not a martingale.

If we consider processes with drift a similar argument can be used by, once
again, using the VIS definition. However we still want to separate the cases
where the stationarity is caused by the volatility and not the mean reversion
by the drift. But this follows directly from the definition of the scale function
since the VIS condition p′(r) < ∞ imply that the σ2(x) must dominate over
the drift near the VIS boundaries.



Chapter 4

CIR and CKLS processes

The specific types of processes that will be considered in this thesis are the
CIR [10] and CKLS[4] processes. Both named after the authors which first
presented the widespread application of the processed in terms of modelling
the short term interest rates. In terms of SDEs in equation 4.1 the processes
are characterized by a parameter set {α, β, σ, γ} and more specifically by:

Xt = Xs +
∫ t

s
α + βXudu +

∫ t

s
σXγ

udWu (4.1)

The CIR process is the specific case of the CKLS process in the case when
γ = 0.5. The existence of solution, non explosive property and the station-
arity property is now analyzed. Also the existence of transition densities will
be considered by using the theory outlined in the previous two chapters.

4.1 Properties of solution

Strong existence and uniqueness of solutions to the CKLS SDE is given by
Theorem 2.1.2. By identifying h = xp where p ≥ 1/2 we can guarantee that
strong uniqueness holds in cases where γ ≥ 1/2. The solution will however
only exists locally since the linear growth condition of theorem 2.1.1 is not
fulfilled. The strong solution hence only exists up to a possible explosion
time.

To check whether the process explodes or not we simply check the conditions
derived in Section 2.2 of Chapter 2 and ended up in the Fellers Test for
Explosion. In cases when γ ≥ 1/2 we have that the process moves in the
domain I = (0,∞). Furthermore we have from definition of the speed
measure in this case that m(I) ≤ ∞ and limx→0 p(x) = limx→∞ p(x) = ∞.
This latter condition ensures that p′(x) will go to infinity at x=0 and be
bounded away from zero at infinity. This ensures that the CKLS process
does not explode in this case.

13



14 CHAPTER 4. CIR AND CKLS PROCESSES

4.2 The VIS effect

By using the definition of VIS presented in the previous section it can easily
be verified that the CKLS process experience VIS for the following four sets
of parametric values: {1/2 < γ < 1, α > 0, β = 0}, {γ = 1, α > 0, 0 < β <
1/2σ2}, {γ > 1, α > 0}, {γ > 1, α = 0, β > 0}

From the discussion in Chapter 3 the presence of VIS prevents the local
martingale part of the SDE (second term in 4.1) from being a martingale
and hence induces a mean reversion in addition to the one caused by the
drift. The direct consequence of this is that traditional assumptions for the
stationary mean made by for example Chan et al [4] does not hold. By not
taking the VIS into account in parameter estimation methods may break
down since moments conditions do not longer hold.

Moments conditions under VIS To derive valid moments conditions
it is necessary to obtain the expression for the stationary density. This is
simply given by the derivative of the speed measure as was pointed out in
Section 2.3 of Chapter 2:

dm(x)
dx

= 2x−2γ exp
(

2α

σ2(1− 2γ)
x1−2γ − β

σ2(γ − 1)
x2−2γ

)
(4.2)

From the stationary density it is then possible to derive the moment condi-
tions:

E[Xp
t ] =

∫ ∞

0
xpdm(x) =

∫ ∞

0
2xp−2γ exp

(
− β

σ2(γ − 1)
x2−2γ

)
dx =

=
(

σ2(2γ − 1)
2α

)−p/(2γ−1)
M(p)
M(0)

where

M(p) =
∞∑

k=0

1
k!

[
−β

σ2(γ − 1)

(
σ2(2γ − 1)

2α

)−p/(2γ−1)
]k

×

Γ
(

k
2γ − 2
2γ − 1

+ 1− p

2γ − 1

)

And Γ being the gamma function. In the specific case where p=1 we obtain
the expected value E[Xt] of the process. Especially, performing the direct
calculation, we obtain the following result.
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Figure 4.1: Stationary density of CKLS for {α, β, σ, γ} = {1,−1, 1, γ} for
different values in γ. For high gamma it is obvious that the long time ex-
pected value of the process decreases since there is an increase in probability
of the process taking small values. This is caused by the mean reversion from
the volatility and the proposition given below.

Proposition In the case when γ > 1 we have that E[Xt] ∈ (0,−α/β)

What this proposition tells us is that if γ > 1 we will experience mean
reversion from the local martingale part of the SDE. Consequently the ex-
pected value of the process will be lower than in absence of VIS in which
E[Xt] = −α/β. It is possible to go even further and characterize the VIS
effect in terms of the size of the mean reversion caused by the local martin-
gale. This we do by taking expectation on both sides of the CKLS SDE and
using Fubini’s theorem. This yields the following proposition:

Proposition In case γ > 1 we have:

E[σ
∫ t

0
Xγ

s dWs] = −
(

α + β

∫ ∞

0
xdπ(x)

)
t := −d(α, β, σ, γ)t (4.3)

Where d(α, β, σ, γ) > 0 and π is the normalized stationary density given by
the (normalized) differential of the speed measure (see above).

What this proposition tells us is that in case of VIS when E[Xt] ∈ (0,−α/β)
the Itô-intagral of the SDE will have drift. In other words it is not correct
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to make a martingale approximation. This approximation is a standard
approach in simple parameter estimation methods (see [4]) and will be con-
sidered below in relation to the General Method of Moment (GMM).

4.3 Transition Densities

As we will see later on the simplest way to estimate parameters for SDEs is
to use the transition density defined by:

p(Xt+∆|Xt, θ, ∆t) (4.4)

Given an analytic expression of this probability density it is only a question
of choosing the right optimization algorithm in order to apply maximum
likelihood and find specific values on the parameter vector θ that best agree
with observed data. The problem for most SDEs are that such analytic
expression does not exist. In this case one has to turn to more delicate
approximation schemes for parameter estimation. In 1985 Cox Ingersoll
and Ross derived the analytic expression for the transition density for the
CIR process. It was shown to be a product of an axponential function and
a modified Bessel function according to:

p(Xt+∆|Xt, θ, ∆t) = ce−(u+v) v

u

q/2
Iq(2

√
uv) (4.5)

where
c =

2κ

σ2(1− e−κ∆t)
u = cXte

−κ∆t

v = cXt+∆t

q =
2κµ

σ2
− 1

(4.6)

and Iq is the modified Bessel function of order q. The more general CKLS
process is however an example for which the transition density is unknown
for most parameter sets. By simulating a large number of processes it is
possible to get an empirical transition density from a histogram plot. Fig-
ure 4.2 show such histogram from 5000 simulation for the specific values
on the parameters given by {κ, µ, σ, γ} = [0.2, 0.5, 0.1, γ] for γ = 0.5, 1, 2
respectively. The initial value X0 was set to the long time average µ = 0.5
while the time of evolution ∆t = 0.5. It is obvious that a higher value on
γ is associated with the higher mean reversion to the long time mean level.
One thing that might not be equally obvious is that high values on γ is also
associated heavier tails which is caused by the fact that the process might
take high values for short periods of time.
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Figure 4.2: Histograms for transition density for different values on γ when
Xt = 0.5,∆t = 0.5. It is obvious that the standard deviation of the tran-
sition probability decreases as the value on γ increases. Hence the γ value
contribute to mean reversion to the long time stationary value of the process
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Chapter 5

Parameter estimation
methods

Given some arbitrary underlying model, there are basically two different
approaches to estimate parameters from observed data. They both relies on
the fact that estimated parameters will infer to the true parameters when the
amount of data becomes large. The first class is Maximum likelihood meth-
ods where one estimate parameters through first order optimality conditions
for the density function. In order to do this, the closed form expression for
the transition density must be known. Even though a closed form expression
is not known, it is possible to obtain an approximate closed form expression
due to the recent methods based on Hermite polynomial expansion of the
normal density. This method has proved to be efficient for transition den-
sities in SDEs. The second class of methods is called Method of Moments
in which one express the parameters in terms of the moments. Since, by
the law of large numbers, the moments could be estimated from data, it
is possible to find estimates of the parameters. Method of moments have
been used extensively in relation to parameter estimation in SDEs since it
is often relatively simple to find expression for the parameters in terms of
first and second order moments. Examples of method based on a Method
of Moment approaches is General Method of Moments (GMM), Simulated
method of Moments (SMM) and Efficient Method of Moments (EMM). The
differences between method comes from differences in initial assumptions.
In the simple GMM model it is assumed that one have a known relationship
between the parameters one want to estimate and the different moments.
EMM and SMM do not assume that these relations are known and uses
more delicate techniques in which help models are used.

In this chapter the theory behind Maximum Likelihood and Method of Mo-
ments will be explained in context of their application to parameter estima-
tion in stochastic differential equation. As a general model for the SDE, a

19
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continuous time parametric diffusion given by [5.1] will be used.

dXt = µ(Xt; θ)dt + σ(Xt; θ)dWt (5.1)

The functions µ(· , · ) and σ(· , · ) are assumed to be known and the unknown
parameter vector θ that we want to estimate belongs to some open bounded
set Θ ⊂ RK . It should be pointed out that although the model is written
in continuous time, the observed data are sampled in discrete time. Fur-
thermore is should be elucidated that even though most of the theory will
be applicable on multidimensional SDEs, the treatment will be restricted to
one dimension.

5.1 Maximum likelihood approaches

In maximum likelihood theory it is assumed that one has a IID random
sample X1, ..., Xn from a known k-variate distribution with density f(x|θ0)
where θ0 ⊂ Θ. Due to independence of the X ′

is it is possible to write
the joint as a product of marginal densities f(x|θ0) =

∏n
i=1 f(xi|θ0). The

likelihood function is obtained by replacing the nonrandom arguments xi by
the corresponding (k-dimensional) random vectors Xi and θ0 by θ:

L̂n(θ) =
n∏

i=1

f(Zi|θ) (5.2)

The maximum likelihood (ML) estimator is then set to the value that
maximize the likelihood function (or equivalently the log likelihood func-
tion).That is:

θ̂ = arg max
θ∈Θ

ln L̂n(θ) (5.3)

The guarantee the uniqueness of θ̂ it is enough to prove that the log like-
lihood function is nowhere constant on Θ, something that must be proved
from one case to another. For a proof of this statement turn to e.g Bierens
pp 205-205 [9]

A very important property of the ML-estimator is that it is asymptotically
normally distributed as n →∞. Also it is asymptotically efficient meaning
that the likelihood-estimate defined by 5.3 results in the lowest possible
variance of the estimator, compared to if we would minimize the argument by
some other function different from 5.2. The efficiency property will be merely
taken as a fact. However the asymptotically normality can be relatively
easily understood by using the first order condition for optimality at θ = θ̂ ∈
Θ given by 5.4. Here we assume that the log likelihood is twice continuously
differentiable in a neighbourhood of the true parameter θ0 and that θ0 is in
the interior of Θ.
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∇L̂n(θ|X) =
1
n

n∑

i=1

∇θ ln f(Xi|θ̂) = 0 (5.4)

Using the first order condition and Taylor expand to the second order around
θ0 then gives an estimate for the difference (θ̂− θ0) in the neighbourhood of
θ0:

1
n

n∑

i=1

∇θ ln f(Xi|θ0) +
1
n

[
n∑

i=1

∇θθ ln f(Xi|ξ)
]

(θ̂ − θ0) = 0 ⇔

√
n(θ̂ − θ0) =

[
− 1

n

n∑

i=1

∇θθ ln f(Xi|ξ)
]−1

1√
n

n∑

i=1

∇θ ln f(Xi|θ0)

The first factor converges to A = E[∇θθ ln f(x|θ0)]−1 by the large numbers
while the second factor converges, by the central limit theorem, in distri-
bution to the multivariate normal with mean 0 and variance equal to the
Fisher information Matrix defined by I(θ) = E[(∇θ ln f(Xi|θ0))2]. From
Slutsky’s theorem (Y −1

n Xn → c−1X given that Yn converges to c in prob-
ability and Xn converges to X in distribution) hence it is possible to draw
the conclusion:

√
n(θ̂ − θ0) → N(0, A−1IA−1)

Especially if the model is correctly specified then A=I by the information
equality. Hence one get that

√
n(θ̂ − θ0) → N(0, I−1)

5.1.1 Simple Maximum likelihood in SDE

The theory on maximum likelihood is well suited for application to stochastic
differential equation since the assumption on independence for the random
sample X1, ..., Xn follows from the Markov property of the solutions to SDEs.
If the transition density for SDE in 5.1 is denoted by p(Xti+1 |Xti ; θ, ∆t) for
an equidistant time discretization ∆t = ti+1 − ti, then the log likelihood
function has the form:

ln L̂n(θ) =
n∑

i=1

ln p(Xti+1 |Xti ; θ, ∆t) (5.5)

5.1.2 Approximate Maximum likelihood

The major drawback of the Maximum Likelihood method in estimating pa-
rameters is that one must have a closed form expression for the density
function for the random variable X above. Especially in the context of
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stochastic differential equations this is an obvious disadvantage since the
corresponding transition density for a process is almost never known. Only
for the simplest types of SDEs such as the Ornstein and Uhlenbeck (OU)
or Cox Ingersoll and Ross (CIR) one have succeeded in deriving closed form
expressions. For the more general CKLS model considered the method of
Maximum likelihood seems inapplicable.

An approach to overcome the problem of unknown closed form expression is
to construct a sequence of closed form functions that converges to the true
likelihood function. One such method has been developed by At-Sahalia
[16] and which uses a Hermite series expansion around the N(0,1)-density
for the transition density.

Although most SDEs’ do not have transition densities that are close to a
N(0,1) density, it is often possible to trans form it into another process
which does. The transition density for the original process is then obtained
by simple back transformation. This is explained below:

Transforming SDE to unitary diffusion

Suppose that one have a SDE on the form in 5.1. Assuming that the func-
tions µ(x, θ) and σ(x, θ) are infinitely differentiable in x and three times
continuously differentiable in θ with σ(x, θ) > c > 0, it is possible to make
the transformation:

Y = γ(X; θ) =
∫ X du

σ(y; θ)
Now by applying Itô’s Lemma one get the following SDE for Y:

dYt = µY (Yt; θ)dt + dW

µY (y, θ) =
(

µ(γ−1(y; θ))
σ(γ−1(y; θ))

− 1
2
σ′(γ−1(y; θ))

)

Making the transition from Xt to Yt now makes it possible to construct an
expansion of the transition density for Yt. However since it is the transition
density for Xt that we are interested it is necessary to find the relation
between the two densities. This could be found by using Jacobian formula:

pX(∆, x|x0; θ) =
∂

∂x
P (Xt+∆ ≤ x|Xt = x0; θ)

=
∂

∂x
P (Yt+∆ ≤ γ(x; θ)|Yt = γ(x0, θ); θ)

=
∂

∂x

[∫ γ(x;θ)

pY (∆, y|γ(y0; θ))dy

]

=
pY (∆, γ(x; θ)|γ(x0; θ); θ)

σ(γ(x; θ); θ)

(5.6)
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The transformed process Yt has the desired process to be normally dis-
tributed. However in cases when the time increment ∆ is small the tran-
sition density becomes close to a dirac shape. Therefor we use a second
transform to get around this problem by defining the process:

Z = (Y − y0)/∆1/2 (5.7)

Using a similar Jacobian derivation as in 5.6 we obtain the relationship in
transition density between Y and Z by:

pY (∆, y|y0; θ) = pZ(∆, (y − y0)/∆1/2|y0; θ)/∆1/2 (5.8)

Now that the relationship between densities for X Y and Z have been estab-
lished we have taken the first step in approximating the transition density
for X. If we are able to find an approximation for the transition density for
Z, which is fairly close to N(0,1), we can find transition density for X by the
above transformations.

Obtaining closed form expression for transition density

The fact that the transition density for Z is fairly close to the standard
normal distribution makes it possible to expand the density in terms of
Hermite polynomials through:

pJ
Z(∆, z|y0; θ) = φ(z)

J∑

j=0

ηj
Z(∆, y0; θ)Hj(z) (5.9)

Where φ(z) denotes the standard normal density, ηZ denotes the polynomial
expansion coefficients and Hj is the j:th Hermite polynomial defined by:

Hj(z) =
√

jez2/2 dj

dzj

[
e−z2/2

]
(5.10)

The reason to use the Hermite polynomial instead of some other polynomial
is that they are orthogonal with respect to the L2(φ) scalar product weighted
by the Normal density. That is:

〈Hj(z), Hi(z)〉L2(φ) :=
∫ ∞

−∞
Hj(z)φ(z)Hi(z)dz =

{
1 if i = j
0 if i 6= j

(5.11)

The orthonormal property of the Hermite polynomials in L2(φ) tells us
that it constitute a base for L2(φ) and hence any function in L2(φ) (e.g
a proper transition density) can be expressed as a linear combination of
Hermite polynomials. Due to the orthonormal property it is possible to find
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the coefficients in the expression for pZ in 5.9 by multiplying by Hj(z) and
integrating giving:

ηj
Z(∆, y0; θ) =

1√
j!

∫ ∞

−∞
Hj(z)pZ(∆, z|y0; θ)dz (5.12)

ηj
Z(∆, y0; θ) =

1√
j!

∫ ∞

−∞
Hj(z)pZ(∆, z|y0; θ)dz

=
1√
j!

∫ ∞

−∞
Hj(z)∆1/2pY (∆, ∆1/2z + y0|y0; θ)dz

=
1√
j!

∫ ∞

−∞
Hj(∆−1/2(y − y0))pY (∆, y|y0; θ)dy

=
1√
j!

E[Hj(∆−1/2(Yt+∆ − y0))|Yt = y0; θ)]

(5.13)

For the case J = ∞ up until now there has just been a matter of reformu-
lating the transition density pZ of Z into a series of conditional moments.
Conditional moments obtained in 5.13 is however a very convenient form in
expression transition density since the mapping s 7→ E[f(Yt+s, y0)|Yt = y0]
can be approximated by simple Taylor expansion.

In order to Taylor expand the function we may use the fact that the time
differential in the expected value of f(X) (where X is governed by the SDE
in 5.1) is given by its infinitesimal generator A through:

lim
t↓0

1
t

[E[f(Yt+s)|Yt = y0]− f(y0)] = µY (y0; θ)
∂f

∂y
+

1
2

∂2f

∂y2
:= Aθf(y0)

(5.14)
Denoting A(θ) = Aθf(y0) we can make the following Taylor expansion:

E[f(Yt+s)|Yt = y0] =
K∑

k=0

Ak(θ)f(y0, y0)
∆k

k!

+ E[AK+1(θ)f(Yt+∆, y0)| ∆K+1

(K + 1)!

(5.15)

We restrict ourselves to the second order Taylor expansion (K=2) and derive
the coefficients η in the expression for the transition density pZ in 5.9. Here

η1
Z =

2∑

k=0

(Ak(θ)f)(y0) =
2∑

k=0

(
µY (; θ)

∂

∂y
+

1
2

∂2

∂y2

)k

H1(y0)
∆k

k!
=

=
(

µY (y0; θ)
∂H1(s)

∂s

1
∆1/2

+
∂2H1(s)

∂s2

1
∆

)
∆
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+
[
(2µY µ′Y + µ′′Y )

∂H(s)
∂s

1
∆1/2

− (µ2
Y + 2µ′Y )

∂2H(s)
∂s2

1
∆

+

+
3
2
µY

∂3H(s)
∂s3

1
∆3/2

− 1
4

∂4H1(s)
∂s4

]
∆2

2!
(5.16)

Here we have made a change of variables s=(y − y0)/∆1/2. Observing that
H1 is a polynomial of first degree all higher order derivatives than one will
be zero and hence η0

Z = 1 and the first coefficients are given by:

η1
Z = −µY ∆1/2 − (2µY µ′Y + µ′′Y )∆3/2/4

η2
Z = (µ2

Y + µ′Y )∆2 + (6µ2
Y µ′Y + 4µ′2Y + 7µY µ′′Y + 2µ′′′Y )∆2/12

η3
Z = −(µ3

Y + 3µY µ′Y + µ′′Y )∆3/2/6
−(12µY µY + 28µY µ′2Y + 22µ2

Y µ′′Y + 24µ′Y µ′′Y + 12µY µ′′′Y + 2µ
(4)
Y )∆5/2/48

(5.17)
Once the analytic expression for the coefficients has been determined we
seek to rearrange the expression for the transition density given in [5.9] so
that terms are arranged in terms of their powers of ∆ and not in the order
of the Hermite polynomials. At-Sahalia [16] derive an analytic formula for
this. Using the same notation it is given by:

pK
Y (∆, y|y0; θ) = ∆−1/2φ(

y − y0

∆1/2
)e

∫ y
y0

µY (u,θ)du
K∑

k=0

ck(y|y0; θ)
∆k

k!
(5.18)

where

cj(y|y0; θ) = j(y − y0)−j

∫ y

y0

(u− y0)j−1

×
[
λY (u; θ)cj−1(y|y0; θ) +

∂2cj(y|y0; θ)
∂u2

]
du

(5.19)

and

λY (y; θ) = −1
2

(
µ2

Y (y; θ) +
∂µY (y; θ)

∂y

)
(5.20)

5.2 Method of Moments approaches

As in the previous case, assume that one has a collection if data from some
random variable X with some distribution G, and that one want to determine
the parameters for this distribution. The basic principle behind the Method
of Moments is that there exists a direct relationship between the parameters
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one want to estimate {θ1, θ2, θ3, ..} and the moments {µ1, µ2, µ3, ..} 1. That
is one have a vector of functions on the form θk = fk(µ1, µ2, ...). Now,
assuming that the number of data points {Xi} are large, it is possible to
make estimates of the moments using the Law of large numbers and find
the kth sample moment by µ̂k =

∑n
i=1 Xk

i . The direct relationship between
{θk} and {µi}n

i=1 through fk then gives an estimator θ̂k. When applying this
simple idea to SDEs it is rather straight forward and the only problem left
is to specify the relations {fk}n

i=1 given the characteristic functions µ(· , · )
and σ(· , · ) for the SDE in [5.1]. This General Method of Moment (GMM)
was first presented by Hansen [12] and often constitute the simplest way
to estimate parameters in SDE. A generalization of the GMM method to
cases where the relationships given by {fk}n

i=1 cannot be found have been
developed by Gallant and Tauchen [14] and uses an ”artificial” moment
condition which approximates the true one. Below the GMM as well as
Gallant and Tauchens Efficient Method of Moment (EMM) are described
together with some important limit theorems for the estimates.

5.2.1 General method of moment

Assume that one have observed a series of data points Xn from an SDE with
some specific drift µ(· , · ) and diffusion σ(· , · ). In the General Method of
Moment the functions f(Xn, θ) = [f1(Xn, θ), ..., fk(Xn, θ), ...] are assumed
to be known and hence it is possible to construct vector functions h(Xn, θ)
such that:

E[h(Xn, θ)] = E[f(Xn, θ)− θ] = 0 (5.21)

The intuition behind the formulation above is the following. Given the true
parameter set θ0 then the expectation of the vector h should equal zero.
Now if we define p = dim(θ) and note that h(Xn, θ) is a r-dimensional
vector function, that is h(Xn, θ):Rp → Rr, it is necessary that r ≥ p in
order for the equation system to be solvable. By applying the law of large
numbers it is possible to approximate the expected value by:

g(Xn, θ) =
1
N

N∑

k=1

h(Xn, θ) (5.22)

Since by [5.21] this expression should average to zero it is possible to obtain
an estimate for θ by solving the equation g(Xn, θ) = 0.

Even though it might be possible to obtain the estimete of θ by solving
this (often nonlinear) equation system it gives no indication of the efficiency
of the convergence of the estimator. Somehow it is necessary to develop a

1Here the usual definition of moment is used: µk = E[Xk]
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method such that the distribution of the estimator is proper in a way that
it does not contain too heavy tails in a certain dimension. A very pleasant
method for making the estimator efficient is to obtain the estimator by
minimizing the quadratic function given by:

QN (θ,Xn) = [g(Xn, θ)]TΣN [g(Xn, θ)]T (5.23)

Here ΣN is the positive semidefinite matrix obtained by inverting the co-
variance matrix obtained from the moment restrictions. Converting the
estimation problem into a covariance-weighted minimization problem have
two effects. First of all it is possible to guarantee that a solution exists (al-
though the problem might contain several local minima). The second effect
is that since the quadratic form is weighted by the inverse covariance matrix,
more weight is put in dimensions where the variance is large end vice verse.

5.2.2 Efficient method of moment

The general method of moment presented above is readily applicable once
the moments are known. However in many cases they are not known or the
calculations are to cumbersome to perform. In either case it might be pos-
sible to turn to methods where explicit expressions for the moments are not
necessary. One such method has been developed by Gallant and Tauchen
[14] and is normally referred to as the Efficient Method of Moment (EMM).

The method uses two models for the underlying process - the structural
model and the approximated help model. The structural model corresponds
to the ”real” model and is the one from which our observed data are gen-
erated from. It is the parameters in the structural model that we want to
estimate. The help model is a more general model that we try to fit in order
to replicate the structural model.

In order to estimate the structural model’s parameter vector ρ one tries
to minimize the difference between moments generated by the help model,
where in one case the observed data has been used, and in the second case,
simulated data from the structural model have been used. The estimate for
ρ is the values that best agree with observed data. How to find an appro-
priate help model will be explained later and for now we will assume that
we have the help model with transition density denoted by f(y|xθ). We
will further denote that the observed data from the SDE by {ỹt, x̃}n

t=1. We
assume that the observed data have been generated from the sequence of
densities from the structural model {pt(ỹt, x̃; ρ0)}n

t=1.

Gallant and Tauchen now suggest that one take the expected values of the
score vector (∇θ ln ft(yt|xt; θ)) as the moment condition. That is if m(ρ, θ)
denotes the moment condition we have:
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m(ρ, θ) = E [∇θ ln(f(yt|xt; θ))] =
∫ ∫

∇θ ln(f(yt|xt; θ))p(x, y|ρ)dydx

(5.24)
Since we are always free to chose the moment condition as we like this is a
choice as good as any other. The condition given above has the property
of equate to zero if the help model exactly replicates the behaviour of the
structural model. In most cases the moment will deviate from zero since
the help model is only an approximation. This is however not crucial since
parameters will be found by minimizing the corresponding quadratic form
in equation 5.25 where Σ is an appropriate weight matrix.

ρ = arg min
ρ∈R

m(ρ, θ)T Σm(ρ, θ) (5.25)

The above argument tells us that it is possible to find an estimate of ρ once
we can approximate the integral in 5.24 in a suitable manner. The problem
is however that neither the parameters θ in the help model or the transition
density for the structural model is known. In addition it is necessary to
approximate the expectation my Monte Carlo simulation in order to convert
it into a numeric problem.

Approximating the moment condition

The fact that the transition density for the help model is known makes
it possible to perform a Maximum Likelihood estimation of the parameter
vector θ by using the first order optimality condition:

∇θ ln ft(yt|xt; θ) = 0 (5.26)

Now by using the observed values for the structural model {ỹt, x̃}n
t=1 it is

possible to find the Quasi Maximum likelihood estimate of θ through:

θ̃ = arg max
θ∈Θ

ln ft(ỹt|x̃t; θ) (5.27)

This estimate could then be inserted in the expression for the moment condi-
tion in 5.24. If the number of observed data are n we obtain the approximate
moment by:

mn(ρ, θ̃n) =
1
n

n∑

t=1

∫
∇θ ln f(y|x̃t, θ̃)p(yt|x̃t, ρ)dy (5.28)

Still the transition density for the structural model p(y|x, θ) is not known.
However it is still possible to simulate a large number of processes for a given
parameter vector ρ and then use Monte Carlo Integration. Let N denote the
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number of structural processes simulations in each time interval between
observation, then the Monte Carlo estimation of the Moment is given by:

mn(ρ, θ̃n) =
1
n

n∑

t=1

1
N

N∑

τ=1

∇θ ln f(ŷtτ |x̃t, θ̃n) (5.29)

Here ŷtτ denotes simulated values from the structural model with parameter
vector ρ. The expression in 5.29 is now a function of ρ and by reformulating
it as in 5.25 we have arrived at a solvable minimization problem with respect
to ρ.

Convergence properties of the estimator

Assume now that we approximate the moment conditions m(ρ, θ) using a
quasi maximum likelihood determination of θ and a Monte Carlo Integration
over p(y|x, ρ).To find an estimation of ρ through minimization of the equiv-
alent problem given by 5.25 it then remains to specify the positive definite
matrix Σ in a proper way. Proper in this context refers to the fact that the
limiting distribution of the estimate as n →∞ is efficient in a way that the
variance will be as small as possible. in order to obtain an efficient weight
matrix it is necessary to find the limit distribution of the moment conditions
since the efficient weight matrix is then only the inverse of the covariance
matrix (Hessian) of the moment condition.

Observing that θ was estimated using Quasi maximum likelihood it possible
to derive an analogue result to what was presented in Section 5.1. Especially
if the help model has a transition density which fits the data well we have:

√
n(θ̃n − θ) ≈ N(0, Ĩn) (5.30)

Here Ĩn is the approximation of the Fischer information matrix. If θ0 repre-
sent the true value for the Quasi Maximum likelihood then the approxima-
tion has the form:

Ĩn =
1
n

n∑

i=1

[
∇θ ln f(ỹt|x̃t, θ̃n)

]T [
∇θ ln f(ỹt|x̃t, θ̃n)

]
≈

≈ 1
n

n∑

i=1

[∇θ ln f(ỹt|x̃t, θ0)]
T [∇θ ln f(ỹt|x̃t, θ0)] = I0

Using that the moment condition mn(ρ, θ̃n) in our minimization problem is
a direct function of θ̃n it is possible to make a Taylor expansion around the
true parameters (ρ0, θ0) to prove that:

√
nmn(ρ0, θ̃n) ≈ N(0, Ĩn) (5.31)
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Hence the the most efficient way to choose the positive semidefinite weight
matrix to the minimization problem is to take Σ = I−1

0 ≈ Ĩ−1
n and obtain:

ρ̃n = arg min
ρ∈R

m(ρ, θ̃n)T Ĩ−1
n m(ρ, θ) (5.32)

Once again the term efficient imply that it is not possible to find any other
positive semidefinite weight matrix that gives a lower variance for the esti-
mate of ρ when n →∞
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Simulation

Since it is our intention to estimate parameters for CKLS processes we must
be able to construct solutions that is known to have given parameter values.
That is we want to be able to simulate processes that obey the CKLS SDE.
Without efficient simulation schemes we cannot tell whether the estima-
tion errors comes from bad estimation methods or bad simulation schemes.
The easiest way to find an closed form expression for X in 1.1 on the form
X = f(t,Wt) and then make realizations of the Brownian motion W. For
the general CKLS such closed form expression does not exist and to solve
such equations we must instead turn to appropriate simulation schemes that
approximate the solution.

The simulation methods for SDE is very similar to the one that are used
for numerical solutions to initial values problem in deterministic cases. The
only differences are that in case of SDEs one must add the random noise to
the solution. Since the existence of a unique, non exploding, strong solutions
has already been proven in Chapter 4 it only remains to chose the scheme
that best approximate the solution.

Unfortunately the theory in traditional textbooks such as Kloeden and
Platen [13] does assume quite strong condition on the drift and diffusion
coefficients. For SDEs which do not fulfil the conditions (which is often
of globally Lipschitz-type) convergence of the numerical schemes cannot be
guaranteed. Even though convergence of many schemes has been proved
in latest years for less restricted conditions on drift and diffusion, (see for
example Higham et al [15]) the convergence is often very slow and requires
large amount of computational power. In this section we will present the
elementary numerical schemes for simulation of solution together with more
delicate methods appropriate for SDEs exhibiting vis characteristics.
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6.1 The Euler scheme

The simplest way to simulate a solution to an SDE is to use an explicit
scheme like the one used for solving initial value ODE in the deterministic
case. The corresponding scheme for a general time homogenous SDE in 2.7
is the so called Euler Maruyama scheme given in equation 6.2. Here we have
used abbreviation ∆n = (tn+1 − tn) and ∆Wn = (Wtn+1 −Wtn). In case of
equidistance sampling points we write ∆n = ∆.

Xn+1 = Xn + b(Xn)∆n + σ(Xn)∆Wn (6.1)

Strong convergence of the Euler-Maruyama approximation to the true so-
lution as ∆ → 0 is guaranteed once we impose restriction on Lipschitz
continuity and linear growth of the coefficients b and σ (see [5] section 9.6).
Due to Gyong [7] we might relax the assumptions to the drift b(x) being
one-sided Lipschitz and the volatility σ being locally Lipschitz and still have
uniform a.s convergence.

6.2 Implicit approximation schemes

Just as in the deterministic case one could modify the explicit schemes to
use information on future time steps. In this case we get a much more
stable implicit schemes which have lower probability of collapse in finite
time. This is especially desirable property when dealing with diffusions
with vis since numerical approximations in general have high probability
collapse. A general implicit computational scheme is given by 6.2.

Yn+1 = Yn +(θbb̄(Yn+1)+(1−θb)b̄(Yn))∆+(θσσ(Yn+1)+(1−θσ)σ(Yn))∆Wn

(6.2)
Here the parameters θb and θσ represents the degree of implicity in the for
the drift and volatility coefficients respectively. We have three special cases:
1. The Euler scheme (E) (θB = θσ = 0), 2. The Stochastic theta model
(ST), (θσ = 0) and 3. Fully implicit Euler model (FIE),(θb = θσ = 1).
The corresponding schemes for these models are given below in the above
mentioned order:

Yn+1 = Yn + b(Yn)∆ + σ(Yn)∆Wn (6.3)

Yn+1 = (θbb(Yn+1) + (1− θbb(Yn)))∆ + σ(Yn)∆Wn (6.4)

Yn+1 = Yn + b̄(Yn+1)∆ + σ(Yn+1)∆Wn (6.5)
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Explicit Euler method has already been mentioned above. The last two have
been studied by Higham [2] and Muszta [1] respectively.

The general methodology for simulate implicit schemes is to divide the prob-
lem into one explicit part and one part containing the non-linear equation
to solve for implicit step. For the CKLS model the problem comes down to
solving f(Yn+1) = Ẑn where Ẑn and f(y) are given by the following:

Ẑn = Yn + (1− θb)(α + βYn − θσγσ2Y 2γ−1
n )∆ + (1− θσ)σY γ

n ∆Wn (6.6)

f(y) = y − θb(α + βy − θσγσ2y2γ−1)∆− θσσyγ∆Wn (6.7)

Simulations of the CKLS and CIR processes using the fully implicit Euler
scheme are illustrated in Figure 6.1.
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Figure 6.1: Simulations of CKLS and CIR processes when using the fully
implicit Euler method. For the CKLS process the VIS effect is present and
hence increase the mean reversion to the stationary mean 0.9. For the CIR
process the mean reversion from VIS is not present and is only due to the
drift term. Thus the process fluctuates more around 0.9. Also notice the
high and short peaks present for the CKLS model.



Chapter 7

Implementation

The theory behind the estimation methods was outlined in Chapter 5. In
order to implement them in the specific case of the CKLS model some com-
putational aspects must be considered. These includes finding appropriate
initial conditions for the algorithms, deriving moment conditions for GMM
and obtaining explicit expression for the Taylor expansion of the Hermite
polynomial expansion. It will turn out that implementation will be simpler
if we rewrite the CKLS SDE given by 4.1 as the following:

Xt = Xs +
∫ t

s
κ(µ−Xu)du +

∫ t

s
σXγ

udWu (7.1)

From this representation it is easy to see that, in the case without VIS, the
long time mean value of the process is µ. The parameter κ represent the
speed of mean reversion caused by the drift term in cases when the process
deviate from the mean. The diffusion term is unchanged.

7.1 Finding initial estimates for parameters

Whether we try to find parameters by making a maximum likelihood ap-
proach or a method of moment approach it is desirable to request some
decent initial value for the parameters. By decent we here refer to an ini-
tial vector x0 sufficiently close to the actual vector so that we can guarantee
that the optimization algorithms present in the estimation methods will con-
verge to the global optima. In this thesis an Ordinary Least Square (OLS)
method was used on the discretized versions of the CIR and CKLS processes.
The discretized version of the two processes are given by (CIR case when
γ = 0.5):

Xt∆t −Xt = κ(µ−Xt)∆t + σXγ
t ∆W (7.2)

Dividing by the Xγ
t on both sides then yield:

Xt∆t −Xt

Xγ
t

=
κ(µ−Xt)∆t

Xγ
t

+ σ∆W (7.3)
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Here we note that the random noise component ∆W is normally distributed
with expectation zero. Hence we can find an estimation of the parameter
triplet (µ, κ, γ) by inference and minimizing the OLS objective function:

(µ̂, κ̂, γ̂) = arg min
µ,κ,γ

N−1∑

i=1

(
Xt∆t −Xt

Xγ
t

− κ(µ−Xt)∆t

Xγ
t

)2

(7.4)

The estimator for the remaining parameter σ was then found by calculating
the standard deviations of the residuals.

7.2 Moment conditions for GMM

When describing the GMM method in section 5.2.1 it is assumed that one
can find a vector function h(Xn, θ) with expected value zero. To implement
the theory of GMM to the CKLS or CIR SDE we need to specify these
functions. In absence of VIS effects this can be done by approximating the
Itô-integral representing the second term in the SDE as a martingale. Thus
we can make the following approximations without worrying whether the
GMM model giving the wrong result in the parameters. Here the time steps
∆ are assumed to take small values and hence the drift, given by the first
integral in Equation, can be approximated by:

∫ ti+1

ti

κ(µ−Xt)dt ≈ κ(µ−Xti)∆ (7.5)

∫ ti+1

ti

σXγ
t dWt ≈ σXγ

ti
∆Wt (7.6)

Here ∆Wt is defined by ∆Wt = Wti −Wti−1 . Now the random error could
be defined through εti+1 = Xti+1 − Xti − ∆κ(µ − Xti). Hence one get the
following expression for the first and second moments for εti+1 under a time
period of ∆:

E(εti+1 |Fti) = 0
E(ε2ti+1

|Fti) = ∆σ2X2γ
t

(7.7)

Now using independence of increment following the Brownian motion we
can seek inference for the parameter vector defined by

h(θ,Xti) =




εti+1

εti+1Xti

ε2ti+1
−∆σ2

(ε2ti+1
−∆σ2X2γ

t )Xti


 (7.8)

Since the vector has expectation zero it is possible to use inference and the
Law of large numbers telling us that the one can approximate expectation
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E(hti(θ)) by the average sum given by:

HN (θ) =
1
N

N∑

i=1

hti(θ) (7.9)

To find Hansen [12] recommend to use optimization algorithms to find the
parameter vector θ that solves the dual problem of minimizing the mean
squared errors in the expression for HN (θ). These optimization methods
is readily available in Matlab. However one problem that remains is that
the objective function contains many local minimum. To overcome this
problem we used many initial values on the parameters. The initial values
were randomly distributed around the estimated values from the previous
section.

7.3 Explicit expression for the Hermite-polynomial
expansion

Equation 5.19 in Section 5.1.2 gives a closed for expression for the coefficients
in the Hermite polynomial expansion for the transition density. In order to
apply this formula to the specific CIR and CKLS model it we need to find
the explicit expression. Here we make the expansion to the second order to
the transformed process Y with unitary diffusion. The transition density for
X is then given by back transformation using the Relationship 5.6. We have
the following expression for the expanded transition density:

p
(2)
Y (∆, y|y0; θ) = p

(0)
Y (∆, y|y0, θ)(1 + c1(y|y0, θ) + c2(y|y0, θ)) (7.10)

It remains to estimate the specific structure of c1 and c2 for both the CIR
and CKLS.

CIR

p
(0)
Y (∆, y|y0, θ) =

1√
2π∆

e−(y−y0)2/2∆−y2κ/4+κy2
0/4y−0.5+2µκ/σ2

y
0.5−2µκ/σ2

0

c1(y|y0, θ) = − 1
24yy0σ4

(48µ2κ2 − 48µκσ2 + 9σ4 + y2κ2σ4y2
0

+ yκ2σ4y3
0 + yκ2σ2(y2σ2 − 24µ))

c2(y|y0, θ) =
1

576y2y2
0σ

8
×

(9(256µ4κ4 − 512µ3κ3σ2 + 224µ2κ2σ4 + 32µκσ6 − 15σ8)

+ 6yκ2σ2(y2σ2 − 24µ)(16µ2κ2 − 16µκσ2 + 3σ4)y0

+ y2κ2σ4(672µ2κ2 − 48µκ(2 + y2κ)σ2 + (y4κ2 − 6)σ4)y2
o

+ 2yκ2σ4(48µ2κ2 − 24µκ(2 + y2κ)σ2 + (9 + y4κ2)σ4)y3
0

+ 3y2κ4σ6(y2σ2 − 16µ)y4
0 + 2y3κ4σ8y5

0 + y2κ2σ8y6
0)
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CKLS



Chapter 8

Evaluation

Although the estimation methods are readily applicable for all parameter
sets we specifically turn to one where the CKLS experience VIS. Here the
values {µ, κ, σ, γ} = {0.2, 0.5, 0.1, γ} was used for γ taking values between
0.5 (CIR) and 10. The reason for taking small values is that we are primar-
ily interested in the relative size between the γ and other parameters. It is
when this difference is large that we could expect the process to experience
the extra mean reversion associated with VIS.

For each value on γ a total of 50 processes were used. The processes were
simulated using the implicit Euler method presented in Chapter 6 to guar-
antee good approximations to solution. The time between simulation points
∆ = 10−6 during a total time interval of T=10. A total of 1000 data points,
with equal spacing between points, were then sampled for parameter esti-
mation.

To see how well the estimation methods perform we consider the case where
γ = 0.5 and we have the CIR-process. As pointed out in Chapter this pro-
cess has a closed form expression for the transition density and hence it is
possible to use simple Maximum likelihood to estimate parameters. The
estimates from the Maximum likelihood thus can be used as a benchmark
for measuring the relative strength of the other methods. This evaluation,
for the parameters set {µ, κ, σ, γ} = {0.2, 0.5, 0.1, 0.5} is presented in Figure
8.1

For the general CKLS process the results from parameter estimation meth-
ods is given by Figures 8.2-8.5. For each parameter set and method the
mean value of the estimate along with 0.25 and 0.75 quartiles are presented.
In the estimate of γ in Figure 8.2 the residual γ̂ − γ is plotted against γ.
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Figure 8.1: Boxplot of the obtained results from parameter estimation of 50
CIR Process. Boxes represents 25th and 75th quantiles along with median
value. From this results it is obvious that the simple maximum likelihood
(ML) out-performs other methods
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Figure 8.2: The residual error γ − γ̂ between the actual gamma value and
the mean of the estimated values obtained by different methods. While the
methods based on Hermite polynomial expansion and the EMM performs
well for high gamma, the GMM does not. This error comes from the VIS
effects distorting the condition in the GMM
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Figure 8.3: Estimation results for the µ-parameter in the CKLS model.
Median values together with 25th and 75th quantiles are indicated for every
Method and γ-value. Although every method performs well, the EMM gives
the most uncertain estimation. For all methods the estimation seems to be
more accurate for high gamma
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Figure 8.4: Estimation results for the κ-parameter in the CKLS model.
GMM gives uncertain result which might be an effect of the VIS. Estimation
with Hermite polynomial expansion performs very well
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Figure 8.5: Estimation results for the σ-parameter in the CKLS model. The
GMM indicate estimation bias. Effects that might be caused by VIS. For
high gamma the EMM performs well



Chapter 9

Conclusion

This thesis was intended evaluate accuracy of parameter estimation methods
for one dimensional CKLS processes that experience VIS. From theory we
know that moments conditions are distorted in the presence of VIS which
causes traditional GMM methods to fail. For the specific choice on the
parameter set {µ, κ, σ, γ} = {0.2, 0.5, 0.1, γ} this failure in estimation is ob-
vious from Figure 8.2 in case when γ is relatively large compared to other
parameters. However for the absolute error to be significant the VIS must
be strong. Most interestingly both the Efficient Method of Moments and
Hermite polynomial expansion performs well in the VIS region. Figures 8.2-
8.5 even indicate that the estimation becomes better in this case.

To get an idea of how well the different methods perform in general we com-
pare them to the simple ML method. Since simple ML is only available in
cases when we have a closed form expression for the transition density, we
choose the specific CIR case of γ = 1/2 in which closed form are known.
Evaluation in this case indicate good accuracy of alternative model in which
the quantiles of the estimated values fell just outside the ones for the simple
ML. Still, the GMM leaves us with the largest uncertainty in the estimation.
That is, even in the simple cases it is an advantage to use more advanced
methods for the estimation.

No emphasises has been made on computer efficiency. Although there are
some ideas that must be highlighted when implementing the algorithms.
There is an obvious trade off between applying computer intensive methods
such as EMM and more direct methods of Hermite polynomials. EMM is a
much more general method in a sense that the algorithm is the same inde-
pendently of which type of process you analyze. This is in contrast to using
Hermite polynomial expansion of the transition kernel where the expansion
is directly related to the specific type of process. For every new type of
process to be analyzed a new expansion must be performed. As the results
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indicate, once the analytic expression is obtained, it outperformes the EMM
method in accuracy.

The primary reason why EMM estimation is slow is that accurate simula-
tions of VIS processes are computationally demanding in the case of VIS.
Since EMM uses simulated paths of the processes when doing the Monte
Carlo estimation of the moment conditions this prevents fast estimation. It
is possible to reduce the accuracy in the simulation schemes but at the cost
of less accurate estimation.

Finally, even though the convergence properties have been discussed, from
the obtained results, we cannot tell how fast the methods will converge.
The only thing that we know is how the estimator will be distributed once
the number of sampled data points goes to infinity. From an application
point of view the amount of data is limited and we don’t know how valid
the these limit assumptions are. From the estimation of the CIR process
Figure 8.1 it looks like the estimators are normally distributed. Hence in the
specific case considered the number of data points considered are enough to
eliminate possible deviations from normality.
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