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Chapter 1

Introduction

A diffusion process is the solution to a stochastic differential equation (SDE).
An SDE has the form

dXt = b(Xf, H)dt + ()’(Xt; H)de, X[] =T,

where W; is Brownian motion, b and o are the drift and o the diffusion, re-
spectively, while 6 is a parameter. Written in integral form, this SDE takes the
form

t t
X = / b(XS;H)ds—i—/ o(Xs; 0)dWs. (1.1)
Jo Jo

The particular diffusion process that will be studied in this paper is the
CKLS model, introduced by Chan, Karolyi, Longstaff and Sanders [1], where
0= (a,B,0,7),b(X;,0) = a+ BX; and o(X;;0) = 0 X/, so that

dX; = (a+ BXy)dt + o X dWy, Xo = x0 (1.2)

In practice one can only observe the process at discrete time points. Ide-
ally inference about 6 from these discrete observations should be based on the
likelihood function. However, the likelihood function for discrete observation is
a product of transition densities, which are not known, except in special cases.
Some approximation of the likelihood function must be made. Two approxima-
tions are presented in this paper. The first is to use that the unknown transition
density solves the ordinary differential equation (ODE) called the Fokker-Plank
equation. Then the problem is reduced to solve an ODE. The second is to
construct a martingale by compensating for the error introduced by using the
known likelihood function in the continuous case. In addition, the generalized
method of moment approach used in [1] is evaluated. To evaluate the methods
we simulate the SDE with two choices of # and apply the methods. The first
choice § — 0.2 -2 0.2 0.8, is the same as in the evaluation of the methods in [2],
for which we get similar results to those in [2|. In the second parameter vector,
6 = 10.2 -2 0.2 1.1], v is changed to 1.1. This small change makes inference
much harder. One reason for this the introduction of vis, volatility induced
stationarity, a phenomena explained in the next chapter.



Chapter 2

Volatility induced stationarity,
V1S

Usually when one describes the solution to an SDE, one splits the SDE into two
parts. The first integral (the drift) in (1.1) is viewed as the solution to an ODE,
and the second integral (the diffusion) in (1.1) is viewed as an white noise added
to the solution to the ODE. For some parameter values of the CKLS model
(1.2) this interpretation is not correct. The reason for that is vis, volatility
induced stationarity. For SDE:s with vis not only the drift ensures that the
process returns to a stationary level (has a solution), but also the diffusion. The
diffusion influences the level of the process in the following way: At large values
of the process the diffusion increases the volatility of the process. With a high
volatility the process will not stay at the current level for long. It either moves
back to the stationary level or to an even higher level, where the volatility gets
even higher and thus increases the chance that the process returns to a lower
level even more. Sooner or later the process returns. (In fact, because of vis,
this will rather happen soner than later.)
The parameter values for which the SDE (1.2) has vis are

{%<7<1,a>0,ﬁ:0} U{7:1,a>0,0§ﬁ<%02}U{’y>1,a>0}

U{y>1,a=0,5>0}.

In particular, for § = [0.2 -2 0.2 1.1], the SDE has vis, and for § = [0.2 -2 0.2
0.8] it does not.



Chapter 3

Simulation

Ideally one would use the transition probabilities to simulate weak solutions to
the SDE. But since these probabilities are not known in explicit form one has
to use numerical methods. In this paper a family of Euler schemes are used.
Let [0,T] be a fixed time interval, let 0 = ¢y < t; < ... < ty = T be
equidistant time points with spacing A, and let AW,, = W, 11 — W, be the
increment of the Brownian motion over the interval [t,,t,41]. For 0 < ©, <1
and 0 < O <1 a family of Euler schemes is defined by Yy = yo, while, at time

tn—|—1;

Yn+1 = Yn + (GbB(Yn+1) + (1 - ®b)B(Yn))A
+ (GUU(YTH—I) + (1 o GG)U(Yn))AWn

for n < N. Here b = b — ©,00" is a correction term to ensure convergence to
the It6 solution to the SDE.

For © = ©, = 0 one gets an explicit Euler scheme. For the CKLS model
the explicit scheme converges to the true solution if v < 1, for example according
to [7]. To improve stability for more general processes one can use an implicit
scheme (O, > 0,0, > 0). In this paper the full implicit Euler method is used
(0, = 1,0, = 1). Given Y, Y,11 is given by the solution of the non-linear
equation f(Y,41) = Y,, where

fy) =y — Op(a+ By — O,70°y* A — O,0y" AW,,.

This requires that f(Y,+1) = Y, has a unique solution for all possible values
of Y,,. Unfortunately, the uniqueness of the solution depends on the size of the
increment of the Brownian motion. For large positive values of AW,,, f is not
monotone for all possible Y;,. In these cases, changing the values of 8, and ©,
gives a unique solution. In this paper we follow the suggestion in [7] and take
an explicit step in those cases, which means to set ©, = 0, = 0. It is argued
in 7] that this gives a stable scheme also for larger values of +.



Chapter 4

Estimation methods

4.1 Generalized method of moments

The change of the value of the process between times ¢; and ¢;11 is given by
Lit1 Lit1
Xti+1 - Xf7 == / o+ 6det + / ()'X;Yde (41)
t; t;

Observing that ;.1 — t; = A, for small A, the drift in (4.1) is approximated
well by

tit1
/ o+ BXudt = A+ BXy,).
t

)

In a similar manner, when there is no vis, the diffusion is approximated well by

tiy1 tit1
/ O'X;/th = O'XZ / th
Jt; J 1

Let €,,, = X1, — Xi, — A(a— BX;;). With the above approximations, we have

i+1 i+1

tit1
_ v
Et,—+1 = O'Xt / th
t

and therefore:

E(€t71+1 ‘ff7) = 0,

E(E%H-I‘Fti) = A0-2)(3’7' (4'2)
We seek inference for 0: Let

€t

i+1
u(6) - RN
i €%i+1 B AU?XU’Y

(6,521_+1 — A(IQXZV)XM
For the true parameter , we have E(f, (6g)) = 0. We estimate E(f:,(6y)) by
| X
gn(0) = & > fu(6) (4.3)
i=1

The estimate of € is then given by the 6 which statisfies gn(6) = 0. This is the
method used in [1].



4.2 Martingale estimation function

We will consider the following kind of estimating function G, (), where the
dependence of the data is suppressed in the notation:

Gn(e) = Z g(Xtiq ’ Xti:/ 9) (4'4)
i=1

It is particularly easy to work with an estimating function that is a martin-
gale. Under the true value 6y, the expectation of each term in the martingale
function is zero, independent on the previous ones. The estimate is obtained by
equating the estimating function to zero and solving the equations with respect
to the parameters.

The ideal martingale estimating function is the score function, the derivative
of the likelihood function. Usually the score function is unknown. The idea is
to construct a martingale estimating function based on an approximation of the
score function. This approximation to the unknown discrete score function is
based on the known continuous likelihood function.

The following way to derive the martingale estimating function is used in [6].
If 0 does not depend on # and under some additional conditions, the continuous-
time log-likelihood function is

t tp2
BXe0) 1 [1B(X0)
1,(0) = ——dX, — - | ———=ds.
0= [ s ),
An approzximate discrete score function is obtained by using Riemann and Ito
sums and differentiating with respect to 6:

" 9pb(X(i—1)a,0)

Ol (0) =S 202 (XA — Xy
oln (0) Z (X 1a) (Xin — X(i-1)a)

A i b(X(i—1)a;0)0pb(X(i_1)a;0)
; o?(X(i—1)a) .

More inaccuracy of the approximation is contributed by the fact that usually
one is interested in processes where o does depend on the parameter #, so that

- 8€b(X(i71)Aa 9)

Dgln(0) = ; W(Xm — X(i-1)a)

(4.5)

A i b(X(i—1)a;0)09b(X(i_1)a;0)
- 0*(X(i-1)a:0) '

The above approximations have introduced bias, so that Eg(89l~n) is not
0. The non-zero expectation has to be compensated for. To that end, let
F(z;0) = E(XaA|Xo = z) and note that the conditional expectation of each
term in the sum yl,, is given by

pb(X(i-1)a,0)
P0G DA T p(X Az ) — X
(X 1a) (X(i—1)a30) — X(i—1)a)

Ab(X(H)A; 0)9pb(X(;-1)a;0)
o?(X(i-1a) '

E(9pl;(0) — Oli_1(0)|Fi_1) =




Summing these expectations and removing them from Ol gives the following
estimating function, which is a zero-mean martingale:

~ _ 8‘9()( (i—1)A> )
G,(0) = EW{XZA F(X(i,])A,Q),H}.

This estimating function is called a linear estimating function. It works well for
SDE:s with a diffusion that does not dependent on 6. For more complicated
diffusions, more advanced martingale estimating functions are needed, as the
g-function has to reveal information about the volatility. Quadratic estimating
functions can then be used. The g-function of a quadratic martingale estimating
function takes the form
g(Xti,I ) XfZ: 9)

= A[Xy, — F(Xi a0+ Bl(Xy, — F(X(i1)a30)? — ¢(X(i-1)a30)], (4.6)

where
¢(Xt,_,, Xt;30) = Var(Xy, | Xy, ).

To get an estimator with minimal variance it is shown in [3] that the coefficients
A and B in (4.6) shall be chosen in such a way that

Z{aab XfZ 1: )
ti— 1’9)

a()U(Xti71 N 0)

204(Xy,_,;0)A

[Xi, — F(A, Xy, 0)]
[(Xti - F(AvXtifl;ﬂ))Q - ¢(AaXtif1;0)]}' (4'7)

4.3 Approximate likelihood estimation

Since the transition density, ¢, is unknown we can not directly use maximum
likelihood estimation. Though ¢ is unknown it is still known that, under some
regularity conditions, ¢ solves the following equation:

82

%qﬁ(t,x,y) = _%(“(tvxvy)) + %W( 2(y)¢(t,x,y)): (48)

This equation is known as the Fokker-Planck, or the Kolmogorov, or the forward
equation. With ¢(t, z,y) denoting the density function of X; given Xy = z, the
initial condition for the PDE is ¢(0,z,y) = d(y — x), where ¢ is the Dirac 0-
function. This initial condition can be problematic since the §-function is not a
function in the usual sense, when trying to solve the PDE numerically. Practical
considerations are discussed in 6

Following the approach in [4], we rewrite (4.8) as

$u(t,y) = aly)¢ +b(y)dy + c(y)dyy. (4.9)

where

a(y) = (0)2 + 00y — [y,
by) = 200, - 1

c(y) = 20



To find an approximate solution, the Crank-Nicolson finite difference method is
used. Consider a time/space grid. The diffusion is time homogeneous, so we let
the grid values in the time direction go from 0 to ¢. Since the solution we seek is
a transition density, the values in the space direction should cover all probable
values of X in the interval [0, ].

Let k£ be the length of the interval between two grid points in time direction,
and h the length of the interval between two grid points in space direction.
We approximate ¢, at the grid point with number n in the time direction and
number m in the space direction, by ¢(nk, mh) = v}, where

n+l ., n
v, v

2 m = adg(h) + bé (h) + ¢y (h)
Here the §:s are difference operators given by

1 1
So(h) = o 4 —on

2 m 2 m?
+1 +1
6] (h) _ lvg'kF] - UZ’Z*] + 17)?714»] o U?nf]
2 2h 2 2h ’
52(}1) _ l/l)rnnill o 27}?/1+] + 7);lr;t]l lvgl-l—l - 2,0;7;1 + ,U;lrlfl

2 2h 2 2h

In order to find the density we need an initial condition and boundary con-
ditions in addition to the approximation of the ODE. The problematic initial
Dirac d-function is handled by means of introducing a normal density at time k

UT]TL = ¢N(y0 + mh, T + /J(,I;)ka O—(II")k)7

where ¢V denotes the normal density function. The boundary conditions are
received by putting the boundary of the grid in space direction sufficiently far
apart so that ¢ can be assumed to be zero on the boundaries.



Chapter 5

Inconsistency of the Generalized
method of moments and the
Martingale method

In |2] it is shown that the GMM method is not consistent. In fact the GMM-
estimates agym and Saum converge to (exp(AS) — 1)/A and a(exp(ABS) —
1)/(AB). The reason is that the conditional second moment E(XgH\]-"ti) is
not known, and therefore approximated by (4.2). In [2] a new approximation
of E(Xg+1|-7:ti) is presented. However, this approximation is too complicated
for practical use, and the estimates based on it are not clearly improved. (In
fact, only the estimates of v are accurate, and variances of the estimates are
poor.) Also the version of quadratic martingale estimating function used in this
paper is based on the inaccurate approximation (4.2). A version of a quadratic
martingale estimating function based on the new approximation is also presented

in |2]|. There is no clear improvement for the martingale method either.



Chapter 6

Practical considerations

6.1 Approximate likelihood method

6.1.1 Choice of the grid

The way to choose the position of the grid involves some challenges. Firstly
one has to decide how far away from the current z-value one shall put the
boundaries. The fluctuation of the process in a small time-interval depends
mainly on the diffusion, o. It is therefore natural to base the position of the
boundaries on o. The choice of the boundaries in [4] is the current z-value £
60. The advantage of having the boundaries far apart is that the approximation
of the zero density at the boundaries is more accurate. The disadvantage is that
much of the computer effort is used to approximate ¢ for extreme values, rather
than for values that are of any real interest. In this paper we follow the choice
of [4] and put the boundaries on z + 60.

The next consideration is what to do when the current z-value — 6o is
less than zero. This is a common situation for the parameters chosen in the
evaluation of the methods in this paper It is not reasonable to have non-zero
densities on negative values. Therefore we put the lower boundary to max(0, x —
60).

6.1.2 Experimental order determination

We need some experimental verification of the numerical method, since the true
transition density is not know. For this we use a method developed by Osterby
[8], that is also utilized in [4]. Let u be a function of one variable, and v a
discrete approximation based on steps of length h. We say that v is globally
first order accurate if

v(z) = u(z) — he(z) — K2d(z) — B3 f(x) — ...,

where ¢, d and f are smooth functions. If also ¢ = 0, then we say that the
approximation is (at least) globally second order accurate. Now consider the
numerical solutions with step sizes h, 2h and 4h:

vi(z) = u(z) — he(z) — h2d(z) — B3 f(x) — ...,

10



u(z) — 2he(z) — 4h*d(x) — 8h3 f(z) — ...,
u(z) — 4dhe(z) — 16h%d(x) — 64R3 f(x) — ... .

va ()

v3(z)

We combine these numerical solutions to get

vy — vy _c+ 6hd+ 28R%f + ...
vo — v c+ 3hd + Th2f

(6.1)

Assume that h is small. If the ratio in (6.1) is close to 2.0, then the conclusion
is that ¢ # 0, and thus the approximation is first order accurate. If ¢ = 0, then
the terms involving hd will dominate the terms involving A% f, and the ratio will
be approximately 4.0.

Now consider the situation in our case, where the function u depends on
two variables h and k. We perform the determination of the order separately
in each direction, keeping the other variable fixed. Let yo and yas denote the
lower and upper boundary of the grid in space direction. In the experimental
order determination in [4] yo and yas are set to 0.05 and 0.15. With this choice
of yo and yys, and the parameter values used in the evaluation of the method,
a pattern appears, much like the one in [4]. The time between observations A
%, and the current value of the process x is 0.1, which is the stationary level
of the process.

18

6 —1[0.2-20.20.8], yo = 0.05,yp = 0.15

y 0.080 | 0.085 | 0.090 | 0.095 | 0.100 | 0.105 | 0.110 | 0.115 | 0.120
h-ratio | 3.5 3.7 3.9 4.0 4.1 4.1 4.3 4.1 4.0

0 =1[0.2-20.20.8], yo = 0.05,yps = 0.15

y 0.080 | 0.085 | 0.090 | 0.095 | 0.100 | 0.105 | 0.110 | 0.115 | 0.120
k-ratio | 5.3 4.0 3.8 4.0 3.9 3.8 3.9 3.9 5.0

However, in practice it is not reasonable to let the grid points in space
direction go from 0.05 to 0.15. The method is based on the fact that we know
the density on the boundaries, namely the grid is set so wide that the density
can be assumed to be zero on the boundaries. Therefore, in the evaluation of
the method, we take yy = max(0,z — 60) and yps = x + 60. Now the picture
change:

9 —1[0.2-20.20.8], yo = max(0,0.1 — 60) = 0,yp = 0.1 + 60 = 0.2902

y 0.080 | 0.085 | 0.090 | 0.095 | 0.100 | 0.105 | 0.110 | 0.115 | 0.120
h-ratio | 5.2 3.7 3.6 3.9 3.7 3.2 3.8 3.7 3.1

6 =[0.2-20.20.8], yo = max(0,0.1 — 65) = 0,yp; = 0.1 + 65 = 0.2902

y 0.081 | 0.084 | 0.090 | 0.096 | 0.099 | 0.105 | 0.110 | 0.116 | 0.119
k-ratio | 0.9 1.3 2.4 4.0 4.9 74 | -19.1 | -27 | -3.5

11



For the second parameter vector, § = [0.2 -2 0.2 1.1], the k-ratios look nice.
But the h-ratios are really bad:

9 —[0.2-20.21.1], yo = 0.05,yas = 0.15

y 0.080 0.085 [ 0.090 [ 0.095 [ 0.100
h-ratio | —2.2%10% | 3.3%10* | 0.7 0.2 0.5

0 =[0.2-20.21.1], yo = 0.05,yps = 0.15
y 0.105 | 0.110 | 0.115 | 0.120
hratio | 1.6 | 3.9 | 47 | 48

6.1.3 Optimization issues

The Matlab optimization routine for constrained nonlinear multivariable func-
tions, fmincon was utilized for the approximate maximum likelihood method.
The optimization procedure involved quite a few challenges. The problems orig-
inate from the fact that an approximation was used, which can be quite poor
for some parameter values (see Section 6.1.2).

For processes with v = 1.1, some simplifications were done to be able to run
the optimization. When an approximation of a transition density was less then
zero, resulting in an imaginary score function, that density was set to a small
number, in order to continue the optimization.

One other challenge in the optimization was whether or not the best choice
was a dynamic grid. The width of the grid is dependent on the unknown param-
eter . With a dynamic grid, the witdh of the grid is changed more dramatically
when the optimization procedure run through different 8. When the grid width
becomes larger the approximation gets worse. A potential problem with a dy-
namic grid is that the optimization routine might find a 6 that overestimate the
likelihood due to a bad approximation from a wide grid. To avoid this problem
the position of the grid was based on the true parameter ;. With this choice,
the width of the grid is dependent only of the value of the process.

The effect of the fixed grid on the likelihood function of the estimates were
controlled. It showed that the approximate likelihood function was changed
very little when the grid was based on the estimated 6, instead of on y. Also,
the effect of setting the density to a small number when the approximate den-
sity turned out to be negative was studied. This simplification did not seem
influential.

6.2 Generalized method of moments and Martingale
method
6.2.1 Optimization issues

The resulting vector in R* from the functions (4.7) and (4.3) are squared and
summed, resulting in a nonlinear least-squares problem. This was solved by
the Matlab routine Isqnonlin. The objective function turned out to have many

12



different local minima for the Martingale method. In order to find the global
minimum, many different start vectors were used.

13



Chapter 7

Evaluation

We simulated 12 processes in the time interval 0 to 25 for each parameter vector,
and sampled 300 process values at distance % The process was simulated with
the time step 1]—210*3 between the sampled values.

For the optimization it is convenient to reparameterize the diffusion: Let
¢ = (n,k,0,7),n = —a/f and k = —f. Then the SDE (1.2) takes the form

dXt = —H(Xt - n)dt + O'X;/th

Here 7 is the long term level of the process, and is easy to estimate. In the tables
the estimates for @ is presented. The numbers in parenthesis are the standard

deviations of the estimates.

®o = [0.120.208] (A = [0.2-20.20.8|)

Method 7 K o y
Generalized method of moments 0.0984 1.9893 0.1930 0.7504
(0.0039) | (0.3558) | (0.1111) | (0.2782)
Martingale estimating function 0.0985 1.9351 0.1991 0.7535
(0.0039) | (0.3018) | (0.1396) | (0.2824)
Approximate maximum likelihood | 0.0986 2.1017 0.2754 0.8211
grid size: 100x8 (0.0039) | (0.3742) | (0.2212) | (0.3443)

Dy —[0.12021.1] (6o —[0.2-20.2 1.1])

Method 7 K o y
Generalized method of moments 0.0991 1.9760 0.2875 1.0477
(0.0020) | (0.3429) | (0.2855) | (0.5406)
Martingale estimating function 0.0991 1.9330 0.3508 1.0514
(0.0020) | (0.3050) | (0.5056) | (0.5714)
Approximate maximum likelihood | 0.0992 2.1068 0.5643 1.1260
grid size: 100x8 (0.0020) | (0.3823) | (0.8979) | (0.6762)

14




Chapter 8

Conclusions

We have evaluated some methods for inference of parameters for SDE:s. The
methods seem to work quite well for some parameter values. Our estimates agree
with other papers evaluating the methods for more restricted set of parameter
values. However, the methods are not found to be reliable for general param-
eter values. Especially, for the martingale method and generalized method of
moment, it is the vis effect that causes this problem. For the approximate likeli-
hood method, it is instead poorer accuracy of the numerical solution that is the
problem. The mean of the estimates are reasonably accurate, but the variation
is for general parameter values very large.

15
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