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Chapter 1IntrodutionA di�usion proess is the solution to a stohasti di�erential equation (SDE).An SDE has the formdXt = b(Xt; �)dt+ �(Xt; �)dWt; X0 = x0;where Wt is Brownian motion, b and � are the drift and � the di�usion, re-spetively, while � is a parameter. Written in integral form, this SDE takes theform Xt = Z t0 b(Xs; �)ds+ Z t0 �(Xs; �)dWs: (1.1)The partiular di�usion proess that will be studied in this paper is theCKLS model, introdued by Chan, Karolyi, Longsta� and Sanders [1℄, where� = (�; �; �; ); b(Xt ; �) = �+ �Xt and �(Xt; �) = �Xt , so thatdXt = (�+ �Xt)dt+ �Xt dWt;X0 = x0 (1.2)In pratie one an only observe the proess at disrete time points. Ide-ally inferene about � from these disrete observations should be based on thelikelihood funtion. However, the likelihood funtion for disrete observation isa produt of transition densities, whih are not known, exept in speial ases.Some approximation of the likelihood funtion must be made. Two approxima-tions are presented in this paper. The �rst is to use that the unknown transitiondensity solves the ordinary di�erential equation (ODE) alled the Fokker-Plankequation. Then the problem is redued to solve an ODE. The seond is toonstrut a martingale by ompensating for the error introdued by using theknown likelihood funtion in the ontinuous ase. In addition, the generalizedmethod of moment approah used in [1℄ is evaluated. To evaluate the methodswe simulate the SDE with two hoies of � and apply the methods. The �rsthoie � = [0.2 -2 0.2 0.8℄, is the same as in the evaluation of the methods in [2℄,for whih we get similar results to those in [2℄. In the seond parameter vetor,� = [0.2 -2 0.2 1.1℄,  is hanged to 1.1. This small hange makes inferenemuh harder. One reason for this the introdution of vis, volatility induedstationarity, a phenomena explained in the next hapter.2



Chapter 2Volatility indued stationarity,visUsually when one desribes the solution to an SDE, one splits the SDE into twoparts. The �rst integral (the drift) in (1.1) is viewed as the solution to an ODE,and the seond integral (the di�usion) in (1.1) is viewed as an white noise addedto the solution to the ODE. For some parameter values of the CKLS model(1.2) this interpretation is not orret. The reason for that is vis, volatilityindued stationarity. For SDE:s with vis not only the drift ensures that theproess returns to a stationary level (has a solution), but also the di�usion. Thedi�usion in�uenes the level of the proess in the following way: At large valuesof the proess the di�usion inreases the volatility of the proess. With a highvolatility the proess will not stay at the urrent level for long. It either movesbak to the stationary level or to an even higher level, where the volatility getseven higher and thus inreases the hane that the proess returns to a lowerlevel even more. Sooner or later the proess returns. (In fat, beause of vis,this will rather happen soner than later.)The parameter values for whih the SDE (1.2) has vis aref12<<1; �>0; �=0g [ f=1; �>0; 0��< 12�2g [ f>1; �>0g[f>1; �=0; �>0g:In partiular, for � = [0.2 -2 0.2 1.1℄, the SDE has vis, and for � = [0.2 -2 0.20.8℄ it does not.
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Chapter 3SimulationIdeally one would use the transition probabilities to simulate weak solutions tothe SDE. But sine these probabilities are not known in expliit form one hasto use numerial methods. In this paper a family of Euler shemes are used.Let [0; T ℄ be a �xed time interval, let 0 = t0 < t1 < ::: < tN = T beequidistant time points with spaing �, and let �Wn = Wn+1 �Wn be theinrement of the Brownian motion over the interval [tn; tn+1℄. For 0 � �� � 1and 0 � �b � 1 a family of Euler shemes is de�ned by Y0 = y0, while, at timetn+1, Yn+1 = Yn + (�b�b(Yn+1) + (1��b)�b(Yn))�+ (���(Yn+1) + (1���)�(Yn))�Wnfor n < N . Here �b = b � ����0 is a orretion term to ensure onvergene tothe It� solution to the SDE.For �b = �� = 0 one gets an expliit Euler sheme. For the CKLS modelthe expliit sheme onverges to the true solution if  < 1, for example aordingto [7℄. To improve stability for more general proesses one an use an impliitsheme (�b > 0;�� > 0). In this paper the full impliit Euler method is used(�b = 1;�� = 1). Given Yn, Yn+1 is given by the solution of the non-linearequation f(Yn+1) = Yn, wheref(y) = y ��b(�+ �y ����2y2�1)�����y�Wn:This requires that f(Yn+1) = Yn has a unique solution for all possible valuesof Yn. Unfortunately, the uniqueness of the solution depends on the size of theinrement of the Brownian motion. For large positive values of �Wn, f is notmonotone for all possible Yn. In these ases, hanging the values of �b and ��gives a unique solution. In this paper we follow the suggestion in [7℄ and takean expliit step in those ases, whih means to set �b = �� = 0. It is arguedin [7℄ that this gives a stable sheme also for larger values of .
4



Chapter 4Estimation methods4.1 Generalized method of momentsThe hange of the value of the proess between times ti and ti+1 is given byXti+1 �Xti = Z ti+1ti �+ �Xtdt+ Z ti+1ti �Xt dWt: (4.1)Observing that ti+1 � ti = �, for small �, the drift in (4.1) is approximatedwell by Z ti+1ti �+ �Xtdt = �(�+ �Xti):In a similar manner, when there is no vis, the di�usion is approximated well byZ ti+1ti �Xt dWt = �Xti Z ti+1ti dWt:Let �ti+1 = Xti+1�Xti ��(���Xti). With the above approximations, we have�ti+1 = �Xt Z ti+1ti dWtand therefore: E(�ti+1 jFti) = 0;E(�2ti+1 jFti) = ��2X2t : (4.2)We seek inferene for �: Letfti(�) = 0BBB� �ti+1�ti+1Xti�2ti+1 ���2X2ti(�2ti+1 ���2X2ti )Xti 1CCCAFor the true parameter �0, we have E(fti(�0)) = 0. We estimate E(fti(�0)) bygN (�) = 1N NXi=1 fti(�) (4.3)The estimate of � is then given by the � whih statis�es gN (�) = 0. This is themethod used in [1℄. 5



4.2 Martingale estimation funtionWe will onsider the following kind of estimating funtion Gn(�), where thedependene of the data is suppressed in the notation:Gn(�) = nXi=1 g(Xti�1 ;Xti ; �) (4.4)It is partiularly easy to work with an estimating funtion that is a martin-gale. Under the true value �0, the expetation of eah term in the martingalefuntion is zero, independent on the previous ones. The estimate is obtained byequating the estimating funtion to zero and solving the equations with respetto the parameters.The ideal martingale estimating funtion is the sore funtion, the derivativeof the likelihood funtion. Usually the sore funtion is unknown. The idea isto onstrut a martingale estimating funtion based on an approximation of thesore funtion. This approximation to the unknown disrete sore funtion isbased on the known ontinuous likelihood funtion.The following way to derive the martingale estimating funtion is used in [6℄.If � does not depend on � and under some additional onditions, the ontinuous-time log-likelihood funtion islt(�) = Z t0 b(Xs; �)�2(Xs) dXs � 12 Z t0 b2(Xs; �)�2(Xs) ds:An approximate disrete sore funtion is obtained by using Riemann and It�sums and di�erentiating with respet to �:��~ln(�) = nX1 ��b(X(i�1)�; �)�2(X(i�1)�) (Xi� �X(i�1)�)� � nX1 b(X(i�1)�; �)��b(X(i�1)�; �)�2(X(i�1)�) :More inauray of the approximation is ontributed by the fat that usuallyone is interested in proesses where � does depend on the parameter �, so that��~ln(�) = nX1 ��b(X(i�1)�; �)�2(X(i�1)�; �) (Xi� �X(i�1)�)� � nX1 b(X(i�1)�; �)��b(X(i�1)�; �)�2(X(i�1)�; �) : (4.5)The above approximations have introdued bias, so that E�(��~ln) is not0. The non-zero expetation has to be ompensated for. To that end, letF (x; �) = E(X�jX0 = x) and note that the onditional expetation of eahterm in the sum ��~ln is given byE(��~li(�)� ��~li�1(�)jFi�1) = ��b(X(i�1)�; �)�2(X(i�1)�) (F (X(i�1)�; �)�X(i�1)�)� �b(X(i�1)�; �)��b(X(i�1)�; �)�2(X(i�1)�) :6



Summing these expetations and removing them from ��~ln gives the followingestimating funtion, whih is a zero-mean martingale:~Gn(�) = nXi=1 ��b(X(i�1)�; �)�2(X(i�1)�; �) fXi� � F (X(i�1)�; �); �g:This estimating funtion is alled a linear estimating funtion. It works well forSDE:s with a di�usion that does not dependent on �. For more ompliateddi�usions, more advaned martingale estimating funtions are needed, as theg-funtion has to reveal information about the volatility. Quadrati estimatingfuntions an then be used. The g-funtion of a quadrati martingale estimatingfuntion takes the formg(Xti�1 ;Xti ; �)= A[Xti � F (X(i�1)�; �)℄ +B[(Xti � F (X(i�1)�; �)2 � �(X(i�1)�; �)℄; (4.6)where �(Xti�1 ;Xti ; �) = Var(Xti jXti�1):To get an estimator with minimal variane it is shown in [3℄ that the oe�ientsA and B in (4.6) shall be hosen in suh a way thatGn(�) = nXi=1 f��b(Xti�1 ; �)�2(Xti�1 ; �) [Xti � F (�;Xti�1 ;�)℄+ ��v(Xti�1 ; �)2�4(Xti�1 ; �)�[(Xti � F (�;Xti�1 ;�))2 � �(�;Xti�1 ;�)℄g: (4.7)4.3 Approximate likelihood estimationSine the transition density, �, is unknown we an not diretly use maximumlikelihood estimation. Though � is unknown it is still known that, under someregularity onditions, � solves the following equation:��t�(t; x; y) = � ��y (�(t; x; y)) + 12 �2�y2 (�2(y)�(t; x; y)): (4.8)This equation is known as the Fokker-Plank, or the Kolmogorov, or the forwardequation. With �(t; x; y) denoting the density funtion of Xt given X0 = x, theinitial ondition for the PDE is �(0; x; y) = Æ(y � x), where Æ is the Dira Æ-funtion. This initial ondition an be problemati sine the Æ-funtion is not afuntion in the usual sense, when trying to solve the PDE numerially. Pratialonsiderations are disussed in 6Following the approah in [4℄, we rewrite (4.8) as�t(t; y) = a(y)�+ b(y)�y + (y)�yy ; (4.9)where a(y) = (�)2 + ��yy � �y;b(y) = 2��y � �;(y) = 12�2:7



To �nd an approximate solution, the Crank-Niolson �nite di�erene method isused. Consider a time/spae grid. The di�usion is time homogeneous, so we letthe grid values in the time diretion go from 0 to t. Sine the solution we seek isa transition density, the values in the spae diretion should over all probablevalues of X in the interval [0; t℄.Let k be the length of the interval between two grid points in time diretion,and h the length of the interval between two grid points in spae diretion.We approximate �, at the grid point with number n in the time diretion andnumber m in the spae diretion, by �(nk;mh) = vnm, wherevn+1m � vnmk = aÆ0(h) + bÆ1(h) + Æ2(h):Here the Æ:s are di�erene operators given byÆ0(h) = 12vn+1m + 12vnm;Æ1(h) = 12 vn+1m+1 � vn+1m�12h + 12 vnm+1 � vnm�12h ;Æ2(h) = 12 vn+1m+1 � 2vn+1m + vn+1m�12h + 12 vnm+1 � 2vnm + vnm�12h :In order to �nd the density we need an initial ondition and boundary on-ditions in addition to the approximation of the ODE. The problemati initialDira Æ-funtion is handled by means of introduing a normal density at time kv1m = �N (y0 +mh;x+ �(x)k; �(x)k);where �N denotes the normal density funtion. The boundary onditions arereeived by putting the boundary of the grid in spae diretion su�iently farapart so that � an be assumed to be zero on the boundaries.
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Chapter 5Inonsisteny of the Generalizedmethod of moments and theMartingale methodIn [2℄ it is shown that the GMM method is not onsistent. In fat the GMM-estimates �GMM and �GMM onverge to (exp(��) � 1)=� and �(exp(��) �1)=(��). The reason is that the onditional seond moment E(X2ti+1 jFti) isnot known, and therefore approximated by (4.2). In [2℄ a new approximationof E(X2ti+1 jFti) is presented. However, this approximation is too ompliatedfor pratial use, and the estimates based on it are not learly improved. (Infat, only the estimates of  are aurate, and varianes of the estimates arepoor.) Also the version of quadrati martingale estimating funtion used in thispaper is based on the inaurate approximation (4.2). A version of a quadratimartingale estimating funtion based on the new approximation is also presentedin [2℄. There is no lear improvement for the martingale method either.
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Chapter 6Pratial onsiderations6.1 Approximate likelihood method6.1.1 Choie of the gridThe way to hoose the position of the grid involves some hallenges. Firstlyone has to deide how far away from the urrent x-value one shall put theboundaries. The �utuation of the proess in a small time-interval dependsmainly on the di�usion, �. It is therefore natural to base the position of theboundaries on �. The hoie of the boundaries in [4℄ is the urrent x-value �6�. The advantage of having the boundaries far apart is that the approximationof the zero density at the boundaries is more aurate. The disadvantage is thatmuh of the omputer e�ort is used to approximate � for extreme values, ratherthan for values that are of any real interest. In this paper we follow the hoieof [4℄ and put the boundaries on x� 6�.The next onsideration is what to do when the urrent x-value � 6� isless than zero. This is a ommon situation for the parameters hosen in theevaluation of the methods in this paper It is not reasonable to have non-zerodensities on negative values. Therefore we put the lower boundary to max(0; x�6�).6.1.2 Experimental order determinationWe need some experimental veri�ation of the numerial method, sine the truetransition density is not know. For this we use a method developed by Østerby[8℄, that is also utilized in [4℄. Let u be a funtion of one variable, and v adisrete approximation based on steps of length h. We say that v is globally�rst order aurate ifv(x) = u(x)� h(x)� h2d(x)� h3f(x)� ::: ;where , d and f are smooth funtions. If also  = 0, then we say that theapproximation is (at least) globally seond order aurate. Now onsider thenumerial solutions with step sizes h, 2h and 4h:v1(x) = u(x)� h(x) � h2d(x) � h3f(x)� ::: ;10



v2(x) = u(x)� 2h(x) � 4h2d(x) � 8h3f(x)� ::: ;v3(x) = u(x)� 4h(x) � 16h2d(x)� 64h3f(x)� ::: :We ombine these numerial solutions to getv3 � v2v2 � v1 = 2+ 6hd+ 28h2f + :::+ 3hd+ 7h2f : (6.1)Assume that h is small. If the ratio in (6.1) is lose to 2.0, then the onlusionis that  6= 0, and thus the approximation is �rst order aurate. If  = 0, thenthe terms involving hd will dominate the terms involving h2f , and the ratio willbe approximately 4.0.Now onsider the situation in our ase, where the funtion u depends ontwo variables h and k. We perform the determination of the order separatelyin eah diretion, keeping the other variable �xed. Let y0 and yM denote thelower and upper boundary of the grid in spae diretion. In the experimentalorder determination in [4℄ y0 and yM are set to 0.05 and 0.15. With this hoieof y0 and yM , and the parameter values used in the evaluation of the method,a pattern appears, muh like the one in [4℄. The time between observations �is 112 , and the urrent value of the proess x is 0:1, whih is the stationary levelof the proess.� = [0.2 -2 0.2 0.8℄, y0 = 0:05; yM = 0:15y 0.080 0.085 0.090 0.095 0.100 0.105 0.110 0.115 0.120h-ratio 3.5 3.7 3.9 4.0 4.1 4.1 4.3 4.1 4.0� = [0.2 -2 0.2 0.8℄, y0 = 0:05; yM = 0:15y 0.080 0.085 0.090 0.095 0.100 0.105 0.110 0.115 0.120k-ratio 5.3 4.0 3.8 4.0 3.9 3.8 3.9 3.9 5.0However, in pratie it is not reasonable to let the grid points in spaediretion go from 0.05 to 0.15. The method is based on the fat that we knowthe density on the boundaries, namely the grid is set so wide that the densityan be assumed to be zero on the boundaries. Therefore, in the evaluation ofthe method, we take y0 = max(0; x � 6�) and yM = x + 6�. Now the piturehange:� = [0.2 -2 0.2 0.8℄, y0 = max(0; 0:1 � 6�) = 0; yM = 0:1 + 6� = 0:2902y 0.080 0.085 0.090 0.095 0.100 0.105 0.110 0.115 0.120h-ratio 5.2 3.7 3.6 3.9 3.7 3.2 3.8 3.7 3.1� = [0.2 -2 0.2 0.8℄, y0 = max(0; 0:1 � 6�) = 0; yM = 0:1 + 6� = 0:2902y 0.081 0.084 0.090 0.096 0.099 0.105 0.110 0.116 0.119k-ratio 0.9 1.3 2.4 4.0 4.9 7.4 -19.1 -2.7 -3.511



For the seond parameter vetor, � = [0.2 -2 0.2 1.1℄, the k-ratios look nie.But the h-ratios are really bad:� = [0.2 -2 0.2 1.1℄, y0 = 0:05; yM = 0:15y 0.080 0.085 0.090 0.095 0.100h-ratio �2:2 � 108 3:3 � 104 0.7 0.2 0.5� = [0.2 -2 0.2 1.1℄, y0 = 0:05; yM = 0:15y 0.105 0.110 0.115 0.120h-ratio 1.6 3.9 4.7 4.86.1.3 Optimization issuesThe Matlab optimization routine for onstrained nonlinear multivariable fun-tions, fminon was utilized for the approximate maximum likelihood method.The optimization proedure involved quite a few hallenges. The problems orig-inate from the fat that an approximation was used, whih an be quite poorfor some parameter values (see Setion 6.1.2).For proesses with  = 1.1, some simpli�ations were done to be able to runthe optimization. When an approximation of a transition density was less thenzero, resulting in an imaginary sore funtion, that density was set to a smallnumber, in order to ontinue the optimization.One other hallenge in the optimization was whether or not the best hoiewas a dynami grid. The width of the grid is dependent on the unknown param-eter �. With a dynami grid, the witdh of the grid is hanged more dramatiallywhen the optimization proedure run through di�erent �. When the grid widthbeomes larger the approximation gets worse. A potential problem with a dy-nami grid is that the optimization routine might �nd a � that overestimate thelikelihood due to a bad approximation from a wide grid. To avoid this problemthe position of the grid was based on the true parameter �0. With this hoie,the width of the grid is dependent only of the value of the proess.The e�et of the �xed grid on the likelihood funtion of the estimates wereontrolled. It showed that the approximate likelihood funtion was hangedvery little when the grid was based on the estimated �, instead of on �0. Also,the e�et of setting the density to a small number when the approximate den-sity turned out to be negative was studied. This simpli�ation did not seemin�uential.6.2 Generalized method of moments and Martingalemethod6.2.1 Optimization issuesThe resulting vetor in R4 from the funtions (4.7) and (4.3) are squared andsummed, resulting in a nonlinear least-squares problem. This was solved bythe Matlab routine lsqnonlin. The objetive funtion turned out to have many12



di�erent loal minima for the Martingale method. In order to �nd the globalminimum, many di�erent start vetors were used.
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Chapter 7EvaluationWe simulated 12 proesses in the time interval 0 to 25 for eah parameter vetor,and sampled 300 proess values at distane 112 . The proess was simulated withthe time step 11210�3 between the sampled values.For the optimization it is onvenient to reparameterize the di�usion: Let� = (�; �; �; ); � = ��=� and � = ��. Then the SDE (1.2) takes the formdXt = ��(Xt � �)dt + �Xt dWt:Here � is the long term level of the proess, and is easy to estimate. In the tablesthe estimates for � is presented. The numbers in parenthesis are the standarddeviations of the estimates.�0 = [0.1 2 0.2 0.8℄ (�0 = [0.2 -2 0.2 0.8℄)Method � � � Generalized method of moments 0.0984 1.9893 0.1930 0.7504(0.0039) (0.3558) (0.1111) (0.2782)Martingale estimating funtion 0.0985 1.9351 0.1991 0.7535(0.0039) (0.3018) (0.1396) (0.2824)Approximate maximum likelihood 0.0986 2.1017 0.2754 0.8211grid size: 100�8 (0.0039) (0.3742) (0.2212) (0.3443)�0 = [0.1 2 0.2 1.1℄ (�0 = [0.2 -2 0.2 1.1℄)Method � � � Generalized method of moments 0.0991 1.9760 0.2875 1.0477(0.0020) (0.3429) (0.2855) (0.5406)Martingale estimating funtion 0.0991 1.9330 0.3508 1.0514(0.0020) (0.3050) (0.5056) (0.5714)Approximate maximum likelihood 0.0992 2.1068 0.5643 1.1260grid size: 100�8 (0.0020) (0.3823) (0.8979) (0.6762)14



Chapter 8ConlusionsWe have evaluated some methods for inferene of parameters for SDE:s. Themethods seem to work quite well for some parameter values. Our estimates agreewith other papers evaluating the methods for more restrited set of parametervalues. However, the methods are not found to be reliable for general param-eter values. Espeially, for the martingale method and generalized method ofmoment, it is the vis e�et that auses this problem. For the approximate likeli-hood method, it is instead poorer auray of the numerial solution that is theproblem. The mean of the estimates are reasonably aurate, but the variationis for general parameter values very large.
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