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Chapter 1Introdu
tionA di�usion pro
ess is the solution to a sto
hasti
 di�erential equation (SDE).An SDE has the formdXt = b(Xt; �)dt+ �(Xt; �)dWt; X0 = x0;where Wt is Brownian motion, b and � are the drift and � the di�usion, re-spe
tively, while � is a parameter. Written in integral form, this SDE takes theform Xt = Z t0 b(Xs; �)ds+ Z t0 �(Xs; �)dWs: (1.1)The parti
ular di�usion pro
ess that will be studied in this paper is theCKLS model, introdu
ed by Chan, Karolyi, Longsta� and Sanders [1℄, where� = (�; �; �; 
); b(Xt ; �) = �+ �Xt and �(Xt; �) = �X
t , so thatdXt = (�+ �Xt)dt+ �X
t dWt;X0 = x0 (1.2)In pra
ti
e one 
an only observe the pro
ess at dis
rete time points. Ide-ally inferen
e about � from these dis
rete observations should be based on thelikelihood fun
tion. However, the likelihood fun
tion for dis
rete observation isa produ
t of transition densities, whi
h are not known, ex
ept in spe
ial 
ases.Some approximation of the likelihood fun
tion must be made. Two approxima-tions are presented in this paper. The �rst is to use that the unknown transitiondensity solves the ordinary di�erential equation (ODE) 
alled the Fokker-Plankequation. Then the problem is redu
ed to solve an ODE. The se
ond is to
onstru
t a martingale by 
ompensating for the error introdu
ed by using theknown likelihood fun
tion in the 
ontinuous 
ase. In addition, the generalizedmethod of moment approa
h used in [1℄ is evaluated. To evaluate the methodswe simulate the SDE with two 
hoi
es of � and apply the methods. The �rst
hoi
e � = [0.2 -2 0.2 0.8℄, is the same as in the evaluation of the methods in [2℄,for whi
h we get similar results to those in [2℄. In the se
ond parameter ve
tor,� = [0.2 -2 0.2 1.1℄, 
 is 
hanged to 1.1. This small 
hange makes inferen
emu
h harder. One reason for this the introdu
tion of vis, volatility indu
edstationarity, a phenomena explained in the next 
hapter.2



Chapter 2Volatility indu
ed stationarity,visUsually when one des
ribes the solution to an SDE, one splits the SDE into twoparts. The �rst integral (the drift) in (1.1) is viewed as the solution to an ODE,and the se
ond integral (the di�usion) in (1.1) is viewed as an white noise addedto the solution to the ODE. For some parameter values of the CKLS model(1.2) this interpretation is not 
orre
t. The reason for that is vis, volatilityindu
ed stationarity. For SDE:s with vis not only the drift ensures that thepro
ess returns to a stationary level (has a solution), but also the di�usion. Thedi�usion in�uen
es the level of the pro
ess in the following way: At large valuesof the pro
ess the di�usion in
reases the volatility of the pro
ess. With a highvolatility the pro
ess will not stay at the 
urrent level for long. It either movesba
k to the stationary level or to an even higher level, where the volatility getseven higher and thus in
reases the 
han
e that the pro
ess returns to a lowerlevel even more. Sooner or later the pro
ess returns. (In fa
t, be
ause of vis,this will rather happen soner than later.)The parameter values for whi
h the SDE (1.2) has vis aref12<
<1; �>0; �=0g [ f
=1; �>0; 0��< 12�2g [ f
>1; �>0g[f
>1; �=0; �>0g:In parti
ular, for � = [0.2 -2 0.2 1.1℄, the SDE has vis, and for � = [0.2 -2 0.20.8℄ it does not.
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Chapter 3SimulationIdeally one would use the transition probabilities to simulate weak solutions tothe SDE. But sin
e these probabilities are not known in expli
it form one hasto use numeri
al methods. In this paper a family of Euler s
hemes are used.Let [0; T ℄ be a �xed time interval, let 0 = t0 < t1 < ::: < tN = T beequidistant time points with spa
ing �, and let �Wn = Wn+1 �Wn be thein
rement of the Brownian motion over the interval [tn; tn+1℄. For 0 � �� � 1and 0 � �b � 1 a family of Euler s
hemes is de�ned by Y0 = y0, while, at timetn+1, Yn+1 = Yn + (�b�b(Yn+1) + (1��b)�b(Yn))�+ (���(Yn+1) + (1���)�(Yn))�Wnfor n < N . Here �b = b � ����0 is a 
orre
tion term to ensure 
onvergen
e tothe It� solution to the SDE.For �b = �� = 0 one gets an expli
it Euler s
heme. For the CKLS modelthe expli
it s
heme 
onverges to the true solution if 
 < 1, for example a

ordingto [7℄. To improve stability for more general pro
esses one 
an use an impli
its
heme (�b > 0;�� > 0). In this paper the full impli
it Euler method is used(�b = 1;�� = 1). Given Yn, Yn+1 is given by the solution of the non-linearequation f(Yn+1) = Yn, wheref(y) = y ��b(�+ �y ���
�2y2
�1)�����y
�Wn:This requires that f(Yn+1) = Yn has a unique solution for all possible valuesof Yn. Unfortunately, the uniqueness of the solution depends on the size of thein
rement of the Brownian motion. For large positive values of �Wn, f is notmonotone for all possible Yn. In these 
ases, 
hanging the values of �b and ��gives a unique solution. In this paper we follow the suggestion in [7℄ and takean expli
it step in those 
ases, whi
h means to set �b = �� = 0. It is arguedin [7℄ that this gives a stable s
heme also for larger values of 
.
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Chapter 4Estimation methods4.1 Generalized method of momentsThe 
hange of the value of the pro
ess between times ti and ti+1 is given byXti+1 �Xti = Z ti+1ti �+ �Xtdt+ Z ti+1ti �X
t dWt: (4.1)Observing that ti+1 � ti = �, for small �, the drift in (4.1) is approximatedwell by Z ti+1ti �+ �Xtdt = �(�+ �Xti):In a similar manner, when there is no vis, the di�usion is approximated well byZ ti+1ti �X
t dWt = �X
ti Z ti+1ti dWt:Let �ti+1 = Xti+1�Xti ��(���Xti). With the above approximations, we have�ti+1 = �X
t Z ti+1ti dWtand therefore: E(�ti+1 jFti) = 0;E(�2ti+1 jFti) = ��2X2
t : (4.2)We seek inferen
e for �: Letfti(�) = 0BBB� �ti+1�ti+1Xti�2ti+1 ���2X2
ti(�2ti+1 ���2X2
ti )Xti 1CCCAFor the true parameter �0, we have E(fti(�0)) = 0. We estimate E(fti(�0)) bygN (�) = 1N NXi=1 fti(�) (4.3)The estimate of � is then given by the � whi
h statis�es gN (�) = 0. This is themethod used in [1℄. 5



4.2 Martingale estimation fun
tionWe will 
onsider the following kind of estimating fun
tion Gn(�), where thedependen
e of the data is suppressed in the notation:Gn(�) = nXi=1 g(Xti�1 ;Xti ; �) (4.4)It is parti
ularly easy to work with an estimating fun
tion that is a martin-gale. Under the true value �0, the expe
tation of ea
h term in the martingalefun
tion is zero, independent on the previous ones. The estimate is obtained byequating the estimating fun
tion to zero and solving the equations with respe
tto the parameters.The ideal martingale estimating fun
tion is the s
ore fun
tion, the derivativeof the likelihood fun
tion. Usually the s
ore fun
tion is unknown. The idea isto 
onstru
t a martingale estimating fun
tion based on an approximation of thes
ore fun
tion. This approximation to the unknown dis
rete s
ore fun
tion isbased on the known 
ontinuous likelihood fun
tion.The following way to derive the martingale estimating fun
tion is used in [6℄.If � does not depend on � and under some additional 
onditions, the 
ontinuous-time log-likelihood fun
tion islt(�) = Z t0 b(Xs; �)�2(Xs) dXs � 12 Z t0 b2(Xs; �)�2(Xs) ds:An approximate dis
rete s
ore fun
tion is obtained by using Riemann and It�sums and di�erentiating with respe
t to �:��~ln(�) = nX1 ��b(X(i�1)�; �)�2(X(i�1)�) (Xi� �X(i�1)�)� � nX1 b(X(i�1)�; �)��b(X(i�1)�; �)�2(X(i�1)�) :More ina

ura
y of the approximation is 
ontributed by the fa
t that usuallyone is interested in pro
esses where � does depend on the parameter �, so that��~ln(�) = nX1 ��b(X(i�1)�; �)�2(X(i�1)�; �) (Xi� �X(i�1)�)� � nX1 b(X(i�1)�; �)��b(X(i�1)�; �)�2(X(i�1)�; �) : (4.5)The above approximations have introdu
ed bias, so that E�(��~ln) is not0. The non-zero expe
tation has to be 
ompensated for. To that end, letF (x; �) = E(X�jX0 = x) and note that the 
onditional expe
tation of ea
hterm in the sum ��~ln is given byE(��~li(�)� ��~li�1(�)jFi�1) = ��b(X(i�1)�; �)�2(X(i�1)�) (F (X(i�1)�; �)�X(i�1)�)� �b(X(i�1)�; �)��b(X(i�1)�; �)�2(X(i�1)�) :6



Summing these expe
tations and removing them from ��~ln gives the followingestimating fun
tion, whi
h is a zero-mean martingale:~Gn(�) = nXi=1 ��b(X(i�1)�; �)�2(X(i�1)�; �) fXi� � F (X(i�1)�; �); �g:This estimating fun
tion is 
alled a linear estimating fun
tion. It works well forSDE:s with a di�usion that does not dependent on �. For more 
ompli
ateddi�usions, more advan
ed martingale estimating fun
tions are needed, as theg-fun
tion has to reveal information about the volatility. Quadrati
 estimatingfun
tions 
an then be used. The g-fun
tion of a quadrati
 martingale estimatingfun
tion takes the formg(Xti�1 ;Xti ; �)= A[Xti � F (X(i�1)�; �)℄ +B[(Xti � F (X(i�1)�; �)2 � �(X(i�1)�; �)℄; (4.6)where �(Xti�1 ;Xti ; �) = Var(Xti jXti�1):To get an estimator with minimal varian
e it is shown in [3℄ that the 
oe�
ientsA and B in (4.6) shall be 
hosen in su
h a way thatGn(�) = nXi=1 f��b(Xti�1 ; �)�2(Xti�1 ; �) [Xti � F (�;Xti�1 ;�)℄+ ��v(Xti�1 ; �)2�4(Xti�1 ; �)�[(Xti � F (�;Xti�1 ;�))2 � �(�;Xti�1 ;�)℄g: (4.7)4.3 Approximate likelihood estimationSin
e the transition density, �, is unknown we 
an not dire
tly use maximumlikelihood estimation. Though � is unknown it is still known that, under someregularity 
onditions, � solves the following equation:��t�(t; x; y) = � ��y (�(t; x; y)) + 12 �2�y2 (�2(y)�(t; x; y)): (4.8)This equation is known as the Fokker-Plan
k, or the Kolmogorov, or the forwardequation. With �(t; x; y) denoting the density fun
tion of Xt given X0 = x, theinitial 
ondition for the PDE is �(0; x; y) = Æ(y � x), where Æ is the Dira
 Æ-fun
tion. This initial 
ondition 
an be problemati
 sin
e the Æ-fun
tion is not afun
tion in the usual sense, when trying to solve the PDE numeri
ally. Pra
ti
al
onsiderations are dis
ussed in 6Following the approa
h in [4℄, we rewrite (4.8) as�t(t; y) = a(y)�+ b(y)�y + 
(y)�yy ; (4.9)where a(y) = (�)2 + ��yy � �y;b(y) = 2��y � �;
(y) = 12�2:7



To �nd an approximate solution, the Crank-Ni
olson �nite di�eren
e method isused. Consider a time/spa
e grid. The di�usion is time homogeneous, so we letthe grid values in the time dire
tion go from 0 to t. Sin
e the solution we seek isa transition density, the values in the spa
e dire
tion should 
over all probablevalues of X in the interval [0; t℄.Let k be the length of the interval between two grid points in time dire
tion,and h the length of the interval between two grid points in spa
e dire
tion.We approximate �, at the grid point with number n in the time dire
tion andnumber m in the spa
e dire
tion, by �(nk;mh) = vnm, wherevn+1m � vnmk = aÆ0(h) + bÆ1(h) + 
Æ2(h):Here the Æ:s are di�eren
e operators given byÆ0(h) = 12vn+1m + 12vnm;Æ1(h) = 12 vn+1m+1 � vn+1m�12h + 12 vnm+1 � vnm�12h ;Æ2(h) = 12 vn+1m+1 � 2vn+1m + vn+1m�12h + 12 vnm+1 � 2vnm + vnm�12h :In order to �nd the density we need an initial 
ondition and boundary 
on-ditions in addition to the approximation of the ODE. The problemati
 initialDira
 Æ-fun
tion is handled by means of introdu
ing a normal density at time kv1m = �N (y0 +mh;x+ �(x)k; �(x)k);where �N denotes the normal density fun
tion. The boundary 
onditions arere
eived by putting the boundary of the grid in spa
e dire
tion su�
iently farapart so that � 
an be assumed to be zero on the boundaries.
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Chapter 5In
onsisten
y of the Generalizedmethod of moments and theMartingale methodIn [2℄ it is shown that the GMM method is not 
onsistent. In fa
t the GMM-estimates �GMM and �GMM 
onverge to (exp(��) � 1)=� and �(exp(��) �1)=(��). The reason is that the 
onditional se
ond moment E(X2ti+1 jFti) isnot known, and therefore approximated by (4.2). In [2℄ a new approximationof E(X2ti+1 jFti) is presented. However, this approximation is too 
ompli
atedfor pra
ti
al use, and the estimates based on it are not 
learly improved. (Infa
t, only the estimates of 
 are a

urate, and varian
es of the estimates arepoor.) Also the version of quadrati
 martingale estimating fun
tion used in thispaper is based on the ina

urate approximation (4.2). A version of a quadrati
martingale estimating fun
tion based on the new approximation is also presentedin [2℄. There is no 
lear improvement for the martingale method either.
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Chapter 6Pra
ti
al 
onsiderations6.1 Approximate likelihood method6.1.1 Choi
e of the gridThe way to 
hoose the position of the grid involves some 
hallenges. Firstlyone has to de
ide how far away from the 
urrent x-value one shall put theboundaries. The �u
tuation of the pro
ess in a small time-interval dependsmainly on the di�usion, �. It is therefore natural to base the position of theboundaries on �. The 
hoi
e of the boundaries in [4℄ is the 
urrent x-value �6�. The advantage of having the boundaries far apart is that the approximationof the zero density at the boundaries is more a

urate. The disadvantage is thatmu
h of the 
omputer e�ort is used to approximate � for extreme values, ratherthan for values that are of any real interest. In this paper we follow the 
hoi
eof [4℄ and put the boundaries on x� 6�.The next 
onsideration is what to do when the 
urrent x-value � 6� isless than zero. This is a 
ommon situation for the parameters 
hosen in theevaluation of the methods in this paper It is not reasonable to have non-zerodensities on negative values. Therefore we put the lower boundary to max(0; x�6�).6.1.2 Experimental order determinationWe need some experimental veri�
ation of the numeri
al method, sin
e the truetransition density is not know. For this we use a method developed by Østerby[8℄, that is also utilized in [4℄. Let u be a fun
tion of one variable, and v adis
rete approximation based on steps of length h. We say that v is globally�rst order a

urate ifv(x) = u(x)� h
(x)� h2d(x)� h3f(x)� ::: ;where 
, d and f are smooth fun
tions. If also 
 = 0, then we say that theapproximation is (at least) globally se
ond order a

urate. Now 
onsider thenumeri
al solutions with step sizes h, 2h and 4h:v1(x) = u(x)� h
(x) � h2d(x) � h3f(x)� ::: ;10



v2(x) = u(x)� 2h
(x) � 4h2d(x) � 8h3f(x)� ::: ;v3(x) = u(x)� 4h
(x) � 16h2d(x)� 64h3f(x)� ::: :We 
ombine these numeri
al solutions to getv3 � v2v2 � v1 = 2
+ 6hd+ 28h2f + :::
+ 3hd+ 7h2f : (6.1)Assume that h is small. If the ratio in (6.1) is 
lose to 2.0, then the 
on
lusionis that 
 6= 0, and thus the approximation is �rst order a

urate. If 
 = 0, thenthe terms involving hd will dominate the terms involving h2f , and the ratio willbe approximately 4.0.Now 
onsider the situation in our 
ase, where the fun
tion u depends ontwo variables h and k. We perform the determination of the order separatelyin ea
h dire
tion, keeping the other variable �xed. Let y0 and yM denote thelower and upper boundary of the grid in spa
e dire
tion. In the experimentalorder determination in [4℄ y0 and yM are set to 0.05 and 0.15. With this 
hoi
eof y0 and yM , and the parameter values used in the evaluation of the method,a pattern appears, mu
h like the one in [4℄. The time between observations �is 112 , and the 
urrent value of the pro
ess x is 0:1, whi
h is the stationary levelof the pro
ess.� = [0.2 -2 0.2 0.8℄, y0 = 0:05; yM = 0:15y 0.080 0.085 0.090 0.095 0.100 0.105 0.110 0.115 0.120h-ratio 3.5 3.7 3.9 4.0 4.1 4.1 4.3 4.1 4.0� = [0.2 -2 0.2 0.8℄, y0 = 0:05; yM = 0:15y 0.080 0.085 0.090 0.095 0.100 0.105 0.110 0.115 0.120k-ratio 5.3 4.0 3.8 4.0 3.9 3.8 3.9 3.9 5.0However, in pra
ti
e it is not reasonable to let the grid points in spa
edire
tion go from 0.05 to 0.15. The method is based on the fa
t that we knowthe density on the boundaries, namely the grid is set so wide that the density
an be assumed to be zero on the boundaries. Therefore, in the evaluation ofthe method, we take y0 = max(0; x � 6�) and yM = x + 6�. Now the pi
ture
hange:� = [0.2 -2 0.2 0.8℄, y0 = max(0; 0:1 � 6�) = 0; yM = 0:1 + 6� = 0:2902y 0.080 0.085 0.090 0.095 0.100 0.105 0.110 0.115 0.120h-ratio 5.2 3.7 3.6 3.9 3.7 3.2 3.8 3.7 3.1� = [0.2 -2 0.2 0.8℄, y0 = max(0; 0:1 � 6�) = 0; yM = 0:1 + 6� = 0:2902y 0.081 0.084 0.090 0.096 0.099 0.105 0.110 0.116 0.119k-ratio 0.9 1.3 2.4 4.0 4.9 7.4 -19.1 -2.7 -3.511



For the se
ond parameter ve
tor, � = [0.2 -2 0.2 1.1℄, the k-ratios look ni
e.But the h-ratios are really bad:� = [0.2 -2 0.2 1.1℄, y0 = 0:05; yM = 0:15y 0.080 0.085 0.090 0.095 0.100h-ratio �2:2 � 108 3:3 � 104 0.7 0.2 0.5� = [0.2 -2 0.2 1.1℄, y0 = 0:05; yM = 0:15y 0.105 0.110 0.115 0.120h-ratio 1.6 3.9 4.7 4.86.1.3 Optimization issuesThe Matlab optimization routine for 
onstrained nonlinear multivariable fun
-tions, fmin
on was utilized for the approximate maximum likelihood method.The optimization pro
edure involved quite a few 
hallenges. The problems orig-inate from the fa
t that an approximation was used, whi
h 
an be quite poorfor some parameter values (see Se
tion 6.1.2).For pro
esses with 
 = 1.1, some simpli�
ations were done to be able to runthe optimization. When an approximation of a transition density was less thenzero, resulting in an imaginary s
ore fun
tion, that density was set to a smallnumber, in order to 
ontinue the optimization.One other 
hallenge in the optimization was whether or not the best 
hoi
ewas a dynami
 grid. The width of the grid is dependent on the unknown param-eter �. With a dynami
 grid, the witdh of the grid is 
hanged more dramati
allywhen the optimization pro
edure run through di�erent �. When the grid widthbe
omes larger the approximation gets worse. A potential problem with a dy-nami
 grid is that the optimization routine might �nd a � that overestimate thelikelihood due to a bad approximation from a wide grid. To avoid this problemthe position of the grid was based on the true parameter �0. With this 
hoi
e,the width of the grid is dependent only of the value of the pro
ess.The e�e
t of the �xed grid on the likelihood fun
tion of the estimates were
ontrolled. It showed that the approximate likelihood fun
tion was 
hangedvery little when the grid was based on the estimated �, instead of on �0. Also,the e�e
t of setting the density to a small number when the approximate den-sity turned out to be negative was studied. This simpli�
ation did not seemin�uential.6.2 Generalized method of moments and Martingalemethod6.2.1 Optimization issuesThe resulting ve
tor in R4 from the fun
tions (4.7) and (4.3) are squared andsummed, resulting in a nonlinear least-squares problem. This was solved bythe Matlab routine lsqnonlin. The obje
tive fun
tion turned out to have many12



di�erent lo
al minima for the Martingale method. In order to �nd the globalminimum, many di�erent start ve
tors were used.

13



Chapter 7EvaluationWe simulated 12 pro
esses in the time interval 0 to 25 for ea
h parameter ve
tor,and sampled 300 pro
ess values at distan
e 112 . The pro
ess was simulated withthe time step 11210�3 between the sampled values.For the optimization it is 
onvenient to reparameterize the di�usion: Let� = (�; �; �; 
); � = ��=� and � = ��. Then the SDE (1.2) takes the formdXt = ��(Xt � �)dt + �X
t dWt:Here � is the long term level of the pro
ess, and is easy to estimate. In the tablesthe estimates for � is presented. The numbers in parenthesis are the standarddeviations of the estimates.�0 = [0.1 2 0.2 0.8℄ (�0 = [0.2 -2 0.2 0.8℄)Method � � � 
Generalized method of moments 0.0984 1.9893 0.1930 0.7504(0.0039) (0.3558) (0.1111) (0.2782)Martingale estimating fun
tion 0.0985 1.9351 0.1991 0.7535(0.0039) (0.3018) (0.1396) (0.2824)Approximate maximum likelihood 0.0986 2.1017 0.2754 0.8211grid size: 100�8 (0.0039) (0.3742) (0.2212) (0.3443)�0 = [0.1 2 0.2 1.1℄ (�0 = [0.2 -2 0.2 1.1℄)Method � � � 
Generalized method of moments 0.0991 1.9760 0.2875 1.0477(0.0020) (0.3429) (0.2855) (0.5406)Martingale estimating fun
tion 0.0991 1.9330 0.3508 1.0514(0.0020) (0.3050) (0.5056) (0.5714)Approximate maximum likelihood 0.0992 2.1068 0.5643 1.1260grid size: 100�8 (0.0020) (0.3823) (0.8979) (0.6762)14



Chapter 8Con
lusionsWe have evaluated some methods for inferen
e of parameters for SDE:s. Themethods seem to work quite well for some parameter values. Our estimates agreewith other papers evaluating the methods for more restri
ted set of parametervalues. However, the methods are not found to be reliable for general param-eter values. Espe
ially, for the martingale method and generalized method ofmoment, it is the vis e�e
t that 
auses this problem. For the approximate likeli-hood method, it is instead poorer a

ura
y of the numeri
al solution that is theproblem. The mean of the estimates are reasonably a

urate, but the variationis for general parameter values very large.
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