Volatility: Estimating Quadratic Variation
using Realized Variance

Master’s Thesis in Mathematical Statistics

Anton Korkko

Department of Mathematical Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg Sweden, 2013



Abstract

We present results, using modeling, in estimating volatility in the
three different models: Geometrical Brownian motion (GBM), Cox-
Ingerssoll-Ross (CIR) and Heston. We compare estimations, using the
quadratic variation estimator realized variance, with estimations us-
ing maximum likelihood methods. In the Heston model we use our
approximation of the volatility process to estimate the volatility of
volatility parameter, by again applying realized variance.

In the GBM model we show that realized variance is useful even when
data is low-frequent. The effects on bias when using high-frequency
discrete data is studied, and methods of removing bias is discussed.
In the CIR-model we use realized variance in two different ways. One
of the two estimators is biased, but we successfully remove it. In
the Heston model problem arises when using realized variance, and
estimation precision decreases, but under certain conditions the long
run volatility-parameter, the volatility processes and the volatility of
volatility-parameter can be approximated fairly well.
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1 Introduction

In finance, mathematical models are widely used. By creating models we
can make conclusion of the current and past financial situation. Ideally,
these models can help us make predictions of the future.

When modeling financial assets, stochastic differential equations of dif-
fusion type is widely used. The most famous model by Black and Scholes,
which describe the price movements as a Geometrical Brownian motion, from
1973 [4] is such a model and since then several other models of diffusion type
has been developed. Jointly, these models take the volatility of asset prices
into account. When applying these models, parameters must be estimated
and a method must be selected. A possible method when estimating volatil-
ity parameters is the use of realized variance, that approximates quadratic
variation.

There are several methods for estimating volatility in a model. Maximum
likelihood methods have advantages and are useful under some conditions.
A problem with this method is that the optimization problem that has to be
solved can have a high computational burden and if one needs up to date es-
timates this might be a problem. In the Heston model, maximum likelihood
estimation is a non-trivial optimization problem, with high computational
cost, which has to be solved by carefully selected numerical methods. This is
done by Mariani, Pacceli and Zirilli (2008, [14]), using both stock and option
data.

Using realized variance as a estimator for quadratic variation might be a
possible method to get up to date estimations that are accurate, this method
will be our main focus. There is good access to earlier work concerning the
use of quadratic variation, see Barndoff-Nielsen and Shepard (2002, [3]) and
Hautch (2012, [11]), among others.

In theory, under some assumptions discussed later on, the realized variance is
a consistent estimator for quadratic variation as the number of observations
in an interval tend to infininty. We ask the question of how frequent the data
have to be for realized variance to be a god estimator, and also investigate
the impact of discreetness when dealing with high frequency data. We show
in this thesis that one has to be careful, estimations might, as we show, be



highly biased under this condition.

Data is in general affected by noise due to several different microeconomic
effects. One of the effects is the discreteness, other effects, such as the bid-
ask bounce effect, is important and discussed by Greaham, Michealy and
Roberts(2003, [10]) and Rhee and Wang (1997, [16]). Several authors inves-
tigates the effects of microeconomic noise, see for example Ait-Sahalia and
Macnini(2008, [1]) and Zhou (1996, [19]).

We will consider the popular and simple Black-Scholes model describing the
asset price as a geometrical Brownian motion (GBM). Further we study the
CIR-model, that takes the mean reverting effect in consideration, and finally
we apply realized variance on the Heston model by Steven Heston (1993,
[12]), which is a mix of the Black-Scholes and the CIR model.

The volatility and the volatility parameters can be estimated with various
precision for the different models, therefore this must be a concern when
choosing model, and knowledge of how exact these estimations can be done
is of interest.

The intention we have is to evaluate the advantages and disadvantages of us-
ing realized variance as a method under different assumptions. The approach
taken to make conclusion is the use of modeling done in R and comparing
parameter estimations using realized variance comapared with maximum or
quasi-maximum likelihood methods. We also investigate the possibilities to
remove bias, when it is neccecary, for our estimations.

We conclude that the use of realized variance as a method is overall a good
method for volatility estimation. We begin this thesis with introducing basic
theory of diffusion models, quadratic variation and an answer the question
when realized variance is an consistent estimator of quadratic variation. We
then, in turn, introduce and a and present results from the modeling for the
GBM model, the CIR model, and the Heston model.



2 Theory

There are different definitions of volatility!, therefore it is convenient for us
to define it. Let S; be the price att time t and s; = log(S;).

Definition 2.1. Quadratic variation
We define quadratic variation (QVr) of a stochastic process hy over [0,T]

n

=1 hy, —h 2 1
QVT(h> ||]V}Hni0 kl( ty tk—l) ( )
With M:maX1§k§n<tk — tkfl)
where 0 =tg <t; <ty < ...<t, =T

Definition 2.2. Volatility
Volatility vy of a process S; over time [0, T] is defined from

vr =V (QVr(s))

Definition 2.3. Realized variance
The realized variance (RV) over [0,T] of hy is given by

n

RViy(h) = (o = he, )

k=1

Definition 2.4. Realized volatility
The realized volatility (Rvr) of Sy over [0,T] is given by

Rur = +/(RVr(s))

The quadratic variation can under certain conditions for small values of
max ||(t; — t;_1)|| be approximated by the realized variance, that is the sum
of the quadratic returns.

Lyolatility is sometimes defined using data S; instead of logarithmic data s;. Noticeable
is though that if Sy = S;(1+448) with § small, then by Taylor expansion log(Si+1)—10g(St)
~ log(S;) + 6 — log(St) = § = Siy1 — S¢ This results in, that when we have moderate
volatilities and high frequency data, the realized variance will be approximately equal, no
matter if we use data or logarithmic data.



Definition 2.5. Standard Brownian motion
A process B = By,t € [0,00) is a standard Brownian motion if

1. The paths are continuous,

2. It has stationary, independent increments and
3. By ~ N(0,t),¥t >0

Values of financial assets are often described by the continuous-time
stochastic differential equation (2).

where p(X;) is the drift coefficient, o(X;) is the diffusion (volatility) coeffi-
cient. o(X}) is the spot volatility and is the mean volatility over an infitesimal
time interval. dB; is a Brownian motion and ¢(X};) can be dependent of un-
known variables, and we let the drift coefficient be linear, that is of the form
a+yX(1).

Theorem 2.1. Miao(2004,[15]): Given dX; = p(X;)dt + 0g(X;)dB; and X,
has a strong solution, and T is a partition of [0,T] so that 0 =ty <t; < ... <
t, =1 then ,
X, — X,
ZTJ t]+1 t]| £> 0_2 (3)
27 97 (Xy)) (ti1 — 1)

where maxlgjgn(tj — tjfl) —0

2.1 About models

In financial models we have variables, often time dependent or dependent
of for example the value of the financial assets studied. Volatility can for
example be dependent of the value of the underlying assets. Depending on
what we are studying, different models are suitable to apply. In the models we
also have parameters, these are constant and unique for the underlying asset
that is studied. These parameters can be estimated in different ways. One
way of estimating spot volatility or a volatility parameter is the use of realized
variance. This method is suitable for many models, both for estimating



spot volatility and the value of the underlying volatility parameter. One
thing we have to remember when applying a model to an assets is that
the parameter values can change value over time. This is due to that the
parameter is dependent of the unique characteristic and structures of the
underlying assets. If the Characteristics or structures that give rise to the
parameter values are changed one has to examine if the parameter values
are changed. Some structural changes might even make the model applied
invalid and other models are then needed to be considered.

2.2 Micro-economic effects

There are several microeconomic effects, for example the so called bid-ask
bounce effect, the effect of differences of trade sizes and the effect of dis-
crete data. These microeconomic effects have impact when analyzing high
frequency data. This means that if X; is the value of the underlying process
and Xt is the observed value then X; = Xt +¢;. Here ¢, is the so called error
term. This error term can become dominant for short time intervals, making
the error big. If we for example assume that ¢, is normally distributed with
variance o2 and mean 0 then

Xt]. — th = th + Etj — th — €y, = Xt], — th + €
where € is normally distributed with variance 202 and
E{) (X, Xy, ,—er—a1)’} = B{ (X, —X,,_,)*}+2n0” = RV (X)+2n0°.
k=1 k=1

Here the total error 2no? is time independent but RVy(X) decreases as T
decreases, making the error dominant for small values of T and big values of n.

In our simulations we don’t make any assumptions of the distribution of
€:, but as we’ll see the discreteness assumption of data makes the error dom-
inant for high frequency data.

2.2.1 Discrete data

When analyzing data from the stock exchanges both in Sweden and the USA
prices are commonly given, as we find, in cents per dollar in the USA and in
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Sweden 1/10 of a Swedish krona, the prices lies in the interval 0.5 to 500, the
daily volatility in the interval 0.5-10% and it is not common to have sampling
frequency that is higher than 1 data point per second. A typical stock have
a daily volatility of 0.5-5% in average and the data frequency from a stock is
often not found higher than 1 trade/ 10 seconds. This is with some excep-
tions, like Apple Inc that is often one of the most traded stocks. Of course
the frequency of data found is bounded by the trading frequency. For some
stocks, like Google Inc., that, at the time of writing, has a price around 900
dollars or Apple Inc., which has a price around 400 dollars, it is not possible
to find any effects of the discreetness of prices when using realized variance
for the models studied. This is due to that a cent is only ﬁ% of the stock
value, but for a stock of value of about one dollar the effect of discreteness
can be significant, even with high volatilities and quite low frequent data.

These conclusions is found from simulations, and the applicability of real-

ized variance as method of estimating volatility is particulary studied in the
Geometrical Brownian motion model.

11



3 Geometrical Brownian motion (GBM)

In a simple model we assume that the value of our financial asset is the
value of a simple stochastic differential equation. Where the change in value
is dependent on a mean interest rate and a random term. We state the
equation:

Definition 3.1. A process is said to be a Geometrical Brownian motion
(GBM) if it satisfies

dSt = [LStdt + UStdBt (4)

This is the Black-Scholes model, see: Black and Scholes(1973, [4]). u is
the interest rate, o the volatility and B, is a Brownian motion. The solution
to the equation is Sy = Sy exp(fit + 0 B;) where ji = u — 0%/2. We recognize
s = log(S;) as a Brownian motion with standard deviation o. Recalling
our definition of volatility (2.4) gives that the volatility is the square-rot of
the quadratic variation of the Brownian motion. The quadratic variation of a
Brownian motion over an interval [0, 7] is is 02T and the volatility parameter
is constant and equal to the constant standard deviation o.

3.1 Volatility estimation

When estimating the volatility we use two different estimators. Firstly an
estimator where we use realized variance, and secondly we bias correct the
maximum likelihood estimator sample variance, and use that.

3.1.1 Using realized variance as estimator

As mentioned we can take the logarithm of data to get a brownian motion
from the GBM. The quadratic variation of the Brownian motion over the
interval [0,T] is 0®T. The use of realized variance gives us

()

If we instead use formula 2.1 we arive at the same estimator. Formula
2.1 could also be used on the original data, without taking the logarithms
but that is not done here.

12



3.1.2 Realized variance and sample variance

Taking the sample variance of the data set xo — x1,23 — x9,..., Ty — TN_1
(the ml-estimator) gives us

~ 1 - R
2 _ _ — R
g T(N— 1) (lzz(xz xz—l) ) T(N— 1)(NZZ2(.TZ xl—l))
1 al (xy — x1)? ¥
— ) 2 . N — 1 AZ
T(N — 1) ;(x’ ) SN =D 7 °
as N — oo (dt — 0). We've noticed that, for (u — %2)% small and N large
(QTN — $1)2 0'2
E ~ ~
e R (M)

where dt=T/N, and keeping N large
1 = 1
N L@ e m g ) (- v’ (8)

i=1 i=1

The maximum-likelihood estimator is biased by (N-1)/(N-2), we scale
the estimator to be unbised but still call it the ml-estimator. This is due to
that in most cases we use very big values of N, giving that the true maximum
likelihood estimator is very close to being unbiased, and the scaling is not
needed in those cases.

In this section we first examine how good the estimators are for low fre-
quent data and then we examine the influence on estimations when frequency
is high and data is given with low precision.

3.2 Low frequent data

We show that low frequent data such as one data point per day gives unbiased
estimations (|bias| < 1%) of o, given volatilities and interest rates that are
reasonable for stocks. For low volatilities such as 1% and interest rates that
are less than 25% per year gives bias less than 1%. For higher interest rates,
higher volatilities are necessarily to get a small bias. One should be clear
that a long term interest rate of 25% per year might unreasonable for such a
safe investment as a stock with volatility of 1% is.

13



3.2.1 Results for low frequent data

Comparing the maximum likelihood estimator with realized variance shows
that the maximum likelihood estimator (mle) is unbiased but realized vari-
ance only gives approximately unbiased estimates. Further we see that the
higher the frequency of data, the lower the bias. The variance of the esti-
mates are equal. Due to the fact that the weighted mle we use is unbiased
and that the two estimators have estimations that are almost equal from a
variance point of view, we only present results using realized variance.

In table 3.1 we have drift coefficients p of 0.05%, 0.1% and 1% per day,
that is about 13%, 28% and 1200% respectively per year. So the two last
rates are quite high but for rates such as 13% or less per year the bias us-
ing realized variance is small, even though we only have one data point per
day and low volatilities. Bias gets bigger when data becomes more low fre-
quent, volatilities are low and interest rates are high. The variance of the
estimations are approximately the same no matter if one uses maximum like-
lihood or realized variance. Though, by using realized variance we get biased
estimations.

14



1 Data point per day

o 1 o) sd(6) | bias/o
0.005 | 0.05% | 0.00502 | 0.023% | 0.513%
0.005 | 0.10% | 0.00510 | 0.023% | 1.92%
0.005 | 1% 0.0112 | 0.030% | 123%
0.01 | 0.10% | 0.0100 | 0.022% | 0.439%
0.01 1% 0.0141 | 0.027% | 41.0%
0.03 1% 0.0315 | 0.023% | 4.92%
0.05 1% 0.0501 | 0.028% | 0.51%

1 Data point per hour

o 1 o sd(6) | bias/o
0.005 | 0.10% | 0.00501 | 0.027% | 0.32%
0.005 | 1% | 0.00634 | 0.032% | 27.0%
0.01 | 0.10% | 0.0100 | 0.028% | 0.028%
0.01 1% 0.0107 | 0.029% | 7.30%
0.03 1% 0.0302 | 0.028% | 0.78%
0.05 1% 0.0501 | 0.028% | 0.24%

4 Data points per hour

o i o sd(6) | bias/c
0.005 | 0.10% | 0.00500 | 0.028% | 0.05%
0.005 | 1% | 0.00537 | 0.030% | 7.38%
0.01 1% 0.0102 | 0.029% | 1.87%
0.03 1% 0.0301 | 0.028% | 0.20%

Table 3.1: Using RV for low frequent data.
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3.3 High frequency data

To minimize the the variance of the volatility estimations we want as many
data points as possible for the time interval studied. This means that we need
as high frequent data as possible. We will show that one has to be careful
when using descrete, high frequency data as this leads to biased estimations.

When doing the analysis data of a volatility of 1-10% per day and interest
rate of 0-20% per year is used. These number are selected to be as realistic
as possible. When studying high frequency we consider data in a frequency
interval of 1 data point per second to one data point each 15 minute. We will
use 30 data points. This to compare variances of the estimations. Further we
assume that stocks are not traded in higher precision than cents per dollar.

3.3.1 Results for high frequency data

The result part is split in to different parts, we have to take frequency, inter-
est rate, volatility and discreteness into account. In table 3.2 and table 3.3
we show results using realized variance, with p = 0.05% per day.

In table 3.4 we compare results from using maximum likelihood and real-
ized variance for high frequency, discrete data, with initial value zy. We
notice that the estimators are approximately equally good both in term of
variance and bias. This is true for all moderate values of dt.

3.3.2 Bias-correction

By analyzing the dependence of the bias of volatility estimations due to dis-
crete data, the bias might be possible to remove.

We find, by analyzing data (see figure (2)-(4)) , that if C' = o%z¢*/N
is kept constant, with N being the number of observation during on day (6.5
hours), then there seems to be a bias that is unique and constant paired with
each value of C. This relationship have been studied for many values of C

16



One day, 1 point per 1s One day, 1 data point per 5s.

xg | O % bias/o | sd(6) || zo | o o bias/c | sd(5)
1 0.01 | 0.105 | 952% | 3.58% 1 0.01 | 0.0708 | 608% | 0.46%
1 0.04 | 0.221 452% | 1.09% 1 0.04 0.147 268% 0.11%
1 0.20 | 0.500 | 149% | 0.67% 1 0.20 0.333 66.6% | 0.09%
5 0.01 | 0.0494 | 394% | 3.26% 5 0.01 | 0.0330 | 230% | 0.08%
5 0.04 | 0.0999 | 147% | 0.21% 5 0.04 | 0.0661 | 65.4% | 0.03%
5 0.20 | 0.238 | 18.8% | 0.39% 5 0.20 | 0.2086 | 4.05% | 0.02%
30 | 0.01 |0.0202 | 102% | 0.11% || 30 | 0.01 | 0.0136 | 36.2% | 0.016%
30 | 0.04 | 0.0451 | 12.7% | 0.10% || 30 | 0.04 | 0.0411 | 2.66% | 0.015%
30 0.2 0.201 | 0.57 % | 0.06% || 30 0.1 0.100 0.43% | 1.05%
100 | 0.01 | 0.0118 | 17.9% | 0.49% || 100 | 0.005 | 0.00573 | 14.5% | 0.015%
100 | 0.04 | 0.0405 | 1.21 % | 0.05% || 100 | 0.04 | 0.0401 | 0.243% | 0.016%
300 | 0.005 | 0.0054 | 8.31% | 0.05% || 300 | 0.005 | 0.0051 | 1.74% | 0.016%

Table 3.2: Bias and variance of estimated mean volatility.

One day, 1 data point per min One day, 2 data point per min

xg | O o bias/o | sd(6) || w0 o o bias/o | sd(5)
1 0.01 | 0.0379 | 279% | 1.61% 1 0.03 | 0.0815 | 172% | 0.088%
1 0.04 | 0.0793 | 98.2% | 0.37% 1 0.10 | 0.150 | 49.9% | 0.037%
1 0.20 0.217 8.35% | 0.20% 1 1.00 | 1.035 | 3.64% | 0.067%
5 0.01 | 0.0177 | 77.4% | 0.30% 5 0.02 | 0.0299 | 49.6% | 0.029 %
5 0.04 | 0.0432 | 7.88% | 0.18% 5 0.04 | 0.0460 | 15.1% | 0.024%
5 0.10 0.101 1.35% | 0.18% 5 0.10 | 0.103 | 2.67% | 0.023%
30 | 0.005 | 0.00568 | 13.7% | 0.18% 5 0.30 | 0.301 | 0.362% | 0.023%
30 | 0.005 | 0.00568 | 13.7% | 0.18% || 30 | 0.01 | 0.0107 | 7.01% | 0.023%
30 | 0.03 | 0.0301 | 0.461% | 0.18% || 30 | 0.03 | 0.0303 | 0.84% | 0.023%
100 | 0.01 | 0.0100 | 0.398% | 0.18% || 100 | 0.005 | 0.0051 | 2.60% | 0.023%

Table 3.3: Bias and variance of estimated mean volatility.
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One day, 1 data point per 5 min
T o ORv biasgy /o | sd(Gry) Omle biasmie/o | sd(Gmie)
1 | 0.01 | 0.0253 153% 80.0% | 0.0252 152% 80.3%
1 | 0.03 | 0.0457 52.4% 15.5% | 0.0453 52.3% 15.7%
1 | 0.10 | 0.106 6.17% 8.77% 0.105 6.17% 8.70%
1 | 030 | 0.302 0.50% 8.09% 0.297 0.48% 8.03%
5 1 0.01 | 0.0122 22.7% 9.87% | 0.0121 22.7% 9.83%
5 1 0.03 | 0.307 2.55% 8.31% | 0.0304 2.54% 8.35%
5 0.1 | 0.0998 | -0.19% 8.01% | 0.0985 | -0.20% 7.97%
30 | 0.005 | 0.00513 | 2.51% 8.25% | 0.00506 | 2.48% 8.20%
30 | 0.02 | 0.0200 | -0.16% 7.98% | 0.0200 | -0.16% 7.94%
100 | 0.005 | 0.0499 | -0.13% 8.06% | 0.0499 | -0.13% 8.00%

Table 3.4: Comparing realized variance with mle for discrete hf-data.

and seems accurate.

There is another standard approach to avoid bias, which is applied in
section 5.4.2, when estimating the volatility of the volatility in the Heston
model. For the ease, assume that we have a high frequency time serie T with
n-m data points X1, X, ..., X,,.,,. Then instead of taking realized variance in
the previous done way, we split this time serie into n time series with m data
points in each time serie. We denote time serie i by T..

The time serie is split up such that T, = {Xo, Xivns oo, Xignm-1)} » @ =
1,2,...,n. By estimating volatility from each one of these time series and
then take the mean value as estimator of the volatility we decrease bias, but
the variance of the estimation is still low as we still use all data we have.

In figure 1 we see a log-log plot of the bias. For log(z) > 1 there
seems to be a linear relationship in the plot, indicating that the bias over the
interval might have the form bias = aX".

In figure 2-4 we have that % ~ 156000, and N,zq,0 is varied. As we
can see the bias is close to 77-78% as long as 0_2—]\;2 is kept constant. Algorithm
1 is a possible algorithm for bias correction.

Algorithm 1. Finding o

0. Choose &, for example ¢ = &

18
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log(x)

Figure 1: log-log-plot Bias(%) vs. x.
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Bias correction

Obiased Ocorr bias
0.03032 | 0.0250 | 21.3%
0.0251 | 0.0220 | 14.1%
0.0236 | 0.0215 | 9.8%%
0.0229 | 0.0212 | 8.0%
0.0225 | 0.0211 | 6.6%
0.0224 | 0.0212 | 5.7%
0.0224 | 0.0215 | 4.2%
0.0225 | 0.0217 | 3.7%

Table 3.5: Bias-corrected volatility.

1. let 6 =6 /(14 b) and go to step 1 or stop. G is our new estimator of
0.

In figure 5 we see estimations of volatility using the first method. In
accordance with the figure and the tables there is an error due to the dis-
creteness for small dt. In figure 6b we see an example of volatility estimation
before and after bias removal. In this example the removal seems to be
overcompensated.

In table (3.5) we have bias corrected volatility estimations for the eight
first points in figure 5. The corrected values seems reasonable when com-
paring the other volatility estimations in figure 5, which have a minimum
estimation of 0.0214 and a mean of 0.0225. It is also worth noticing that
the first point probably isn’t corrected enough. This can be due to that the
corrector isn’t correcting for the discreteness enough. But it can also be a
result of data being affected by other microeconomic effects aswell, these are
not corrected for. Further the corrector is based on data from GBM, an
assumption that isn’t completely true in reality. But we do notice that the
interval length for which the estimations of ¢ lies within have decreased by
about 50%.

In figure 7 we see bias in % as a function of 02—]\;2

20



bias

bias

780 784

7.76

775 777

773

T T T T
5000 10000 15000 20000

Figure 2: N/x?=6240, 0=0.02

5000

10000

12000

20000

Figure 3: N/o? = 15600000 , x=10

21




bias
7T 778
1 1

776
1

775
1

0 100 200 300 400 500

Figure 4: 2%0% = 0.09 , N=14040

(=]
8 _ [=)
o
L]
& § -
@4 o
w
(8]
™
g 4
[aw]
0 100 200 300 400 500 600
dt

Figure 5: Estimated volatility Facebook 2013-07-26, using different values of
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Figure 6: Volatility before and after bias-removal.
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bias vs. N/(c%z?)

N/(c%x%) | bias | N/(0%1¢%) | bias | N/(o%z2) | bias | N/(0%1y%) | bias
1244 1.86% 2489 2.54% 3733 3.41% 4978 4.28%
6222 5.21% 7467 6.31% 8711 7.21% 9956 8.27T%
11200 9.04% 12444 10.0% 13689 10.95% 14933 11.94%
16178 12.85% 17422 13.74% 18667 14.66% 19911 15.55%
21156 16,42% 22400 17.30% 23644 18.23% 24889 19.05%
26133 19.93% 27378 20.81% 28622 21.61% 29867 22.48%
31111 23.34% 32356 24.12% 33600 24.94% 34844 25.77%
36089 26.55% 37333 27.35% 38578 28.17% 39822 28.97%
41067 29.73% 42311 30.58% 43556 31.25% 44800 32.05%
46044 32.80% 47289 33.58% 48533 34.30% 49778 34.93%
51022 35.69% 52267 36.39% 53511 37.13% 54756 37.81%
56000 38.55% 57244 39.23% 58489 39.88% 59733 40.51%
60978 41.17% 62222 41.90% 63467 42.49% 64711 43.19%
65956 43.81% 67200 44.40% 68444 45.04% 69689 45.67%
70933 46.31% 72178 46.88% 73422 47.57% 74667 48.10%
75911 48.68% 77156 49.35% 78400 49.85% 79644 50.56%
80889 50.85% 82133 51.68% 83378 52.06% 84622 52.47%
85867 53.11% 87111 53.72% 88356 | 54.18% 89600 54.80%
90844 55.32% 92089 55.79% 93333 56.29% 94578 56.79%
95822 57.34% 97067 57.59% 98311 58.37% 99556 58.82%

100800 59.16% 102044 59.55% 103289 | 60.25% 104533 60.67%
105778 61.11% 107022 61.71% 108267 | 62.25% 109511 62.63%
110756 63.12% 112000 63.58% 113244 | 63.96% 114489 64.26%
115733 65.04% 116978 65.37% 118222 | 65.64% 119467 66.38%
120711 66.64% 121956 67.09% 123200 | 67.33% 124444 67.78%
125689 68.21% 126933 68.62% 128178 | 69.23% 129422 69.49%
130667 70.19% 131911 70.53% 133156 | 70.70% 134400 71.30%
135644 71.48% 136889 71.94% 138133 | 72.26% 139378 72.72%
140622 73.09% 141867 73.54% 143111 | 73.80% 144356 73.98%
145600 74.69% 146844 74.92% 148089 | 75.49% 149333 75.61%
150578 75.91% 151822 76.60 % | 153067 | 76.79% 154311 77.12%
155556 77.15% 156800 78.06% | 158044 | 78.09% 159289 78.61%
160533 79.14% 161778 79.21% 163022 | 79.45% 164267 79.79%
165511 80.35% 166756 80.69% 168000 | 81.06% 169244 81.27%
170489 81.53% 171733 81.81% 172978 | 82.36% 174222 82.10 %
175467 83.09% 176711 82.90% 177956 | 83.41% 179200 83.96%
180444 84.00% 181689 84.41% 182933 | 84.39% 184178 85.03%

Table 3.6: Expected bias as function of N/(c%xy?)
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3.4 Bias for both discreteness and big values of dt

We have now showed that for small values of dt, there is bias due to discrete-
ness, for big values of dt there is bias due to realized variance isn’t approx-
imating quadratic variation good enough. In figure 8 we see results of data
being discrete and varying dt. In this example o = 0.01, x = 0.005, zy = 30
dt is given in seconds and the bias is given in (bias/sigma)%. In this example
we have the lowest bias when dt is about five minutes.
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4 CIR-model

4.1 Backgrond

The Cox-Ingersoll-Ross model (CIR model) Cox, Ingersoll and Ross (1985,
[7]) was originally used to model short time interest ratesand is used in
valuation of interest rate derivatives. In 1993 [12] Heston used the model to
model stochastic volatility for asset prices. In the CIR model the variable Y
is given by the stochastic differential equation

dY, = k(0 — Y,)dt + o+/Y,dB, (9)

where k is strictly positive and by adding the condition 2k > 0? we ensure
that Y; is strictly positive, negative Y; does not make much sense when used
to model assets or volatilities.

The process is also known as the mean-reverting square-root process. Mean
reverting means that the variable will tend to a long run mean value, this
value is 6, see Cox, Ingersoll and Ross (1985, [7]) for details. The process
is taking the leverage effect into account, that means that volatility of a
variable increases as the value of the variable falls and decreases when the
variable value rises.

We mainly introduce this model because it’s a part of The Heston model
and we only do analysis for simulated data.

We here introduce a theorem that we will use for motivating our second
estimator.

Theorem 4.1. Duffie and Kan(1996, [8]): There exists an unique strong
solution to the CIR-process

dY, = k(0 — Y,)dt + o/Y,dB, (10)
if 266 > o2

4.2 Quadratic variation of the CIR-process

The quadratic variation of the CIR-process over [0,T] is
T T
QVr(Y:) = 02/ (VY:)2dt = 02/ Y,dt (11)
0 0
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Y; is known at discrete points, and if o can be estimated, we can esti-
mate the quadratic variation.

4.3 Volatility

From our definition of volatility we see that the spot volatility is o /1/Y;. Y is
as mentioned known at discrete points, giving that to find o(Y;) our biggest
challange is to estimate the parameter o. In our first approach in estimating
the volatility we first make the assumption that Y;, is close to Y;,,, over the
interval [t;_1,t;]. We have information about Y; so conclusions about this
assumptions can be done. By doing so we can approximate /Y, over the
interval [to, T by Y;//Y, and Y;/Y;, ~ 1 giving

K0 — Yi) = £(8Y:/Y,, — V) = Yi(6/Y;, — 1)

With these approximations we get

Y,

VYo

We recognize this as the equation for the GBM with volatility o/4/Y;, and
the volatility dependence of the price becomes obvious.

dY, ~ K;(i - 1) Yidt + o——dB, (12)

Yo

This gives the estimator

i
L

62 = (yti+1 - yti)Qifto/é (13>

i

Il
o

As a second estimator we apply lemma 2.1 and theorem 4.1 and get

o Zz‘]\iz)l(}/ti-u - Y;z)2
0?2 = ] (14)
Zi:o }/tzdt

This estimator is also natural when observing the integral for the quadratic
variation.
Then we use a quasi-maximum likelihood method (15). This estimator
is biased-corrected. For more justification of the estimator see Tanh and
Chen (2009, [17]).
The estimator for the quasi-ml method is :
52 = 2 (15)
1 -3
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with: . . . L .

_ n- (Zi:l Xi)(zz':l X; ) —n~ Zi:l(XiXifﬁ
”72(2?:1 Xifl)(zzl:l Xiill) -1

n”' V(XX — B

(1—=pBi)n! Z?:l Xi:11

6

Br =

n

33 =n" Z((Xz — Xiflgl — B2(1 - B1))2Xfl)

i=1

= —5""log(5)
5=1t/T

4.4 Modeling

When simulating the CIR-process there are several approaches to take. One
simple approach is the use of Euler Maruyama Scheme which gives

Yy = Yl;/z + Al(e - KVY%Z) to Y;fz(Bt - Bti) (16>

Here A; = (t;41 — t;) This scheme is though not well defined, this is due to
we might get negative values but the CIR-process is strictly positive. There
are simple ways to get around this, but we us an implicit scheme that has
the positivity property. This scheme is presented by Brigo and Alfonsi(2005,
[5]), they calls this ”The Euler Implicit Positive-Preserving Scheme”. They
find following formula for Y,

41 141

)/;/H—l =

0(Bryyy = Bi) + ([ (0%(Buyy = Bi ) +4(Ye, + (88 — 555) (Au(1 + 7))

4.5 Results

Simulations are made with varying values of the parameters. Results show
that the first estimator, built on realized variance is heavily biased, but this
seems not to be a big problem. Simulations indicates that the bias is about
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—20% independent of k, 0, o, n and ¢. This gives us a new estimator & = cxo
where we found that ¢ =~ 1.25. We use the value ¢=1.2538 for our bias cor-
rection.

In table 4.1 we see a comparison of results from using the three different
methods: The likelihood estimator o,,,; from equation (15) with the bias cor-
rected quadratic method o,,; and the method based on lemma 2.1 (04,2). We
notice that all the methods gives good estimations of the volatility parame-
ter o, The second quadratic variation estimator and the maximum likelihood
estimator seems to be equally good in estimating ¢ in a variance point of
view. In general the first method gives estimates that have a standard devi-
ation of 5-10% higher than the other two estimators. We also notice that the
quasi-mle method gives better estimations when observing |bias|, than the
other two methods which seems to be equally good from this point of view.

These results indicates that the quasi-maximum likelihood estimator is bet-
ter, but not by that much. By optimizing the constant C we can expect a
lower bias for the first method, compared to the current bias. In table 4.1 all
parameters values but dt are varied, dt is constant equal to 1 minute. The
results of varying dt with one set of parameter values is presented in table 4.2.

These result indicates that varying dt only have a small influence in the

results, and these influence is only noticeably for quite large values of dt. In
table 4.2 we see effects of varying dt.
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One day 1 data point per min

0 K o |sd (gqﬂ ) | sd (gqvg ) | sd(6pm1) biasqy1 | biasqye | biasm
0.01 | 0.01 | 0.02 | 0.054% | 0.051% | 0.051% | -0.01% | -0.08% | -0.03%
0.01 1 0.02 | 0.054% | 0.051% | 0.050% | -0.21% | -0.26% | -0.10%
0.1 [ 0.01]0.02| 0.052% | 0.048% | 0.048% | 0.07% | -0.01% | 0.05%

1 0.01 | 0.02 | 0.054% | 0.051% | 0.050% | 0.01% | -0.08% | -0.02%

1 1 0.02 | 0.054% | 0.051% | 0.051% | -0.16% | -0.22% | -0.08%
0.03 | 0.1 [0.05| 0.055% | 0.053% | 0.052% | 0.04% | -0.03% | 0.06%
0.03| 10 | 0.05| 0.054% | 0.050% | 0.050% | -1.86% | -1.93% | -1.23%
0.1 | 0.1 |0.05| 0.052% | 0.048% | 0.049% | -0.14% | -0.18% | -0.11%
0.1 10 | 0.05 | 0.053% | 0.050% | 0.050% | -1.90% | -1.95% | -1.26%
0.3 | 0.1 |0.05| 0.053% | 0.049% | 0.049% | -0.06% | -0.10% | -0.02%
0.3 10 | 0.05 | 0.055% | 0.051% | 0.051% | -1.77% | -1.86% | -1.28%

1 0.1 | 0.05| 0.055% | 0.051% | 0.051% | 0.02% | -0.02% | 0.05%

1 10 | 0.05 | 0.055% | 0.052% | 0.051% | -1.89% | -1.97% | -1.26%
0.1 | 0.3 |0.15| 0.053% | 0.053% | 0.050% | 0.05% | -0.06% | 0.067%
0.1 10 0.2 | 0.053% | 0.051% | 0.050% | -1.78% | -1.83% | -1.27%
0.3 ] 0.1 | 0.2 | 0.053% | 0.054% | 0.051% | 0.08% | 0.06% | 0.11%

0.1 | 0.2 | 0.054% | 0.052% | 0.051% | 0.10% | 0.02% | 0.10%
10 0.2 | 0.052% | 0.049% | 0.049% | -1.85% | -1.92% | -1.22%
10 10 0.2 | 0.052% | 0.049% | 0.049% | -1.91% | -1.98% | -1.27%

Table 4.1: Estimating ¢ in the CIR-model using three different methods.
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Figure 8: Bias in % for different dt.

k=01,60=1,0=0.1

dt ¢ Oq1/0 | Oqv2/0 | Omi/O

0.1s | 1.254 | 1.000 | 0.9991 | 1.000

1s | 1.254 | 1.000 | 0.9992 | 1.000

5s | 1.253 | 1.000 | 0.9990 | 1.000

15s | 1.253 | 1.001 | 0.9995 | 1.001

Im | 1.254 | 0.9998 | 0.9988 | 1.000

Sm | 1.255 | 0.9992 | 0.9983 | 1.000

15m | 1.258 | 0.9969 | 0.9959 | 0.9986

30m | 1.260 | 0.9948 | 0.9937 | 0.9975

1h | 1.268 | 0.9887 | 0.9879 | 0.9934

2h | 1.281 | 0.9786 | 0.9778 | 0.9869

4h | 1.310 | 0.9572 | 0.9573 | 0.9731

6.5h | 1.345 | 0.9322 | 0.9329 | 0.9565

13h | 1.436 | 0.8732 | 0.8755 | 0.9157

Table 4.2: Time dependence of bias.
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5 The Heston model

The Heston model is named after Steven Heston who 1993 introduced the
model, Heston(1993, [12]). The model is a two factor model. It is a diffusion
model with stochastic volatility, where the volatility follows a CIR-process.
The importance of stochastic volatility is well known, and this is a strenght
of the model.

5.1 The model

In the Heston model we have that:

dvy = k(0 — vy)dt + &y/vd By (18)
Where
corr(dBY,dBY) = p (19)

in Mariani,Pacelli and Zirilli (2008, [14]) we find

1
dsy = (p — §Ut)dt + /v dB? (20)
dvy = k(0 — vy)dt + £/vid By (21)
with s; = log(S;/So), so = 0. That is Sy = 1 which is obtained by

scaling.
We have that

e ( is the long run mean variance
e ¢ is the volatility of the volatility
e £ is the mean reverting rate of v,
e i is the long run rate of return

Further p gives us a relationship between volatility and return rate. In
reality it is observed that when stock rises in value the volatility decreases
and as the value of stocks decreases volatility rises. This phenomena is taken
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into account by letting p be negative. As earlier, when studying the CIR-
process, we introduce the condition that 2x6/£% > 1 to ensure v; > 0.

Here /v, is the volatility process and the quantity that we are interested
in approximating. The volatility is stochastic and driven by the CIR-process
(18).

Thus the volatility is mean reverting, this phenomena is observed by Fouqe,
Papanicolao and Sircar(2000, [9]), when they studied the S&P 500 index. We
have that 6 and & are the two parameters that we are interested in studying.

We are also interested in finding the spot volatilities v;. By estimating the
spot volatilities we might get a time serie that approximates the volatility
process (18). If the approximation shares volatility properties with the pro-
cess (17) it might be possible to estimate the parameter &.

There is an apparent connection between the Heston model and the geo-
metrical Brownian motion, and if £ = 0 in the volatility process we again
have a non-stochastic volatility model that is the GBM ( using vy = #). The
bigger ¢ the bigger deviations from the GBM we expect.

5.2 Modeling

When modeling we use the discretization proposed by Andersen (2008, [2])
A A 1
In Sti+1 =In St — §ﬁt+Ai + VvV ’l}tJrZS\/ Az (22)

ﬁti+1 = @ti + ’K‘:(e - ﬁt+)A’i + 5 \/ @t—:Z’U V AZ (23>

we have that 0t = max(v,0). Further Zg and Z, have correlation p. This
can be modeled by letting Z;, Z, be independent variables from the standard
normal distribution and the letting 7, = Z; and Zg = pZ; + /1 — p*Z3.We

5.3 Volatility Heston

If we assume vy is constant equal to vy, over the interval [to, t,] then the pro-
cess is approximated as a GBM over each interval. We make this assumption,
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dividing the the time interval studied into small subintervals and use moving
average.

Using the same approach as in GBM with quadratic variation we can es-
timate vy, with the estimator

n

R 1 2

Vg, = @ ;(Sti-u - Sti) (24>
Theorem 5.1. Castilla(2006, [6]): There is a strong solution for the Heston
model.

From equation (20) we see that dz is uniquely defined from v;. We can
apply lemma 2.1, this gives

IR 2 25

Uy = @ Z(Sti+l - Sti) ( )

i=1

We find that these two estimators are the same! Applying theorem 5.1
gives that this is an consistent estimator of the spot volatility.

Using this method we can calculate the volatility over the intervals
studied, but we don’t get a value of the volatility parameter §. We have
that as t — oo (v1 + ...+ vy_1 + v,)/n— > 0. This gives that 6 can be
approximated using big values of n and T.

The long run mean of v, is 0, though simulations show that this might
converge slowly and intraday observations might not be enough to find good
estimations of 6.

Another way to motivate the approach taken is that the expected quadratic
variation of the Heston model, details given by Itkin and Carr(2010, [13]), is

E(l/Tvdt)—HJr(v _ploe (26)
T/), " 0 KT
with:
lim 6 + ( —0)1_6*”— (27)
750 o T ar
and:
lim 4 ploc ™ g 28
Am + (v — )T = (28)
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and further

Elv] =46 (29)

The second limit implies that we can estimate 6 by looking at as long time
frames as possible and the first limit motivates us to look at short time in-
tervals when estimating spot volatility, that is we use the method moving
average. From equation (26) and (27) we draw the conclusion that the pos-
sibilities to estimate 6 increases as k increases. We also expect the bigger &,
the harder it is to estimate the spot volatility.

We do not find a maximum likelihood estimator for 6, the use of maxi-
mum likelihood is a hard optimization problem and in the literature we only
find maximum likelihood methods that is applied on option data or a mix of
option and stock data instead of just stock data.

Another concern might be to approximate the volatility parameter in
the underlying CIR-process, that is the volatility of the volatility. From
the simulations for the CIR-process we know that this parameter can be
estimated with good precision if we have data from the process. The problem
is though that we don’t have data from the volatility process. So to take the
same approach as earlier we first have to use our data to find approximate
data for the underlying CIR-process and then use these data for further
approximations.

5.4 Results

5.4.1 Estimating # and approximating the volatility process

In table 5.1 we compare the possibilities of approximating v,. First we use the
mean value U as estimator and secondly we use moving average and realized
variance as estimator (0).

In table 5.2 we see an example of the theoretical possibilities to esti-
mate 0 for different parameter values. First, we by long simulations find a
distribution of vy. The expected variance of the volatility is, as time tends
to infinity : 6£2/(2k), so the variance isn’t diverging to infinity as in the
GBM case, this is due to the mean-reverting property. This property makes
it reasonable that we can find a good approximate distribution of v, using
long simulations.

Then the expected value of (% fOT vgdt) using the distribution of vy found
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Mean deviation from v, for two approximators

mean|v — 0| | mean|v — 0| | £ K 7 T | dt
0.547 0.185 0.01 | 1 |0.01% | 10m | 15s
0.113 0.178 0.002 | 1 |0.01% | 10m | 15s
0.0569 0.174 0.002 | 1 |0.02% | 10m | 15s
0.0208 0.176 0.002 | 1 |0.05% | 10m | 15s
0.0101 0.176 0.002 | 1 | 0.1 | 10m | 15s
0.484 0.180 0.02 | 1 |0.02%2 | 10m | 15s
0.208 0.176 0.02 | 1 |0.05% | 10m | 15s
0.102 0.175 002 | 1 | 0.12 | 10m | 15s
0.491 0.179 0.1 1| 0.12 | 10m | 15s
0.036 0.176 0.002 | 10 | 0.01% | 10m | 15s
0.0176 0.175 0.002 | 10 | 0.02% | 10m | 15s
0.0071 0.176 0.002 | 10 | 0.05% | 10m | 15s
0.00354 0.175 0.002 | 10 | 0.1 | 10m | 15s
0.349 0.192 0.02 | 10| 0.01% | 10m | 15s
0.176 0.180 0.02 | 10 | 0.02% | 10m | 15s
0.071 0.176 0.02 | 10| 0.05% | 10m | 15s
0.035 0.175 0.02 | 10 | 0.1 | 10m | 15s
0.347 0.193 0.1 |10 0.05* | 10m | 15s
0.175 0.179 0.1 [ 10| 0.1 | 10m | 15s

Table 5.1: Approximate v; comparing moving average and mean of process.
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Estimating 6

E{|0 - 0,1}/0 | E{|0 —Orv[}/0 | v | 6 €

0 0.147 0.5 | 0.05* 0
0.0793 0.162 0.5 | 0.05% | 0.005
0.160 0.209 0.5 ] 0.05% | 0.01
0.308 0.339 0.5 | 0.05% | 0.02
0.441 0.468 0.5 0.05% | 0.03
0.608 0.618 0.5 ] 0.05% | 0.04

0 0.143 2 | 0.05? 0
0.0779 0.165 2 10.05% | 0.01
0.230 0.270 2 10.05% | 0.03
0.372 0.398 2 10.05% | 0.05
0.534 0.548 2 |0.05% | 0.07
0.639 0.657 2 | 0.05% | 0.09

0 0.142 0.5 | 0.02? 0
0.194 0.242 0.5 | 0.02% | 0.005
0.387 0.407 0.5 ] 0.022 | 0.01
0.552 0.566 0.5 ] 0.02% | 0.015

0 0.144 2 10.02° 0
0.198 0.244 2 10.02%2 | 0.01
0.380 0.409 2 10.022 | 0.02
0.551 0.577 2 10.02% | 0.02

Table 5.2: Estimating # for 1 hour of observations and dt=1 min.
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from simulations and equation (26) is estimated. The expected absolute value
of the bias is presented in table 5.2 together with the bias/f and the quadratic
error of the spot volatility using first quadratic variation as estimator and
secondly the calculated mean value of the volatility. As expected, a larger
¢ makes the first method more beneficial for calculating spot volatility. We
also notice that smaller values of £ gives smaller errors when estimating 6.
In the table we can see theoretical values of how good # can be estimated
using quadratic variation, and one hour of observations.

5.4.2 Estimating ¢ for simulated data

We here use dt = 1s, this to improve the estimations, and five minutes of ob-
servation to approximate v; and then use every 4 value in v; to find &, which
gives us 4 time series. This is done to reduce the influence of the random
deviations for our estimated time serie of v;. This bias reducing method is
mentioned in subsection 3.3.2.

Remember that the influence of the random error decreases as the in-
terval used increases, and even though the approximated process is closed to
the true process, in mean, this does not neccecarily give that the approximate
process have the same variance properties as the real process.

In table 5.3 we see the results from estimations of £&. As we can se the
method used and choices of dt and interval length is suitable when x and &
is large, else we have heavily biased estimations. If £ is small, it’s necessarily
for 0 to be small aswell for the estimations to have small bias. As we can see
estimations of &, with the parameter values chosen, are in general not very
satisfactory.

5.4.3 Estimating ¢ for stock data

The data we use when estimating £ for stocks are not equally apart in time
and the mean value of dt is bigger than 1.5 seconds for the studied time-series.
We have studied 10 different time-series of length one day. The estimated
values of ¢ for the different time series lays within the interval [0.0005, 0.005]
and for these series # is within the interval [0.01,0.025]. From the results
found from simulations we see that for ¢ and £ in the given intervals the
estimations are likely to be heavily biased, with estimations being too high.
Another unfortunate result is that the estimations of & vary significantly
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Vo |k € £ sd(€)/€ | (bias)/€ || VO | v | & £ sd(€)/¢€ | (bias)/€
0.01 | 50 | 0.001 | 0.0070 | 0.155 602% 0.01 |5 0.03 | 0.0362 | 0.0385 | 20.6%
0.01 | 50 | 0.005 | 0.0079 | 0.0447 | 58.1% 0.03 |5 0.001 | 0.0218 | 0.472 366%
0.01 | 50 | 0.01 | 0.0102 | 0.0217 | 1.88% 0.03 | 5 0.005 | 0.0233 | 0.116 208%
0.01 | 50 | 0.02 | 0.0156 | 0.0244 | -22.1% 0.03 |5 0.01 | 0.0242 | 0.054 142%
0.01 | 50 | 0.03 | 0.0232 | 0.0169 | -22.4% 0.03 |5 0.03 | 0.0435 | 0.0351 | 45.1%
0.01 | 50 | 0.04 | 0.0295 | 0.0326 | -26.1% 0.03 | 5 0.05 | 0.0686 | 0.0341 | 37.2%
0.01 | 50 | 0.05 | 0.0396 | 0.0258 | -26.1% 0.03 |5 0.08 | 0.109 | 0.230 36.4%
0.01 | 50 | 0.08 | 0.0530 | 0.0216 |-33.7% 0.05 |5 0.005 | 0.035 | 0.161 602%
0.03 | 50 | 0.005 | 0.0215 | 0.0913 | 331% 0.05 |5 0.01 | 0.0390 | 0.104 290%
0.03 | 50 | 0.01 | 0.0224 | 0.0378 | 124% 0.05 |5 0.03 | 0.0514 | 0.0414 | 71.4%
0.03 | 50 | 0.03 | 0.0314 | 0.0231 | 4.82% 0.05 |5 0.05 | 0.0710 | 0.0316 | 41.9%
0.03 | 50 | 0.05 | 0.0441 | 0.0240 | -11.7% 0.05 |5 0.08 | 0.111 | 0.0503 | 38.4%
0.03 | 50 | 0.08 | 0.0615 | 0.0191 | -23.2% 0.05 |5 0.15 | 0.187 | 0.0420 | 24.9%
0.03 50015 |0.118 | 0.0263 |-20.8% 0.01 | 0.5 | 0.001 | 0.0072 | 0.132 616%
0.05 | 50 | 0.01 | 0.0363 | 0.0664 | 263% 0.01 | 0.5 | 0.005 | 0.0096 | 0.0487 | 92.1%
0.05 | 50 | 0.03 | 0.0418 | 0.0299 | 39.2% 0.01 | 0.5 | 0.009 | 0.0137 | 0.0679 | 52.1%
0.05 | 50 | 0.05 | 0.0517 | 0.0232 | 3.33% 0.03 | 0.5 | 0.001 | 0.0208 | 19.8 1950%
0.05 | 50 | 0.08 | 0.0705 | 0.0131 | -11.8% 0.03 |1 0.5 |0.01 | 0.0261 | 0.111 161%
0.05 | 50| 0.15 | 0.117 |0.0192 | -22.2% 0.03 | 0.5 | 0.02 | 0.0333 | 0.0660 | 66.8%
0.01 |5 | 0.001 | 0.0075 | 0.148 647% 0.05 | 0.5 | 0.005 | 0.0344 | 0.109 589%
0.01 | 5 | 0.005 | 0.0088 | 0.0539 | 76.5% 0.0510.5|0.01 |0.0374 | 0.139 274%
0.01 |5 |0.01 |0.0135]0.0370 | 35.3% 0.05 | 0.5 | 0.03 | 0.0544 | 0.0699 | 81.4%
0.01 |5 |0.02 |0.0250 | 0.0409 | 24.4% 0.05 | 0.5 | 0.045 | 0.0689 | 0.0501 | 53.1%

Table 5.3: Estimating £ (volatility of volatility)
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when we change the number of values used when applying moving average.
¢ might appear small, but we have to remember that the spot volatility of
the volatility process is not &, but /\/v;. A typical value of \/v; is 0.02. If
¢ is in the interval values of £ for the different time series lays within the
interval [0.0005, 0.005], as our estimations indicates, this gives a volatility of
volatility in the interval [0.0005/0.02,0.005/0.02] = [0.025,0.25]. Futher, this
indicates a high volatility of the volatility, even though these values probably,
from results of simulations, are big overestimations.

The results from estimating £ are also compared with results of estimating &
for simulated geometrical Brownian motions (¢ = 0), using matching values
of observation times and of parameter values for the moving average, with
volatilities being equal to the volatilities (0) estimated for the real time-series
used. The estimations of £ for these simulated geometrical Brownian motions
are often only 2 — 20% of the estimations for the corresponding time-series
for the stocks. This indicates that we don’t have a constant volatility, which
contradicts the assumption in the GBM model of constant volatility.

In figure 9 we see an example of estimated volatility process for real stock
data. The corresponding time serie is used to estimate the volatility of volatil-

ity.

40



Volatility

0.010 0.030
I

| | | | | |
00 02 04 06 08 10

Time

Figure 9: Estimated volatility of Facebook 30th October 2013.
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6 Discussion

As we expected realized variance is useful when estimating volatility param-
eters, but if one wants to approximate the volatility process efficiently one
must find a method to choose timescale wisely.

When analyzing high frequency data from geometrical Brownian motions
we find effects on bias for discrete data. In our simulations we don’t take
into account is that in reality stocks aren’t traded with constant frequency.
Making time steps random is one way to make further analysis, and also take
into account that it’s not only the value of stocks that are discrete for real
time serie data but also the trading times. Further, if time steps are random
then we can not use bias-correction as proposed in algorithm 1.

In the CIR-model we found a bias of our first estimator the we could not
explain, to do this is a future challenge. In the Heston model, when estimat-
ing the volatility of volatility-parameter, there are great possibilities to refine
the methods we use. The time scale we use in our moving average could be
customized and changed, based on estimations and the the way we use the
pre-bias removal should also be refined.

42



7 Conclusions

Firstly we found that realized variance is useful even when data is low fre-
quent. After that we analyzed the micro economic effects of data being
discrete and also found a way to remove the bias, under the assumption of
data being equally apart in time. We found that realized variance and max-
imum likelihood as methods were almost equally good, both in respect for
variance of the estimations and bias.

When approximating the volatility process for the Cir-process we saw that
the spot volatility is only dependent on the volatility parameter and the value
of the process. The value of the process is known at discrete times, which
gave that estimating the volatility parameter was the challange we had. We
used three different approaches to estimate the volatility parameter, the re-
alized variance method, corresponding to the realized variance method used
in the Brownian motion case gave a bias, but we could successfully remove
it. We also used another approach, with a weighted realized variance that
was about as good, but with lower bias. The best method was the quasi-
maximum likelihood method, but the realized variance method was almost
as good.

In the Heston model we had three different challenge’s: to approximate the
volatility process, to estimate the volatility parameter and finally to estimate
the volatility of the volatility parmater. We found that, with data being high
frequent and with a good choice of time scale when using moving average,
our estimator of the process was better than using the mean as estimator,
in a squared error sense. Secondly we found that estimating the volatility
parameter with realized variance, is possible, if we study the process over a
long time. The volatility of the volatility was even harder and under most
circumstances our estimations were not very good. We found that for small
values of the volatility of volatility parameter our estimations would be to
high. When analyzing real time serie data our estimations gave small values
of the volatiity of volatility parameter. This gave that the estimator used
was not good enough to estimate the parameter, but the estimations could
be used to find an upper limit of the parameter value. We also draw the
conclusion that the volatility were in fact varying and not constant as in our
first model.
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