CHALMERS | GOTEBORG UNIVERSITY

MASTER’S THESIS

Stepsize Controlled Schemes
for Diffusions exhibiting
Volatility Induced Stationarity

RICKARD KJELLIN

Department of Mathematical Statistics
CHALMERS UNIVERSITY OF TECHNOLOGY
GOTEBORG UNIVERSITY

Goteborg, Sweden 2005






Thesis for the Degree of Master of Science (20 credits)

Stepsize Controlled Schemes for Diffusions

exhibiting Volatility Induced Stationarity

Rickard Kjellin

CHALMERS ‘ GOTEBORG UNIVERSITY

Department of Mathematical Statistics
Chalmers University of Technology and Goteborg University
SE — 41296 Goteborg, Sweden
Goteborg, September 2005






STEPSIZE CONTROLLED SCHEMES

for diffusions exhibiting volatility induced stationarity

Rickard Kjellin

September 4, 2005



Abstract

This thesis investigates two types of adaptive numerical integration scheme for certain
stochastic differential equations exhibiting volatility induced stationarity. One is a simple
scheme restricting the step length based on the magnitude of the current process value.
The other uses Brownian path interpolation. It is indicated by empirical studies that
the stochastic differential equation underlying the CKLS model can be numerically solved
using the first type of scheme. The second type of scheme seems not to work for these
types of problems.



Acknowledgements

First I thank Professor Patrik Albin for being the best supervisor a student could ever ask
for. Without all the help you have generously given, this thesis would not have come to
be. I would also like to thank Anders Muszta for helping me and answering questions I
have had concerning numerical stochastic calculus and Christian Larsson for much needed
help with computer matters and programming difficulties. I also thank Mattias Bengtsson
and Johan Tykesson who, together with Prof. Patrik Albin, superbly introduced me to
the field of stochastic calculus. In addition I thank my girlfriend, family and friends for
the support they have given during the many hours ploughed into this work.



Contents

1 Introduction

2 Theoretical foundations

2.1 Mathematical preliminaries and notation . . . . . . ... ... ... ....

2.2 Numerical integration of stochastic
differential equations . . . . . . .. ..o

2.2.1
2.2.2
2.2.3
224

Equidistant first order schemes . . . . . . ... ... ... .. ...
Higher order, explicit schemes . . . . . . . .. . ... ... ... ..
Implicit first order schemes . . . . . . . .. . ... ... L.

Stepsize controlled schemes . . . . . ... ... ... ... ... ..

2.3 Volatility Induced Stationarity . . . . . . . . . . ..o

2.3.1
2.3.2
2.3.3
2.34

Numerical integration of VIS diffusions . . . . . . . ... ... ...
The CKLS model . . . . . . .. ... .. .. ..
The Hyperbolic model . . . . . .. . ... oo 000
Heavy-tailed diffusion . . . . . . . . . ... ... ... ... .....

3 Stepsize controlled schemes

3.1 Simple scheme . . . . . . ...

3.1.1
3.1.2
3.1.3
3.1.4

The CKLS model . . . . . . .. ... . . ...
The Hyperbolic model . . . . . .. .. ... ... ... .......
Heavy-tailed diffusion . . . . . . . ... ... ... L.

Empirical test of convergence rates . . . . . . ... ... ... ..

D

O O © oo N 3

10
10
11
13



3.1.5  Empirical test for stationarity . . . . . ... ... ... .. 18

3.2 Brownian refinement scheme . . . . .. ... 20
3.2.1 Interpolation of Brownian motion . . . . . . ... .. ... ..... 21

3.2.2 Implementation . . . . . . ... ... 22

3.2.3 Performance . . . . . . ... 22

4 Concluding discussion 23
A Code 26
A.1 Matlab routines . . . . . . ... 26
A.1.1 Explicit 1.5 order scheme . . . . . . . .. ... L. 26

A.1.2 Global interpolation of Brownian motion . . . . . .. .. ... ... 27

A2 CH+routines . . . . . . oL 28
A2.1 Simplescheme . . . . . . ... Lo 29

A.2.2 Brownian refinement scheme . . . . . . ... ... 37



Chapter 1

Introduction

In this thesis we present three different stochastic differential equations whose solution
exhibits a special property denoted volatility induced stationarity. These types of equa-
tions are notoriously difficult to numerically integrate with standard methods due to their
volatile behaviour. The aim of the thesis is thus to investigate special types of numerical
schemes that can handle this behaviour. Two different schemes are presented, both being
so called adaptive schemes. The idea is to discretize the stochastic differential equations on
an uneven spaced time grid such that the accuracy is improved during periods of increased
volatility.

In the first part of the thesis, the necessary background on standard numerical solution
methods for stochastic differential equations is introduced together with an overview of
the three diffusions the thesis aims to provide appropriate numerical methods for. In the
second part two adaptive schemes are introduced and their performance is evaluated.



Chapter 2

Theoretical foundations

2.1 Mathematical preliminaries and notation

Throughout the thesis a filtered probability space (€2, §, {S: }ier, P), is assumed. All models
are driven by a scalar, standard Brownian motion B; started at zero. For a wealth of
information about Brownian motion processes as well as stochastic differential equations,
the reader is refered to [7].

Stochastic differential equations

The goal of the thesis is to find stable numerical schemes for the discretization of certain
stochastic differential equations. We work with equations of the type

AX, = p(X,)dt + o(X,)dB,. (2.1)

Is is important to recall that the notation above is merely a shorthand for the more rig-
oruous integral notation

X, = /Otu(Xs)ds + /Oto(Xs)st. (2.2)

We start the process at

Xy =, ( random variable measurable wrt. §.



2.2 Numerical integration of stochastic
differential equations

In order to obtain an approximate solution to a stochastic differential equation one natural
way to proceed is to use time stepping schemes similar to those used for discretizing ordi-
nary differential equations. In essence, one makes a Taylor expansion® of the diffusion at
a first time point and computes the approximate process value at a consecutive, choosen
point based on the Taylor expansion. In the next step one repeats the above scheme, but
now uses the approximated point as the center for the new Taylor expansion. Continuing
recursively, one build up the sample path point by point.

Finally, one ends up with a process, )?tn, defined on the choosen time points, approximating
the true solution X;, at those points. To make analysis of the schemes easier, the process
X, defined on the discrete set of points {t,}nexcz,, is modified by an extension of its
domain of definition to a subset of the real numbers by linear interpolation, making it a
continuous process.

2.2.1 Equidistant first order schemes

The most simple numerical schemes employs a low order Taylor expansion on an evenly
spaced grid of discretization time points. The so called Fuler-Maruyama scheme was first
proposed in [9] and is a stochastic version of the simple Euler time stepping method from
computational ordinary differential equations. Only terms up the the first order stochastic
terms are used.

Consider the case where we want to discretize equation (2.1) on the interval [0,7]. We
first determine the number of points, /N, to calculate and make an equidistant partition,
[y, of [0,T] in the following way

liy: O=ty<...<tp<tpp1 <...<ty=T (2.3)
T
Atk:tk_tk—lzﬁa kE{l,,N} (24)

The method uses a first order Taylor expansion and have the following formula
Xy =X 4 p(X)XY Aty + 0(X{)AB,,,, (2.5)
ABthrl = Btn+1 — Btn = 4/ Atk+1 X g, g ~ N(O, 1)

!The Brownian component of the equation calls for a stochastic variant of the usual Taylor expansion
called the Itd-Taylor expansion. Although technically different, the intuition behind them in the current
context is the same.




Convergence properties

A natural question when employing such a scheme as the Euler-Maruyama is whether the
obtained solution is a good approximation to the theoretical solution of the discretized
equation. Moreover, it is important to understand how the dicretization error is affected
by changes to the setup, such as making the partition finer or coarser. Since the number
of computations rises with finer partitions, ideally one would like to be able to balance the
demand for computational resources with the error tolerance in an efficient manner.

There exist many ways to measure the discretization error in the literature. One of the
more common measures, which allows for an easy analysis of the Fuler-Maruyama scheme
applied to a certain class of diffusions, is the £2-error,

=

L2-error = E
T7€[0,T]

sup | X, — XT|2] (2.6)

2.2.2 Higher order, explicit schemes

The Euler-Maruyama scheme only utilizes the first terms of the Taylor expansion. Higher
order schemes also truncates the expansion, but retains more terms for added accuracy
and faster convergence. In the thesis a 1.5 order scheme is used. We used the definition
of the 1.5 order scheme from [8]. Note that this version of the scheme requires p(z) and
o(x) to be differentiable. Letting AZ, ,, denote a double Ito integral, the scheme is of the
following form

XY =X 4 p(XY) Aty + 0(XY)AB,, + %a(xg Jo! (X 2.7)
FHXEOXEIAZy + 5 (X + 50X () ) Atk
(OO + 320N ) x (A Mt — AZ,.)

57 (XE) (OGO + (7 OF) x (G0, — B ) AB,
where
ABi,., = By, — Bi,., = V/Alpr1 x G,

1 1
AZy,,, = §At2f1 (gl + %92> :

Here G; and G5 are independent, standard normal variables.

8



2.2.3 Implicit first order schemes

With implicit schemes, one does not simply compute the Ito-Taylor expansion to extract
the process value for the next point. Instead of using the left interval endpoint in the
approximation of the stochastic integral (which renders the 1td integral in the limit), the
right endpoint is used. To ensure convergence to the Ito solution correction terms must be
embedded into the scheme. Using the same settings as for the explicit Fuler scheme, the
expression is of the form

Xth " N Aty + a(ng AB (2.8)

ABy,,, = Bi,y = Bioyy = VAU x G, G~ N(0,1).

— Xi\; + (,LL(XiXH) — U(XgLH)U/(XN

tn+1

Apparent from the formula, at each iteration a possibly nonlinear algebraic equation must
be solved. This is one disadvantage of the implicit types of schemes. The implicit schemes
are stable for a much larger class of stochastic differential equations and for greater step
lengths.

2.2.4 Stepsize controlled schemes

The schemes discussed so far have all been equidistant schemes, meaning that the time
interval have been partitioned evenly. This is a restriction that can be relaxed. Allowing
the step length to vary over the time interval can for example reduce the discretization
error and improve the convergence properties. Regulating the step length may be done by
using an adaptive scheme. In [8], the family of adaptive schemes shares the common trait
that the step length, At, 1, is determined based on the information in the filtration §;,.

2.3 Volatility Induced Stationarity

A number of stochastic processes has a property denoted wvolatility induced stationarity, or
VIS. This concerns the nature of the stochastic movements of the trajectory and gives the
processes an entirely different behaviour from stochastic differential equations without the
VIS property, which in some sense behaves like ordinary first order differential equations
under stochastic perturbations. Processes exhibiting VIS has a dispersion term, o(z), that
dominates the behaviour of the dynamics and actually forces the process into stationarity
under certain conditions. This is in contrast to other stationary diffusions, where it is the
drift term, pu(x), that gives the process its mean-reverting property. The notion of volatility
induced stationarity was introduced in [4]



2.3.1 Numerical integration of VIS diffusions

The special properties of the VIS diffusions makes numerical integration of the underlying
differential equations an especially tricky matter. It is evident (see [10]) that special tricks
has to be used to successfully make accurate discretizations of the sample paths.

The main problem with VIS models is that ordinary equidistant, explicit methods such as
scheme (2.5) fails, and is in fact transient, with positive probability no matter how small
step length is used. For a proof of the transcience of scheme (2.5), see [10].

Implicit schemes

One remedy for the instability issues is to employ an implicit numerical scheme. This has
been done with positive results in [10]. A problem with the implicit schemes is that they
seem to underestimate some of the characteristic properties of the models.

2.3.2 The CKLS model

One model exhibiting excessive VIS behaviour is the short rate-model proposed in [2] by
Chan, Koralyi, Longstaff and Sanders. Is is a generalization of the CIR model proposed
by Cox, Ingersoll and Ross in [3]. In differential notation the model obeys the following
stochastic differential equation

with
Xo=¢, E[¢]] < oo

See [10] for restrictions on the parameters. A typical trajectory started at X, = 1 (with
a = (=f) =0 =1and vy = 3) is shown in Figure 2.1. Depending on the parameter 7,
the trajectories are more or less spikey. The model is mean reverting and, as indicated
by the figure, has a stationary distribution. The mean-reversion stems both from the VIS
property and, depending on the parameters, the drift term. The stationary distribution is
proportional to speed measure given by (see [10])

m(z) 2 2a 192 23 99
S A S - - S v 21
" exp ( 21 27)30 02(2 — 2’7)36 (2.10)

10



2.6

241

2.2

process value

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time

Figure 2.1: CKLS trajectory

Electricity price time series

In the econometric modeling of time series from the electricity markets, certain peculiarities
are present. Because of the seasonal demand, a cyclical trend is often notised. There also
seem to be a strong reversion to some mean level. It is also a fact that the price trajectories
often exhibit a spikey behaviour. For more of the characteristics of electricity prices, see
[6]. Tt is proposed that such time series, void of their cyclical trends, could be modeled by
the CKLS model using a high value for ~.

2.3.3 The Hyperbolic model

The Hyperbolic diffusion model is discussed in [1] as a model proposed for stock prices.
The underlying stochastic differential equation is of the form

dX; :aexp{% (a\/52—|—(Xt—/z)2—ﬁ(Xt—u)>}dBt (2.11)

with

11



25

2k -
1.5F b
. |
g
% 05 ]
S
0 -
-05 1
-1F —
_15 Il Il Il Il Il Il Il Il Il
o o1 02 03 04 05 06 07 08 09 1
time
Figure 2.2: Hyperbolic trajectory
and
a>|3]>0,60>0, ueR. (2.12)

A typical trajectory is shown in Figure 2.2. It lacks much of the spikey characteristics
of the high-y CKLS trajectories. The stationary density for the model is, as the name
suggests, hyperbolic and has the following distribution function,

P(X: € A) = /A<72 exp{ <QW Bz — )}dx, (2.13)

assuming that & also follows the same distribution.

On 1.5 order simulations

In [1], it is claimed that the hyperbolic diffusions have been successfully discretized using
higher order explicit schemes. However, we have experienced instabilities using such a
scheme, even for very short step lengths. See the appendix for a Matlab routine showing
such behaviour.

12



Process value
w
T
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time

Figure 2.3: Heavy-tailed trajectory

2.3.4 Heavy-tailed diffusion

A class of diffusions discussed in [10] is the Heavy-tailed diffusions. They obey the following
stochastic differential equation

dX, = 3X¢dt + 3X}/*dB, (2.14)
with

1

Xo =&, & stricty positive and a < 3

The process lives on the positive halfline. Inspection of the trajectory in figure 2.3 reaveals

the characteristic aversion from the zero level. The trajectory spends considerably more
time at large values than typical high-y CKLS trajectories.

The stationary density is proportional to the speed measure given by

miz) _2

2
_ 2. ap 2 e 2.15
e 97 P (3a 1’ ) (2.15)

13



Chapter 3

Stepsize controlled schemes

This chapter describes two numerical schemes and gives an empirical analysis of their
application to the three diffusion models introduced in the last chapter.

3.1 Simple scheme

The first of the proposed step size controlled schemes is a simple modification of the
equidistant Fuler-Maruyama scheme. Since the CKLS model exhibits wild fluctuations
when the process inhabits higher values the obvious step size adaptation is to decrease the
step size proportional to the magnitude of the process. Therefore, we suggest the following
scheme

XY = XY+ (XN )XY Atygr + 0 (XD t0)AB,, ., (3.1)

~ A

Atpyy = ————, f(-) monotonous and increasing (3.2)
T+ (X))

AB, ., =Bi,. —B (3.3)

n*

In general one would add the term Keamin to the right hand side of (3.2), where Kieaimin
is some small constant corresponding to the minimum step length. This is to avoid the
algorithm from halting should the discretized process reach too large values and thereby
force the step length to zero because of truncation. On most computer systems, one
may extract the smallest floating point number the system can represent and use this as
minimum step length.

14



3.1.1 The CKLS model

The scheme tends to work fairly well for the CKLS model. For moderate parameter values
the method is both fast and stable. For a = (=) = 0 = 1 and v = 3 and f(z) = 2P,
p =~ 27, in equation 3.2, over 100000 runs, using a base step length of At = 278, has been
successfully made without any instability problems.

For more extreme values of v, it seems that the scheme also works well. With v = 40,
a=pf=0c=1and f(x)=2z%, over 500 consecutive runs were successfully made without
instability problems. A step length of At = 271 were used. When the process leaves
the center of its stationary distribution, it rises very fast to high levels, but the instanta-
neous decimation of the step length greatly lowers the probability for instability. The high
volatility quickly forces the process down towards the stationary level, increasing the step
length. This makes the scheme relatively fast.

The largest problems seems to be for v € [15,25]. Here the process stays at high levels
during longer periods of time, forcing down the step length to very small levels. This gives
a major speed hit, and the discretizations can go into an almost halted state, due to the
many calculations.

3.1.2 The Hyperbolic model

The scheme tends to not work well for the hyperbolic model. Using a monomial in equa-
tion 3.2 like for the CKLS model is not working. Instabilities then occur almost for ev-
ery trajectory. Taking into account the need for a steeper reduction in step length for
large, absolute process values, suitable functions include the exponential function. Using
f(z) = exp {zP}, the step length will be reduced in a very aggressive manner. This, how-
ever, did not prove to be sufficient to ensure stability. Using moderate step lengths, like
At = 2719 still generated a large proportion of unstable discretizations. Apart from the
risk of the discretization exploding in finite time, the scheme also displayed problem with
large jumps from positive to negative values and vice versa. Increasing the parameter p
to values larger than 1.5 made the scheme virtually unusable due to the small step lengths®.

Decreasing the base step length drastically, to values around At = 2720 and smaller, seems
to suppress most of these problems. There are however other problems, like computation
speed, that arises for such small step lengths.

!The memory demands of such discretizations on the unit interval were in several cases over 1 Gigabyte

15



3.1.3 Heavy-tailed diffusion

Integration of the heavy-tailed diffusion imposes two numerical problems. First there is
a risk for instability when the process is at high values. This trait is shared with both
the CKLS model and the hyperbolic model. Furthermore, when the schemes close in near
zero, there is a risk of instability if the scheme hits or crosses the zero boundary. In order
to cope with this type of instability, the scheme has to be somewhat modified. Ignoring
the risk of explosion, equation 3.2 is rewritten as

ﬁtkﬂ - Atk+1f(|XiZ|)a (3.4)
f(-) monotonous and increasing with f(0) = 0 for X;' < 1, and

Aty = A otherwise. (3.5)

This seems to be the trickiest model to discretize. Using moderate step lengths, A = 27V,
N € {8,...,16}, instability is highly probable if the scheme drops below 0.5.

Using smaller step lengths is a partial remedy. For the parameter a negative and close to
zero, even a very small step length, 2724 can not ensure stability. Starting the process at
a small value, for example Xy = 0.1, will lead to instability for a large proportion of the
discretizations.

However, for a = —10 and Xy = 1, over 50 consecutive trajectories has been simulated
without instability. This is probably due to the large upward force from the drift term
when the scheme drops below 1. It is indicated by repeated simulation that discretizations
using large negative values of a, a &~ —10, are less prone to instability than smaller negative
values in the approximate range a € [—4, ().

3.1.4 Empirical test of convergence rates
In order to assess the quality of the scheme, its convergence properties are investigated

by applying the scheme to an analytically solvable stochastic differential equation. The
simple example of Geometric Brownian Motion is chosen. It has the following form

dXt = /,LXtdt + O'XtdBt (36)
where

1, o € R.

16



0.4

equidistant EM
...... f(x) = x
0.35} : : A
- - —fx)=x
- = fx) =X
03F A
\3_
. 025 A\ A
<] )
5 R
: N
2 021 N A
3 \
S \\. .
? 015} V% A
NI
N
X
01t AR A
NN
NS
0.05} RS |
0 " 15

5
base step length, A, = 2P

Figure 3.1: Convergence rates

This equation has an analytic solution which can be derived using It6’s formula. For a
fixed initial value, Xy = x, the solution is

0.2

X, = X(0) exp {w i

it + aBt} , Bo=0 (3.7)

Now, as long as the Brownian motion is retained from the discretizations, the exact so-
lution can be computed and used as a reference. To this end, we discretized the equation
3.6 with Xy = 4 = ¢ = 1. The discretizations were performed on the unit interval with a
decreasing sequence of base step lengths, 274,275 ..., 271, For each stepsize, the absolute
SUpTemum error, supseo, 1 | Xs — X, is calculated for 100 trajectories and the mean of these
errors is shown in Figure 3.1. Starting with the unmodified Euler-Maruyama scheme, the
square of the error decreases linearly as predicted by the theory.

The adaptive scheme was employed using a monomial of increasing order in equation 3.2,
f(z) = 2P with p € {1,2,3}. We see that the error decreases approximately as for the
unmodified scheme. Also, the higher the order of the monomial, the lower the error. The
conclusion drawn from this test is that the scheme seems to converge to the true solution,
at least for easily discretized equations like the Geometric Brownian motion.

It should be noted though that since the solution on average behaves like an expontial, the

17



error of the adaptive scheme depends on the trend, a = (u — %) since the step length is

reduced for larger values. This makes it hard to make conclusions concerning the possible
error reductions from the adaptiveness in the case of general diffusions.

3.1.5 Empirical test for stationarity

In order to examine the stationary behaviour of the discretized solutions, the empirical
distribution functions of the discretized trajectories will be compared to the theoretical
stationary densities of the models. The test will be based on the Kolmogorov-Smirnoff
distance. For more information on the empirical distribution function and the Kolmogorov-
Smirnoff distance, see for instance [11]. The implementations were done by normalizing
the speed measures in Mathematica and then using numerical quadrature and the function
ecdf() in Matlab.

For the CKLS model, the absolute distance between the empirical and theoretical is shown
in Figure 3.2. The parameters used are « = f = 0 = 1 and v = 3. The trajectories
were started at Xg = 1. The empirical distribution function was calculated using 100000
trajectories. The Kolmogorov-Smirnoff distance is in this setup

K-S distanceckrs = 0.0065. (3.8)

We see that the difference between the theoretical and empirical stationary distribution is
at its largest for value around the stationary level. This seems to be systematic for various
parameters, although the cause is unknown.

For the hyperbolic model, the result is disappointing. Because of the demand for very short
step lengths, it unpractical to simulate more than 1000 trajectories. Even then, around 15
percent of the trajectories had to be discarded due to instabilities. The parameters used
are p =0,0 =0 =1, f = —1.5 and a = 2. The absolute value of the difference between
theoretical and empirical stationary distribution is shown in Figure 3.3. It is apparent that
the scheme display properties far from those of the theoretical model. The reason for this
is unknown. The Kolmogorov-Smirnoff distance is

K-S distancepyperbotic = 0.1844. (3.9)

Equally disappointing is the result for the heavy-tailed model. The analysis is done using
the parameter value a = —6. The process is started at Xy = 1 and 1000 trajectories
were discretized. There is no apparent connection between the theoretical and empirical
cumulative distribution functions as indicated by Figure 3.4. The Kolmogorov-Smirnoft
distance is

K-S distancegeayy-taited = 0.4432. (3.10)

18



x10~

Absolute distance, empirical and theoretical cdf

Figure 3.2: Comparison between theoretical and empirical CDF for the CKLS model

0.2

0.08 b

0.06 4

0.04 b

Absolute distance, empirical and theoretical cdf
=)
T
A

0.02 R

Figure 3.3: Comparison between theoretical and empirical CDF for the Hyperbolic model

19



0.45

0.4

0.351

0.251

0.151

0.1

Absolute distance, empirical and theoretical cdf

0.051

Figure 3.4: Comparison between theoretical and empirical CDF for the Heavy-tailed model

The results in this section is for the most part disappointing. The scheme seems to work
very well for the CKLS model, but not for the other two models. In the case of the
hyperbolic model, this might stem from the fact that the scheme is unable to resolve the
instabilities. Around 15 percent of the trajectories are unstable, which is an improvement
from the Euler-Maruyama scheme, but still not acceptable. For the heavy-tailed model,
the cause of the behaviour is unknown. No instabilities were noted during the simulations
for the analysis.

3.2 Brownian refinement scheme

The other adaptive scheme evaluated is slightly more advanced. It is based on Levy’s
construction of Brownian motion and utilizes a Brownian interpolation step to refine the
time interval partition.

20



0.6

— = — coarse BM, dt = o4
. _ 6
0.4k interpolated BM, dtim_ =2 i

Brownian motion

_0.8 Il Il Il Il Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

Figure 3.5: Interpolated Brownian motion

3.2.1 Interpolation of Brownian motion

Given a Brownian motion on the line with values on a discrete set of points, Ky, it is
easy to interpolate Brownian values for timepoints on a finer grid K, Ky C K;. Consider
the case where we have a two time points, —oo < s < t < oo, and a Brownian motion

with values B, and B; on those time points. Suppose now that we want to interpolate a
Brownian value on the time point § = t’T‘S Then, conditioning By on Bs and B;, By is

normally distributed with mean and variance given by

B, + B
u:# (3.11)
2
and
t—s
2
— 3.12
o 1 (3.12)

An example of such a refined trajectory is shown in Figure 3.5. Notice that the refined

Brownian motion coincides with the coarser trajectory on the coarser grid. For a proof
of the above, see [7]. A short program making such global refinements is found in the
appendix for added illustration.

21



3.2.2 Implementation
The idea of our proposed scheme is based upon the work of Gaines and Lyons in [5].

1. Simulate a Brownian motion of coarse resolution on the interval and store it a linked
list. Place the current position of the scheme at the beginning of the list, .

2. Starting from the current position, ¢,,, calculate the approximated process value for
the next time point, t,, using the Fuler-Maruyama scheme and the precomputed
Brownian value.

e [f the dispersion is smaller than some predetermined threshold, store the result
in the linked list and traverse the current position to that time point. Repeat
from step (2) in the algorithm to move forward down the list.

e [f the dispersion is larger than the threshold, insert a new time point halfway
in between the current position, £, and the next. Then use Brownian inter-
polation to interpolate a new Brownian value for this intermediate time point,
conditioned on the Brownian values for the two surrounding time points. Then
start over from step (2).

This way the scheme will behave like the ordinary Euler-Maruyama scheme when the pro-
cess remains in a neighborhood of the stationary level. During bursts of volatility though,
the scheme will start to cut the step lengths, trying to avoid instability. Understanding of
the scheme is greatly enhanced by inspecting the code in the appendix.

One drawback with the proposed algorithm is that the steplength for time point ¢, is not
included in the filtration, §,, at time ¢,. Therefor the scheme falls outside the definition
of adaptive schemes found in [8]. This is also unfortunate from the view of financial
applications, since it implies some degree of anticipative ability of making correct, short
term predictions of market data. This is probably not consistent with real world trading
situations.

3.2.3 Performance

The algorithm was implemented in C++4-. It seems like the scheme is unable to resolve the
difficulties connected with volatility induced stationarity. The scheme is useless for all but a
small fraction of the simulation runs as the scheme goes into endless loops, interpolating ad
infinitum. This behaviour was noted for all of the models. One possible remedy would be
to restrict the number of consecutive interpolation steps. This, however, led to instabilies
for all models. Balancing the threshold for the dispersion term was also impossible, giving
instabilities for large values and endless loops for smaller.

The conclusion is that this type of scheme does not work in the current context.

22



Chapter 4

Concluding discussion

For the CKLS model we may conclude that the simple adaptive scheme works fairly well.
Even taking into account speed considerations, the scheme is great improvement over the
equidistant, nonadaptive variants since rahter long step length may be used. The scheme
performs well for a wide range of parameter values, including very extreme values for the
parameter v. This property, we believe, makes the scheme a possible candidate when
modeling, for example, electricity spot rates by the CKLS model.

However, the proposed scheme is nowhere as suitable for the other two types of VIS diffusion
models, the hyperbolic diffusion model and the heavy-tailed diffusion model. The algorithm
is unable to resolve the instability issue without reducing the step length too much. The
analysis of the empirical stationary distributions of the models also revealed that the
discretizations had vastly different statistical properties than that of the theoretical models.

The second type of algorithm, while beautiful in idea, did not seem to work at all for us.
This is in contrast to the results presented in [5], where a similar scheme does work for
diffusions with drift and dispersion coefficients that satisfy various Lipschitz and Holder
conditions.

Possible extensions of the work made in this thesis is among other things a solid theoretical
analysis of the stability of the simple scheme applied to the CKLS model. An answer to
what is the minimum growth rate of the step length-reducing function in order to ensue
stability would make it possible to further optimize the execution speed.

23



Bibliography

1]

BiBBY, B., SORENSEN, M.,
‘A hyperbolic diffusion model for stock prices’,
Finance and Stochastics, 1, 25-41, 1997

Cuan, K., KorarLyl, G., LONGSTAFF, F. & SANDERS, A.,

‘An empirical comparison of alternative models of the short-term interest rate’,
Journal of Finance, 47(3), 1209-1227

Cox, J., INGErsoOLL, J. & RoOss, S.,
‘A theory if the term strutcure of interest rates’,
Econometrica, 53(3), 385-408

ConNLEY, T. G., HANSEN, L. P., LUTTMER, E. G. AND SCHEINKMAN, J. A.,
‘Short-term interest rates as subordinated diffusions’,
The review of Financial Studies, 10, 525-577, 1997

GAINES, J. G. AND Lyons, T. J.,
“Variable step size control in the numerical solution of stochastic differential equations’,

SIAM Journal of Applied Mathematics, 57(5), 1455-1484, 1997

GEMAN, H.,
‘Towards a European Market of Electricity: Spot and Derivatives Trading’,
http://www.iea.org/ (retrieved Jan 18, 2005)

KARrRATZAS, 1., SHREVE, S.,
‘Brownian motion and Stochastic Calculus’,
Springer, Berlin, 1991

KLOEDEN, P., PLATEN, E.,
‘Numerical Solution of Stochastic Differential Equations’
Springer, Berlin, 2000

MARUYAMA, G.,

‘Continuous Markov processes and stochastic equations’
Rend. Circolo Math. Palermo, 4, 48 — 90, 1955

24



[10] MuszTA, A., RICHTER, M., ALBIN, J. M. P. AND ASTRUP JENSEN,

‘On volatility induced stationarity for stochastic differential equations’,
Applied Probability Trust, 2005

[11] RADE, L., WESTERGREN, B.,

‘Mathematics Handbook for Science and Engineering BETA’,
Studentlitteratur, Lund, 1995

25



10

11

12

13

15

16

17

Appendix A

Code

A.1 Matlab routines

Below are some Matlab routines used in the thesis.

A.1.1 Explicit 1.5 order scheme

Here is Matlab routine showing instability for the Hyperbolic diffusion model using an
explicit 1.5 order scheme. Changing the seed for the random number generator may give

stable results.

explicitl5.m

% Explicit strong 1.5 order scheme for hyperbolic SDE

% by Rickard Kjellin 2005

% uses the definition 10.4.1 of strong 1.5 order scheme from
% Kloeden&Platen, Springer Verlag

% example seed which exhibits instability with sigma=beta=delta=mu=1,
% alpha=2: 100234433

randn(’state’,10056463)

sigma = 1; alpha = 2; delta = 1; mu = 1; beta = 1;

Xzero = 1; 7% problem parameters

-

T=1; N 2°8; dt = 1/N;

Ul = randn(1,N);

U2 = randn(1,N);

dW = sqrt(dt)=*Ul; % Brownian increments

dZ = 0.5%(dt"(3/2))*(U1l + (1/sqrt(dt))*U2); % multiple Ito integral
X = zeros(1,N); 7% preallocate for efficiency
Xtemp = Xzero;

26



18

19

20

21

22

23

24

25

26

27

28

29

30

10

12

13

14

15

16

17

19

20

21

for j = 1:N

% calculate various derivatives of the dispersion function

b = sigmaxexp(0.5*(alpha*sqrt(delta”2 + (Xtemp-mu)~2) - beta*(Xtemp-mu)));

bprim = bx(alphax (2*Xtemp-2+*mu)/(4*sqrt (delta”2+(Xtemp-mu) “2))-0.5%beta) ;

bbiss = b*(bprim~2 + alpha/(2*(alpha*sqrt(delta”2 + (Xtemp-mu)~2)) - ...
alphax* (2+*Xtemp-2*mu) "2/ (8% (sqrt (delta”2 + (Xtemp-mu)“~2))73)));

% compute the 1.5 order difference step

Xtemp = Xtemp + b*dW(j) + O0.5*bxbprim*(dW(j)~2-dt) + ... Euler terms
0.5%b"2*bbiss* (dW(j)*dt-dZ(j)) + ... High order terms
0.5%b* (b*bbiss + bprim~2)*(1/3*dW(j) "2-dt)*dW(j);

X(j) = Xtemp;

end

plot(0:dt: (1-dt) ,X);

A.1.2 Global interpolation of Brownian motion

This short Matlab function takes an n % 2 array, W,, as input argument, where the first
column is an increasing, equidistant sequence of time points and the second column is a
Brownian motion on those time points. The function returns an (2n — 1) * 2 array, W,,4;
consisting of the interpolated Brownian motion and a corresponding refined grid of time

points.

interpolate.m

% brownian interpolation
% by Rickard Kjellin, 2005

function Wint = interpolate(W)
dt = W(2,1) - W(1i,1);
W=w(,2);

% compute the conditional

% variance of the interpolating
% Brownian points

Varn = 0.25%dt;

% compute the conditional mean
% of the interpolating

% Brownian points

mun = 0.5%(W + circshift(W,1));
mun = mun(2:end) ;

% create the interpolating Brownian

% points
Wn = mun + sqrt(Varn)*randn(length(W)-1,1);

27



22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

% stretch out the original BM and
% insert the interpolating points
Wtemp = zeros(2*length(W)-1,1);
Wtemp(1:2:end) = W;

Wtemp (2:2:end-1) = Wn;

% create a new time grid
dtn = 1/(length(Wtemp)-1);
tn = (0:dtn:1)’;

% return the interpolated
% Brownian motion

Wint = [tn Wtemp];

end

A.2 C++ routines

All C++ programs were compiled using GCC/G++ 3.3 under both Linux and Apple OS
X. The random number generator used is a high quality open source generator found at
http://www.agner.org/random/.

The programs all read parameters from a textfile named config. The structure of the
config-file following form

config
% configuration file for CKLS VIS-simulation
alpha =1
beta =1
mu = 1
gamma = 3
initialval =1
power = 6
MinStep = 2
T = 100
N =10
seed = 0

To fit the code on the page some line breaks have been inserted. This is mostly in the
function headers. It is apparent from the syntax where the line breaks are.

28



A.2.1 Simple scheme

Below is the code for the simple scheme applied to the different diffusions. The overhead
code is approximately the same for the differenet schemes, so it will only be included for

the CKLS model.

Simple scheme for CKLS

Here is the code for the CKLS model discretization

simpleckls.cpp

10

11

12

13

14

15

16

17

18

20

21

22

23

24

25

26

27

28

29

30

31

32

33

// file and string streams, eg i/o
#include <iostream>

#include <fstream>

#include <sstream>

#include <string>

// linked lists
#include <list>
#include <stdlib.h>

// standard math functions
#include <math.h>

// needed to extract the machine precision for double

#include <limits.h>
#include <float.h>

// include for measuring execution speeds

#include <sys/time.h>

// uniform random
#include "randomc.h"
//#include "mersenne.cpp"

// nonuniform random
#include "stocc.h"
//#include "stocl.cpp"

using namespace std;

//Declare Classes
class ProcessData

{

29



34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

T

78

friend ostream &operator<<(ostream &, const ProcessData &);

public:
double x;
double y;

ProcessData();

ProcessData(const ProcessData &);
“ProcessData(){};

ProcessData &operator=(const ProcessData &rhs);
int operator==(const ProcessData &rhs) const;
int operator<(const ProcessData &rhs) const;

};

//Declare data structures
struct parameters

{
double
double
double
double
double
double

alpha;
beta;

mu;

gamma ;
initialval;
dt;

int power;
int MinStep;

int T;
int N;

//length of simulation interval
//defines maximum steplength by dt = T/(2°N)

int seed; //Seed for random number generators

};

[1177777777777777777777777777777777777777777/777/77/7777/7
//Declare function
bool init(parameters &param) ;

bool simulate(parameters &param, StochasticLibl &stochgen,
list<ProcessData> &Process);

bool difference(parameters &param, StochasticLibl &stochgen,
ProcessData &NewPoint, ProcessData &01dPoint);

bool cleanup(parameters &param, list<ProcessData> &Process);

[I17777777777777777777777777777777777777777777777777777

30



79

so bool init(parameters &param){

81 char peek; //parameter to read

82

s3  ifstream file("config"); //Open a filestream to config-file

84

85 string configline; //Declare a string for linereading from config-file
s  istringstream instream; //Create a string stream for reading from string
87

ss while(getline(file, configline))

89 {
90 instream.clear(); //clears the string stream
91 instream.str(configline); //use configline string as input

92
93 peek = instream.peek(); //Check the first character of the line

94 instream.ignore(15, ’=’); //skip to after equality sign
95

96 switch(peek) //set the parameter variables
97 {

98 case ’%’: //skip commenting lines
99 break;

100

101 case ’a’:

102 instream >> param.alpha;

103 break;

104

105 case ’b’:

106 instream >> param.beta;

107 break;

108

109 case ’'m’:

110 instream >> param.mu;

111 break;

112

113 case ’'g’:

114 instream >> param.gamma;

115 break;

116

117 case ’i’:

118 instream >> param.initialval;

119 break;

120

121 case ’T’:

122 instream >> param.T;

123 break;

31



124

125

126

127

128

129

130

131

132

133

134

135

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

154

155

156

157

159

160

161

162

164

165

166

167

168

case ’'p’:
instream >> param.power;
break;

case 'M’:
instream >> param.MinStep;
break;

case ’'N’:
instream >> param.N;
break;

case ’s’:
instream >> param.seed;
break;

default:
cout << "Error parsing config file. Peek found: " << peek << endl;
return(false);

}

configline.clear();

}
file.close();

if (param.seed == 0){
param.seed = time(0);
cout << "using random seed" << endl;

}

//calculate base steplength

param.dt = pow(static_cast<double> (2),static_cast<double> (-param.N));
cout << "base steplength: " << param.dt << endl;

return(true) ;

bool simulate(parameters &param, StochasticLibl &stochgen, list<ProcessData> &Process){
double minStep = pow(2.0,-param.MinStep);

ProcessData NewCurrentPoint; //create object for storing temporary points of process
ProcessData 0l1dCurrentPoint;

NewCurrentPoint.x = 0; //set X(0) = initialvalue

NewCurrentPoint.y = param.initialval;

Process.push_back(NewCurrentPoint); //add first coordinates to process

32



169

170

171

172

173

174

175

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

199

200

201

202

203

204

205

206

207

209

210

211

212

213

01dCurrentPoint = NewCurrentPoint;
double baseX = 0ldCurrentPoint.x;

double raknaUpp = double(param.T)/50.0;
double n = raknaUpp;
for (int i = 1; i <= 50; i++){
cout << "k";
}

cout << endl;

while (0ldCurrentPoint.x < param.T){
while (0ldCurrentPoint.x < n){
if (tdifference(param, stochgen, NewCurrentPoint, 0ldCurrentPoint)){
cout << "Strul med differensmotorn!" << endl;
return(false);
}
01dCurrentPoint = NewCurrentPoint;
if (NewCurrentPoint.x - baseX >= minStep){
Process.push_back(NewCurrentPoint) ;
baseX = 0ldCurrentPoint.x;
}
if (NewCurrentPoint.y != NewCurrentPoint.y){
cout << endl;
cout << "sorry, instability occured at " << 0ldCurrentPoint.x << endl;
exit(1);
}
}
cout << "*" << flush;
n = n + raknaUpp;
}
cout << endl;
return(true) ;

}

bool difference(parameters &param, StochasticLibl &stochgen,

ProcessData &NewPoint, ProcessData &01dPoint){

double stepsize = param.dt/(l+pow(01dPoint.y,param.power))

+ DBL_MIN; //determine local stepsize

double dB = sqrt(stepsize)*stochgen.Normal(0,1); //create the brownian increment

// Perform the finite difference calculation

NewPoint.y = 01dPoint.y + stepsizex(param.alpha+param.beta*01dPoint.y)
+ param.mu*pow(01ldPoint.y, param.gamma)*dB;

NewPoint.x = 0l1dPoint.x + stepsize;

return(true) ;

33



214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

254

255

256

257

258

bool cleanup(parameters &param, list<ProcessData> &Process){
list<ProcessData>::iterator i; //create iterator for traversing list
ofstream fileout("process.dat"); // open textfile for writing

fileout << "# Discretization of CKLS model" << endl;

fileout << "# Parameters used are " << endl;

fileout << "# alpha\t=\t" << param.alpha << endl;

fileout << "# beta\t=\t" << param.beta << endl;

fileout << "# mu\t=\t" << param.mu << endl;

fileout << "# gamma\t=\t" << param.gamma << endl;

fileout << "# initialvalue\t=\t" << param.initialval << endl;
fileout << "# power\t=\t" << param.power << endl;

fileout << "# mesh, N\t=\t" << param.N << endl;

fileout << "# seed\t=\t" << param.seed << endl;

i = Process.begin();
double x, y;
fileout.precision(30);
for(i=Process.begin(); i !'= Process.end(); ++i){
x = (*xi).x;
y = (xi).y;
fileout << x << "\t" << y << endl; // print data to file step by step
}

fileout.close();
Process.clear();
return(true);

111711771777/ 777777777777777/7777/777777777777777777777777/7777/777777
// Define Class Members
ProcessData: :ProcessData() // Constructor

{
x = 0;
y = 0;

ProcessData: :ProcessData(const ProcessData &copyin){
X = copyin.x;
y = copyin.y;

ostream &operator<<(ostream &output, const ProcessData &processdata)

34



259

261

262

263

264

265

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

289

290

291

292

294

295

296

297

299

300

301

302

303

output << processdata.x << ’ ’ << processdata.y << endl;
return output;

ProcessData& ProcessData: :operator=(const ProcessData &rhs)
{
this->x = rhs.x;
this->y
return *this;

rhs.y;

int ProcessData: :operator==(const ProcessData &rhs) const

{

if( this->x != rhs.x) return O;
if( this->y != rhs.y) return O;
return 1;

int ProcessData::operator<(const ProcessData &rhs) const

{
if ( this->x == rhs.x && this->y < rhs.y) return 1;
if( this—>x < rhs.x ) return 1;
return O;

list<ProcessData> sortIt( list<ProcessData>& L)

{
L.sort();
return L;

I11177777777777777777777777777777777777777777777777

int main (int argc, char *argv[]){
parameters param; //make instance of parameters structure
if ('init (param))
{
cout << "init failed..." << endl;
return(0) ;

}

cout << "alpha\t\t\t=\t" << param.alpha << endl;
cout << "beta\t\t\t=\t" << param.beta << endl;

35



304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

10

11

12

13

14

15

cout << "mu\t\t\t=\t" << param.mu << endl;

cout << "gammal\t\t\t=\t" << param.gamma << endl;

cout << "initialvalue\t\t=\t" << param.initialval << endl;
cout << "N\t\t\t=\t" << param.N << endl;

cout << "seed\t\t\t=\t" << param.seed << endl;

StochasticLibl stochgen(param.seed); //start random number generator
list<ProcessData> Process; //create doubly linked list

if (!simulate(param, stochgen, Process)){
cout << "Fel vid simulering" << endl;

}

if (!cleanup(param, Process)){
cout << "fel vid cleanup!" << endl;
}

return O;

Simple scheme for hyperbolic diffusion

Only the difference engine is shown for this program since the overall structure is similar
to the CKLS implementation.

simplehyper.cpp

// Hyperbolic diffusion

bool difference(parameters &param, StochasticLibl &stochgen,
ProcessData &NewPoint, ProcessData &01dPoint){
//determine local stepsize
double stepsize = param.dt/(exp(pow(fabs(01dPoint.y),param.power))) + DBL_MIN;
double dB = sqrt(stepsize)*stochgen.Normal(0,1); //create the brownian increment

// Perform the finite difference calculation

double kvadratRot = sqrt(pow(param.delta,2) + pow(0ldPoint.y - param.mu,2));
double exponent = param.alphak*kvadratRot - param.beta*(0l1dPoint.y - param.mu);
NewPoint.y = 01dPoint.y + param.sigma*exp(0.5*exponent)*dB;

NewPoint.x = 01dPoint.x + stepsize;

return(true) ;

36



10

11

12

13

14

15

16

17

18

19

20

21

10

11

Simple scheme for heavy-tailed diffusion

Only the difference engine is shown for this program since the overall structure is similar

to the CKLS implementation.

simpleheavy.cpp
// Heavytailed diffusion

bool difference(parameters &param, StochasticLibl &stochgen,
ProcessData &NewPoint, ProcessData &01dPoint){
double stepsize;
double gamma = 2/3;
if (01dPoint.y > 1){
stepsize = param.dt; //determine local stepsize

}
else{
stepsize = param.dt*pow(0ldPoint.y,param.power) + DBL_MIN; //determine local stepsize
}
double dB = sqrt(stepsize)*stochgen.Normal(0,1); //create the brownian increment

// Perform the finite difference calculation

NewPoint.y = 01dPoint.y + 3*stepsize*pow(0ldPoint.y,param.alpha)
+ 3*pow(01dPoint.y,gamma)*dB;

NewPoint.x = 0ldPoint.x + stepsize;

return(true) ;

A.2.2 Brownian refinement scheme
Below is the code for the interpolating scheme applied to the CKLS model.

refinementscheme.cpp

// file and string streams, eg i/o
#include <iostream>

#include <fstream>

#include <sstream>

#include <string>

// linked lists
#include <list>

#include <stdlib.h>

// standard math functions

37



12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

50

51

52

53

54

55

56

#include <math.h>

// needed to extract the machine precision for double
#include <limits.h>
#include <float.h>

// include for measuring execution speeds
#include <sys/time.h>

// uniform random
#include "randomc.h"
#include "mersenne.cpp"

// nonuniform random
#include "stocc.h"
#include "stocl.cpp"

using namespace std;

//Declare Classes
class ProcessData

{
friend ostream &operator<<(ostream &, const ProcessData &);
public:
double x;
double y;
double dB;
ProcessData() ;
ProcessData(const ProcessData &) ;
“ProcessData(){};
ProcessData &operator=(const ProcessData &rhs);
int operator==(const ProcessData &rhs) const;
int operator<(const ProcessData &rhs) const;
}

//Declare data structures
struct parameters

{

double alpha;

double beta;

double mu;

double gamma;

double initialval;

38



57 double dt;

58

59 int power;

60 int limit; //limit for abs(volatility) before stepsize reduction
61 int minStep;

62 int T; //length of simulation interval

63 int N; //defines maximum steplength by dt = T/(2°N)

64

65 int seed; //Seed for random number generators

66 };

67

os LIIII1T177777777777777777777777777777777777777777777777

6o //Declare function

70 bool init(parameters &param) ;

71

72 bool simulate(parameters &param, StochasticLibl &stochgen,

73 list<ProcessData> &Process);

74

75 bool difference(parameters &param, StochasticLibl &stochgen,

76 ProcessData &basePoint, ProcessData &nextPoint, ProcessData &newPoint);
7

7s  bool interpolate(StochasticLibl &stochgen, ProcessData &basePoint,
79 ProcessData &nextPoint, ProcessData &newPoint);

80

81 bool cleanup(parameters &param, list<ProcessData> &Process);

82

ss [///11777711717777777777777777717777777777777777/7777777

84

s5  bool init(parameters &param){

ss  char peek; //parameter to read

87

ss  ifstream file("config"); //Open a filestream to config-file

89

90 string configline; //Declare a string for linereading from config-file
91 istringstream instream; //Create a string stream for reading from string
92

93 while(getline(file, configline))

94 {
95 instream.clear(); //clears the string stream
96 instream.str(configline); //use configline string as input

97

98 peek = instream.peek(); //Check the first character of the line
99 instream.ignore(15, ’=’); //skip to after equality sign

100

101 switch(peek) //set the parameter variables

39



102

103

104

105

106

107

108

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

137

138

139

140

141

142

143

144

145

146

{

case %’ :
break;

case ’a’:
instream
break;

case ’b’:
instream
break;

case 'm’:
instream
break;

case ’g’:
instream
break;

case ’i’:
instream
break;

case ’p’:
instream
break;

case ’1’:
instream
break;

case 'M’:
instream
break;

case 'T’:
instream
break;

case ’N’:
instream

break;

case ’s’:

//skip commenting lines

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

param.

param.

param.

param.

param.

param.

param.

param.

param.

param.

alpha;

beta;

mu;

gamma ;

initialval;

power;

limit;

minStep;

40



147 instream >> param.seed;

148 break;

149

150 default:

151 cout << "Error parsing config file. Peek found: " << peek << endl;
152 return(false);

153 }

154 configline.clear();

155 }

156
157 file.close();

158

159 if (param.seed == 0){

160 param.seed = time(0);

161 cout << "using random seed" << endl;
162 }

163
164 //calculate base steplength
165 param.dt = pow(static_cast<double> (2),static_cast<double> (-param.N));

166 cout << "base steplength: " << param.dt << endl;
167 return(true);
168 }

169
170 bool simulate(parameters &param, StochasticLibl &stochgen, list<ProcessData> &Process){
171 ProcessData currentPoint;

172 currentPoint.x = 0;

173 currentPoint.y = param.initialval;

174 currentPoint.dB = O;

175 Process.push_back(currentPoint);

176

177 // calculate Brownian path of coarsest resolution

178 for (int refinelteration = 1; refinelteration < pow(2.0,param.N); refineIlteration++) {
179 currentPoint.y = O;

180 currentPoint.x = currentPoint.x + param.dt;

181 currentPoint.dB = sqrt(param.dt)*stochgen.Normal(0,1) + currentPoint.dB;
182 Process.push_back(currentPoint) ;

183 //cout << currentPoint.dB << " " << flush;

184 }

185 cout << "last x = " << currentPoint.x << endl << flush;

187 // create list iterator

188 list<ProcessData>::iterator location;
189  location = Process.begin();

190

191 ProcessData nextPoint;

41



192 ProcessData newPoint;

193 ProcessData basePoint = *location;
194  //cout << basePoint << endl;
195

196 // take a step forward

197 location++;

198 nextPoint = *location;

199 // cout << nextPoint << endl;
200

200 // main computing loop

202 int k = 0;

203 int n = 0;

200 while (nextPoint.x < param.T){

205 if (!difference(param, stochgen, basePoint, nextPoint, newPoint)){
206 // create interpolated point

207 interpolate(stochgen, basePoint, nextPoint, newPoint);

208 // add the point to list

209 location = Process.insert(location, newPoint);

210 // take a step back

211 nextPoint = *location;

212 k++;

213 n++;

214 }

215 else {

216 location = Process.erase(location); // erase old value and
217 Process.insert(location, newPoint); // replace with new calculation
218 //cout << basePoint.dB << " " << flush;

219

220 nextPoint = *location; // move forward

221 basePoint = newPoint; // move base forward

222 if (basePoint.y != basePoint.y){

223 cout << "max consecutive interpol: " << k << endl;

224 cout << "nr steps taken: " << n << endl;

225 cout << "we’re at x = " << basePoint.x << endl;

226 cout << "and y is: " << basePoint.y << endl;

227 cout << "instability!!" << endl;

228 exit(1);

229 }

230 n++;

231 }

232 3

233 cout << k << endl;
234 return(true);

235 }

236

42



237 bool difference(parameters &param, StochasticLibl &stochgen,

238 ProcessData &basePoint, ProcessData &nextPoint, ProcessData &newPoint){
230 // estimate size of diffusion term for next step

220 double diffusion = param.mu*pow(basePoint.y, param.gamma)*(nextPoint.dB-basePoint.dB);
241 double step = nextPoint.x - basePoint.x;

242 // cout << " " << nextPoint.x << flush;

243 double minStep = pow(2.0,-param.minStep);

244 if (abs(diffusion) > param.limit && (step > minStep)) //bail out if too large
245 {

246 return(false);

247}

248

220 // Perform the finite difference calculation

250 newPoint.y = basePoint.y + step#*(param.alpha+param.beta*basePoint.y) + diffusion;
251 newPoint.x = nextPoint.x;

252 newPoint.dB = nextPoint.dB;

253 return(true);

254 }

255

256 bool interpolate(StochasticLibl &stochgen, ProcessData &basePoint,

257 ProcessData &nextPoint, ProcessData &newPoint){

258  double mean = 0.5*(basePoint.dB + nextPoint.dB);

250  double variance = 0.25%(nextPoint.x - basePoint.x);

260 newPoint.x = basePoint.x + 0.5*(nextPoint.x - basePoint.x);

261 newPoint.dB = mean + sqrt(variance)*stochgen.Normal(0,1);

262 return(true) ;

263 }

264

265 bool cleanup(parameters &param, list<ProcessData> &Process){

266 list<ProcessData>::iterator i; //create iterator for traversing list

267 ofstream fileout("process.dat"); // open textfile for writing

268

269 fileout << "# Discretization of CKLS model" << endl;
270 fileout << "# Parameters used are " << endl;

271 fileout << "# alpha\t=\t" << param.alpha << endl;
272 fileout << "# beta\t=\t" << param.beta << endl;

273 fileout << "# mu\t=\t" << param.mu << endl;

274 fileout << "# gammal\t=\t" << param.gamma << endl;
275 fileout << "# initialvalue\t=\t" << param.initialval << endl;
276 fileout << "# power\t=\t" << param.power << endl;
277 fileout << "# limit\t=\t" << param.limit << endl;
278 fileout << "# mesh, N\t=\t" << param.N << endl;
279 fileout << "# seed\t=\t" << param.seed << endl;

280

251 1 = Process.begin();

43



282

284

285

286

287

288

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

double x, y;
fileout.precision(30);

for(i=Process.begin(); i !'= Process.end(); ++i){
x = (*xi).x;
y = (*x1i).y;

fileout << x << "\t" << y << endl; // print data to file step by step
}

fileout.close();
Process.clear();

}

1117117717777 7777777777777777777/7777777777777777777777/77/7777/777777
// Define Class Members
ProcessData: :ProcessData() // Constructor

{
x = 0;
y = 0;
dB = 0;
}
ProcessData: :ProcessData(const ProcessData &copyin)
{
X = copyin.x;
y = copyin.y;
dB = copyin.dB;
}

ostream &operator<<(ostream &output, const ProcessData &processdata)

{

output << processdata.x << ’ ’ << processdata.y << ’ ’ << processdata.dB << endl;
return output;
}
ProcessData& ProcessData: :operator=(const ProcessData &rhs)
{
this->x = rhs.x;
this->y = rhs.y;
this->dB = rhs.dB;
return *this;
}

int ProcessData::operator==(const ProcessData &rhs) const
{

if( this—>x != rhs.x) return O;

44



327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

362

363

364

365

366

367

368

369

370

371

if( this->y != rhs.y) return O;
if ( this—->dB !'= rhs.dB) return 0;

return 1;
}
int ProcessData::operator<(const ProcessData &rhs) const
{
if( this->x == rhs.x && this->y < rhs.y) return 1;
if ( this->x < rhs.x ) return 1;
return O;
}
list<ProcessData> sortIt( list<ProcessData>& L)
{
L.sort(); // Sort list
return L;
}

[I1777777777777777777777777777777777777177777777777

int main (int argc, char *argv[]){
parameters param; //make instance of parameters structure
if ('init(param))

{

cout << "init failed<< endl;

return(0) ;
}

cout << "alpha\t\t\t=\t" << param.alpha << endl;
cout << "beta\t\t\t=\t" << param.beta << endl;
cout << "mu\t\t\t=\t" << param.mu << endl;

cout << "gamma\t\t\t=\t" << param.gamma << endl;
cout << "initialvalue\t\t=\t" << param.initialval << endl;
cout << "N\t\t\t=\t" << param.N << endl;

cout << "seed\t\t\t=\t" << param.seed << endl;

StochasticLibl stochgen(param.seed); //start random number generator
list<ProcessData> Process; //create doubly linked list

if (!simulate(param, stochgen, Process)){
cout << "Fel vid simulering" << endl;

}

if (!cleanup(param, Process)){
cout << "fel vid cleanup!" << endl;

45



372

373

374

return O;

46



