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Preface

These notes should be accessible for mathematically interested students, with a know-
ledge about undergraduate probability (e.g., [17, Chapters 1-5 and 7]), together with
the most basic concepts of abstract Lebesgue integration (e.g., [34, pp. 5-25]). Knowl-
edge about discrete time martingales (e.g., [8, Sections 9.3-9.4]) helps, but makes quite
little difference. Same with elementary Markov theory (e.g., [17, Chapter 6]).

Stochastic Calculus is about manoeuvring around in the subject, with the help of
“proofs”, and one do not get there without reading such. On the other hand, tradi-
tional “state of the art” treatments of the subject (e.g., [22], [27], [31] and [33]) are too
difficult with the preparations graduate students have today, and something less harsh
is needed. The purpose of the notes is to present basic theory of Stochastic Calculus,
with proofs of almost all statements, and yet in an economical and accessible way,
with a minimum of technical details. But well worked out and explained such, and
with probabilistic rather than mathematical arguments, when there is a choice. All
proofs come with this focus, and are thus (close to) elementary.

Put simple, Stochastic Calculus concerns differentiating a stochastic process { X (¢)
H>o wrt. another {Y(¢)}1>0. However, X (¢) and Y (¢) need not be differentiable in
the usual sense (wrt. each other), and most often are not. The kind of process that
can be differentiated in Stochastic Calculus is a semimartingale, and is composed of
a process that is differentiable in the usual sense, together with a nondifferentiable
component, a local martingale. The latter are the fundamental objects of Stochastic
Calculus, and are introduced in Lecture 12. Preceeding lectures are preparatory. Lec-
tures 1-5 treat basic facts crucial in the sequel about variation of functions, conditional
expectations, Brownian motion and other Lévy processes, continuous time martin-
gales and Markov processes, and strong Markov property. Further such facts, espe-
cially regarding martingales, are introduced in later lectures, when needed. Stochas-
tic integrals are constructed in Lectures 6-11, and identified as local martingales in
Lecture 12. The development of Stochastic Calculus starts in Lecture 13.

Of the many state of the art treatments of Stochastic Calculus, [9], [21], [22], [27],
[33] and [36] have been our main sources of information. The need for Stochastic Cal-
culus in applications to for example Mathematical Finance (e.g., [23, Preface]), has
made non-technical knowledge of the subject desired (useful even), and inspired sev-

eral texts without (most of) proofs. Among such, we have been influenced by [25].
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1 First Lecture

1.1 Variation of Functions

Definition 1.1 A function g:[a,b]—R has finite variation over [a,b] CR, if

V, ([a, b)) Esup{i 9(t)—g(ti )| s a=to<t1 < ... <tn=b, neN} < .
- i=1

A function g¢:[0,00) =R has finite variation if Vy(t) = V,([0,t]) < oo for t>0.

A function g¢:[0,00) =R has bounded variation if lim,_,, V,(t) < oco.

*Remark 1.2' The space of functions g with V,([a,b]) < oo, equipped with the
norm ||g|| = Vy([a,b]), is the Banach space BV ([a,b]). By the Riesz Representation
Theorem, it can be indentified as the dual space to the space of continuous functions
g:[a,b] >R equipped with the supremum norm (e.g., [12, pp. 14-18]). #
EXERCISE 1 Show that

. n =to<ti<...<lp=0b
b)) =1 B)—g(ty): “fo<h L
Vallo, ) = imsup{ & lo(t) —(s )= T <0 0
Example 1.3 For a continuously differentiable function g:[a,b]—R, we have
t;
g(t)—g(ti_1) = / g'(t)dt = ¢' (1) (ti—ti_1) for some 7 €[t;_1,1].

ti—1

By the theory for the Riemann integral (and Riemann sums), it follows that
n n b
2 lg(t) —gti-)l =D _1g'(m)| (ti—tiz1) — / |g'(t)] dt
i=1 i=1 a

as max;<jc, ti—t;_; — 0. Hence Exercise 1 gives V,([a,0]) = [ |¢'(t)| dt < co. #

Theorem 1.4 A function has finite variation over a closed finite interval iff. it can
be expressed as the difference between two increasing® functions. A function has finite

variation iff. it can be expressed as the difference between two increasing functions.

Proof. The implication to the right follows writing g(t) = V,(t) — (V,(¢t)—g(t)). O

EXERCISE 2 Complete the proof of Theorem 1.4 by proving that V,—g is increa-
sing (clearly Vj is), and by giving the argument for the implication to the left.

1 Material that is not required for the understanding of subsequent material is marked with an asterisk *. Exercises
marked in this way are often more difficult than others as well.

2We use “positive” and “negative” in the non-strict sense. Same with “increasing” and “decreasing”.




For a function f with finite variation over [a,b] [finite variation], that is right-
continuous say, the Lebesgue-Stieltjes integral [,c(, 1 9(%) df (z) [[re[0,00)9(7) df (2)]
is well-defined. Here df (x) is the signed Stieltjes measure df (x) = df;(z)—df2(x), ob-
tained by representing f = fi—f> as the difference between two increasing functions,

that correspond to positive Stieltjes measures dfi(x) and dfa(z), respectively.

Corollary 1.5 A right-continuous function has finite variation over a closed finite
interval iff. it can be expressed as the difference between two right-continuous increas-
ing functions. A right-continuous function has finite variation iff. it can be expressed

as the difference between two right-continuous increasing functions.

EXERCISE 3 Show how Corollary 1.5 follows from Theorem 1.4.

Definition 1.6 A function g¢: (a,b) = R, —oo < a < b < oo, has a jump dis-
continuity at to € (a,b) if the limits limuy, g(t) and limgyy, g(t) exist, but are not
both equal to g(ty).

A function g:[a,b] >R has a jump discontinuity at a [b] if the limit lim,, g(%)

[limyy g(t)] exists, but is not equal to g(a) [g(b)].

Theorem 1.7 A function that has finite variation over a closed finite interval has
at most countable many discontinuities, all of which are jumps. A function that has

finite variation has at most countable many discontinuities, all of which are jumps.

Proof. The second statement follows from the first one, by considering subsequent
restrictions of the function to [0,n] for n=1,2,.... To prove the first statement,
notice that, since a function g with finite variation over [a, b] is the difference between
two increasing functions, it has limits from the left (except at a), and from the right
(except at b). Thus all discontinuities are jumps. These jumps are contained in

o0

U {te[a, b] : g has a jump at t with |g(¢tT)—g(t)|+]g(t)—g(t7)| > 1/n}

n=1
Since the sets that form this union are finite (because otherwise g would not have

finite variation), the union itself is a countable set. O

*EXERCISE 4 Give an example of a continuous function that does not have finite
variation over [0,1]. (Hint: Build a sequence of continuous functions that converges

to a continuous function, but for which the variation over [0,1] goes to oc.)




1.2 Quadratic Variation of Functions

Definition 1.8 The quadratic variation over [a,b]CR of a function g:[a,b]—R,

s given by the following limit, provided that the limit exists,

ME lim{éjl(g(ti)_g(ti_l))Q : a=ty<t1 < ...<t,=b }

’I'LGN, maxi<i<n ti—ti_1— 0

*Remark 1.9 The limit in Definition 1.8 exists iff., for each choice of a family

{{tEN) N -, of partitions a = t(()N) < th) < ... <t =b of [a,b], that satisfies
limy 00 MAX1<i<ny t,(N)—tz(I,\? = 0, we have convergence
ny
Jim 3 (g(#") —9(t"))* = [9)([a, ).
i=1

Equivalently, the limit exists, with value [g]([a,b]), iff. we have

: n =tp<ti<...<tp,=b
1 tZ - ti_ 2 : @ 0 ! " } = b
i s 2 (gt —gftia))? T =R = e,

and

N n =tg<t1 < ...<t,=0b
I f{ t)—gti))?: - h<h n
‘51&)1 i zé:l(g( Z) g( ' 1)) neN, maxi<i<n ti—ti_1= 0

b= lol(la.t). #

Definition 1.10 The covariation over [a,b]CR of the functions f,g:|a,b— R,

1s given by the following limit, provided that the limit exists,

[£:9((a,b]) = hm{ S (F(t)—f (i) (glt)—g(tiy)) s CTfoShi< - <la=b }

i=1 neN, maXi<i<n bi—ti—1— 0

Notice the trivial fact that [g]([a, b]) = [g, g]([a, b]).
We use the notation [g](t) = [¢]([0,t]) and [f,¢](¢) = [f, g](]0,]).

Theorem 1.11 For f € C([a,b]) = {(f:]a,b] = R) : f is continuous} and g

with finite variation over |a,b], we have [f,g]([a,b])=0.

EXERCISE 5 Prove Theorem 1.11.

Theorem 1.12 (POLARIZATION) If the covariations involved exist, we have

[f, 9] = %([Hg, f+9l=1f, 11— 9,9]) = i([f”rg, f+91—[f 9. f—d))-




EXERCISE 6 Prove Theorem 1.12. [Equip the space L of functions with well-
defined quadratic variation over [a,b], with the symmetric bilinear form given by the
covariation [-, -]([a,b]): Lx L—R. What is such a space called (e.g., [7, p. V.1])?]*

1.3 Probability and Independence

A o-algebra F is a non-empty family of subsets (called events) of a set <), that

is closed under the formation of intersections, complements and countable unions. A

mesurable space (2, F), is a set §) equipped with a o-algebra F (of subsets of ().

A probability measure P on a measurable space (2, F), is a positive measure on
F such that P(Q2)=1. A probability space (S, F,P) is a measurable space (2, F),
equipped with a probability measure P [on (2, F)].

A (R-valued) random variable [an R"-valued random variable] on a probability
space (2, F,P), is a measurable function X:Q—R [X:Q—R"], thatis, X '(B)
={weN: X(w)eB} € F for BeB(R) [BeB(R™)] (the Borel sets in R [R"]).

In the sequel, all random variables that appear are assumed to be defined on a
common probability space (2, F,P). All o-algebras that appear are assumed

to be contained in F, so that their events are assigned probabilities by P.

*It turns out that X = (Xi,...,X,) is an R"valued random variable, iff. each

of its components X, ..., X, are random variables (e.g., [34, p. 11]).

Definition 1.13 The o-algebra o(X) generated by an R™-valued random variable

X, is the smallest o-algebra on 2 that makes X :Q—R"™ measurable.

The o-algebra o(Gs: € A) generated by the o-algebras {Gu}aca 1is the smallest o-

algebra on ) that contains Uyeq Ga-

Definition 1.14 The o-algebras {Gu}aca are independent, if for each choice of

neN and oy,...,a, €A, we have
P{AN...NA,} =P{A}...P{A4,} for A1€Ga, .-, An€G,,-

The random variables {Xa}aca are independent if {0(X,)}aca are independent.

The o-algebra G [random wvariable X ] is independent of the o-algebras {Gu}aca if
G [0(X)] is independent of o(Gy:a€A).

Similarly, a o-algebra #H [a random variable X] is independent of a random
variable Y and a o-algebra G, if H [X] is independent of o(c(Y),G), etc.

The o-algebra o(G,:a€.A) consists of sets built by means of performing a count-




able number of set operations (unions, intersections and complements), involving a

countable number of members of J,c4 Go- This explains the following result:

Theorem 1.15  The family of o-algebras {Gq }aca is independent of the family of
o-algebras {Hgp}pess iff. for all n€N, oq,...,0, €A and By,..., [, €B, we have

P{(AiN...N4,) N (BiN...NB,)} = P{AiN...NA,} P{BiN...NB,}
for Ai1€Gy,,...,An€G,, and Bi€Hg,,...,B,€Hg,.

Theorem 1.16 (DyNkIN SysTEM LeEMMA) ([13, pp. 1-2])* Let C and D be

classes of subsets of a set S. Assume that C has the following two properties:
o C 1is closed under finite intersections;

o CCD.

We have o(C) CD provided that D is a Dynkin system, that is, provided that
o SeDy

o D>ACBeD = B—-AeD;

o {A,}2, CD are increasing = Uoo, A, CD.

*Proof of Theorem 1.15. Put G = 0(Gy:a€A) and H = o(Hp:3€B). Let

Cr={AiN...NAy: A1, Ay EUnen Ga, nEN}
Cy={BiN...NB,: By,..., By€Ugen Hg, nEN}

and

Dy = {A€G : P{ANB} =P{A} P{B} for all BEC,}
D, = {BeH : P{ANB} =P{A} P{B} for all AcG}

By construction, C; and C, are closed under finite intersections, while by hypothesis,
C1 CD;. Further, it is easy to check that D; is a Dynkin system (S=). Hence the
Dynkin System Lemma gives o(C1) CD;. However, o(C;)=G [since Ugeq Ga CCi],
and so P{ANB} = P{A}P{B} for A€ G and B €(,, that is C; C D,. Since
also D, is a Dynkin system, the Dynkin System Lemma gives o(Cs) C Do, where
0(Cy)="H. Consequently, P{ANB}=P{A}P{B} for AcG and BeH. O

*Remark 1.17 For an R"-valued random variable X = (X1,...,X,), we have
o(X) =0(o(X1),...,0(X,)). This follows from, and is equivalent with, the fact that

X is an R™-valued random variable iff. all its components are random variables. #




1.4 Mathematical Expectations and Conditional Expectations

The expectation of a positive random variable X is given by

E{X) = /Q XdP= [ X(w)dP(w) (which may be infinite).

weN
The expectation of a random variable X is E{X} =E{X*}-E{X "}, when at
least one of E{X*} and E{X "} are finite (z* =max{z,0} and z~ =max{—=z,0}).

EXERCISE 7 Construct a random variable X (w), w€(, such that E{X} = oo.

Theorem 1.18 Let X be a random wvariable with E{|X|} < co, and G a o-

algebra. There exists a G-measurable random variable Y such that

E{Y}<oco and E{IAX}z/AXsz/AYszE{IAY} for each A€G.

EXERCISE 8 Derive Theorem 1.18 from the Radon-Nikodym Theorem (e.g., [34,
pp. 129-130])*: If uy and po are finite signed measures on a measurable space (€2, G),
such that ui(A)=0 for all AcG with py(A)=0, then we have

ui(A) = / Adpo for each A€G, for some pp-integrable function X:Q—1R.
A

Definition 1.19 Let X be a random variable with E{|X|} < co, and G a o-
algebra. The conditional expectation of X wrt. G, is a G-measurable random vari-
able E{X |G} with E{\E{X|Q’}\} < 00, such that (cf. Theorem 1.18)

E{IAX}:/AXdP:/AE{X|g}dP:E{IAE{X|g}} for each A€g.

Though E{X|G} exists, by Theorem 1.18, it is not unique as a function of w €.
By basic measure theory (e.g., [34, p. 21])*, two versions of E{X|G}, that both
satisfy Definition 1.19, differ on a set of w’s in € of probability zero. Thus they are
equal almost surely (a.s.). When referring to E{X |G}, we mean any such version.
When stating that E{X|G} =Y, for some random variable Y, we mean that Y is
a version of E{X|G}, so that E{X|G} =Y satisfies Definition 1.19.

EXERCISE 9 Let X and Y be random variables with E{|X|}, E{|Y]|} < oo,
and G an o-algebra. Show that

E{aX+0Y|G} = a E{X|G} + bE{Y|G} for constants a,beR |,

and that

X>0 = E{X|G}>0




EXERCISE 10 | E{|X[}<oco = E{X|{0,Q}} = E{x}

Definition 1.20 For a random variable X with E{|X|} < oo, and an R"-valued
random variable Y, we write E{X|Y} =E{X|o(Y)}.

Notice the immediate but important fact that, for an R™-valued random variable
X, o(X)=X"YB(R") ={X }C): CeB(R")}.

Theorem 1.21 Let X and Y be random variables such that E{|X|} < co and
E{|XY|} <oo. If X is measurable wrt. a o-algebra G, then we have

E{XY|G} = XE{Y|G}.

Proof. Writing XY = XTYT - XTY~ — X~V 4+ X~V Exercise 9 shows that it
is enough to prove the theorem for X and Y positive. To that end, pick simple

random variables >N bg")IBgn) (W) 1 X(w) as n— oo, where b\, ... b%ﬁ >0 are
constants and BYL), el B%Q €G (eg., [34, p. 16])*. For an event A€G, we have

N Nn
= pn) — (n)
/AXE{Y|g}dP<—/AElb, Iy B{Y|G} dP glb /Antm E{Y|G} dP

Np
=3 o Y dP
=1

ANB™
{2 )
Ai=1 i
= / XY dP
A
:/E{XY\g}dP as n— o0,
A

by the Monotone Convergence Theorem (e.g., [34, p. 22])*. O

EXERCISE 11 Let G, and G, be o-algebras, and X a random variable with
E{|X|} <oo. Show that

E{E{X|G:}|G:}} =B{X|G:}  when G CG,

EXERCISE 12 Let X be a random variable with E{|X|} < co, and G an o-
algebra. Show that

E{E{X|g}} = E{X}




Theorem 1.22 Let X be a random variable with E{|X|} < oo, and G a o-
algebra. If X and G are independent, then we have E{X|G} = E{X}.

Proof. By Exercise 9, it is enough to consider positive X. Pick simple functions

PR bgn)IBlgn) (w) T X(w) as n— oo, where b§”), . .,bg@ >0 and BYL), . .,B](\Z) €

o(X). For A€g, we have, as n— o0, by the Monotone Convergence Theorem,
N N N
/AXdP “ /A S b1y dP = 3 bP{ANB;} = P{A} 3. b;P{B;}
i=1 i=1 i=1
— P{4)} / X dP
Q

=P{A}E{X}=/AE{X}dP. 0

Theorem 1.23 Let Gi and Go be o-algebras, and X a random variable with
E{|X|} <occ. If G, is independent of X and G, then we have

E{X[0(G1,92)} = B{X|G,}.

Proof. 1t is enough to consider positive X. Pick simple functions 0 < Zf\iﬁ bz(n)I B
1X and 0< ¥ eI 1 E{X|G.} as n—oo, where B{”,..., B{} € o(X) and

C’YL), ey C](\Z) € Go. For A1 €G; and A €G,, we have (by monotone convergence)
M M
/ X dP S bilp, dP = 5 b P{B,NA;NA,}
A1NAsg A1NAsg i=1 i=1
M
i=1

= P{Al}/AZXdP
- P{Al}/AQE{X|g2}dP
N
« P4} /,42 3 il dP
= g: ¢ P{CiNA;NAy}
=1 N
- S ¢;lc, dP — /AIWE{XWQ} dP

A1NAsz 4=1

as n—o00. Now use the Dynkin System Lemma, with S=Q, C = {A;NAy: A €
gl, A2 € gg} and D = {A € O'(gl,gg) : fAXdP = fA E{X|g2} dP}, to show that
[4 X dP = [,E{X |Gy} dP for each A€c(Gi,G>) (and not only for AeC). O

Theorem 1.24 (JENSEN’S INEQUALITY) For a random variable X and a conver
function g:R—R, with E{|X|}, E{|g(X)|} < oo, we have g(E{X}) < E{g(X)}.




Recall that a function g:R—R is convex if

g Az +(1=Ny) < Ag(z)+ (1-N)g(y) for z,yeR and X€]0,1].
Convex functions are continuous (e.g., [34, p. 63])*, and thus measurable.
EXERCISE 13 Prove Jensen’s Inequality. (Hint: Apply convexity to g(3; \i;).)

EXERCISE 14 Let X be a random variable and ¢g:R—R a (measurable) func-
tion such that E{|X|}, E{|g(X)|} < co. Show that

g(E{X|G}) < E{¢9(X)|G} when ¢ is convex

Theorem 1.25 (Fatou’s LEMMA) Let G be a o-algebra, and X, Xo, . .. positive
random variables with E{X,} <oco and E{liminf, . X,} < co. We have

E{liminf, ,, X,|G} < liminf, ., E{X,|G}.

Theorem 1.26 (DoMINATED CONVERGENCE THEOREM) Let G be a o-algebra,
and Xi,Xo,... a sequence of random variables that converges a.s. If |X,|<Y for

some positive random variable Y with E{Y'} < oo, then we have

E{lim, o0 X,|G} = lim,_,o E{X,|G}.

EXERCISE 15 Prove Theorems 1.25 and 1.26 (cf. e.g., [34, p. 24 and pp. 27-28])*.

Definition 1.27 The conditional probability wrt. a o-algebra G is given by

P{A|G} = E{14|G} for AelF.

1.5 Stochastic Processes

Definition 1.28 A stochastic process X = {X (t)hier with parameter set T, is a
function X :QxT—R such that X(-,t):Q—R is a random variable for t€T.

The dependence of w €2 for a stochastic process X is often suppressed in the no-
tation, so that we write X (t) or {X(t)}ser instead of X (w,t) or {X(w,?)}wpeaxr-

Definition 1.29 The finite dimensional distributions (£idi’s) {Fxa,.. xt,) :
t1,.. ., ta €T, n€N} of a stochastic process X = {X(t)}hier, are given by

Fx(y), .. xt) (@1, -, 2n) = P{X(t1) <z1,..., X (tn) <20} for x,....,z,€R.




It is tempting to belive that a stochastic process is more or less “determined” by
its univariate marginal distributions Fx)(z) = P{X(t) <z} for z € R, for each
teT. This is not true at all (cf. Exercise 16 below). In fact, in general, not even
all the fidi’s are enough for that purpose (cf. Exercise 17 below).

EXERCISE 16 Consider the stochastic process X (t)=¢ for t € R, where £ is
a single N(0, 1)-distributed random variable. Let Y (¢) be a process that is N(0, 1)-
distributed at each ¢ € R, but with the random values of the process at different
times independent of each other. Find the univariate marginal distributions Fx s
and Fy(;. Plot a likely appearance of the graphs (so called realisations) R >t —
X(t)=X(w,t)eR and Rot—Y(t) =Y (w,t) € R, for a “typical” we.

Definition 1.30 The stochastic processes {X (t)}ier and {Y (t)}ser are versions
of each other if P{X(t)=Y(t)} =1 for each t€T.

Probabilities of events for processes X and Y that are versions of each other
need not be equal (cf. Exercise 17 below). However, usually there is no need
(desire) to regard processes that are versions of each other, but not equal, as really

different, but rather as different expressions of one single process.

Definition 1.31 A stochastic processes {X (t)}er, T CR, is separable (strongly
separable), if there exists a countable set SCT (a separator), such that

P{to each t€T there erists {s,}52,CS such that s,—t and X(sn)—>X(t)} =1

The important feature of a separable process, is that probabilities of “interesting

events” are determined by the fidi’s, evaluated at the times in the separator.

Example 1.32 For {X(¢)},cr separable with separator S ={s,}>,, we have

P{supX(t)>a:}= limP{ sup X(t)>x} for z€R and open ICR. #

tel n—00 teIN{s1,...,5n }

Theorem 1.33 (DooB, 1953) (e.g., [35, Section 9.2])* A stochastic processes
{X () her, TCR, has a separable version.

EXERCISE 17 Find two stochastic processes {X (t)}teo1) and {Y (¢) }repo], with

X separable, that have common fidi’s and are versions of each other, but satisfy

P{X(t)#Y(t) for some te]0,1]} = 1.
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2 Second Lecture

2.1 Brownian Motion

Definition 2.1 A stochastic process {B(t)}s>0 is Brownian motion (BM) (also

called Wiener process), if it has the following properties:

o (CONTINUITY) [0,00) 3t — B(w,t) € R s continuous for all (almost all) we;
o (INDEPENDENT INCREMENTS) B(t)— B(s) is independent of {B(r)}recp,s for
0<s<t;
o (STATIONARY GAUSSIAN INCREMENTS) B(t)—B(s) is N(0,t—s)-distributed for
0<s<t.

A random variable £ is N(m, 02)-distributed if P{é<z} = [*. —L— e ¥/2") dy.

2m o

*Remark 2.2 The existence of BM is not trivial. See Appendix A on an elementary
and quite economical proof of that existence.

Definition 2.1 of BM in stochastic calculus differs from that in much other prob-
ability, by not making a specific requirement about the value of B(0).

The literature is often sloppy in the use of the definition of BM, and results that
require something about B(0) [e.g., B(0)=0], are mixed with results that do not, lea-

ving it to the reader to decide what is required and when. We explain why later. #

EXERCISE 18 Explain why it is possible for BM B(t), at a certain time ¢>0, to

have a quite arbitrary (albeit not completely so) univariate probability distribution.
EXERCISE 19 Explain without calculations, why the fidi’s for BM
Fp),..5) (@1, - -, 70) = P{B(t) <z1,..., B(tn) <y}

become determined, under the additional requirement (to those in the definition of
BM) that B(0)=x, for some constant z€R.

Definition 2.3 B® denotes BM with B(0) = B*(0) =z, for a constant z€R.

EXERCISE 20 Show without calculations that {B%(t)}+>0 =same fiars { B (£)+ }1>0-

Definition 2.4 For the probability density function of B%(t) we use the notation

pe(,y) = foe(y) = d%P{Bx(t)Sy} B \/% eXp{_(y;:)2}'

11




Theorem 2.5 For a measurable function ¢:R™—R, we have
E{g(Bm(tl)a SR Bm(tn))} = /]R" g(y) bty (.’L‘, yl) Hpti_ti—l (yi—la yz) dy'
i=2

(The left-hand side and the right-hand side are well-defined simultaneously, and are
equal when they are well-defined.)

EXERCISE 21 Prove Theorem 2.5.
We have the following elementary formulas for BM:
E{B(t)-B(s)} = 0

E{(B#)-B(s)’} = t-s . (2.1)
Var{(B(t)-B(s))’} = 2(t—s)?

By tradition in stochastic calculus, one uses the notation
P {(B(t), ..., B(t.)) €A} =P{(B(t:), .., B(tx) €A| B(0)=x}
to denote the probability
P{(B*(t:),...,B*(t)) €A}  for A€B(R") and z€R.

Since BM is not completely determined by Definition 2.1 (Exercise 18), the condi-
tional probability P{-|B(0) =z} is not well-defined. Rather, it expresses the fact
that the probability for the event {(B(t1),...,B(t,)) € A} is determined when the
starting value B(0)=x of BM is specified (Exercise 19).

Theorem 2.6 (Space HOMOGENEITY) For A€ B(R") and z€R, we have

P{(B(t1),..., B(ta)) €A+z| B(0)=2} =P{(B(t:),..., B(ta)) €4 | B(0)=0}.

EXERCISE 22 Prove Theorem 2.6.

We shall plot two sample paths of BM B°(¢) for ¢€[0,10]. Thus we plot [0,10] >
t — B%(t) = B%(w,t) for two different w in the probability space Q= (Q, F,P).

We cannot plot all values {B°(t)}sejo,10, and thus decide to plot {B°(:)}2%.

Since the increments {B%(&)—B°(553)}% are independent N(0, 145)-distributed,

we first create 1000 independent N(0, 55)-distributed increments {Incr(k)};%%, and

then compute {B°(:£:)}%, by adding the incerements:

k . . 1000 k .
{BO (e HED = { 2 (B(5i) = B (555))}_, Sswme s { 2 Inex(i)

}1000
i=1

12




n[1]= << Statistics’ CantinueusDistributions’
infz]= Dmcxr = N[Table[Ranmdow[NormalDistribution[0, 0.1]]. {1000}]]:
= B= {Incr[[1]]}; For[k =2, k = 1000, k++ ., B= Joan[B. {B[[k - 1]] + Ince[[k]]}]1]):

inf4]:= ListPlot[B. Ticks - ({100, ""}. {200, "), {300, "}, ¢400, "}, (500, "5", D.02),
{600, “"}, {700, "%, {BOO, ""}, {900, “"}, {1000, “10", 0.02}}., Antomatic}.
AxesLabel - {“t", “B(t}"}, PlotLabel - " Brownian Motion*, PlotJoined — True]

Bit) Brownian Motion

t - t
§ i@

QutMl= - Graphics -
in[5]= Imcr = N[Table[Randow[NorwalDistribution[D, 0.1]]1., {1000}3]1:
nt]= B= {Iner[[1]]); For[k = 2, k = 1000, k ++ , B= Joan[B, {B[[k - 1]] + Iner[[k]]1}11;

in[7]:= ListPlot[B, Ticks - {{{100, ""}, {200, "}, {300, ""}, {400, ""}, {500, "5", D.02},
{GDD, "), {700, ""), {BOO, “*), {900, "}, {1000, “10", 0.02)). Automatic).
AxesLabel - {“t", “B(t}"), PlotLabel - * Browmian Motion®, PlotJoined — True]

B(t) Brownian Metion

h )
A

o |

Cut[7]= = Graphics -

*Remark 2.7 Mathematica uses the notation N(0, o) instead of N(0,0?), so that
N(0, 15) means a Gaussian random variable, with expected value 0 and variance
755- Both notations N(0,0) and N(0,0?) are used in the literature, with the latter
one standard in non-elementary texts: Beware of mistakes caused by this! #

2.2 Gaussian Stochastic Processes

Definition 2.8 A stochastic process {X (t)}er is Gaussian (or normal), if for

each choice of constants aq,...,a, € R, parameters ti,...,t, €T, and n€N,
n
the linear combination > a; X (t;) 18 univariate Gaussian distributed.
i=1

An R"-valued random variable X = (X1,...,X,) is Gaussian, if {Xi}icq,.n} 5 @

Gaussian process.
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Definition 2.9 The covariance function 7:TxT—R for a (Gaussian) stochas-
tic process {X (t) her is defined

r(s,t) = Cov{X(s), X (1)} = E{X(s)X ()} - E{X(s) } E{X (1)}

EXERCISE 23 Show that a Gaussian process {X (¢)};er, with covariance function
r and mean function m(t) = E{X(¢)}, has Laplace-Stieltjes transform
m(t)

E{e)‘lX(tl)J’"'“L’\”X(t")} = exp (/\1 )\n) ( | + % ()\1 /\n) (r(ti,tj)) X
m tn n

A1

Theorem 2.10 The fidi’s of a Gaussian process {X (t)}wer are determined by

the covariance function together with the mean function m(t) = E{X(t)}.

Proof. By Exercise 23, r and m determine the Laplace-Stieltjes transform

E{e)‘lx(“)*'"*)‘"X(tn)} = / M FAnEn gy X () (T, - T). O

n

EXERCISE 24 | B® is Gaussian with Cov{B*(s), B®(t)} = sAt = min{s, t}.

Corollary 2.11 If {X(t)}ter is a Gaussian process, and R,S C T, {X(t)}er
and {X (t) }ies are independent iff. Cov{X(r),X(s)} =0 forall reR and s€S.

*Proof. The implication to the right is immediate. For the implication to the left,
notice that X takes non-random values on RNS, since variances are zero on RN.S,
by the condition on covariances. Hence it is enough to prove that {X(¢)}icr\s
and {X(t)}ies\r are independent. For this, by Theorem 1.15, it is enough to
prove that {X(7;)}icq1,..ny and {X(s;)}ieq1,..ny are independent for ry,...,7, €
R\S and sy,...,s,€ S\R. Let {X(ri)}ie{l,...,n} and {X(si)}ie{l,...,n} be indepen-
dent, with {X(Ti)}ie{l,...,n} same fidi’s {X(Ti)}z‘e{l,...,n} and {X(Si)}ie{l,...,n} same fidi’s
{X (si) Yiequ,...,n}- Since {X(t)}te{“,___,Tn}u{sl,___,sn} has the same mean and covariance
function as {X(t) hiefri,.rn}Ufst,sn}, Lheorem 2.10 shows that the processes have

common fidi’s. Hence {X(r;)}icq1,..n} and {X(s;)}icq,..n) are independent. O

Example 2.12 The process X (t) = ff B%(7)dr, t>0, is Gaussian, since

2

3 U/ZX(tZ) =11m{2a1 Z BO(Tj) (Tj—’/'j_l)l 0:7-0<7-1 <... <7—k‘:tmax }’
=1

=1 1i<t; kEN, maxi<j<g Tj—Tj—1 —0
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and Gaussian random variables can only converge to Gaussian limits (e.g., by inspec-
tion of Exercise 23). The mean function is m(t) = E{X ()} =0 by symmetry, while
by Fubini’s Theorem (e.g., [34, Chapter 7])*, the covariance function is

r(s,t):E{X(S)X(t)}:/Os/otE{BO(u)Bo(v)}dudv:/Os/otu/\vdudv:... o

2.3 Sample Path Properties of BM

Theorem 2.13 BM has quadratic variation [B](t) =t, in the sense of convergence

N mean-square.

Proof. By independence of increments and (2.1), we have

Var{i(B(ti)—B(ti_l))Q} _ éVar{(B(ti)—B(ti_l))Q} _ éQ (bt 1)?

=1

< 4.
< 2t112ias>;tz ti1

which goes to zero, as we consider partitions 0=1t,<t; < ... <t, =1 of [0,¢], and
send maxi<i<,t;—1%i—1 — 0. This means that the sum converges in mean-square to

a constant, which must be equal to the limit of the mean of the sum [see (2.1)]

E{fj(B(ti)—B(ti_l))Q} = zn:lE{(B(ti)—B(ti_l))Z} = fjlt,-—ti_l =t O

=1

Theorem 2.14 BM has infinite variation.

Proof. Since BM is continuous, it cannot have finite variation with non-zero proba-
bility, since this would make the quadratic variation zero, with non-zero probability,
by Theorem 1.11, which contradicts Theorem 2.13. O

EXERCISE 25 Prove that BM is not continuously differentiable with non-zero
probability (without the help of Corollary 2.18 below).

Definition 2.15 A stochastic process {X(t)}s>0 has independent increments, if

X(t)—X(s) isindependent of {X(r)}reps for 0<s<t.

Definition 2.16 A stochastic process {X (t)}>o has stationary increments, if

{X(t+h)—X(h)}eR =same fiais 1X (&) —X(0) her  for each constant h>0.

15




*Theorem 2.17 Let {X(t)}1>0 be a stochastic process, that has independent and

stationary increments, such that, for some constant € >0,

lim nEP{\X(l/n) X(0)] SK/n} =0 for each constant K > 0. (2.2)

n—oo

The process X 1is not differentiable anywhere, with probability one.

*Proof. The following proof is adapted from one for BM in [19, p. 18] (who in turn
got their proof from earlier sources): Pick an N €N such that Ne>2. Notice that,

if X is differentiable at some s>0, then we have
IX(t)—X(s)| <l(t—s) <L(N+2)/n  for te(s,s+(N+2)/n),

for all sufficiently large ¢,n € N. Chosing k € N such that k/n,...,(k+N)/n €
(s,8+(N+2)/n), this gives

(X ((14+1)/n) = X(i/n)| < [X((14+1)/n) = X (s)| + | X (8) =X (i/n)| < 26(N+2)/n

for 1=k,...,k+N—1. It follows that the event that BM is differentiable somewhere

is contained in the event

Kf_j Qfﬂ L_J +O {IX(@+1)/m)- X i/ <

2

2€(N+2)}.

Hence it is enough to prove that

Pl U fictnym- xm) < 2CF2 o

n=mk—1 i=k n

which in turn will follow if

{Uk?ﬁ 1{|X i+1)/n)— (i/n)|§w}}—>0 as n—oo.

k=1 i=k n

However, by independence and stationarity of increments, together with (2.2), the

probability on the left-hand side is at most

[n%] k+N—1

S I P{IX(G+1)/m) - X(ifm) <

2£(N+2)}
k=1 =k

n

= 0] (P{1x(1/m)~x(0)) < ZEXDLY

Ve ) (nEP{\X(l/n)—X(O)\nS OIS0 as nooo. O

Corollary 2.18 BM is not differentiable anywhere, with probability one.
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* Proof. The definition of BM gives the hypothesis of Theorem 2.17, except (2.2) (see

also Exercise 39 below). However, we get (2.2) from observing that

p{Ix(1/m)-x©)< "} =P{IN0,1/mI< 5} = P{INo,1) s%} < % .

It is illuminating to plot the approximative derivative process {(B(t+h)—B(t))/
h}iso, for a small value of A>0, to illustrate the non-differentiability of BM:

1= <« Statistics’ ContimwusDistributions’

m(z):= Imcr = N[Table[Randowm[NormalDistribution[D, 0.1]]. {10013]1]:

mE=B = {Incr[[1]]); For[k =2, k < 1001, k++, B = Join[B, {B[[k - 1]1] + Incr[[k]11}11:
(4= Bprime = Table[(B[[k+1]] -B[[k]1)/{(1/100), {k,. 1, 1000}];

w(5}= ListPlot[Bprime, Ticks— ({{100, ""}, {200, "}, {300, "}, {400, "},
{500, "5", 0.02), {6DO, ""}, {700, ""}, (8OO, ""}, {900, ""},
{1000, "10", 0.02}}, Amtomatic), AxeslLabel — {"t", "B’ {t)"}.
PlotLabel - " Approximate Derivative of BM", PlotJoined — True]

B(t)

Bpproximate Decrivative of B

20
20

10§

=10

-20
- 30

ouf5= = Graphics -

(&)= Incr = N[Table[Random[NormalDistributien[0, 0.1]]. {10013]1]:

m[7}= B = { Dnor[[1]]}: Fox[k = 2, k = 1001, k++, B= Join[B, {B[[k - 1]] + Incr[[k]]1}1]:

in[g]:= Bprime = Table[ (B[[k+1]] - B[[k]]) 7 {(1/100), {k, 1, 1000}];

w(3)= ListPlot[Bprime, Ticks— {{{100, "“}, {200, "}, {300, ""}, {400, ""},
(500, “5°, 0.02), (600, ““), (700, "}, (800, "*}, {900, "},
{1000, 10", 0.02}), Antomatic), AxeslLabel - {“t". "B' (t)"}.

PlotLabel — Approximate Derivative of BM", PlotJoined — True]
Bt Approximate Derivative of Bu
30

20
10

=10

=20
=20

Ouffd]= - Graphics -
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*Remark 2.19 The hypothesis of Theorem 2.17 is satisfied by, for example, pro-
cesses X with stationary and independent increments, that are self-similar with index
1/a€[1/2,1) (see Definition 3.16 below), such that X (1) has a density function that
is bounded in a neighbourhood of zero. Indeed, this is how the argument goes in the
proof of Corollary 2.18, with 1/a = 1/2. These requirements in turn are defining
properties for (non-zero) a-stable Lévy processes with «a € (1,2] (e.g. [4, Chapter
VIII] and [35, Section 7.5]), where =2 is BM (multiplied by a constant). #

2.4 Introduction to Martingale Theory

Smartingales is the class of all martingales, submartingales and supermartingales.
These are very important in stochastic calculus, both as probabilistic tools in proofs,

and as noise processes in stochastic differential equations (SDE):

Definition 2.20 A family F = {F;}ier of o-algebras is a filtration, if
Fs CF for s, te€T with s<t.

A filtration is augmented if (Q, F,P) is complete (e.g., [34, p. 29])*, and each F;
contains all P-null-sets of F.
A stochastic process {X (t) }ier is adapted to F, if X(t) is Fi-measurable for t€T.

Definition 2.21 Let F = {Fi}ier be a filtration and X = {X(t)}ser a stochastic
process that is adapted to F. Assume that

E{|X(?)|} < o0 for teT.

The process X 1is a

martingale wrt. F if E{X(t)|F} = X(s)
submartingale wrt. F if E{X(t)|Fs} > X (s) for s,teT with s<t.
supermartingale wrt. F if  E{X(t)|Fs} < X(s)

Definition 2.22 A stochastic process X = {X (t)}er is a smartingale wrt. itself,
if X is a smartingale wrt. F = {o(X(s):s€T, s<t)}ier.

Example 2.23 1If {1, are independent random variables, with finite and pos-
itive (negative/zero) expected values, then {37 &}, . is a submartingale (super-

martingale/martingale) wrt. itself. #
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A standard reference for discrete time martingales is [8, Chapter 9]*. Continuous
time martingale theory is a lot more similar to the discrete theory, than can be ex-
pected in general when turning from discrete time to continuous. Nevertheless, there

are many differences and new difficulties (albeit often only of a technical nature).

EXERCISE 26 Let g:R— R be a convex increasing function, and X a sub-
martingale. Show that g(X) is a submartingale, provided that E{|g(X)|} < oc.

Standard texts on continuous time smartingales (e.g., [9])*

, usually begin with a
handful results, showing that it is not a real restriction to assume that a smartingale
is right-continuous, with limits from the left, (called cadlag= “continu a droit avec
des limites & gauche”), or possibly, left-continuous, with limits from the right (caglad

?7), since much subsequent theory require this.

*Theorem 2.24 (e.g., [9, Theorem 1.4.1])* Let {X(¢)}+>0 be a smartingale and S
a countable dense subset of [0,00) (e.g., [34, p. 59])*. Left and right limits over S

limses, s—t, s<t X(S) and limses, s—t, s>t X(S)

ezrists and are finite for each t>0, with probability one.

EXERCISE 27 Show that a version of a smartingale is a smartingale (of the same

kind), when the filtration is augmented.

Theorem 2.25 A smartingale {X (t) }s>0, with an augmented filtration, has a ver-
sion that is a smartingale (of the same kind), and that possesses finite limits from

the left and from the right everywhere, with probability one.

*Proof. By Theorem 1.33, X has a separable version {X (t)}+>0, that is a smartingale
of the same kind, by Exercise 27. Let S be a separator of X (Definition 1.31). Pick
a t>0 and a sequence {t,}°°, such that t, —t from the left, or from the right,
as n — oo. The claim is that lim, . X (¢,) exists, and only depends on ¢ and
if the limit is from the left or right, but not on the particular sequence {t,}> ;.

By separability, there is a s, € S, located to the left or right of t, respectively,
such that |X(t,)—X(s,)| <1/n. Since X(t,)—X(s,)— 0, it is enough to prove that
lim,, ;o X (8,) exists, and only depends ...... . This follows from Theorem 2.24. O

Definition 2.26 For a filtration {Fi}i>0, we define Fyr = Nyse Fs for t>0, and
say that {F,}i>o is right-continuous if Fr=TF; for t>0.
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EXERCISE 28 Show that F* = {F;+};>0 is a right-continuous filtration, for ev-
ery filtration F = {F;}>o0.

Many results for smartingales (X,[F) require the filtration F to be right-con-
tinuous. (The requirement that F is augmented and right-continuous is sometimes

called the usual conditions.) Thus it is natural to replace F with F* (Exercise 28).

Theorem 2.27 (e.g., [9, Theorem 1.4.2))* Let (X,F) be a smartingale. If X has
limits from the right, with probability one, then (X(-T),F7*) is a right-continuous

smartingale (of the same kind).

The essential steps to prove Theorem 2.27 are the same as those to prove Theorem

2.28 below. We do the latter proof, leaving the former one as a stared exercise.

EXERCISE 29 If X is a smartingale, what can be said about —X?

Theorem 2.28 Let (X,F) be a smartingale. Let F and E{X(-)} be right-con-
tinuous, and F augmented. If X has limits from the right with probability one, then

X (-7) is a right-continuous smartingale (of the same kind), and a version of X.

(Recall that X has a version with limits from the right, by Theorem 2.25.) To

prove Theorem 2.28, we need the following standard result for discrete martingales:

*Lemma 2.29 (e.g., [8, Theorem 9.4.7)) If {X,}n<0 is a smartingale, such that
lim, , o E{X,} ezists and is finite, then there erists a random variable Y, with
finite mean, such that lim, , . E{|X,-Y|} =0.

*Proof of Theorem 2.28 (after [9, Theorem 1.4.3]). Since X (-T) is right-continuous,
it is enough to prove that X (-*) is a version of X (recall Exercise 27). Pick a t>0
and t;>ty>...>t such that ¢,|¢. Since {X(¢;)}nes.32,1) is a smartingale, and
lim, 0o E{X (t,)} = E{X ()} exists, by right-continuity of E{X(-)}, Lemma 2.29
gives lim, o E{|X(t,)—Y|} = 0. And so lim, . E{|X(t,)—X(t")|} =0, since

E{|X(t")-Y|} = E{liminf, o |X(¢,) = Y|} < liminf, .. E{|X(¢,)-Y|} =0,

by Fatou’s Lemma. Hence Jensen’s Inequality shows that
B{X (t)} —E{X(t")}| S B{X(t)}-X ()]} -0 a5 n—oo,
so that lim, ,, E{X(t,)} = E{X(t")}. And so right-continuity of E{X(-)} gives
E{X (1)} = limy o B{X (tn)} = B{X(£)}.
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From the fact that E{|X(¢,)—-X(t7)|} — 0 as n— o0, we get E{|E{X(tn)\.7:t}—
E{X(t+)\.7-'t}‘} — 0, by Exercise 68. In particular, E{X (t,)| F;} = E{X(")|F} in
probability (convergence in measure). It follows that E{X (¢, )|F:} = E{X (t")|F:}
a.s. (for P-almost all we ) as k— o0, for some subsequence {t,, }52; C {tn}o2,.

Now notice that X (¢*) is adapted to F; = Fy+, by Theorem 2.27. In the case
when (X, TF) is a supermartingale, so that X (¢) > E{X(¢,,)| F:}, this gives

X(t) > im0 B{X (tn, )| Fr} = B{X (t7)| 7} = X (t7),

while instead X(t) < X(¢*) when X is a submartingale. Hence X (¢{)—X(t") is
a random variable that either is negative a.s., or positive a.s., and has zero mean (as
seen above). And so X (¢t)=X(t") a.s., so that X (-1) is a version of X. O

Many arguments in Stochastic Calculus require finite second moments. This ma-

kes square-integrable smartingales important:

Definition 2.30 A stochastic process {X (t)}ier is square integrable [has bounded
second moments] if E{X (t)?}<oc for each t€T [if sup,er E{X(t)*} < 00].

*Remark 2.31 There are different opinions in the literature, on whether square-
integrable, which some authors call locally square-integrable, or LL?-process, should
mean “just square-integrable”, or rather bounded second moments, which these au-

thors then call square-integrable (sick, in my opinion).

Processes that are integrable [has bounded first moments| are defined by obvious

changes in Definition 2.30, and enjoy a simliar confusion of terminology. #

2.5 Martingale Properties of BM

Corollary 2.32 (MARTINGALE PROPERTY OF BM) BM B is a martingale wrt.
itself.

Proof. This follows from Exercise 41 below. O

Corollary 2.33 {B(t)>—t}i>0 is a martingale wrt. {o(B(s):0<s<t)}1>0.

Proof. This follows from Theorem 4.8 below. O

EXERCISE 30 | {eB®-"t/2},, is a martingale wrt. {o(B(s):0<5<t)}s0

21




3 Third Lecture

3.1 Conditional Expectations (continued)

EXERCISE 31 Let X be an R™valued random variable. Show that

/ 9(X(w)) dP(w) = / g9(x) dFx(x) for measurable functions g¢:R"—R.
weN

reR”

(The integrals are well-defined simultaneously, and coincide when well-defined).

Recall that the distribution of an R"-valued random variable X is the probability
measure dFx(-) = (PoX71)(-) on R" [B(R")]. Equivalently, dFx is the Stieltjes

measure associated with the distribution function

Fx(z1,...,2,) = P{X:<21,..., Xn<w,} = (PoX N ((—00, 71] X...x (—00, 2,]).

Example 3.1 (ABsoLUTE CONTINUITY) An R"-valued random variable X is

absolutely continuous, if there exists an integrable function fx:R"™—R, such that

P{XEA}:/AfX(x)dx for AeB(R").

The density function fx must be positive a.e., and can be chosen positive everywhere

(since integrals of the density are not affected if we change its values on a null-set).

Given an R"™-valued absolutely continuous random variable X, we have
E{¢(X)} = / g(z)fx(x)dx  for measurable functions g:R"—R (3.1)
Rn

(both sides are well-defined simultaneously, and coincide when well-defined). This fol-
lows from approximating ¢g* and ¢~ with increasing sequences of simple functions.

For a real absolutely continuous random variable X, the density function is the
derivative of the distribution function fx(z)=F§(z) = LP{X <z} ae. (eg., [8,
pp. 10-11])*. [Since every distribution function is differentiable a.e. (e.g., [8, p. 11])*,

that property on its own does not imply that X is absolutely continuous!| #

EXERCISE 32 Let X and Y be random variables, with values in R and R”,
respectively, and E{|X|} < co. Show that there exists a measurable function ¢ :
R"—=R such that E{X|Y} = p(Y).

Definition 3.2 (PoiNTwISE CONDITIONAL EXPECTATION) For random variables
X and Y, with values in R and R™, respectively, and E{|X|} < oo, we write

E{X|Y =y} = o(y) where oY) =E{X|Y} (cf. Exercise 32).
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Notice that the values of ¢ outside Y (Q2) (the possible values of Y) are unim-
portant, and do no affect the validity of E{X|Y} = ¢(Y) (cf. Remark 3.8 below).

Theorem 3.3  For random variables X and Y, with E{|X|} < oo, we have

/yeR E{X|Y =y} dFy(y) = E{X}.

Proof. Writing ¢(Y) = E{X|Y} (Exercise 32), so that E{X|Y =y} = g(y) (see
Definition 3.3), Exercises 12 and 31 show that

J BAXIY =y} By (y) = [ 9() dFv(y) = [ o(v)dP = B{B{X|Y}} = B{X}. O

Example 3.4 (ELEMENTARY CONDITIONAL EXPECTATIONS) Let (X,Y) be an
R"™xR-valued random variable, that is absolutely continuous with a positive density

function fxy. By Example 3.1 together with Fubini’s Theorem, we have
P{veB} =P{XeR", YeB} = [ fuv(o)dudy= [ ([ fuy(o,y)ds)dy
R"x B B\JR»
so that also Y is absolutely continuous, with density function
fr(y) = /]Ran,Y(fan) dx for yeR.

Here fy(y)=0 implies fxy(z,y)=0 for almost all z€R" (since fxy is positive).
For a measurable function ¢:R™—R, with E{|g(X)|} < oo, (3.1) shows that

E{9(X)} = 9(z) fxy(z,y)dzdy  is well-defined
R*xR
[taking ¢(x,y)=g(x)]. By application of Fubini’s Theorem, it follows that
E(g(X),y) = / 9(z) fxv(z,y)dx is an integrable function of y€R.
Rn

Since fy(y)#0 when E(g(X),y)#0, we may define

_ | E(¢(X),y)/fr(y) when E(g(X),y)#0
E(g(X)Iy):{ . when E(g(X).4) 0
We claim that
E{g(X)|Y =y} = E(9(X)|y) = f%(y) /Rng(x)fx,y(x,y) dzdy — (0/0=0).

Proof. This follows from observing that, for A€o(Y), we have A =Y 1(A) = {we
Q:Y(w)eA} for some AeB(R) (see Lecture 1), so that [using (3.1) twice]

J9X)dP =]  g@)fxr(@,y) dady = [ B((0)y)f () dy = [ B(g(0)|Y) dP.
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This gives E{g(X)|Y} = E(¢(X)[Y), so that E{g(X)|Y =y} = E(g(X)|y). #

EXERCISE 33 Let X and Y berandom variables, and f:R?—R a measurable
function with E{|f(X,Y)|} < oco. Further, let G; CG, be o-algebras, such that

o X is adapted to G; (and thus to Gs);
o Y is independent of G, (and thus of G);

Show that E{f(X,Y)|Gs} = E{f(X,Y)|G:}).

Theorem 3.5 If X and Y are random variables with values in R" and R,
respectively, and ¢:R"™ =R is measurable with E{|¢p(X,Y)|} < co, we have

E{¢(X,V)} = [ E{6(X, V)|V =y} dFy(y).

If in addition X and Y are independent, we further have

E{o(X,Y)|Y =y} =E{s(X,y)}.

EXERCISE 34 Prove Theorem 3.5.

3.2 Introduction to Markov Theory

Definition 3.6 A stochastic process X = {X(t)}s>0, adapted to a filtration F =
{Fi}i>0, is a Markov process wrt. F (has the Markov property), if

P{X(t)e - |Fs}=P{X(t)e -|X(s)}  for 0<s<t.

Definition 3.7 Let X be a Markov process. A function P : B(R)x (0,00) xR x
[0,00) — [0,1] is a transition probability (for X), if

B(R)x(0,00) xR x[0,00) 3 (A, t,z,5) = P(A,t,z,s) = P{X(t+s)€ A| X (s) =z},

while P :Rx(0,00)xRx[0,00) = [0,1] is a transition distribution function, if

Rx(0,00)xRx[0,00) > (y,t,z,5) = P(y,t,z,s) = P{X(t+53) <y| X(s)=z}.

A function p:Rx(0,00)xRx[0,00) = [0,1] is a transition density function, if

P{X(t+s)e-|X(s)=2} = / p(y,t,xz,s)dy  for (t,z,s) € (0,00) xR %[0, 00).

*Remark 3.8 Transition probabilities are not unique in general, because only z €
X (9, s) [the possible values of X (s)] affect the validity of P(-,t¢,z,s) = P{X(t+s)
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-|X(s)==z}, and P(-,t,z,s) may thus be chosen arbitrarily for z€R\X(Q,s).
If, for example, X is a Markov process started at X (0)=0, both

PO t,2,00=P{X(t)e-} and PP(. t,z,0)=P{X(t)e-—z}
are transition probabilities, because, since o(X(0)) = {0, Q}, we have (Exercise 10)

P{X(t)e-|X(0)} =P{X(t)e-} = PO (- t,X(0),0) = PPD(.,t,X(0),0). #

Theorem 3.9 For a Markov process X with transition probability P, we have

P{X(t—i—s)e-}:/RP(-,t,x,s)dFX(s)(ac) for (t,z,s) € (0,00)x Rx[0, 00).

Proof. By Definition 3.2 and Theorem 3.3 (together with Exercise 12), we have

/RP(-,t,x, s) dFx(o(x) = B{P(-,t, X(s),5)} = B{P{X (t+5) € -| X (s)}}
=P{X(t+s)e-}. O

Definition 3.10 A transition probability P(-,-,-,s) for a Markov process is

time homogeneous if it does not depend on the last argument s€[0,00). A Markov

process is time homogeneous if it has a time homogeneous transition probability.

By tradition, much Markov theory is done only under time homogeneity. In the set-

ting of Stochastic Calculus and diffusion theory, we have found little reason for this.

Definition 3.11 A stochastic process {X (t)}i>o0 is a Markov process wrt. itself, if
it is a Markov process wrt. o(X(s):0<s<t)}>o0.

It is less common to deal with the Markov property wrt. other filtrations than the

cannonical one (itself ...), than it is to deal with smartingales wrt. such filtrations.

3.3 Markov Properties of Lévy Processes

Definition 3.12 A stochastic process {X(t)}s>0, that has independent and sta-

tionary increments, s called a Lévy process.

Theorem 3.13 A Lévy process X is a time homogeneous Markov process wrt. it-

self, and has transition probability

P(-,t,z,s) =P{X(t)—-X(0)e -—z}  for (t,z,s)€ (0,00)xRx[0,00).
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Proof. Since X (t)—X(s) is independent of F; = o(X(r):0<r<s) for 0<s<t,
and X (s) is adpated to o(X(s)) CF,, Exercise 33 gives the Markov property
P{X(t+s)e-|F} =P{X(t+s)—X(s)e-—X(s)| Fs}
= B{P{X(t+5) - X(s)€ -~ X(5)| X (5)}} = P{X (t-+s) € -| X ()}
By stationarity and independence of increments, Theorem 3.5 further gives
P{X(t+s)€:|X(s)=2} = P{X(t+5)—X(s) €~ X(s)| X (s) =}
=P{X(t+s)—X(s)e-—=x}
=P{X(t)-X(0)e-—z}. O

Corollary 3.14 (Markov PROPERTY OF BM) BM is a time homogeneous

Markov process wrt. itself, and has transition probability
P(-,t,x,s) = P{N(0,t)e-—x} for (t,z,s) € (0,00) xR x]0,00),

and transition density (recall Definition 2.4)

1 —x)2
p(y,t,z, 8) = piz, y) = \%e——“’u) for (y,t,2,5) € Rx (0,00) x Rx[0, 50).

Proof. Theorem 3.13 gives everything except the claim about the transition density.

That in turn, is an elementary consequence of the form of P(-,-,-,-). O

*Remark 3.15 The reason for the (deliberate) unspecificness about the starting
point B(0) of BM, is that the relation (by time homogeneity)

P{B°(t+s)€ A|B%(s)=2} = P(A,t,z,s) = P(A,t,2,0) = P{B%(t) € A| B°(0) =z}

does not “look right” for x # 0, since B°(0)=0. (However, there is really nothing

wrong with this, and we have explained what is going on here in Remark 3.8.) #

EXERCISE 35 Show how Exercise 30 gives the Markov property of BM. [You may

need regular conditional probabilities (see Lemma 21.2 below) to make this rigorous.]

3.4 Self-Similarity and Reflection Principle

Definition 3.16 A stochastic process {X (t)}i>0 is self-similar with index k>0 if

{X (M)} >0 =same fiars {A*X (£) }i0 for each choice of A\>0.

EXERCISE 36 Show that BM BY is self-similar with index 1/2.
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*Theorem 3.17 (REFLECTION PRINCIPLE) For a continuous stochastic process

{X(t)}+>0, with independent symmetrically distributed increments and X (0)=0,

P{supse[o,t]X(s)>:r}:2P{X(t)>x} for >0 and t>0.

*Proof. The following argument is inspired by [11, p. 106]: By independence and

symmetry of increments, together with continuity, we get (by “reflection”), as n— oo,
P{sup,ep,q X (s) >z} — P{X(t) >z}

“ P{kﬁj (X (2"kt) >x}} CP{X(1) >}

= ZP{ﬂ{X 27"t <z}, X(27"kt) >z, X(t)gx}

2" —1

_ ZP{ﬂ{X 2ty <z}, X(2"kt) >, X(t)—X(Q‘”kt)gx—X(Q‘”kt)}

2" —1

reﬂecmn)ZP{ﬂ{X 2t <z}, X(27kt) > 7, X(t)—X(2‘"kt)2X(2‘"kt)—x}

2" —1

- ZP{ﬂ{X 2-"4t) <z}, X (2 _”kt)>x,X(t)22X(2_”kt)—x}—>P{X(t)>x}. =

Corollary 3.18 (REFLECTION PRINCIPLE FOR BM) For BM B° we have

P{supse[ojt]BO(s)>a;}:2P{Bo(t)>x} for x>0 and t>0.

*Example 3.19 Let B, and B, be independent BM started at zero, and pick a
t>0. The processes X;(t) = 2 Bi(t), and (more interesting) X,(t) = B, (tAt) +
2 (By(tVi)—By(t)) satisfy the hypothesis of Theorem 3.17, and are not BM. #

*EXERCISE 37 Writing ¢(t,z) = P{sup BO%(s)>z} for z,t>0, we have
s€[0,t]

g(t+h,z) = P{SUPse[o,h)BO(S) >, Supse[h,t+h]BO(5) §ac} + P{SUpse[h,tJrh}BO(S) >z}

Use Theorem 7.2 below, to show that the first term on the right-hand side is o(h)
as h]0. Use this in turn, to obtain, by integration by parts,
g(t+h,x)—g(t, x) N/ P{sup,cp 145 B°(s) >z | B°(h) =y} —g(t,z)
h R h

Do g(t, v —y) + 2bz=w)=9(tr)
B / - y : foomy(y)dy  as  hlo0.

Deduce that 9, 9(t,z) = 3(9;)%g(t, z). Show that also §(¢,z) = P{|B°(t)|>z} sat-
isfies this PDE. What about ¢(0%,z) and (0", z)? Any relation to Corollary 3.187

dF BO(h) (y)
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*Remark 3.20 By e.g., [10] and [28, Section V.1], first passage times of solutions
to diffusion type SDE, which includes BM, satisfy PDE closely related to the PDE
for their transition densities (see Lecture 22 on the latter). This ensures the existence
of the derivatives featuring in Exercise 37, as well as the general validity of such an

approach to first passage problems for diffusion processes. #

*Remark 3.21 There are extensions of the Reflection Principle to more general
processes X than those in Theorem 3.17, if it is only required to hold asymptotically

P{SUPSG[O,t] X(s) >x} ~ constant x P{X (t)>z} as & —00.

See [2] on such results for quite general diffusions (solutions to SDE), and [3, Section

1] on an overview for (non-continuous and/or non-symmetric) Lévy processes. #
3.5 Zero Crossings of BM

Example 3.22 From the Reflection Principle we see that BM B° changes sign in
the interval [0, %], with probability one, regardless of how small >0 is

P{B(s)<0 for s€[0,#]} =1~ P{sup gy B(s)>0} = 1-2P{B°(t)>0} = 0. #

Definition 3.23 For BM B° we define the hitting time

T, =inf{t>0: B’(t)=z}  for x#0.

Corollary 3.24 The hitting time T,, x#0, for BM B° has distribution function
Fr,(t) = P{T, <t} = 2P{B°(t)>|z]}  for t>0,

and probability density function

f (t)—iP{T <t}—£ex {—w—Z} for t>0
ST N T E R WY '

Proof. By symmetry together with the Reflection Principle, we have
P(T, <t} = P{sup,c00 B(s) > 2]} € [2P{B"()> lal}, 2P(B(t) > 2| <}
for each €>0. Sending /0, we thus get
2P{B°(t)> |z|} < P{T, <t} <2P{B°(t)>|z|} = 2P{B°(t)>|z|}.

To get the density function we differetiate, integrate by parts, and identify
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fr(t) = 5 2P{BO(0) > lal}

d o 2 { y2}
dt Jiz| /2rt P 2t
S| y? 1 y?
= == —Zly
z| /27t (t2 t) eXp{ Qt} 4
e {50 L el o
= —Zexpd —- b+ exp{ — =\ dy —
[ ot t P\ 2t S o Vomit P 2t 21

V2 t3/2 2t )"

Since 2P{B°(t)>|z|} — 1 as t— o0, the event {T,<oo} has probability one,
making 7, a well-defined finite random variable (if we change its value to zero say,
on the event of probability zero where it is infinite). Hitting times for stochastic pro-
cesses in general need not be finite a.s. In order to be able to treat them as random
variables anyway, one is sometimes led to consider random variables with values in

the extended real line R=RU{—o0c,00} (with the obvious o-algebra).

Corollary 3.25 For BM B° we have

2
P{BO(S)zo for some se[a,b]} = arccos( a/b) for 0<a<b.

Proof. The process {B%(s)—B°(a)}scjay is independent of B%(a), since Cov{B°(s)
—B%a),B%@a)} = 0 (recall Corollary 2.11). Hence Theorem 3.5 together with sta-

tionarity of increments and Corollary 3.24 show that
P{B%(s)=0 for some s€]a,b]}

{I{O € [infaepa,b) BO(s), supsea,o) BO(5)]} }

[
S— 8 o

O " "o o"H o

{I{fBO(a) € [infse[a,b] BO(S)fBO(a’L SUPs¢[a,b] BO(S)fBO(a’)]} }

0
{1{=59() € [t e .7 B0 ()~ BO(@), upycio. ()~ BO(@)]} ‘ B(a)=y} dFpog)(y)

{ Ty € i 0y BO(9)=BO(@) 0 oy B(5)—B0@)]) } AFpo(a) (1)

{Bo(s) —B%(a)=—y for some s€]a, b]} dFpoa)(y)

{Bo(s—a) —B°(0)=—y for some s€]a, b]} dFpo(ay (y)

T E - E

{Bo(s) =—y for some s€|0, b—a]} dFpo()(y)

- /}R P{T_,<b—a} dFpo((y)
:/( Tyl exp{_y_Q}dt> 1 exp{_y_Q}dyzgamtan< (b=a)/b)
w\Jo o 21 V2ra 2a m |

which by elementary trigonometry is the desired arccos-law. Here we calculated the
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right-hand side with the help of Mathematica:

i[1]= Simplify[Integrate[2+y»Exp[-¥*2+(1/t+1/a) /2] /(2+PisSqrt[t~3sa]). {yv. 0, Infinity)}]]

LoLl.lsos
tlm|ied].n, 22, o TS yay
cutf1]= [ . & wrk I l

EETE 14
at
Inf]= S:i.mpl:i.:fy[Imttgrate[ T Lt 0, k- a}]]
nyjat?
N o
aIf[a-:b&Sc! (Im[L] e 058 % 5 D5& -~ <1], Seares. b S ], J"“*";cﬂt]
=-b b b ’HI': " 'Iata (n)

Ct[2]=

T

Corollary 3.26 (ArcSINE Law) For BM B° we have

P{Bo(s);é(] for all s€]a, b]} _2 arcsin( a/b) for 0<a<b.
7r

EXERCISE 38 Derive the Arcsine Law from Corollary 3.25.

EXERCISE 39 In the proof of Corollary 3.25, for the first time, we used stationar-
ity of increments in the sense of Definition 2.16, rather than in the seemingly weeker
univariate sense, imposed in Defintion 2.1 of BM: Show that a stochastic process,
that has independent increments whose univariate distributions are stationary, also

has stationary increments in the sense of Definition 2.16.
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4 Fourth Lecture

4.1 The Poisson Process

Definition 4.1 A stochastic process {N(t)}10 is a Poisson process (PP) with
intensity A\>0, if it takes values in N ={0,1,...}, with the following properties:

o (RIGHT-CONTINUITY) [0,00) 3t = N(w,t) € R is right-continuous for all (al-
most all) weQ;

o (INDEPENDENT INCREMENTS) N(t)—N(s) is independent of {N(r)}repo,s) for
0<s<t;

o (STATIONARY POISSON INCREMENTS) N(t)—N(s) is Po(A(t—s))-distributed for
0<s<t.

A random variable ¢ is Po())-distributed if P{é=k} =e 27 for keN.

m[1]:= £« Statistics  DiscreteDistributions ;

m[2):= Imcr = N[ Table[Random[PoissonDistribution[0.01]], (10003]11;

3= PP = {Ince[[1]]1}: For[k =2, k <= 1000, k ++, PP = Join[PP, {PP[[k - 1]] + Incr[[k11}]1):

in[4):= LastPlot[PP. Tacks-> {{{500. "5", 0.02}. {1000, "10", 0.02}}, Automatic}.
AxesLabel - {"t", "N(t)"}, PlotLabel ~ " PP N{t) wvath lambda-1 and N{0})=0"]

B(t) B¢ Acty with lambdaz1l and B0y =0
M -

12 -_
10 —
g -

o4l = Graphics -
m(5):= Imcr = N[ Table[Random[PoissonDistribution[0.01]], {1000}]]):
mE)= PP = {Incr[[1]]}: For[k = 2, k <= 1000, k s+, PP = Join[PP, {PP[[k - 1]] + Ince[[k]]}]1):

17):= ListPlet[PP, Ticks -: {{{500, "5", 0.02), {1000, "10", D.02}}, Automatic}.
AxesLabel = ["t", "N{t)"}, PlotLabel = " PP N{t) wvith lambda-1 and N{0}=0"]

R(E) P Heky wikh lambdas] and Hedisd

]

ou7]= = Graphics -
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Remark 4.2 As for BM, the fidi’s of PP are determined when, in addition to
the above requirements, the value for N(0) is specified [e.g., N(0)=0].
As for BM, the literature is sloppy in the use of the definition of PP, so that it is often

not specified whether results require something about the value of N(0) or not. #

Definition 4.3 N® denotes PP with N(0)= N%(0) =, for a constant x€N.

See Appendix B on the following description of PP, which also ensures its existence:

Theorem 4.4 Let £,,&,... be independent exp()\)-distributed random variables.
The process
N=(t) Ea:—l—sup{nElN Yy &gt} for t>0,

is a PP with intensity \ started at N*(0)=z, for a constant x€N. Notice that
N*(t) > n+zx & Yr,&<t,

so that times between “jumps” for N® are independent exp(\)-distributed.

A random variable £ is exp(\)-distributed if P{¢<z} = [f Ae M dy for x>0.

*EXERCISE 40 Prove Theorem 4.4. (This exercise is solved in Appendix B.)

4.2 Martingale Properties of Lévy Processes

Theorem 4.5 For a stochastic process {X (t)}i>0, that has stationary increments,

with means that are locally bounded, we have

E{X()-X(s)} = E{X(1)-X(0)} (t—s)  for s,t>0.

A function f:T—R, TCR", is locally bounded if sup,.p |f(t)] < co for each
bounded set BCT.

Proof. Writing m(t) = E{X (t+7)—X(r)} for r,t>0, we have
m(t+s) = E{X(t+s+r)—X(r)}
=E{X(t+s+r)—X(s+r)}+ E{X(s+7)—X(r)} = m(t) + m(s).

Since m is locally bounded, this Cauchy functional equation can only have solutions
of the form m(t) = Kt for t>0, for some constant K € R (e.g., [6, pp. 4-5])*. Hence
we have E{X(t)—X(s)} =m(t—s) = K (t—s) for 0<s<t, which by a trivial ar-
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gument extends to s,t>0. Taking t=1 and s=0, we get K =E{X(1)-X(0)}. O

EXERCISE 41 Show that a stochastic process {X(¢)};>0, that has independent
increments and constant mean, is a martingale wrt. itself. Conclude that, for a Lévy
process {X(t)}i>0, with locally bounded means, {X(t) — E{X(l)—X(O)}t}t>0 is a
martingale wrt. {o(X(s):0<s<t)};>.

Theorem 4.6 A martingale {X(t)}i>0 has uncorrelated increments (provided that

their covariances are well-defined and finite), the means of which must be zero.

Proof. We have E{X(t)} = E{X(s)} for 0<s<t, since

E{X(1)-X(5)} = E{B(X ()X (5)| 7.} } = B{B{X ()] Fi}-X ()} = B{X (5)-X (5}

If E{|X(t)—X(s)||X(s)—X(r)|} < 0o for 0<r<s<t, we similarly get
B{(X(1)-X(5)) (X(5) - X ()} = B{E{(X (1) - X (5)) (X (5) - X (1)) | . }}

= B{B{X(1)~X(s)| £} (X(5)= X ()}
= B{(X(5)=X(s) (X(s)-X(r)} =0. D

Theorem 4.7 For a Lévy process {X(t)}i>0, that has increments with finite vari-

ances, we have

Var{X (t)—X(s)} = Var{X(1)— X (0)} [t—s]| for s,t>0.

Proof. Writing V(t) = Var{X (t+r)—X(r)} for r,1>0, we have
V(t+s) = Var{X (t+s+r)—X(r)}
= Var{X (t+s+r)—X(s+7)} + Var{X (s+r)—X(r)} = V() + V(s).

Here V is locally bounded, since finite and increasing. This gives (cf. the proof of
Theorem 4.5) V(t) = Kt for t>0, for some constant K, so that Var{X (¢)—X(s)}
=K |t—s| = Var{X(1)—X(0)} |t—s| for s,t>0, by symmetry. O

Theorem 4.8 For a Lévy process {X(t)}i>0, that has increments with locally

E{X(1) - X(0)}t) — Var{X(1) -

)
bounded means and finite variances, {( (t) —
0<s<t) }>0-

X(O)}t}tzo is a martingale wrt. {o(X(s):

Proof. We claim that Y (¢)2—Var{X(1)—X(0)}¢t =Y (¢)>—Var{Y (1))=Y (0)}¢ is a
martingale, where Y(¢) = X (¢) —E{X(1)—X(0)}t. Here adaptedness is trivial, and

33




means finite by assumption. Notice that Y has zero means (Theorem 4.5), and that
Var{V(1)-Y(0)}t = Var{Y (t)-Y(s)} + Var{Y(1)-Y(0)}s  for 0<s<t

(Theorem 4.7). Since Y (t)—Y(s) is independent of Fy = (X (r): 0<r<s) [and
Y (s) adapted to Fjl, it follows that, for 0<s<t,

B{Y (t)2— Var{y (1) =Y (0)}¢| 7.} = B{(Y (1) =Y (5))? Var{Y() Y(s)}| 7}
+E{2Y(s) (Y ()| 7.}
+E{Y (s)*- Var{Y( ) Y(0)}s| 7.}
=E{(Y(t)-Y(5))*} — Var{Y'(t) =Y (s)}
+2Y(s) E{Y (1) - Y (s)}
+Y(s)2—Var{Y(1)-Y(0)}s
=040+ Y(s)>~Var{Y(1)-Y(0)}s. O

For a process {X(¢)}+>o we have established the following implications:

{ ‘independent zero-mean increments‘ = ‘martingale wrt. itself‘

‘martingale with finite second moments‘ = ‘uncorrelated zero-mean increments‘

4.3 Markov and Martingale Properties of PP

Corollary 4.9 (MaArkov PROPERTY OF PP) A PP N with intensity )\ is a

time homogeneous Markov process wrt. itself, and has transition probability

P(-,t,xz,s) = P{Po(\t) € - —z} for (t,z,s) € [0,00) xR x[0,00).

Proof. This follows from Theorem 3.13. O

Corollary 4.10 (MARTINGALE PROPERTY OF PP) For a PP N with intensity
A, {N(t)=At}iso is a martingale wrt. {o(N(s):0<s<t)}i>0.

Proof. This follows from Exercise 41, since E{N(1)—N(0)} =A. O

Corollary 4.11 For a PP N with intensity A, {(N(t)-\t)>-\t};>¢ is a martingale
wrt. {o(N(s):0<s<t) 0.

Proof. This follows from Theorem 4.8, since E{N(1)—N(0)} = Var{N(1)-N(0)} =
A O
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4.4 Stopping Times

Definition 4.12 A [0, co]-valued random variable T is a stopping time (see Lec-

ture 23 for comments on variation in terminology) wrt. a filtration {F,}i>0, if

{T<t} ={weQ:T(w)<tte F  for tel0,o00).

In the case when F; = o(X(s):0<s<t), for some stochastic process {X(¢)}>0,
a stopping time is a random variable such that it is possible to determine whether
T <t or not, by means of the values of {X(s)}sc0. This is so, since an event
in F; can be “constructed” through a countable number of set operations (unions,
intersections, ...) on events of type {X(s)€ A}, where Ac B(R) and s€]0,¢].

Example 4.13 The hitting time 7, for BM B° is a stopping time wrt. the filtra-
tion F, = o(B%(s):0<s<t), since (by continuity of sample paths)

x© oo 2™

{T<t}={sup Bs)>z} = U U{B° @ ™kt)>z—1/n} € F. #

SE[O,t] n=1m=1 k=0

Since hitting times may be infinite, T'=o0c is allowed in Definition 4.12.

Definition 4.14  For a stopping time T wrt. a filtration {F;}1>0, we define

Fr = {AE}":AQ{Tgt} € F; for each te|0, oo)}

Theorem 4.15  For a stopping time T wrt. a filtration {F;}i0, we have that
o T+t is a stopping time for every constant ty>0;
o Fr CFry, for every constant ty>0;

o Fr is a o-algebra.

EXERCISE 42 Prove Theorem 4.15.

Definition 4.16 A stochastic process {X (t)}1s0 [{X (t)}iepo,r)/ is measurable if the
map X :0x[0,00) =R [X:Qx[0,T]—=R] is FxB([0,00))-measurable [FxB([0,T])-

measurable].

EXERCISE 43 | A right-continuous [left-continuous] process is measurable.

Theorem 4.17 For a measurable stochastic process {X (t)}i>0, and a finite stop-

ping time (or other positive random variable) T, X(T) is a random variable.
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Proof. Recall that the composition of measurable functions is measurable. Notice
that X (T(w)) = X(w,T(w)) = (X oh)(w). Here the map

Q3w — h(w) =(w, T(w)) € 2x]0,00) is F-measurable,
because
{w:h(w)eAxB} =AN{w:T(w)eB}e F  for AeF and BeB([0,0)),

and {CeFxB([0,00)): h"}(C)eF} is a o-algebra, that thus is FxB([0,00)). O

4.5 Strong Markov Property and Feller Processes

We write Cg(D)={(f:D—R): f is bounded and continuous} for DCR".

Definition 4.18 A measurable and adapted stochastic {X(t), Fi}is0 is a strong
Markov process (has the strong Markov property) if, for each finite stopping time T,

E{f(X(t+T))| Fr} = B{f(X(t+T))| X(T)}  for feCy(R) and t>0.

Definition 4.19 A Markov process {X (t) }s>0 is a Feller process if has a transition
probability P(-,-,-,-), such that

(A) lim/ f()dP(-,t,z,s) = f(x) for feCg(R) and s>0;
tl0 JR

(B) g(x,s):/Rf(-)dP(-,t,x,s)ECB(RX[O,OO)) for feCy(R) and t>0.

EXERCISE 44 For a Markov process X and a measurable f:R—R, we have
E{f(X(®)|F} =E{f(X(#))[X(s)}  when E{[f(X)]}<oco and 0<s<t.

*EXERCISE 45 BM together with the transition probability from Corollary 3.14

is a Feller process.

*Theorem 4.20 Let {X(t), Fi}i0 be a right-continuous Markov process, with a
transition probability P(-, -, -, -), that satisfies condition (B) of a Feller process. For
a finite stopping time T wrt. {Fi}i>0, we have

E{f(X(t+T))|X(T)}:/Rf(-)dP(-,t,X(T),T) for feCHR) and t>0.

*Proof. Pick a t>0 and a Be€o(X(T')). Consider the classes
C={(X(T)"((-o0,9):yeR} and D={Beo(X(T)): BN{T<t} € F}.
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Here C is closed under finite intersections. Further D is a Dynkin system. This is so,
because S =R € D, since {T'<t} = {T<t—1/n} € F;, the other two condi-
tions for a Dynkin system being immediate. To show that D=0 (X (7)), it is thus,
by the Dynkin System Lemma, enough to show that CCD. Let T, = (|2"T]+1)/2",
where |z|=k—1 for z€(k—1,k]. Since T,]T as n— oo, right-continuity gives

xm<ypnir<ty = U N X @) <spn{Tu<t)

m=1n=m

- U U Nxen<yniT=2"k

{k:2- nk<t}m 1n=m

= U Uﬂ{X 27"k) <y} {T, e (27" (k—1),27"k]},

{k:2—nk<t} m=1n=m

where the right-hande side belongs to F;. Hence we have CCD.
Now, let T, = ([2"T]+1)/2" instead, where [x]=k—1 for z€[k—1,k). Take a
Beo(X(T)), and notice that, by the investigation above,

BN{T,=2""k} = BN{Te[27"(k—1),27"k)} € Fy-np.

Since T, 1T as n— o0, right-continuity and the Dominated Convergence Theorem,

together property (B) of a Feller process and Exercise 44, give, as n— oo,
[ [f0dPCe X)) dP [ [ f()dP(-t.X (1), T,) dP
::E:/gn{ﬂraﬂ%}z;fﬂ)dP(ytVX(Q_"kLQ_”k)dP
Z;/ManHEU((HQ”@NX@”@hE
=3 o s g B X2 00) P P

t+2"k))dP
= 2 Jonirs o S 2700

/f (t+T5) dP—>/f (t+T))dP as. O

Theorem 4.21 A right-continuous Markov process {X (t), Fi}i>0, with a transi-
tion probability P(-, -, -, -) that satisfies condition (B) of a Feller process, is a strong

Markov process.

*Proof. Let T, = (|2"T|+1)/2", so that T,{T as n—o0, and

AN{T,=2""k} = AN{Te(27(k—1),27"k|} € Fo-ny, for AeFr.
Using right-continuity and the Dominated Convergence Theorem, together property
(B) of a Feller process and Exercise 44, Theorem 4.20 shows that
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/Af(X (t+T)) dP = lim, /A f(X(t+T,)) dP
=i [, TR aP
=y [ B2 ) R P
= m, 162::0 /Am (Toa-ni) E{f(X(t+27"k))| X (27"k)} dP
- JL%; /Am (Tt /]R f()dP(-,t, X(27"k),27"k) dP

= Jim [ [ F()dP(-1, X(T,), T,) dP

:/A/]Rf(-)dP(-,t,X(T),T)dP
:/AE{f(X(t+T))|X(T)}dP. 0

Corollary 4.22 A right-continuous Lévy process is a strong Markov process wrt.
itself.

Proof. Tt is enough to verify property (B) of a Feller process: Given an feCg(R),

| FO AP tw,0) = [ () dP{X()-X(0) € -~} = [ f(+a) dP{X())-X(0) € -}

is a (bounded) continuous function of x, by Dominated Convergence. O
*EXERCISE 46 Consider BM B° and a finite stopping time 7" wrt. {o(B°(r):

0<7<t)}+>0. Adapt the scheme from the proof of Theorem 4.21, to show that {B°(¢
+T)—B%T)}i>o is independent of Fr, and has the same fidi’s as {B°(t) }s>0-

EXERCISE 47 Use Exercise 46 to explain why BM, eventually, hits any chosen
point z€R arbitrarily many (and thus infinitely many) times, with probability one.

*Theorem 4.23 A right-continuous Lévy process, together with the transition prob-

ability from Theorem 3.13, is a Feller process.

Proof. 1t is enough to show property (A) of a Feller process, since we have (B) from

the proof of Corollary 4.22. By an inspection of that proof, we see that (A) holds iff.
P{|X(t)—X(0)|>0} =0 as t}0, foreach ¢>0.
[Recall that (A) concerns bounded and continuous functions.] This holds iff.

g(t; 0) = E{e0XO-XODYy 1 as t}0, foreach 6>0. (4.1)
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However, by independence and stationarity of increments, we have, for 0 < k/n € Q,
k
g(k/n;6) = E{eia(X(k/n)—X(O))} — H E{eiG(X(i/n)—X((z'—l)/n))} = g(1/n; 0)*.
i=1

Since this holds in particular for k=n, it follows that

Since characteristic functions are continuous, this in turn give
g(t;0) = (E{emxu)—xmn})*_
Now we get (4.1) by sending ¢]0. O
*Remark 4.24 As indicated by our derivations of it, the strong Markov property
is very close to the “usual” Markov property (see also Theorem 5.4). However, there

exist weak Markov processes anyway, that do not have the strong Markov property.

See e.g. [32, pp. 463-465] and [15, Section 2.15] for some material on this. #
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5 Fifth Lecture

5.1 On the Markov Property

We write Lg(R) = {(f:R—R): f is bounded and measurable}.

Definition 5.1 Let X be a Markov process. The o-algebra of the future Fi =
o(X(s+t):5>0) for t>0. For a finite stopping time T, Fr=o(X(s+T):5>0).

Theorem 5.2 (MARKkOV PROPERTY) Let {X(t)}i>0 be a stochastic process ad-
apted to a filtration {Fi}i>0. The following properties are equivalent:

1) X is a Markov process wrt. {Fi}i>o;
{ﬂ? HAX () e- }‘ ﬂ? AX () e - }‘ for ti,.. . tp,>8>0;
3) P{B|F;} =P{B|X(s)} for BeF, and s>0;

2

5) P{ANB|X(s)} = P{A|X(s)} P{B|X(5)} for A€F,, BeF and s>0;
6) E{f(X()|F:} =E{f(X(®)[X(s)}  for feC(R) and t>s>0;

(

(

(

(4) P{A|F} =P{A| X (s)} for AeF, and s>0;

(

(

(7) B{f(X@)|F} =EB{f(X®)[X(s)}  for feLp(R) and t>s>0.

)
)
)
)
)
)

Proof (After [9, Section 1.1]). (1)=(5) This is Exercise 48 below.
(5)=>(4) Given an AEF,, for every A€F, (5) gives
/AIAdP:/QIAIAsz/QP{AﬂA\X(s)}dP =/QP{A\X(3)}P{A\X(5)}dP
:/QE{IAP{A\X(s)}‘X(s)}dP
=/QIAP{A|X(5)}dP
:/AP{A|X(5)}dP.
(4)=(3) Given an BeF!, for every A€F,, (4) gives
/AIBdP:/QIAIBdP:/QP{AﬂBU-'S’}dP :/QIBP{AU—'S’}dP
:/QIBP{A|X(3)}dP
:/QE{IBP{A|X(8)}‘X(S)}CZP
=/QP{B|X(5)}P{A|X(3)}dP
:/QE{IAP{B|X(5)}‘X(3)}dP

40




:/QIAP{B|X(3)}dP
:/AP{B\X(s)}dP.
(3)=(2)=(1) and (7)=-(6) are trivial, while Exercise 44 shows that (1)=-(7).

(6)=(1) By the Dynkin System Lemma, (1) follows if we show that P{X(t) €
B|F} =P{X(t)eB| X (s)} for open BCR and 0<s<t. Now let B, ={z€B:
|lt—y|>1/n for y€ B¢}. Define f,(z)=1 for z€B,, f,(z)=0 for z€ B°, and

fo(z) = ninf{|z—y| : y€ B} for z€B\B,.
Since f,€Cpg(R), with f,(z)—Ig(x) as n— o0, (6) gives (by Theorem 1.26)
P{X(t)e B|F.} < E{fu(X(1))| 7.} = E{/n(X(1))| X (s)} = P{X () € B[ X(s)}. D

Theorem 5.3 (ELEMENTARY MARKOV PROPERTY) A stochastic process {X(t)

>0 is a Markov process wrt. itself iff.

P{X(t)e-|X(51), ..., X(s0)} = P{X(t) €| X(s2)} for t>s,>...>5 >0,

Proof. The implication to the left is a straightforward application of the Dynkin

System Lemma. For the one to the right, notice that, for a Markov process X,
P{X(t)€ | X(s1),- -, X(sn)} = B{P{X (W) €[} | X(51),.--, X () }
=B{P{X(t)e-[X(sn)} | X(s1), -, X (s0)}
=P{X(t)e-|X(s,)}. O

Theorem 5.4 (STRONG MARKOV PROPERTY) Consider a measurable and ad-
apted stochastic process {X(t), Fi}is0, together with a finite stopping time T. The

following properties are equivalent:

1) P{X(t+T)e-|Fr} =P{X(t+T)e-|X(T)}  for t>0;

2) P{NL{X(tAT) €} Fr} = P{L {X(tAT) € -} X (D)} for tr,... 1,>0;
3) P{B|Fr} =P{B|X(T)} for BeF.

5) P{ANB|X(T)} = P{A| X (T)YP{B|X(T)}  for AcFr and BeFh;
6) E{f(X(t+T))| Fr} = E{f(X(t+T))|X(T)}  for feCyp(R) and t>0;

(1)

(2)

(3)

(4) P{A|Fr} = P{A[X(T)}  for AeFy

(5)

(6)

(7) E{f(X(t+T))| Fr} = B{f(X(t+T))| X(T)}  for f€Lp(R) and t>0.

Proof. We have (6) from Theorem 4.21. From (6) in turn, properties (1)-(5) and (7)

are established by the same arguments as those use in the proof of Theorem 5.2. O
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EXERCISE 48 Prove the implication (1)=(5) in Theorem 5.2.
EXERCISE 49 Show how property (7) follows from (6) in Theorem 5.4.

*EXERCISE 50 Show how properties (1)-(5) follow from (7) in Theorem 5.4.

5.2 Strong Markov Property of Lévy Processes

Theorem 5.5 Let {X(t)}i>0 be a right-continuous Lévy process, and T a finite
stopping time wrt. {Fi}iso = {0(X(s) : 0 < s <t)hs>o. The process {X(t+T)—
X (T)} >0 is independent of Fr, and has the same £idi’s as {X(t)—X(0)}+>o0-

Proof. Given an A€ Fr, we shall prove that
p{an N {X(L+T) =X (T) eB}} =P(a) P N {X () =X (0) eB})
i=1 i=1
for By,...,B,€B(R), ti,...,t,>0 and neN. For this, it is enough to prove that
P{A A UX (A T) - X (t14T) € Bi}} — P{A} [[P{X (i~ t: 1)~ X(0)€ B)
i=1 i=1
for By,...,B, € B(R) and 0=ty<t;<...<t,. By right-continuity, this follows if
p{an VX (tA4T) =X (5:47) eB}} =Pl4) [[P{X(ti-s)-X(0)€B;}  (5.1)
i=1 1=1

for By,...,B, € B(R), 0=ty<s1<t;<...<s,<t, and n€N. By the Strong
Markov Property (Theorem 5.4) and Corollary 4.22; we have

P{Aﬂ ﬁ{X(ti+T)_X(5i+T)EBi}}

= E{P{A N ﬁ{X(ti‘i‘T)_X(Si'i'T) € Bi}

i=1

Frin) }

n—1

B{P{X (1 +T) = X (50+T) € Bl Frys,} Lt [T xtusm-xtim e |

i=1

n—1

= E{P{X(tn-i-T) —X(Sn+T) S Bn‘X(T-FSn)} ]A H I{X(ti—f—T)—X(si—{—T) c Bi}}' (52)

i=1
Here we used the facts that A € Fr C Fry, , by Theorem 4.15, and that o(X(7+
T)) C Frys, for 7<s,. This latter fact follows noticing that

Bn{r+T<t} e F for Beo(X(r+T)) and ¢>0,

by the proof of Theorem 4.20, which gives Be€ Fr.,;,, since
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Bn{T+s,<t} = (BN{T+s.<t+1/i} = (| BN{r+T <t+1/i+7—s,} € F

i=I i=I
for I€N sufficiently large, because Fii1/itr—s, CF¢ (recall Definition 4.14).
By (5.2) and an induction argument, to prove (5.1), it is enough to show that

P{X(t+T)-X(s+T)eB|X(T+s)} = P{X(t—s)—X(0)e B}
for BeB(R) and 0<s<t. By the Dynkin System Lemma, this follows if
P{X(t+T)-X(s+T)eB|X(T+s)} = P{X(t—s)—X(0) € B}
for open BCR and 0<s<t. This in turn follows if (cf. the proof of Theorem 5.2)
E{f(X(t+T)-X(s+T))|X(T+5)} = E{f(X(t—5)—X(0))}
for feCp(R) and 0<s<t. However, by Theorems 3.5, 3.13 and 4.20, we have
E{f(X(t+T)=X(s+T))| X(T+s)}
= [ B (X (+T)=9)| X (T+5) =y} dFxr49 )
= [ [ 7=y dP(,t=5,,0) dFxr(v)
R /R
= [ [ £(=9) dP{X(t=5)=X(0)€ -~ y} dFx(rsn(v)
= [ [ F()dP{X(t=5) =X (0)€ -} dPx(ra(y) = B{S (X (t=5)=X(0))}. O
*Remark 5.6 A “state of the art” direct proof of Theorem 5.5 uses the easily
checked fact that, by the proof of Theorem 4.23, M(t) = e?X®) (E{e?®X(M})~* is
a (complex-valued) martingale, together with the Optional Sampling theorem (see

Example 23.11). The proof in full detail is not much shorter than that above, but

less complex since from scratch, and not relying on the strong Markov property. #

Corollary 5.7 (STRONG MARKOV PROPERTY OF BM) Consider BM B and a
finite stopping time T wrt. {Fi}is0 = {0(B(s):0<s<t)}4>0. The process {B(t+
T)—B(T)}i>0 is independent of Fr, and has the same fidi’s as {B(t)—B(0) }+>o-
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6 Sixth Lecture

6.1 Introduction to Stochastic Integrals wrt. BM

Throughout this lecture, {B(t)}:;>0 is BM with B(0)=0 and filtration {F;}i>o =
{o(B(s):0<5<t)},59, and {X ()} is a stochastic process adapted to {F;}i>o.

In the lecture we _discuss stochastic integrals f(f X dB wrt. BM in a “soft” sense,
meaning that statements and proofs, albeit correct in essence, in general require
additional attention to technical details, in order to become rigorous. Consequently,

exercises to the lecture must be understood and solved in that spirit.

The Ito6 integral fot X dB will be defined as a Riemann-Stieltjes type limit

[0 a0) = S X)) By DR et

0 i— ne N, maxi<;<n ti—ti_1 —0
When X has finite variation over [0,¢], we may equivalently use the definition

O=to<ty1< ... <t,=t
TLE]N, maxj<i<n ti—t; 1 — 0 ’

because the difference between this limit and the It6 integral is precisely

) ~ O=to<t1 < ... <t,=t
i 0N - X 1) (B0~ Be) | IS <=t

By Definition 1.10 and Therorem 1.11, this is [X, B](t)=0 (since BM is continuous).

Famous Example 6.1 The approximating sums of [ BdB have mean

E{il B(ti-1) (B(ti)—B(ti_l))} = anE{B(ti_l)} E{B(t:)—B(t;_1)} =0,

by independence of increments. But if we sample B in t; instead of ¢;,_;, we get

E{i B(t;) (B(ti)_B(ti—l))}
B iE{(B(ti)_B(ti1))2+B(ti1) (B(ti)_B(til))} = i(ti—tiﬂ) =t #

2 =1

A third natural way to integrate is the Stratonovich (Fisk-Stratonovich) integral
t

/ X(r) o dB(r)

0

n X tzf X tzf = e o
i=1 2 nElN, maXji<i<n ti—t;_1—0

When X has finite variation over [0,¢], we have [J X dB = [{ XodB (by the above
argument), but in general, the integrals need not be equal (see Example 6.1). It turns

out that there are deep differences between the two, which we will illuminate below.
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m[1]= << Statistics' ContimnousDistributions’
injz]:= Imcr = N[ Table[Random[NormalDistribution[0, 1/ Sqrt[20007]1]. (2001)1]:
inf¥= B= {Incr[[1]]);: For[k =2, k <= 2001, k ++. B= Join[B, {B[[k-1]] + Incx[[k]]1}]):

inf4]= ItoBdB = {0)}; For[k = 2. k = 2001, k ++, ItoBdB
= Join[ItoBdB, {ItoBdB[[k - 1]] + B[[k - 111 » (B[ [k]] -B[[k - 1113 }11:

5= StratoBdB = {B[[11]12/ 2}; For[k = 2, k = 2001, k ++, StratoBdB - Join[StratoBdB,
{StratoBdB[[k- 1]] + {B[[k -11] + B[[k]1) »{BL[k]] - B[[k-1]1) / 2}]1):

ii6]= TtoBdBmirmshal fBsquare - Table[ TtoBdB[[k]] - B[[k]1] ~2/2, {k, 1, 2000}];

7)== ListPlot[IteBdB, Ticks— ({{1000, “0.5", 0,02}, {2000, “1", 0.02}}, Automatic),
AxesLabel - {"t", "Int B dB" ), PlotLabel - " Ito-integral Int D*t B(s) dB(s)")

Int B 88 ggo-integral Int 0t Bes) dB(E)

Yy

out[T]: - Graphics -

inf#]= ListPlot[StratoBdE, Ticks— {{{1000, "0.5", 0.02}, {2000, “1", D.02}}. Automatic},
AxesLabel s {“t", "Int B dB"), PlotLabel - " Stratomovich Int_0*t B(s) dB(s)"]

Int B dF seratenovich Int_0°t Bes) dBcs)

Cutfg]= - Graphics -

inf3= ListPlot[ItoBdBminushal fBsquare, Ticks - {{{1000, "0.5",. 0.02), {2000, "1". 0.02}}.
Automatic}, AxesLabel - {"t", "Int B dB - B~2/2"},
PlotLabel - * Ite Int 0~t B 4B - B(t)*~2/2"]

Tat B 4B - B 2/2 1y Int 000 B 4B - Bok)t2e2
4 = T

0.5 1
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*Remark 6.2 The Riemann-Stieltjes integral is defined as the limit

. TLE(ti—, ], 0=to<ti < ... <t,=t

hm{ZX(T,-) (B(t)=Blt,_y)) : "€ lmntl 0=to <t }
im1 ne N, maxXi<i<n ti—t;_1 —0

if it exists. Hence the It6 integral is not really a Riemann-Stieltjes integral, since the

choice of the time 7;€(t; 1,t¢;] tosample X may matter (so that the limit does not

exist). In fact, nearly all measurable and adapted processes are It6 integrable, which

is a much richer class of processes than the Riemann-Stieltjes integrable ones. #

EXERCISE 51 Why is it not possible to define the integral
r=t
Y(t) = Y(w,1) =/ X(w,r)dB(w,r)  for t>0,
r=0
simply by means of, for each w € Q, let Y (w,t) take the value of the Riemann-

Stieltejs (Lebesgue-Stieltejs) integral on the right-hand side?

The stochastic integral f(f X dB cannot in general be understood in sample path
meaning, as the Lebesgue-Stieltjes integral, or Riemann-Stieltjes integral, of X wrt.

dB (Exercise 51). This gives the following relation, which every reader must digest:

([ Xt)aB6)) ) £ [ Xwur) dB.r)

We use the notation fot X dB for the stochastic integal, and calls it an integral,
because it has properties similar to those of integrals in mathematics, and is con-

structed in a similar way. But it has no defining relation with deterministic integrals.

EXERCISE 52 When X has finite variation over [0,?], deterministic integration
methodology can be used to define [; X dB. How?

We are going to study SDE (stochastic differential equations) of the type
dY (t) = a(t,Y(t)) dt + b(t,Y (t)) dB(t) for t€[0,7], Y(0)=Yp. (6.1)

A solution to (6.1) is a stochastic process Y, called diffusion process, such that

Y(t) = Yo + /Ota(r,Y(r))dT'—i- /Otb(r,Y(r))dB(r) for tel0,T].  (62)

The functions a,b:R? — R will in general be “smooth”, and the process Y con-

tinuous. Thus the first integral can be taken in the Riemann sense. It is the second

integral that is “problematic”, since Y will in general not have finite variation.
The solution to (6.2) should be understood in the It6 integral sense

Y(t)=Yo+lim Y a(tiy, Y(tio1)) (ti—tice) + D b(ti1, Y (ti1)) (B(ti) = B(tie1)),

t; <t t; <t
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where the limit is taken over partitions 0=1%;<...<?, =T such that max;<j<,?;

—t;_1 — 0. This means that

Y(t)~ Yy + Z a(t; 1,Y(t; 1)) (ti—ti 1) + Z b(ti1,Y (t;i1)) (B(t;))—B(ti1)),
t; <t t; <t
with better approximation for finer partitions. In particular, we have
Y(t;) =~ Yo+ Z a(ti—1, Y (ti—1)) (ti—ti—1) + Z b(ti—1, Y (ti—1)) (B(t;) — B(ti-1))

t; <t; t; <t

for j=1,...,n, which can be rewritten as a recursive (Euler iteration) scheme

Y(t;) =Y (t-1) +altj—1, Y (1)) (G —t-1) + b(tj-1, Y (¢5-1)) (B(t;) —B(tj-1)) |-

By recursion, this scheme gives the values Y (¢1),...,Y (¢,), of the solution to the
SDE, on the partition. The solution Y calculated in this way, is not an exact solu-
tion to (6.2), but an approximation, obtained by “not going all the way to the limit”.
Nevertheless, with more attention to details, this is a useful method to solve the SDE,
both to prove the existence of the solution, and to compute it numerically.

Notice that if we use the Stratonovich stochastic integral, then Y'(¢;) will appear
both on the left-hand side and right-hand side of the recursion. This gives some in-
sight into the theoretical superiority of the It6 integral to other alternatives.

Another important and related feature of the It6 integral, is that it is a martingale:

E{/OtX(r) dB(r) ]—‘3} — lim E{Z X (ti1) (B(t,-)—B(ti_l))‘}"s}

t; <t

=limE{ > X(ti_l)(B(ti)—B(ti_l))‘fs}

ti<t,ti_1>s

+lim E{ > X(tis) (B(t:)— B(ti—1)) ‘T-}

t;<s

—limE{ > X(t,-_l)(B(ti)—B(ti_l))‘Fs}

> >SE{E{_X(tH) (B(t;)=B(t; 1)) ‘}}} ‘.7—"}
_+ lim Y X (ti-1) (B(t;))—B(ti—1)) + 0

t;<s
ftil} \f}

—lim Y E{X(ti_l)E{B(ti)—B(ti_l)

ti<t,ti—1>s

+/05X(7~) dB(r) + 0
0+ /OSX(T') dB(r) + 0.

Here we used that B(t;) — B(t;—1) is independent of F_,, and X(¢;_1) adapted
to it. Notice that the second sum, on the right-hand side of the second equality, is

adapted, while the third sum has at most one term, and thus goes to zero.
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The approximate recursive scheme for solving the SDE (6.1)-(6.2) indicates that
a solution is a Markov process, since the next value of the solution only depends on

“the history”, through the current value. This is proven formally in Section 22.1.

Example 6.3 Let X be a solution to the It6 SDE
dX(t) = (1/2) X(t)dt + X(t) dB(t).

Notice that the Ito sense differential of X is

X(ti)=X(tic1) =dX (t;) = (1/2) X (tiz1) (ti—tiz1) + X (tiz1) (B(ti) —B(ti-1))-
For the Stratonovich integral of this It6 solution, we therefore have

/Ot X (r) o dB(r)

= limi X(t")gX(ti‘l) (B(ti)—B(ti_1))
i=1

~lim ) X=X (1) - (1)) + Y. X (1) (Blt) - Bti)

b))+ X (t) (Bt = B(ti))
2

(B(t:)—B(ti-1))

—hmi X (1)
+/0 X(r) dB(r)

= O—Himiil @ (B(ti)=B(ti-1))* + /(:X(T) dB(r)

_ %/OtX(r) dr +/OtX(r) dB(r),

(where 0=1ty<...<t,=t and maxj<;<,t;i—t;_1 —0.) Here we used the fact that

s€[0,1] l<sisn

> D Btot) (50 ~B1e)| < sup S ()= Bt} 10

by continuity of BM, assuming that X is continuous. Further, picking a coarser

partition 0 =1%,<...<t%,=t, we get, by Theorem 2.13,

> X g-peogr =Y ¥ A ) -

=1 j=1 tie(fj_hfﬂ

3 S (BBl

ti€(tj—1,1;]

~o+ 30 X0 gy, g)

= X (1)
- Z 2 (tJ_tJ 1 2/

as first the partition {t;}7, and then the partition {f;}",, becomes infinitely fine.
Here we used the fact that, by uniform continuity of X together with Theorem 2.13,
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> ¥ X2 (51 - B, )y

tiE(fjfl,fj]

< sup sup
Je{l,m} te(F;_1,E;] 2 i=1

In some applications, the Stratonovich integral is the natural one. Luckily, it turns
out that the solution to the SDE (6.1), taken in the Stratonovich sense, that is,

¢ ¢
Y(t) =Y, +/ a(r,Y(r)) dr +/ b(r,Y(r)) o dB(r) for t€[0,T], (6.3)

0 0
can be obtained as the It6 sense solution to the modified equation (e.g., [37, p. 36])*

dY (t) = (a(t, Y (£)+ 1 b(t, Y (1) B:b(8, Y (1)) de+b(t, Y (1)) dB(1), Y (0)=Ys. (6.4)

EXERCISE 53 Prove (6.4). (Hint: Taylor expand the approximating sum.)

The major drawback with the 1td stochastic calculus, is that “natural formulas”

do not hold. For example, we have the It6 differential
d(B(t)*) = 2 B(t)dB(t)+dt # 2 B(t) dB(t) (6.5)
of squared BM, while the corresponding Stratonowich differential is “natural one”
d(B(t)?) =2 B(t) o dB(t).

[Of course, “unnatural” relations like (6.5) only occur when differentiating non-

differentiable processes (with infinite variation).]

Famous Example 6.4 We calculate the It integral [; B dB: We have

n

[ BB « 3Bt ) (Br) B 1)

= S (BBl a) = 3 Bl) (B~ B(t)
— B(t)~B(0)’ - é(B(m—B(ti_of - ilB(ti_o (B(t)—B(t:ir))

= B - [B)()— [ B(r)dB()

as n— oo [since B(0)=0]. Rearranging, Theorem 2.13 thus gives

/OtB(r) dB(r) = %B(t)Q - %t o

EXERCISE 54 Prove (6.5).
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7 Seventh Lecture

7.1 Maximal Inequalities for Martingales

Here we give two smartingale inequalities, which together with Burkholder-Davis-
Gundy inequalities in Section 23.5, argubly are the most important for smartingale.

Both inequalities in this section are consequences of the following easy estimate:

Theorem 7.1 For a right-continuous submartingale {X (t)}icjor), we have

1
P{ sup X(t)z/\} <5/ X(T)dP  for A>0. (7.1)
{supg<i<cr X(t)2A}

0<t<T

Proof. To prove (7.1), it is enough to show that
1
P{ sup X(t)>)\} <= X(T)dP  for A>0, (7.2)
0<t<T A {supo<s<T X (H)>A}

because from this together with Dominated Convergence, we deduce that

P{ sup X(t)z/\}: limP{ sup X(t)>)\—s} < lim —— X(T) dP

0<t<T €0 0<t<T el0 A\—¢ /{supOStSTX(t)>/\—s}
1
== X(T)dP,
A J{supocicr X ()22}
$ince Lsupge,erx(>2—c} X (1) = Lisupoe,er x>0 X (1) a8, With [Lisupo, cp x(>2-2}
X(T)| < |X(T)| (which is integrable since X is a submartingale).
To prove (7.2) in turn, it is enough to show that
1
P{ sup X (kT /n) >)\} < - X(T)dP for A>0, (7.3)

0<k<n T A J{supgc<n X (KT/n)>A}

since by right-continuity of X, we have Iisup .. x(k7/n)>A) = Lisupge,cr X(0)>A} 8-S,
so that Dominated Convergence gives (7.2) when we send n— 00 in_(_7.3).

To prove (7.3),let 7 =TAmin{l€{0,...,n}:Y (T /n)>A}. Since {r=~¢T/n} €
Feryn for £=0,...,n, we get (7.3) from the estimates

n

X(T)dP = /
ZZ:;J {supo< p<n X (KT/n)>X, 7=L€T/n}

- an/ X(T)dP

1—=0 Y {suPo< < X (KT/n)>X, 7=LT/n}

/ X(T)dP

n

E{X(T)| Fer/n} dP
ZIO/{supOSng(kT/n)>)\,T:ZT/n} { ( )| T/}

>y / X(£T/n) dP

- 1—0 {8uPo< k< X (KT/n)>X, 7=€T'/n}

> X(7)dP
{supo<k<n X (KT/n)>A}

> A dP = )\P{ max X (kT/n) >)\}. =
0<k<n

{supg<k<n X (KT/n)>A}
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EXERCISE 55 Let {X(t)}ep be a martingale, and f:R—R convex. Show
that {f(X(t))}tepo,r is a submartingale when E{|f(X(t))|} <oc for t€|0,T].

Corollary 7.2 (DooB-KOLMOGOROV INEQUALITY) For a right-continuous mar-
tingale {X(t)}iepor, such that E{|X(t)P} < oo for t€[0,T], where p>1 isa
constant, we have

P{ sup |X(t)|zA}gE{|X(T)|P}/AP for A>0.

0<t<T

Proof. Since |-|P is convex, |X|P is a submartingale, by Exercise 55. Hence Theorem
7.1 gives
P{ sup |X(0) 22} = P{ sup |X(0)P =]
0<t<T 0<t<T

< X(T)PPdP /X <E{|X(T)P’} /). O

T Hsupgeper IX(1)P>A}

Corollary 7.3 (DooB MAXIMAL INEQUALITY) For a right-continuous and pos-
itive submartingale {X (t)}icjo,r, such that E{X(T)P} < oo, where p > 1 is a
constant, we have

B{ (sup X))} < 0/ (-1 BX(T)}.

0<t<T

Proof. By Theorem 7.1, together with Hélder’s inequality E{|X;X,|} < (E{|X1|P}
)P (E{|Xo|P/P=D}) PP (e.g., [34, p. 65]), writing X* = supg;<r X (t), we have

E{(X*An)?} :/OOOP{(X*/\n)”>)\}d)\ :/Oin{X*>)\1/p}d)\

< [" (1w X(T P)
_/O (A /{X*ZM} (T) dP ) d
(X*An)P 1
=/(/ A /pd/\>X(T)dP
Q 0

_ p
ap—1

< 2 (B Ly

Dividing by (E{(X*An)?})®~D/P on both sides, Fatou’s Lemma thus gives

(X*An)P 1 X(T) dP

(B{(X*)"})? < liminf (E{(X*An)"})"/? < lim sup I% E{X(T)"}'/?. O

7.2 Stochastic Integration of Simple Processes

From now on, until further notice, we let {B(¢)}:+>o is BM with B(0) =0, and
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{Fihi>0 its natural filtration Fio(B(r):0<r<t).

Definition 7.4 A stochastic process {X (t)}1>0 belongs to the class Sr of simple
processes on [0,T], T €(0,00], if for some grid 0=to<t; < ... <t,=T, and for
some random variables X (0), Xy,,..., X, , that are adapted to Fo, Fiyy-- -y Ft,_,,
respectively, such that E{X(0)’}, E{X7}, ..., E{X?_ |} < oo, and such that

X, =0 1in the case when T'=o00, we have

X(t) X(O)I{o} + Z th 1[(,5z 1.t }(t) fO'f’ te [0, T]

=1

A stochastic process {X (t)}i>0 belongs to the class Er, T €(0,00], if it is measurable
and adapted to {F;}i>0, with

E{/OTX(T)2 dr} < 00

A stochastic process {X (t)}i>0 belongs to the class Pr of predictable processes on
[0,T], Te(0,00], if it is measurable and adapted to {F;}i>0, with

P{/OTX(?“)2 d7“<oo} =1

Notice that the meaning of “simple” process (function) is not the same as in Leb-
esgue integration, and rather connects to the stepfunctions of Riemann integration.

The values X (0) and X;, of a simple process X € Sy are constants, because Fy =
Fi, = o(B(0)) = o(0) = {0,Q2}, and only constants are measurable wrt. {(}, 2}.

Definition 7.5 The Ité integral process {fy X dB}icpor) of X €Sy is defined

/ X(r)dB(r thl 1 CB(ti)) + Xy, (B()—B(tn))  for t€(tm,tmsi]
and f(fXdB =0 for t=0. The It6 integral fsthB of X €St is defined

/:X(r)dB(r)E/OtX(r)dB(r)—/OsX(r)dB(r) for s,te0,T].

Remark 7.6 Assume that, for a simpel X €Sy, we have two representations

I

X(t) X(O)I{o} + Z X, 1 (ti_1,ti] (t) X(O)I{O} + z Xt’ I(tl Lt /](t)

=1 =1

for t€[0,T]. By introducing a third grid that contains all times of the grids 0=1t, <
1< ...<t,=T and 0=ty <t) < ... <tl, =T, it is easy to see that the values of
the Ito integral process { f(f X dB}cpo,m are the same for both representations. #
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EXERCISE 56 Explain why the definition of [* X dB is consistent.
We are interested in finding (defining, in fact) a solution
£) = Xo+ /OtX(r) dB(r)  for t€[0,T]
to the SDE (see Lecture 6)
dX(t) = X (t) dB(t) for t€(0,T], X (0) = Xo.

To find such a solution, we first have to define the meaning of the stochastic integral
{fi X dB}icio;r), and then find a process X that satisfies the equation.

EXERCISE 57 For X,Y €Sr and constants a,b€R, we have

/t(aX(r)—i—bY(r))dB(r):a/tX()dB +b/ rYdB(r)  for tel0,T].

0 0

EXERCISE 58 For X €Sy and s,t€[0,7T], we have

/OtX(r)dB(r)=/OSX(7“)dB(7“)+/:X r)dB(r

EXERCISE 59 For X€Sr, [{ XdB is a continuous function of #€]0,7].

Theorem 7.7 For Xe Sy, {Ji X dB, Fitiepor) 88 o martingale.

Proof. By Definitons 7.4 and 7.5, {Ji X dB}ycpo,r is adapted to {F}iefo,7-

To show that E{fi X dB|F,} = [; XdB for 0<s<t<T, we can assume that
tj=s and t,,41 =t for some ¢;<t,;1 belonging to the grid 0=t <, < ... <t,=
T (cf. Definition 7.4). Because otherwise the grid can be “enriched” (with the times
s and/or t), without affecting the values of the process X or its It6 integral process
(cf. Remark 7.6). Using that B(t;)—B(t;—1) is independent of F;,_,, this gives

E{/OtX(r) aB(r)| 7}
=E ii:Xt“(B(ti)—B(ti—l)) ‘ ’7:5}

{
E{z X (BBl )| £} + B S X800 -B0 )| £

:éXti_l(B( tic)) + TZ:E{ (X0, (B(t:)— B(ti_l))|.ﬁi_l}‘fs}
— /OSX( )dB(r) + me{th IE{B(ti)—B(ti_l)‘}}i_l}‘]—‘S}

i=j+1
s

X(r)dB(r)+0. O

S~
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EXERCISE 60 In the proof of Theorem 7.7, we did not show that E{|[ X dB|}
< oo for t€[0,T], which is of course required for it to be a martingale (and for
the calculations in the proof of Theorem 7.7 to make sense). For this in turn, by the

definition of the It6 integral process for X € Sr, it is enough to check that
E{|X, ,|[B(t)-B(ti1)|} <co  for te(tiy,t;] and i=1,...,n

(with the notation from Definition 7.4). Do this!

EXERCISE 61 \ Sy C Ep C Pr \

Theorem 7.8 For X,Y€Sr and t€[0,T], we have

E{(/OtX(r) dB(r)) (/OtY(f) dB(f))} - /OtE{X(r)Y(r)} dr = E{/OtX(r)Y(r) dr}.

Proof. We can assume that X and Y have a common grid 0 =t <t < ... <
t, =T, and that t=t,,,1 belongs to that grid. Because otherwise we can switch
to representations of X and Y by means of a third grid that contains all the times
of the original grids of X and Y, together with the time ¢, without affecting the
values of the processes X and Y, or their It6 integral processes (cf. Remark 7.6).
Since Xy, ,Y;,_, (B(t;)—B(ti—1)) is independent of B(t;)—B(t;_1) for i <j, this

gives

E{(/OtX(r) dB(r)) (/OtY(r“) dB(r“))}

= B{ (3 e, 30080 (L5, - B-)

- E{mflet“nl (B(t:)-B (t“))Q}

i=1

+E{ D> ,#.th-_lYt,-_l(B(tz-)—B(ti_l))(B(tj)—B(tj_l))}

= S RNV BB - B0 1))
E

+ Y E{B(t)-B(t;j-1)} B{X,_,Y;,_,(B(t:) ~ B(t:-1))}

1<i<j<m+1
+ > E{B(t:)-B(ti) } B{X, Y, ,(B(t;)-B(t;-1))}
1<j<i<m+1

m+1

=Y E{X; Vs ,}(ti—tic1) +0+0
=1

m+1 t m—+1 t
= E{ ZXti—lni—l /O I(ti—l;ti] (T) dT} = Z/O E{Xti—lifti—l‘l(ti—lyti] (T)} dr
i=1 =1
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m+1

t m+1 t
- E{ | X Y ) dr} =/ E{ S X0 Yo Do (7«)} dr
i=1 =
t ¢
= E{/ X(r)Y(r) dr} = / E{X(r)Y(r)}dr
0 0
by Fubini’s Theorem. Here we made use of the fact that

B{[ X, Y, (B(8) - Blti-) (Bty) - B(4-1)|}

< 1E{(Xti_l(B(ti)—B(ti—l)))Q} + %E{(Ej-l(B(tj)—B(tj—l))f}

2
1 1

=3 E{X? }E{(B(t:)-B(ti-1))’} + 5 E{Y? }E{(B(t;)-B(t-1))’} <. O

EXERCISE 62 |For X €Sy, we have E{[; XdB} =0 for t€[0,T].
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8 Eigth Lecture

8.1 Stochastic Integration of Processes in Erp

Theorem 9.1 states that, for X € E, we have

T
lim E{/ (Xn(r)—X(r))2dr} =0 for some sequence {X,}:>, CSr. (8.1)

n—oo

Definition 8.1 The Ité integral process {fy X dBlicp.r], of X € Er, is defined in

the sense of convergence in mean-square (lim.),

/OtX(r) dB(r) = lim. | X n(1) dB(r) where {X,}>>,CSr satisfies (8.1).

n— oo

Theorem 8.2 The Ité integral process [} X dB of X € Ep is well-defined.

Proof. Notice that the difference between two simple processes is simple (recall Re-

mark 7.6). The mean-square limit in Definition 8.1 exists, since, by Theorem 7.8,

E{(/ot Xom(r) dB(r) — /Ot Xn(r) dB(T))Z}
- E{(/Ot(Xm(r)—Xn(T')) dB(T))Z}

- E{/Ot(Xm(r)—Xn(r))?dr}
< 2E{/()T(Xm(r)—X(r))2dr} + QE{/OT(X(T)—XH(T))2 dT} —0 as m,n—o0,

so that { fot X,dB},", is a Cauchy sequence, in the sense of convergence in mean-
square. Further, the limit in Definition 8.1 does not depend on which particular

sequence {X,}2, CSr we choose that satisfies (8.1), since, again by Theorem 7.8,

{<11m/X 11m/X’ dB()>2}
_ E{@lj& /Ot(Xn(r)—X;(T))dB(T)Y}

_ T}H&E{(/Ot(xn(r)—xg(r)) dB(T))Q}

~ lim E{/Ot(Xn(r)—X;L(r))QdT}

n—0o0

< lim QE{/OT(Xn(r)—X(r))er} + 2E{/0T(X(r)—X;(r))2dr} —0

n—oo

when {X,}2,, {X)}52, C Sy both satisfy (8.1), so that the mean-square limits co-

incide. (Recall that mean-square limits commute with first and second moments.) O
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8.2 Concepts of Measurability

Theorem 8.3 A measurable stochastic process {X(t)}i>o has measurable sample
paths, that is, [0,00) 3t — X(wo,t) € R is a measurable function for each wy €.

Lemma 8.4 Let (&,G) and (9,H) be measurable spaces. For (the sections of) a
set E in the product o-algebra GXH (e.g., [34, Chapter 7])*, we have

EY={ze®: (z,y)eE} g for yeH
E,={ye$H: (z,y)€eE} eH for z€®

*Proof. Tt is enough to prove the statement for EY. Notice that the family
£ = {EEQXH : BEYe @ for all yEfJ}

is a o-algebra, since it is easy to check the axioms of a g-algebra. Moreover, we have

G if yeH
(GxH)Y = { ; %f y¢H eg for all ye®n, for GxHEeR,
Iy

where R ={GxH :GeG, HeH} are the rectangles. Hence RCE, so that o(R)
C o(€) = &. Since on the other hand, £ C GXxH =0(R), we get E=GxH. O

Proof of Theorem 8.3. Picking an wy€) and a C' € B(R), Lemma 8.4 shows that
{tef0,00) : X(wo, 1) €C} = {(w,1) €2x[0, 00) : X(w,t)eC}w € B([0,0)),

since {(w,t): X (w,t)€C} € FxB([0,00)) by measurability of X. O

Definition 8.5 A stochastic process {X(t)}i>0 [X(t)}iepr)] is progressively

measurable, if

X:Qx[0,t] =R is  FyxB([0,t])-measurable for each t>0 [0<t<T].

[Recall that {F;}150 = {o(B(r):0<r<t)},5,, where B is BM with B(0)=0.]

Theorem 8.6 A progressively measurable process is measurable and adapted.

Proof. For CeB(R), the set

{(w,s)EQx[O,oo) :X(w,s)EC} = G{(w,s)EQX[O,n] :X(w,s)EC}

n=1

belongs to F xB([0,00)), since the n’th member of the union belongs to F;, x B(]0,
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n|), by progressive measurability. Picking a t>0, Lemma 8.4 further shows that
t
{weQ: X(w,t)eC} = {(w,s)EQx[O,t] : X(w,s)EC’} € F,
since {(w,s)€Qx[0,t]: X(w,s)eC} e FxB([0,t]), by progressive measurability. O

Theorem 8.6 has an important partial converse, famous for its long and difficult

proof:

Theorem 8.7 ([29, pp. 68—ff.])HZo=1* A measurable and adapted process has a pro-

gressively measurable version.

Theorem 8.8 An adapted process that is left-continuous or right-continuous is

progressively measurable.

Proof. We only give a proof for left-continuous processes, since that for right-con-

tinuity is quite similar. Notice that
{(w,5)€Qx[0,1]: X(w,5)€C} € FixB([0,])  for CeB(R) (8.2)
holds for t=0, since (8.2) in that case amounts to check that
{weN: X(w,0)eC} x {0} € FoxB({0}) = Fox{0,{0}},
which holds since X is adpated. For ¢>0, we consider the sampled process
Xa(s) = X([2"(s/0)]/(2"/1)) = X (kt/2")  for s € [kt/2", (k+1)t/2").

Since [2"(s/t)]/(2"/t) — s from the left as n — oo, for s€[0,¢], and X is left-
continuous, we have X (s) = lim,_,, X,(s) for s€[0,t]. Since limits of measurable

functions are measurable, in order to prove (8.2), it is enough to check that
{(w,5)€Qx[0,1]: X,(w,5)€C} € FixB([0,t])  for CeB(R).

However, the set on the left-hand side can be expressed as the union

U {(w, s) € x ([0, N[kt /2", (k+1)¢/2") = X, (w, s) ec}

k=0

_ U ({wEQ X (w, kt/2") €C} x ([O,t]ﬂ[kt/Q",(k+1)t/2"))) e F,xB([0, 1)),

since, by adaptedness, X (kt/2") is Fii/on-measurable, and thus F;-measurable. O

EXERCISE 63 Let ACQ and s€R. Show that Ax{s} is F;xB([0,t])-measur-
able iff. Ae F, and s€]0,t].
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9 Ninth Lecture

9.1 Stochastic Integration of Processes in Er (continued)

The result of this lecture, Theorems 9.1 below, is [27, Lemma 4.4]. The ideas of
the proof have the same origin, and are notable because Theorem 8.7 is not required.
A simplification of this approach is sketched in [22, Problem 3.2.5], and worked out
in [22, Section 3.8]. We follow the sketch, but work it out marginally different.

Theorem 9.1 For a process X € Er, we have

T 2
lim E{/ (Xn(r)—X(r)) dr} =0 for some sequence {X,}o>,CSr.
0

n—o0

Proof. 1t is enough to prove that, for each T'<oo and £>0, we have

E{/OT(X(T)—X(T))er} <e  forsome XeSr. (9.1)

Let XM (r) = max{min{X(r), N}, =N} for NeN, so that XM (r)—X(r) as
N — 0. Since (XM (r)—X(r))? < X(r)?, which is integrable over (w,r) € Qx[0,T]

(since X € Er), the Dominated Convergence Theorem gives

E{/()T(X(N)(T)—X(T‘))er}—)o as N— o0, 9.2)

It follows that it is enough to prove that, to each ¢ >0 and N €N, we have

B{ /OT(X(T)—XW)(T))MT} <% forsome XeSy, (9.3)

because, taking N €N so that the left hand side of (9.2) is at most /4, (9.3) gives
T .
B{ [ (X()-x(r))dr}
0
T . T
< zE{/ (X(r)-XW)(r))?dr} + QE{/ (X<N>(7«)—X(r))2dr} <e.
0 0

Now recall that |z|=k for z€(k,k+1], and define {X{¥7)(r)}repom by

XN (r) =

7

XM @ on(r—7)|+7) for 27" 2*(r—7)]+71 €[0,T]
{ 0 for 27" 2"(r—71)|+7 ¢ (0,7
where 7€[0,1] is a constant to be specified later. Observe that
XM@k+7)  for r—7€ (27"k,27"(k+1)] and 27"k+7>0
{ 0 for r—7€ (27"k,27"(k+1)] and 27"k+7< 0

where it is necessary that r<27" for the lower option to take place. This gives that

X (V7)€ Sp. In order to prove (9.3), it is therefore enough to show that
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T
lim infE{/ (XN ()X (V) (r))2dr} =0 for some T€[0,1], (9.4)
0

n—oo

because then there exists an n€IN such that we have the desired

E{ / T(XT(LN’T)(T)—X(N)(T))QdT} < Z.

0

To prove (9.4), it is enough to show that

lim E{/T / (XD (p X(N)(r))2drd7} ~0. (9.5)

This is so, because if (9.4) does not hold, then Fatou’s Lemma together with Fubibi’s
Theorem show that (9.5) does not hold, in the following way

n—00

=1 pr=T
< lim infE{ [ [ () - x M)y deT}.
n—00 7=0 Jr=0

To prove (9.5), it is enough to show that

T=1 r=T
0< [ tim infE{ / (XgNﬂ(r)—X(N)(r))er} dr
=0 r=0

limE{/hT(X(N) (r) =X (r—h))? dr} = 0. (9.6)

h10

This is so, because if (9.6) holds, then the expectation in (9.5) is at most

r=T
E / / XM (2 "k 1) = XN (1))2 drd
{ r=2- Z TE[TfQ*n(k—H),rf?*"k)( ( 7—) (T)) rar

=277t io-n<r_o-nk<1}
r=T
+E{/ / (XD () = XV (1))? drd’r}
r=2—n Jre[0,27?)U(1-277,1]
r=2"" pr=1
+E{/ / XM ()2 deT}
0 7=0
r=T
{ / / XM (p %)—X(N)(r))erdT}

+(T—27")(27"+27") (2N)? + 27" N?

T
< sup E{/ (X(N)(r—h)—X(N)(r))zdr}+(T23_”+2_”)N2—>0 as n— o0,
he[0,27] h

Let C':(pN) be the class of stochastic processes {Z(r)},c[o,r] that are continuous with

supepor7|Z (t)| < N. To prove (9.6), it is enough to show that, to each £>0, we have
E{/OT(X(N)(T)—Z(T))2 dr} <e forsome ZeCW™. (9.7)
This is so, because if (9.7) holds, then we have [using that (z+y+2)? < 32%4+3y*+32?]
B{[ T(X<N>(r)—x<N>(r—h))2dr}
< 3E{/hT(X<N> () =2 () dr )+ BE{/’LT(Z(T)—Z(r—h))Q ar}

—|—3E{/hT(Z(r—h)—X(N)(r h))? dr}
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< 35+3TE{ sup (Z(r)—Z(r—h))Q} 436 = 6c  as hlO,
r€[h,T)

by (uniform) continuity together with the Dominated Convergence Theorem. Since
this holds for each £>0, the limit in (9.6) must be zero.
To prove (9.7), define

Y(t) = /OtX(N)(r) dr  for tel0,T], (9.8)

and (with the notation ¢* = max{t,0})

ttAT

Zn(t) = n/

(t=1/n)+AT

XM (r)dr =n(Y(EAT) =Y ((t=1/n)*AT))  for te[0,T].

Notice that |Z,(t)| <N, since the integral is over an interval of length at most 1/n,
and [nXN)(r)|<nN. Further, Z, is continuous, so that ZHEC}';N), since

X(N)(r)dr—n/

(t—1/n)+AT

(t+e)tAT (t+e—1/n)tAT

Zo(t+e) — Zo(t) = / XM () dr — 0

tAT
as € —0, because the integrals are over intervals of length at most ¢ [and nX™®) is
bounded]. Obviously, Y is absolutely continuous (cf. Example 3.1), with derivative

Y'(t) = limy oo Zn(t) = XM(¢)  for almost all €0, T].

Since (X™)(t)—Z,(t))? < 4N?, the Dominated Convergence Theorem thus gives

lim E{ /0 T(X<N>(t)—zn(t))2dt} =0.

n—oo

Picking a sufficiently large ng €N, it follows that Z=27,, satisfies (9.7). O

EXERCISE 64 Explain why Y(t) = f{ X(r)dr is adapted if X is progressively
measurable (and the integral well-defined). Explain why this possibly could fail if X

is not progressively measurable. (This exercise is solved in Appendix C.)

EXERCISE 65 Give a direct proof of (9.3), in the case when X is continuous and
adapted, so that X is continuous, bounded and adapted.

EXERCISE 66 Show that if the processes {V (£)}icjo.r] and {Y () }icjo,r) are ver-
sions of each other, then adaptedness for one of them, to an augmented filtration

{Fi}i>0, implies adaptedness for the other. (Hint: See the proof of Theorem 11.6.)

Lemma 9.2 Let {X(t)}iejor and {X(t)}iep. be measurable stochastic processes

that are versions of each other. We have

P{/OtX(r)dr;é/otX(r)dr}z() for te€|0,T],

provided that the integrals are well-defined (but not necessarily finite).
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Proof. Clearly, if X (r)=X(r) for almost all r € [0,t), then we have [ X(r)dr
= [ X(r) dr. It follows that

P{/OtX(r) dr #/Ot)?(r) dr} < P{/Ot Ty ey dr > 0}. (9.9)

If the probability on the right-hand side of (9.9) is non-zero, then the expected value

of f(f I x 2500y dr is non-zero, so that, by Fubini’s Theorem,

t t t ~

since X and X are versions of each other. This is a contradiction, so that the prob-
ability on the right-hand side of (9.9) must be zero. This establishes the lemma. O

We now show how the proof of Theorem 9.1 can be somewhat shortened, if one

assumes that {F;};>o is augmented, and uses Theorem 8.7.

*Second Proof of Theorem 9.1 (after [22, pp. 133-134], see also [27, p. 95]). By the
first paragraph of the proof of Theorem 9.1, it is enough to prove (9.3). By the last
paragraph, we have the approximation (9.7) of X)| for some Z EC%N). Since Z is
continuous and bounded, Z can be approximated by a simple X € Sr, in the sense
(9.3), by Exercise 65, thereby proving (9.3) also for X [by (9.7)], if Z is adapted.

To prove that Z is adapted, it is enough to prove that Y in (9.8) is. Let X®)
be a progressively measurable version of X (recall Theorem 8.7), and put Y'(t) =
fot X@) (r)dr. Since Y is adapted, by Exercise 64, it is enough to prove that Y and

Y are versions of each other, by Exercise 66. This follows from Lemma 9.2. O
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10 Tenth Lecture

10.1  Properties of Stochastic Integrals in Erp

Definition 10.1 For X € Ey we define the Ité integral process

/tX(r)dB(r)E/tX(r)dB(r)—/sX(r)dB(r) for s,t€[0,T]

s 0 0

(where the integrals on the right-hand side are defined in Definition 8.1).

Theorem 10.2 For the Ité integral process of X,Y € Ep, we have
(1) [§(aX+bY)dB=af{ XdB+b[/YdB for a,beR;

(2) [iXdB = [:XdB+ [' X dB;

(3) E{p X dB}=0;

(4) B{( X dB) (Y dB)} = B X(r)Y (r) dr };

(5) {fy X dB, Fi}hiepo is a square-integrable martingale;
(6)

6) { fo X dB}cpo is continuous and progressively measurable, with probability one.

Proof. (1) Taking {X,},,{Y,}>, C Sy such that

B /OT(X(T)—Xn(r))er}AO and B /OT(Y(T)—Yn(r))2dr}—>O (10.1)

as n— 00, we have

lim sup E{/OT((CLX(T)+6Y(T)) — (aX, (T)+an(T)))2dT}

< 2a? lizn_)s;ipE{/OT(X(r)— Xa(r)) dr} + 20 hnm_gPE{/ (Y(T)_Y”(T))st} N

Since {aX,+0bY,}5, C Sy, we have (recall Definition 8.1 and Exercise 57)
¢ , ¢
/ ((@X(r)+bY () dB(r) = Lim. [ ((aX, () +¥a(r) dB(r)

0 =1;L"330(/X )dB(r +b/Y dB())

—allm/X ) dB(r +b11m/Y )dB(r)

n—0oQ
:a/X()dB +b/ r) dB(r).
0
(2) This is only a rearrangement of Definition 10.1.

(3) Taking {X,}%°,CSy asin (10.1), we have, by Exercise 62,

E{/Ot (r) dB(r } {}ngo/ X }—JLIEOE{/()tXn(r)dB(r)}:O
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(since mean-square limits commute with expectations).

(4) Taking {X,}°,,{¥,}>, C Sr asin (10.1), we have, by Theorem 7.8,

B{([ xwaBo) ([ vis)ane) - u{ [ x()y ()dr}
- {(L%/X B)) (ki [ V() dB() } - { Y () dr
= Jm B{ ([ ¥ )(/Y )dB(; )} B{ [ X() () ar}
JL%E{/X narf - B{ [ x W}

+E{ | t(Xno«)—X(r)) )=y () ar} )

(since mean-square limits commute with second moments). For the first term on the

right-hand side, Cauchy-Schwarz inequality gives

B () [ xoran[ [ o-rvora)
< \/E{/OtX(r)er} E{/Ot(Yn(r)—Y(r))er} 0

as n— 00, and similarly the other two terms on the right-hand side go to zero. O

[ X0) () =Y (1)

(5) Since the It6 integral [/ X dB is a mean-square limit of adapted random vari-
ables, it is adapted by Exercise 67 below. Taking {X,,}5°, CSr asin (10.1), Theorem
7.7 together with Exercise 68 below further show that

E{/OtX()dB() } {llm/X
:L.:I?O.E{/Xn(T)dBT s}

= Lim [ x, () aB(r) = [ X(r)aB(r)

(6) By (5) together with Theorem 8.8, it is enough to prove continuity: We have

r 1
E{/O (X(r)— ()) dr} 52 " for neN, forsome {X,}>°,CSr

(by Theorem 9.1). It follows that

T 2
E{/ (Xi+1(r)—Xi(r)) dr}
0
T T 27i 2171' )
< QE{/ (Xi+1(r)—X(r))2dr} n 2E{/ (X(r)—Xi(r))er} <22 o
0 0 3
for i€N. Notice that (by Definition 8.1)
t . t t -1
/ XdB = %grgo-/ XndB:/ X;dB + Lim. Z/ (Xis1— X;) dB.
0 0 0 — Jo
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Since the terms of the sum are continuous, by Exercise 59, we get the continuity
desired if the sum converges uniformly with probability one, that is, if

o0
Z sup

¢
/ (Xi1—Xi) dB‘ converges with probability one.
i=1 t€[0,7]1/0

To that end, it is enough to show that

t 1 P .
i+l A ) =0,
P{ sup / (Xit1—X;) dB‘ > - for infinitely many ZEN} 0
0 1

te[0,T]

which in turn, by the Borel-Cantelli Lemma, will follow if

o

Z {sup

i=1 t€[0,T

t
[ (Xi=x) dB‘ }<c>o
0

Since [J X;,1dB and [j X;dB are martingales (by Theorem 7.7), [{(X;,,—X;)dB

is a martingale. Hence the Doob-Kolmogorov Inequality and Theorem 7.8 give

Jpxin=xyan >} <B{ ([ (n-xpam) } /()

14t

_ E{/OT(XZ-_,_l(T)—Xi(T‘))QdT} L<bo

P{ sup

t€[0,T1]

EXERCISE 67 Explain why, and in what sense, a mean-square limit, or more
generally a limit in probability, of a sequence of random variables adapted to a o-

algebra G, will be adapted to that o-algebra.

EXERCISE 68 Let G be a o-algebra, and Z, Z;, Z,,... random variables with
finite means. Show that
lim, oo B{|Z,—Z]} =0 = lim, o B{|E{Z,|G} - B{Z|G}|} =0

iy oo Zn = 7 = im0 E{Z,|G} = E{Z|G}

10.2  Stochastic Integration of Processes in Pr

Theorem 11.1 states that, for X € Pr, we have, in the sense of convergence in
probability (P-lim) [convergence in measure (IL°(P)-convergence in mathematics)]

T
P-lim [*(x (=X (r))2dr =0 for some sequence {X,}:°,CEr, (10.2)

n— 00 0

provided that {F;}:>o is augmented. Recall that (10.2) means that

lim P{

n—o0

/OT(XH(T)-X(T))MT >3} =0 foreach 60 (10.3)

Theorem 11.2 states that, for X € Er and a constant C' >0, we have

/tX(r)dB(r) >A}§%+P{/OTX(T)2dr>C} for A>0. (10.4)

P{ sup
0

t€[0,T]
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Definition 10.3 Let {F;}1>0 be augmented (Definition 2.20). For X € Pr, the It

integral process { fot X dB}icpom is defined, in the sense of convergence in probability,

t .t
/ X(r)dB(r) = P-lim [* X (r)dB(r) where {X,};°, CEr satisfies (10.2).
0 > Jo

Theorem 10.4  The It6 integral process [y X dB of X € Py is well-defined.

Proof. To prove that the limit in probability in Definition 10.3 exists, it is enough to

check the Cauchy criterion for convergence in probability
t
lim P{
0

/ X
m,n—00

To that end, pick an £>0, and notice that (10.3) and (10.4) give

> 5} for each §>0.  (10.5)

t t
]imsupP{‘/ XpdB | XndB‘ >5}
0 0

m,n— 00

<=+ hmsupP{/T(Xm(T)—X (r)?dr > e}

62 m,n—0o0
<—+hmsupP dr—|—2/ (r))? dr>s}

m,n—0Q

2
< —+11msupP{ X(r))? dr>4}u{/OT(X(T)—Xn(T))ZdT>f}}
([

m,n— 00 4

< — + limsup P

m,n— 00

v ))dei} +1im SUPP{/OT(X(T)—Xn(T))er>Z}

m,n—00
:5/52 +0+0 for tel0,T].
Since the left-hand side does not depend on ¢, and the established inequality holds
for every >0, the left-hand side must be zero, which is precisely (10.5).

The limit in Definition 8.1 does not depend on what particular sequence { X}, C
Er we choose that satisfies (10.2). This is so, because if {X}5°, C Er is another
sequence that satisfies (10.2), and J,£>0 are constants, then (10.3) and (10.4) give

P{‘ P-lim/tXndB _ P-lim/tX' dB‘ > 5}

< P{[P-lim [, 4 /X,ch‘ [(xi-x 0B +| [ x;dB- th/X'dB‘>6}
gP{E_l)loo/XdB /X,ch‘ }+P{/X'dB th/X’dB‘ }

+P
(5/3) " P{/OT(X’“(T) —Xi(r))? dr > s}
< o(1)+ o(1) + i_Q + P{/()T(Xk(r)_X(T))Q dr> Z} N P{/OT(X(T)_X]/C(T))Q . Z}

— 9¢/8? as k— oo.

(Xk—X,’c)dB‘>—}
0 3

IA

o(l)+ o(1) + ——
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Here o(1) denotes probabilities that goes to zero as k— oo, by the convergence in
probability shown in the first part of the proof. Since £>0 is arbitrary, the left-hand

side is zero for each § >0, so that the two limits in probability therein coincide. O

EXERCISE 69 A possible problem when extending the It6 integral from Er to
Pr [Str to E7|, would be that for X € Er [X € S7|, with the integral given by Defi-
nition 8.1 [Definition 7.5], the integral obtained from Definition 10.3 [Definition 8.1]
would differ from that of Definition 8.1 [Definition 7.5]. Why does this not happen?

10.3  Approximating Sums for It6 Integrals of Processes in E7

Given X € Er and ¢ >0, an inspection of the proofs of Theorem 9.1 reveals that
T

E{/ (X(r)—Z(r))er} <e¢  for some continuous and bounded Z € Ej;.
0

Here T=T if T <oo, but T<T if T=o00. If X is continuous, we may take
Z(t) = I 9 (1) XM(t), where X = max{min{X, N}, =N}, for some sufficiently
large N €N. For the corresponding It6 integral process, Theorem 10.2 gives

¢ ¢ 2 T

E{ (/ XdaB- | ZdB) dr} < E{/ (X(r)—Z(r))er} <e for te0,T).
0 0 0

For a continuous and bounded Z € E5, Dominated Convergence gives

O=tog<t1 < ...<t,=T —0
neN, maxi<i<n ti—t;_1—0 '

lim{E{ /O (2r)- é Z(t ) L)) dr} :

2

Since Y3, Z(ti—1)l(t;_, ;] € St, Definition 7.5 shows that

[ 320 ) 0B = 3 2(61) (BBt 1)+ T4y (8) Z00) (BO)-B(1)).

=1 t; <t

Hence we have, using Theorem 10.2 together with the fact that Z is bounded,

E{ (/Otz dB—-Y" Z(t; ) (B(t:) —B(t“))>2}

t;<t

< QE{ ( /0 '7dB - /0 ti:ilZ(til)I(ti_hti] dB)2} +2B{ I 1,10 (1) Z(4;)2(B() — B(1;))*}

< 2B{ [ (20)= £ 20 )T 001 dr} 420,000 ) BAZ(:)7) (302 -15) = 0

uniformly for t€[0,T], as maxj<;<,t;—ti—1 — 0: In particular, we have

Theorem 10.5 Let X € Er be continuous. Given an € >0, there exist N € N
and 0=ty<t;<...<t,<oo, such that

E{(/OthB—ZX(N)(ti_l) (B(t,-)—B(ti_l)))Q}ge for t€[0,T].

t; <t
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11 Eleventh Lecture

11.1  Stochastic Integration of Processes in Pr (continued)

The two results of this section, Theorems 11.1 and 11.2 below, as well as their

proofs, are identical (more or less) to [27, Lemmas 4.5 and 4.6]:

EXERCISE 70 Let 7 be a stopping time wrt. the filtration {F;};>o. Show that
the events {7 <t} and {r=t} are F;-measurable for ¢>0.

Theorem 11.1 Let {F;}1>0 be augmented. For a process X € Pr, we have, in the

sense of convergence in probability (P-lim)

. T
P-lim ["(x (1= X(r))2dr=0  for some sequence {Xn}>,C Er.

n— o0 0

Proof. Given an n>0, define
m=TA inf{te [0, 7] /OtX(r)2 dr > n} and  Xo(t) = X(Opery  (11.1)
(recall that inf{()} =oc). Provided that f[j X(r)?dr is adapted, we have
{r. <t} = {/OtX(r)er > n} e€F, for te0,T), (11.2)
so that 7, is a stopping time. This in turn makes X,, adapted, by Exercise 70, since

{Xu()eB} = ({t<m}n{X@)eB}) U ({t>7} In(0))

_ c {rn>t}c if 0€B "
_({Tn<t} m{X(t)eB})u{ ; o 0¢Be]-“t for BeB(R).

Since X? is measurable and adapted, there exists a progressively measurable ver-
sion X2 of X2, by Theorem 8.7. The process {fOtX(T)er}te[O,T] is adapted, by
Exercise 64, and a version of {[; X (r)?dr}epr, by Lemma 9.2. Hence [§ X (r)*dr
is adapted, by Exercise 66, since {F;}i>o is augmented.

By Exercise 71 below, X,, is measurable. Further we have
T Tn
/ X, (r)2dr = / X(r)?*dr <n. (11.3)
0 0

This is so as an immediate consequence of the fact that f; X (r)2dr is a continuous
function of ¢, by Absolute Continuity of the Integral (see Lemma 12.1 below).
Now pick an §>0. It is enough to prove that

T

P{/ (X (r)=X(r))*dr > (5} <e¢  forsome n=n(de)e N, foreach &>0.
0

Notice that X,, € Er, because fOT X, (r)?>dr <n. Since X € Pr, we have
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P{/OTX(T)QCZT‘ > n} <e¢  forsome n=n(e) € N.
It follows that
P{/OT(XR(T)—X(T))Q dr > (5} < P{X(r) # X, (r) for some r€l0, T]}

< P{/OTX(T)erzn} <e O

EXERCISE 71 Prove that the process X, given by (11.1) is measurable.

Theorem 11.2 For a process X € Ep, we have, for each constant C >0,

P{ sup /OtX(T)dB(T) >/\}<%+P{/ X(T‘)2d7'>0} for A>0.

t€[0,T]

Proof. By Exercise 72 below, it is enough to prove that, for each n>0,

P{ sup /OtX(r)dB(r) >)\}<F+P{/OTX(7°)2dr2n} for A>0.  (11.4)

t€[0,T]

When [f X (r)?dr <n, we have 7,=T and X, =X, with the notation (11.1). By
the Doob-Komogorov Inequality, together with Theorem 10.2 and (11.3), this gives

@ ane]>ap < Pl [ x
< E{ (/0 Xn(r) dB(T)) }/)\2 +P{/OTX(7“)2dr > n}
= E{/OTXH(T)2 dr}/)\Q + P{/OTX(T)2d7‘ > n}

n T 9
_ > . O
32 +P{/0 X(r) dr_n}

EXERCISE 72 Show how Theorem 11.2 follows from the seemingly weaker (11.4).

P{ sup >)\}+P{X #X}

t€[0,T]

IN

EXERCISE 73 Construct the integral {{f; f dB}icpo,r1}ser2(o,1)), in mean-square

sense, by first making {{/; f dB}icjor1}sesn, and then {{f f dB}iepm}secqo.r
where S¥ = {feSr:o(f(s):s€[0,T])={0,Q}} (thatis, feS; non-random).

EXERCISE 74 Try to explain why a stochastic integral {Jf; f dB}scpo7], of a non-
random f:[0,7]— R, to have deacent properties, requires that f&L2([0,T]).

Remark 11.3 The integral {f; f dB}icpo7], of a non-random function f:[0,7]—
R, is well-defined when (and only when, if properly understood) fe€IL?([0,7T]) (cf.
Exercises 73 and 74). It is notable that the Ito integral {[y X dB}icpor is well-
defined when (X is adapted and measurable with) P{X €1L2([0,7])} = 1, which in
the particular case of a non-random X becomes X eL?([0,T]). #
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*Remark 11.4 The construction in Exercise 73 is of Daniell type (cf. [18, Section
9]). It is not a Riemann integral, although starting out as that. (The “usual” Lebes-
gue integral can be got from the Riemann integral in a similar way.) Many authors
get the integral from a Hilbertspace isomorfism between L?([0,7]) and the values
of the integral. This approach is non-constructive, and does not extend beoynd the
Gaussian setting [unless (random) Orlicz (Musielak-Orlicz) spaces are employed (e.g.,
[26])]. See [35, Section 3] on more methods to integrate, albeit only worked out for

a-stable stochastic processes. For the general case, try the more demanding [26]. #

11.2  Properties of Stochastic Integrals in Pr

Definition 11.5 Let {F;}1>0 be augmented. For X € Pr we define the Ité inegral

/:X(r)dB(r)E/OtX(r)dB(r)—/osX(r)dB(r) for s,t€[0,T]

(where the integrals on the right-hand side are defined in Defintion 10.3).

EXERCISE 75 Prove that, for X € Py, the definition
t t
[ X()dB(r) = [ o)X () dB()  for s,t€[0,T)
s 0

gives the same result as Definition 11.5.

Theorem 11.6 For the It6 integral process of X,Y € Pr, we have
(1) [{(aX+bY)dB=af{ XdB+bf;YdB for a,beR;
(2) [EXdB= [ XdB+ [ XdB;

(3) {Jy X dB}icpor) is continuous and progressively measurable, with probability one.

Proof. (1) This is Exercise 76 below.
(2) This is only a rearrangement of Definition 11.5.

(3) When [y X(r)2dr < n, we have 7, =T, with the notation (11.1), so that X, =X.
By Theorem 10.2, recalling that X, € Er, this shows that [; X dB = [} X,,dB is
continuous on {n—1 < [y X(r)?dr < n}. This gives continuity for [} X dB, with
probability one, because

00 T

P{U{n—lg/ X(r)2d7“<n}}=1 for XePr.
n=1 0
Since fot X dB is a limit in probability of random variables adapted to F;, by

Theorem 10.2 and Defintion 10.3, it is an a.s. limit of a subsequence of such random
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variables. Hence [ X dB is the limit of F;-measurable functions, except on a null-
set. Therefore the inverse image under fot X dB, of a Borel-set in R, deviates from
that under the limit, which is F;-measurable, on a subset of this null-event. Since the
filtration is augmented (cf. Definition 10.3), it follows that the inverse image under
J2 X dB is also F;-measurable, so that [; X dB is adapted. By continuity, we now

get progressive measurability from Theorem 8.8. O

EXERCISE 76 Prove property (1) in Theorem 11.6.

11.3  Uniform Integrability and Regular Martingales

Uniform integrability and regularity characterize martingales that converge in 1.

Definition 11.7 A family {Y,}aea of random variables is uniformly integrable if

lim Sug/ﬂf{|ya>y}|ya| dP = 0.

Yy—0o0 ac

EXERCISE 77 Show that a family {Y,}aea of random variables is uniformly inte-
grable if sup,cq E{|Ya|"} < oo for some constant p>1. (Hint: Hilder’s inequality,
followed by Tjebysjev’s inequality.)

Example 11.8 Let {Y,}aca be a family of random variables, such that
Yo| < Z  as. for each «a€f,  for some positive random variable Z.

If in addition E{Z} <oo, then {Y,}acq is uniformly integrable, by Absolute Con-
tinuity of the Integral (Lemma 12.1 below), since

sup [ Iiyusg Yl dP < [ ZdP -0 as y—oo. #
acA I {weN: Z(w)>y}

In basic probability theory, uniform integrability is used in the following two ways:
(1) For random variables Y,Y3,Ys, ..., such that E{|Y,|} < oo for n € N and
P-lim, . Y,=Y, the following properties are equivalent (e.g., [8, Theorem 4.5.4])*
o E{]Y|}<oco and lim, ,, E{|Y,-Y|}=0;

o E{|Y|}<oo and lim, . E{|Y,|} = E{|Y|}; (11.5)

o {Y,}>2, is uniformly integrable.

(2) For random variables Y,Y7,Y5, ..., such that Y, —giswibution Y, We have (e.g.,
[5, Theorem 3.5])*
o {Y,}5%, is uniformly integrable = lim, ,,, E{Y,} = E{Y'}. (11.6)
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Definition 11.9 A martingale {Y (t), F;}ier is reqular (or closed), if there exists
a random variable Yo, with E{|Y,|}<oo, such that

E{Y.|F} =Y(t) for teT.

EXERCISE 78 Show that the martingales {Y (¢)}ieqo,..ny and {Y(¢) hepor) are

regular.

Lemma 11.10 (e.g., [8, Theorem 9.4.6])* For a martingale {Y (n)}.>o the follow-

ing properties are equivalent

o Y s a reqular martingale;
o lim, oo E{|Y (n)—Y,|} =0 for some random variable Yo, [with E{|Yy|}<oo/;

o {Y(n)}2, is uniformly integrable.

Theorem 11.11 For a right-continuous martingale {Y (t)};>0, the following prop-

erties are equivalent

o Y s a reqular martingale;
o limy oo E{|Y(t)—Yx!|} =0 for some random variable Yoo [with E{|Yy|} <oo/;
o {Y(t)}i>o0 is uniformly integrable.

*EXERCISE 79 Work on a derivation of Theorem 11.11 from Lemma 11.10.

11.4 Approximating Sums for It6 Integrals of Processes in Pr

The following important result substantially improves on our peace-meal findings
in Section 10.3. However, a proof requires a more abstract approach to Ito integration,
than the one we have taken (but still very similar to it in its essential parts), that

uses local martingales. These, by the way, we introduce in the next lecture.

Theorem 11.12 (e.g., [33, Chapter IV, Proposition 2.13])* For X € Pr, we have

t
/ XdB = P-lim{
0

7 O=to<ti < ... <tp,=t }
X ti— B tZ -B ti— : .
=1 ( 1)( ( ) ( 1)) nelN, maxj<i<n t;i—ti_1 —0

7
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12 Twelfth Lecture

12.1  Optional Stopping

Lemma 12.1 (ABsoLUTE CONTINUITY OF THE INTEGRAL) (e.g., [18, p. 176])*

Let Y be a random variable with E{|Y|} <oco. Given a constant >0, we have

/A\Y\dP <e for AeF with P{A}<d, for some constant &>0.

*Remark 12.2 From the proof of Theorem 4.20, we have that, for a right-

continuous and adapted process Y, and a stopping time 7,
{Aeo(Y(n)): An{r<t} € A} =o(Y(7)).
This together with Exercise 70 shows that Y (tA7,) is adapted, since for B € B(R)

{V(trm)eBY = ({m<t}n{Y(m)€B}) U ({2t} N{Y(H)€B}) € 7. #

Theorem 12.3 (OpTiONAL STOPPING THEOREM) If {Y (t), Fi}is0 is a right-

continuous martingale and T a stopping time, then {Y (tAT), Fi}iso is a martingale.

Proof. We have Y (tAT) adapted, by Remark 12.2. Writing 7,, = [2"7 + 1|/2", we
have 7,=2""k for 7€ (27"(k—1),27"k], so that {7, =2""k} € Fy-ny. Further,
To 47 as n—oo. In addition, {Y(tA7,)}2; is uniformly integrable: To see this,
recall that |Y| is a submartingale, by Exercise 55. It follows that

o0

su Y (tAT,)| dP = sup

p/ / YV (tA2~"k)| dP
neN H[Y (A1) >y} neN o HIY (tA2="k)[>y, Ta=2""k}

o0

<su / E
"@131;) {IY (tA277k) >y, T =2""k} {

o0

=sup Y [
neN g H{IY (tA2=7k)|>y, T =2""k}

Y (t)] dP. (12.1)

Y ()] | Fo i} dP
¥ ()] P
= sup/
neN J{|Y (tA1)| >y}

In particular, this holds for y=0, so that, by Markov’s Inequality,

EB{|Y(tAT, E{|Y(t
sup P{|Y (tAr)| >y} < sup B CATIE - BAY ()
neN neN Y Y

I —0 as y—oo.

By Absolute Continuity of the Integral, we therefore have that the right-hand side of
(12.1) goes to zero as y— 0o, which establishes uniform integrability.

By uniform integrability and right-continuity, we have lim, ,, E{|Y (tA7,)—Y (¢
AT)|} =0 [recall (11.5)]. Notice that {7,=2""k} € F, for 27"k <s, and that

73




{ra>s} ={m<s} = ( U {7’ € (2‘”(k—1),2‘"k]})c € F..

{k:2-"k<s}
Using Exercise 68, we therefore obtain, with convergence in mean (IL!),
E{Y (tAT)| Fs}
= lim B{Y (tAr,)| 7}

= lim (E{I{THN}Y(t/\Tn) ‘ .7'—5} + Y E{I{Tnzz—nk}y(t/\Q_"k) ‘ fs})

n—oo
{k:2-7k<s}

= nh—>I£10 (I{Tn>s}E{Y(t/\Tn)|fs} + Z I{Tnzzfnk}E{Y(t/\2ink) ‘ fs})

{k:2-"k<s}

:lim( S Iy E{Y(A2TE) | F 3+ ) I{Tn_z_nk}Y(T"k))

n—00
{k:27"k>s} {k:27"k<s}
= nh—>1£lo< Z I{Tnzgfnk}Y(S) + Z I{TnZan}Y(Q_nk)>
{k:27"k>s} {k:27"k<s}

= lim Y (sA1,) = Y (sAT) for 0<s<t. O

n—oQ

12.2  Local Martingales

We now define local smartingales (of which only local martingales are used). These

are fundamental in stohastic calculus, and do not require integrability as smartingales.

Definition 12.4 An adapted stochastic process {Y (t)}i>0 is a local (s)martingale,

if there exists a localizing sequence of stopping times 0 < 171 < 7 < ..., with

lim, s T, =00 a.s., such that

{Y(tAT) h>0  is a uniformly integrable (s)martingale for every neN.

Theorem 12.5 A right-continuous martingale {Y (t), Fi}i>0 is a local martingale.

Proof. The non-random variables 7,,=n, n€N, are adapted to {, 2}, and thus to
each F;. They satisfy 0 <73 <7, < ... and P{lim, .7, =00} = 1. The process
Y (tA1,) =Y (tAn) is uniformly integrable, by Theorem 11.11, since lim;_, o, E{|Y (tA
7,)—Y (n)|} = 0. Moreover, it is a martingale, by the Optional Stopping theorem. O

We have the following more or less trivial, but important observation:

Theorem 12.6 A right-continuous adapted process {Y (t) }1>0 is a local martingale,

if there exist stopping times 0<m <1 <..., with lim, ,, 7 =00 a.s., such that

{Y(tATn)} >0  is a martingale for every neN.
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Proof. For the stopping times 7, =nA7,, we have lim, ,,, 7, =0oc a.s. Therefore

it is enough to prove that (cf. Definition 12.4)
{Y(tA7T.) }+>0 is a uniformly integrable martingale for every neN.

Notice that Y (tA7,) = M(tAn), where M(t) =Y (tA7,) is a martingale, by as-
sumption. Hence M (tAn) is a uniformly integrable martingale, by Theorem 12.5. O

*Remark 12.7 1In general, it is not true that integrable local martingales
are martingales (e.g., [33, Exercise V.2.12]), even if practice suggests this.
Because of Theorem 12.6, some authors (e.g., [22]) only require that Y (tA7,) is a
martingale (not necessarily uniformly integrable), in the definition of local martingale.
By Section 16.1, the It6 integral [ X dY is well-defined, for Y a continuous local
martingale and X a continuous adapted process. In particular Y (¢)-Y (0) = [idY,
so that continuous local martingales Y with Y (0)=0 are Ito integrals.
Some authors require (right-) continuity (e.g., [33]) in the definition of a local mar-
tingale Y, and/or Y (0)=0 (e.g., [22]). This is due to a wish to identify local martin-

gales with It integrals (see above). We will have more to say on that later. #

Definition 12.8 A stochastic process {Y (t)}ier is bounded if |Y(t)|< K for all
teT, with probability one, for some constant K >0.

Theorem 12.9 A continuous local martingale {Y (t)}i>0 such that Y (t)| < Zr
a.s. for each t€(0,T], for a random variable Zr with E{Zr}<oo, for each T >0,
is a martingale. In particular, a continuous local martingale {Y (t)}i>0, such that
{Y(t) }sepo,r) is bounded for each T >0, is a martingale.

Proof. Pick a localizing sequence {73}52;. Since {Y(¢A7)}32, is uniformly inte-
grable, by Example 11.8, and Y (tA7) — Y (¢) a.s. as k£ — oo, (11.5) shows that
E{|Y(tA7)=Y(t)|} = 0 for ¢t>0. Hence Exercise 68 gives

E{Y ()| Fs} < E{Y (tAT)| Fs} = E{Y (sA7)} = E{Y (s)} as k—oo

for 0<s<t (with convergence in L'), since Y (tA7) is a martingale. O

12.3  Properties of Stochastic Integrals in Pr (continued)

EXERCISE 80 Take 0< 7T, <T, and X € Pr,. Explain why the Itd integral
processes {fy X dB}ico,ry and {Jy X dB}ico1;), obtained by using Definition 10.3

on Pr, and Pr,, respectively, are versions of each other, when restricted to [0, 7}].
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Theorem 12.10 For X €Uy Pr, there exist stopping times 0< 7 <1< ...,
with P{lim,,_,o, 7, =00} =1, such that

tATh
{ X dB} s a bounded martingale for every ne€N.
0 >0

In particular, the Ité integral process { f(f X dB}y>0 is a local martingale.

Theorem 12.10 can be got from Theorem 12.3 (which is a very important result).
See Exercise 82 for some gymnastics on this. However, there is a simple direct

argument:

Proof of Theorem 12.10. Define [see (11.1)]
¢
Tn =N A inf{tz() : / X(r)?dr > n} and  X,(t) = X(¢) Iji<r,}-
0 <

Recall from the proof of Theorem 11.1, that 7, is a stopping time and X, € E, (Er
with T=n). Since [j**' X(r)2dr > n when 7, <m <n—1, we have

P{nliﬂrgo Tn<00} = P{TQI fjl{m Sm}} < P{pln Ejﬂ{m Sm}}

_ {U N {msm [Mx0) dr>n}}

m=1n=m+1

P{ U {/Om+1X(r)2dr:oo}} —0

m=1

IN

(because X € P,,;; for meN), so that P{lim, ,, 7, =00} = 1, as required.

Now, notice that (see Exercise 81 below)

/OM (r) dB(r) / peny X (r) dB(r / X /Ot/\an(T) dB(r)

Hence {f;"™ X dB};o is a martingale, since {fj X, dB};>o is, by Theorem 10.2
(since X, € E,). Moreover, we have (check n<t and n>t separately)

/OtATnX(r) 4B(r) /Ot/\an(T) dB(r) = E{/O” Xn(r)dB(r)

. t . . tATh . .
n ; t .
(since [y X, dB is a martingale), so that {f;"™ X dB}:>¢ is a regular martingale

} for t>0

Hence it is also uniformly integrable, by Theorem 11.11. O
EXERCISE 81 Prove that, for X € Pr, we have
s/\t
/ / Iog(r)X(r)dB(r)  for s,t€(0,T].
0

*EXERCISE 82 Work on a proof of Theorem 12.10 that builds on Theorem 12.3.
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13 Thirteenth Lecture
13.1 Examples of Stochastic Integration

Example 13.1 The It6 integral [lr “dB(r) = [5° Is4(r) r *dB(r) is well-def-
ined for a€(1/2,00) [a€(—00,1/2)] when 0<s<t<oo [0<s<t<oo], because
these conditions give [7°(L(s(r) r*)?dr < oo (a.s.), so that I (r) 7™ € Pa. #

Example 13.2 Given a constant o € [0,00), we have X(-) = Lo4,(-) € St C
Seo, because X is measurable [since left-continuous (Exercise 43)], and adapted
[since X (r) is a constant (0 or 1) at each r>0], with [{° X(r)2dr = [5° X(r)?dr
=ty < 00. By Definition 7.5 of the It6 integral on Sy, (Ss), we have

[ x(aner) = /OtOX(r) aB(r) = [ dB(r) = B(t))—B(0) = B(t). #

Example 13.3 (WaLD’s IDENTITY) (Weak version) For a stopping time 7, the

process X =1y, is measurable, since left-continuous, and adapted, since
X)) N(B) = Inep{T <t} + Ipnep{r>t} € F;  for BeB(R)
(with obvious notation), by Exercise 70. Taking E{7} <oo, we have X € E,, since

E{/OOOX(T)Q dr}: /OOOE{X(T)Q} dr = /OMP{TET} dr = E{r} < oo,

by Fubini’s theorem. Using Example 13.2 together with Theorem 10.2, we thus obtain
B(B}] = E{FaB0)|  =E{[x(r)aBw)]
BB} | = B{ (X aso)) } = B{ex (2 ar} [=B()

#

13.2 Introduction to Quadratic Variation of the It6 Integral

Theorem 13.4 For X €Sy, the Ité integral process has quadratic variation

: t
[/ XdB] (t) = / X(r)%dr  for t>0, with convergence in mean (L').
0 0

Proof. By Definition 7.4, there exist constants 0=73<...<7,, <00, such that
X(t) = X(O)I{O} (t) + Z XTi—II(Ti—I;Ti] (t) for te (0, OO)
i=1
Pick a t>0 together with partition 0=#,<...<t,=t of [0,#]. Let 0=F<...<
ty=t (N>n) be the partition {t;}", “enriched” with the points 7,...,7; that
belong to (0,t). Using Example 13.2 and Theorem 2.13, we get
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(/Ofix B —/OEHX dB>2 -
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(~ XdB)
1 ti—1

) ( " XdB>2

ti—1

M

j=1 f@E(’ijl,Tj]

m {i 2
=> X' X ([ aB)

j=1 £¢E(Tj_1,7'j] ti—1

o

X(r;1)? Y (B(t)—B(ti1))?

tie(rj—1,7;]

X (i) (rj—7jo1) = /Ot X(r)*dr

<
Il
-

_>

NE

1

<.
Il

in mean square (and thus in mean) as max;<;<nt;—t;—1 — 0. Moreover, we have
n i; ti—1 2 n t; ti—1 2
E{Z(/ xdp- | XdB) —Z(/ XdB- | XdB) }
=1 0 0 i=1 0 0
m t; 2 7 2 ti 2
=E{Z ) ((/ XdB)—i—( XdB)—( XdB))}
J=1{itt; g <mj<t;} \ 0T ti-1 ti-1

S5 (e )

i:t¢_1<Tj<ti}

I (IREDI R (RZON)

—1 ’T]‘<ti}

:zm: ) > E{/tl X(r)2dr}—>0

<
Il
—_
—~~
~
L
A

ti—1

as MaxXicij<nt;—t;i—1 — 0. Here we used that [ X(r)*dr — 0 [because of Abso-
lute Continuity of the Integral (Lemma 12.1)], together with dominated convergence
([ X(r)2dr < [y X(r)%dr, which is integrable]. O

ti—1

13.3  Quadratic Variation of the It6 Integral

Theorem 13.5 For X €Ey, the Ité integral process has quadratic variation

: t
[/ X dB] (t) = / X(r)?dr  for t€[0,T], with convergence in probability.
0 0

EXERCISE 83 Can the Ito integral process be continuously differentiable?

Example 13.6 Let {a(t)} e and {b(¢) }iepo,r be stochastic processes, such that
/|a| € Pr and b€ Ep. The Lebesgue integral [J a(r) dr is well-defined, since +/|a| €
Pr means that a€LL'([0,7]). Hence we may define

Y (t) =/0ta(r) dr + /Otb(r) dB(r) for te[0,T].
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Here [y a(r)dr = [ya(r)Tdr — [; a(r)”dr is continuous [because of Absolute Con-
tinuity of the Integral (Lemma 12.1)], and has finite variation [because a difference
between two increasing functions (Theorem 1.4)]. Now Theorems 1.12 and 13.5 give

Y)(t) = [/'a(r) dr] (t)+2 [/O'a(r) dr,/o'de] (t)+[/0'de

0 () = 0+0—|—/0tb(r)2d7",

where the zeros on the right-hand side follow from Theorem 1.12, together with the
established properties of [y a(r)dr and continuity of [y bdB (Theorem 10.2). #

Rather than building on Theorem 13.4, one proves Theorem 13.5 by Doob-Meyer
decomposition of ([} X dB)?, using an abstract notion of quadratic variation. In Sec-

tion 15.1 we get at why this quadratic variation coincides with that in Section 1.2.

Theorem 13.7 (DooB-MEYER DECOMPOSITION) (Simple form.) (e.g., [22, Sec-
tion 1.4-1.5])* For a continuous submartingale {Y (t)}icjor) AY (t) }es0/, there ewist
unique continuous stochastic processes {M(t)}seor and {A(t)} e AM(E)} o
and {A(t)}i>0f, such that M is a martingale with M(0) =Y (0), A (sometimes

called the compensator) is increasing and adapted, and

Y(t) = M(t) + A(t)  for te[0,T] [>0].

Corollary 13.8  For a continuous martingale {Y (t)}epor) LY () }io] that is
square-integrable, there exist unique continuous stochastic processes {M(t)}icio,r
and {A(t)} ey AM@) b0 and {A(t)}iof, such that M is a martingale with
M(0)=Y(0)?, A is increasing and adapted, and

Y(t)? = M(t)+ A(t)  for te[0,T] [>0].

Proof. This follows from Theorem 13.7 together with Exercise 55. O

Definition 13.9 The quadratic variation [Y] of a continuous and square-inte-
grable martingale {Y () }iejor) AY (1) }e0/, is defined by [Y](t) = A(t), where A is

the continuous, increasing and adapted process that satisfies

Y(t)>=M(@t)+ At)  for t€[0,T] [>0],

where M is a continuous martingale with M (0)=Y (0)? (cf. Corollary 13.8).

Lemma 13.10 For X, Y€Er and 0<s<t<T, we have (cf. Theorem 10.2)
E{(/:X(r) dB(r)) (/StY(f) dB(f)) ‘J—"} - E{/:X(T)Y(r) dr ,7-"3}.
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Proof. By Definition 8.1 together with Exercise 68 and a limit argument (see Exercise
84 below), it is enough to prove the lemma for X,Y € Sr. To that end, we can assume
that X and Y have a common grid 0=1%, <t < ... <t, =1, such that s=1t
and t=t,,1, k</, belong to that grid (see Lecture 7). We have

+E{ 5 Xth(tm)—B(ti))(B(tj+1>—B(tj>>‘fs}

k<i,j<t,i#j

_ E{ / XY () dr fs}

S E{Xth(tm)—B(ti))E{B(tj+1>—B<tj>

k<i<j<e

ft}‘f}

Here the last two terms on the right-hand side vanish, since B(t;11)— B(t;) has

b 5 Bl (B - B B{ B - B0)

k<j<i<e
zero mean and is independent of F;,. (All conditional expectations involved are well-
defined, by the argument at the end of the proof of Theorem 7.8.) O

EXERCISE 84 Explain how Definition 8.1 together with Exercise 68 show that it
is enough to prove Lemma 13.10 for X,Y € Sr.

Lemma 13.11 For X€Er, T€(0,00), the process

M(t) = (/OtX(r) dB(7“))2—/OtX(7')2 dr, t€[0,T], is a martingale.

Proof. Leaving the details concerning requirements on integrability, adaptedness and

measurability to the reader (recall Exercise 64), Lemma 13.10 gives

]—“s} +E{2</OSXdB2> (/:XdB> ‘f}
+E{</08XdB) - [ X2 ar ]-'S}

=040+ M(s) for 0<s<t. O

B{M(t)|F.} = E{( / 'x dB)Q— / "X ()2 dr

EXERCISE 85 Explain the two zeros at the last line of the proof of Lemma 13.11.

EXERCISE 86 Piece together the above findings to a proof of Theorem 13.5.
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14 Fourteenth Lecture

14.1 Introduction to Ito’s Formula

Theorem 14.1 (IT6’s ForRMULA) (Simple form.) For a function f € C*(R) =
{(g:R—R) : g is two times continuously differentiable}, we have

1 rt t
F(BW) = F0) +5 [ FBE)dr+ [ f(BE)dBr)  for 20,
Ezxpressed in terms of stochastic differentials, this means that

df (B(t)) = (1/2) f"(B(t)) dt + f(B(t)) dB().

Proof. For partitions 0=ty <...<t,=t, Taylor expansion and Theorem 11.12 give

n

f(B()—f(0) = Z(f(B(ti))_f(B(tifl)))

~ 3 (Blt)) (Blt) ~ Blti) + %ﬁ;f"w(tu)) (B(t) - B(ti1))
—)/f 2/ f” as maxlSiSnti—ti_1—>0

with convergence in probability, where ~ means asymptotic equality. Here we got
the second term on the right-hand side from Theorem 2.13 and uniform continuity

of f"(B(-)), employing a second less coarse grid as in Example 6.3. O

Example 14.2 Taking f(z)=22 in Ité’s formula, we get (cf. Example 6.4)
d(B(t))? = df (B(t)) = (1/2) f"(B(t)) dt + f'(B(t)) dB(t) = dt + 2 B(t) dB(t). #
Example 14.3 Let X(t) = X,e®®, where X;€R is a constant. We have

X (t) = df (B(t)) = (1/2) X 2D dt+ Xy PO dB(t) = (1/2) X (t) dt+ X (t) dB(t). #

14.2 1to’s Formula

Theorem 14.4 (I16’s FORMULA) Let {a(t)}ep,r) and {b(t)}epor be stochastic
processes, such that \/|a|, b€ Pr, and define

§0+/ d7‘+/ (r) for tel0,T],
where & €R is a constant. For feC%(R) we have

af€®) = (a) £e@) + " (6w dt + b0e) €0 aBo),
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Example 14.5 Taking a=0 and b=1, Theorem 14.4 gives Theorem 14.1. #

Proof of Theorem 14.4. The claim is that

+/( )dr—i—/

Since 4/|a|, b € Pr, we have \/|af’ )|, b\/\f” )|, bf'(€) € Pr, by the assumptions
on f together with continuity of £&. Hence Theorem 11.12 shows that

| t(a(r)f’(f(r)) e )dr+ /

N é(“““) (ti—ti-1) +b(ti1) (B(t) = B(ti1))) £/ (€ (ti-1))
+ Z (ti—ti-1) f (§(ti—1)) as  maXji<j<n li—ti—1—0

(where 0=ty <...<t,=t), in the sense of convergence in probability. Of course,

Theorem 11.12 also gives
—&) Z( ) (ti—ti-1) + b(tio1) (B(t:) = B(ti-))). (14.1)

By introducing a second coarser grid, as in Example 6.3 (see also the proof of
Theorem 14.1), and using (14.1) together with the continuity of f'(£), it follows that

n

3 (altimn) (h=tims) + bltit) (B(t) = B(t6-2))) £ (€(0-1)

~ i(f(tz) —&(tic1)) f(E(timr)) as  maXi<i<y ti—t;—1—> 0.

In the same way, again by means of using a second coarser grid, the quadratic variation

result in Example 13.6, together with continuity of f”(&), gives

3 Ml ) et ~ 3 BB ZEE)E )

=1 =1 2

Adding things up, we therefore obtain

/Ot(“(r)f'(f(r)) + @f”(f(r))) dr + /Otb(r)f (&(r)) dB(r

- i((ﬁ(ti)—f(ti_l))f'(s(t,-_l)) 4 (E) —E(ti))” F(et)).

2

Here, by Taylor expansion, the right-hand side is asymptotically the same as

n

S (FE) ~ F(E(t))) = FEW) - FEO) = FEW) - (),

i=1
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which establishes It6’s formula. (It is a consequence of elementary Taylor expansion
arguments, together with continuity of &, that the convergence of the sum with the

second order terms, ensures that higher order terms are not needed.) O

*Remark 14.6 Instead of relying on the unproved Theorem 11.12, we can get Ité’s
formula, for \/m , b € Ep, using Section 10.3. For this, one approximates the It
integral processes [{ a(r) f/(¢(r)) dr, J{ 1b(r)2f"(€(r))dr and [{b(r) f'(£(r)) dB(r),
with bounded and continuous processes in Er, as in the proof of Theorem 11.1. Then
a and b are approximated by the bounded and continuous processes a¥) and b,

defined as in the proof of Theorem 9.1, and employ Section 10.3. #

Theorem 14.7 (IT6’s FORMULA) (e.g., [27, Theorem 4.4])* Let {a(t)}ieo,r) and
{b(t) }rejo,r) e stochastic processes, such that /|a|, b€ Pr, and define
§0+/ dr—i—/ B(r)  for tel0,T],

with £(0)=¢&, a constant. For f € CY([0,T]xR) = {(g:[0,T]xR—R) : g has

continuous partial derivatives 8 g= 4L z), Oog= % and 059==3 P, w)} we have

b(r)?
2

F(.E0) = 0,60) + [ (017, €0) + ar) 0, r)) + “ - 0B £, €(r) ) dr
/ r)f(r,E(r) dB(r)  for t€[0,T]

Example 14.8 Taking f(t,z)=f(z), Theorem 14.7 gives Theorem 14.4. #

14.3  Examples of Stochastic Calculus

Example 14.9 We want to solve the (Itd sense) SDE
dX(t) = (1/2) X(t)dt + X (¢)dB(t)  for te0,T].
This means that we are looking for a process X that satsifies
X(0) = Xo+ | "(1/2) X (r) dr + | "X(r)dB(r)  for telo,T], (14.2)

where /| X|, X € Pr is required for the integrals to be well-defined. We try Ité’s
formula Theorem 14.4 for f(t) = In(¢). Since a=X/2 and b=X [cf. (14.2)], we get

b(t)?

dlin(X () = (o(t) /(X(0) + Z5- F/(X(0) ) de + b(2) £ (X () dB()
)

Xt 1 X@? 1

:< 2 X() 2 X(t)?)dHX(t)X—
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This gives In(X(¢))—In(X,) = B(t), so that X(t) = X,eP®. These calculations
are only formal, because we do not even know that the process X that solves the
equation exists, and much less that, for example, X is strictly positive (In ...).

Given the candidate X(t) = X,e?® to a solution (not necessarily positive), we
now have to check that the SDE is satisfied. However, this is Example 14.3. #

Example 14.10 In later lectures, we will consider stochastic integrals wrt. other
processes that BM, in a systematic way. However, already now, such integrals can

be introduced by means of stochastic differentials.
Let {a(t)}sco,27 and {b(t)}sc0,17 be processes, such that /|a|, b€ Pr, and let

dY (t) = a(t)dt + b(t) dB()  for te[0,T].

Provided that {Z(t)}ico,r7 is a process, such that y/|aZ|, bZ € Pr, we may define
t t t
/ Z(r)dY (r) = / Z(r)a(r) dr + / Z(r)b(r)dB(r)  for te[0,T].
0 0 0

Moreover, by inspection of the proof of Theorem 14.4, for y/|a|, b € Er, we may, in
the sense explained in Remark 14.6 (see also Section 10.3), evaluate the integrals as

limits of approximating (It6 sense) sums. #

Example 14.11 (INTEGRATION BY PARTs) Consider two stochastic processes
{X () }teor7 and {Y'(?) }sepor), that are both stochastic differentials (see Example

14.10). In real analysis, we have the integration by parts formula
[ X0)av(r) = XY (@) - XOY0) - [ Y () dX ().
In case of stochastic It0 integration, the corresponding formula is
[ X0)av () = XY () - XOY(0) - [ V()X ()~ [X,Y](0).

Invoking Theroem 11.12, together with Theorem 15.3 and Definition 15.4 below, this

follows by means of checking the corresponding approximating sums
/ ‘X(r)av(r) + / Y(r)dx(r)
= P—hmg(xm_l) (Y (t:) =Y (tim1)) + Y (tica) (X (8) = X (ti-1)))
= P—hmizfjl(xuz-)wti)—X(ti_nY(ti_o — (X(t) =X (ti1)) (Y (8) =Y (t5-1)))

= XY (@) -X(0)Y(0) - [X,Y](®). #
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15 Fifteenth Lecture

15.1  Quadratic Variation for Local Martingales

In the next section, we establish a quite general It6 formula. This requires a more

abstract approach to quadratic variation, via continuous local martingales.

Theorem 15.1 (e.g., [33, Chapter IV, Theorem 1.8))* For a continuous local mar-

tingale {Y (t)}eejory Y (1) }e0f, there exist unique continuous stochastic processes
{M(t) }epor) and {A(t) bejory AM(t) }i>0 and {A(t) }esof, such that M is a local
martingale with M(0)=Y (0)%, A is increasing and adapted, and

Y(t)?=M(t)+ A(t)  for t€[0,T] [f>0].

Moreover, we have

O=to<ti < ... <t,=t
YtZ _Y tii 2: 0 1 n }.
; 1( (t:) (1)) n€N, maxici<nti—ti 1 =0

NgE]

mwzpm{

The first part of the theorem can be proved by Doob-Meyer decomposition of sub-
martingales (Theorem 13.7), and a clever use of the stopping times from the defini-
tion of local martingales. Similarly, the second part of the theorem follows from a

corresponding (non-local) martingale theorem, which we discuss in later lectures.

Definition 15.2  The quadratic variation [Y]| of a continuous local martingale
{Y(t) heory KY (B)}es0/, is defined by [Y](t) = A(t), where A is the continuous,

increasing and adapted process that satisfies

Y(t)?=M(@t)+Al)  for t€[0,T] [>0],

where M is a continuous local martingale with M(0)=Y (0)? (cf. Theorem 15.1).

Theorem 15.3 (e.g., [33, Chapter IV, Theorem 1.9])* For two continuous local
martingales {Y (t) }iepor) and {Z(t)}eepory AY (8) heso and {Z(t)}iso] (wrt. a com-

mon filtration), there exist unique continuous stochastic processes {M(t)}scom and
{C(t)}ieo,m AM () }i>0 and {C(t)}e>0/, such that M is a local martingale with
M(0)=Y(0)Z(0), C has finite variation and is adapted, and

Y(O)Z(t) = M(t) + C(t)  for te[0,T] [t>0]

Moreover, we have

. n O=tog<ti < ... <tp, =t }
= P-1 Y i -Y — VA i -7 — . .
C) = Pim{ $£ (v (1) =Y (6-2)) (2(0)=2(0)) - LRS00 =l
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Definition 15.4 The covariation [Y, Z] between two continuous local martingales

{Y(t) hepory and {Z(t) hepor) AY (1) }eso and {Z(t) >0/ (wrt. a common filtration),
is defined by Y, Z|(t) = C(t), where C is the continuous and adapted process, with

finite variation, that satisfies

Y(W)Z(t) = M)+ C(t)  for te€[0,T] [t>0),

where M is a continuous local martingale with M(0)=Y(0)Z(0) (cf. Theorem 15.3).

EXERCISE 87 Show that the sum of two local martingales (wrt. a common fil-

tration), is again a local martingale. What about the difference?

EXERCISE 88 Derive the existence part of Theorem 15.3 from Theorem 15.1.

(Uniqueness is more difficult.)

Since the It0 integrals fOthB and fOtYdB, of X,Y € Pr, are local martin-
gales (Theorem 12.10), their quadratic variations [X] and [Y] are well-defined, by
Definition 15.2, as is their covariation [X,Y], by Definition 15.4.

Theorem 15.5 For X € Pr, the It6 integral process has quadratic variation

[/o.XdB](t):/otX(TVdr for te[0,T).

The proof is a typical demonstration of localization at work:

Proof of Theorem 15.5. Writing
t
Ta =NA inf{tZO : / X(r)*dr > n} and X, (t) = X () g<r}s
0 <
we have X, € E,, (cf. the proof of Theorem 12.10), so that, by Theorem 13.5,

[/O'XdB] TAE) = / X, dB] /X dr—/TnMX(r)er.

Sending n— o0, the theorem follows (since 7, — o0, by continuity of X). O

Theorem 15.6 For X,Y € Py, the Ité integral has covariation

[/O.XdB’/O.YdB] (t) = /OtX(T)Y(T) dr  for t€[0,T).

Theorem 15.7 For /|a1|,+/|as|, b1, by € Pr, we have

/O'al(r)dr+/0'b1d3, /O'ag(r)dw/o'bgdB](t)=/0tb1(r)b2(r)dr for telo,T.
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Corollary 15.8 Let y/|ai|,+/|az|, b1, ba € Pr. For the stochastic differentials
dX (t) = a1 (t) dt + by (t) dB(t) and dY (t) = ay(t) dt + by(t) dB(t)

we have

dX (H)dY (1) = d[X, Y](t) = by (t)ba(t) dt.

EXERCISE 89 Prove Theorems 15.6 and 15.7, by Theorem 15.5 and polarization.

15.2  It6’s Formula (continued)

Theorem 15.9 (IT6’s FORMULA) (e.g., [33, Chapter IV, Theorem 3.3])* Let
v/0a1l,1/|azl, b1, by € Pr. For the stochastic differentials
dX (t) = a1 (t) dt + by (¢) dB(t) and dY (t) = as(t) dt + bo(t) dB(t),

B(t
and a function f € C*(R?) = {(g: R — R) : g has continuous second order par-

tial derivatives}, we have

df (X (1), Y (t))

=0, f(X,Y)dX(t) + B f(X,Y) dY ()

+182 X,Y)dX(t)? + 010.f(X,Y) dX(t)dY(t)+%8§f(X, Y)dY (t)?

= d,f(X, Y) dX
+3 62

(t
f
(1) + 0o f(X,Y)dY (t)
fX,Y)d[X](t) + 010, f (X, Y) d[X, Y](t) + %3§f(X, Y)d[Y](t)
(

-0, f(X, Y) AX (1) + s f(X,Y) dY (£)

+3 62 FXLY) bi(8)2 dt + 0,0.f (X, Y) by (t)ba(2) dt—l—%a%f(X,Y) bo(t)? dt.

Using Corollary 15.8, this general It6 formula is proved in the same way as Theorem
14.4. Tt has an obvious multidimensional extension to functions f:R™—R. Some

authors (e.g., the influential [22]) call It6’s formula Ité’s rule.

EXERCISE 90 Show how Theorem 14.7 follows from Theorem 15.9.

Example 15.10 Taking f(z,y)=zy in Theorem 15.9, we get
dX@)Y () =Y () dX () + X(t)dY (¢) + d[X, Y](¥).

Expressed in terms of integrals, this recovers Example 14.11 (see also Example 14.10)

XY (1) — X(0)Y(0) = / r) dY (r +/ P+ X, Y](). #
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15.3  Stochastic Exponentials

Definition 15.11 Let /||, b€ Pr, and put
dX(t) = a(t)dt + b(t)dB(t)  for t>0.

The stochastic exponential EX of X s given by

(EX)(t) = XO-XO-XW/2 — XO-XO-3 o b(r)? dr for >0,

Theorem 15.12 Let +/|a|, b€ Pr, and put
dX (t) = a(t) dt + b(t) dB(t) for t>0.
The stochastic exponential EX of X satisfies the SDE

dEX)(t) = EX)E)dX () for >0,  (EX)(0)=1.

Proof. Using 1t6’s formula on f(X,Y), where f(z,y)=e""% and Y(¢) = X(0)+
s[X, X](¢), so that dY = 3d[X,X] and d[Y,Y]=d[X,Y]=0, we obtain

d(EX) = df(X,Y) = £X (dX —dY +d[X]/2—d[X,Y]/2+d[V]/2) =X dX. O

EXERCISE 91 Why is d[X,Y]=d[Y,Y] =0 in the proof of Theorem 15.127

Example 15.13 The stochastic exponential of BM is (£B)(t) = eB®O-BO)-/2_ 4

Example 15.14 (BrAck-ScHOLES FORMULA) In Mathematical Finance, the

stock price S is the stochastical exponential of the return R, which is given by
dR(t) = pdt + o dB(t) where p€R and o>0 are constants.
Inserting in Definition 15.11, the stock price becomes

S(t) = (ER)(t) = RO-RO-IRO/2 _ gutto BU—0™/2 4

As we will see in Section 18.3, stochastic exponentials are fundamental for Gir-

sanov’s Theorem, which is one of the more important results in stochastic calculus.

15.4  Introduction to Diffusion Type SDE wrt. BM

Definition 15.15 A diffusion type SDE (or diffusion) with drift p:R*—R and

dispersion o:R?— R, which are measurable functions, is given by

dX (t) = p(t, X (1)) dt + o(t, X (t)) dB(2).
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A more general SDE (than one of diffusion type), is given by
dX (t) = p(t, F) dt + o(t, F;) dB(t) (with obvious notation).

However, diffusions are still very versatile. Moreover, as we shall see, they have an
array of remarkable and useful properties. Argubly, diffusions are the most important

objects of probability theory. Certainly, they are the most studied ones.

We will almost exclusively deal with SDE of diffusion type, which we will simply
refer to as SDE (rather than SDE of diffusion type).

Definition 15.16 Let Xo€R be a constant. A strong solution to the SDE

dX(t) = u(t, X (1)) dt + o(t, X (1) dB(t)  for t€[0,T],  X(0)=X,,

is a stochastic process {X(t)}iepor), such that +/|u(-, X(-))|,o(-, X () € Pr and

X(t) = Xo + /Otu(r,X(r))dr+ /Ota(r,X(r))dB(r) for tel0,T].

Definition 15.17 (Simplified definition.) Let Xo€R be a constant. A stochastic
process {X () }ieor) @5 a weak solution to the SDE

dX(t) = p(t, X (1)) dt+o(t, X(¢))dB(t)  for te[0,T],  X(0)=X,,
if {X (1) }eero.1] =same tias {X (8) }eepory, where /|-, X ()], 0(-,X(-)) € Pr, with
X () =Xo+/Otu(r,f((r))dr+/Ota(r,X(r))dB(r) for te€0,T],

for some BM B (possibly defined on another probability space than B).

Each strong solution is a weak solution. However, a weak solution is a strong so-

lution on some possibly different probability space. We will return to this later.

Definition 15.18 Any solution to a diffusion type SDE is a diffusion process.

Example 15.19 (LanceviN EQuATION) Consider the SDE
dX(t) = (a—pX(t))dt +o0dB(t) for t>0, (15.1)

where o,0 € R and >0 are constants. Writing Y (t) = ¢*(X(t)—a/f3), Theo-
rem 14.7 with f(t,2) = e (z—a/B), a(t)=(a—BX(t)) and b(t)=0, gives

dY (t) = BY dt + e ((a— B X (t)) dt + 0 dB(t)) = o e* dB(t).
Hence we have
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Y(t) = Y(0) +/0taeﬂr dB(r) = X(0) — a/8 +/0t oo dB(r),

so that
X(t) = a/B +e Y () = a/f + e (X(o) — /B + /0 "ol dB(r)). (15.2)

The above calculations are only formal, since we do not know that a process X that
solves the equation exists. Thus we have only derived necessary requirements for such
a solution. However, it is a straightforward matter to use It&’s formula to check that
the formal solution really is a (strong) solution to the SDE.

A solution X to the Langevin equation (15.1) (where usually a=0), is an Orn-

stein-Uhlenbeck process. However, in non-Markov literature, X is called an Orn-

stein-Uhlenbek process only when it is started according to the stationary distribution
(see Definition 25.4 and Example 25.9 below), so that X is stationary. #

Example 15.20 (LiNEAR SDE) The general linear SDE of diffusion type

dX(t) = (a(t)+BOX (1)) dt + (v() +5() X (1)) dB(2), (15.3)

where «, 3,7, 0 : R — R are locally integrable functions, has an explicit strong
solution. See for example [21, Proposition 18.2]* and [25, p. 123]*. Due to the
resemblance with the Langevin equation in Example 15.19, which (15.3) generalizes,

the solution X is sometimes called an inhomogeneous Ornstein-Uhlenbeck process.

In the particular case when a=+y=0, we have
dX(t)=0Xdt+6 X dB(t) = XdY(t) where dY (t) = Bdt + 6 dB(t).

It follows that X (¢)/X(0) is a stochastic exponential of Y(¢), so that

x() = x(0 exp{v () - POV _ x0) expf [ (5) -2 ) ar+ [},

The solution of (15.3) for general « and <y is only notationally more complicated. #

A measurable function f:7T—R, TCB(R"), is locally integrable if [g|f(x)|dz
< oo for each bounded set BeB(R").
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16 Sixteenth Lecture

16.1 It6’s Formula for Local Martingales

Theory in this section has been gathered from [33, Chapter IV, Sections 1-3].
Pick a constant T € (0,00). Let {X(#)}i«co,r7 be a continuous local martingale,

and {a(t)}+cjo,r) and {b(t)}sco,r) progressively measurable processes such that

T T
/ la(r)|dr < oo and / b(r)?d[X, X](r) < oo with probability one
0 0

(pathwise Lebesgue integral). In particular, this holds if a and b also are continuous

local martingales (recall Theorem 8.8). The integral processes

t t
{/ a(r) dr} and {/ b(r) dX(r)} are well-defined,
0 t€[0,T] 0 te[0,T]

in the sense of a Lebesgue integral and an It6 integral, respectively. The first of these
processes has finite variation, while the second is a continuous local martingale. From

this we get the first of the following two equalities (cf. Exercise 89)

| atrydr+ [ vax, [ o dr+/bdX] [/ bax, [ bdX] /b2 X, X]

for t€[0,T]. As for the It6 integral wrt. BM, we have (cf. Theorem 11.12)

O=to<ty1 < ... <t,=t }
TLEN, maxXj<i<n ti—t,;i_1 —0 ’

/Ot b = P-lim{ £ b(ti—1) (X () =X (t-1))

In Section 24.1, we see that these properties follow from the corresponding

properties of It0 integrals wrt. BM, since Ito integrals wrt. continuous local

martingales can be transformed to integrals wrt. BM, by random change of time.
Now let {X;(t)}sepo,r], {@i(t) beeo,r1, {0i(t) }eepo,ry, =1,...,n, be continuous lo-

cal martingales, wrt. a common filtration. We have

/Oaz dr—i—/ bdXZ,/ a; (r dr—i—/ bdX] /bb d[X;, X;].

For the stochastic differentials (defined by means of integrals)

dY (t) = (dVi(t),...,dYn(t)) = (ax(t) dt + by () dX1(2), ..., an(t) dt+by(t) dXn(1)),

we therefore have (again expressing integral statements with differentials)

dlY;, Vi(t) = b()b;(t)dt ~ for i,5=1,...,n.

iy Lj

For f € C*R") = {(g: R™ — R) : g has continuous second order partial deriva-

tives}, we have It6’s formula

n n

(V) = S (V) i) 5330, (V) dIYi, Vi)
=§njaf( Y) (i dt + b; dX(t )+%ifj@ 0, £(Y) bib; d[X;, X;](t).

=1 i=1j=1
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In particular, f(Y') is again a continuous local martingale (compare with Example
14.10). [Of course, for n=2 and X;=X,=DB (BM), this reduces to Theorem 15.9.]

Example 16.1 (INTEGRATION BY PARTS) Let dX(t) and dY () be stochastic

differentials, in the above sense. Taking f(z,y)=zy in Itd’s formula, we get
dX)Y(t) =Y (t)dX(t) + X(t)dY (t) + d[X, Y](?).
Of course, expressed in terms of integrals, this means that

X@Y@—mem=ﬂkvmwn+£ym¢wnﬂxn@.#

Example 16.2 (StocHAsTiC EXPONENTIAL) The stochastic exponential £X of

a continuous local martingale X [or more generally, of a continuous semimartingale
(see Section 24.2)], is given by (£X)(t) = eXO-XO=[XI®/2 Obviously, (£X)(0)=1,
and using It6’s formula from above [or more generally, from Section 24.2], as in the
proof of Theorem 15.12, we get that d(EX)=EX dX. #

At [33, p. 139] of their very densly written and famous 533 pages long book, the
authors state that “To some extent, the whole sequel of this book is but an unending
series of applications of It6’s formula.” One may thus safely say that [t6’s formula is

one of the few most important results in probability.

16.2 Beginning Values for SDE

In Section 15.4, we considered a SDE
t t
X(t) = X(0)+ [ pr, X(r)dr+ [ o(r, X()dB(r)  for te[o,T],
0 0

with constant beginning value X (0)=X, € R. In general, it is desirable to allow a
random beginning value X (0)=X,, that is independent of B.

But the defintion of the It6 integral requires that o(-, X(-)) € Pr, which in par-
ticular means that o(-, X(-)) is adapted, so that

0(07 X(O)) € '7:0 = U(B(O))augmented = G(O)augmented = {07 Q}augmented-

Hence o(0, X (0)) is constant a.s., so that X (0) cannot be random (except on a null-

event), for a general 0. One can handle this is the following (e.g., [33, Chapter IX])*:

(1) Solve a SDE for all non-random beginning values xq in the non-random range
Xo(2) of the random beginning value X,. Substitute the non-random beginning
value xy with the random Xj, that is independent of the solutions started at xq €
Xo(€2), due to the adaptedness of the solution (see the proof of Theorem 16.8 below).
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On might draw a parallell with the study of a Markov process X by means of
its transition probabilities, which specify the development of X for every possible
non-random beginning value of X [and impossible ones as well (recall Remark 3.8)].

We handle the problem in a (seemingly) different way, following [22, Chapter 5]*:

(2.a) Associate with the given BM B an augmented filtration F = {F,},>¢, such
that B is adapted to IF, but that is not necessarily {o(B(r):0<r>1)augmented }£>0-
(2.b) As long as B(t)—B(s) is independent of F; for 0<s<t, results and proofs
for the Ito integral fot X dB of X € Pr remain valid. Of course, now Py is the class

of measurable processes that are adapted to F, with [ X(r)2dr <oco a.s.
An important, as we shall see, particular case of this approach is the following:

(3.a) Associate with B the augmented filtration generated by X, and B

F = {Fi}lizo = {o(0(B(r) : 0<r>1),0(Xy)) (16.1)

augmented } t>0 )

(3.b) Results and proofs for the It6 integral [j X dB of X € Py remain valid, since
B(t)— B(s) is independent of F,; for 0<s<t, because Xy is independent of B.

We use (2) to define weak solution, and (3) for strong solutions, of a SDE.

Definition 16.3 Let X, be a random wvariable that is independent of B. As-
sociate with B the augmented filtration generated by X, and B [cf. (16.1)]. A
strong solution to the SDE

dX(t) = u(t, X)) dt + o(t, X(1) dB(t)  for t€[0,T],  X(0)=Xo,

is a stochastic process {X(t)}iepor), such that /|u(-, X ()|, o(-, X(-)) € Pr and

X(t) = Xo+ /Ot w(r, X(r)) dr + /Ota(T, X(r))dB(r)  for te€[0,T].

Definition 16.4 Let X, be a random variable that is independent of B. Consider
a random variable X’O = gistribution %0, together with a BM B that is independent of
X,, on some probability space. Associate with B an augmented filtration that conta-
ins the filtration generated by X, and B [with the independence property specified
in (2.b)]. A stochastic process {X (t)}iepm is a weak solution to the SDE

dX (1) = p(t, X (1)) dt +o(t, X (1)) dB(t)  for te€[0,T],  X(0)=Xo,

X’(t):Xo+/0tu(r,X(r))dr+/Ota(r,X(r))dB(r) for te[0,T).
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The important difference between a strong solution and a weak one, is that a
strong solution X (t) is a “function” (functional) of X, together with BM B until
time ¢ (by being adapted to the o-algebra generated by them), while a weak solution,
which is not strong, does not have this functional relation with X, and B.

If a strong solution exists on a particular probability space, large enough to “house”
the filtration F given by (16.1), then it exists on every such probability space, that
is, for every given BM with such a filtration.

For a SDE that lacks a strong solution (e.g., Example 17.5 below), but has a weak
one, there will not exist a weak solution on every probability space that houses “cop-
ies” X, and B of X, and B (see Definition 16.4), together with a filtration to which
they are adapted [with the independence property specified in (2.b)]|. For example,
there will not exist a weak solution (on that probability space), if the filtration is the

augmented one generated by X, and B (since this would be a strong solution).

16.3  Uniqueness of Solutions to SDE

There is some variation in the definitions of uniqueness of solutions to a SDE in
the literature. We follow [22, Chapter 5]:

Definition 16.5 A SDE has unique strong solution, if for any pair of strong solu-

tions {X1(t) e and {Xs(t) }iepo,r) to it (defined on a common probability space),

we have

P{X,(t)=Xy(t) for all te[0,T]} =1.

Definition 16.6 A SDE has unique weak solution, if for any pair of weak solutions
{X1(t) }repo,my and {Xo(t) }repo,m to it, we have

{Xl (t)}tE[O,T1 —same fidi’s {X2(t)}t€[OaT]'

EXERCISE 92 Does strong uniqueness trivially imply weak uniqueness? Does

weak uniqueness trivially imply strong uniqueness?

EXERCISE 93 Pick a constant o€ (0,1), and consider the SDE (ODE)
dX (t) = p(t, X(t)) dt for t>0, X (0)=0,

where u(t,z) = |z|* Show that, for any constant t,€ (0,00], it is solved by

0 or tel0,t
[ [0, %) € UP,

X(t):{
(1—a) (t=to)) /0 for t€fty,00) T>0
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EXERCISE 94 Let sign(z) = 2 Ijp,)(x) —1, and pick a T'€(0,00). Show that

dX (1) = sign(X (1)) dB(t)  for te[0,T],  X(0)=0,

does not have unique strong solution. (We will see later that it does not have a strong

solution at all. But it has a weak solution, that is unique!) (Hint: Consider —X.)

Theorem 16.7 (GRONWALL'S LEMMA) Let u,v € C([0,T]) satisfy
t
v(t) < C +/ u(r)v(r)dr=V(t)  for t€[0,T],
0
for some constant C'>0. We have

v(t) < V() <C exp{/otu(r) d?"} for te€[0,T).

Proof. Picking an £>0, we have
o(t) < (C+e) +/0tu(7")v(r) dr=V.(t) for te[0,T].
Since V. is strictly positive, it follows that
(In(Vz(2))" = VZ()/Ve(t) = u(t)v(t)/Ve(t) <wu(t)  for t€[0,T].
This in turn gives
In(V.(t)) = In(V2(0)) + [ (n(Ve(r))' dr < Wn(Ce) + [ u(r)dr  for t€[0,7],
so that
o(0) < Vi(t) < esp{in(C+e) + [ ur)dr} = (C+2) exp{ [ utr)ar]
for t€]0,T]. Sending €0, we get the statement of the theorem. O

As we will now see exemplified, Grénwall’s lemma is often used with C'=0.

Theorem 16.8 Consider the SDE
dX(t) = p(t, X(t)) dt + o(t, X (t)) dB(t) for t€[0,T], X (0)=X,

(where Xy is independent of B). Assume that, to each n €N, there exists a constant
K, >0 such that the following Lipschitz condition holds

u(t, z) = p(t, y)| + lo(t, ) —o(t, y)| < Knlz—y|  for |z[,lyl<n and t€0,T].

We have strong uniqueness for solutions to the SDE (but not necessarily existence).
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Proof (after [22, pp. 287-288])*. Consider two strong solutions {X;(%)}sco,r7 and
{Xs(t) }efo,r) to the SDE, on a common probability space. It is enough to prove that

P{X:(t)=X,(t)} =1 for each t€]0,T],
because this gives
P{X,(t)=X,(t) forall teQn[0,T]} =1.

Since {X1(?)}iejo,r) and {Xo(t) }sepo,r) are continuous, and thus determined by their
values on QNI0, 7], it follows that they are equal on [0, 7], with probability one.

The solution X; is adapted, because [j o(r, X;(r))dB(r) is a martingale (and
thus adapted), and because [} u(r, X;(r))dr is adapted, by the argument used in
the proof of Theorem 11.1, since u(-, X;(-)) is measurable and adapted. [Recall that
we require that g is measurable (Definition 15.15).] Since X; is adapted,

Tin = inf{t€[0,T] 1 |X;(t)|>n}

is a stopping time, because (by continuity)

(i<t} = {sup 1Xi(5) 2n) = (N A {1Xi(k/n) <n}) e 7.

s€[0,1] n=0 k=0

It follows that 7, = 71 ,ATy, is a stopping time. Notice that Xi(") (t) = X;(tAT,)
satisfies |Xz-(n) (t)] <n for t€[0,T] (by continuity), and that

X0) = [, X5) T () dr + [ o, X,l0) T () dB(r) o £€[0,7],

Since 7, T oo as n— 0o, by continuity of X; and X,, it is enough to prove that
XM (#)=X{M(t) with probability one, for t€[0,T] and n€N. However, Theorem
10.2 and Cauchy-Schwarz inequality, together with the Lipschitz condition, give

B{ (" ()~ x5 (0} < 28] ([ (1. X))~ Xo(0)) Ty ) )
+2 E{ ( / (o, X1(r) = o, Xo(r)) T (7) dB(r))2}
< 2B{ [/ ar) ([ (s o) - o) T )
+2E{/Ot(g(7«, X (1) =0 (r, X5(r)) Tl (7 )dr}
< 2(T+1)Kg/OtE{(X§”)(t)—X§”)(t))2}dr for te[0,T].

Hence Gronwall’s lemma, with C'=0, u(s) =2 (T+1) K? and v(s) = E{(Xl(n)(s)—
XQ(")(S))2} (that is continuous, by continuity of X; and Dominated Convergence),
gives v(¢)=0. This means that X" (¢)=X{"(t) with probability one. O
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17 Seventeenth Lecture
17.1  Uniqueness of Solutions to SDE (continued)

Example 17.1 Pick a T€(0,00). The following SDE has unique strong solution
dX(t)=X(t)*dt for te[0,7], X(0)=1,
by Theorem 16.8, since the drift u(z)=x? satisfies a Lipschitz condition
|22 —?? = |z +y)*|lz—y* < 4n?|z—y|? for |z, |y| < n.

In more general settings, than ours with one-dimesional SDE of diffusion type,
uniqueness result like Theorem 16.8 are the standard. However, for one-dimesional

diffusions, there are other uniqueness results, as for example the following one:

Theorem 17.2 (YAMADA-WATANABE) (e.g., [22, pp. 291-292]*) Consider the SDE
dX(t) = p(t, X (t))dt +o(t, X(t))dB(t)  for t€]0,T)], X(0)=X,

(where Xy is independent of B). Assume that there exist a constant K >0, together

with a strictly increasing function h:[0,00)—[0,00) that satisfies
h(0)=0 and / h(r)?dr = oo  for each &>0,
0
such that the following conditions hold

{u(t,xm(t,y) < Klz—y|
o(t, ) —o(t,y)| < h(lz—y))

for z,yeR and te[0,T].

We have strong uniqueness for solutions to the SDE (but not necessarily existence).

Theorem 17.2 is typically used in the following way:

Corollary 17.3 Consider the SDE
dX(t) = p(t, X (t))dt +o(t,X(t))dB(t)  for tel0,T], X (0)=X,

(where X, is independent of B). Assume that there ezist constants K > 0 and
a€[1/2,00) such that the following Hélder conditions hold

{u(t, 2)—p(t,y)| < K [z—y|
o(t,2)—o(t,y)| < |z—y|°

for z,yeR and t€[0,T].

We have strong uniqueness for solutions to the SDE (but not necessarily existence).
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Famous Example 17.4 Given an a€[1/2,1], the SDE
dX(t) = [X(D)[*dB(t) for te[0,T],  X(0)=0,

has unique solution X (¢)=0, by Corollary 17.3, since ||z|*—|y|¥ < |[x—y|*. #

17.2  Existence of Strong Solutions to SDE

Famous Example 17.5 (e.g., [22, pp. 301-302])* We see in Example 19.10 that

dX (t) =sign(X(¢))dB(t) for t€[0,T], X(0)

0, (17.1)

has a weak solution. However, it has no strong solution. Formally, assuming that X

is a strong solution, we get this using It6’s formula on |X|, which gives
d|X|(t) = sign(X (¢))dX () + ... = (sign(X(¢)))*dB({t) +...=dB(t) + ... .

Albeit |-] ¢ C*(R), || is convex, and there is an It6’s formula for convex functions
[that need not be C?(R) (see Remark 26.5 below)]. This formula gives d|X|(t) =
dB(t), plus a function of {|X(s)|}s<; coming from a second order “generalized deri-
vative” of |-| at zero. Rearranging, we find that B(¢) is a function of {|X(s)|}s<:-
Since X(¢) in turn is a function of {B(s)}s<; [solving (17.1)], X (¢) is adapted to
o(|X(s)|:s<t). This contradicts that X is BM, by Exercise 95 below. #

*EXERCISE 95 Show that a solution X to (17.1) is BM. (Hint: Show that
N
E{GE;VZI er(Tj)} — lim E{er:1 6; ZtiSTj X(ti—l)(B(ti)_B(ti—l))} — E{GE;VZI BjBO(Tj)}.)

Remark 17.6 By Theorem 15.6, X in (17.1) has [X](t) = J; sign(r)?dr = t, and
so X is BM, by Theorem 18.1 below: This is an economic way to do Exercise 95! #

EXERCISE 96 Pick a 7>1 Show that the following SDE (ODE) does not have
a strong solution (cf. Example 17.1);

dX(t)=X(t)*dt  for te€[0,T], X(0)=1,

Theorem 17.7 Consider the SDE
dX (t) = p(t, X (t)) dt + o(t, X (¢)) dB(t) for tel0,T], X(0)=X,

(where X is independent of B). Assume that

t;x_ t; +O-t7x _Ot’ S K.T_
{:“( ) =it )l + ot 2)—o(t,y)| 2=y for z,yeR and t€[0,T],

u(t, z)?+o(t,z)? < K%(1+42?)

for some constant K >0. There exists a unique strong solution to the SDE.
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Rather than Theorem 17.7, we prove the following result, using so called Picard-
Lindeléf iteration. It gives Theorem 17.7 by truncation of X, (][22, Problem 5.2.12])*:

Theorem 17.8 Consider the SDE
dX(t) = pu(t, X (t))dt +o(t,X(t))dB(t)  for t€[0,T], X (0)= X,
where (Xy is independent of B) with E{XZ2} < cc. Assume that

t,x)—ul(t, +lo(t,x)—ol(t, < Kl|z—
|ty z) = pu(t, y)| + lo(t, ) —o(t, y)| |~y for z,yeR and te0,T),
plt, z)2+o(t, z)? < K*(1+2%)

for some constant K >0. There exists a unique strong solution to the SDE. Moreover,

the solution is square-integrable.

*Proof (after [22, pp. 289-291]). We have uniqueness from Theorem 16.8, so that it

is enough to prove existence and square-integrability. Define X (#)=X, and
t t

XD (1) = X, + / u(r, X (r)) dr + / o(r, X®(r))dB(r)  for keN,
0 0

for t€[0,T]. To establish that the process X**1(¢) on the left-hand side is well-
defined, it is enough to show that the process on the right-hand side X*)(¢) satifies

SUD¢e(o,1] E{X(t)(r)Z} < o0, (17.2)
because (by Fubini’s theorem) this shows that
T T
(k) ())2 2 (k) 2 (k) ()2
E{/O o(r, X (r) dr} < E{/ K*(1+X®)(r) )dr} / K*(1+B{X®(r)?}) dr

is finite, so that o(-, X*)(:)) € By, and similarly, by Cauchy-Schwarz inequality,

({/ u(r, X®(r |dr})2SE{(/{)T|M(T,X(k)(r))\dr)2}
<s{(f=)(]» <T’X<’“><r>>2dr)}

gTE{/ K2(1+ X ())dr}

so that [i |u(r, X®(r)|dr < co a.s. Notice that (17.2) holds trivially for k=0
[since E{XZ2} < oo]. If we have (17.2) for a certain k, we further get (cf. above)

B{X*()2)
< 3E{X§}+3E{(/t|u (r X(k)(r))\dr>2} +3E{</Ot (r, X¥)(r)) dB(r ))2}
§3E{X§}+3TE{/ K (1+X®(r) )dr}+3E{/0 K (14 X9 (r)?) dr}
<a+af "B{X®(r)2}dr  for t€[0,T], for some constant Cy>0,
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by Theorem 10.2. This gives (17.2) for k+1, and thus for all k€N, by induction.

Now consider the processes [well-defined, because of (17.2)]

BOW = [ (ulr, X))~ ulr, X)) dr

: for keN and tel0,T].
M®)(t) = /0 (o(r, X5 () — o (r, X®(r))) dB(r)

Since {M®)(t)}iepo,r) is a square-integrable martingale [by the fact that o (-, X®)(-)),
o(-, X®+(.)) € Er, together with Theorem 10.2], Doob Maximal inequality yields

E{ sup M<k>(s)2} <VIE{M®(@#)?) = V2 E{ / (o(r, X)) —o(r, X (r)))er}

s€[0,t]

< \/i/otKQE{\XUf“)(r)—X<k>(r)\2} dr

for t€[0,T] (using Theorem 10.2 again). Further, Cauchy-Schwarz inequality gives

B sup B} < B{([[ar) ([ (utr: X200 -t XxO0)) ar)

s€[0,¢]

t
< T/ K?E{|X®D(r) = X® ()} dr
0
for t€[0,7]. Putting these finding together, we conclude that

B sup | X4 ()= X W'} = B sup B (o) + M V(o)

s€[0,4 s€[0,1]

< QE{ sup |B(k_1)(s)|2} + ZE{ sup |M(k_1)(s)|2}

s€[0,t] s€[0,t]

< CQ/OtE{LX(k)(’[‘)_X(k—l)(,r)|2} dr
(S Cz/otE{ssel[tB«]‘X(k)(s)_X(k1)(8)|2} dr) (17.3)

for some constant Cy>0. By means of induction (see Exercise 97 below), this gives

k k
EJ sup |[X® D (5)=X®(5)]2} < sup E{| XD (5)=XO(5)2 ¢ 203& (17.4)
k!

s€[0,T] s€[0,T] k!

[recall (17.2)]. By application of Tjebysjev’s inequality, this implies that

1 Ck 1 4C3(2Cy)k
(k+1) (o) _ v (k) - -2 =2
P{ sup XXX W) > i} < Ot [ = =

Hence we have

e 1
P{ sup [ X®+D(s)— X ®)(g)| > —} < 00,
5P { sup XE(6) - X0 >

so that, by the Borel-Cantelli lemma,

1
P{ sup | XE+HD(5)—X®)(5)| > ~i7 for infinitely many kEN} = 0.
t€[0,7] 2k+
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In other words, we have

sup |[X® (s) =X ®)(s)| <
te[0,T

1
pYasT for k>ko(w), forsome Fko(w)eEN,
that is finite with probability one. By summation, this gives

mVn—1 00 1 1
sup [ X™(s)-X™(s) < 3 sup [XF(5)-xB ()] < Y

< =
k+1 — 9mAn
t€[0,17 k=mnn t€[0,T] k=mAn 2 2

for mAn>ko(w), where mVn = max{m,n}. Thus the processes {X®)1}2  con-
stitute a Cauchy sequence wrt. uniform convergence of functions (processes) on the
interval [0,T]. Since each of these processes is continuous [by Theorem 10.2, together
with absolute continuity of [*u(r, X =1 (r))dr], it follows (e.g., [12, pp. 1-2])* that
there exists a stochastic process {X()}co,r7, that is continuous with probability
one, such that sup,cq | X®(t)—X(t)] = 0 as k— oo, with probability one.

By the established convergence together with (17.4) and Fatou’s lemma, we have

E{ sup |X(t)—X<’“>(t)l2} - E{lim inf sup |X“)(t)—X<’“>(t)|2}

te[0,T7] €200 4e(0,17]

< liminfE{ sup |X(z)(t)—X(k)(t)\2}

£—00 te [O,T]

-1
< limsup ¥ 2n+1—kE{ sup |X("+1)(t)—X(")(t)|2}

£—00  p—f t€[0,T1]
k= on o OF _
< ok ;}2 0372! = O3 217k (17.5)
(see Exercise 98 below). In particular, we have [recall (17.2)]

sup B{X (¢)?} < E{ sup X (t)Q}

t€[0,T] t€[0,T]

< 2E{ sup \X(t)—)dl)(t)\?} + 2E{ sup \X(l)(t)|2} < .

te[0,T] te[0,T)

From this we get that
t t

Y(t) = Xo + / u(r, X (r)) dr + / o(r, X(r))dB(r)  is well-defined for ¢€[0,T],
0 0

in the same way as we got that X*+1 is well-defined from (17.2). Hence it is enough
to show that X =Y a.s., to establish the existence of a square-integrable solution.
We have, by (17.5) together with the argument used to establish (17.3),
T
E{ sup |Y(t)—X(’““)(t)\2} <G E{ sup |X(s)—X<k>(s)|2} dr < CoT Cy 202 21+
0

s€[0,T] s€[0,r]
Hence another application of (17.5) shows that

E{|Y (t)-X(1)]"} < zE{ sup]\Y(t)—X(k+1)(t)|2} +2E{ sup |X<k+1>(t)—X(t)|2}

s€[0,T s€[0,T]

< CyT Cye?2227F 4 04622227k 5 as k—oo.
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This gives Y (t)=X(t) as. for t€[0,T], so that [by continuity of X and Y (used
as in the proof of Theorem 16.8)], P{Y (¢)=X(¢) for t€[0,T]} =1. O

EXERCISE 97 Show that (17.3) gives (17.4).

EXERCISE 98 Prove the inequality featuring in (17.5)

-1
E{ sup \X“)(t)—X(’“)(t)P}gZQ"“"“E{ sup |X(”+1)(t)—X(")(t)\2} for >k
n=~k

te[0,T] te[0,T]
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18 Eighteenth Lecture

18.1 Paul Lévy’s Characterization of BM

The following celebrated result, by P. Lévy, is crucial in the use of the machinery
of stochastic calculus. We have seen one indication of this in Exercise 95 (together
with Remark 17.6). Other vital applications include Girsanov’s theorem (Theorems
19.1 and 19.6 below), which is used to solve SDE below.

Theorem 18.1 (LEvVY’s CHARACTERIZATION OF BM) A continuous local mar-
tingale {X(t), Fi}i>0 is BM wrt. the filtration {F;}i>0 (see Section 16.2), iff. it is
BM in the sense of Definition 2.1, iff. [X](t) = [X, X](t) =t for t>0.

Proof (after [22, p. 157])*. The first implication to the right is trivial, and the second
Theorem 2.13. It remains to prove that X is BM wrt. {F;}1>0 when [X](t)=t, i.e.,

P{AN{X(t)-X(s)€-}} =P{A} P{B(t)-B(s)e:} for AE€F, and 0<s<t.

[This gives independence of increments, as well as the desired distribution for them

(taking A=Q).] By theory for characteristic functions, this follows if we can prove
E{ez’szAeiG(X(t)—X(s))} _ E{eigoIA} E{eio(B(t)—B(s))} for 0,0 €R.
By conditioning, we have
E{eithAeie(X(t)fX(s))} — E{eiwIA E{eie(X(t)—X(s)) | fs}} for 0, e R.
It follows that it is enough to prove that
E{ew(X(t)_X(s))U:s} = E{ew(B(t)_B(s))} for f€R. (18.1)

By Ito’s formula for continuous local martingales (Section 16.1), aplied to the

function f(z) = e®* (considering the real and imaginary parts separately), we have

. ) t t
X0 — X0 i [ XD AN (r) — (62/2) [ XD ar. (18.2)

Recall that fj **X(" dX (r) is a local martingale (more precisely, its real and imagi-
nary parts are), so that there exist stopping times 0<7...<7,T0o0 a.s. as n— o0,

such that [;"™ e?X(" dX(r) is a martingale. Hence we have (cf. Exercise 85)

E{/tATn eiH(X(r)fX(s/\’rn)) dX(’f‘) fs} — efiGX(s/\’rn) E{/t/\TneieX(T) dX(T) fs} =0.
SA\Tp, SN\Tp,
Since the properties of {7,}2%; ensure that
QOX(UATR) - X(sAm))  _y o if(X(H)-X(s)
a.s. as n— oo,

/t/\TneiQ(X(r)—X(S/\Tn)) dr — /tew(X(r)_X(s)) dr
s S

NTn
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where the random variables involved are bounded, Dominated Convergence give con-
vergence in IL'. By Exercise 68, this yields convergence for the corresponding condi-

tional expectations in LL'. Using (18.2), we thus get
E { eIXO-X() _1 4 (g2/9) / 0K ()-X() g f‘s}
<_E{ei9(X(t/\Tn) X(sAT)) _ (02/2)/ T“e B(X(r)~X (7)) g
SA\Tp
- E{w / T IO =X 60 g (1) } —0
SN\Tn,
(with convergence in '), so that

E{c/XOX0)| ) =1 (52/2) E{ / " GOX) X () g

7}

}“s}.

Picking an event A€ F;, this gives
E{]AeiH(X(t)fX(s))} :/ 0(X()-X(s) gp — / X(8)-X(s)) ‘ ]_—

_/(1_ /2B [ eor-xen f})dP
= P{A} - (6°/2) /A(/ OO dr) e

:P{A}—(ez/z)/: {1y X=X g,

By Exercise 99 below, this equation has unique solution

E{IA eiﬂ(X(t)—X(s))} =P{A} e 07(t=9)/2 _ P{A} E{eiso(B(t)—B(s)) 1.
Using this together with the above system of equations, we obtain
J B{e?XOXO | £} dP = PAA}B{HEOEO) ) = | B B0} gp
for A€F;, which is the sought after identity (18.1). O
EXERCISE 99 Show that the equation
E{I, "X O X1 = P{A} - (02/2) / tE{IA XX g for 0<s<t
(in the proof of Theorem 18.1), has unique solution

E{I, /060 XD} _P{A}e P2 for 0<s<t.

18.2  Stratonovich Stochastic Integrals

Definition 18.2 Let {X(t)}epo,r) and {Y (t) hepor) be continuous local martin-
gales. The Stratonovich stochastic integral of Y wrt. X 1is given by

/tY(r)odX(r) E/tY(r)dX(r)+%[X,Y](t) for telo,TY.

0 0
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This is the rigorous definition of the Stratonovich (Fisk-Stratonovich) integral
discussed in Lecture 6. Notice that, by continuity of Y, the condition for existence
of [{Y dX in Section 16.1 holds, that [ Y?2d[X,X] < oo with probability one.

The Stratonovich integral is defined for a much narrower class of integrands (con-
tinuous local martingales), than the It6 integral [defined for adapted and measurable
processes with [ Y2d[X, X] < oo]. This is because [X,Y] features in the definition.

By Theorem 15.3 together with Section 16.1, the Stratonovich integral satisfies

/0 'Y odX = P-hm{fj Y(t“);y(t“) (X (t)— X (t;—1)) :

=1

O=to<ti1 <...<t,=t
maxj<;<n ti—ti_1— 0 )

EXERCISE 100 (INTEGRATION BY PARTS) Use Ité’s formula to show that

| Y (r) o dX(r) = Y(£)X () = Y(0) X (0) — / "X(r) o dY (r)

18.3 Introduction to Girsanov’s Theorem

One very important result in stochastic calculus is Girsanov’s theorem, with
Girsanov transformation. It is a main tool to find weak solutions to SDE, and signif-
icantly generalizes the earlier Cameron-Martin formula (see Exercise 104 below).

X=X(O)-[X)/2 of a continuous local martingale

The stochastic exponential £X =e
X satisfies d(EX) = (£X)dX (by Example 16.2), and is thus a continuous local

martingale (since an It6 integral). By Exercise 101 below, it is a supermartingale.

EXERCISE 101 Show that a positive local martingale {Y (¢)}tcpo,r], is a super-
martingale, and that it is a martingale iff. E{Y (0)} =E{Y (T)}.

Theorem 18.3 (Girsanov’s THEOREM) (First version.) For X € Py such that

2(t) == (SfOXdB)()_exp{/OtX(r)dB(r)—%/OtX(r)er}, re[0,7),

is a martingale, there exists a probability measure (on the measurable space under

con- sideration), under which the following stochastic process is BM

W (t) = B(t) — B(0) —/OtX(r) dr, te[0,T].

EXERCISE 102 Explain why X € Pr ensures that [J X(r)dr is well-defined.

Example 18.4 Let X(t)=pu(t, B(t)) in Girsanov’s theorem. Rearranging, we get
B(t) = —|—/ X(r)ydr+W(t +/ r, B(r)) dr + W (t) for te€[0,T].

This means that Y =B is a weak solution to the general SDE with dispersion one
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dY (t) = u(t,Y (1)) dt + dW (t) for t€l0,T].
The probability measure has changed, so that B is no longer BM! By Novikov’s Cri-

terion below, Girsanov’s theorem really applies here, if for example p is bounded. #

*Theorem 18.5 (KaAzaMmAKI’s CRITERION) For a continuous local martingale
{X(®)}ie,ry such that {eXO-XON2Y, 0 is a submartingale, {(EX)(t)}ep1 5 a

martingale.

*Proof (after [33, p. 307]). Since £X is a supermartingale, it is enough to show that
E{(EX)(T)} =E{(£X)(0)} =1, by Execise 101. Put Z,(t) = e?XH=X()/(1+a) for
a€(0,1). Notice that

E(aX) = eaX—aX(0)—a?[X]/2 _ (5X)aze(a—a2)(x—x(0)) _ (SX)G2Z;_GZ,

It is enough to prove that £(aX) is a martingale, because then Hélder’s Inequality
gives
1 =E{(£(aX))(T)} = B{(EX)(T)" Zu(T)' ™'} < (B{EX)(D)}H)* (B{Z(T))'™".
Here Z,(T) < eX@M-XO)24 [ v 7y x0)<0y, where the right-hand side is integrable,
since Z(t) = eX®-X(O)/2 i 3 submartingale. Hence Dominated Convergence gives
E{Z,(T)} = E{Z(t)} as a11, so that (BE{Z,(T)})'""* — 1. Inserting above, we
get E{(£X)(T)}>1. We already know that E{(£X)(T)} <1, since £X is a super-
matingale (which have decreasing means), by Exercise 101, and so E{(£X)(T)}=1.
By Theorem 23.14 below, the continuous local martingale {(£(aX))(t)}co,m is
a martingale if {(£(aX))(7): 7 stopping time with 7 <7} is uniformly integrable.
This in turn follows if {Z,(7):7 stopping time with 7<T} is uniformly integrable,
since noticing that (£(aX))(¢)"/(*9 < Z,(t), Hélders Inequality gives

a2 —112

E{I{(S(aX))(T)>y}(5(aX))(T)} :E{I{(é'(aX))('r)l/(l"‘a)>y1/(1+‘1)}(5X)(T) Za(1)! }

1-a?
< (B{(EX)(DH* (E{I{Za(r)>y1/(1+a)}Za(T)}) :
where E{(£X)(r)} = E{E{(£X)(7)| Fo}} < E{(£X)(0)} = 1, by Optional Sam-
pling Corollary 23.7, since £X 1is a supermartingale.

Recalling that Z,(t) < Z(t)+I{x@#)-x()<o} (Where the second term on the right-
hand side is uniformly integrable, e.g., by Exercise 77), it is enough to show that
{Z(r) : 7 stopping time with 7 <7} is uniformly integrable. This is an application
of Optional Sampling Corollary 23.7, to the submartingale Z: As y— 00, we have

B{I12()532(1)} < B{I{20)5y B{Z(D)| 71} } = B{L 25y 2(T) }
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< B{sup,em 20059 Z(T) } = 0

uniformly for 7<7T', by continuity of Z and Absolute Continuity of the Integral. O

Corollary 18.6  For a continuous martingale {X(t)}iepr) such that E{e*®
XY <00, {(EX)(t) b is a martingale.

Proof. This follows from Theorem 18.5: Since X (¢)—X(0) is a martingale and e’
convex, Z(t) = eX®=XO)/2 ¢c[0,T], is a submartingale by Exercise 55, if E{Z(t)}
< oo for t€[0,T]. This we get from Jensen’s Inequality, using that E{Z(T)} < oo,

E{Z(T)} = E{E{{XD-X0)2| F}1 > BePXO-XO)/27)) - BeXO-X0)/2), 0

Corollary 18.7 (Novikov’s CRITERION) For a continuous local martingale
{X () }rep,r such that E{eXID/2} < oo, {(EX)(t) }epr s @ martingale.

Proof. This follows from Corollary 18.6: By Burkholder-Davis-Gundy inequality The-
orem 23.18 below, and the fact that /z < e®~1/2 for >0, we have

E{supse[O,T}\X(s)—X(Oﬂ} < K1 p B{[X](T)"?} < K1 o E{eXIM=D/2} < o0,

Hence [X(t)—X(0)| < Zr = sup,eom|X(s) =X (0)] for te€0,T], where Zr is
integrable, and so X (¢)—X(0) is a martingale, by Theorem 12.9. Since £X has

finite means (being a supermartingale), Cauchy-Schwarz inequality further gives

E{eX(M-X(0)/2} — E{« [(EX)(T) VelXIT)/2 } < \/E{({;‘X)(T)} E{elXI(1/2} < 0c0. O

*Remark 18.8 Novikov’s Criterion is known to be close to optimal (e.g., [27,
Sections 6.2.4-6.2.5]). Since it comes as an application of Kazamaki’s Criterion, that

criterion is even sharper (as is also exemplified in [33, Section VIIL1]). #

The following result (much versatiler than it might first appear), is not used by
us. We cite it anyway, since many authors (e.g., [21] and [22])* prefer it instead of

Kazamaki’s Criterion to derive Novikov’s Criterion (see Exercise 122 below).

Theorem 18.9 (WaLD’s IDENTITY) For BM B and a stopping time T, we have

E{(£B)(r)} = E{eBM-BO-7/21 — when E{e"?} < 0.

EXERCISE 103 Show how this Wald’s Identity gives the one in Example 13.3.
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19 Nineteenth Lecture

19.1 Girsanov’s Theorem

Theorem 19.1 (GirsaNov’s THEOREM) Let X € Pr, and assume that the

stochastic process

t 1 rt
Z(t) = exp{/ X(r)dB(r) -5 [ X(T)Zdr}, teo, 7],
0 0
is @ martingale (wrt. the filtration associated with B). Under the probability measure

1

- T T
P{A} = E{IA exp{/ X(r) dB(r) - 5/ X(r)Zdr}} — B{,Z(T)}, AecFr,
0 0
the following stochastic process W is a BM (wrt. the filtration associated with B)

W(t) = B(t) - B(0) —/OtX(r) dr, te[0,T)

Lemma 19.2 (BAves’ RULE) Let X € Py, and assume that
Z(t) = exp{/OtX(r) dB(r) — % /OtX(r)Zdr}, tel0,T],
is a martingale. For expectations B{-} wrt. the probability measure
P{A}=E{[L.Z(T)}, A€Fr,
and a Fy-measurable random variable Y with B{|Y|}<oco and t€[0,T], we have

E{Y|F)}=E{YZ({t)|F.}/Z(s) for s€[0,t].

Proof. Since Z is a martingale, we have
E{Y} =E{YZ(T)} = E{Y E{Z(1)| F,}} = B{Y Z(s)}
for F,-measurable random variables Y with E{|Y|} <oo. For A€ F,, this gives
E{I,Y} = B{I,YZ(T)} = E{E{L,Y Z(T)| i} } = E{L.Y B{Z(T)| F;}}
=E{I.YZ(t)}

E{E{I\YZ(1)|F.}}
E{I\E{YZ(t)| F.}}
E{I\E{YZ(t)| F.}/Z(s)}. O

(
(

Proof of Theorem 19.1. Since B is continuous, and [, X (r)dr has finite variation

and is continuous, we have
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W, W](t) = [B, B](t [/X drB] [/X dr/X dr] )=t +040.

Hence, by Lévy’s characterization of BM, it is enough to show that W is a local
martingale under P (since W obviously is continuous, by definition).

Since Z is stochastic exponential of dY(t) = X (t) dB(t) (by inspection of Def-
inition 15.11), so that dZ(t) = Z(t)dY (t) = Z(t)X (t) dB(t), integration by parts
(Example 14.11), together with the definition of W, give

/OtZdB —/OtZ(r)X(r) dr = /OtZdW

= ZOW () — Z(0)W(0) —/tW 47z — 17, W](1)
= Z(H)W () — 0 — / WZX dB — / X (r) dr,
since W(0)=0 and
d[Z,W](t) = dZ(t) dW () = (Z(H) X (£) dB(t)) (dB(t)— X (t)dt)
— Z()X () dB(t)? — o(dt) = Z(£)X (¢) dt.
Rearranging, we get that ZW is a local martingale, since
Z(H)W(t) = /tz dB +/tWZX dB.

Pick stopping times {7,}5°, such that 7,100 a.s. and ZW (7, At) is a martingale.

Let 7,=inf{t>0:|W(t)|>n} and 7,=T7,AT,. Since W is continuous and adapted,

by Exercise 64, ZW (7,At) = ZW ((t,A\t)AT,) is a martingale, by Optional Stopping.
By Example 23.17, Z(t)W (7, At) is martingale. Hence Bayes’ rule gives

E{W(?’n/\t)|.7-'s} =E{Z(t)W (7. A\t)|Fs}/Z(s) = Z(s)W (TuNs)/Z(s) = W (T, As).
Consequently, W(7,At) is a martingale, and W a local martingale, under P. O

EXERCISE 104 Explain why P is a probability measure. Compute the Radon-
Nikodym derivative dP /dP.

EXERCISE 105 One vesion of the Cameron-Martin formula, simply is Theorem
19.1 in the special case of non-random X € Pr, that is, X is a (deterministic) function
in L.2([0,T]) (recall Exercise 73-74). (In this case, Z is always a martingale.) One
indication of the depth of Girsanov’s theorem is the difficulty of a direct proof of (the
described version of) the Cameron-Martin formula: Try such a proof. (Hint: Use

an adaption of the proof of Lévy’s characterization of BM.)

19.2 Multidimensional SDE

We call an R™-valued stochastic process {B(t)};>o n-dimensional BM, if its com-

ponents Bi,..., B, are independent Brownian motions wrt. to a common filtration.
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Given functions p:[0,T]xR" —=+R" and 0:[0,7]xR" = R,, (n|n-matrices),

with measurable components, we consider the multidimensional diffusion type SDE
dX (t) = p(t, X (t))dt+o(t, X (t)) dB(t) for tel0,T], X (0) =Xy, (19.1)

where B is n-dimensional BM and X is independent of B (see Section 16.2).

A strong solution to (19.1), is an R"-valued stochastic process {X (t)}scpo,r, with

all components {4/|b;(t, X (t))|}sco,r7 and {os(t, X (t))}ecpo,ry in Pr, such that
X(0) = Xo+ [ ult, XO) dt + [ o(t, X(0) dB(H)  for 1€[0,T].
0 0
Expressed componetwise, this means that (for each i€{1,...,n})

Xz(t) = (X())Z +/Ot,ulz'(t, X(t)) dt +i Atﬁi,j(t, X(t)) dB](t) for te [0, T]

[Here random beginning values X, are accomodated as described in Section 16.2.]

Any solution to a multidimensional SDE is a multidimensional diffusion process.

Methods for one-dimensional SDE developed so far, carry over to the multidimen-
sional with only obvious changes. Except for martingale problems introduced below,
we have in that way already covered basic theory for multidimensional SDE.

However, there exist a lot of results for the one-dimensional case, that do not
carry over to the multidimensional setting. We will encounter such results then and
then in the sequel. They constitute a classical subject matter, that was researched
by “famous names” as Chung, Doob, Feller, It6, Kolmogorov, Lévy, etc.

We now list multidimensional versions of important results, previously stated in
one dimension. (Recall that we already have a multidimensional It6 formula from
Section 16.1.) As mentioned, the proofs of these results are much the same as those
in one dimension. See the one-dimensional results for references to the literature.

Introduce the vector norm ||z|| = (/27+... 422 for z € R", and matrix norm

1M = /M2 +...+M2, for MERpy,.

Theorem 19.3 (e.g., [22, Theorem 5.2.5])* Consider the multidimensional SDE
dX(t) = p(t, X(t))dt + o(t, X (t))dB(t)  for t€[0,T], X(0)=X,

(where X is independent of B). Assume that, to each N €N, there exists a constant
Ky >0 such that the following Lipschitz condition holds

lt, 2)=u(t, Yl +llo(t, 2)—o ()| < Knlla—yll  for |zl [yl <N and t€0,T].

We have strong uniqueness for solutions to the multidimensional SDE.

(The Yamada-Watanabe theorem does not carry over to the multidimensional.)
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Theorem 19.4 (e.g., [22, Problem 5.2.12])* Consider the multidimensional SDE
dX(t) = p(t, X (t)) dt + o(t, X (t)) dB(t) for tel0,T], X(0)=Xy
(where X is independent of B). Assume that, for some constant K >0,

for z,yeR™ and te[0,T].

{Iu(t, z) =t y)ll+llot, z)—o(t, y)l| < K |lz—yl|
It )P +llo(t, 2)|* < K2 (1+]|2]?)

There exists a unique strong solution to the multidimensional SDE.

Theorem 19.5 (L&vy’s CHARACTERIZATION OF BM) (e.g., [22, Theorem 3.2.
16])* Let {X(t)}>0 be an R™-valued stochastic process, the components of which
are continuous local martingales wrt. a common filtration. The process X is n-

dimensional BM iff. it has covariations
(X, X;|(t) =8t for t>0 and i,j€{l,...,n}

(where §;;=1 if i=j and 0 otherwise).

Theorem 19.6 (GirRsANOV’S THEOREM) (e.g., [22, Theorem 3.5.1])* Let B be
n-dimensional BM and let Xi,...,X, € Pr. Assume that the stochastic process

nooet 1 st
2() = exp{Y. [ Xir) dBi(r) 5 [IX()|Parf,  telo,T)
i=1
1s a martingale. Under the probability measure
P{A} = E{I,Z(T)}, AcFy,
the following stochastic process W is an n-dimensional BM

W(t) = B(t) - B(0) —/OtX(r) dr, te[0,T]

EXERCISE 106 Explain how the multidimensional version of Girsanov’s theorem

can be used to find a weak solution to the multidimensional SDE

dX(t) = p(t, X () dt + dB(t)  for te[0,T].

19.3  One-Dimensional Time Homogeneous SDE

This section gives first examples on results that hold only for one-dimensional

time homogeneous SDE, that is, SDE where the drift and dispersion do not depend

on time, p(t,z)=u(x) and o(t,z)=0c(z). Obviously, the method of proof does not
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carry over to the multidimensional, and is therefore not discussed.

Theorem 19.7 (ENGELBERT-SCHMIDT) (e.g., [22, pp. 332-334])* The SDE
dX(t) =o(X(t))dB(t) for t>0, X(0)= Xy,
has a weak solution for every choice of initial value Xq iff., for each x€R, we have

/io(xdi—ig/)?:m forall e>0 = o(z)=0.

EXERCISE 107 Give an example of a non-continuous ¢ for which (by Theorem
19.7) there exists a weak solution to the SDE

dX () =o(X(t)dB(t) for >0,  X(0)=Xo.

Theorem 19.8 (ENGELBERT-SCHMIDT) (e.g., [22, p. 335])* The SDE
dX(t) = o(X(8))dB(t)  for ¢>0,  X(0)=Xo,

has a weak solution, that in addition is unique, for every choice of initial value X,

iff., for each x€R, we have

€ dy
/—EWZOO forall e>0 < o(z)=0.

Corollary 19.9 Let 0:R — R be continuous, or bounded away from zero (or
both). The SDE

dX(t) = o(X(t)dB(t) for >0,  X(0)=Xo,

has a weak solution, that in addition is unique, for every choice of initial value X,.

A function f(z) is bounded away from zero if |f(x)| >¢ for all = (for which the

function is defined), for some constant &> 0.

The question of existence and uniqueness of solutions to a general one-dimensional
time homogeneous SDE, with a general drift ;4 and dispersion o, can be reduced to
the case with zero drift attended to above, by means of removal of drift (when u/o?

is locally integrable). See Corollary 26.6 below.

Example 19.10 Consider the SDE from Example 17.5
dX(t) =sign(X(t))dB(t) for tel0,T], X(0)=0.

By Corollary 19.9, it has a weak solution, that in addition is unique. #
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Assume that we have a (weak or strong) solution X to the SDE
dX(t) =o(X(t))dB(t) for >0, X(0) =X,

and that
dW (t) = dB(t) — p(X (1)) /o (X (2)) dt.

It follows that
o(X (1)) dW (1) + (X (1)) dt = o(X(¢)) dB(t) =dX(¢),  X(0)=X,,

so that X is a weak solution to the general one-dimensional time-homogeneous diffu-
sion type SDE dX = pdt+odW, if W is BM under some probability measure. By

Girsanov’s theorem (Theorem 18.3), this holds if the following process is a martingale

Fp(X (1)) 1 ortp(X()
exp{/o (X (1) dB(T)_ifo Wdr}, tel0,T).

19.4 Local Martingale Problems

Weak solutions to multidimensional SDE are studied by martingale methods, due
to Stroock and Varadhan (see their famous and difficult monograph [36])*, where the
SDE is related to an equivalent so called (local) martingale problem. It is uniqueness
of solutions that are best dealt with in this way, while existence can be handled in
other ways as well. Theory for the Cauchy problem for parabolic PDE come into play
here. Unfortunately, these methods are a bit difficult and somewhat non-probabilistic.
Nevertheless, one should know a little about what is going one here. This is so also

because the approach connects to so called diffusion theory.

EXERCISE 108 Let B be R"-valued BM. Let the R"-valued process {V (t)}:0

be a weak solution to the multidimensional (not necessarily diffusion type) SDE
dY (t) = ju(t) dt + 6(t)dB(t)  for ¢>0, (19.2)

[where the processes {/i(t)};>0 and {6(t)}s>0, with values in R™ and R,,, respec-
tively, satisfy \/|fl|, 6i; € Pr for T>0 and 4,j=1,...,n]. Define the operators

L s 0%g(t, ) <~ ., 09(t )
(Ag)(t,z) = §ZZ(UUT)z‘,j(t) 5097 +> fu(t) .
i=1j=1 Li0Z; o Zi
n dg(t,z) " dg(t, ) (19.3)
A g\, N g\,
Co)(t,z) = ( O AL S )
Cota) = (o G S o) 2
for functions g € CH2([0,00)xR"™) = {(§:[0,00) x R — R) : § has continuous par-
tial derivatives 85’(%2’””) and %Z(g’m‘?, i,j=1,...,n}. Show that

dg(t,Y (1) = (1g(8, Y (6) + (Ag) (1, Y (1)) dt = ((Co)(t, Y (1)) dB(2)
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Corollary 19.11 Let the R"-valued process {Y (t)}i>0 be a weak solution to the
multidimensional SDE (19.2), and consider the operator A given by (19.3). For
g € CH2(]0,00) xR™) the following process is a continuous local martingale

9(t,Y () — 9(0,Y(0)) —/ (0r9(r, Y (r) + (Ag)(r, Y (r))) dr, £ >0.

t
0

Proof. This follows from Exercise 108 together with Theorem 12.10. O
Given an s>0, consider the multidimensional diffusion type SDE [cf. (19.1)]
X(t) = X(s) +/:,u(7', X(r))dr +/5t0(r, X(r))dB(r) for t>s. (19.4)
The generator of this SDE is the second order partial differential operator (PDO)

+ Zj 1s(t, ) %(5) (19.5)

(Aef)(e) = 5 33 (00t 0) 5 150

for feC?(R") [cf. (19.3)]. Here 00" :[0,00) x R"— Ry, is the diffusion matrix.

Corollary 19.12 Let the R™-valued process {X (t)}>s = {X (t+5) }rs0 = {X () }120
be a weak solution to the multidimensional SDE (19.4), with generator A;. For func-

tions feC?(R"), the following process is a continuous local martingale

FED) = FEO) - [(Aa) (X)) dr, 120

Proof. Since Y =X solves (19.2), with &(t)=o(t+s, X (t+s)), fi(t)=p(t+s, X (t+s))
and B(t) = B(t+s)—B(s) (which is also BM), Corollary 19.11 gives the result. O

Definition 19.13 Consider the generator A; in (19.5), and pick an s>0. A con-

tinuous adapted R™-valued process {X(t)}i>0 s a solution to the local martingale

problem associated with A.,,, if for each f & C*(R"), the following process is a

continuous local martingale

FX®) = FXO) ~ [[(Arra X)) dr, 220

In the literature, local martingale problems are formulated analytically (without
the process X), as measure theoretic statements (equivalent with Definition 19.13).
The next very important result helps us complete previous findings, on the

relation between multidimensional diffusions and local martingale problems:
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Theorem 19.14 (ABsoLuTE CONTINUITY WRT. BM) (e.g., [22, pp. 170-172 and
316-317])* Let {M;(t)}+>0 be continuous local martingales, and {0, (t)}i>0 measur-
able adapted processes, wrt. a filtration {F,}i>0, for i,j=1,...,n. Assume that

t

[M;, M;](2) z/(aaT)i’j(r) drz/ Zozk r)ojk(r)dr for t>0 and i,j=1,...,n
0

There exists a BM {B(t)}t>0 in R™ wrt. a filtration {.7:}},;20 D {Fi}ti>0, such that

t ~
Mi(t)z/ar dB(r :/Zozk clB,c r)dr for t>0 and i=1,...,n.

Proof for n=1. Let §=1/c for 0#0, and §=0 for 0=0. Let {W(¢)}+>o be a BM
that is independent of {F;};>0, and put F; = o(F;, o(W(s):5<t)). The process

B = [ "S(r) dM(r) + | Ty AW(r)  for >0

is well-defined, since [j 62d[M] = [{§(r)%o(r)?dr < t. Here [;5dM is a continuous
local martingale wrt. {f:t}tzo, since a local martingale wrt. {F;}i>0, and W is
independent of {F;};>o. In the same way, W is a BM wrt. {ﬁ:}tgoa so that also

f(f Iiy5—0y dW is a continuous local martingale wrt. {j'—t}tgo- Further, we have
_ /0 52 d[M]+2 /0 5110y d[M, W]+ /0 Loy W] = /0 ooy 0+ Tio—gy)dr = 1.
Hence Lévy’s Characterization of BM shows that B is BM. Moreover,
/0 ‘5 dB = /0 Tros00 dB = /0 Tios0y0 (§AM + TjpgydWV') = /0 Lo dM = M(2).

Here the last equality follows from Corollary 23.19 below, which shows that f(f Iis—g)
dM = 0, since its quadratic variation is fj Ito—0y d[M] = N Iioy=oyo(r)®>dr =0. O

Theorem 19.15 Consider the generator A; given by (19.5). Pick a constant s>0

(and an R™-valued random variable Xy). The multidimensional SDE
dX(t) = p(t, X (t)) dt+o(t, X (t)) dB(t) for t>s (19.4)

has a weak solution {X(t)}i>s (with X (s) =distribution X0/, iff- {)A((t)}tzo ={X(t+
s)}iso solves the local martingale problem for A..s (with )A((O) =Jistribution X0 )-

Proof for s=0. Since a weak solution to the SDE is a solution to the local martin-
gale problem, by Corollary 19.12, it is enough to prove that a solution to the local
martingale problem is a weak solution to the SDE: Let X solve the local martingale

problem. Taking f(z)=x;, we get that
. t
MO (1) = X;(t) — X;(0) —/ wi(r, X (1)) dr is a continuous local martingale
0

115




for i=1,...,n. By Ito’s formula together with the hypothesis of Theorem 19.15,

df—Atfdt:Zé?de + 22288 fd[ X, X;) — Auf dt

= 1] 1
:ZafdM(Z—i- ZZaafd 0, MO %ZZUJ )i 0:0; f dt
i=1j=1 i=1j=1

is the stochastic differential of a continuous local martingale, for every fe C?(R").

Since also 7, 0;f dM®(t) is the stochastic differential of a continuous local mar-

tingale [since M®,...  M™ are continuous local martingales|, we get that
/ LS S0, 7 diM®, 10 / S S (007 00,/ dt
i=1j=1 i=1j=1

is a continuous local martingale. Further, M has bounded variation, since abso-
lutely continuous, so that [M](¢) =0. Now Theorem 19.14 gives M (t) =0, so that
d[M®D MW]|(t) = (00T); (¢, X (t)) dt. Using Theorem 19.14 again, it follows that

t) = iai,k(r,X(r)) dBy(r) for i=1,...,n.

Combining this with the definition of M® ... M®™  we get (19.4). O

Definition 19.16 The local martingale problem associated with the generator A, in
(19.5) is well-posed at zero [well-posed], if the local martingale problem for Ay [for
A..s] has a solution X such that X (0) =gistribution X0, Jor each R™-valued random
variable Xy [and each s>0], which has uniquely determined £idi’s (any other such

solution must have the same fidi’s as X).

Corollary 19.17 Consider the generator A; in (19.5). The SDE
dX(t) = p(t, X (t))dt +o(t,X(t))dB(t)  for t>0, X (0) =X,

has a weak solution that is unique, for each R™-valued random variable Xy, iff. the

local martingale problem associated with A; is well-posed at zero.

Proof. Theorem 19.15 and a logical exercise. O

Corollary 19.18 Consider the generator A; in (19.5). The SDE
dX (t) = p(t, X(t))dt + o(t, X (t)) dB(t) for t>s, X (s)=Xy,

has a weak solution {X(t)}i>s that is unique, for each R™-valued random variable

Xo and each s$>0, iff. the local martingale problem associated with A; is well-posed.

Proof. Corollary 19.17 applied at each s>0. O
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20 Twentieth Lecture

20.1 Martingale Problems

Instead of finding X such that M/ (t) = f(X () — f(X(0)) — Ja(A.f)(X(r))dr
is a continuous local martingale for each f € C?(R™), it is more convenient to search
for X such that M7 (t) is a continuous martingale for f € CZ(R") = {ge C?(R") :

g(z)=0 for z outside a bounded set}. This causes little loss of generality:

Corollary 20.1  Let the R*-valued process {X(t)}i>s = {X (t+5)}rs0 = {X () }120
be a weak solution to the multidimensional SDE (19.4), with generator A;, where o

is locally bounded (o has locally bounded components). For functions f&C3(R")

F(X(t) = F(X(0)) —/()t(Ar+sf)(X(r)) dr, 1>0, is a continuous martingale.

Proof. Since the process under consideration is a continuous local martingale, by Co-
rollary 19.12, that is locally bounded, by the assumptions on f and o together with

an inspection of Exercise 108, it is a (continuous) martingale by Theorem 12.9. O

Definition 20.2 Consider the generator A; in (19.5), and pick an s>0. A con-
tinuous adapted R™-valued process {X(t)}i>0 is a solution to the martingale problem
associated with A..,, if for each fe€CZ(R")

f(X () — f(X(0)) —/Ot(AHSf)(X(r)) dr, >0, is a continuous martingale.

Definition 20.3 The martingale problem associated with the generator A, in
(19.5) is well-posed at zero [well-posed], if the martingale problem for A; [for Auis]

has a solution X such that X (0) =gistribution X0, for each R"-valued random variable

Xy [and each $>0], and which has uniquely determined £idi’s.

Corollary 20.4 Consider the generator A; given by (19.5), where o is locally
bounded. Pick an s>0 (and an R™-valued random variable X,). The SDE

dX(t) = p(t, X () dt + o(t, X (1)) dB(t)  for t>s

has a weak solution {X(t)}i>s (with X(s) =aistribution X0/, ff- {)A((t)}tzo = {X(t+
s)}iso0 solves the martingale problem for A.. (with X(O) =istribution X0 /-

Proof. The implication to the right is Corollary 20.1, in the special case fe€C3(R™).
For that to the left, let X solve the martingale problem associated with A.,,. By
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Theorem 19.15, it is enough to show that X solves the local martingale problem
¢
M(t) = f(X(t))— f(X(0)) —/ (A f)(X(r)) dr is a continuous local martingale
0
for feC?(R"). Pick f%*)(z) in C2(R") that agree with f(z) for ||z||<k, so that
¢
M®(t) = f® (X (1) - P (X(0)) —/ (Arps f¥)(X (r))dr is a continuous martingale
0

(since X solves the martingale problem). Define the stopping times 7, = inf{¢t >
0:||X(t)||>k} for keN. By continuity of X, we have 7,100 a.s. as k—o00. By
Theorem 12.6, it is thus enough to show that {M (¢A7x)}i>0 is a martingale.

By construction of 7, we have the second of the following equalities
Mitnm) = F(X(tAm) — FXO) - [ (Aran )X dr
= SO (eAT) = FXO) = [ (Ao O (X (1))

= IO (A7) = SO 0) = [ (A O (X (1) dr = MO (817,

To see that also the third equality holds (the first one being trivial), notice that when
F(X(0))# f®(X(0)), we have || X(0)||>k, so that 7, =0. This gives

Mithm) =0 = FO(X(tam) — FOO) — [ (At ) (X)) .

Now M(tA7,) = M®)(tA7y,) is a martingale, by Theorem 12.3, since M®*) is. O

Corollary 20.5 Let the generator A; in (19.5) have o locally bounded. The SDE
dX(t) = pu(t, X (t))dt +o(t,X(t))dB(t)  for t>0, X (0) =X,

has a weak solution X that is unique, for each R™-valued random variable X, iff. the
martingale problem associated with A; is well-posed at zero. In this case, solutions to

the martingale problem can be chosen with same £idi’s as solutions to the SDE.

Proof. Corollary 20.4 and a logical exercise. O

Corollary 20.6 Let the generator A; in (19.5) have o locally bounded. The SDE
dX(t) = p(t, X (¢))dt + o(t, X (t)) dB(t) for t>s, X (s)=Xo,

has a weak solution {X (t)}1>s that is unique, for each R"™-valued random variable X,
and each s>0, iff. the martingale problem associated with A; is well-posed. In this

case, a solution {X (t)}1>0 to the martingale problem for A.., can be chosen so that
{X(t)}tzo —same fidi’s {X(t+ 8)}1520'
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20.2  Existence of Solutions to Martingale Problems

For strong solutions to SDE, uniqueness criteria (Theorems 16.8, 17.2 and 19.3)
are less demanding (in terms of their hypothesises), than existence criteria (Theorems
17.7 and 19.4). For weak solutions to time homogeneous one-dimensional SDE, the
uniqueness criterion (Theorem 19.8) is instead more demanding than the existence
criterion (Theorem 19.7). This continues for solutions to (time homogeneous mul-
tidimensional) martingale problems, where uniqueness is both more demanding and
more difficult than existence (which requires rather little).

The existence proof uses weak convergence of probability measures in an Fuler
iteration. The standard reference for this is [5]. For our special setting, with mul-
tidimensional SDE, the following adaption of what can be found there is convenient

(the proof of which belongs in a course on weak convergence):

Lemma 20.7 (e.g., [22, Section 2.4.B])* Let {XW(t)}is0, {XP(t)}is0, --- be

continuous R"™-valued processes [on our basic probability space (2, F,P)|, with
im0 SUPgs; P{IX®(0)[|>A} =0, (20.1)
and such that there exist constants K,a,3>0 with
E{||X(k)(t)—X(k)(s)||”‘} <K |t—s|'®  for s,t>0 and keN. (20.2)

There exist a continuous R™-valued process {X (t)}1>0 [on (2, F,P)], and a subse-
quence {k;}32, CIN, such that for each function F:C([0,T])"—R with

\F(f)=F(fe)|— 0 whenever  Supe(o 1) | f(t)—fe(t)|| — O
as k—oo [where f, fre C([0,T])"], we have

F({ij (1) }te[o,T]) —distribution £ ({X (7) }te[o,T]) as j—oQ.

Theorem 20.8 (STROOCK-VARADHAN) Consider the generator A; in (19.5),
where 1:[0,00) xR" = R" and 0:[0,00)xR" =R, , are continuous and bounded.
For each R™-valued random variable Xy and each s > 0, the martingale problem
associated with A..s has a solution X such that X (0)=gistribution X0-

*Proof for s=0 (adaption of [22, Section 5.4.D]). Define {X®)(¢)};5 recursively by

)) (B(t)—B(%))

for te(£,41] and (€N, for each k€N, where X*)(0)=X,. Notice that, writing

pB @) = n( XPE)  and - 0B =o(f, XP(5)  for te(y, G,

X ) = XO(E) + u(E, X)) (1 §) + o, X

s
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we have the (non-diffusion type) SDE
t t
X®(t) = Xo + / p® (1) dr 4 / o®(r)dB(r)  for  t>0: (20.3)
0 0

This is so by an induction argument, since (20.3) holds trivially for ¢ =0, and if
(20.3) holds for te€]0, %], then we get for te (%, 4L

ko k
t t

X +/ u®) (r) dr +/ olk)
0 0

= (XO +/0£/k,u(k)(r) dr +/Oe/ka(’“)(r) dB(r)) + (/t 1 (r) dr + t a®(r) dB(r))

o/k o/k
= XOE) + (ulf, XD () (=) + ol XD (D) (B~ B() = XP(0)

We have (20.1) trivially, since X*)(0)=X,. Further, (20.2) holds with =4 and
B=1, since [by (20.3) and the inequality |>r, z;|™ < n™ 'Y, |z;|™ for m>1]

E{||X®(t)-x®(s)[*}

W9y dr + [ o® () dB(r)
[o® ) aB(r)

S S

i

)

SSnZ((t—s) sup |,u,-(7",:13)|) +24n4(t—s)2i§: sup oy ;(r, )",

i=1 r>0,zeR"™ i=1j=1 r>0,zeR™

by Exercise 109 below (recall the definition of u*) and ¢® in terms of 4 and o).
Define the second order PDO [cf. (19.3)]

1l &Ko (9 flx) | ¢ of(x)
k) ¢ _1 NOYEON:
(4 24 Z g Jini( 31:Z3x] Z 8:1:Z

=1

for f € C3(R™). Directly by application of Lemma 20.6, there exist a continuous

process X and a subsequence {k;}2;, such that

=D

(70X 0) = 7(X9(5)) = [[(ADXE () dr ) g (X () et

converges in distribution as j— o0, to

(00N = X6 = AL dr ) a{X 0D )
for feCj(R"), 0<s<t and g¢:C([0,s])" =R with |g(fi)—g(f)|—=0 as sup,cpq
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| fe(r)—f(r)|| = 0. In fact, by continuity and boundedness of o and p, also

(P80 — FXE )~ (A% 1), XE ) dr g (XS () ) (20.4)
converges in distribution to this same limit. It is enough to prove that
M) = F(XW) ~ (X))~ [(ALX ) dr, 120,
is a martingale wrt. itself G = {G;}1>0 = {0(X (s) : 0<5<1)}1>0, that is
B{M(0)—M(5)|6,} = B{F(X (1) = (X ()~ [ (A D)X () dr
for 0<s<t. This is the same thing as
E{(f(X(t)) —F(X(s) —[(A,f)(X(r))dr)IA} —0  for AcG,.

Because of the choice of filtration G, and a standard approximation, this holds if

,} =0

B (F(X(0) - F(X6) ~ [(ADXE) dr)g{X (D)} =0, (20.5)

with g as above. The random variables in (20.4) are bounded, and thus uniformly
integrable (cf. Exercise 77). Hence (11.6) shows that

t
B{(£(X® ()~ (X ()~ [ (AB 1) (r, X9 (0)) dr ) g (X () hrepou) | (20.6)
converges to the left-hand side of (20.5). However, since it is locally bounded,

M® ) = fF(X® (1) — F(X®(0)) —/Ot(A(k)f)(r,X(k) (r))dr  is a martingale,

wrt. the filtration {F;};>¢ associated with B, by (20.3) together with Corollary
19.11 and Theorem 12.9. Since g({X™(r)},cp0,5) is adapted to G, C F;, this gives

B{ (F(X®(1) =1 (XD(5)) = [ (AD1) (1, XD (1)) dr ) g (XD (1) o)}
— B{B{f(x90) -0 0) - [ AN XD ar| YU 0 ei) | =0

Hence the expectation (20.6) is zero, which establishes (20.5). O

t

EXERCISE 109 Verify the facts used in the proof of Theorem 20.8, that
iz < EL o™ and B{(fo}; dBj)*} < 3(t—s)?sup,,0u,(r, )"

The following result where originally proved without the use of martingales:

Corollary 20.9 (SkoroHOD) For each R™-valued random variable X, and each
$>0, and for each choice of continuous and bounded coefficients i:[0,00)xR™ — R"

and 0:]0,00) xR =Ry, ,, the following multidimensional SDE has a weak solution

dX (1) = p(t, X (1) dt + o(t, X (1)) dB(t)  for t>s,  X(s)=X,.

Proof. Theorem 20.8 together with Corollary 20.4. O
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20.3 PDO and PDE

The material in this section has been collected from [14].

A linear partial differential operator (PDO) P of order m takes the form

0™ ...0%u(x)

P = « a

POD = F i) G
ar+...+an <m

for functions u:R"—1R.

Here m €N, m>1, is assumed to be chosen as small as possible, that is, >3, ta,<m
F Xaitotan<m—1- Lhe functions ag, .. q, :R"—R are called coefficients. If desired,
the function u may be replaced with (generalized to) a (Schwarz) distribution.
When n=1, the PDO reduces to an ordinary differential operator (ODO).
Associated with the PDO is the characteristic polynomial
p(z,§) = > Qo (T) EM - £ for £€C™

Q1. -, ap, €N
ar+...+an=m

Notice that only terms corresponding to the highest order derivatives appear here.

Definition 20.10 Consider a PDO P in an open region D CR", together with
a function (distribution) f:D—TR. The equation [to find a function (distribution)
u:R"— R such that]

(Pu)(z) = f(x) for xzeD

is a partial differential equation (PDE).

For a PDO P with constant coefficients [the functions a,, . a,(z) are constants
(do not depend on z€R™)], it is known that, the PDE

(Pu)(z) = f(x) has a distribution solution u(z), (20.7)
for each function

feCyR") = {fe@“’(IR") : f(x)=0 for z outside a bounded set},

where

C*(R") = {(g:lR"—)lR) : ¢ has continuous partial derivatives of all orders}.

A fundamental solution to a PDO P, is a function (distribution) £ that sort of

inverts P, so that P& is the unity operator, for convolutions, the Dirac distribution

d(z). Here is a first definition (that will be more worked upon later):

Definition 20.11 For a PDO P with constant coefficients, a fundamental solution

in an open region D CIR", is a distribution e which solves the PDE

(Pe)(z) = 0(x) for zeD.

122




Definition 20.12 For a PDO P a fundamental kernel in an open region D CR",
is a distribution E(-,-) which solves the PDE

(PE(,y))(z) =d(z—y)  for z,yeD.

EXERCISE 110 Show that if e is a fundamental solution to a PDO P with con-
stant coefficients, then E(z,y) = e(az—y) is a fundamental kernel to P. Show (at least
formally) that if E is a fundamental kernel to a PDO P, in an open region D CR",
then the PDE (Pu)(z) = f(z) for x€ D, has solution u(z) = [, E(z,y) f(y) dy.

For PDE with variable coefficients, such simple results as (20.7) are not available.
Now PDE’s are classified into categories, which are studied separately, by different

methods. Next, we introduce the classical such categories, for second order PDO.

Definition 20.13 A second order PDO is of elliptic [ degenerate elliptic] type in a

region D CIR", if the characteristic polynomial satisfies

p(z,€) >0 [p(z, &) > 0] for all € € R"\{0}, for each x € D.

Definition 20.14 A second order PDO is of parabolic type in a region DCR", if

the characteristic polynomial satisfies

p(z,&) =0  for some &€ R™\{0}, for each z € D.

Definition 20.15 A second order PDO P is of hyperbolic type in the j 'the coordi-

nate, in a region DCR"™, if a;;(x)=1 (so that 2 appears in P), and for every
J5] (')zj

(153 &-1,&5415 - - - &) € R™IN{0}, the characteristic polynomial satisfies

p(@, &, 621, N, &1, -, &) =0 for two distinct Ae€R,  for each z€D.

Example 20.16 The Laplacian A = 6‘9—;-1— . +% is elliptic. The heat operator
Laplacian ? T heat operator

o 8 2 ; Lo e
9 B T vt T el 18 parabolic. The wave operator 5 7 AR v i

hyperbolic. The PDO A; in (19.5) is (possibly degenerate) elliptic for each ¢>0. #

A second order PDO P is of mixed type in a region D, if D can be divided into

sub-regions, each of which in which P is of one of the above three types.

Example 20.17 Tricomi’s PDO 66—:2 -z 3‘9—; in R? is of mixed type, since it is

elliptic for x <0, parabolic for =0, and hyperbolic for x>0. #
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EXERCISE 111 Explain the labels “elliptic”, “parabolic” and “hyperbolic”.

*Remark 20.18 An important class of PDO are those of hypoelliptic type, where

the symbol ~ P(z,§) = > Qoo (T) EFL -2 €0 for £€C,

Qlyenny an €N
a1+ ...+an <m

satisfies
Pz, 6®) =0 and W] =00 = [S(EW)]| = oo
This includes, for example, elliptic PDO, the parabolic heat PDO, and all ODO.
For a PDO P with symbol P, we have (formally)

1

(Pu)(w) = s [ e Pai) ( [ e u dy) dg. (20.8)

A pseudodifferential operator is a linear operation P on functions, such that (20.8)
holds, with the symbol P(z,i£) no longer necessarily a polynomial, but “polynomial-

like” (e.g., a fractional polynomial). (How polynomial-like is a matter of choice.) #

In Section 21.3 we consider uniqueness and representation of solutions, by means

of stochastic calculus, for two basic PDE problems, which we now introduce.

Definition 20.19 A Cauchy problem, is a PDE

(Pu)(z) = f(x) for zeD, in an open region DCR",

together with certain initial conditions on the value of the solution u and some of its

derivatives, at some point in closure(D) [or more general subset of closure(D)].

Definition 20.20 A Dirichlet problem, is a PDE

(Pu)(z) = f(x) for xeD, in an open region DCR",

together with certain boundary conditions on the value of the solution u and some of

its derivatives on boundary(D).

It is far from unique what “Dirichlet problem” and “Cauchy problem” mean, and
our definitions are non-technical, and much more general than is practice.

The PDE problems we will consider are the following two, both very important:

(1) The Cauchy problem for a general nonnegative second order parabolic PDE

w + (Awu(t, ) (t,x) + k(t, z) u(t,z) = g(t, x) for (t,x) € (0,T)xR"
U(Ta .T) = f(x) for z €R"

where k,¢9:(0,7)xR"—R and f:R™— R are given functions, and A; is the
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PDO given by (19.5). Moreover, we find a fundamental solution to this PDO.
(2) The Dirichlet problem for general second order (possibly degenerate) elliptic PDE

{ (Au)(z) + k(z) u(z) = g(x) for xz€D

u(z) = f(x) for z € boundary(D)

Y

where k,g:R" - R and f:R"™ — R are given functions, D C R" is an open
bounded set. Further, A is the (possibly degenerate) elliptic PDO given by

) = (AN = 5 3300 ul) GHD 3 ) 2L 0o

where o:R" —R,, and p:R"—R" are measurable functions. This means that

[cf. (19.5)] A is the generator of the time homogeneous multidimensional SDE

dX () = p(X (1)) dt + o(X(t))dB(t)  for t>0.

Notice that, taking v(t,2)=u(T—t,z), (1) becomes the ordinary heat equation

(1") the Cauchy problem for general second order parabolic PDE of heat type

avgt = + (Aw(t, ), 2) + k(¢ z)v(t, 2) = g(t,z)  for (t,z)€(0,T)xR" :
0(0,7) = f(x) for zeR"
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21 Twentyfirst Lecture

21.1  Uniqueness for Solutions to Martingale Problems

Theorem 21.1 (STROOCK-VARADHAN) Consider the generator A; in (19.5).
Suppose that, for each feCP(R™) and each pair s,T>0, the Cauchy problem

ngé %) +(Ars9)(@) =0 for (t,z)€(0,T)xR",  ¢(T,") =1, (21.1)

has a solution g € Cp((0,T]xR")NCH2((0,T)xR"). Given an R"-valued random
variable Xo and an s>0, a solution X to the martingale problem for A..s such

that X (0) =gistribution X0, has uniquely determined £idi’s.

The proof of Theorem 21.1 makes crucial use of regular conditional probabilities.

Lemma 21.2 (e.g., [22, Section 5.3.C] and [30, Theorem V.8.1])* Let {X (t)}i0 be
a continuous R™-valued stochastic process. Given a o-algebra GCo(X), there exists a

[0, 1]-valued stochastic process {Q(A)} aco(x), called a regular conditional probability,

such that Q(w,-) is a probability measure on o(X) for each we), that satisfies

P{A|G} = Q(A) for all A€o(X), with probability one (wp. 1).

Proof of Theorem 21.1. First we show that, given a constant z € R", a solution
{X(t)}+>0 to the martingale problem for A..,, with X (0)=4gistribution &, has unique

one-dimensional marginal distributions. By Exercise 112 below, this holds if
E{f(X(T))} is uniquely determined for each choice of 77>0 and feCg(R").
To show this, let g solve the Cauchy problem (21.1). By Corollary 19.11,

g(t’X(t))_g(oaX(O))_/Ot(alg(TaX(T))+(AT+sg)(T’X(T))) dr = g(t,X(t))—g(0,X(0))

is a continuous local martingale. Since this process is locally bounded, it is in fact a

martingale, by Theorem 12.9. It follows that

E{f(X(T))} = 9(0,2) = E{g(T, X(T))} — 9(0, X (0))} = E{g(0, X (0)) —9(0, X (0))}

is zero, so that E{f(X(T))} = ¢(0,z) only depends on X through z.

By Exercise 112, to show uniqueness for fidi’s, it is enough to show that
m

E{H fi (X(tz))} does not depend on the particular solution {X(t), Fi}i>0 (21.2)
i=1

to the martingale problem for A.,, with X(0) =gguibution X0, for 0<t; <...<tp,
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fi,o-o, fm € CP(R™) and meN. Assume that (21.2) holds for m=%, and consider
the case m=k+1. Choose a regular conditional probability () such that

P{B|X(t),...,X(t)} =Q(B) forall Beo(X), wp. 1.

Writing Z(t) =X (t+tx), {Z(t), Fitr, }t>0 solves the martingale problem associated

with A. 4+ Wp. 1, because we have

/A(f(Z(t)) - f(Z(s)) _/St(-ArthkJrrf) (Z(7)) dT) dQ

= B{1 (X)) F (X (st) = [ (s )X ) [ X (1), X00)
—B{LB{ ) st [ A D) dr | 5o

‘X(tl),...,X(tk)}zo for AeFsyy, and 0<s<t, wp.1l, (21.3)

since X solves the martingale problem. Further Z(0)=gisibution X (tx), Wp. 1, since
QU{Z(0)e-}) =P{X(tp) €| X(t1),..., X ()} = I(y(X(tx)) wp. 1. (21.4)

Hence it follows from the first part of the proof, that

E{ﬁfi(){(ti))} = E{E{fk+1(X(tk+1)) | X(t), .-, X () } f[lfi(X(ti))}

E{ (/Q fer1(Z(thr1—1r)) dQ) z:ﬁ1 fi(X(ti))}

- B{u(0.x () [T A},

where ¢ solves the Cauchy problem (21.1), with s=t,+r and T =t —t;. Here
the right-hand side does not depend on the particular solution X to the martingale
problem with X (0) =gistribution X0, by the assumption that (21.2) holds for m=4k. O

Remark 21.3 (e.g., [36, Theorem 3.2.1])* The Cauchy problem (21.1) has a solu-
tion with the properties required in Theorem 21.1, if for example, A; is strongly el-
liptic, with  and o bounded and satisfying a Holder condition, in each strip [0, 7]
x R™. This means that, to each T >0, there exist constants K, ap>0 such that
for (s,2), (t,y) €[0, T]xR"

s,2)—o(t,y)|| < Krl[(s,z) =, y)[|*"  for (s,2), (1, y) € [0, TIXR"

»
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}i

ii(aoT)i,j(s,x)&{fjZK;1||§||2 for £€€R™ and (s,z)€[0,T]xR"

1=112=1
EXERCISE 112 Prove that, for two random variables Y and Z in R™, we have

Y =dgistribution £ & E{ﬁ fZ(Y;)}:E{z:f{fZ(ZZ)} for all fi,..., fn€CP(R).

=1
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Corollary 21.4 Consider the generator A; in (19.5), where p and o are contin-
uous and bounded. Suppose that, for each fe€C3(R"™) and each pair s,T>0, the
Cauchy problem (21.1) has a solution with the properties specified in Theorem 21.1.

The martingale problem for A; is well-posed.

Proof. Theorem 20.8 together with Theorem 21.1. O

By the general discussion of martingale problems in Section 20.1, Theorem 21.1
and Corollary 21.4 (together with Remark 21.3), have obvious corollaries concerning

uniqueness (and existence) of solutions to multidimensional time homogeneous SDE.

21.2  Feynman-Kac Formula for parabolic Cauchy Problem

The results in this section, and the next, are important in mathematics, and bring
analysis and probability together. We have collected them from [22].
Let the functions p:[0,00) x R*—=R" and o:[0,00) x R" =Ry, have measur-

able locally bounded components. Consider the n-dimensional diffusion type SDE
dX(s) = p(s, X(s))ds+o(s, X(s)) dB(s) for s>t, X(t) =z, (21.5)

with the generator A; given by (19.5). Consider the Cauchy problem

ou(t, )
ot
u(T,z) = f(z) for x€R"

+ (Awu) (¢, ) + k(¢ ) ult, @) = g(t,x)  for ()€ (0,T) le”’ (21.6)

where k,g € C([0,T]xR") = {(§:[0,T]xR™ - R) : g is continuous} and f €
C(R™) (similarly defined).

Theorem 21.5 (FEYNMAN-KAC FORMULA) Let the SDE (21.5) have a weak so-
lution {X"*(s)}s>t that is unique, for each x € R™ and t>0 (cf. Corollary 21.4).
Let the Cauchy problem (21.6) have a solution u € C((0, T]xR")NCH2((0,T)xR").
We have

u(t,z) = E{f(Xt’I(T)) exp{/tTk(r, X (r)) dr}
—/ 5, X (s exp{/:k(r, X (r)) dr}ds} for (t,x)€ (0, T]xR",

provided that the mean is well-defined (and in particular such solutions u are unique).

Proof. By application of It6’s formula, together with (21.5) and (21.6), we obtain

d(u(s,X(s)) exp{/:k(r,X(r)) dr})
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1 n n
(81ud8+28 dXil) + 5 325 iy dXes X, )—|—ukds> exp
=1 i=1j=1
(81u ds +Z O, U (,uzds +Z oi;d ) + 2228%835#(00 )”ds—i-ukda’) exp
i=1j=1

= (Z Z 8wlu 05,5 dB](S) +g dS) €xp,

i=1j=1
so that the integral over [t,T] of the left-hand side

t

w(T, X (T)) exp{/tTk(r,X(r)) ar} — u(t, X(0) e [ k0, X(7)) dr}
— F(X(T)) exp{/tTk(r,X(r))dr} ~ult,7)

is equal to the integral over [¢t,T] of the right-hand side

n

/tTZz:,:]Z::l Oz, u(s, X (s)) exp{/:k(r, X(r)) dr}am-(s, X (s)) dBj(s)
-I-/ s, X (s exp{/t k(r,X(r))dr}ds.

Rearranging, this shows that
u(t,z) = F(X(T)) exp{/tTk(r,X(r)) dr}
30 Bl X)) exp{ [k, X (7)) dr o (s, X(5)) dBy )

i=1j=1

_ /tTg(S,X(S)) exp{/tsk(T‘,X(T)) dr} ds.

Since the left-hand side is non-random, and the difference between the first and third
term on the right-hand side have finite means, the second term on the right-hand

side must also have finite mean. That mean is zero, by Exercise 113 below. O

Recall from Section 20.3, that the Cauchy problem (21.6) can be transform to a

conventional heat equation for v(t,z)=u(T—t,z), with initial value v(0,z)= f(x).
EXERCISE 113 Show that It6 integrals wrt. BM are symmetric random variables.
*Remark 21.6 See [22, Section 5.7] for additional conditions on the functions g,

o, g and f, that ensure that the expectation in Theorem 21.5 is finite. #

21.3  Solutions to Elliptic Dirichlet Problems

Let p:R"—R" and o:R"— R,, be measurable functions, with o locally

bounded. Consider the n-dimensional time homogeneous diffusion type SDE

dX(t) = p(X (1) dt+o(X(t)dB(t) for s>0,  X(0)=uz, (21.7)
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with time homogeneous generator A given by (20.9). Consider the Dirichlet problem

{(Au) () — k(z) u(z) = g(x) for ze€D

, (21.8)
u(z) = f(x) for x €boundary(D)

where £k : closure(D) — [0,00) and g, f € C(closure(D)) are given functions, and
DCIRR™ is an open and bounded set.

Theorem 21.7 Let the SDE (21.7) have a weak solution {X?%(s)}s>o that is
uni-que, for each x € R™. Let the Dirichlet problem (21.8) have a solution u €
C(closure(D)) N C*(D). We have

u(z) = E{f(X‘”(TD)) exp{—/OTDk(r, X2(r)) dr}
—/ (s, X%(s exp{—/osk(r, X*(r)) dr}ds} for x € closure(D),

provided that Tp = inf{t>0: X(¢)¢ D} has finite mean E{rp} <oo.

Proof. By application of It6’s formula, together with (21.7) and (21.8), we obtain
t
d(u(X(t)) exp{—/ k(X(r))dr})
0

(iaudX +22266Ud[Xz,X]()—ukdt)exp

=1 i=1j=1

n

(Z@ u (,uzdt + Za”dB ) + % S>> 005u (o0 dt — ukdt) exp
1=1

j=1 i=1j=1

= (2 dwonsdBy(e) + g dt) exp,

i=1j=1

so that the integral over [0,¢] of the left-hand side

w(X(t)) exp{—/otk(X(r)) dr} — w(X(0)) exp{—/ook(X(r)) dr}
— (X (1) exp{—/otk(X(r)) dr} ~ u(z)

is equal to the integral over [0,t] of the right-hand side
/ 3 u(X exp{ / k(X(r))dr}ai,j(X(s))dBj(s)
i=1j=1 0
+/ exp{ /sk(X(r))dr}ds.
0

Rearranging, taking ¢=7p, and using that u(X(7p)) = f(X(7p)), this gives

u(e) = (X (rp) exp{ - [ KX (r)) dr }
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n n

- [" >3 ou(x (5)) exp{ = [ KX (1) dr foris (X (5)) dBs )

—/ exp{ /Osk(X(r))dr}ds. (21.9)

The processes {0;u(X(t))}iepo,rp] and {0i;(X(t))}teo,rp) are bounded, because 0;u
and o;; are locally bounded, and X (t) € closure(D) (which is bounded) for te

[0,7p] (since X is continuous). From this it follows that
n t
S du(X (1)) exp{— [ ) dr} 0/ (X)) Iyeryy € Boo for i=1,...n,
=1 0
since (recalling that the function k is positive)

{/ (Z Oiu(X exp{ /Osk(X(T)) dr} 0 (X (s)) I{SSTD})QdS}

2
<E{rp} sup (Zau T) 0y x) < o0.

z€Eclosure(D)

Hence the It6 integral the second term on the right-hand of (21.9) has finite mean,
which must be zero. It follows that the difference between the first and third term
on the right hand side of (21.9) has finite mean, which must be w(z). O

*Remark 21.8 By [22, Lemma 5.7.4], we have E{7p} < co if A is strongly

elliptic in closure(D), so that there exists a constant K >0 such that

ER:ZRZ )6& > K|E)?  for £€R™ and z€closure(D). #

1=112=1
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22 Twentysecond Lecture

22.1 Markov Properties of SDE

In the following, we encounter (strong) Markov processes with values in R"™. There
is nothing strange with this, or new for that matter, and all notation and results from
Lectures 3-5 carry over to the multidimensional, with only obvious modifications.

The usefulness of the martingale formulation is illustrated by the next result.

Theorem 22.1 (MARKOV PROPERTY OF SDE) Let the martingale problem for
the generator A; in (19.5) be well-posed, with o locally bounded. A solution to the

martingale problem for A. is a Markov process wrt. itself, with transition probabilities
P{X(t+s)€ - [X(s)=2} = P{X*"(f) -} = P{X*"(t+s)€ -},

for (t,z,5) € (0,00) x R"x[0,00), where {X*%(t)};s0 solves the martigale problem
for A..s, with X”(O) =gistribution T, and {X®%(t) }i>s is a weak solution to SDE

dX(t) = p(t, X(¢)) dt + o(t, X (t)) dB(t) for t>s, X(s) =x.

In the time homogeneous case when A=A for t>0 [cf. (20.9)], X is a time

homogeneous Markov process.

For the transition probabilities, we use regular pointwise conditional probabilities:

Lemma 22.2 (e.g., [22, Section 5.3.C])* Let {X(t)}i>0 be a continuous R™-valued
stochastic process. Given an r >0, there exists a function @Q:R"xo(X)—[0,1],

called a regqular pointwise conditional probability, with the following properties

(1) Q(z,-):0(X)—1[0,1] is a probability measure on o(X) for each x€R™;
(2) Rz, {X(r)=2})=1;
(3) P{A|X(r)=z} =Q(z,A) forall Aco(X).

Recall that, in general, the pointwise conditional probability P{A|X(s)=z} is
not uniquely defined as a function of z, so the statement of the lemma means that

Q(z, A) is one such pointwise conditional probability, of perhaps many possible.

Proof of Theorem 22.1. Let {X(t), Fi}+>0 solve the martingale problem for A.. We
may assume that F; = o(X(s):0<s<t) (see Exercise 115 below). Pick an 7>0.
Choose regular conditional probabilities @)1 and Qs (cf. Lemma 21.2), such that

P{A|X(")}=0Q:1(A) and P{A|F}=0Q2(A) forall Aco(X), wp.Ll
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Writing Z(t) = X (t+7), we get the Markov property if {Z(t), Fii7}i>0 solves the
martingale problem for A. .z, with Z(0)=gistribution X (7), under the probabilities @4

and @2, wp. 1, since well-posedness of the martingale problem then gives

Q({X(t+r)e-}) =({Z{t)e-}) = Q({Z(t) € -}) = Q{X({+F)e-}) wp. L

This is the same thing as the Markov property, by the choice of Q)1 and @)s.

We get the martingale properties required, with Z(0) =gistribution X (7), under both
@1 and @9, wp. 1, by the arguments (21.3) and (21.4), with ¢, =7 and r=0.

Pick a regular pointwise conditional probability Q(-,-) such that (cf. Lemma 22.2)

P{AX(7)=z} = Q(z, A) for  Ae€o(X).

By Theorem 20.6, writing Z(t)=X (t+#), it is enough to prove that {Z(t), Fiis }i>0
solves the martingale problem for A.;, with Z(0) =gisuibution £, under the probability
Q(z,-), for almost all (dFx) x€R". Because then we have

P{X"(t)€} = Qz, {Z(t) € }) = P{X(t+7) €| X(7) =z} = P(-,t,,7),

by well-posedness of the martingale problem, for almost all (dFx) x€R"™. Values
of P(-,t,x,7) for z in anull-set (dFx ) are unessential, since corresponding values
of P(-,t,z,X(7)) =P{X(t+7)€-|X(F)} only occur for w in a null-set (dP), and
are thus “swallowed” by the natural ambiguity of conditional probabilities.
Now recall from above that, since Z is a martingale under ();, we have
B{1,(F(Z0)~1(2(5)- [ (Arse)(2 () dr )

for feCZ(R"), 0<s<t and A€F,,s This makes necessary that

X(f)} =0 as. (22.1)

B (F(20) 126~ [[(Arss ) 200 dr )| () =2}
:/A(f(Z(t))_f(Z(S))_/:(AT_i_ff)(Z(T))d’r) dQ(z, ) =0  (22.2)

for almost all (dFx()) =€ R™ [to not contradict (22.1)]. By properties of C3(R")

(separability), continuity of Z and the integral, and properties of F,; (“countably

determined”, by continuity of X), together with Dominated Convergence, we have

(22.2) simultaneously for all feC2(R"), 0<s<t and A€ F,s, for almost all

(dFx@)) x€R™ (see Exercise 114 below). This is the required martingale property.
The fact that Z(0) =gistribution T, i the same thing as

Qz,{2(0)=z}) = Q(z, {X(F) =z} = 1,

which is property (2) in Lemma 22.2.

The statement about time homogeneity follows by inspection of the above proof. O
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*EXERCISE 114 Show that if (22.2) holds for each choice of f€C3(R"), 0<s<
t and AeF,,,, for almost all (dFx()) z€R", then (22.2) holds for all feC}(R™),
0<s<t and A€F,,, for almost all (dFx()) z€R".

EXERCISE 115 Why is the extension of (22.2) in Exercise 114 vital for proof of
Theorem 22.2. Why can we assume that F; = 0(X(s): 0<s<t) in that proof?

*Remark 22.3 (STrRoNG MARKOV PROPERTY OF SDE) The strong Markov
property holds under the hypothesis of Theorem 22.1 (e.g., [22, Theorem 5.4.20] in
the time homogeneous case). The proof requires quite advanced Optional Stopping
techniques. We do not do this, since we get strong Markov “for free” in Corollary
22.6 below, from Theorem 4.21. But see Exercise 118 below. #

22.2 How everything hang together

Definition 22.4 Consider the generator A; in (19.5), and pick a T >0. A fun-
damental solution to the parabolic PDO

0 8ut:v " & 82( ) ou(t,x)
(E-i-/lt)u(t ;; ool);(t,z) P, +Zpi(t,x) 9, (22.3)

=1

in the strip (0, T|xR"™, is a family of measurable functions {(p(-,7,z,t):R"— [0,
0)) : (z,t)€R"x(0,7), 7€(0,T]}, such that, given f& Cy(R") and 7€(0,T],

ut,e) = [y ra ) f@)dy  for (ta)e OT)XRY,  u(r)=1,

is of class Cp((0,7] x R®) N C2((0,7) x R™), and solves the Kolmogorov Back-
ward equation

ou(t, )
ot

+ (Aw)(t,z) =0  for (t,z)€ (0,7)xR", u(r, -) = f. (22.4)

Remark 22.5 The PDO (22.3) has a fundamental solution, if for example, the
requirements listed in Remark 21.3 are satisfied for the one specific T' chosen in Def-
inition 22.4, rather than for each 7>0 (e.g., [36, Theorem 3.2.1])*. The strong ellip-
ticity imposed in Remark 21.3 can be dispensed with if (co7)(t,z) and u(t,z) have
two bounded continuous z-derivatives, and p is replaced with a measure f’(-,T, x,t)
such that w(t,z) = [ f(-)dP(-,7,,t) satisfies (22.4) (e.g., [36, Section 3.2])*. #

The following result is one of the most important in stochastic processes. It shows
why the Feynman-Kac formula is of fundamental importance, not only as a
result on parabolic PDE, but for the whole business of diffusion type SDE.
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Corollary 22.6 Consider the generator A; in (19.5), where o is locally bounded,
and assume that the martingale problem associated with A; is well-posed. Suppose
that, for each T >0, the PDO (22.3) has a fundamental solution p(-,-,-,-) in
the strip (0,7]x R™. For each choice of an R"-valued random variable Xy, the

multidimensional SDE
dX(t) = p(t, X (t)) dt +o(t, X (t)) dB(t) for t>0, X(0) = X, (22.5)
has weak solution that is unique and a strong Markov process, with transition density

p(y,t,z,s) = din{X(t—f—s) <y|X(s)=z} =p(y,t+s,z,s). (22.6)

Proof. By assumption, given s,7 >0, the function

o2) = [ B T+sai+s) f)dy T (La)e OT)XRY,  gT,o)= 1
is of class C((0,T]xR™) N C*?((0,T) xR"), and solves the Cauchy problem (21.1)

9g(t, z)

ot
From Theorem 22.1 we have that a solution to the martingale problem for A. is a
Markov process. By Corollary 20.4, this also goes for a solution to the SDE (22.5).

+ (Aiys9)(2) =0 for (t,z) € (0,T)xR", g(T,)=f.

By Theorem 22.1, the transition probabilities are
P{X(r)e-|X(t)=x} = P{X""(1)e-}  for 7>t (22.7)
where {X"*(7)},>; is a weak solution to SDE
dX (1) = p(r, X(7)) dr + o(1, X (7)) dB(T) for 7>t, X(1) ==. (22.8)
Applying the Feynman-Kac formula to the Cauchy problem (22.4), we get

B{f(X"(M)} = ult.a) = [ 5,72, f(v) dy,

so that the random variable X»*(7) has probability density function p(-,7,z,t).
This together with (22.7) gives (22.6).

Notice that the requirement in the Feynman-Kac formula, that the SDE (22.8)
has a unique solution, is satisfied by the assumed well-posedness of the martingale
problem associated with the generator A;, together with Corollary 20.6.

We get the strong Markov property from Theorem 4.21, since X satisfies property

(B) of a Feller process, by inspection of the requirements on p in Definition 22.4. O

From the fact that the function u in Definition 22.4 satisfies (22.4), it is tempting

to move the derivatives inside the integral, to get the Kolmogorov Backward equation
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0p(y, 7, x,t) op(y, 7—t, x,1t)
ot ot

for (¢,x) € (0,7) x R". Under the conditions in Remark 22.5, it is turns out that
this holds (e.g., [22, p. 368])*. Notice that such a solution, under the hypothesis of

+ Ap(y, 7,2, ) = + Aip(y, 7—t,7,t) = 0 (22.9)

Corollary 22.6, is unique (up to equivalence of probability densities). [“Backward”

refers to that the PDE is in the variables (x,t), that is the past relative to (y,7).]

22.3  Multidimensional Time Homogeneous SDE

In the time homogeneous case we use the next simplification of Definition 23.4:

Definition 22.7 Consider the time homogeneous generator A in (20.9). A fun-

damental measure to the parabolic PDO

0 0v(t, ) & 82 “ avt:v)
(&‘A)”(t’ 1=~ 2(007)i() ax,ax, Z oy 0 (2210)

1=11=1 =1

is a family of Borel measures {P(-,t, ©) }t2)e€[0,00)xRr, Such that given fe Co(R™),

v(t, x) =/]Rnf(y) df?(y,t, x) for (t,z) € [0,00)xR", v(0,-) = f,

is of class Cg([0,00)xR™), with bounded continuous derivatives 242 and Poltz)

ot dz;0x;
on [0,00)xR", that solve the time homogeneous Kolmogorov Backward equation
t
81}592 x) — (Av)(z) =0 for (t,z) € (0,00)xR", (0, <) = . (22.11)

Corollary 22.8 Consider the time homogeneous generator A in (20.9), where o
is locally bounded, and assume that the martingale problem associated with A is well-
posed. Suppose that the PDO (22.11) has a fundamental measure P(, -, ). For each

choice of an R™-valued random variable Xy, the multidimensional SDE
dX(t) = p(X(t)) dt + o(X(t)) dB(t) for t>0, X (0) = Xo,

has weak solution that is unique and a time homogeneous strong Markov process, with

transition probability

P(-,t,z,s) =P{X(t+s)e-| X(s)=z} = P(-,t,x).

For A strongly elliptic, with p and o bounded satisfying a Holder condition [see
the text after (22.9)], the PDO (22.10) has a fundamental measure with a density func-
tion p(-,t,z), so that P(-,t,z,s) has a density p(-,t,z,s) =p(-,t,z), such that

op(y,t, x) op(y,t,x,0)

— Ap(y, t,,0) = 0. (22.12)
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In Theorem 26.8 below, we give a formula for the fundamental solution (transition

density) of a general one-dimensional time homogeneous diffusion process.

Example 22.9 BM B is a one-dimensional time homogeneous diffusion (dB =
dB) with generator (Af)(z) = 3/"(z). By Corollary 22.8, B is a time homogeneous

strong Markov process with transition probability (fundamental measure)

A~

P(-,t,x,s) = P(-,t,z,0) = P(-,t,x),

such that the time homogeneous Kolmogorov Backward equation

(G- srtonr= (G4 ) L=

holds for (¢,z) € (0,00)xR and feCy(R), with boundary condition

lim/]Rf(-)dP(-,t,x) dy = f(z).

£10
Rather than attempting to solve this for f’, we recall that (cf. Corollary 3.14)
P(-,t,2,0) = P{B(t-+s)—B(s)+B(s) € - | B(s) =2} = P{B(t-+s)—B(s) € - —a}
=P{N(0,t) € - —=z}

for (y,t,z,s) € Rx(0,00) xR x[0,00). This means that

1 _ (y—a)?

/Rf(-)dﬁ(-,t,x)Z/Rf(-)dP(-,t,w,S)=/Rf(y)me 7 dy.

In particular, as also follows from above general treatment, P(-,t,z) [P(-,t,,s)]
has a density function p(-,t,z) [p(-,t,z,s)] that satisfies (22.12), given by
1w’
2t

Py, t,x) =p(y,t,z,s) = T e

for (t,z)€(0,00)xR. #
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23 Twentythird Lecture

Smartingales is one huge subject, that is of fundamental importance in many
branches of probability. We have seen how it features in stochastic calculus. It is
an essential ingredient in many proofs of convergence results. The many powerful
inequalities known for smartingales play a prominent role in many a proof.

The “state of the art” literature on smartingales, as for example [20] and [33]
(the latter has recently appeared in a third edition), is not really accesible for an
average beginner. Instead, one has to prepare first with introductory treatments of
the subject, as for example, the few smartingale results collected in these notes (while
here anyway), followed by for example, [21, Chapter 6].

Martingales were first used by Lévy 1934, and named by Ville 1939. The modern
continuous theory begun with Doob 1953 [11]. See [22, p. 46] on more history.

This lecture lists a few results for smartingales, which are cornerstones in the theory
together with the Doob-Meyer decomposition. We do not really use the convergence
results in Section 23.2, and thus do not prove them. The Optional Sampling theorem
in Section 23.3, the characterization of what local martingales are martingales in Sec-
tion 23.4, and the Burkholder-Davis-Gundy inequalities in Section 23.5, are all cru-
cially important for us, and proven in detail (since these are not too overhelming).

Warning 23.1 Continuous time smartingale results about “the continuum” (rather
than the smartingale at a finite number of times), do in general require some regular-
ity, such as right-continuity. (The proof of Doob-Kolmogorov inequality exemplifies
how right-continuity comes into play.) For this reason, in many books (e.g., [21, p.
112], [25, p. 170] and [33, p. 62]), it is at some point stated that “right-continuity
is assumed in the sequel”, or similar, and subsequent results do not repeatedly state
this basic assumption, so beware that important results for smartingales in
continuous time do in general require right-continuity or even cddldg. #

23.1  What is a Stopping Time?

There are variations in the literature concerning the terminology in connection
with stopping times, that it is important to be aware of.
A random time is a [0, oo]-valued random variable. In stochastic calculus (albeit
not in these notes), there is need for (at least) three different classes of random times.
Let F={Fi}s>0 be a filtration. A random time 7 is
o a stopping time if {7 <t} € F; for each ¢>0;
o an optional time if {r<t} € F; for each t>0;

o a predictable time if 7, 1 7 for a sequence stopping times {7,}°2, such that
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T, <7 on (the set of weQ with) {r>0}.

By Exercise 70, stopping times are optional. Further, an optional time 7 is a

stopping time wrt. F*={F;"};>0, since

{r<t}= () {{r<t+1/n} € Fiy1ym  foreach meN.

n=m
Essentially for this reason, instead of having both stopping times and optional times,
one may consider stopping times wrt. IF and F*. And there is no need for both stop-
ping times and optional times if all filtrations are right-continuous (cf. Section 2.4).

So far so good. The names we use are also used by, for example, Karatzas &
Shreve [22] (though they do not develop stochastic integration far enough to require
predictable times), and are the best ones. However, there are several other opinions

in the literature, among influential authors. For example,

o Revuz & Yor [33] only have stopping times, by above reason, as do Protter [31];

o Kallenberg [21] only has stopping times (by above reason), and call them both

stopping times and optional times;
o Liptser & Shiryayev [27] only have stopping times, but call them Markov times;

o Chung [9] only has stopping times, but call them strictly optional times if they are

stopping times wrt. IF, and optional times if they are stopping times wrt. .

23.2  When do Smartingales Converge?

For aright-continuous martingale {X (¢)}:>o, the following properties are equivalent

o {X(t)}+>0 is a uniformly integrable family of random variables;
o limy oo E{|X(t)—X|} =0 for some random variable X, with E{|X.|} <oc;
o X(t) = E{Xy|F:} for t>0, for some random variable X, with E{|Xy|} <oco

(by Theorem 11.11). We shall sharpen this result, and generalize it to smartingales.

Theorem 23.2 (SMARTINGALE CONVERGENCE) (e.g., [22, Theorem 1.3.15])* For

a right-continuous smartingale, the limit
limy ,o0 X(t) = Xoo  exists a.s. with E{|Xy|} < oo,
under anyone of the following three conditions
(1) X is a submartingale with sup,oE{X ()"} <oc;
(2) X is a supermartingale with sup,s, E{X(t)"} < oo,
(3) X is a martingale with lim; . E{|X (¢)|} < oo.
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The proof goes much in the same way as the corresponding result for discrete time.

In connection with Theorem 23.2, we make the following elementary observations:
(i) By means of considering —X, (1) implies (2).
(ii) By (1) and (2), negative submartingales and positive supermartingales converge.

(iii) To see how (1) gives (3), let X be a martingale, so that |X| is a submartingale,
by Exercise 55. It follows that

E{X ()"} <E{X(1)} <E{E{|X(T)|| F}} <B{X(T)}}  for t€[0,T].
Sending T'— o0 and t— o0 on the right-hand side, in that order, we get
sup,s E{X (t)"} < limy,o E{|X(T)[} = E{|X|} < c0.

Since also X is a submartingale, (1) shows that we have convergence.

(iv) It is the a.s. convergence part of the theorem that has some depth, while the

fact that E{|Xw|} <oo is a corollary. To see this, assume (1), and notice that
E{X_} <liminf;, E{X(¢) } = liminf, ,(E{X ()"} —E{X(#)})
< sup;so E{X (8) 7} + supyso (—E{X(1)}) < o0,
by Theorem 23.2 and Fatou’s lemma, together with the fact that
~E{X(1)} = -E{E{X ()| Fo}} < -E{X(0)}  for t>0.
Moreover, Theorem 23.2 and Fatou’s lemma give

E{X} <liminf, o E{X(t)"} <sup;oE{X(t)"} < cc.

(v) For a martingale X, we have
lim L, E{|X(#)|} <00 & limL E{X(#)T} <o & lim e E{X ()"} < c0.
This is so because of the fact that
2E{X ()" }+E{X()}=2E{X ()"} +E{X(0)}

P {2E{X(t)+} ~B{X()} = 2B{X()*} - B{X(0)}

Definition 23.3 For a filtration {F};>0 we define Foo = o(F;:t>0).

Definition 23.4 A smartingale {X (t), F;}1>0 has a last element, if there erists a
(integrable and adapted to Fu,) random variable X (oc) such that {X(t), Fi}ico,o0]

1S a smartingale.
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Theorem 23.5 (SMARTINGALE CONVERGENCE) (e.g., [22, Problems 1.3.19-
1.3.20])* For a right-continuous smartingale {X(t)}i>0 we have (1)=(2)=-(3), and
for a right-continuous martingale (1)<(2)<(3), for the following three statements

(1) {X(®)}e>0 is a uniformly integrable family of random variables;
(2) limy 0o E{|X (t)—X x|} =0 for some random variable X with E{|Xy|} < oo,
(3) X has a last element.

Notice that, by Theorem 23.4, smartingales that converge in mean converge a.s.

23.3  Optional Sampling

EXERCISE 116 Show that, for a right-continuous smartingale {X(¢)};>o with
a last element, X (7) is a well-defined random variable for any (possible non-finite)

stopping time 7. (Hint: Recall Theorem 4.17.)

Theorem 23.6 (OPTIONAL SAMPLING THEOREM) Let {X(t)};>0 be a right-
continuous smartingale with a last element, and S < T two stopping times. The

random variable X (T) (cf. Exercise 116) is integrable with
< E{X(T)|Fs} if X s a submartingale
X(S) S =E{X(T)|Fs} if X is a martingale
> E{X(T)|Fs} if X is a supermartingale

Proof. For a right-continuous adapted process, {X(t)};>0, and a stopping time T,
X(7) is adapted to F, since

{X(r)eB} = ({X(neBIn{r<t}) U ({X(®)eB}n{r=t}) € 7

for t>0 and Be€B(R), by the proof of Theorem 4.20 together with Exercise 70.

Corollary 23.7 (OpTIONAL SAMPLING THEOREM) Let {X(t)}>0 be a right-
continuous smartingale and S<T two bounded stopping times. The random variable
X(T) is integrable with
< E{X(T)|Fs} if X is a submartingale
X(S) { =E{X(T)| Fs} if X is a martingale
> E{X(T)|Fs} if X s a supermartingale

141




Proof. Let to be constant such that T'<t,. The process X (t)=X(t) for t<ty, and
X (t)=X(t;) for t>1,, is a right-continuous smartingale with a last element. Since
X(S)=X(S) and X(T)=X(T), it is enough to show that the corollary holds when
X is replaced with X. This in turn follows from Theorem 23.6. O

EXERCISE 117 Show how Optional Sampling gives Wald’s Identity for bounded
stopping times. Show that E{X(7)} = E{X(0)} for a martingale {X(¢)}:>o with

a last element, when 7 is a stopping time.

We exemplify that Optional Sampling is immensely important by showing
how it gives the Optional Stopping theorem and the strong Markov property of Lévy
processes. In the next section we see how it feature when judging whether local mar-
tingales are martingales. In Section 24.1 we use Optional Sampling to prove a famous

representation of continuous local martingales as time-changed BM’s. Let’s start with

Theorem 23.8 A right-continuous adapted process {X (t)}i>0 is a martingale iff.
E{X(7)} =E{X(0)} for each bounded stopping time T.

Proof. The implication to the right is remark (i) after Theorem 23.6. For that to the
left, pick 0<s<t and A€F,. For the random time T = sIj(w)+tIp.(w) we have

0 eF for r€]0,s)
{T<r}=<AeF,CF for relst) €F for r>0.
QekF, for r € [t,00)

Hence it is a bounded stopping time, as is obviously ¢. It follows that

E{LX (1)} = E{X()} - E{/ X ()} = E{X(T")} — E{Lx-X(?)}
— B{I,X(s)} + E{LpX (1)} — E{IxX (1)}
= E{[,X(s)}. O
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Example 23.9 (OPTIONAL STOPPING AGAIN) For a right-continuous martingale
{X(t)}+>0, together with a stopping time 7, Optional Sampling gives

E{X(T'r7)} = E{E{X(TA7)| R} } = E{X(0)}

for each bounded stopping time 7', since 0 < T'AT are bounded stopping times.
Hence Theorem 23.8 shows that X (tA7) is a martingale.
Consider a right-continuous local martingale {X(¢)};>o with localizing sequence

{7}, so that X (tA7,) is a matingale for n€N. For a stopping time 7, we have
E{X(I'ATAT,)} = E{E{X(TATAT)| Fo}} = B{X(0)}

(by Optional Sampling) for each bounded stopping time 7', since 0 < TATAT, are
bounded stopping times. Hence Theorem 23.8 gives that X ({tATA7,) is a martingale,
so that {X(¢A7)}+>0 is a local martingale (by Theorem 12.6). #

Although Optional Sampling is possible for general smartingales only at bounded
stopping times, there is a simple trick to circumvent this seemingly serious restriction

in many situation. The trick builds on the following simple fact:

Theorem 23.10 For a random wvariable Z with E{|Z|} < oo, together with a

stopping time T, we have

E{Z|F.} = E{Z|F;n} as.  for we{de€Q: ()<t}

Proof. Pick a A€ F,. We have AN{r<t} € F;, by the definition of F,, while

An{r<s} eF, for s<t
(An{r<t})n{r<s}= e F,
An{r<t} e 7, for s>t

so that AN{r<t} € F,. Hence AN{r<t} € F,r;, by Exercise 118 below, and so

/A L1y B{Z|F,} dP = /A IyeyZ dP = /A [y B{Z| F,p} dP. O

EXERCISE 118 Show that Fsar = FsNFr for stopping times S and T. (For

this reason, one uses the notation FsAFr = Fsar.)

Let Z be a random variable with E{|Z|} <oco, and let 7 be a finite (not neces-
sarily bounded) stopping time. To prove that E{Z|F,} =Y a.s., for some random
variable Y, it is enough to check that

E{Z|F.} =Y as. for we{r<n}, foreach neN, (23.1)

since this gives

P{E{Z|F,} #Y} = P{ ﬁ {B{z| 7.} #Y, Tgn}} = 0.

n=1
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By Theorem 23.10, (23.1) in turn holds iff.
E{Z|F:pn} =Y as. for we{r<n}, foreach neN.

Here 7An is a bounded stopping time, and this is the announced trick!

*Example 23.11 (STRONG MARKOV PROPERTY OF LEVY PROCESSES AGAIN)
Let {X(t)}+>0 be a right-continuous Lévy process and T a finite stopping time.
To show that {X(¢t+7)—X(T)}i>o is independent of Fp, with same fidi’s as
{X(t) —X(0)}+>0, by the aruments presented at the beginning of the proof of Lévy’s

characterization of BM, it is enough to show that

E{e?XTH)-X(T+9))| 7, 1 = B{el(X (==X} for c@Q and 0<s<{t.
To that end, it is in fact enough show that
E{eXTH)=X(T+9)) 7 1 = E{e?X (==X for we {T+s<n},
for each ne€N. By the trick (Theorem 23.10), this holds iff.
E{eie(X(T—i_t)_X(T—l_s))‘]:(T-i—s)/\n} — E{eiO(X(t—s)—X(O))} for we {T+S < TL},
for n€ N, which of course is same thing as
E{ e 0X ((THs)An)+(t=5)) = X((T+5)An) | Firssan} = E{e?(X(t=)-XO)
for we {T+s<n} and neN. Since (by the fact that X is a Lévy process)
E{eiH(X(((T+s)/\n)+(tfs))fX((T+s)/\n) |f(T—|—s)/\n} — E{eiO(X(tfs)fX(O))}
for we {T+s>n} ={(T+s)An=n}, this in turn follows provided that
E{ez'ﬂ( ((T+s)An)+(t—s))— X ((T+s)An) |‘7:T+s /\n} E{eZH(X(t s) 0))}
Hence it is enough to show that, for a bounded stopping time 7 and >0,
E{ew( (T+r)—X(1)) AT E{e’9 (r)— X(O))}.
From the proof of Theorem 4.23, we have that
E{c(X(t-9)-X0)} _ (E{eze X(O))}) - (23.2)
and so it is enough to prove that

E{e?*®} (E{ew(X(l)_X(O))})it is a martingale, (23.3)
since Optional Sampling at the bounded stopping times 7 < 7+t then gives

E{eiﬂ( (747)— T))|f }

— o 10X(7) (E{eiﬂ )})T+T { W0X (T+7) (E{eie(X(l)—X(o))})—(T-H") }_T}
— o iX(7) (E{ezﬂ )})T+’ i0X (1 (E{eze(xu) X(0 )})
(E{eza )}) — E{eiQ(X(r fX(O))}
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[recall that X (7) is adapted to F,, by remark (iii) after Theorem 23.6]. However,
in view of (23.2), (23.3) is a straightforward generalization of Exercise 30. #

*EXERCISE 119 Prove the strong Markov property for multidimensional diffusion
processes under the hypothesis of Theorem 22.1 (cf. Remark 22.3).

23.4  When are Local Martingales Martingales?

In general, local martingales are much more general processes that
martingales, even in the presence of integrability. In fact, not even a uniformly
integrable local martingale is necessarily a martingale (even if construction of such
examples are not trivial). Very useful exact conditions for when a (uniformly inte-

grable) local martingale is a (uniformly integrable) martingale are available:

Definition 23.12 A right-continuous adapted process {X (t)};>o is of (Dirichlet)
class DL, if for each choice of a constant ty > 0, the following family of random

variables is uniformly integrable

{X(7) : 7 is a stopping time such that T<ty}.

Definition 23.13 A right-continuous adapted process {X (t)}i>o is of (Dirichlet)

class D, if the following family of random wvariables is uniformly integrable

{X(7): 7 is a finite stopping time}.

Theorem 23.14 A right-continuous local martingale {X(t)}1>0 4s a martingale
iff. it is of class DL.

Proof. Let X be of class DL with localizing sequence {7,,}52,, and pick 0<

n:l’

s<t. Clearly, X(1,At)— X (t) and X(7,As)— X(s) a.s. as n—oo. By assump-
tion, {X (7, At)}22, is uniformly integrable (since 7, At < t). Hence (11.5) gives

n=1
E{|X(moAt)—X ()|} = 0 and E{|X(m,As)—X(s)|} — 0. Using Exercise 68 [and

that X (7,At) is a martingale], it follows that (in the sense of convergence in mean)

E{X ()| Fi} «+ E{X (1, At)| F:} = X(TaAs) = X (s).
Let X be a martingale and pick #,>0. Since |X| is a submartingale, we have

E{|X(t0)\ ‘ .7-'T} > | X(T)| for stopping times T <,
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by Corollary 23.5. Hence Absolute Continuity of the Integral gives

/{|X(T)|>y} (X(T)]dP < E{|X(to)|| Fr} dP = | X (to)| dP

- HIX(M)>y} {xX(M) >y}

< | X (to)] dP,
{supseo,¢01 [ X (1) >y}

which goes to zero uniformly for stopping times T <t;, as y— oo, since (7.1) says

P{supco | X (1) >y} <E{X(to)|}/y >0 as y—oo. O

Theorem 23.15 A right-continuous local martingale {X(t)}i>0 s a uniformly

integrable martingale iff. it is of class D.

Proof. Let X be of class D. Since X is of class DL, X is a martingale, by

Theorem 23.14. Further, X is uniformly integrable, by assumption, since

{X(t):t>0} C {X(7): 7 is a finite stopping time}.

Let X be a uniformly integrable martingale. Since |X| is a uniformly integrable
submartingale, Smartingale Convergence shows that |X| has a last element |X (co)|.

Applying Optional Sampling, it follows that
E{\X(oo)| ‘ .7-"T} > | X(T)| for stopping times 7.
Now Absolute Continuity of the Integral gives

o 1X(@)]dP < B{|X(c0)l | Fr}dP = [  [X(oo)|dP
{IX(M)|>y} {IX(M)|>y} {IX(M) >y}

< | X (00)| dP,
{supieio,00) X () [>y}

which goes to zero uniformly for finite stopping times 7', as y— oo, since

E{X(n)[} _ E{X(c0)]}
y - Y

P{ sup \X(t)|>y} = lim P{ sup \X(t)|>y} < limsup
t€[0,00) n=oo Liglo,n] n—00

goes to zero as y— 00, by (7.1), and since the mean of a submartingale is increasing.
O

Example 23.16 (THEOREM 12.9 AGAIN) A right-continuous local martingale
{X(t)}t>0, such that |X(t)|<Z,, as. for each t€][0,1], for some random variable

Zy, with E{Z; } < oo, for each constant ¢y >0, is a martingale. Because, for any
stopping time {C{’X%%yﬂex}(;x)el ‘1?‘( @yﬁ% OZ)Q}%@ a0 as y— 00

uniformly for such 7', by Absolute Continuity of the Integral. 4
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Example 23.17 (COMPLETION OF PROOF OF GIRSANOV’S THEOREM) Let 7 be
a stopping time, and {Z(t)}+>0 and {W(¢)}i>0 right-continuous adapted processes.
Assume that W (7At) is a bounded martingale, Z(t) a martingale, and W (7At)Z(t)
a local martingale. Since Z(t) is of class DL, by Theorem 23.14, and W (7 At) is
bounded, also W (7At)Z(t) must be of class DL (by inspection of the definition of
uniform integrability). Hence W (7At)Z(t) is a martingale, by Theorem 23.14. #

23.5 Burkholder-Davis-Gundy Inequalities

The following famous inequality we make crucial use of several times:

Theorem 23.18 (BURKHOLDER-DAVIS-GUNDY INEQUALITIES) To each constant
a>0, there exist constants 0< ko, < K, <00, such that

FB{X(T)°} < B{ sup [X()-X(0)P*} < K. E{X)(T)}  for T20,

t€[0,T]

for every continuous local martingale {X (t)}i>0.

Despite the importance of this result, the proof is a bit special, and does not really

forward ones understanding of stochastic calculus. Therefore it is *-marked.

*Proof (after [21, Chapter 15]). By Section 15.1, we have X (t)* = M(t) + [X](¢),
where M is a continuous local martingale. Let {7,}5°, be a localizing sequence of
stopping times for M, so that 7, > o0 a.s. as n—o00, and M(7,At) is a martingale
for neN. Let 7, =inf{t>0:[X](t)>n or X(¢)2>n}, and set 7, = 7,,A7,. The
process M(t) = M (7, At) = M (1, A(tAT,)) is a martingale, by Optional Stopping,
and is bounded, and thus uniformly integrable (by Theorem 12.9), since M =Y —Z,
with Y(#)=X(7,At)? and Z(t)=[X](7,At) bounded. It is enough to show that

E{Supte[O,T] Y(t)*} < K, E{SUPte[o,T} Z(t)*}, (23.4)

because by Monotone Convergence and since Z is increasing, this gives

E{ sup \X(t)|2“} = lim E{ sup Y(t)o‘} < lim KaE{ sup Z(t)o‘}

te[0,T N0 Yeo,T] n—o0 te[0,T]

= lim K,E{Z(T)"} = K. E{[X](T)"}.

Let 7, = inf{t >0 : Y (t) >r}. The process N®(t) = M(t) — M(r, At) is a
uni- formly integrable martingale, by Optional Stopping (since it is bounded). Since
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NO(t) > M(t) =Y (1. At) > Y (t)—Z(t)—r, we have

2’“E{ sup Y(t)a} - CfaE{ sup Z(t)a}

t€[0,T] te[0,T]

:/ P{ sup (Y )/2)a>s} ds—/ P{ sup (Z(t)/c)a>s} ds

0 t€[0,T] 0 t€[0,T]
:/ P{ sup Y (¢ >251/°‘}d3 —/ P{ sup Z(t)>csl/o‘}ds

0 t€[0,T] 0 t€[0,1]
=/ ar®” 1P{ sup Y (¢ >27‘} dr —/ ar”‘_lP{ sup Z(t)>cr} dr

0 t€[0,7] 0 t€[0,T]
g/ reT 1P{ sup Y (t)>2r, sup Z()<cr}dr

t€[0,T] t€[0,T]
< / r T P{r <co, sup (V(8) = Z(t) > (2—c)r, inf (Y(t)~Z(t))>—cr} dr
t€[0,17] t€[0,7]
1 .
re ' Plr. <00, sup N(t)>(1=c)r, inf NO@)>—(c+1)rdr
< [ ar" P{n<oo, swp NOW>(1-0r, inf N0 2~ (e+1)7}

=/ CET’a_IP{TT<OO, S <T’")}dr for a constant c€(0,1),
0

where S0 = inf{t>0: N (#) < —(c+1)r} and T™) =inf{t>0: N (t)>(1—c)r}.
Notice that N(S)=—(c+1)r for S<oo and N(T)=(1—c)r for T <oo, so that
we cannot have S=7T when SAT <oco. Further, we have N(SAT) < (1—c)r for
SAT =00. Since N=0 on {r,=o00}, Optional Sampling shows that

0 =E{N(0)}
=E{N(SAT)}
= Bl e N(SAT)
= (1-¢)rP{r,<00,S>T} — (c4+1)rP{r, <00, S<T} + E{l{1, <00, 5=} N(SAT)}
<(1-orP{r.<o00,S>T} — (c+1)rP{r <00, S<T}
=(1—c¢)rP{mn <oc} —2rP{rn. <o0,S<T},
so that

P{S<T,7, <00} < (1-¢) P{r,<o0}/2 = (1-¢) P{ sup Y () >r} /2.

t€[0,T]

Putting things together, we conclude that

2_°‘E{ sup Y(t)"‘} - c_O‘E{ sup Z(t)o‘} < /000047'0‘_1 ?P{ sup Y(t)>7“} dr

te[0,T] te[0,T] te[0,T]

= % E{ sup Y(t)"‘}.

t€[0,T]

Taking c=1—2"% and rearranging, we get (23.4), with K, = 2°*1/(1—-27%)e. O
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*EXERCISE 120 We only proved the right Burkholder-Davis-Gundy inequlity
above. Explain how the left inequality follows, simply by inspection of that proof,
together with a change in the definitions of ¥, Z and M, to Y(t) = [X](7,At),
Z(t)=X (7 At)? and M(t) = =M (1, At) = Y (t)— Z(t).

Corollary 23.19 For a continuous local martingale {X (t)}i>0 such that [X](T)=
0 a.s., we have X (t)=X(0) a.s. for t€[0,T].

Proof. Burkholder-Davis-Gundy inequality gives

E{supeior | X (1) —X(0)’} < Ky B{[X](T)} =0. O

EXERCISE 121 Show that a continuous local martingale {X (¢)};>0, such that
X(0)=0 and E{/[X](t)} < oo for t>0, is a martingale. What happens if the
requirement that X (0)=0 is replaced with E{|X(0)|} <oo?
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24 Twentyfourth Lecture

24.1 Change of Time for Local Martingales

The next famous result builds on the martingale results in Lecture 23. It shows

that continuous local martingales are BM’s, when runned under a suitable clock.

Theorem 24.1 (DamBIS-DUBINS-SCHWARZ) Let {M(t) }1>0 be a continuous local
martingale with M(0) =0, wrt. a right-continuous filtration {Fi}i>0. Assume that
[M](t) > 00 a.s. as t—o00, and write T(t) =inf{s>0:[M]|(s)>t}. The process

B(t)=M(T(t)), t>0, is BM wrt. the filtration {Frpw) }eso-
Further, [M](t) is a stopping time wrt. this filtration, and

M(t) = B([M](t)) for t>0, with probability one.

Proof. Since [M] is continuous and adapted (cf. Definition 15.2), we have
{T(t)<s}={[M](s)>t} € F;,  for s,t>0,

so that T'(¢) is an optional time. Since the filtration is right-continuous, it follows that
T'(t) is a stopping time (see Section 23.1). Further, we have {[M]|(t)> s} € Fry,
for s>0, so that [M](t) is a stopping time as specified, since (by above identity)

{[M](t)>s}n{T(s) <t} ={T(s)<t}N{T(s)<t} ={T(s) <t} € F for ¢t>0.

Pick a t>0, and let M®(r) = M(rAT(t)) for r>0. Notice that B(t)—B(s)
= MO(T@)-M®O(T(s)) for 0<s<t. Further, {M®(r)},5, is a continuous local
martingale, by Optional Stopping for local martingales (Example 23.9), with

[M©](s) = [M(- AT (0)))(s) = [M](sAT(8)) < [MI(T (1)) =t for s20,
[by the definition of 7'(¢t) and continuity of AM]. Hence Burkholder-Davis-Gundy

inequality together with Fatou’s lemma show that

E{sup|M(t) (r)|20} < lim infE{ sup |M(t)(r)|20‘} < lim K E{[M®D](s)"/?} < Ko t°
>0 §—00 r€f0,s] $—00

for a>0. taking a=1/2, it follows that M® is of class D, since

MO (1) dP < sup,~o| MO (r)|dP — 0
/{|M<f>(v)|>y}| (] dP < {5upy 50 MO (r)[>y} 2ol M)l

uniformly for finite stopping times 7 as y— o0, by Absolute Continuity of the Inte-
gral [applied to the integrable random variable sup,, |M®(r)|]. Hence {M®(r)},50
is a uniformly integrable martingale, by Theorem 23.15, and Optional Sampling gives

E{B(t)| Fr(y} = E{MY(T(t))| Fr¢y} = MW (T(s)) = B(s)-
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Hence B is a martingale wrt. {Fp}i>0, and if B is continuous, we get that B is
BM, by Levy’s Characterization of BM, since we know that [B](t) = [M](T'(t)) = t.

The process [M] is increasing, and discontinuities of the process T appears ex-
actly at intervals of constancy of [M]. By Corollary 23.19, such intervals coincide
with intervals of constancy of M. From this we get that the composition B = XoT
is continuous (although 7 not necessarily is).

It is a technical exercise, to conclude from the previous paragraph, that B([M](t))
= M(T([M](t))) = M(t). This concludes the proof of the theorem. O

EXERCISE 122 Explain graphically why it is that B(t)=M (T'(t)) is continuous.

EXERCISE 123 Discuss how Dambis-Dubins-Schwarz theorem can be extended

to the case when not necessarily M (0)=0.

EXERCISE 124 Show how Dambis-Dubins-Schwarz theorem together with Wald’s
Identity gives Novikov’s Criterion. (Hint: Exercise 101.)

With the hypothesis of Theorem 24.1, let X be progressively measurable such that
t
/ X(r)*d[M](r) < oo a.s. for each ¢>0,
0

so that [j X dM is well-defined for ¢>0. Since, with the notation of Theorem 24.1,
M(T(t))=B(t) and M (t)=B([M](t)), writing Y (t)=X(T'(t)), we expect that

X(T@)dM(T(t) =Y () B(t)  and  X(2)dM(t) =Y ([M](t)) dB([M](2))-
Of course, the exact meaning of this statement is that
T(t) ¢ t [M](t)
/ Xsz/YB and /XdM:/ Y dB. (24.1)
0 0 0 0

[A rigorous proof of (24.1) is a bit technical (e.g., [22, pp. 176-178])*. We only use
(24.1) in Example 24.2 below, the outcome of which is reached by other methods in
Example 25.1. Hence we need not worry about a proof of (24.1).]

Theorem 24.1, together with (24.1), can be used to solve SDE:

Example 24.2 Consider a one-dimensional diffusion type SDE without drift
dX(t) =o(X(t))dB(t)  for t>0,

where o:R — (0,00) is continuous and bounded away from zero. By Engelbert-

Schmidt theorem, the SDE has a unique weak solution, and clearly
t
1X]() = / o(X(r)2dr = oo as.  t—oo.
0

Writing B(t) = X (T'(t)), where T'(t) = inf{s>0:[X](s)>t}, Theorem 24.1 shows
that B(t)=X(T(t)) is BM wrt. {Fru)}hiso, and that B([X](t))=X(t). Notice that
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1 1 -
—————— dX(T(t)) = —=——dBlt
a(X(T())) a(B(1))

(by the remarks after Theorem 24.1), so that (by same remarks)

dB(T(t)) =

1 - (X1t 1 ~
wW:fﬂﬁ&Wﬁﬂmmw) and B@:A By B0

For the corresponding quadratic variations, this means that the stopping time
1 1

n=[X]|(t) isgivenby t=[B](t)= /ORW d[Blr = /oTtW o

We have shown that there exists a BM B such that X (t)= B(n) solves the SDE.

(This solution is a weak solution, since it makes referens to another BM than B.) #

Remark 24.3 There is an extension of Theorem 24.1, Knight’s theorem, to mul-

tidimensional continuous local martingales (e.g., [22, Theorem 4.13])*. #

24.2  Semimartingales

Until recently, the most general stochastic integrals (and thus SDE) known to man-
kind, were integrals of predictable processes wrt. semimartingales. This has changed
the last few years, but we shall stay with outlining the development before that. These

results are known as (due to) the french shool, and referred to as general theory of

stochastic processes (a bit ambitiously). (A source on the general theory that should

be reasonably accessible to a beginner is [21, Chapters 22-23]*.)

Definition 24.4 An adapted cddldg process {Y (t)}i>0, such that Y = M+A, with
{M(t)}1>0 a cddldg local martingale and {A(t)}1>0 an adapted cddldg process with

finite variation, is a semimartingale.

EXERCISE 125 Explain why we cannot hope to integrate an adapted cadlag (but
not continuous) process, wrt. a cddlag (but not continuous) process. Explain why we

can hope to integrate an adapted left-continuous process wrt. a cadlag process.

Definition 24.5 A stochastic process {X(t)}s>0 that is measurable wrt. the o-
algebra on Qx[0,00) generated by all adapted left-continuous processes [i.e. the smal-
lest o-algebra on 2x[0,00) that makes Y :Qx[0,00) - R Borel-measurable, for

every adapted and left-continuous process Y], is a predictable process.

Now left-continuous processes come into play, wich are referred to as cag (= “con-

tinu a gauche”). We have the following quite easy result:
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Theorem 24.6 Adapted cag processes are predictable. If {X(t)}i>0 is adapted
cadlag, then X_(t) =X (t7) is predictable. If {X(t)}i>0 is cadlag predictable, then

AX =X —X_ s predictable. Predictable processes are progressively measurable.

EXERCISE 126 Prove Theorem 24.6.

The following result, interesting from a general point of view, is also quite easy to

prove, by appropriate optional stopping, but not important enough for us to do that:

Theorem 24.7 (e.g., [20, Lemma 4.24] and [21, Proposition 22.16])* A cddldg local
martingale is predictable iff. it is continuous a.s. A semimartingale is continuous iff.

it 1s the sum of a continuous local martingale and a continuous finite variation process.

The integral of a predictable process X wrt. a semimartingale Y =M+ A,

[X0)ave) = [X()am) + [ X6)aAe),

consists of an integral wrt. the cadlag local martingale M (a generalization of the
integral wrt. continuous local martingales from Section 16.1), together with a signed
Lebesgue-Stieltjes integral wrt. the finite variation process A. The integral is done
in the same way as in Lectures 7-11, by first integrating simple processes, secondly

square-integrable ones, and lastly general (locally bounded) predictable processes.

Definition 24.8 A simple predictable process {X (t)}io is given by

n

X(t) = X(O)I{U}(t) + Zl(ti—lati] (t)Xti—l Jor t>0,

i—1
where 0=ty <t; <...<t, <oo are constants and X(0), Xy,,...,Xs, , bounded

random variables adapted to Fo, Fo,...,F, ,, respectively.

Definition 24.9 The Ité integral of a simple predictable process {X (t)}i>o wrt.
a semimartingale {Y (t)}i0 is defined by [ X(r)dY (r) =0 and]

/OtX(r)dY(r)EjZlXti1(Y(ti)—Y(ti_l))—i—Xtm(Y(t)—Y(tm)) for t€ (tm, tmrr].

Definition 24.10 A measurable stochastic process {X (t)}i>o is locally bounded, if

there exists localizing sequence of stopping times 0<1 <7p <

., with lim,_o 7, =

00 a.s., such that the process {X(tAT,)} >0 is bounded for each neN.
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Example 24.11 A c4g process X is locally bounded [take 7, = inf{t>0:|X(¢)]
>n}]. In particular, for a semimartingale X, X_ is locally bounded (since c4g), and
predictable (by Theorem 24.6), which is essential in Definition 24.14 below. Simple

predictable processes are locally bounded (since bounded). #

Example 24.12 A c4dldg Lévy process with locally bounded means is a semi-
martingale, by Exercise 41. In particular a PP is a semimartingale, which alternati-

vely follows directly from that it is a finite variation process (because increasing). #

Now we are in shape to face the announced It6 integral wrt. semimartingales:

Theorem 24.13 (e.g., [20, pp. 46-47])* For a semimartingale {Y (t)}1>0, the map
t
[0, 00) X {“simple predictable processes”} > (t,X) — / Xdy
0
has a unique extension to an Ito integral

t
[0, 00) X {“locally bounded predictable processes”} > (t,X) — / Xdy
0

with the following properties

1) {Jy XdY}iso is a semimartingale;

3

(1)

(2) Jy(aX1+bXs)dY =a [y X1dY +bf; XodY for constants a,b€R;
(3) If Y is a (continuous) local martingale, then so is {fi X dY }i>o;
(

4) If Y has finite variation, then {f; X dY }1>0 has finite variation and coincides

with the corresponding Lebesque-Stieltjes integral;
(5) (A [y XdY)(t) = X(t)AY(t), so that {fi X dY }i>o is continuous when Y is;

(6) If X,Z,X1,Xs,... are locally bounded predictable processes such that lim
k—oo Xk (t)=X(t) a.s., with | Xy (t)|<|Z(t)| for k€N and t>0, we have

P-lim

k—o00 Sup

s€[0,t]

/Xde—/XdY‘ZO for each t>0.
0 0

The Ito integral wrt. semimartingales keeps the connection to “elementary Ito

integrals” (approximating sums), as long as the integrated predictable process is cdg:

Theorem 24.14 (e.g., [20, Proposition 4.44])* For the It6 integral of a cdg adapted

process {X (t)}i>0 wrt. a semimartingale {Y () }1>0, we have

t = —
/ XdY:P_lim{ . 0—t0<t1<...<tn—t}'
0 2

> X (tir) (Y (8) =Y (ti)) ¢
=1 ( 1)( ( ) ( 1)) maxlgignti—ti_lﬁo
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To give an It6 formula for the stochastic integrals wrt. semimartingales, we need
quadratic variations and covariations for such. Since the previously developed theory

only applies to continuous processes, appropriate generalizations are required:

Definition 24.15 The covariation between two semimartingales {X(t)}>o and
{Y(t) }+>0 is defined

X, Y](t) = X(£)Y (t) = X (0)Y(0) — /OtX_(r)dY(r)— /OtY_(r)dX(r) for 0.

The quadratic variation of a semimartingale {X (t) }+>0 is defined [X|(t) =[X, X](t).

The general covariation has properties similar to the previously considered one.

However, to use this covariation is more difficult, since it need not be continuous.

Example 24.16 Consider the stochastic differentials (cf. Section 16.1)
dX (t) = ay(t) dt + by (t) dZ, () and dY (t) = az(t) dt + be(t) dZs(t),
for Z; continuous local martingales, and a;, b; progressively measurable with
/OT\ai(r)\ dr < oo and /OTbi(r)2 d[X, X](r) < o with probability one.

Such processes X and Y are the most general for which we have previosuly conside-
red the covariation [X,Y] (cf. Sections 15.1 and 16.1): By Integration by Parts (Ex-
amples 15.10 and 16.1), that covariation coincides with that in Definition 24.15. #

Theorem 24.17 (e.g., [21, Theorem 23.6])* For semimartingales {X(t)};>0 and
{Y(t)}+>0, it holds that

{[X,Y](t)}t>0 is a semimartingale;

{IX,Y](t)}t>0 is a finite variation process a.s.;

)

)

3) {[X](t)}iso = {[X, X](t)}ss0 is an increasing process a.s.;

) A[X,Y](t) = AX()AY () for >0 a.s.;
)

(X, Y](t) = X5t AX(5)AY (5) for t>0 a.s., if X or Y has finite variation,

6) [fy ZdX,Y]|(t) = [ Zd[X,Y](t) for t>0 a.s., if {Z(t)}s0 is a locally bounded

predictable process;

(1) [X,Y](t) = P-lim{

: (X (t:)=X(ti 1)) (Y (t:)=Y (ti 1)) : 0:t0<t1<---<tn=t}.

1 maxi<i<n ti—t; 1 — 0

7

Since [X,Y] has finite variation, it has a well-defined and finite continuous part
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(X, Y] = [X,Y](1) = S AX, Y](1) = [X,Y](t) — 3 AX(¢) for t>0.

s<t s<t

Theorem 24.18 (IT6’s FORMULA) (e.g., [20, Theorem 4.57])* Let {X(t)}i>0 =
{(X1(t), ..., Xn(t)) }t>0 be an n-dimensional process with semimartingale components
Xi,..., Xpn. For a function feC*R"), {f(X(t))}>o is a semimartingale and

FXE) = FOEO) + 3 [0S X+ 5323 [ 20,008 ) dXe X,10)

zlgl

+ 2 (X)) = FOF-(s) = 0 (X-(5) AXi(s) ).

s<t

Example 24.19 By Definition 24.15, a PP {N(¢)}i>¢ has quadratic variation

[N](t) = N(t)’= N(0)’—2 /0 ‘N (r)dN(r
N(t)—1

= N(t)’— -2 >k

k=N (0)
= N(t)? = N(0)’~ (N(t)=1) N(t) + (N(0)=1) N(0) = N(t)—N(0),

which we also get from (7) in Theorem 24.17. Since [N]¢(t)=0, It6’s formula gives
FON@) = FVO) + [ 7V ) N + S FN(s) = FV-(5)) = /(N (5)) AN(s) ).
s<t
In fact, this identity holds trivially, just by inspection (more or less).
In general, one establishes It6’s formula for semimartingales by decomposing them
into a continuous part, to which the previous It6 formula applies, and to a jump part,

for which It6’s formula is more or less trivial, in the above fashion. #

Remark 24.20 The reader may now think he/she has seen every kind of martin-

gale there is. But two such have not been mentioned; special semimartingales, which

are semimartingales where the component with finite variation can be chosen pre-

dictable, and quasimartingales, which are processes that can be obtained by localizing

special martingales (so that their local martingale components become martingales
and finite variation components integrable). It turns out that a process is a special
semimartingale iff. it is the difference between two cadlag nonnegative local super-
martingales, and thus a quasimartingale iff. the difference between two nonnegative
cadlag supermartingales.

By Exercise 41, cadlag Lévy processes with locally bounded means are special
semimartingales (since their finite variations components are nonrandom continuous,

and thus predictable), as well as quasimartingales (since “already localized”). #
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25 Twentyfifth Lecture
25.1 Application of Martingale Problems

Example 25.1 (Adaption of [25, Theorem 7.34])* The result of Example 24.2 can
be obtained in the following direct way, which does not involve random change of

time (but more computional details beacuse of that):
Since X =B solves the SDE dX = dB, with generator (Af)(z)=3/"(z),

f(B(t))— f(B(0)) —/Ot@ dr, t>0, is a martingale for f€C%(R),

wrt. a filtration {F;}i>o. Take o:R—(0,00) continuous and bounded, and let

i 1
the random time 7; be given by t= /0 tw dr for t>0.
By elementary calculus, 7 € C'(R) = {g:R—R : § is continuously differentiable},

d
dt

are bounded, by the form of 7/, and stopping times, by observing that

{n<st={n>s}°= {/Osmdr«f}c e F,.

Using Optional Sampling, we hence obtain

with derivative 7; = 27, = o(B(1;))? wp. 1. The increasing random times {7;};>¢

{10 4 .« s[5
for 0<s<t, so that the following process is a martingale wrt. {F,, }+>o
£ - 1BO) - [T LD 4y~ p8)) - pB(m)) - [ LI 4,

0 2 0 2
Here, by elementary calculus, writing X (¢t)=B(7;), the right-hand side is equal to

fxe)-fxo)- [ TEE oar— - rexo)- [ T px) ar

0 0
Hence also this process is a martingale, so that X solves the martingale problem for
the generator (Af)(z)=30(z)?f"(z), and is a weak solution to dX = o(X)dB. #

By Example 18.4 and Remark 18.5, together with Example 25.1, we can solve a ge-

neral time homogeneous one-dimensional SDE with bounded continuous coefficients:

Example 25.2 Let dX = u(X)/o(X)?dt +dB (cf. Example 18.4 and Remark
18.5), with generator (Af)(z)= “(mzf( ) + 3/"(z), where p:R—(0,00) is mea-

o(z)

surable and ¢:R—(0,00) bounded continuous with u/o? bounded. The process
t

M (t) = f(X(t) = f(X(0)) —/ (Af)(X(r))dr  is a martingale for feC%(R),
0

wrt. a filtration {F;}i>0. Take o:R—(0,00) continuous and bounded, and let
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i 1
the random time 7; be given by t= /0 tw dr for t>0,

so that 7/ =0(X(r;))?. We get that the increasing random times {7;};>o are bounded
and stopping times exactly as in Example 25.1 (since X is continuous and adapted),
and that {M/(m)}i>0 is a martingale wrt. {F,,};>0. Again, we can rewrite
t
M (r) = f(Y (1)) = F(X(0)) —/O (AN ()" Y (r)) o (Y(r))* dr,
where now Y (t) = X(r;). Hence Y solves the martingale problem for (Af)(z) =
w(@) f'(z) + 30(z)?f"(z), and thus the SDE dY = u(Y)dt+o(Y)B. #

Example 25.3 (BrsseL EQUATION) (Adaption of [25, Section 6.10])* Let B be
n-dimensional BM, and put R(¢)=||B(t)||*>. By Ito’s formula, we have

dR(t) = d(Bi(t)*+...+ Bn(t)?) =2 i B;(t) dB;(t) + i i d[B;, B;](t)

i=1j=1
n

i=1

We may rewrite this as a multidimensional non-diffusiontype SDE
dR(t) = d(R(t),...,R(t)) = pdt + o(t) dB(t)

where p;=n and (o(t));; =2 B;(t). For the corresponding PDO [cf. (19.3)]

S 0%g(t,z) ¢ 9g(t, z)
I T o I . I
(A0)t,2) = 5 32 (o o) 5 + L) 5
B n 2 0%g(t, x) " dg(t, )
=2 R(t) ,L:ZIJ; 83:183:] ; 8:1:1 ’

Corollary 19.11 shows that the following process is a continuous local martingale

olt, Ri1)) — 9(0,R(0) ~ [ (210 B)) + (Ag) (B dr. 120,
for ge CH2([0,00) x R™). Taking g¢(t,z) = f(z1), it follows that the following pro-
cess is a continuous local martingale
FR() = FRO) - [(ADRG) dr,  for feC(R),

where (Af)(z) =2z f"(x) + nf'(x). Hence the Bessel process R solves the

one-dimensional SDE  dR(t) = 2\/% dB(t) +ndt.
[The corresponding Kolmogorov backward equation is
Oif(t,x) + (Af)(t,x) = Dyf(t,z) + 23 D2f(t,x) + n Dy f(t,z) = 0.
By Laplace transforming F(\,z) = [;° e ™ f(t, z) dt, it becomes a Bessel type ODE

AF(\z) — F(0,7) + 22 D2F(\,z) + n D,F(\,z) = 0] #
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EXERCISE 127 Discuss possibly negative values of R in the Bessel SDE.

25.2  Stationary One-Dimensional Diffusion Processes

In the remainder of these notes, we do explicit calculations for one-dimensional dif-

fusions. A classic and rich introductory source to such material is [24, pp. 157-397].

Definition 25.4 A stationary distribution for a Markov process {X(t)}s>0, is a

probability distribution v on R such that

/RP{X(t—I—s)E-lX(s)::U}dV(x)=1/(-) for t>0 and s>0.

Theorem 25.5 Let {X(t) }s50 be a Markov process with stationary distribution v.
If X(8) =aistribution ¥, then we have X (t) =gistrivution v for each t>s.

Proof. When X () =gistribution ¥, We have
P{X()e-} = [ P{X()e-|X(s)=c}dFx()
:/RP{X(t)e-|X(s)::1:}du(x):u(-) for ¢>s. O

EXERCISE 128 Let {X(¢)};>0 be a time homogeneous Markov process. Show
that X is a stationary process {X(t+h)}i>0 =same fiavs {X (t) >0 for each constant

h>0, iff. X(0)=gistribution ¥ Where v is a stationary distribution.

Warning 25.6 Some Markov literature call time homogeneous Markov processes
stationary, contrary to non-Markov literature, where stationarity means translation
invariance of the fidi’s (see Exercise 128). However, from a Markovian point of view,
the notation is natural, since the really important feature of a Markov process is the

transition probability, which cannot separate stationarity from time homogeneity. #

The “evolution” of a time-homogeneous Markov processes is studied through that
of its transition probability P(-,t,-,0). To avoid technical problems (e.g., to change

order between derivatives and integrals), it is helpful to Laplace transform time:

Definition 25.7 Consider a time homogeneous Feller process {X (t) }+>0 with tran-
sition probability P(-,t,x,0) = P{X(t+s)€-|X(s)=z}. The resolvent is the family
of operators {(G,:Cg(R)—Cp(R)) : A>0} given by

(G f)(2) :/Oooe’\tE{f(X(Hs))\X(s):x}dt :/Owekt (/Rf(-)dP(-,t,x,O) dy)dt.
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EXERCISE 129 Show formally, that for each A >0, the resolvent (G f)(x) for
a one-dimensional SDE dX (t) = u(X) dt + o(X) dB satisfies the ODE

(@) Dz (G f) () + %O(fE)QDﬁ(GAf)(x) —MGf)(z)=—f(z) for zeR.

Define the resolvent of a multidimensional time homogeneous Feller processes. Extend

the above ODE to a corresponding PDE in the case of a multidimensional diffusion.

Theorem 25.8 Consider the time homogeneous one-dimensional SDE
dX(t) = p(X () dt +o(X(t))dB(t)  for t>0,

where p, 0 :R—R are bounded continuous, such that

/]Rexp{/oy 2u(2) dz} de <oo and lim exp{/oy M} =0, (25.1)

o(z2)? (y)? y—too o(z)?

and such that the generator p(zx)D,+ %U(x)QD?c has a fundamental measure. The

diffusion process X has a stationary distribution with density function

= ool [ (Lo [ ) ) e

Proof. Clearly, m is a probability density function, and we have to show that it is a

stationary density. Writing P for the fundamental measure, this holds if
[ty = [ £()d( [ P{X(t+5)€: | X(5) =} n(x) do)
=/ (/ f(-)dP(-,t,:c)) r(@)de  for t>0 and feCH(R)
R \J/R

(recall Exercsie 112). Since the right-hand side is a bounded continuous function of

t€]0,00), this in turn holds if the corresponding Laplace transforms agree

L@y =[Te [ [ ([ 1) aPC12)) n(a)da] dt = [ (Gop) @) n(a) da
for A>0. From defining properties of the fundamental measure P, we have
/ Grf)(z )da:—/ F(2) 7(x) da
=/[/ A —M(/f )dE(- tx))dt] )dx—/f(m)w(x)dm
- (ot s L
+/ [/ e‘”(Dt/ f(-)dP(-,t,:r))dt]w(m)d:r
—/ [/ —M< £)Dy+ Lo(x 2D2/f )dP(- tx))dt] 7(z) dz
- /0 e_)‘t( /R ( 1(2) Dy + Lo(2)2D? /]R f(-)dP(-,t,x))ﬂ(x) da:) dt

160




:/Oooe—At [/]R(u(a:)Dx/Rf(.)dP(.,t, :c)) 7(x) d:v] dt
+/Oooe—)\t[(%a(xPDz/Rf(.)dP(.’t,x)>7r(x)]oo dt

—00

= [Fe [ [ (P2 (o@Pn(@) ) (Pe [ 1) dPC,1,2)) de] .

This is zero, by (25.1) together with the fact that u(z)m(z) —D,(30(z)*r(z)) =0. O

EXERCISE 130 Explain to what extent the requirement that [y f(-)dP(-,t, z)
and its derivatives are bounded in Definition 22.7 is used in the proof of Theorem

25.8. How can it be relaxed, just by inspection of that proof?

Example 25.9 (LaNGEVIN EQUATION) Pick constants a,0€R and >0, and

consider the Ornstein-Uhlenbeck process X in (15.1). It has stationary density

C  (ra=B2)dz\ _C [ (y—a/f)— ¥

W) = 5 eXp{/o T/?} - Xp{_ ?/B } = Ixtafs, 1015 (¥)

for 0 #0 (by Theorem 25.8), and stationary distribution N(a/3,0) for o0 =0 [by

(15.2)]. By Exercise 128, X is stationary iff. X (0) has the stationary distribution.
Now start the process X in (15.1) with an initial value X (0) that is independent

of B, and has the stationary distribution. By (15.2), we have

o2

X(t):a/ﬂ+e—ﬂt(X(o)—a/ﬂ+/0taeﬂrd3(r)) for ¢>0.

Hence X is a Gaussian process [since a linear combination of process values is the sum
of the Gaussian random variable X (0) multiplied by a constant, and an independent
Ito integral of a non-random function, which is the limit in probability of Gaussian

distributed Riemann-Stieltjes type approximating sums]. The covariance function is

r(t—s) = e P+ Cov{X(O) +/Osaeﬁr dB(r), X (0) +/0t0eﬁr dB(r)}

SAE 0'2
= e 1) (Var{X(())} +/ o2 e2Pr dr) = ¢ Alt=sl,
0 20
Conversely, let {X(t)}+>0 be a stationary Gaussian Markov process with contin-
uous covariance function r(t) = E{X(s)X(s+1t)}, where X(t) = X(t)—m with

m=E{X(t)}. Since 7(0)X(t+s)—r(t)X(s) isindependent of X (s) (calculate the

covariance and use Corollary 2.11), the Markov property shows that

= E{X(O) B{(r(0)X (s+t) = r(t) X () +(t) X (s) fs}}
- E{X(O) E{(r(0)X (s+1) — r()X(s)) +r() X (s) | X(s)}}
= E{X(O) (0+7’(t)X(s))} =r(t)r(s) for s,t>0



Now Exercise 131 below gives r(t) = r(0)e Cl* for some constant C > 0. Thus
any stationary Gaussian Markov process with continuous covariance is an Ornstein-
Uhlenbeck process, since it must have transition probabilities as well as one-dimen-
sional marginal distributions as such, by the form of r together with Theorem 2.10.

The Ornstein-Uhlenbeck process X in (15.1), started with the stationary distri-
bution, has fundamental measure [since X (t)—r(t)X (0)/7(0) is independent of X (0)]

A

P(- t,2) =P{X(t)e-|X(0)=z) = P{X(t) T vy e.— @x}

r(0) 7‘(3)
= P{N(% (1—e P e Piy, ;_ﬂ (1—e_ﬁt)) € } #

EXERCISE 131 Let {X(¢)}:>0 be a Gaussian stationary process, with continuous
covariance function 7(t) = Cov{X(s), X(s+t)} that satisfies r(t+s)r(0) = r(t)r(s).
Show that 7(t) =7(0)e~¢I* for some constant C'>0. (Hint: Prove that r is strictly

positive and use the Cauchy functional equation.)

*EXERCISE 132 Try to calculate [{°e dP(dy,t,x)/dy for the Ornstein-

Uhlenbeck process in Example 25.9, to find an explicit expression for its resolvent.
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26 Twentysixth Lecture

26.1 Transformation of One-Dimensional Diffusion Processes

Example 26.1 (TRANSFORMATION OF DIFFUSIONS) Consider the general one-

dimensional time homogeneous diffusion type SDE
dX(t) = p(X(t)) dt +o(X(t)) dB(t) for t>0, X(0)==x. (26.1)
Taking Y (t)=f(X(¢)) with feC?*(R), It6’s formula gives

o(X(1)?

S fIX @) dr (262)

df (X (1) = /(X (1) (WX () dt + (X (1)) dB(2)) +

Now take f’(z)o(z) = 1, which is to say that f(z) = [;fo(y) 'dy, assuming
that o is strictly positive and in C!'(R) [so that fe€ C?*(R) as required]. Writing

i(z) = ﬁgjggg - U’(f;l(w)), we obtain

POOF prxay) ai + ae

)
)
Y(t) oY) _ -
) ; ) dt + dB(t) = (Y () dt + dB(?),

dY (1) = A(Y (1) dt+dB(t)  for t>0,  Y(0)=f(z), (26.3)

then X =f"1(Y) solves the SDE (26.1), by a similar application of Ito’s formula. #

Definition 26.2 A time homogeneous one-dimensional SDE
dX(t) = p(X(t))dt + o(X(t)) dB(t) for t>0,

with coefficients p, o :R—R such that p/o? is locally integrable, has

scale function R>z—px) = /Owexp{—/oy QJ’ELZ()ZQ) dz} dy € (0, 00).

Example 26.3 (REMovAL oF DRIFT) Consider the one-dimensional time homo-
geneous SDE X in (26.1). Take feC?(R) such that f'(z)u(z)+35f"(z)o(z)* =0.
Assuming that p/o? is continuous, this holds for the scale function f=p. By (26.2),
the process Y (t) = p(X(t)) satisfies the diffusion SDE with zero drift

0¥ () = o) P X0 aB) = oo (V) exp{ [ 2] az}ane). #
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Theorem 26.4 (REMOVAL OF DRIFT) A time homogeneous one-dimensional SDE
dX(t) = p(X(t)) dt +o(X(t))dB(t)  for t>0,

with scale function p, has a weak solution [strong solution] {X (t)}i>0, iff. Y =p(X)
is a weak solution [strong solution] to the SDE

dY(t) — o_(p—l(Y(t))) exp{_Apl(Y(t)) i-/(l‘z(ji) dz} dB(t) for t>0.

Proof for pe C%(R). This we have directly from Example 26.3. O

*Remark 26.5 The proof of Theorem 26.4 in Example 26.3 is an application of
It6’s formula Theorem 14.4 to p(X), which requires p€ C?(R). There is an extension

of Ito’s formula to convex functions. This extension uses the local time
¢

L() = |X (1) — | — | X (0)—z] —/ sign_(X(r)—z)dX(r) for t>0 and z€R,
0

of the diffusion (or continuous semimartingale) X. The extended It6’s formula reads

FX@®) = JOXO) + [ FLX0) aX )+ 5 [ 170 dugw)  for 120,

when f:R — R is convex, with increasing and left-continuous left-derivative f’
and Stieltje measure “second derivative” ps([z,y)) = f'(y)—f"(z) for [z,y)CR
(e.g., [21, Theorem 19.5]). For a measurable ¢g:R—R, we further have

/Otg(X(r))d[X](T): [o@) F@ds for ¢20 (26.4)

(the integrals are well-defined simultaneously, and coincide when well-defined).
In the particular case when X is BM with X (0)=0, we have (e.g., [22, Eq. 3.6.2])

—lglﬁ)l 46/ Iog(| X (r)—2])dr a.s. (26.5)

This is what is required for a rigorous treatment of the SDE in Example 17.5

dX (1) = sign(X (£))dB(t)  for ¢>0,  X(0)=0:

Take f=|-|, sothat f’ =sign_ and pu;=24. By It6’s formula, we have
X (1) |+/ sign_(X (r)) dX (r) + L°(1)
1
)1+ [ (sign_(X(r))) (sign(X (1)) dB(r) +lim - [ Fa.a(1X (1)) dr,

when X is a strong solution to the SDE, since this implies that X is BM, by Exercise
95 (or by Remark 17.6). Rearranging, it follows that B(t) is adapted to o(|X(s)]|:

s<t), asis crucial in Example 17.5, because
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/0 ‘sign_(X(r)) dX(r) = B(t) — /0 "Iy (X(r)) dB(r) = B(1),

by Corollary 23.19, since (26.5) together with Dominated Convergence give

[/O'I{O}(X) dB|(t) = /OtI{O}(X(T)) dr < /Otf[_g,g](X(T‘)) dr—0 as &l0.

In the particular case when fe C!'(R), with absolutely continuous derivative
f' with derivative (density) f”, (26.4) shows that It6’s formula is the “usual”

FEC®) = FOXO) + [ @) dX ) + 5 [ FKE XN for +20.

In fact, this holds for general (not necessarily convex) feC!(R) with f’ absolutely

continuous, because for such f we may write

f(z) :/wal(y) dy = fi1(z) — fo(x) =/0wF1(y) dy —/Ong(y) dy for z€R,

where F} and F, are increasing functions, so that f; and f, are convex, by an easy
argument. Using [t6’s formula separately on the convex components f; and f, of
f, and adding things up (or subtracting, rather), we get It6’s formula for f itself. It
is this It6’s formula which is required for a complete proof of Theorem 26.4, because

the scale p is in C'(R) with p’ absolutely continuous. #

Corollary 26.6 (ENGELBERT-SCHMIDT) A time homogeneous one-dimensional
SDE

dX(t) = pu(X(t)) dt +o(X(t)) dB(t) for t>0, X (0)=X,,
such that o is strictly positive, and p/o* and 1/0? locally integrable, [i.e.,

1
/ M dy < 0o for each bounded BeB(R),]
B o(y)?

has a weak solution that in addition s unique for every choice of initial value Xj.

Proof. Writing p for the scale, by Theorem 26.4, it is enough to show that
dY () =o(p ' (Y()) (b (Y (1) dB(t)  for t>0, Y (0)=p(Xo) =Y,

has a weak solution that is unique for every initial value Yy. By earlier Engelbert-
Schmidt theorem (Theorem 19.8), this holds if (iff.) we have

= —_—— =0 or a 13
—co(p (z+y)2p(p H(z+y))? o ia—e o(y)?p(y)

precisely when o(p~'(z))p'(p~'(z)) =0, for each choice z€R. However, since p' is

locally bounded away from zero, and o strictly positive and continuous, the integral

is never infinite, and ¢ never zero, and so the condition holds trivially. O
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26.2 Transition Densities for One-Dimensional Diffusions

Example 26.7 (BrowniaN BRIDGE) Consider the one-dimensional non-homo-
geneous SDE, with u(t,z) = —z/(1—t) and o(t,z) =1,
dB(t) = —B(t)/(1—t)dt+dB(t)  for te]0,1], B(0)=0.

A strong solution {B(t)}sepo,1) to this SDE is given by
_ b1 t1—¢
B(t) = (1—t)/ = _dB(r) = / STV AB(r)  for telo,1],
0o 1—r o 1—r
because writing Y (t) = [} T dB(r), Itd’s formula [with f(t,y) = (1—t)y] gives
dB(t) =df(t,Y(t)) = =Y (t)dt + (1—t)dY (¢t) = —B(t)/(1—t) dt + dB(t).
The solution is unique in each interval [0,1—1/n], n€ N, by Theorem 16.8. Hence it
is unique in U ,[0,1-1/n] = [0,1), and thus in [0, 1], by continuity. Further, X is
a zero-mean Gaussian stochastic process (cf. Example 25.9), with covariance function
- s1—s t1—t A 1—s 1—t
Cov{B(s), B()} =EB{( | 1— dB )(/—dB )}:/ STe Ty
oviB(s), B(t)} {(o 1—u () 0o 1—v ) o 1—r1-—r ’
= (sAt) —st

for s,t€[0,1]. Notice the important fact (readily established by means of comparing
the covariance functions), that {B(t)}iejo,1] =same savs {B°(£) —tB°(1) hepo,1- #

We finish the notes with a general formula for the transition density function of a
one-dimensional time homogeneous diffusion from [16, p. 98, Eq. 9]. We have found
this result very useful in [2]*. (Now it seems that one sees less and less of such quite
analytic results, and the purely probabilistic is “modern”.) We give a probabilistic

proof, that uses virtually every peace of stochastic calculus we have learned.

Theorem 26.8 Consider the general one-dimensional time homogeneous diffusion
type SDE (26.1), with n€ C*(R) satisfying a global Lipschitz condition, and o:R—
(0,00) two times continuously differentiable (slightly weaker conditions work). Let

G(y)z(ﬂ<f‘1<y>) a'<f1<y>>>2+ d(u(fl(y)) 0’(f1(y))>’

o(fy) 2 dy\o(f(y) 2

where f(y) = [{ 0(2) " dz. The diffusion has transition density function

p(y,t,x,s) =

o) eXp{—M +/m~yu(z) dz}

2nto(y)3 2 o(2)?

X E{exp [—% /OIG(r(f(y)—f(x)) + f(z) —i—x/i?(r)) dr] }
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EXERCISE 133 Calculate the transition density for the Ornstein-Uhlenbeck pro-

cess in Example 25.9, by means of the formula in Theorem 26.8.

Proof of Theorem 26.8 (for t small). Taking ji(x) = ﬁgjggg — U’(f_;(z)), we have

W p(z)dz v op(fH(2)dz v Ny [ o'(f1(z)) 3
/z 0(2)2  Jiw o(f(2)) _/fm)“( )d +/f(w) s ¢
) dz

Y ) 0'(z
= i(z) dz +/

~—

Hence, by Example 26.1, X solves the SDE (26.1), and has the indicated transition
density p(y,t,z,s), iff. Y=f(X) solves the SDE (26.3), and has transition density

(D)), o, 5) = Y7 xp -S| G

_ 1 e}q){_(y—f(a:))"’Jr y /l(z)dz}

Vvt 2t (@)
<Bfexp| 1 [ G(r(y=7@) + @)+ VEBE)) ]

Here G(y) = ji(y)?+ji'(y) is the function G in Theorem 26.8, evaluated for the
SDE (26.3). Notice that j€ C*(R), by assumptions imposed on x and o. From
this we conclude that it is enough to prove the theorem in the particular case when
o(x)=1, which is the one adressed subsequently:

The generator A = %Dg + () D, obviously is strongly elliptic. By Engelbert-
Schmidt theorem (Corollary 26.6) together with Section 20.1, the martingale problem
associated with A is well-posed. By Remark 22.5 together with Theorem 22.6, a tran-
sition density exists, and is given by p(y,t, z,s) = p(y, t+s, z, s), where p(y,T,z,s)
is a fundamental solution to the PDO D;+.A. Further, the Feynman-Kac formula is
in play. This means that the solution to the Cauchy problem

Ou(t, z)
ot

can be represented in the following two alternative ways

+ Au(z) =0  for (t,z)€ (0,7)xR, u(r,z) = f(z)

u(t,x) = B{f(X(r=t)} = [ ply.7—t,2,5) fy)dy  for fECo(R)

[where X is a solution to the SDE (26.1), with o(z)=1]. By Girsanov’s Theorem
(Theorem 19.1) and Example 18.4, we have that BM B?® solves the SDE (26.1), for
t€[0,7], under the probability measure
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P4} = E{IA exp{/OTp(B(r)) dB(r) - % /OTM(B(T))er}}.

From this, together with Baye’s rule (Lemma 19.2), we may now conclude that
fiptnt5.9) 160y = B 587D exo{ [ B0 a0) . [ w1}
= B{ s e [z an(r) - 5 [ opar

Writing U(x) = [ u(y) dy, It6’s formula shows that
AU (B*(t)) = w(B*(t)) dB*(t) + (1/2) /' (B* (1)) dt,
so that
U(B*(1) ) + / (B*(r)) dB®(r / W (B (r

Inserting in above findings, this gives that

J (w12, F(w) dy
= E{f(Bw(t)) exp{U(Bz(t)) -U(x)— ; (B dr — —/ w (B (r }}
- E{f(Bm(t)) exp{U(Bm - —/ G(B*(r }}

Conditioning on the value of B*(t), and noticing that B*(t) is independent of
B*(r)—(r/t)B*(t), this readily becomes

[ p(:t2,5) £() dy
- [ 1) {exp{ 1) -U() - & [ 6(B )= (/1B + (r/0)) dr}}pxx,y) dy

0

_/f {exp{/ (z)dz—%/OIG(BO(f"t)—fBO(t)+(1—f)x+fy)df}}pt(x,y)dy

0

_/f {exp{/ 11(z) dz_%/lg(\/i(go(f)—f30(1))+(1—f)a:+fy) df}}pt(m,y) dy

[using self-similarity of B° (Exercise 36) in the last step]. Hence Example 26.7 gives

Y
plont) =exp{ [ az} oo -5 [ G(VEBO)+ (1= 9) P,
which is the expression for the transition density in the theorem [when o(z)=1]. O

EXERCISE 134 In the proof of Theorem 26.8 we did not check that the process 2
in Girsanov’s Theorem really is a martingale: Show how Novikov’s Criterion (Corol-
lary 18.7), together with the Reflection Principle for BM, give this for ¢€[0,T] with
T >0 sufficiently small, using that |u(z)—u(B*(t))|* < K?B°(t)* < K?sup,., B°(t)?
for t€]0,T], for some constant K >0 (by Lipschitz continuity of ).
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A *Appendix. An Elementary Construction of BM

Theorem A.1 For each constant x€R, BM B* with B*(0)=x exist.

Proof. Tt is enough to show that B = B° exists, because then B+zx will do as
B”. For this, it is enough to show that there exists a zero-mean Gaussian stochastic
process B, with Cov{B(s),B(t)} = sAt, that is continuous a.s. Because then
we have Cov{B(r),B(t)—B(s)} = 0 for 0<r <s<t, so that increments are
uncorrelated with earlier process values, and thus independent of them, by Corollary
2.11. Further, B(t)—B(s) will be N(0, t—s)-distributed, as required.

Let &1,&,... be independent N(0, 1)-distributed random variables, and set

2

B(®) 2k+1

L-grgo-znj@ sin((2k+1)7t/2) & for t€[0,1]. (A.1)
k=0 T

By the Cauchy criterion for mean-square convergence, this limit is well-defined iff.

2

E{ (> V2 2 (k) /2) 6 - gﬂ M sin((2e+1)me2) &>2} o

o ™ 2k+1

as m,n— o00. However, this holds, since the mean on the left-hand side is

E{(k (mz\/n) V2 o2 Sin((2k+1)7rt/2)gk>2}: (ngn) 85in((2k+1)7rt/2)2'

=(mAn)+1 ™ 2k+1 k=(mAn)+1 7T2(2]€—|—1)2

By symmetry in (A.1), we have E{B(t)}=0. For the covariance, we notice that
[e.e]

4
2 w2 (2k+1)?

k=0

cos((2k+1)mt/2) = (1-[¢])/2  for te[-2,2]: (A.2)

By symmetry, it is enough to show (A.2) for ¢€[0,2]. For such ¢, (A.2) holds since
the left-hand side and right-hand side of (A.2) are continuous functions of ¢ (by basic

math), and, according to Mathematica, their one-sided Laplace transforms coincide:

k(1= Samplify[Sum[Integrate[4/ (Pi« (2+k + 1)) "2« Cos[{2+k + 1} v Paxt /2]
wExp[-x«t], {t. 0, 2)]. (k. 0, Infinity}]]
e 2" [l+u.=h: (=1 & %) +K]

Ot 1]= =
X

n[z]:= Simplify[Integrate[(l1/2-t/2) ~Exp[-x«t]. {t., 0, 2}]1]

e |:l+-1=25"! -1+ %X +K:|

2 xt

o2 ]=

Since Cov{:,-} commutes with mean-square limits, we have

Cov{B(s), B(t)}

V2 2 ) V2 2 )
= Cov{kz:‘; % ST sin((2k+1)ms/2) &, ez:% % YR sin((20+1)mt/2) {-“g}
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& 8sin((2k+1)ws/2) sin((2k+1)7t/2)
B ,;) 72 (2k+1)2

=3 m (cos((2k+1)m (s—1)/2) — cos((2k+1)m (s+1)/2)),

by the identity 2sin(x)sin(y) = cos(x—y) — cos(z+y). Hence (A.2) gives

Cov{B(s),B(t)} = (1—|t—s|)/2 — (1—|t+s|)/2 =sAt  for s,t€[0,1].

Moreover, B is Gaussian, since each linear combination of process values is a mean-

square limit of a sequence of univariate Gaussian random variables

; ) _— a; sin((2k+1)7t;/2 ) as m—oo
oauht) « 37 gy (S wsinhetmes2)
for ai,...,a,€R and n€N, so that the limit is also univariate Gaussian.

Finally, to prove that B is continuous with probability 1, we notice that
o0

2

P{ v2

T 2k+1

sin((2k+1)mt/2) & is continuous for t€]0, 1]}
k=0

oo 2ntl_2
2 2
> P{E Y — sin((2k+1)7wt/2) &, converges uniformly for ¢€(0, 1]}

T S e T 2k+1
>1- P{SUPte[o,l] | X, (t)]>2"™8 for infinitely many n}, (A.3)
where X, is the zero-mean Gaussian process given by
ontl_2 2
X, (t) = k:§717 TR sin((2k+1)7t/2) & for te€]0,1].

By the elementary identity sin(z)— sin(y) = 2 cos(*¥)sin(%¥), together with the
fact that |sin(z)| < |z|, we readily obtain

B{ (X, (t)— X, (s))2} = Z_ 32 coS((2k+1)7T(t+7;92)(/24]2+s1i;12((2k+1)7r(t—s)/4)

k=2n—-1
2n+1_2 _ 1/2
<y 16 [t—s|
w32 (2k+1)3/2

k=2"—1
16 27|t —s|1/?
= 73/2 (2n+1 _ 1)3/2 )

Using that X, is continuous and symmetric, with X,,(0)=0, it follows that

sn = P{sup;cpo 1) [Xn ()] >27"/%}

oo 2k—1

<2P{{J U (X2 0>27"

k=0 £=0

oo 2k—1

{U U {Xa@F)>2 /5 (14 (12" 1/8)z§:02—j/8)}}

k=0 £=0

| /\

2P{X,(0)>2"/* (14 (1-27"/%))}
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2k _1

+2ZP{ U {Xn@ ) > 275 (14 (1-278) 5k 2794)
k=1 =0
k—12m—1

N U { 2 M) <2 /8 1(1+(1 2 /8 m 19 1/8)}}

m=0 ¢=0
ok—1_1

<0+2)

P{ k(2041)) >27"/81 (1 +(1-2718%k 2—1/8),
k=1 £=0

Xn(2FH0) <27 (14 (1—27 /) kg 27978 }

<2%} P{X,(277(20+1)) - X, (27%20) > 27871 (1—271/8)2H/8}

2 gk—1_1 2—n/8= 1(1 2" 1/8)2—k/8
=23 P{ \/E{ (2 k(20 +1))— Xn(”%)y}}

00 92— n/8— 1(1_2 1/8)2 k/871'3/4 (2n—|—1_1)3/4
k
<Y 2 P{N(O,l) > Tong i .

Since Y%, S, < oo, the right-hand side of (A.3) is 1 by the Borel-Cantelli lemma.

m1]= £« Statistics' ComtimwonsDistributions'
k[Z]:= %1 = N[Table[ 2« Sqrt[2] / P1 » Random[NormalDastributiom[0, 1]1]. {2000}]1]:
m3= B= Tahle[Swn[xi[[k]] »Sin[(2+k + 1) »Pi«1/74000] 7 ¢2+k + 1), {k. 1, 2000)]. {1, 1. 2000}]:;

k[4)= ListPleot[B, Ticks - {{{1000, "0.5", 0.02), {2000, "1, 0.02}}, Antomatic},
AxesLabel - {"t", "B{t)"}, PlotLabel - " Brosmian Motiom", PlotJeined — True]

Bt Brownian Motion

outldl= = Graphics =

*Remark A.2 By the theory of Banach space-valued Gaussian random elements
[C([0,1]) in this case], a zero-mean continuous Gaussian stochastic process X, on the
unit-interval say, can be represented X (t) = 322, fx(¢) &k, with uniform convergence
and in mean-square, for some continuous functions {fx}?>, and independent N(0, 1)-
distributed random variables {£;}%°,. Switching to regard X as a IL2([0, 1])-valued
Gaussian random element, {f;}3, can be chosen as fi, = /A ex, where {fi}%2,
are eigen-functions of the covariance operator L2([0,1]) 3 f — [i E{X(-)X(r)}
f(r)dr € 1.2([0,1]), with corresponding eigen-values {\;}3°,. In the case of BM,
this becomes (A.1) (e.g., [1, Sections IIL.2-II1.3]). #
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B *Appendix. An Elementary Construction of PP

Proof of Theorem 4.4. It is enough to show that N = N is a PP started at zero,
because then N+z will do as N®. Since N is right-continuous by construction, for
this in turn, it is enough to prove that N has fidi’s

O o e S

1=2

for k1<...<k, in N and 0<t?¢;<...<t,. Because this gives
P{ﬂ{N(ri):ki}, N(t)—N(s)ze}
=1
=y P{ﬂ{N(ri):ki}, N(s)=F, N(t)=€+k}

" mfl b Q=) =) (=)
_Z (1;[2 (ki—k;_1)! ) (k—ky)! a °

_ ()\7“1) A(ri—ric)s750y (A (E=9)" ypes
T R (132 (ki—F1)! )e e

= ﬂ (N(r) =k} P{Po(A(t-5)) =)

for 0<k;<...<kp, £>1 and 0<r;<...<r,<s<t, where (sum over all k;’s on

both sides) P{Po(A(t—s)) = ¢} = P{N(t)— N(s) = £}, so that increments are

independenent (recall Theorem 1.15), stationary, and Poisson distributed, as required.
Write Ty = Y | &, and recall that T}, is gammal(k, )-distributed, so that

ktkfl
ef/\t

k— i
P{T;>t} = Z ();f) e M and fi(t) = %P{kat} = (k—1)!
i=0 v '

for t>0 and k>1. From this we get (B.1) for n=1, since

P{N(t)=k} = P{N(t) <k+1}—P{N(t) <k} = P{Tps1 >t} -P{T, >t} = (Akf)ke—”.

Notice that, having dealt with n=1 above, (B.1) is equivalent with
P{ N{N () :ki}} = P{N(t) =k} [[PIN(ti—ti 1) =ki—ki 1} (B.2)
i=1 i—2

for k1<...<k, and 0<t; <...<t,. Assume now that (B.2) holds for n=n-1>1,

and consider n=n. To prove (B.2) for n=n, is the same thing as proving that

P{ (t1) >k1,ﬂ{N <k}}

kz—zl 2k2—1 ks—1 ki—1 n
= Z Z Z z P{N(tl)zgl}HP{N(tZ—tZ_l):E,—El_l}
l1=k1 £a=k1 £3=L> Ci=Lh_1 1=2

for ki <ky<...<k;. However, by repeated integration by parts, we get
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P{N(t1 >k, ﬂ{N ) <k; }}

1=2

= P{Tkl <t, ﬂ{Tkl >tz}}
=2
11 n

{ﬂ{Tk k>t t}} fra (2) dt

/
/ {ﬂ{Nt—t)<k kl}}fkl(t)dt
[

4y ka— k1 1ks— Ic1 1 —k1—1 A
= Z P{ﬂ{N (t;—t) z,-}}f,cl(t) dt
£2=0 eg Oh=Lp_1
4 ka1 k3—1 ka—1
Y 0> P{N(t.—?) EQ—kl}HP{Nt—tz )=L;i—l;_1} fre,(t)dt
0 pomky 3=ty  lh=ly_1 i=3
ka—1 k3—1 kp—1 (t2_t)€2—k:1 tkl_l

= Z Z Z A2 —,\t2/t1 e (kl_l)!dtlng{N(ti—ti_l):fi—Ei—l}

lo—ky ba=0s  L—Ls_, 0
ko—1 ks—1 ki—1 ko—1 tf1 (t2—t1 ez 1 N

=3 Y 2 e 3 POVt =4t

lo=k1 3=L2 Lin=Lp 1

ko—1 ko—1 k3z—1 kp—1 [
= Z Z Z Z P{N(tl)zgl}HP{N(ti—ti—l)ZEi—fz’q}- O
li=k1 ly=ky L3=L> ba=ls_1 =2

in[1]= << Statistics' ComtimnonsDistributions' ;

in2]:= Jump = {N[Random] ExponentialDistribution[1]]1]);: Vhile[Last[Juwnp] < 10,
Jurp = Join[ Jurp, {Last[Juwnmp] +« N[Random [ ExponentialDistribution[1]1]1131]:

In[3]:= Heavyside[t_ ] := If[t:=0, 1, 0];

4= PR[t_] := Sum[Heavyside[t- Jump[[k]1]. (k. 1, Length[ Juwmp] }]

in[5]:= Plot[PP[t]. {t. 0, 10}, AxesLabel — {"t", "N{t}"}. PlotPoints » 140,
Plotlabel - * PP N(t) with lawbda-1 and N{0}=0"]

B(ty  pp met) with lambda=1 zad Wedysl

| -

2 4 £ g 1a

out[S]= - Graphics -
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C Appendix. Solution to Exercise 64

Pick a ¢>0. By assumption, the Lebesgue integral Y (w,t) = [ X (w,7)dr exists.
Writing Leb(-) for the Lebesgue measure on R, by definition, this means that at
least one of the limits ") (w) and I7)(w), as n— o0, of the increasing sequences

22n

I (w, 1) 22 (k—1) Leb({re[O,t]:X(w,r)E[Q"(k—l),?”k)})

and
0

POw= ¥ 2"kLeb({re[O,t]:X(w,r)ED"(k—l),Q"k)}),

k=—22n41

are finite. The value of the integral (possibly infinite) is

Y (w,t) = I (w, 1) = I (w, ) = limy 00 (IS (w, 1) = IS (w, 1)),

n

If X is progressively measurable, then we have
{(w,r)eQx[0,4]: X(w,r)€[27(k—1),27"k)} € FixB(0,4]) for keZ. (C.1)
This is the same thing as saying that the indicator

Ly p(w, ) = Ijam cox o : X(@7) e2-n(k-1)2-mk)} (W, T)

is a F; x B([0, t])-measurable function. By Fubini’s Theorem, it follows that

22n

I (w, ) — I8 / (Z 27" L p(w,r) — i 27"k Iy g (w, 7’)) dr

k=—22n41

is a Fp-measurable function (of we Q). This in turn shows that the limit Y (w,t) is
Fi-measurable, that is, adapted.

If X is not progressively measurable, but only measurable, we have
{(w,r) eQx[0,4]: X(w,r) €[27"(k—1),27"k)} € FxB([0,4])  for keZ.

Even if X is adapted, this is only a “univariate” property, regarding measurability
properties of X (w,t), as a function of weQ, for each ¢ at a time. We do not have
what we need [(C.1)] to be able to get adaptedness for Y by Fubini’s Theorem.

It is not true in general that Y is adapted, when X is not progressively measur-
able, but only measurable and adapted. What holds in this case is that there exists a
version Y of Y, that is adapted [the proof of which uses Theorem 8.7 and progressive
measurability as above (see the proof of Theorem 11.1)]. And one has to assume that

the filtration is augmented (Definition 2.20), to get adaptedness (see Exercise 66).
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D *Appendix. Selected further Martingale Proofs

Proof of Theorem 23.6.
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