CHALMERS | GOTEBORG UNIVERSITY

MASTER’S THESIS

On Semi-parametric Modelling
of Stock Prices with Lévy Processes

Ulrika Trolle

Department of Mathematical Statistics
CHALMERS UNIVERSITY OF TECHNOLOGY
GOTEBORG UNIVERSITY

Goteborg, Sweden 2005






Thesis for the Degree of Master of Science (20 credits)

On Semi-parametric Modelling of Stock Prices
with Lévy Processes

Ulrika Trolle

CHALMERS \ GOTEBORG UNIVERSITY

Department of Mathematical Statistics
Chalmers University of Technology and Goteborg University
SE — 41296 Goteborg, Sweden
Goteborg, September 2005






On Semi-parametric Modelling of Stock Prices with Lévy
Processes

Ulrika Trolle

28th September 2005

Abstract

In this paper we investigate a Lévy process model for logarithmic asset returns, called
Combined Gaussian and Multiple Poisson (Combined). This model consists of a Wiener
process combined with several rescaled and independent Poisson processes. In order to
see how well the model performed we compare it with two other Lévy processes models,
namely the Normal Inverse Gamma process (NIG) and the Variance Gamma process
(VG), as well as the Wiener process. In order to compare the models, we fitted them
to devolatilized logarithmic returns of empirical data from S&P 500 index and the ABB
stock, listed on the New York stock exchange. With the parameters obtained for the four
different models, we simulated new datasets. To these simulated datasets we once again
fitted the models. The performance of the models was investigated by calculating the
Kolmogorov-Smirnov distance.

1 Introduction

1.1 Background

When it comes to trying to find a good model for the stock price behaviour, there has been
a lot of focus on Lévy processes more general than the Wiener process. The reason for this
is among others that these processes can capture the fat tails and different kurtosis, that
empirical data of financial assets often show, in contrast to the Wiener process. Increments
of the Wiener process has a skewness equal to zero and kurtosis equal to three. Empirical
data often has a negative skewness and a higher kurtosis than three, see Schoutens [3].

1.2 Notations and Definitions

The Stock-Price Process The stock-price or other financial asset-price process will be
denoted S = {S;,t > 0}. We will work with the logarithmic asset returns, logS;. The
Bachelier-Samuelson model of the stock-price is given by

_ LAWY,
Sp = Seel T,

where i, A € R are parameters and W, is a Wiener process. The more general model we used

is the following
S = Spe™,

where X, is a Lévy Process. In this model the log increments, logS; ;s — logS;, have the same
distribution as the increments X;,, — X, of X.



Characteristic function In probability theory the characteristic function, ¢(u) is the
Fourier transform of the probability density function f(z), that is

o0

o) = Bl = [ o (o)

— 00

2 Lévy Processes

The Lévy processes we chose to compare our model with, were the Normal Inverse Gamma
(NIG) and the Variance Gamma (VG). NIG was suggested by Barndorff-Nielsen [1] and VG
was suggested by Madan, Carr and Chang [2], for use within mathematical finance.

2.1 Definition of a Lévy Process

If a stochastic process L = {L;,t > 0} satisfies the following conditions, then it is a Lévy
process.

L(0) =0 as.

L has independent increments, if 0 < ¢} < t9 <13 < ... <1y, then Ly ,L;, — Ly, Ly, —
Lyy,...,L;, — Ly, , are independent.

in

L has stationary increments, {L; s — Lg,t > 0} =p {Ly,t > 0} for s > 0.
L is stochastically continuous, limy,_,¢P[|X (¢t + h) — X (t)| > €] =0 for € > 0.

L is cadag i.e., it is right-contionuous for £ > 0 and has left limits for ¢ > 0.

2.2 Normal Inverse Gaussian NIG Process

The Normal Inverse Gaussian NIG process starts at zero and has stationary and independent
increments. The increments are NIG distributed. If X(N/G) = {X(NIG) t > 0} is a NIG

process, then Xt(NIm is NIG(«, S, td, p) distributed. The NIG(«, 8, d, p) distribution has
the following density function

K \VO2+ (z— p)?
= —exp (6v/a2 — B2 + B(z — 1(052+(T(T M)g) :

where z € R, p e R 6§ >0, a >0, 0 < |f| < a are parameters, and K is a modified Bessel
function of the third kind,

Inra(@; o, B, 6, 1)

b

Ky(z) = —/ e W N2 qy for 1 > 0.
0

The NIG(«, 8, d, p) distribution has the following characteristic function

dn1G(us e, B, 0, 1) = exp(6(v/ a2 + 2 — /a2 + (B +u)?) + pu).



2.3 Variance Gamma VG Process

The Variance Gamma (VG) process can be expressed as the difference between two indepen-

Gamma) _ {Xt(Gamma)

dent Gamma processes. The Gamma process X ( ,t > 0} starts in zero

and has independent and stationary increments. The increments are Gamma distributed,
that is Xt((;amma) is Gammoa(at, b) distributed. So if {X(¢),¢ € T'} and {Y (¢),t € T'} are two
Gamma processes, we can express a Variance Gamma density function in the following way,

fva(2) = fxi-v)(2) = / fx(z+ s)fy(s)ds,

where fx and fy are Gamma density functions. The Gamma density function is given by

a
fa(z;a,b) = ——2" L exp(—zb), z > 0.

(a)

2.4 Poisson Process

The Poisson process starts in zero and has independent and stationary increments. If X (") —=
{Xt(P),t > 0} is a Poisson process, then Xt(P) is Poisson(tA) distributed. The Poisson density

function is given by

eiAAm
flx) = ' forz =0,1,2,... and X > 0.
x!

The Poisson distribution has the following characteristic function
dp(u; ) = exp(A(exp(iu) — 1)).

2.5 Wiener process with drift

The Wiener process with drift starts in zero and has independent and stationary increments.
If W = {W;,t > 0} is a Wiener process with drift then W; is N(ut, 0?t) distributed. The
Normal density function, with mean 4 € R and variance 0? > 0 is given by

1 1(z —p)°
X

2mo 2 o

fN (‘/E/ g, ,U,) =
The N(u, 02) distribution has the following characteristic function

1
o (u; 0, ) = explipu — So™u?).

3 The Combined Gaussian and Multiple Poisson Process (Com-
bined)

We wanted to find a way to estimate the e Lévy measure. This was done by calculating an
approximation for the cummulant characteristic function. The approximation we estimated
is called Combined Gaussian and Multiple Poisson (Combined).

In probability theory the characteristic function ¢(u), is the Fourier transform of the
probability density function. The cumulant characteristic function ¥(u), is equal to the



logarithm of the characteristic function, that is ¥(u) = log ¢(u). The cumulant characteristic
function W(u) satisfies the Lévy-Khintchine formula, shown below, for all infinitely divisible

processes,
+o0o

1
U(u) = iyu — 37 o? 2—!—/ (exp(iur) — 1 —iuzlyy<1y)v(dz)
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where v € R, 02 > 0 and v is a measure on R\ {0}, such that

+o0
/ min{1,z?}r(dx) < oo .

— 00

So we have that for the Lévy process,

Ble""V] = ¢(u) = exp(¥(u))

1 oo
= exp(iyu — 502112 + / (exp(iur) — 1 —iuzly,<y)v(de))

— 00

1 oo
= exp(iyu — 502712) exp(/ (exp(iur) — 1 — iuzlyy<1y)v(dT)),

J =00

where we recognize exp(iyu — 02112) as the characteristic function of the Normal distribution.

If we approximate the Levy measure v with point masses, we get the following expression
n
point mass v = Z ard(x — by)
k=1
Then we can express
+00
/ (exp(iur) — 1 — iuzlyy <1y)v(dr)
J —0C

in the following way
n

Z(exp(iubk) — 1 —dubglyp, <1y)ak
k=1

n
= Z(exp(iubk) — 1ag — iuc
k=1
where ¢ € R is a constant.

If we study this expression we see that it is the characteristic functions of the sum of n
rescaled Poisson distributed variables, since ¢ ~1) is the characteristic function of a Poisson
distributed variable, plus the constant c.

The approximation for the characteristic function ¢(u), is then given by the product of
one characteristic function for the Normal distribution and several characteristic functions

for rescaled Poisson distributions, that is
exp(ipu — —0 u? Hexp ar (€™ — 1)),

as we can let the constant ¢ go into the constant pu.
The characteristic function of the Combined Gaussian and Multiple Poisson distribution
is then given by,

1 .
GCombined(W; Ty by @1y ooy Gy b1y oy by) = expipu — 502112) H exp(ag (™ —1)).
k



4 Method to estimate parameters and calculate goodness-of-
fit
4.1 Maximum Likelihood ML

The Maximum Likelihood method estimates the value of the parameters 0, associated with
a density function f that are the most likely given a random sample. Which means that if
T1,T9, ..., Ty 18 a sample from a distribution of a random variable X, with density function f
and parameters #, we want to find the 6 that maximizes the likelihood function below

1(6) = [ £(w:6).
i=1

4.2 Kolmogorov-Smirnov (KS)

The Kolmogorov-Smirnov distance is the maximum difference between the estimated distri-
bution function and the empirical distribution function.
The Kolmogorov-Smirnov test statistic D,,, is given by

D, = sup|F(z) — F,(z)],
T

where n is the sample size, F(T) is the fitted estimated cummulative ditribution function,
CDF and F,(z) is the empirical cammulative distribution function.

number of observations <

total number of observations

A useful formula to calculate the KS distance numerically is

Dy, = lglgag(maX{\(’i —1)/n—F(X@)lli/n — F(X@))),

where X(1) < X(9) < ... < X(;,) denotes the ordered data set.

Since we do not know the analytical expression for the Combined distribution function
or the Combined cumulative distribution function, we estimated the cumulative distribution
function by simulating 100000 observations of it and caculating the empirical distribution
function of the 100000 resulting data.

4.3 The Empirical Data
4.4 The Datasets

The empirical datasets that we fitted our four distributions parameters to were the S&P 500
Index and the ABB stock, listed on the New York stock exchange. The datasets were from
the time period between 18 March 2000 to 17 March 2005. The closing values from this period
were adjusted for dividends and splits. The logarithmic returns were then also devolatilized,
see below.



4.5 Devolatilization

We devolatilized the datasets by choosing a window size, 20. We then split the logarithmic
returns of our empirical datasets in bits of the window size. Then we calculated the standard
deviation, o1, 09, .., for each bit and the mean, o,,cq, of all of these standard deviations. The
standard deviations were then devided by this mean. The logarithmic returns in each bit of
the dataset were then divided by the o, /0mean-

The log returns used in all estimations presented in this paper are devolatilizated.

5 Parameter estimation

We fitted the parameters of the Normal Inverse Gamma, the Variance Gamma, the Normal
and the Combined Gaussian and Poisson distribution to the devolatilized logarithmic returns
of the two chosen datasets.

5.1 The estimated Normal parameters

Displayed below are the estimated parameters that we obtained for the Normal distribution,
when we fitted it to the two empirical datasets with the ML, method. We also calculated the
Kolmogorov-Smirnov distance for these parameters, the result is also shown below.

Asset 1 o KS
ABB -0.00115 | 0.0386 | 0.0341
S&P 500 | -0.000259 | 0.0114 | 0.0237

Table 1: The estimated parameters for the Normal distribution.

5.2 The estimated NIG parameters

Displayed below are the estimated parameters that we obtained for the Normal Inverse
Gamma distribution, when we fitted it to the two empirical datasets with the ML method.
We also calculated the Kolmogorov-Smirnov distance for these parameters, the result is also
shown below.

Asset o B ) ] KS
ABB 38.1 | -3.28 | 0.0563 | 0.00372 | 0.0218
S&P 500 | 21900 | 2630 | 2.79 -0.339 | 0.0238

Table 2: The estimated parameters for the NIG distribution.



5.3 The estimated VG parameters

Displayed below are the estimated parameters that we obtained for the Variance Gamma
distribution, when we fitted it to the two empirical datasets with the ML, method. We also
calculated the Kolmogorov-Smirnov distance for these parameters, the result is also shown
below.

Asset a b d KS
ABB 3.48 | 68.0 | 66.4 | 0.0246
S&P 500 | 2370 | 6030 | 6020 | 0.0237

Table 3: The estimated parameters for the VG distribution.

5.4 The estimated Combined Gaussian and Poisson parameters

To be able to estimate the parameters for the combined model, we inverse fourier transformed
the expression for its characteristic function numerically.

1 +oo .
fCombined (U o, 1, a, b) = % / Qb(?ombined (’LL o, K, a, b) eXp(IUt)du
J—oo

1 [t 1 :
= — / exp(ips — —02s?) Hexp(ai(eﬂﬂb“” — 1)) exp(iut)du.
21 | 2 ;

We then fitted it to the two empirical datasets, with the ML method. The estimation was
done in steps. First we maximized for the parameters p, o, a; and by. When this was done
we kept by as fixed. In the next step we maximized the parameters u, o, a1, as and by. Then
we kept both by, by as fixed and so on. This was done up to ten times. We also calculated
the Kolmogorov-Smirnov distance. The results are displayed below.

Asset KS
ABB 0.0199
S&P 500 | 0.0210

Table 4: The calculated KS-distance for Combined.



6 Simulations with the estimated parameters

When the parameters for the four distributions were fitted to the two empirical datasets,
ABB stock and S&P 500 index, we simulated eight datasets, one for each set of obtained
parameters.

6.1 Simulating Normal Inverse Gamma and Variance Gamma distributed
data

When we simulated the Normal Inverse Gamma and the Variance Gamma distributed data,
we used the fact that,

If F is a distribution function and ¢ is a random number uniformly distributet on [0,1],
then n = F~1(¢) is a variable with distribution function F, = P{n < z} = F(z).

This means that

/OO Fol)dy = ¢

7 Cross estimations of the distributions parameters

When we had simulated the eight data sets, we wanted to see how well the distributions
would perform on data that was otherwise distributed. In order to do this we estimated the
parameters for all four of the distributions to all eight of the simulated data sets.

7.1 Estimated parameters for the Normal distribution on simulated data

The Normal distribution’s parameters were estimated for the eight simulated data sets. Shown
below are the results and also the calculated Kolmogorov-Smirnov distance for these param-
eters.

Simulated distribution ] o KS

Normal -0.00282 | 0.0399 | 0.0145
NIG -0.000928 | 0.0378 | 0.0340
VG -0.00214 | 0.0386 | 0.0353
Combined -0.0494 | 0.0713 | 0.0288

Table 5: The estimated parameters for Normal distribution on data sets simulated with the
parameters obtained from the ABB stock.



Table 6: The estimated parameters for Normal distribution on data sets simulated with the

7.2 Estimated parameters for the NIG distribution on simulated data

We fitted the parameters of the Normal Inverse Gamma distribution to the eight simulated
data sets. Shown below are the obtained parameters and also the calculated Kolmogorov-

Simulated distribution ] o KS

Normal -0.000362 | 0.0113 | 0.0218
NIG -0.000484 | 0.0115 | 0.0210
VG -0.000852 | 0.0115 | 0.0121
Combined -0.0395 | 0.0488 | 0.0234

parameters obtained from the S&P 500 Index.

Smirnov distance for these parameters.

Simulated distribution | « B ) 7 KS

Normal 391 | -57.1 | 0.602 0.0861 | 0.0126
NIG 42.6 | -3.87 | 0.0604 | 0.00459 | 0.0128
VG 41.5 | -0.960 | 0.0622 | 0.000698 | 0.0192
Combined 499 | -430 | 0.336 0.518 0.0218

Table 7: The estimated parameters for NIG distribution on data sets simulated with the

parameters obtained from the ABB stock.

Simulated distribution o B ) 7 KS

Normal 4620 | -96.5 | 0.589 | 0.0120 | 0.0218
NIG 5990 | -82.5 | 0.794 | 0.0105 | 0.0210
VG 12200 | -551 | 1.61 | 0.0730 | 0.0169
Combined 240 | -55.5 | 0.525 | 0.0855 | 0.0230

parameters obtained from the S&P 500 Index.

these parameters.

Table 9: The estimated parameters for VG distribution on data sets simulated with the

Table 8: The estimated parameters for NIG distribution on data sets simulated with the

7.3 Estimated parameters for the VG distribution on simulated data

We fitted the parameters of the Variance Gamma distribution to the eight simulated data
sets. Shown below are the results and also the calculated Kolmogorov-Smirnov distances for

Simulated distribution a b d KS

Normal 138 | 419 | 415 | 0.0142
NIG 2.78 | 62.9 | 61.6 | 0.0154
VG 2.91 | 63.9 | 63.9 | 0.0177
Combined 7.36 | 67.0 | 46.2 | 0.0178

parameters obtained from the ABB stock.



Simulated distribution a b d KS

Normal 5700 | 9460 | 9450 | 0.0218
NIG 315 2170 | 2170 | 0.0206
VG 14800 | 14900 | 14900 | 0.0169
Combined 42.3 208 174 | 0.0221

Table 10: The estimated parameters for VG distribution on data sets simulated with the
parameters obtained from the S&P 500 Index.

7.4 Results for the Combined distribution on simulated data

The Combined Gaussian and Poisson distribution’s parameters were estimated for the eight
simulated data sets in the same way as with the original datasets. Shown below are the results
and also calculated the Kolmogorov-Smirnov distances for these parameters.

Simulated distribution KS

Normal 0.0118
NIG 0.0120
VG 0.0194
Combined 0.0158

Table 11: The calculated KS-distance for the Combined distribution on data sets simulated
with the parameters obtained from the ABB stock.

Simulated distribution KS

Normal 0.0208
NIG 0.0206
VG 0.0105
Combined 0.0213

Table 12: The calculated KS-distance for the Combined distribution on data sets simulated
with the parameters obtained from the ABB stock.

8 Results and Conclusions

We could see that the Combined model performed very well. In both the case with the two
devolatilized empirical data sets and the case with the simulated data sets, it had either the
smallest KS-distance or equally small as the smallest of the others, with one exeption. VG got
a smaller KS-distance on the VG distributed simulated data, with the parameters obtained
for the ABB stock.
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