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On Semi-parametri Modelling of Stok Pries with L�evyProessesUlrika Trolle28th September 2005AbstratIn this paper we investigate a L�evy proess model for logarithmi asset returns, alledCombined Gaussian and Multiple Poisson (Combined). This model onsists of a Wienerproess ombined with several resaled and independent Poisson proesses. In order tosee how well the model performed we ompare it with two other L�evy proesses models,namely the Normal Inverse Gamma proess (NIG) and the Variane Gamma proess(VG), as well as the Wiener proess. In order to ompare the models, we �tted themto devolatilized logarithmi returns of empirial data from S&P 500 index and the ABBstok, listed on the New York stok exhange. With the parameters obtained for the fourdi�erent models, we simulated new datasets. To these simulated datasets we one again�tted the models. The performane of the models was investigated by alulating theKolmogorov-Smirnov distane.1 Introdution1.1 BakgroundWhen it omes to trying to �nd a good model for the stok prie behaviour, there has beena lot of fous on L�evy proesses more general than the Wiener proess. The reason for thisis among others that these proesses an apture the fat tails and di�erent kurtosis, thatempirial data of �nanial assets often show, in ontrast to the Wiener proess. Inrementsof the Wiener proess has a skewness equal to zero and kurtosis equal to three. Empirialdata often has a negative skewness and a higher kurtosis than three, see Shoutens [3℄.1.2 Notations and De�nitionsThe Stok-Prie Proess The stok-prie or other �nanial asset-prie proess will bedenoted S = fSt; t � 0g. We will work with the logarithmi asset returns, logSt. TheBahelier-Samuelson model of the stok-prie is given bySt = S0e�t+�Wt ;where �; � 2 R are parameters and Wt is a Wiener proess. The more general model we usedis the following St = S0eXt ;where Xt is a L�evy Proess. In this model the log inrements, logSt+s� logSt, have the samedistribution as the inrements Xt+s �Xs of X.1



Charateristi funtion In probability theory the harateristi funtion, �(u) is theFourier transform of the probability density funtion f(x), that is�(u) = E[eiuX ℄ = Z 1�1 eiuxf(x)dx .2 L�evy ProessesThe L�evy proesses we hose to ompare our model with, were the Normal Inverse Gamma(NIG) and the Variane Gamma (VG). NIG was suggested by Barndor�-Nielsen [1℄ and VGwas suggested by Madan, Carr and Chang [2℄, for use within mathematial �nane.2.1 De�nition of a L�evy ProessIf a stohasti proess L = fLt; t � 0g satis�es the following onditions, then it is a L�evyproess.L(0) = 0 a.s.L has independent inrements, if 0 < t1 < t2 < t3 < ::: < tn, then Lt1 ; Lt2 � Lt1 ; Lt3 �Lt2 ; :::; Ltn � Ltn�1 are independent.L has stationary inrements, fLt+s � Ls; t � 0g =D fLt; t � 0g for s � 0.L is stohastially ontinuous, limh!0P[jX(t + h)�X(t)j > "℄ = 0 for " > 0.L is �ad�ag i.e., it is right-ontionuous for t � 0 and has left limits for t > 0.2.2 Normal Inverse Gaussian NIG ProessThe Normal Inverse Gaussian NIG proess starts at zero and has stationary and independentinrements. The inrements are NIG distributed. If X(NIG) = fX(NIG)t ; t � 0g is a NIGproess, then X(NIG)t is NIG(�, �, tÆ, �) distributed. The NIG(�, �, Æ, �) distribution hasthe following density funtionfNIG(x;�; �; Æ; �) = �Æ� exp(Æp�2 � �2 + �(x� �))K1(�pÆ2 + (x� �)2)pÆ2 + (x� �)2 ;where x 2 R, � 2 R, Æ > 0, � > 0, 0 � j�j � � are parameters, and K is a modi�ed Besselfuntion of the third kind,K�(x) = 12 Z 10 y��1e�x(y�1=y)=2dy for x > 0:The NIG(�, �, Æ, �) distribution has the following harateristi funtion�NIG(u;�; �; Æ; �) = exp(Æ(p�2 + �2 �p�2 + (� + u)2) + �u).
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2.3 Variane Gamma VG ProessThe Variane Gamma (VG) proess an be expressed as the di�erene between two indepen-dent Gamma proesses. The Gamma proess X(Gamma) = fX(Gamma)t ; t � 0g starts in zeroand has independent and stationary inrements. The inrements are Gamma distributed,that is X(Gamma)t is Gamma(at; b) distributed. So if fX(t); t 2 Tg and fY (t); t 2 Tg are twoGamma proesses, we an express a Variane Gamma density funtion in the following way,fV G(z) = fX+(�Y )(z) = Z 1�1 fX(z + s)fY (s)ds,where fX and fY are Gamma density funtions. The Gamma density funtion is given byfG(x; a; b) = ba�(a)xa�1 exp(�xb), x > 0:2.4 Poisson ProessThe Poisson proess starts in zero and has independent and stationary inrements. If X(P ) =fX(P )t ; t � 0g is a Poisson proess, then X(P )t is Poisson(t�) distributed. The Poisson densityfuntion is given by f(x) = e���xx! for x = 0; 1; 2; ::: and � > 0:The Poisson distribution has the following harateristi funtion�P (u;�) = exp(�(exp(iu)� 1)).2.5 Wiener proess with driftThe Wiener proess with drift starts in zero and has independent and stationary inrements.If W = fWt; t � 0g is a Wiener proess with drift then Wt is N(�t, �2t) distributed. TheNormal density funtion, with mean � 2 R and variane �2 > 0 is given byfN (x;�; �) = 1p2�� exp(�12 (x� �)� 2).The N(�, �2) distribution has the following harateristi funtion�N (u;�; �) = exp(i�u� 12�2u2).3 The Combined Gaussian andMultiple Poisson Proess (Com-bined)We wanted to �nd a way to estimate the e L�evy measure. This was done by alulating anapproximation for the ummulant harateristi funtion. The approximation we estimatedis alled Combined Gaussian and Multiple Poisson (Combined).In probability theory the harateristi funtion �(u), is the Fourier transform of theprobability density funtion. The umulant harateristi funtion 	(u), is equal to the3



logarithm of the harateristi funtion, that is 	(u) = log �(u). The umulant harateristifuntion 	(u) satis�es the L�evy-Khinthine formula, shown below, for all in�nitely divisibleproesses, 	(u) = iu� 12�2u2 + Z +1�1 (exp(iux)� 1� iux1fjxj<1g)�(dx)where  2 R, �2 � 0 and � is a measure on R n f0g, suh thatZ +1�1 minf1; x2g�(dx) <1 .So we have that for the L�evy proess,E[eiuL(1)℄ = �(u) = exp(	(u))= exp(iu� 12�2u2 + Z +1�1 (exp(iux)� 1� iux1fjxj<1g)�(dx))= exp(iu� 12�2u2) exp(Z +1�1 (exp(iux)� 1� iux1fjxj<1g)�(dx));where we reognize exp(iu� 12�2u2) as the harateristi funtion of the Normal distribution.If we approximate the L�evy measure � with point masses, we get the following expressionpoint mass � = nXk=1 akÆ(x� bk)Then we an express Z +1�1 (exp(iux)� 1� iux1fjxj<1g)�(dx)in the following way nXk=1(exp(iubk)� 1� iubk1fjbkj<1g)ak= nXk=1(exp(iubk)� 1)ak � iuwhere  2 R is a onstant.If we study this expression we see that it is the harateristi funtions of the sum of nresaled Poisson distributed variables, sine e�(eiu�1) is the harateristi funtion of a Poissondistributed variable, plus the onstant .The approximation for the harateristi funtion �(u), is then given by the produt ofone harateristi funtion for the Normal distribution and several harateristi funtionsfor resaled Poisson distributions, that isexp(i�u� 12�2u2)Yk exp(ak(eiubk � 1));as we an let the onstant  go into the onstant �.The harateristi funtion of the Combined Gaussian and Multiple Poisson distributionis then given by,�Combined(u;�; �; a1; :::; an; b1; :::; bn) = exp(i�u� 12�2u2)Yk exp(ak(eiubk � 1)).4



4 Method to estimate parameters and alulate goodness-of-�t4.1 Maximum Likelihood MLThe Maximum Likelihood method estimates the value of the parameters �, assoiated witha density funtion f that are the most likely given a random sample. Whih means that ifx1; x2; :::; xn is a sample from a distribution of a random variable X, with density funtion fand parameters �, we want to �nd the � that maximizes the likelihood funtion belowL(�) = nYi=1 f(xi; �).4.2 Kolmogorov-Smirnov (KS)The Kolmogorov-Smirnov distane is the maximum di�erene between the estimated distri-bution funtion and the empirial distribution funtion.The Kolmogorov-Smirnov test statisti Dn, is given byDn = supx jF̂ (x)� Fn(x)j;where n is the sample size, F̂ (x) is the �tted estimated ummulative ditribution funtion,CDF and Fn(x) is the empirial ummulative distribution funtion.Fn(x) = number of observations � xtotal number of observations :A useful formula to alulate the KS distane numerially isDn = maxi�n (maxfj(i � 1)=n� F̂ (X(i))j; ji=n� F̂ (X(i))jg);where X(1) � X(2) � ::: � X(n) denotes the ordered data set.Sine we do not know the analytial expression for the Combined distribution funtionor the Combined umulative distribution funtion, we estimated the umulative distributionfuntion by simulating 100000 observations of it and aulating the empirial distributionfuntion of the 100000 resulting data.4.3 The Empirial Data4.4 The DatasetsThe empirial datasets that we �tted our four distributions parameters to were the S&P 500Index and the ABB stok, listed on the New York stok exhange. The datasets were fromthe time period between 18 Marh 2000 to 17 Marh 2005. The losing values from this periodwere adjusted for dividends and splits. The logarithmi returns were then also devolatilized,see below.
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4.5 DevolatilizationWe devolatilized the datasets by hoosing a window size, 20. We then split the logarithmireturns of our empirial datasets in bits of the window size. Then we alulated the standarddeviation, �1; �2; ::, for eah bit and the mean, �mean of all of these standard deviations. Thestandard deviations were then devided by this mean. The logarithmi returns in eah bit ofthe dataset were then divided by the �n=�mean.The log returns used in all estimations presented in this paper are devolatilizated.5 Parameter estimationWe �tted the parameters of the Normal Inverse Gamma, the Variane Gamma, the Normaland the Combined Gaussian and Poisson distribution to the devolatilized logarithmi returnsof the two hosen datasets.5.1 The estimated Normal parametersDisplayed below are the estimated parameters that we obtained for the Normal distribution,when we �tted it to the two empirial datasets with the ML method. We also alulated theKolmogorov-Smirnov distane for these parameters, the result is also shown below.Asset � � KSABB -0.00115 0.0386 0.0341S&P 500 -0.000259 0.0114 0.0237Table 1: The estimated parameters for the Normal distribution.5.2 The estimated NIG parametersDisplayed below are the estimated parameters that we obtained for the Normal InverseGamma distribution, when we �tted it to the two empirial datasets with the ML method.We also alulated the Kolmogorov-Smirnov distane for these parameters, the result is alsoshown below. Asset � � Æ � KSABB 38.1 -3.28 0.0563 0.00372 0.0218S&P 500 21900 2630 2.79 -0.339 0.0238Table 2: The estimated parameters for the NIG distribution.
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5.3 The estimated VG parametersDisplayed below are the estimated parameters that we obtained for the Variane Gammadistribution, when we �tted it to the two empirial datasets with the ML method. We alsoalulated the Kolmogorov-Smirnov distane for these parameters, the result is also shownbelow. Asset a b d KSABB 3.48 68.0 66.4 0.0246S&P 500 2370 6030 6020 0.0237Table 3: The estimated parameters for the VG distribution.5.4 The estimated Combined Gaussian and Poisson parametersTo be able to estimate the parameters for the ombined model, we inverse fourier transformedthe expression for its harateristi funtion numerially.fCombined(u;�; �; a; b) = 12� Z +1�1 �Combined(u;�; �; a; b) exp(iut)du= 12� Z +1�1 exp(i�s� 12�2s2)Yl exp(ai(ei2�biu � 1)) exp(iut)du.We then �tted it to the two empirial datasets, with the ML method. The estimation wasdone in steps. First we maximized for the parameters �, �, a1 and b1. When this was donewe kept b1 as �xed. In the next step we maximized the parameters �, �, a1, a2 and b2. Thenwe kept both b1, b2 as �xed and so on. This was done up to ten times. We also alulatedthe Kolmogorov-Smirnov distane. The results are displayed below.Asset KSABB 0.0199S&P 500 0.0210Table 4: The alulated KS-distane for Combined.
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6 Simulations with the estimated parametersWhen the parameters for the four distributions were �tted to the two empirial datasets,ABB stok and S&P 500 index, we simulated eight datasets, one for eah set of obtainedparameters.6.1 Simulating Normal Inverse Gamma and Variane Gamma distributeddataWhen we simulated the Normal Inverse Gamma and the Variane Gamma distributed data,we used the fat that,If F is a distribution funtion and � is a random number uniformly distributet on [0,1℄,then � = F�1(�) is a variable with distribution funtion F� = Pf� � xg = F (x).This means that Z x�1 f�(y)dy = �x = F�1� (�)7 Cross estimations of the distributions parametersWhen we had simulated the eight data sets, we wanted to see how well the distributionswould perform on data that was otherwise distributed. In order to do this we estimated theparameters for all four of the distributions to all eight of the simulated data sets.7.1 Estimated parameters for the Normal distribution on simulated dataThe Normal distribution's parameters were estimated for the eight simulated data sets. Shownbelow are the results and also the alulated Kolmogorov-Smirnov distane for these param-eters. Simulated distribution � � KSNormal -0.00282 0.0399 0.0145NIG -0.000928 0.0378 0.0340VG -0.00214 0.0386 0.0353Combined -0.0494 0.0713 0.0288Table 5: The estimated parameters for Normal distribution on data sets simulated with theparameters obtained from the ABB stok.
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Simulated distribution � � KSNormal -0.000362 0.0113 0.0218NIG -0.000484 0.0115 0.0210VG -0.000852 0.0115 0.0121Combined -0.0395 0.0488 0.0234Table 6: The estimated parameters for Normal distribution on data sets simulated with theparameters obtained from the S&P 500 Index.7.2 Estimated parameters for the NIG distribution on simulated dataWe �tted the parameters of the Normal Inverse Gamma distribution to the eight simulateddata sets. Shown below are the obtained parameters and also the alulated Kolmogorov-Smirnov distane for these parameters.Simulated distribution � � Æ � KSNormal 391 -57.1 0.602 0.0861 0.0126NIG 42.6 -3.87 0.0604 0.00459 0.0128VG 41.5 -0.960 0.0622 0.000698 0.0192Combined 499 -430 0.336 0.518 0.0218Table 7: The estimated parameters for NIG distribution on data sets simulated with theparameters obtained from the ABB stok.Simulated distribution � � Æ � KSNormal 4620 -96.5 0.589 0.0120 0.0218NIG 5990 -82.5 0.794 0.0105 0.0210VG 12200 -551 1.61 0.0730 0.0169Combined 240 -55.5 0.525 0.0855 0.0230Table 8: The estimated parameters for NIG distribution on data sets simulated with theparameters obtained from the S&P 500 Index.7.3 Estimated parameters for the VG distribution on simulated dataWe �tted the parameters of the Variane Gamma distribution to the eight simulated datasets. Shown below are the results and also the alulated Kolmogorov-Smirnov distanes forthese parameters. Simulated distribution a b d KSNormal 138 419 415 0.0142NIG 2.78 62.9 61.6 0.0154VG 2.91 63.9 63.9 0.0177Combined 7.36 67.0 46.2 0.0178Table 9: The estimated parameters for VG distribution on data sets simulated with theparameters obtained from the ABB stok.9



Simulated distribution a b d KSNormal 5700 9460 9450 0.0218NIG 315 2170 2170 0.0206VG 14800 14900 14900 0.0169Combined 42.3 208 174 0.0221Table 10: The estimated parameters for VG distribution on data sets simulated with theparameters obtained from the S&P 500 Index.7.4 Results for the Combined distribution on simulated dataThe Combined Gaussian and Poisson distribution's parameters were estimated for the eightsimulated data sets in the same way as with the original datasets. Shown below are the resultsand also alulated the Kolmogorov-Smirnov distanes for these parameters.Simulated distribution KSNormal 0.0118NIG 0.0120VG 0.0194Combined 0.0158Table 11: The alulated KS-distane for the Combined distribution on data sets simulatedwith the parameters obtained from the ABB stok.Simulated distribution KSNormal 0.0208NIG 0.0206VG 0.0105Combined 0.0213Table 12: The alulated KS-distane for the Combined distribution on data sets simulatedwith the parameters obtained from the ABB stok.8 Results and ConlusionsWe ould see that the Combined model performed very well. In both the ase with the twodevolatilized empirial data sets and the ase with the simulated data sets, it had either thesmallest KS-distane or equally small as the smallest of the others, with one exeption. VG gota smaller KS-distane on the VG distributed simulated data, with the parameters obtainedfor the ABB stok..
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