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On Semi-parametri
 Modelling of Sto
k Pri
es with L�evyPro
essesUlrika Trolle28th September 2005Abstra
tIn this paper we investigate a L�evy pro
ess model for logarithmi
 asset returns, 
alledCombined Gaussian and Multiple Poisson (Combined). This model 
onsists of a Wienerpro
ess 
ombined with several res
aled and independent Poisson pro
esses. In order tosee how well the model performed we 
ompare it with two other L�evy pro
esses models,namely the Normal Inverse Gamma pro
ess (NIG) and the Varian
e Gamma pro
ess(VG), as well as the Wiener pro
ess. In order to 
ompare the models, we �tted themto devolatilized logarithmi
 returns of empiri
al data from S&P 500 index and the ABBsto
k, listed on the New York sto
k ex
hange. With the parameters obtained for the fourdi�erent models, we simulated new datasets. To these simulated datasets we on
e again�tted the models. The performan
e of the models was investigated by 
al
ulating theKolmogorov-Smirnov distan
e.1 Introdu
tion1.1 Ba
kgroundWhen it 
omes to trying to �nd a good model for the sto
k pri
e behaviour, there has beena lot of fo
us on L�evy pro
esses more general than the Wiener pro
ess. The reason for thisis among others that these pro
esses 
an 
apture the fat tails and di�erent kurtosis, thatempiri
al data of �nan
ial assets often show, in 
ontrast to the Wiener pro
ess. In
rementsof the Wiener pro
ess has a skewness equal to zero and kurtosis equal to three. Empiri
aldata often has a negative skewness and a higher kurtosis than three, see S
houtens [3℄.1.2 Notations and De�nitionsThe Sto
k-Pri
e Pro
ess The sto
k-pri
e or other �nan
ial asset-pri
e pro
ess will bedenoted S = fSt; t � 0g. We will work with the logarithmi
 asset returns, logSt. TheBa
helier-Samuelson model of the sto
k-pri
e is given bySt = S0e�t+�Wt ;where �; � 2 R are parameters and Wt is a Wiener pro
ess. The more general model we usedis the following St = S0eXt ;where Xt is a L�evy Pro
ess. In this model the log in
rements, logSt+s� logSt, have the samedistribution as the in
rements Xt+s �Xs of X.1



Chara
teristi
 fun
tion In probability theory the 
hara
teristi
 fun
tion, �(u) is theFourier transform of the probability density fun
tion f(x), that is�(u) = E[eiuX ℄ = Z 1�1 eiuxf(x)dx .2 L�evy Pro
essesThe L�evy pro
esses we 
hose to 
ompare our model with, were the Normal Inverse Gamma(NIG) and the Varian
e Gamma (VG). NIG was suggested by Barndor�-Nielsen [1℄ and VGwas suggested by Madan, Carr and Chang [2℄, for use within mathemati
al �nan
e.2.1 De�nition of a L�evy Pro
essIf a sto
hasti
 pro
ess L = fLt; t � 0g satis�es the following 
onditions, then it is a L�evypro
ess.L(0) = 0 a.s.L has independent in
rements, if 0 < t1 < t2 < t3 < ::: < tn, then Lt1 ; Lt2 � Lt1 ; Lt3 �Lt2 ; :::; Ltn � Ltn�1 are independent.L has stationary in
rements, fLt+s � Ls; t � 0g =D fLt; t � 0g for s � 0.L is sto
hasti
ally 
ontinuous, limh!0P[jX(t + h)�X(t)j > "℄ = 0 for " > 0.L is 
�ad�ag i.e., it is right-
ontionuous for t � 0 and has left limits for t > 0.2.2 Normal Inverse Gaussian NIG Pro
essThe Normal Inverse Gaussian NIG pro
ess starts at zero and has stationary and independentin
rements. The in
rements are NIG distributed. If X(NIG) = fX(NIG)t ; t � 0g is a NIGpro
ess, then X(NIG)t is NIG(�, �, tÆ, �) distributed. The NIG(�, �, Æ, �) distribution hasthe following density fun
tionfNIG(x;�; �; Æ; �) = �Æ� exp(Æp�2 � �2 + �(x� �))K1(�pÆ2 + (x� �)2)pÆ2 + (x� �)2 ;where x 2 R, � 2 R, Æ > 0, � > 0, 0 � j�j � � are parameters, and K is a modi�ed Besselfun
tion of the third kind,K�(x) = 12 Z 10 y��1e�x(y�1=y)=2dy for x > 0:The NIG(�, �, Æ, �) distribution has the following 
hara
teristi
 fun
tion�NIG(u;�; �; Æ; �) = exp(Æ(p�2 + �2 �p�2 + (� + u)2) + �u).
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2.3 Varian
e Gamma VG Pro
essThe Varian
e Gamma (VG) pro
ess 
an be expressed as the di�eren
e between two indepen-dent Gamma pro
esses. The Gamma pro
ess X(Gamma) = fX(Gamma)t ; t � 0g starts in zeroand has independent and stationary in
rements. The in
rements are Gamma distributed,that is X(Gamma)t is Gamma(at; b) distributed. So if fX(t); t 2 Tg and fY (t); t 2 Tg are twoGamma pro
esses, we 
an express a Varian
e Gamma density fun
tion in the following way,fV G(z) = fX+(�Y )(z) = Z 1�1 fX(z + s)fY (s)ds,where fX and fY are Gamma density fun
tions. The Gamma density fun
tion is given byfG(x; a; b) = ba�(a)xa�1 exp(�xb), x > 0:2.4 Poisson Pro
essThe Poisson pro
ess starts in zero and has independent and stationary in
rements. If X(P ) =fX(P )t ; t � 0g is a Poisson pro
ess, then X(P )t is Poisson(t�) distributed. The Poisson densityfun
tion is given by f(x) = e���xx! for x = 0; 1; 2; ::: and � > 0:The Poisson distribution has the following 
hara
teristi
 fun
tion�P (u;�) = exp(�(exp(iu)� 1)).2.5 Wiener pro
ess with driftThe Wiener pro
ess with drift starts in zero and has independent and stationary in
rements.If W = fWt; t � 0g is a Wiener pro
ess with drift then Wt is N(�t, �2t) distributed. TheNormal density fun
tion, with mean � 2 R and varian
e �2 > 0 is given byfN (x;�; �) = 1p2�� exp(�12 (x� �)� 2).The N(�, �2) distribution has the following 
hara
teristi
 fun
tion�N (u;�; �) = exp(i�u� 12�2u2).3 The Combined Gaussian andMultiple Poisson Pro
ess (Com-bined)We wanted to �nd a way to estimate the e L�evy measure. This was done by 
al
ulating anapproximation for the 
ummulant 
hara
teristi
 fun
tion. The approximation we estimatedis 
alled Combined Gaussian and Multiple Poisson (Combined).In probability theory the 
hara
teristi
 fun
tion �(u), is the Fourier transform of theprobability density fun
tion. The 
umulant 
hara
teristi
 fun
tion 	(u), is equal to the3



logarithm of the 
hara
teristi
 fun
tion, that is 	(u) = log �(u). The 
umulant 
hara
teristi
fun
tion 	(u) satis�es the L�evy-Khint
hine formula, shown below, for all in�nitely divisiblepro
esses, 	(u) = i
u� 12�2u2 + Z +1�1 (exp(iux)� 1� iux1fjxj<1g)�(dx)where 
 2 R, �2 � 0 and � is a measure on R n f0g, su
h thatZ +1�1 minf1; x2g�(dx) <1 .So we have that for the L�evy pro
ess,E[eiuL(1)℄ = �(u) = exp(	(u))= exp(i
u� 12�2u2 + Z +1�1 (exp(iux)� 1� iux1fjxj<1g)�(dx))= exp(i
u� 12�2u2) exp(Z +1�1 (exp(iux)� 1� iux1fjxj<1g)�(dx));where we re
ognize exp(i
u� 12�2u2) as the 
hara
teristi
 fun
tion of the Normal distribution.If we approximate the L�evy measure � with point masses, we get the following expressionpoint mass � = nXk=1 akÆ(x� bk)Then we 
an express Z +1�1 (exp(iux)� 1� iux1fjxj<1g)�(dx)in the following way nXk=1(exp(iubk)� 1� iubk1fjbkj<1g)ak= nXk=1(exp(iubk)� 1)ak � iu
where 
 2 R is a 
onstant.If we study this expression we see that it is the 
hara
teristi
 fun
tions of the sum of nres
aled Poisson distributed variables, sin
e e�(eiu�1) is the 
hara
teristi
 fun
tion of a Poissondistributed variable, plus the 
onstant 
.The approximation for the 
hara
teristi
 fun
tion �(u), is then given by the produ
t ofone 
hara
teristi
 fun
tion for the Normal distribution and several 
hara
teristi
 fun
tionsfor res
aled Poisson distributions, that isexp(i�u� 12�2u2)Yk exp(ak(eiubk � 1));as we 
an let the 
onstant 
 go into the 
onstant �.The 
hara
teristi
 fun
tion of the Combined Gaussian and Multiple Poisson distributionis then given by,�Combined(u;�; �; a1; :::; an; b1; :::; bn) = exp(i�u� 12�2u2)Yk exp(ak(eiubk � 1)).4



4 Method to estimate parameters and 
al
ulate goodness-of-�t4.1 Maximum Likelihood MLThe Maximum Likelihood method estimates the value of the parameters �, asso
iated witha density fun
tion f that are the most likely given a random sample. Whi
h means that ifx1; x2; :::; xn is a sample from a distribution of a random variable X, with density fun
tion fand parameters �, we want to �nd the � that maximizes the likelihood fun
tion belowL(�) = nYi=1 f(xi; �).4.2 Kolmogorov-Smirnov (KS)The Kolmogorov-Smirnov distan
e is the maximum di�eren
e between the estimated distri-bution fun
tion and the empiri
al distribution fun
tion.The Kolmogorov-Smirnov test statisti
 Dn, is given byDn = supx jF̂ (x)� Fn(x)j;where n is the sample size, F̂ (x) is the �tted estimated 
ummulative ditribution fun
tion,CDF and Fn(x) is the empiri
al 
ummulative distribution fun
tion.Fn(x) = number of observations � xtotal number of observations :A useful formula to 
al
ulate the KS distan
e numeri
ally isDn = maxi�n (maxfj(i � 1)=n� F̂ (X(i))j; ji=n� F̂ (X(i))jg);where X(1) � X(2) � ::: � X(n) denotes the ordered data set.Sin
e we do not know the analyti
al expression for the Combined distribution fun
tionor the Combined 
umulative distribution fun
tion, we estimated the 
umulative distributionfun
tion by simulating 100000 observations of it and 
a
ulating the empiri
al distributionfun
tion of the 100000 resulting data.4.3 The Empiri
al Data4.4 The DatasetsThe empiri
al datasets that we �tted our four distributions parameters to were the S&P 500Index and the ABB sto
k, listed on the New York sto
k ex
hange. The datasets were fromthe time period between 18 Mar
h 2000 to 17 Mar
h 2005. The 
losing values from this periodwere adjusted for dividends and splits. The logarithmi
 returns were then also devolatilized,see below.
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4.5 DevolatilizationWe devolatilized the datasets by 
hoosing a window size, 20. We then split the logarithmi
returns of our empiri
al datasets in bits of the window size. Then we 
al
ulated the standarddeviation, �1; �2; ::, for ea
h bit and the mean, �mean of all of these standard deviations. Thestandard deviations were then devided by this mean. The logarithmi
 returns in ea
h bit ofthe dataset were then divided by the �n=�mean.The log returns used in all estimations presented in this paper are devolatilizated.5 Parameter estimationWe �tted the parameters of the Normal Inverse Gamma, the Varian
e Gamma, the Normaland the Combined Gaussian and Poisson distribution to the devolatilized logarithmi
 returnsof the two 
hosen datasets.5.1 The estimated Normal parametersDisplayed below are the estimated parameters that we obtained for the Normal distribution,when we �tted it to the two empiri
al datasets with the ML method. We also 
al
ulated theKolmogorov-Smirnov distan
e for these parameters, the result is also shown below.Asset � � KSABB -0.00115 0.0386 0.0341S&P 500 -0.000259 0.0114 0.0237Table 1: The estimated parameters for the Normal distribution.5.2 The estimated NIG parametersDisplayed below are the estimated parameters that we obtained for the Normal InverseGamma distribution, when we �tted it to the two empiri
al datasets with the ML method.We also 
al
ulated the Kolmogorov-Smirnov distan
e for these parameters, the result is alsoshown below. Asset � � Æ � KSABB 38.1 -3.28 0.0563 0.00372 0.0218S&P 500 21900 2630 2.79 -0.339 0.0238Table 2: The estimated parameters for the NIG distribution.
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5.3 The estimated VG parametersDisplayed below are the estimated parameters that we obtained for the Varian
e Gammadistribution, when we �tted it to the two empiri
al datasets with the ML method. We also
al
ulated the Kolmogorov-Smirnov distan
e for these parameters, the result is also shownbelow. Asset a b d KSABB 3.48 68.0 66.4 0.0246S&P 500 2370 6030 6020 0.0237Table 3: The estimated parameters for the VG distribution.5.4 The estimated Combined Gaussian and Poisson parametersTo be able to estimate the parameters for the 
ombined model, we inverse fourier transformedthe expression for its 
hara
teristi
 fun
tion numeri
ally.fCombined(u;�; �; a; b) = 12� Z +1�1 �Combined(u;�; �; a; b) exp(iut)du= 12� Z +1�1 exp(i�s� 12�2s2)Yl exp(ai(ei2�biu � 1)) exp(iut)du.We then �tted it to the two empiri
al datasets, with the ML method. The estimation wasdone in steps. First we maximized for the parameters �, �, a1 and b1. When this was donewe kept b1 as �xed. In the next step we maximized the parameters �, �, a1, a2 and b2. Thenwe kept both b1, b2 as �xed and so on. This was done up to ten times. We also 
al
ulatedthe Kolmogorov-Smirnov distan
e. The results are displayed below.Asset KSABB 0.0199S&P 500 0.0210Table 4: The 
al
ulated KS-distan
e for Combined.
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6 Simulations with the estimated parametersWhen the parameters for the four distributions were �tted to the two empiri
al datasets,ABB sto
k and S&P 500 index, we simulated eight datasets, one for ea
h set of obtainedparameters.6.1 Simulating Normal Inverse Gamma and Varian
e Gamma distributeddataWhen we simulated the Normal Inverse Gamma and the Varian
e Gamma distributed data,we used the fa
t that,If F is a distribution fun
tion and � is a random number uniformly distributet on [0,1℄,then � = F�1(�) is a variable with distribution fun
tion F� = Pf� � xg = F (x).This means that Z x�1 f�(y)dy = �x = F�1� (�)7 Cross estimations of the distributions parametersWhen we had simulated the eight data sets, we wanted to see how well the distributionswould perform on data that was otherwise distributed. In order to do this we estimated theparameters for all four of the distributions to all eight of the simulated data sets.7.1 Estimated parameters for the Normal distribution on simulated dataThe Normal distribution's parameters were estimated for the eight simulated data sets. Shownbelow are the results and also the 
al
ulated Kolmogorov-Smirnov distan
e for these param-eters. Simulated distribution � � KSNormal -0.00282 0.0399 0.0145NIG -0.000928 0.0378 0.0340VG -0.00214 0.0386 0.0353Combined -0.0494 0.0713 0.0288Table 5: The estimated parameters for Normal distribution on data sets simulated with theparameters obtained from the ABB sto
k.
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Simulated distribution � � KSNormal -0.000362 0.0113 0.0218NIG -0.000484 0.0115 0.0210VG -0.000852 0.0115 0.0121Combined -0.0395 0.0488 0.0234Table 6: The estimated parameters for Normal distribution on data sets simulated with theparameters obtained from the S&P 500 Index.7.2 Estimated parameters for the NIG distribution on simulated dataWe �tted the parameters of the Normal Inverse Gamma distribution to the eight simulateddata sets. Shown below are the obtained parameters and also the 
al
ulated Kolmogorov-Smirnov distan
e for these parameters.Simulated distribution � � Æ � KSNormal 391 -57.1 0.602 0.0861 0.0126NIG 42.6 -3.87 0.0604 0.00459 0.0128VG 41.5 -0.960 0.0622 0.000698 0.0192Combined 499 -430 0.336 0.518 0.0218Table 7: The estimated parameters for NIG distribution on data sets simulated with theparameters obtained from the ABB sto
k.Simulated distribution � � Æ � KSNormal 4620 -96.5 0.589 0.0120 0.0218NIG 5990 -82.5 0.794 0.0105 0.0210VG 12200 -551 1.61 0.0730 0.0169Combined 240 -55.5 0.525 0.0855 0.0230Table 8: The estimated parameters for NIG distribution on data sets simulated with theparameters obtained from the S&P 500 Index.7.3 Estimated parameters for the VG distribution on simulated dataWe �tted the parameters of the Varian
e Gamma distribution to the eight simulated datasets. Shown below are the results and also the 
al
ulated Kolmogorov-Smirnov distan
es forthese parameters. Simulated distribution a b d KSNormal 138 419 415 0.0142NIG 2.78 62.9 61.6 0.0154VG 2.91 63.9 63.9 0.0177Combined 7.36 67.0 46.2 0.0178Table 9: The estimated parameters for VG distribution on data sets simulated with theparameters obtained from the ABB sto
k.9



Simulated distribution a b d KSNormal 5700 9460 9450 0.0218NIG 315 2170 2170 0.0206VG 14800 14900 14900 0.0169Combined 42.3 208 174 0.0221Table 10: The estimated parameters for VG distribution on data sets simulated with theparameters obtained from the S&P 500 Index.7.4 Results for the Combined distribution on simulated dataThe Combined Gaussian and Poisson distribution's parameters were estimated for the eightsimulated data sets in the same way as with the original datasets. Shown below are the resultsand also 
al
ulated the Kolmogorov-Smirnov distan
es for these parameters.Simulated distribution KSNormal 0.0118NIG 0.0120VG 0.0194Combined 0.0158Table 11: The 
al
ulated KS-distan
e for the Combined distribution on data sets simulatedwith the parameters obtained from the ABB sto
k.Simulated distribution KSNormal 0.0208NIG 0.0206VG 0.0105Combined 0.0213Table 12: The 
al
ulated KS-distan
e for the Combined distribution on data sets simulatedwith the parameters obtained from the ABB sto
k.8 Results and Con
lusionsWe 
ould see that the Combined model performed very well. In both the 
ase with the twodevolatilized empiri
al data sets and the 
ase with the simulated data sets, it had either thesmallest KS-distan
e or equally small as the smallest of the others, with one exeption. VG gota smaller KS-distan
e on the VG distributed simulated data, with the parameters obtainedfor the ABB sto
k..
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