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Course organization

• Course organization

– Lectures on Zoom: 12 lectures by MPF, 1 lecture by Mattias Villani
(SU), and 3 lectures by John Pålsson (If P&C Insurance)

– Exercise classes on Zoom by Isaac Ren
• Examination

– 2 projects, groups of 2, deadline same day as exam, pass/fail
– Exam

• Course literature

– Introduction to Linear Regression Analysis (MPV)
– An introduction to Statistical Learning (JWHT)
– Modern Multivariate Statistical Techniques. Regression,

Classification, and Manifold Learning (Iz)
– The Elements of Statistical Learning (HTF)
– Statistical Learning with Sparsity: The Lasso and Generalizations

(HTW)
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Todays lecture

• An introduction to simple linear regression
• Estimation of the parameters
• Basic assumptions on the error term
• Properties of the obtained estimators

3 / 28



Motivation
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Why use regression?
• Prediction
• Inference
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The general regression model

Training data
Assume that we have measurements/training data
(x1, y1), (x2, y2), . . . , (xn, yn).

Regressor variables
x·1, x·2, . . . , x·k, are said to be predictor/regressor variables.

Response variables
y is said to be a response variable.

Goal
We want to describe how the predictor variable(s) can be use to predict the
response in the response variable.

Model
y = f(x) + ε

ε is a random variable that captures random errors such as measurement errors
or dependencies on variables that are absent in our model.
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Parametric vs. non-parametric regression

How do we find f?

Parametric regression
Assume that f is of a certain form, e.g. a polynomial
f(x) = β0 + β1x1 + β2x2 + β3x

3
2, so that the problem of finding f is reduced

to finding the values of the parameters β0, β1, β2, and β3.
+ Possibly to use statistical methods to understand the model

+ Will give a function that is easy to describe and use

– Requires knowledge about the data, or arbitrary guessing of form
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Parametric vs. non-parametric regression
How do we find f?

Non-parametric regression
Assume very little about the form of f , and try to find the best choice of f from
a very general family, using e.g. splines, moving averages, or kernel regression.
+ Can get a very nice fit, even to very complex functions

+ Requires only weak assumptions

– Overfitting

– Hard to analyze

– Hard to describe and motivate. Blackbox

– Usually requires manually setting some kind of "bandwidth"
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Simple linear regression
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Model (simple linear regression)
y = β0 + β1x+ ε

Regression coefficients
β0 and β1 are called regression coefficients.
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Two types of ways to collect data

The regression variables x1, x2, . . . can be either

(1) non-random (e.g. data from planned experiments), or

(2) random (common when we use already collected data).

In the lectures, we will initially mostly cover (1), but you will read about (2) in
the course literature, and it is often more realistic in practice.
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How do we choose β0 and β1?

Least squares estimates
Find the pair (β̂0, β̂1) which minimizes the distances between the values
β̂0 + β̂1xi predicted by the model, and the actual values yi measured. In other
words, we could try and find the coefficients β0 and β1 that minimizes

f(β0, β1) :=

n∑
i=1

(yi − (β0 + β1xi))
2.
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How do we choose β0 and β1?

Least squares estimators

f(β0, β1) :=

n∑
i=1

(yi − (β0 + β1xi))
2.

{
d
dβ0

f(β0, β1) = −2
∑

(yi − (β0 + β1xi))
d
dβ1

f(β0, β1) = −2
∑
xi(yi − (β0 + β1xi)).

If f has a global minimum at (β0, β1) = (β̂0, β̂1), then β̂0 and β̂1 must satisfy{∑
yi = β̂0n+ β̂1

∑
xi

the least squares
normal equations∑

xiyi = β̂0

∑
xi + β̂1

∑
x2
i .

Solving for β̂0 and β̂1, we see that{
β̂0 =

∑
yi−β̂1

∑
xi

n

β̂1 = n
∑
xiyi−

∑
xi

∑
yi

n
∑
x2i−

∑
xi

∑
xi

= n
∑
yi(xi−x̄)

n
∑

(xi−x̄)2
=

∑
yi(xi−x̄)∑
(xi−x̄)2

=: Sxy

Sxx
.
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How do we choose β0 and β1?
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How do we choose β0 and β1?
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Are the least squares estimates for β0 and β1 "good"?

What is a good estimator?
When we estimate parameters from data, we generally want to have the
following two properties.
• They should be correct on average (unbiased)
• They should be as close to the true value as possible (small variance)
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Are the least squares estimates for β0 and β1 "good"?

Standard assumptions
To be able to say something about the estimators, we need to make
assumptions on εi:

1. E[εi] = 0

2. Var[εi] = σ2

3. εi and εj are independent if i 6= j
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Note that these assumptions imply that

E[β0 + β1xi + εi] = β0 + β1xi and Var(β0 + β1xi + εi) = σ2.
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Properties of β̂0 and β̂1

The expected value of β̂1

E[β̂1] = E
[∑ yi(xi − x̄)∑

(xi − x̄)2

]
=

∑
E[yi](xi − x̄)∑

(xi − x̄)2
=

∑
(β0 + β1xi)(xi − x̄)∑

(xi − x̄)2

=
β0

∑
(xi − x̄)∑

(xi − x̄)2
+
β1

∑
xi(xi − x̄)∑

(xi − x̄)2
= 0 + β1 = β1

The expected value of β̂0

E[β̂0] = E
[∑ yi − β̂1

∑
xi

n

]
=

∑
E[yi]− E[β̂1]

∑
xi

n

=

∑
(β0 + β1xi)− β1

∑
xi

n
=
nβ0

n
= β0
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Properties of β̂0 and β̂1

The variance of β̂1

Var(β̂1) = Var

(∑
yi(xi − x̄)∑
(xi − x̄)2

)
= Var

(∑
(β0 + β1xi + εi)(xi − x̄)∑

(xi − x̄)2

)
= Var

(∑
εi(xi − x̄)∑
(xi − x̄)2

)
= σ2

∑
(xi − x̄)2

(
∑

(xi − x̄)2)2
=

σ2∑
(xi − x̄)2

=
σ2

Sxx

The variance of β̂0

Var β̂0 = Var(ȳ − β̂1x̄) = Var ȳ + x̄2 Var β̂1 − 2Cov(ȳ, β̂1)

=
σ2

n
+
σ2x̄2

Sxx
− 0 = σ2(

1

n
+

x̄2

Sxx
)
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Gauss-Markov theorem

Theorem
For simple linear regression, β̂0 and β̂1 are unbiased estimators of β0 and β1,
and have smallest variance among all other unbiased estimators that are linear
in y = (y1, y2, . . . , yn)T .

In other words, the least square estimators are the best linear unbiased
estimators.
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How can we estimate σ2?

yi = β0 + β1xi + εi

Residuals
If the model is correct, then εi = yi − (β0 + β1xi) should be a i.i.d. sample
from a distribution with mean zero and variance σ2.
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Since β0 and β1 are unknown, we estimate them with β̂0 and β̂1 and estimate
εi by

ei := yi − (β̂0 + β̂1xi︸ ︷︷ ︸
ŷi

). the ith residual

19 / 28



How can we estimate σ2?

Residual sum of squares

SSRes :=
∑

e2
i =

∑(
yi − ŷi)2 =

∑
(yi − (β̂0 + β̂1xi)

)2
=
∑

y2
i − 2β̂0nȳ − 2β̂1

∑
yixi + nβ̂2

0 + 2β̂0β̂1nx̄+ β̂2
1

∑
x2
i

=
∑

y2
i − 2(ȳ − β̂1x̄)nȳ − 2β̂1

∑
yixi + n(ȳ − β̂1x̄)2

+ 2(ȳ − β̂1x̄)β̂1nx̄+ β̂2
1

∑
x2
i

=
∑

y2
i − nȳ2 − 2β̂1

∑
yi(xi − x̄)︸ ︷︷ ︸
Sxy

+β̂1 β̂1

∑
xi(xi − x̄)︸ ︷︷ ︸

Sxy
Sxx

·Sxx=Sxy

=
∑

(yi − ȳ)2︸ ︷︷ ︸
SST

−β̂1Sxy = SST − β̂1Sxy
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How can we estimate σ2?

Residual sum of squares

SSRes = SST − β̂1Sxy

Expected value of SSRes
One can verify that E[SSRes] = (n− 2)σ2.

Residual mean squared
An unbiased estimator for σ2 is given by

σ̂2 := MSRes :=
SSRes
n− 2

.

One can show that MSRes and β̂1 are independent.

Standard error of regression√
σ̂2 is called the standard error of regression.
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Properties of the residuals

• ∑ ei = 0

nβ̂0 + β̂1

∑
xi =

∑
yi︸ ︷︷ ︸

first normal equation

⇔
∑

ŷi =
∑

yi ⇔
∑

ei = 0

• ∑xiei = 0

β̂0

∑
xi + β̂1

∑
x2
i =

∑
xiyi︸ ︷︷ ︸

the second normal equation

⇔
∑

xi(β̂0 + β̂1xi) =
∑

xiyi

⇔
∑

xi(ŷi − yi) = 0⇔
∑

xiei = 0

• ∑ ŷiei = 0∑
ŷiei =

∑
(β̂0 + β̂1xi)ei = β̂0

∑
ei︸ ︷︷ ︸

=0

+β̂1

∑
xiei︸ ︷︷ ︸

=0

= 0 + 0 = 0

22 / 28



The covid dataset

1 df <- read.csv("/Users/malin/Dropbox/Jobb/Teaching/KTH -
SF2930/data.csv", header = TRUE)

This dataframe has 135581 rows and 67 columns. Each row contains of one set
of data for one country on a specific data, describing things as # new cases
that day, total cases to far, etc.
We remove all but the last entry for each country, and then remove the
columns that now make little sense.

1 library(dplyr)
2

3 df0 <- df %>% group_by(location) %>% slice(n()) %>% ungroup
4

5 df0 <- df0[which(df0$continent!="") ,]
6

7 df0 <- df0[,c("continent", "location","total_cases_per_
million", "total_deaths_per_million","median_age", "gdp_
per_capita","hospital_beds_per_thousand", "people_fully_
vaccinated_per_hundred","population","aged_65_older","
diabetes_prevalence","cardiovasc_death_rate","population
_density", "male_smokers","life_expectancy" )]
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The covid dataset
We now plot the relevant data. ggplotly is useful since it allows us to easily
check which country corresponds to each datapoint.

1 library(ggplot2)
2 library(plotly)
3

4 pp <- ggplot(df0 , aes(gdp_per_capita , people_fully_
vaccinated_per_hundred , colour=continent , text=location)
) + geom_point()+ scale_color_manual(values=c("white","
#703457","#AC3F63","#D46B8D", "#C79EC6", "#AFC4E0", "#
A8DEE1")) + theme_bw()

5

6 ggplotly(pp, tooltip="text")

24 / 28

coviddataallhtml.html


The covid dataset

Today we will investigate a potential relationship between the variables
gdp_per_capita and people_fully_vaccinated_per_hundred for countries in
Europe where this data is available.

1 df00 <- df0[df0$continent =="Europe",]
2 df00 <- df00[!is.na(df00[,"gdp_per_capita"]) ,]
3 df00 <- df00[!is.na(df00[,"people_fully_vaccinated_per_

hundred"]) ,]

25 / 28



Example
We now fit a linear model to our data, using gdp_per_capita as a regression
variable and people_fully_vaccinated_per_hundred as the response
variable.

1 pp <- ggplot(df00 , aes(x=gdp_per_capita , y=people_fully_
vaccinated_per_hundred)) + geom_point(aes(text=location)
) + geom_smooth(method=lm, se=FALSE)

2 ggplotly(pp, tooltip="text")
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Example
1 df00.model <- lm(people_fully_vaccinated_per_hundred~gdp_per

_capita , data = df00)
2 summary(df00.model)

Call:
lm(formula = people_fully_vaccinated_per_hundred ~ gdp_per_

capita ,
data = df00)

Residuals:
Min 1Q Median 3Q Max

-16.428 -6.176 -0.675 7.997 14.445

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.929e+01 6.075e+00 3.175 0.00588 **
gdp_per_capita 1.194e-03 1.957e-04 6.100 1.53e-05 ***
---
Signif.codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 9.665 on 16 degrees of freedom
Multiple R-squared: 0.6993 , Adjusted R-squared: 0.6805
F-statistic: 37.21 on 1 and 16 DF, p-value: 1.534e-05
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Extra: Useful formulas

∑
(xi − x̄) =

∑
xi −

∑
x̄ = nx̄− nx̄ = 0.

∑
(xi − x̄)2 =

∑
xi(xi − x̄) − x̄

∑
(xi − x̄)︸ ︷︷ ︸
=0

=
∑

xi(xi − x̄) = Sxx
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