
SF2930 - Regression analysis
KTH Royal Institute of Technology, Stockholm

Lecture 13 – Models with a binary response & an introduction to
logistic regression. (MPV 13.1-13.2, 4-5)

February 18, 2022
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Todays lecture

• Logistic regression
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Motivation

In previous lectures we have always made assumptions on the model. In
particular, in most lectures, we have assumed that the response has been
continuous with a normal distribution (this follows from the error having this
form). When this is not the case, it can sometimes be remedied by a transform
of the response variable, but in some cases it makes more sense to construct a
model without this assumption.
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The logistic model

We want a model where the response yj is binary, while the regressors xj are allowed
to be continuous.

First attempt at a model

yi = xT
i β + εi
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• Since yi ∈ {0, 1}, we must have yi ∼ Bernoulli(πi) for some πi ∈ [0, 1].

• We must have εi ∈ {1− xT
i β,−xT

i β}. In particular, the error would not be
independent of xi. Moreover, since yi ∼ Bernoulli(πi), Var yi = πi(1− πi),
and hence the variance is not generally constant.

This suggests considering another response function than xT
i β.
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The logistic model
We want a model where the response yj is binary, while the regressors xj are
allowed to be continuous.

Idea
We want to apply a function to E[y | x] so that the transformed values take
their values in all of R. Such a function is called a link function.
A link function which is often used when yi ∈ {0, 1} is the so called logit
transformation, given by

η : πi = P (yi = 1 | xi) "→ log
P (yi = 1 | xi)

P (yi = 0 | xi)
= log

πi

1− πi! "# $
the odds ratio

=: ηi.
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Using the logit transformation, we can define a model xT
i β = ηi which thus

models the logarithm of the odds ratio as a linear function.
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The logistic model

Note that

xT
i β = ηi =

πi

1− πi
⇔ π =

exp(xTβ)

1 + exp(xTβ)! "# $
the logistic response function

.
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The logistic model

The logistic regression model

π = E[y] = exp(xTβ)

1 + exp(xTβ)
+ ε,

where yi ∼ Bernoulli(πi), and π = E(y) = exp(xTβ)

1+exp(xTβ)
. Note that the logistic

model models the probability of observing a one at a certain sample point, and
not a {0, 1}-valued function.
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MLE estimation of β

The log-likelihood function
Assume that the observations are independent. Then

L(y,β) =
!

i

fi(yi) =
!

i

π
yi
i (1− πi)

1−yi

and thus

logL(y,β) =
"

i

log π
yi
i (1− πi)

1−yi =
"

i

yi log
πi

1− πi# $% &
ηi=XTβ(i)

+
"

i

log(1− πi)# $% &
(1+expXTβ(i))−1

.

The binomial log-likelihood function
When the regressors are not continuous, the same observation of the regressors could
occur multiple times, i.e. we might have xi = xj (and hence πi = πj). We let (x̃j)
be the unique observations of the regressors, and let nj := #{i : xi = x̃j} and
yj :=

'
i : xi=x̃j

yi. Then we can write

logL(y,β) =
"

j

yj log πj +
"

(nj − yj) log(1− πj)

Log likelihood estimates of β
β̂ = β̂MLE is almost always found numerically.
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Example

1 df00.logmodel <- glm(prop_vaccinated ~ gdp_per_capita ,
weights=population , family=binomial(link=’logit ’), data=
df00)
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Example
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Example
1 summary(df00.logmodel)

Call:
glm(formula = prop_vaccinated ~ gdp_per_capita , family =

binomial(link = "logit"),
data = df00 , weights = population)

Deviance Residuals:
Min 1Q Median 3Q Max

-11614.4 -1635.8 -341.4 97.1 24407.0

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.067e+00 3.733e-05 -28586 <2e-16 ***
gdp_per_capita 5.099e-05 1.987e-09 25666 <2e-16 ***
---
Signif.codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2417622288 on 186 degrees of freedom
Residual deviance: 1599152072 on 185 degrees of freedom
AIC: 1599154948

Number of Fisher Scoring iterations: 5
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Properties of the MLE estimates

One can show that the MLE estimates β̂ satisfies
• E[β̂] = β

• Var[β̂] = (X̃TV X̃)−1, where X̃ contains the unique samples of the
regressors, and V = diag(nj π̂j(1− π̂j)).
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Interpretation of the regression coefficients

Let
η̂(x) := xT β̂ and ŷ(x) := π̂(x) :=

expxT β̂

1 + expxT β̂
.

Then
log

π̂(x)

1− π̂(x)
= η̂(x) and η̂ = xT β̂.

Let δ > 0 be small. Then

δβ̂j = (x+ δej)
T β̂ − xT β̂ = η̂(x+ δej)− η̂(x) = log

oddsx+δej

oddsx

and hence
oddsx+δej

oddsx
= eδβ̂j

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.067e+00 3.733e-05 -28586 <2e-16 ***
gdp_per_capita 5.099e-05 1.987e-09 25666 <2e-16 ***
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Residuals

Residuals

ei := yi − ŷi = yi − niπ̂i
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Note that if we do not have repeated samples at the same regressors, then the
squared residuals are not expected to be small!
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Residuals
Pearson residuals

(

#successes - E[#successes]# $! "
yi − niπ̂i)

2

niπ̂i
+

%
#failures - E[#failures]# $! "

(ni − yi)− ni(1− π̂i)
&2

ni(1− π̂i)
=

'
Pearson residual ri# $! "

yi − niπ̂i(
niπ̂i(1− π̂i)

)2

=: r2i
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Residuals

Pearson chi-square statistic

χ2 :=
*

r2i =
* (yi − niπ̂i)

2

niπ̂i(1− πi)
, χ2 ≈ χ2

n−k−1

1 sum(residuals(df00.logmodel1 , type = "pearson")^2)

[ 1 ] 1121264528
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Residuals
Recall the maximum of the binomial log-likelihood function is given by

logL(y, β̂) =
*

j

yj log π̂j +
*

(nj − yj) log(1− π̂j)

The saturated model (SM) is the model where each choice of regressor gets its
own predictor yj/nj instead of π̂j . We have

log
L(SM)

L(y, β̂)
= logSM − logL(y,β)

=
*

j

yj log
yj/nj

π̂j
+

*
(nj − yj) log

1− yj/nj

1− π̂j

=
*

j

yj log
yj

nj π̂j
+

*
(nj − yj) log

nj − yj

nj(1− π̂j)

Deviance

D := log
L(SM)

L(y, β̂)
∼ χ2

n−p

Deviance residuals

di = sgn ei ·
++++2
,
yi log

yi

niπ̂i
+ (ni − yi) log

ni − yi

ni(1− π̂i)

-++++
1/2

.
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Residuals

Deviance residuals

di = sgn ei ·
++++2
,
yi log

yi

niπ̂i
+ (ni − yi) log

ni − yi

ni(1− π̂i)

-++++
1/2

.

1 df00.logmodel1$deviance

[1] 1205910872
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Likelihood ratio tests for model selection
Test for significance of model

H0 : a reduced model is correct H1 : the reduced model is incorrect

If the sample is very large and H0 is correct, then

LR := 2 log
L(full model)

L(reduced model)
≈ χ2

#removed regressors

Reject H0 if LR > χ2
α,#removed regressors.

1 df00.logmodel1 <- glm(prop_vaccinated~gdp_per_capita ,
weights=population ,family=binomial(link=’logit ’), data=
df00)

2 df00.logmodel2 <- glm(prop_vaccinated~gdp_per_capita +
hospital_beds_per_thousand ,weights=population ,family=
binomial(link=’logit ’), data=df00)

#Df LogLik Df Chisq Pr(>Chisq)
1 2 -602956454
2 3 -503625652 1 198661604 < 2.2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’

1
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Likelihood ratio tests for model selection
Test for significance of regression
This test works also if the reduced model contains no regressors, i.e. to test for
the significance of regression. In detail, in this case, the model is
E(y) = π = eβ0/(1 + eβ0), where β̂0 = ȳ, and

logL(y, β̂0) =
*

i

log πyi
i (1− πi)

1−yi = nȳ log ȳ + (n− nȳ) log ȳ

1 df00.logmodel0 <- glm(prop_vaccinated~1 ,weights=population ,
family=binomial(link=’logit ’), data=df00)

2 df00.logmodel1 <- glm(prop_vaccinated~gdp_per_capita ,
weights=population ,family=binomial(link=’logit ’), data=
df00)

3

4 library(lmtest)
5 lrtest(df00.logmodel0 , df00.logmodel1)

#Df LogLik Df Chisq Pr(>Chisq)
1 1 -1208812580
2 2 -799577472 1 818470217 < 2.2e-16 ***
---
Signif.codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Likelihood ratio tests for model selection

McFadden’s R2

R2
dev := 1− logL(fill model)/ logL(intercept model)

1 t0 <- lrtest(df00.logmodel0 , df00.logmodel1)
2 1 - t0$LogLik [2]/t0$LogLik [1]

[1] 0.3207144
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Example (Attempt 1)
Model: η = β0 + β1x (R2

dev = 0.32)

• Wrong power? → best power algorithm
• Wrong regressor? → best subsets regression/step-wise forward/step-wise

backwards?
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Example (better power?)
Model: η = β0 + β1x0.1 (R2

dev = 0.56)

• More regressors? → best subsets regression
• Wrong regressor? → best subsets regression
• Wrong dataset? → divide data into natural groups
• Big data problems? → aggregate data 23 / 29



Example (divide data into groups?)
Model: η = β0 + β1x0.1

All countries
R2

dev = 0.5600723

Poorer countries
R2

dev = 0.6104746

Asia
R2

dev = 0.7129612

Europe
R2

dev = 0.7129612
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Example (more regressors?)
Stepwise forward

• With step-wise forward all regressors are included (with ***), and
R2 = 0.8753796

• Inclusion order: life_expectancy, population, male_smokers,
aged_65_older, median_age, ...

Regressor R2 D/n

+ life_expectancy 0.7254661 0.1858378
+ population 0.8307854 0.02697892

+ male_smokers 0.8409417 0.002601678
+ aged_65_older 0.8466356 0.001458577
+ median_age 0.8662862 0.005033745

→ Multicollinearity?

→ Is the model too complicated?

→ Will R2 change much if we remove some regressors?

→ Can changing some powers make the model better?

→ Residuals? Are they normal? Influential points?

25 / 29



Example (more regressors?)

Best subsets regression

• 1 regressor
– gdp_per_capita

• 2 regressors
– total_cases_per_million
– cardiovasc_death_rate

• 3 regressors
– gdp_per_capita
– cardiovasc_death_rate
– aged_65_older

• 4 regressors
– gdp_per_capita
– hospital_beds_per_thousand
– cardiovascular_death_rate
– male_smokers

• 5 regressors
– gdp_per_capita
– hospital_beds_per_thousand
– cardiovascular_death_rate
– male_smokers
– population_density
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Example (more regressors?)

At λ = .01, we include: median_age and life_expectancy
(R2

dev = 0.6748349)

Bootstrap confidence intervals:

.05% 99.5%

βmedian_age -0.03672829 -0.03669084
βlife_expectancy -0.07667731 -0.07662509
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Example (tests?)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.367e+01 1.008e-03 -13565.3 <2e-16 ***
total_cases_per_ -5.132e-07 1.530e-09 -335.4 <2e-16 ***
total_deaths_per_ 8.930e-05 6.921e-08 1290.3 <2e-16 ***
median_age 7.966e-02 1.773e-05 4492.1 <2e-16 ***
gdp_per_capita 4.234e-06 4.076e-09 1038.6 <2e-16 ***
hospital_beds_p 2.740e-02 2.179e-05 1257.4 <2e-16 ***
population 4.776e-10 8.099e-14 5897.7 <2e-16 ***
aged_65_older -1.101e-01 1.759e-05 -6256.0 <2e-16 ***
diabetes_prev -4.579e-03 1.512e-05 -302.9 <2e-16 ***
cardiovasc_death -1.126e-03 4.658e-07 -2416.7 <2e-16 ***
population_dens -1.518e-04 8.936e-08 -1699.1 <2e-16 ***
male_smokers 4.990e-03 2.658e-06 1877.6 <2e-16 ***
life_expectancy 1.563e-01 1.685e-05 9277.7 <2e-16 ***

• What is happening?
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Example (aggregate data)

Big data problems
In the past, data was necessarily small and statisticians worked to extract
the most value from a little information.
What is true is that trivially small effects can be found to be "significant"
with very large sample sizes.

1. Randomness in sample vs. error in measurement
2. Confidence intervals become extremely narrow and we would reject

almost any hypothesis for a simple model.

Data aggregation
• Data per country and logistic regression without weights?
• Data per 1m region?
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