SF2930 - Regression analysis
KTH Royal Institute of Technology, Stockholm

Lecture 4 - Multiple linear regression (MPV 3)

January 28, 2022

Todays lecture

- The multivariate normal distribution
- Maximum likelihood estimates
- Test for regression coefficients
- Coefficients of determination
- Confidence regions and sets
- Project 1 handout

General assumption

General assumption

To evaluate the model, we need further assumptions on the errors, and will assume that they are independent with distribution $N\left(0, \sigma^{2}\right)$.

The normal distribution

X has a normal distribution if it has pdf $\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma}$. We write $X \sim N(\mu, \sigma)$. Recall that if $X \sim N(\mu, \sigma)$, then $X+\mu^{\prime} \sim N\left(\mu+\mu^{\prime}, \sigma\right)$ and $\sigma^{\prime} X \sim N\left(\mu \sigma^{\prime}, \sigma^{2} \sigma^{2}\right)$.

The multivariate normal distribution

The standard multivariate normal distribution
Let $X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{n}^{\prime} \sim N(0,1)$ be independent. Then

$$
X=\left(X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{n}^{\prime}\right)^{T} \sim N(0, I)
$$

The multivariate normal distribution

The multivariate normal distribution with independent marginals Let $X_{1}^{\prime} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), X_{2}^{\prime} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right), \ldots$ be independent, and let

$$
X=\left(X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{n}^{\prime}\right)^{T}
$$

With

- $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)^{T}$,
- $A=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$, and
- $X^{\prime \prime} \sim N(0, I)$
we equivalently have $X:=\boldsymbol{\mu}+A X^{\prime \prime}$.
We write $X \sim N\left(\boldsymbol{\mu}, A^{2}\right)$.

The multivariate normal distribution

The multivariate normal distribution
Let $X^{\prime} \sim N(0, I), \boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)^{T}$, let A be a general invertible matrix, and let $X=\boldsymbol{\mu}+A X^{\prime}$. We write $X \sim N\left(\boldsymbol{\mu}, A^{T} A\right)$.

The multivariate normal distribution

Properties

$$
\begin{gathered}
\mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[\mathbf{e}_{i}^{T} X\right]=\mathbf{E}\left[\mathbf{e}_{i}^{T}\left(\boldsymbol{\mu}+A X^{\prime}\right)\right]=\mathbf{E}\left[\boldsymbol{\mu}^{T} \mathbf{e}_{i}+\left(A X^{\prime}\right)^{T} \mathbf{e}_{i}\right]=\mu_{i} \\
\operatorname{Cov}\left[X_{i}, X_{i}\right]=\mathbf{E}\left[\left(\mathbf{e}_{i}^{T} X-\mu_{i}\right)\left(\mathbf{e}_{j}^{T} X-\mu_{j}\right)\right] \\
=\mathbf{E}\left[\left(\mathbf{e}_{i}^{T}\left(\boldsymbol{\mu}+A X^{\prime}\right)-\mu_{i}\right)\left(\mathbf{e}_{j}^{T}\left(\boldsymbol{\mu}+A X^{\prime}\right)-\mu_{j}\right)\right]=\mathbf{E}\left[\left(\mathbf{e}_{i}^{T} A X^{\prime}\right)\left(\mathbf{e}_{j}^{T} A X^{\prime}\right)\right] \\
\\
=\mathbf{E}\left[\left(\sum_{k} A_{i k} X_{k}^{\prime}\right)\left(\sum_{\ell} A_{i \ell} X_{\ell}^{\prime}\right)\right]=\sum_{k} A_{i k} A_{j k}=A A^{T}(i, j)=A^{T} A(i, j),
\end{gathered}
$$

where the last equation follows from the fact that $\operatorname{Cov}\left(X_{1}, X_{2}\right)=\operatorname{Cov}\left(X_{2}, X_{1}\right)$. We say that $X \sim N\left(\boldsymbol{\mu}, A^{T} A\right)$ has with mean vector μ and covariance matrix $A A^{T}$.

If B is positive definite, then there is an invertible matrix A such that $B=A^{T} A$, and we may write $X \sim N(\boldsymbol{\mu}, B)$ instead of $X \sim N\left(\boldsymbol{\mu}, A^{T} A\right)$.

The multivariate normal distribution

Probability density function

One can verify that $X \sim N(\boldsymbol{\mu}, B)=N\left(\boldsymbol{\mu}, A^{T} A\right)$ has pdf

$$
f(\mathbf{x}):=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} B}} e^{(\mathbf{x}-\boldsymbol{\mu})^{T} B^{-1}(\mathbf{x}-\boldsymbol{\mu}) / 2}
$$

ML-esimates vs. LS estimates

A maximum likelihood estimate of β.

Assume that the model is $\mathbf{y}=X \boldsymbol{\beta}+\boldsymbol{\varepsilon}$, and that $\boldsymbol{\varepsilon} \sim N\left(\mathbf{0}, \sigma^{2} I\right)$. Then the pdf of ε is given by

$$
f(\varepsilon)=\frac{1}{(2 \pi)^{n / 2} \sigma^{n}} e^{-\varepsilon^{T} \varepsilon / 2 \sigma^{2}}=: L\left(\varepsilon, \boldsymbol{\beta}, \sigma^{2}\right)
$$

Hence

$$
\begin{aligned}
& \log L\left(\boldsymbol{\varepsilon}, \boldsymbol{\beta}, \sigma^{2}\right)=-\log (2 \pi)^{n / 2} \sigma^{n}-\boldsymbol{\varepsilon}^{T} \boldsymbol{\varepsilon} / 2 \sigma^{2} \\
& \quad=-\log (2 \pi)^{n / 2} \sigma^{n}-(\mathbf{y}-X \beta)^{T}(\mathbf{y}-X \beta) / 2 \sigma^{2}
\end{aligned}
$$

$\rightarrow \log L\left(\boldsymbol{\varepsilon}, \boldsymbol{\beta}, \sigma^{2}\right)$ is maximal when $(\mathbf{y}-X \beta)^{T}(\mathbf{y}-X \beta)$ is as small as possible, i.e., when $\boldsymbol{\beta}=\hat{\boldsymbol{\beta}}$. Consequently, the ML estimates are equal to the least squares estimates.

Significance of regression using ANOVA

Hypothesis

$$
H_{0}: \beta_{1}=\beta_{2}=\ldots=\beta_{k}=0 \quad H_{1}: \beta_{j} \neq 0 \text { for at least one } j
$$

General idea

Recall the ANOVA identity

$$
\underbrace{\sum\left(y_{i}-\bar{y}\right)^{2}}_{S S_{T}}=\underbrace{\sum\left(\hat{y}_{i}-y_{i}\right)^{2}}_{S S_{R e s}}+\underbrace{\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}}_{S S_{R}}
$$

If H_{0} is correct, then $y_{i}=\beta_{0}+\varepsilon_{y} . S S_{R}$ gives a measure on how much the residuals vary, while $S S_{\text {Res }}$ measures how much the residuals vary in an "optimal" linear model. If H_{0} is false, then $S S_{R e s}$ should be much smaller than $S S_{R}$.

Distribution of $S S_{R}$ and $S S_{\text {Res }}$

Appendix C.3, they show that if H_{0} is true, then $S S_{\text {Res }}$ and $S S_{R}$ are independent, $S S_{R} \sim \chi_{k}^{2}$, and $S S_{R e s} \sim \chi_{n-k-1}$.

Test statistic

$$
F_{0}:=\frac{S S_{R} / k}{S S_{R e s} /(n-k-1)} \sim F_{k, n-k-1}
$$

Reject H_{0} if $F_{0}>F_{\alpha, k . n-k-1}$.

The coefficients of determination

Recall $S S_{T}=\sum\left(y_{i}-\bar{y}\right)^{2}, S S_{\text {Res }}=\sum\left(\hat{y}_{i}-y_{i}\right)^{2}, S S_{R}=\sum\left(\hat{y}_{i}-\bar{y}_{i}\right)$.
The coefficient of determination
"The proportion of the variation explained by the regressors"

$$
R^{2}=S S_{R} / S S_{T}=1-S S_{R e s} / S S_{T}
$$

R^{2} close to one means most of the variability is explained by the model.

Example

${ }_{1}$ df00.model <- lm(people_fully_vaccinated_per_hundred~gdp_per _capita, data $=\mathrm{df} 00)$
summary (df00.model)

Call:
lm(formula = people_fully_vaccinated_per_hundred $\sim_{\text {_ }}$ gdp_per_ capita, data $=d f 00)$

Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-16.428	-6.176	-0.675	7.997	14.445

Coefficients:

	Estimate	Std. Error t	value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	$1.929 \mathrm{e}+01$	$6.075 \mathrm{e}+00$	3.175	0.00588	**
gdp_per_capita	$1.194 \mathrm{e}-03$	$1.957 \mathrm{e}-04$	6.100	$1.53 \mathrm{e}-05$	***
Signif.codes:	${ }^{\prime} * * *, 0$	$1^{\prime} * * * 0.01$	${ }^{*}$, 0	05 '.'	1

Residual standard error: 9.665 on 16 degrees of freedom Multiple R-squared: 0.6993, Adjusted R-squared: 0.6805 F-statistic: 37.21 on 1 and 16 DF , p-value: $1.534 \mathrm{e}-05$

The coefficients of determination

A problem with R^{2}

$$
R^{2}=1-S S_{R e s} / S S_{T}=1-\frac{\sum\left(\hat{y}_{i}-y_{i}\right)^{2}}{\sum\left(y_{i}-\bar{y}_{i}\right)^{2}}=1-\frac{\sum e_{i}^{2}}{\sum\left(y_{i}-\bar{y}_{i}\right)^{2}}
$$

- As we increase the degree number of regressors (in this case, the degree of the polynomial (regressors $x_{1}=x, x_{2}=x^{2}, x_{3}=x^{3}$, etc.), $S S_{\text {Res }}=\sum e_{i}^{2}$ decreases while $S S_{T}$ is constant.
- R^{2} is also affected by the positions of the points, as this affects $S S_{T}$.
- Encourages overfitting

The coefficients of determination

The adjusted coefficient of determination

$$
R_{a d j}^{2}=1-\frac{S S_{R e s} /(n-k-1)}{S S_{T} /(n-1)}
$$

Here the denominator does not depend on the number of variables in the model, and $S S_{\text {Res }} /(n-k-1)$ is the residual mean square, which do not necessarily decrease when we add a new variable.

Extra sum of squares

Let $\boldsymbol{\beta}=\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right)$.
Hypothesis

$$
H_{0}: \boldsymbol{\beta}_{2}=0 \quad H_{1}: \boldsymbol{\beta}_{2} \neq 0
$$

Extra sum of squares

$$
\begin{cases}\mathbf{y}=X \boldsymbol{\beta}+\boldsymbol{\varepsilon}=X_{1} \boldsymbol{\beta}_{1}+X_{2} \boldsymbol{\beta}_{2}+\boldsymbol{\varepsilon} & \text { the full model } \\ \mathbf{y}=X_{1} \boldsymbol{\beta}_{1}+\boldsymbol{\varepsilon} & \text { the reduced model }\end{cases}
$$

The regression sum of squares that is due to adding β_{2} to the reduced model is given by

$$
S S_{R}\left(\boldsymbol{\beta}_{2} \mid \boldsymbol{\beta}_{1}\right)=S S_{R}(\boldsymbol{\beta})-S S_{R}\left(\boldsymbol{\beta}_{1}\right) \quad \text { extra sum of squares due to } \boldsymbol{\beta}_{2}
$$

General idea

If the null hypothesis is true, then $S S_{R}\left(\boldsymbol{\beta}_{2} \mid \boldsymbol{\beta}_{1}\right)$ should be small.

Extra sum of squares

$$
\begin{gathered}
H_{0}: \boldsymbol{\beta}_{2}=0 \quad H_{1}: \boldsymbol{\beta}_{2} \neq 0 . \\
\begin{cases}\mathbf{y}=X \boldsymbol{\beta}+\boldsymbol{\varepsilon}=X_{1} \boldsymbol{\beta}_{1}+X_{2} \boldsymbol{\beta}_{2}+\boldsymbol{\varepsilon} & \text { the hypothesis } \\
\mathbf{y}=X_{1} \boldsymbol{\beta}_{1}+\boldsymbol{\varepsilon} & \text { the redl model }\end{cases}
\end{gathered}
$$

$$
S S_{R}\left(\boldsymbol{\beta}_{2} \mid \boldsymbol{\beta}_{1}\right)=S S_{R}(\boldsymbol{\beta})-S S_{R}\left(\boldsymbol{\beta}_{1}\right) \quad \text { extra sum of squares due to } \boldsymbol{\beta}_{2}
$$

Properties

- $S S_{R e s} \sim \chi_{n-(k+1)}^{2}$.
- $S S_{R}\left(\boldsymbol{\beta}_{2} \mid \boldsymbol{\beta}_{1}\right) \sim \chi_{r}^{2}$, where r is the number of parameters in $\boldsymbol{\beta}_{2}$.
- If H_{0} is true, then $S S_{R}\left(\boldsymbol{\beta}_{2} \mid \boldsymbol{\beta}_{1}\right)$ is independent of $S S_{R e s}(\boldsymbol{\beta})$.

Statistic

$$
F_{0}:=\frac{S S_{R}\left(\boldsymbol{\beta}_{2} \mid \boldsymbol{\beta}_{1}\right) / r}{S S_{R e s} /(n-k-1)} \sim F_{r, n-k-1}
$$

\rightarrow Reject if $F_{0}>F_{\alpha, r, n-k-1}$.

Example

The function anova in R can be used to access the extra sums of squares sequentially, and to perform the corresponding tests.

```
anova(df00.model2)
```

```
Analysis of Variance Table
```

Response: people_fully_vaccinated_per_hundred

| Df | Sum Sq | Mean Sq | F value | Pr $(>F)$ | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 3475.8 | 3475.8 | 41.4921 | $1.111 e-05$ | $* * *$ |
| 1 | 238.1 | 238.1 | 2.8417 | 0.1125 | |
| 15 | 1256.6 | 83.8 | | | |

Note that the column Sum Sq above contains $S S_{R}\left(\beta_{j} \mid \beta_{0}, \beta_{1}, \ldots, \beta_{j-1}\right)$. Hence from the above table, we see that there is no real support for adding the regression variable hospital_beds_per_thousand to our model.

Tests for single coefficients

We want to test whether $\beta_{j}=0$, since this would motivate removing β_{j} from our model.

Hypothesis

$$
H_{0}: \beta_{j}=0 \quad H_{1}: \beta_{j} \neq 0
$$

Test statistic

$$
t_{0}:=\frac{\hat{\beta}_{j}}{\sqrt{\hat{\sigma}^{2}\left(X^{T} X\right)^{-1}(j+1, j+1)}} \sim t_{n-k-1}
$$

Reject if $t_{0}>t_{\alpha, n-k-1}$.

Comments

- This test is conditional on all other regressors being present, hence we cannot use this for all variables, and then remove all the variables that failed, but rather have to perform such tests in a sequence.
- We can use this to find confidence intervals for $\hat{\beta}_{j}$. However, this will only give confidence intervals for one variable. For intervals for several of the coefficients simultaneously, see MPV 3.4.3.

Example

```
df00.model2 <- lm(people_fully_vaccinated_per_hundred~ gdp_
    per_capita+hospital_beds_per_thousand, data = df00)
summary(df00.model2)
Call:
lm(formula = people_fully_vaccinated_per_hundred ~ gdp_per_ capita + hospital_beds_per_thousand, data \(=d f 00)\)
```

Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-13.7639	-4.4811	0.0485	5.8690	12.7837

Coefficients:
Estimate Std. Error t value Pr

\quad ($>\|t\|$)					
(Intercept)	33.7305585	10.3210623	3.268	0.00519	$* *$
gdp_per_capita	0.0011229	0.0001901	5.908	$2.88 \mathrm{e}-05$	$* * *$
hosp_beds_per_th	-2.1185866	1.2567801	-1.686	0.11253	

Residual standard error: 9.153 on 15 degrees of freedom Multiple R-squared: 0.7472 , Adjusted R-squared: 0.7135 F-statistic: 22.17 on 2 and 15 DF, p-value: 3.318e-05

Confidence sets for a single regression coefficient

Since

$$
\hat{\boldsymbol{\beta}} \sim N\left(\boldsymbol{\beta}, \sigma^{2}\left(X^{T} X\right)^{-1}\right)
$$

we have

$$
t_{0}:=\frac{\hat{\beta}_{j}-\beta_{j}}{\sqrt{\hat{\sigma}^{2}\left(X^{T} X\right)^{-1}(j+1, j+1)}} \sim t_{n-k-1}
$$

We can use to construct a confidence interval on level α exactly as before.

Confidence sets for a single regression coefficient

```
confint(df00.model2, level=0.95)
\begin{tabular}{lrr} 
& \(2.5 \%\) & \(97.5 \%\) \\
(Intercept) & 11.7317350225 & 55.729382016 \\
gdp_per_capita & 0.0007177958 & 0.001528066 \\
hospital_beds_per_thousand & -4.7973501033 & 0.560176819
\end{tabular}
```


Joint confidence sets

Important!!!

We do not have

$$
P\left(\beta_{1} \in C I_{\alpha}\left(\hat{\beta}_{1}\right) \text { and } \beta_{2} \in C I_{\alpha}\left(\hat{\beta}_{2}\right)\right)=P\left(\beta_{1} \in C I_{\alpha}\left(\hat{\beta}_{1}\right)\right) P\left(\beta_{2} \in C I_{\alpha}\left(\hat{\beta}_{2}\right)\right)
$$

In fact, we only have

$$
\begin{aligned}
& P\left(\beta_{1} \in C I_{\alpha}\left(\hat{\beta}_{1}\right) \text { and } \beta_{2} \in C I_{\alpha}\left(\hat{\beta}_{2}\right)\right)=1-P\left(\beta_{1} \notin C I_{\alpha}\left(\hat{\beta}_{1}\right) \text { or } \beta_{2} \notin C I_{\alpha}\left(\hat{\beta}_{2}\right)\right) \\
& \quad \geq 1-P\left(\beta_{2} \notin C I_{\alpha}\left(\hat{\beta}_{2}\right)\right)-P\left(\beta_{2} \notin C I_{\alpha}\left(\hat{\beta}_{2}\right)\right)=1-(1-\alpha)-(1-\alpha)
\end{aligned}
$$

Bonferroni confidence intervals

A joint confidence set on level $1-j(1-\alpha)$ is given by

$$
C I_{\alpha}\left(\hat{\beta}_{1}\right) \times \ldots \times C I_{\alpha}\left(\hat{\beta}_{j}\right)
$$

This marginals of this set is often referred to as Bonferroni confidence intervals.

Joint confidence sets

Bonferroni confidence intervals

A joint confidence set on level $1-j(1-\alpha)$ is given by

$$
C I_{\alpha}\left(\hat{\beta}_{1}\right) \times \ldots \times C I_{\alpha}\left(\hat{\beta}_{j}\right)
$$

This marginals of this set is often referred to as Bonferroni confidence intervals.

Joint confidence sets

Since

$$
\hat{\boldsymbol{\beta}} \sim N\left(\boldsymbol{\beta}, \sigma^{2}\left(X^{T} X\right)^{-1}\right)
$$

implies that

$$
\frac{(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{T} X^{T} X(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) /(k+1)}{S S_{R e s} /(n-k-1)} \sim F_{k+1, n-k-1}
$$

we can use the F-distribution to calculate joint confidence regions directly.

Joint confidence sets

An elliptical confidence region

Since

$$
P\left(\boldsymbol{\beta} \in\left\{\tilde{\boldsymbol{\beta}}: \frac{(\hat{\boldsymbol{\beta}}-\tilde{\boldsymbol{\beta}})^{T} X^{T} X(\hat{\boldsymbol{\beta}}-\tilde{\boldsymbol{\beta}}) /(k+1)}{S S_{R e s} /(n-k-1)} \leq F_{\alpha, k+1, n-k-1}\right\}\right)=\alpha
$$

a confidence set (on confidence level α is given by

$$
\left\{\tilde{\boldsymbol{\beta}}: \frac{(\hat{\boldsymbol{\beta}}-\tilde{\boldsymbol{\beta}})^{T} X^{T} X(\hat{\boldsymbol{\beta}}-\tilde{\boldsymbol{\beta}}) /(k+1)}{S S_{R e s} /(n-k-1)} \leq F_{\alpha, k+1, n-k-1}\right\}
$$

This often a smaller region than the corresponding Bonferroni confidence set, but is hard to understand and visualize if k is large.

Joint confidence sets

An elliptical confidence region

A confidence set on confidence level α is given by

$$
\left\{\tilde{\boldsymbol{\beta}}: \frac{(\hat{\boldsymbol{\beta}}-\tilde{\boldsymbol{\beta}})^{T} X^{T} X(\hat{\boldsymbol{\beta}}-\tilde{\boldsymbol{\beta}}) /(k+1)}{S S_{R e s} /(n-k-1)} \leq F_{\alpha, k+1, n-k-1}\right\}
$$

Joint confidence sets

Project 1

- Project 1 is now available on course web page.
- The purpose of this project is to developing a regression model for one out of two given datasets, by applying the ideas we have discussed in class to this dataset.
- Work in groups of 2, and joint the same "group" on project page before handing in a report
- Deadline is same day as exam
- Reported as 1.5 hec, pass/fail, must be passed to pass the course

