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Todays lecture

• Finding a linear relationships between pairs of variables

– Variance influence factors (VIF)
– Eigensystem analysis

• Dealing with multicollinearity

– Collecting more data
– Removing regressors
– Principal component analysis (PCA)
– Sparse principal component analysis (sparse PCA)
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Assumptions

In this lecture, we assume that the vectors of observations of each regressor is
centered and normalized, and that the vector of responses is also centered and
normalized.
In other words, we assume that the data has been transformed so that

ȳ = X·1 = . . . = X·(k+1) = 0

and
‖y‖22 = ‖X·1‖22 = . . . = ‖X·(k+1)‖22 = 1.

→ In regression models for X and y in standard form, we will have no
intercept term, i.e., β0 = 0. For this reason, this regression coefficient will be
omitted, and when going back to the original scaling after a regression model
has been fitted, one usually adds a term β0 = ȳ −

!
β̂kx̄j .
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Finding linear relationships between two variables

Motivation
Assume that X·i and X·j are nearly linearly dependent. Since X is on standard
form, this implies that either X·i ≈ X·j or X·i ≈ −X·j .
Assume that X·i ≈ τX·j , where τ ∈ {−1, 1}. Then

XTX(i, j) = XT
·iX·j ≈ τXT

·iX·i = τXTX(i, i)" #$ %
=1

.

Idea
If X·i and X·j are almost linearly dependent, then |XTX(i, j)| ≈ 1.

Downside
This method cannot detect linear dependencies involving more than two
regressors.
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Finding linear relationships between two variables
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Variance inflation factors

Variance inflation factors

V IFj :=
Var(β̂j)

σ2
= (XTX)−1(j, j) = (1−R2

(j))
−1, .

where R2
(j) = 1− SS

(j)
Res/SS

(j)
T is the coefficient of determination for the

model obtained by removing the jth regressor from the model. Hence V IFj is
a measure of to which extent the jth regressor is linearly dependent on the
other regressors.

Rule
There is multicollinearity if V IFj ≥ 5 for some j.

Downside
This method can detect multicollinearity, but will not tell you what the linear
relationship is. However, you could proceed with studying the model
xj = b0 +

!
i ∕=j bixi more closely.
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Example

1 library("car")
2

3 df00.model1 <- lm(people_fully_vaccinated_per_hundred~ I(gdp
_per_capita ^.16) + I(diabetes_prevalence ^3.62) , data =
df00)

4 vif(df00.model1)

I(gdp_per_capita^0.16) I(diabetes_prevalence^3.62)

1.000066 1.000066
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Example
1 library("car")
2

3 df00.model2 <- lm(people_fully_vaccinated_per_hundred~ total
_cases_per_million+total_deaths_per_million+median_age+
gdp_per_capita+hospital_beds_per_thousand+population+
aged_65_older+diabetes_prevalence+cardiovasc_death_rate+
population_density+male_smokers+life_expectancy , data =
df00)

4 vif(df00.model2)
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Eigenvalue analysis of XTX

Motivation
If there is multicollinearity, then XTX will be ill-conditioned and have small
determinant. Since detXTX =

&
λi, it follows that at least one of the

eigenvalues will be small. This motivates the following two measures of
multicollinearity.

Condition number

κ := λmax/λmin

Rule: Moderate to strong multicollinearity if 100 ≤ κ < 1000, and severe
multicollinearity if κ ≥ 1000.

Condition indices

κj := λmax/λj

Rule: Multicollinearity if κj ≥ 100 for some j
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Example

10 / 29



Eigensystem analysis of XTX

Motivation
Assume that XTXvj = λjvj . Then

‖Xvj‖22 = (Xvj)
TXvj = vT

j X
TXvj" #$ %

=λjvj

= vT
j λjvj = λj‖vj‖22 = λj ,

and hence Xvj ≈ 0 if λj ≈ 0.

Idea
If an eigenvector λj of XTX is very small, and vj is the corresponding
eigenvector, then the linear relationship Xvj = 0 approximately holds between
the regressors. In other words, we can use the eigensystem of XTX to identify
linear relationships between the regressors.

Downside
The linear relationships we find in this way might not be the most natural ones,
and we sometimes have to consider linear combinations of these linear
relationships to find simpler ones.
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Example

1 X <- data.matrix(df01[,c("total_cases_per_million", "total_
deaths_per_million","median_age", "gdp_per_capita","
hospital_beds_per_thousand","population","aged_65_older"
,"diabetes_prevalence","cardiovasc_death_rate","
population_density", "male_smokers","life_expectancy" )
])

2

3 X <- scale(X)/sqrt(nrow(X) -1)
4 XtX <- t(X)%*%X
5

6 eigen(XtX)$values [12]
7 eigen(XtX)$vectors [,12]

[1] 0.0365042

[1] -0.005747818 -0.054576192 0.801328033 -0.109266477
-0.042011810 -0.035261603 -0.537725723 -0.102005698
-0.075914278 -0.017250500 -0.028309156 -0.183025047

− 0.01x1 + 0.05x2 − 0.80x3 + 0.11x4 + 0.04x5 + 0.04x6 + 0.54x7

+ 0.10x8 + 0.08x9 + 0.02x10 + 0.03x11 + 0.18x12 ≈ 0
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Collecting additional data

Assume that we have a model y = β0 + β1x1 + β2x2, where x1 and x2, in the
data collected, seem to have a near linear relationship, so that in almost all
samples, x1 ≈ x2.

Sources of collinearity

• Constraints on the model or population
• Model specification
• An overdefined model
• The data collection method

Idea
Collect more samples (x1j , x2j , yj) where x1j and x2j are chosen to be
different.

Comments
Only works if we can collect more data, and data as above exists and are not
too unusual. Also, we should ensure that the new points will automatically be
very influential.
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Model respecifications

Assume that we have a model y = β0 + β1x1 + β2x2, where x1 and x2, in the
data collected, seem to have a near linear relationship, so that in almost all
samples, x1 ≈ x2.

Sources of collinearity

• Constraints on the model or population
• Model specification
• An overdefined model
• The data collection method

Redefine the variables
Define new variables, e.g., x1 + x2, x1 − x2, or x1x2, which are chosen such
that they preserve the important information in the previous variables but
reduces the ill-conditioning of XTX.

Eliminate variables
Try to eliminate variables which causes linear dependence, and at the same
time does not have significant explanatory power.
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Principal components regression (PCR)
Idea
Recall the decomposition XTX = PDPT . Since the columns of P are
orthonormal eigenvectors of XTX, we have PTP = I, and hence also
PPT = I.
Write

y = Xβ + ε = XPPTβ + ε = XP"#$%
=:Z

PTβ" #$ %
=:α

+ε = Zα+ ε.

Then

ZTZ = (XP )T (XP ) = PT XTX" #$ %
=PDPT

P = PT (PDPT )P = D,

and hence the columns of Z are orthogonal. Consequently, y = Zα+ ε is a
regression model with orthogonal regressors.

Principal components
The columns in P, i.e., the orthogonal eigenvectors of XTX, are referred to as
the principal components.

Principal components analysis (PCA)
PCA refers to analyzing the principal components to detect patterns in the
data.
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Principal components regression (PCR)

Idea
XTX = PDPT , Z = XP, α = PTβ, ZTZ = D

y = Xβ + ε = Zα+ ε

Observations

• α̂ = (ZTZ)−1ZTy = D−1ZTy

• Var(α̂) = σ2(ZTZ)−1 = σ2D−1

• ‖Z·j‖22 = (Zej)
T (Zej) = eT

j Z
TZej = eT

j Dej = D(j, j) = λj

→ If λj is small, then the variance of α̂j is large, and the jth principal
component corresponds to a linear combination of the original regressors that is
almost equal to zero, i.e. to a multicollinearity in the original model.

Idea
Remove the principal components with "small" eigenvalues from the model.
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Example

1 df01.pca <- prcomp(~ total_cases_per_million+total_deaths_
per_million+median_age+gdp_per_capita+hospital_beds_per_
thousand+population+aged_65_older+diabetes_prevalence+
cardiovasc_death_rate+population_density+male_smokers+
life_expectancy , data = df01 , center = TRUE ,scale. =
TRUE)

2 summary(df01.pca)

PC1 PC2 PC3 PC4 PC5 PC6

Standard deviation 2.1218 1.3927 1.1679 1.0178 0.9690 0.8509
Proportion of Variance 0.3752 0.1616 0.1137 0.0863 0.0783 0.0603
Cumulative Proportion 0.3752 0.5368 0.6505 0.7368 0.8150 0.8753

PC7 PC8 PC9 PC10 PC11 PC12

Standard deviation 0.6819 0.6297 0.5284 0.4441 0.3479 0.1931
Proportion of Variance 0.0388 0.0331 0.0233 0.0164 0.0101 0.0031
Cumulative Proportion 0.9141 0.9472 0.9704 0.9869 0.9970 1.0000
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Example
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Example
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Example

Below, we calculate the coefficients for the original regressors from the
coefficients for the principal components.

1 df01.pc$rotation [ ,1:4] %*% data.matrix(df01.pcmodel$
coefficients)[2:5 ,]

total_cases_per_million 1.3113413
total_deaths_per_million -0.1636393
median_age 4.2009415
gdp_per_capita 5.4896563
hospital_beds_per_thousand 1.3495715
population 1.5913492
aged_65_older 3.1278789
diabetes_prevalence 2.9784789
cardiovasc_death_rate -4.3522086
population_density 3.5986983
male_smokers -0.9235646
life_expectancy 5.2658193
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Example

1 df01.pcrmodel <- lm(df01$people_fully_vaccinated_per_hundred
~df01.pc$x[,1]+ df01.pc$x[,2]+ df01.pc$x[,3]+ df01.pc$x
[,4]) # can have no missing data in y for this to work

2 summary(df01.pcrmodel)

Residuals:
Min 1Q Median 3Q Max

-41.990 -10.864 0.306 8.726 55.291

Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.1360 1.3864 32.557 < 2e-16 ***
df01.pc$x[, 1] -8.9052 0.6560 -13.575 < 2e-16 ***
df01.pc$x[, 2] -6.5900 0.9994 -6.594 1.18e-09 ***
df01.pc$x[, 3] 2.9026 1.1918 2.435 0.0163 *
df01.pc$x[, 4] -1.3628 1.3675 -0.997 0.3210
---
Signif.codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 15.56 on 121 degrees of freedom
Multiple R-squared: 0.6598 , Adjusted R-squared: 0.6486
F-statistic: 58.67 on 4 and 121 DF , p-value: < 2.2e-16
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Example

1 df01.pc <- prcomp(~ gdp_per_capita+ diabetes_prevalence ,
data = df01 , center = TRUE ,scale. = TRUE)

2 summary(df01.pc)

PC1 PC2

Standard deviation 1.1326 0.8469
Proportion of Variance 0.6414 0.3586
Cumulative Proportion 0.6414 1.0000

21 / 29



Example

22 / 29



The geometry of PCA
Observation 1
If A is a quadratic matrix, then the eigenvalues λ1 ≥ λ2 ≥ . . . and corresponding
eigenvectors v1,v2, . . . of A and be found by

vj = argmax
v : ‖v‖2=1,
v⊥vi ∀i<j

vTAv and λj = max
v : ‖v‖2=1,
v⊥vi ∀i<j

vTAv

If A = XTX, then vTAv = vTXTXv = ‖Xv‖22.

Observation 2
The squared distance between xj and the line 0 + t · v, where vTv = 1, is given by

‖xj − projvxj‖22 =
!!!xj −

"
(vTv)−1vTxj

#
v
!!!
2

2
= ‖xj − (vTxj)v‖22

=
"
xj − (vTxj)v

#T "
xj − (vTxj)v

#

= xT
j xj − (vTxj)v

Txj − xT
j (vTxj)v + (vTxj)v

T (vTxj)v

= 1− (xT
j v)2,

and hence
$

j

!!!xj − projvxj

!!!
2

2
=

$"
1− (xT

j v)2
#
= k − vTXTXv = k − ‖Xv‖22.

Observation 3
When we are talking about PCA, A = XTX, P = (v1,v2, . . . ,vk), Z = XP, and
hence zj(k) = xT

j vk = (vT
k v)−1vT

k xj .
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Example
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Sparse principal component analysis (sparse PCA)

Motivation
When k + 1 ≫ n, the eigenvectors of XTX can be sensitive to the particular
sample.

Idea
Note that principal components of X are given by Zej = XPej , where

Pej = argmin
z : ‖z‖2=1,
z⊥Zei ∀i<j

zTXTXz = argmin
z : ‖z‖2=1,
z⊥Zei ∀i<j

‖Xz‖22

To this formula we can add a penalty, which will make the principal
components more stable.

P (t)ej := argmin
z : ‖z‖2=1,
z⊥Z·i∀i<j,

‖z‖1≤t

‖Xz‖22 = argmin
z : ‖z‖2=1,
z⊥Z·i∀i<j

‖Xz‖22 + λ(t)‖z‖1
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Sparse principal component analysis (sparse PCA)

Idea
Define

P (t)ej := argmin
z : ‖z‖2=1,
z⊥Z·i∀i<j,

‖z‖1≤t

‖Xz‖22

and
λ
(t)
j := min

z : ‖z‖2=1,
z⊥Z·i∀i<j,

‖z‖1≤t

‖Xz‖22.

Note that λ
(t)
j will only be an eigenvalue of XTX if t = ∞.

Sparse PCA

1. Pick t ≥ 0.

2. Calculate the pseudo-eigenvalues λ
(t)
j .

3. Perform regression analysis using the weighed principal components
Z(t)ej := XP (t) with the largest pseudo-eigenvalues λ

(t)
j .
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Example

1 library("elasticnet")
2 df01.spc <- spca(X, K = 5, type = "predictor", sparse = "

penalty", para = c(.2, .2, .2, .5, .5))
3 df01.spca

5 sparse PCs
Pct. of exp. var. : 23.2 12.7 8.2 8.2 7.9
Num. of non -zero loadings : 6 3 1 1 1
Sparse loadings

PC1 PC2 PC3 PC4 PC5
total_cases_per_million -0.324 0.000 0 0 0
total_deaths_per_million -0.111 0.000 0 0 0
median_age -0.867 0.000 0 0 0
gdp_per_capita 0.000 -0.206 0 0 0
hospital_beds_per_thousand -0.187 0.000 0 0 0
population 0.000 0.000 0 -1 0
aged_65_older -0.184 0.000 0 0 0
diabetes_prevalence 0.000 0.000 1 0 0
cardiovasc_death_rate 0.000 0.813 0 0 0
population_density 0.000 0.000 0 0 1
male_smokers 0.000 0.545 0 0 0
life_expectancy -0.247 0.000 0 0 0
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Example
1 df01.spc$x <- X%*%df01.spc$loadings
2

3 df01.pcrmodel <- lm(df01$people_fully_vaccinated_per_hundred
~df01.spc$x[,1]+ df01.spc$x[,2]+ df01.spc$x[,3]+ df01.spc$x
[,4])

4 summary(df01.pcrmodel)

Residuals:
Min 1Q Median 3Q Max

-40.30 -12.06 1.26 10.08 56.98

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 45.136 1.489 30.315 < 2e-16 ***
df01.spc$x[, 1] -105.991 10.272 -10.319 < 2e-16 ***
df01.spc$x[, 2] -77.830 13.568 -5.736 7.28e-08 ***
df01.spc$x[, 3] 59.546 16.939 3.515 0.000619 ***
df01.spc$x[, 4] -15.092 16.829 -0.897 0.371613
---
Signif.codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 16.71 on 121 degrees of freedom
Multiple R-squared: 0.6076 , Adjusted R-squared: 0.5946
F-statistic: 46.84 on 4 and 121 DF , p-value: < 2.2e-16
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Example

Below, we calculate the coefficients for the original regressors from the
coefficients for the sparse principal components.

1 df01.spc$loadings %*% df01.spcmodel$coefficients

total_cases_per_million -14.635267
total_deaths_per_million -5.029128
median_age -39.153592
gdp_per_capita 21.784591
hospital_beds_per_thousand -8.455239
population -59.545870
aged_65_older -8.302296
diabetes_prevalence -77.830356
cardiovasc_death_rate -86.163607
population_density -15.092154
male_smokers -57.753132
life_expectancy -11.151146
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