Roland Maier

Source: Photo collection of the Mathematisches
Forschungsinstitut Oberwolfach

Roland Maier

Postdoctoral Researcher

Division of Applied Mathematics and Statistics,
Department of Mathematical Sciences,
Chalmers University of Technology and
University of Gothenburg


E-mail: roland.maier(at)chalmers.se
Office: L2082
Address:  Chalmers Tvärgata 3, 412 96 Gothenburg, Sweden

Research Interests


  • Computational Multiscale Methods
  • Numerical Homogenization
  • Discretization of (time-dependent) Partial Differential Equations

Short CV


Since Sep 2020   PostDoc, Chalmers University of Technology and University of Gothenburg, Sweden
Mar 2020 - Aug 2020   PostDoc, University of Augsburg, Germany
Apr 2017 - Mar 2020   Doctoral student, University of Augsburg, Germany
Sep 2012 - Mar 2017   Bachelor and Master studies in Mathematics, University of Bonn, Germany

Awards and Prizes


  • Winner of the ECCOMAS PhD Olympiad 2021
  • Dr.-Klaus-Körper Prize of the GAMM 2021
  • Kulturpreis Bayern 2020, dissertation prize
  • Appointed member of the GAMM Juniors (2020-2022)

Publications


Submitted Articles

[1]   P. Ljung, R. Maier, and A. Målqvist. A space-time multiscale method for parabolic problems. ArXiv Preprint, 2021.
[2]   R. Maier, P. Morgenstern, and T. Takacs. Adaptive refinement for unstructured T-splines with linear complexity. ArXiv Preprint, 2021.
[3]   F. Kröpfl, R. Maier, and D. Peterseim. Operator compression with deep neural networks. ArXiv Preprint, 2021.
[4]   R. Altmann and R. Maier. A decoupling and linearizing discretization for poroelasticity with nonlinear permeability. ArXiv Preprint, 2021.
[5]   S. Geevers and R. Maier. Fast mass lumped multiscale wave propagation modelling. ArXiv Preprint, 2021.
[6]   R. Maier and B. Verfürth. Multiscale scattering in nonlinear Kerr-type media. ArXiv Preprint, 2020.

Refereed Articles

[1]   R. Maier. A high-order approach to elliptic multiscale problems with general unstructured coefficients. SIAM J. Numer. Anal., 59(2):1067-1089, 2021.
[2]   R. Altmann, R. Maier, and B. Unger. Semi-explicit discretization schemes for weakly-coupled elliptic-parabolic problems. Math. Comp., 90(329):1089-1118, 2021.
[3]   A. Caiazzo, R. Maier, and D. Peterseim. Reconstruction of quasi-local numerical effective models from low-resolution measurements. J. Sci. Comput., 85(1), Article No. 10, 2020.
[4]   R. Altmann, E. Chung, R. Maier, D. Peterseim, and S.-M. Pun. Computational multiscale methods for linear heterogeneous poroelasticity. J. Comput. Math., 38(1):41-57, 2020.
[5]   P. Hennig, R. Maier, D. Peterseim, D. Schillinger, B. Verfürth, and M. Kästner. A diffuse modeling approach for embedded interfaces in linear elasticity. GAMM-Mitteilungen, 43(1):e202000001, 2020.
[6]   S. Fu, R. Altmann, E. Chung, R. Maier, D. Peterseim, and S.-M. Pun. Computational multiscale methods for linear poroelasticity with high contrast. J. Comput. Phys., 395:286-297, 2019.
[7]   R. Maier and D. Peterseim. Explicit computational wave propagation in micro-heterogeneous media. BIT Numer. Math., 59(2):443-462, 2019.
[8]   C. Paulus, R. Maier, D. Peterseim, and S. Cotin. An immersed boundary method for detail-preserving soft tissue simulation from medical images. In: P. Nielsen, A. Wittek, K. Miller, B. Doyle, G. Joldes, and M. Nash, editors, Computational Biomechanics for Medicine, MICCAI 2017, pp. 55-67. Springer, Cham, 2019.

Articles in Collections

[1]   P. Hennig, M. Kästner, R. Maier, P. Morgenstern, and D. Peterseim. Adaptive isogeometric phase-field modeling of weak and strong discontinuities. To appear in Lecture Notes in Computational Sciences and Engineering, 2021.

Articles in Proceedings

[1]   R. Maier. A semi-explicit integration scheme for weakly-coupled poroelasticity with nonlinear permeability. Proc. Appl. Math. Mech., 20(1):e202000061, 2018.
[2]   A. Caiazzo, R. Maier, and D. Peterseim. Reconstruction of quasi-local numerical effective models from low-resolution measurements. Oberwolfach Reports, 16(3):2149-2152, 2019.
[3]   R. Maier and D. Peterseim. Fast time-explicit micro-heterogeneous wave propagation. Proc. Appl. Math. Mech., 18(1):e201800294, 2018.

Theses

[1]   R. Maier. Computational Multiscale Methods in Unstructured Heterogeneous Media. Doctoral Thesis, University of Augsburg, 2020.
[2]   R. Maier. Simulation of Elastic Deformation by the Immersed Boundary Method. Master Thesis, University of Bonn, 2017.
[3]   R. Maier. Die Space-Time-DG-Methode: Theorie und Numerik für parabolische Gleichungen in einer Dimension. Bachelor Thesis, University of Bonn, 2015. In German.