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Mathematical Sciences, Chalmers and Gothenburg University

SE-412 96 Gothenburg, Sweden

(hrootzen@chalmers.se)

and

Dmitrii Zholud

Mathematical Sciences, Chalmers and Gothenburg University

SE-412 96 Gothenburg, Sweden

(dmitrii@chalmers.se)

Abstract

This paper develops methods to estimate the tail and full distribution of the lengths of the

0-intervals in a continuous time stationary ergodic stochastic process which takes the values 0

and 1 in alternating intervals. The setting is that each of many such 0-1 processes have been

observed during a short time window. Thus the observed 0-intervals could be non-censored,

right censored, left censored or doubly censored, and the lengths of 0-intervals which are

ongoing at the beginning of the observation window have a length-biased distribution. We

exhibit parametric conditional maximum likelihood estimators for the full distribution, develop

maximum likelihood tail estimation methods based on a semi-parametric generalized Pareto

model, and propose goodness of fit plots. Finite sample properties are studied by simulation,

and asymptotic normality is established for the most important case. The methods are applied

to estimation of the length of off-road glances in the 100-car study, a big naturalistic driving

experiment. Supplementary materials that include MatLab code for the estimation routines

and a simulation study are available online.
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mation; Traffic safety; 100-car naturalistic driving study.

1 Introduction

Let X(t) be a stationary ergodic stochastic process which takes the values 0 and 1 in alternating

intervals, as illustrated in Figure 1. Here 1 could mean that a technical system is in operation and

0 that it is being repaired, or 1 could be that a person is healthy, while 0 is that he suffers from

an attack of some specific recurrent disease such as the relapsing form of multiple sclerosis. In

the problem of visual inattention during driving, which initiated this research, 1 means that the

driver of a car looks on the road, and 0 that she looks away from the road. This paper develops

methods for using window censored observations to estimate the distribution of the lengths of the

0-intervals in such processes.

Very large naturalistic driving studies, costing hundreds of millions of dollars, are used as a

tool to reduce traffic risks. Visual inattention, and in particular long off road glances, i.e. with the

notation above, long 0-intervals, pose the largest dangers and are at the center of interest. The sta-

tistical methods needed for efficient use of these studies are still in an early stage of development.

This paper contributes one central ingredient needed for this. Analysis of data from periodic relia-

bility inspection, and prevalence based epidemiological studies where the time of onset of disease

is not recorded, are other examples of areas where our methods can be used.

Under widely applicable technical assumptions (including finiteness of the expected number of

0-intervals in finite time intervals), which we assume are satisfied, the ergodic long-run distribution

function of the lengths of the 0-intervals,

F0(x) = lim
T→∞

# {0-intervals in [0,T] which are shorter than x}
# {0-intervals in [0,T]}
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exists. In particular, ifX(t) is an alternating renewal process thenF0 is simply the common distri-

bution function of the 0-intervals.

We assume that a number of independent stationary 0-1 processes of this kind have been ob-

served during a randomly placed time window of fixed lengthw > 0 (the results also extend to

windows of differing lengths). Since the process is stationary, we without loss of generality as-

sume that this observation window is [0,w]. The challenge is that the 0-intervals which fall in

[0,w] may be left censored, right censored, or both left and right censored, and that furthermore

the left and doubly censored observations are obtained by length-biased sampling. The goal is to

estimateF0(x), or the tail ofF0(x).

In the situation we mainly aim at here, the corresponding distributionF1(x) of lengths of 1-

intervals is of less interest, or the 1-intervals are too long in relation to the window-length to make

estimation reasonable. Our methods work both for long and for short 1-intervals.

We consider (i) a parametric statistical model forF0(x), and (ii) a semi-parametric generalized

Pareto model, where the parametric form forF0(x) is only assumed to apply forx-values which

exceed a thresholdu > 0. For both models we develop conditional maximum likelihood estimation

methods; introduce goodness of fit plots; study the methods by simulation; and apply them to data

from a large naturalistic driving study, the 100-car study. For the heavytailed semi-parametric

model we also show asymptotic normality.

The literature on statistical inference for window censored multistate processes is limited. Al-

varez (2005) derives the maximum likelihood estimator for a stationary alternating renewal pro-

cess, and, for the special case of a 0-1 continuous time Markov chain, proves asymptotic normality

as the number of windows tends to infinity with window length kept constant. Karr (1994) consid-

ers maximum likelihood estimation for a 0-1 continuous time Markov chain, using observation of

a single sample path in an expanding window. Non-parametric estimation for bi- and multivariate

semi-Markov processes is studied in Alvarez (2006) and Ouhibi and Limnios (1999).

Starting with Cox (1969), Vardi (1982, 1985), length-bias sampling for ordinary renewal pro-
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cesses has received much more attention. For recent contributions see Gill and Keiding (2010),

Zhao and Nagaraja (2011), Ning et al. (2013), Zhu et al. (2013), and the references in these papers.

A different strand of literature considers left truncated, right censored and size biased observations,

often in connection with prevalent cohort deigns in epidemiology, see e.g. Qin et al. (2011) and

the references therein. In the literature on tail estimation, only right censoring seems to have been

considered, see Einmahl et al. (2008).

Section 2 below introduces the models and estimators. In Section 3 small sample behavior

of the methods are studied by simulation, and they are applied to the 100-car naturalistic driving

study in Section 4. Results on asymptotic normality and MatLab code for the estimation routines

are available in Supplementary Materials.

2 Models and likelihoods

Estimation under a full parametric specification ofF0 is considered in Subsection 2.1, and Sub-

section 2.2 introduces the tail estimation methods. Subsection 2.3 briefly discusses confidence

intervals; regression modeling; goodness of fit plots; joint estimation ofF0 andF1; long observa-

tion windows; and asymptotic normality.

For the estimation we only use those of the observation windows which intersect at least one

0-interval. Hence the likelihoods introduced below are conditional on the observation window in-

tersecting at least one 0-interval. Further, in Subsections 2.1 and 2.2 we only use the first 0-interval

in each window since this makes the independence assumption we need much less restrictive. This

assumption is that conditionally onX(0) = 1, the lengths of the starting 1-interval and of the fol-

lowing 0-interval are mutually independent. We assume thatF0 andF1 have continuous densities

f0 and f1 and finite means. The finite mean condition is required for ergodicity of the process.
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2.1 Conditional maximum likelihood estimation

Let S be the starting point of the first 0-interval in the observation window [0,w], let L be the

length of the observed part of this 0-interval, and letF̄ = 1 − F denote the tail (or “survival”)

function corresponding to a distributionF. The lengths of the observed 0-intervals (see Figure 2)

are classified as

nc) non-censored, i.e. withS ∈ (0,w),S + L < w: denoted̀ nc,1, . . . `nc,nnc,

rc) right censored, i.e. withS ∈ (0,w),S + L = w: denoted̀ rc,1, . . . `rc,nrc ,

lc) left censored, i.e withS = 0, L < w: denoted̀ lc,1, . . . `lc,nlc , and

dc) doubly censored, i.e. withS = 0, L = w: denoted̀ dc,1 = . . . `dc,ndc = w,

wherennc is the number of non-censored observations,nrc is the number of right censored obser-

vations, and so on. Further, if the observation window starts with an 1-interval we letsnc,1, . . . snc,nnc

denote the lengths of those (left-censored) starting 1-intervals which are followed by a non-censored

1-interval, and we letsrc,1, . . . src,nrc be the lengths of the starting (left-censored) 1-intervals which

are followed by a right censored 0-interval, see Figure 2; note that here the subscripts indicate the

form of the censoring of the corresponding 0-intervals, and not of the 1-intervals themselves. It

is well known that ifX(t) is an alternating renewal process, then the distribution ofL conditional on

X(0) = 0 (i.e. onS = 0) has the length-weighted “residual life” density and distribution functions

f r
0(x) = F̄0(x)/μ0 and Fr

0(x) =
∫ x

0
f r
0(y)dy, (1)

where the superscript “r” indicates “residual”, and whereμ0 =
∫

x f0(x)dx is the mean ofF0. It can

be seen that (1) in fact holds not just for alternating renewal processes, but also for general station-

ary ergodic 0-1 processes, under conditions as in the introduction. Similarly, letμ1 =
∫

x f1(x)dx

and let f r
1 andFr

1 be the residual life density and distribution functions obtained fromF1. Further

(by ergodicity)p0 = Pr(X(0) = 0) = μ0/(μ0 + μ1) andp1 = Pr(X(0) = 1) = μ1/(μ0 + μ1).
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Now, suppose additionally that there is a fully parametric specification,F0(x) = F0(x; θ) of the

cumulative distribution function of the length of a 0-interval, withθ a finite dimensional parameter.

Instead no additional conditions onF1 are assumed. Then, using the independence ofS andL for

the “nc” and “rc” cases, observations` of L ands of S contribute to the likelihood function with

the following factors,

nc) f r
1(s) f0(`; θ) if the observation is uncensored,

rc) f r
1(s)F̄0(`; θ) if the observation is right censored,

lc) f r
0(`; θ) if the observation is left censored, and

dc) F̄r
0(w; θ) if the observation is doubly censored.

Thus the full likelihood function based on the observed lengths of the zero-intervals and on the

information if X(0) is 0 or 1 is

L(θ) = pnnc+nrc
1

nnc∏

k=1

f r
1(snc,k) f0(`nc,k; θ) ×

nrc∏

k=1

f r
1(src,k)F̄0(`rc,k; θ) (2)

×pnlc+ndc
0

nlc∏

k=1

f r
0(`lc,k; θ) × F̄r

0(w)ndc.

Now, recall thatp1 = μ1/(μ0 + μ1) andp0 = μ0/(μ0 + μ1) whereμ0 = μ0(θ) andμ1 is determined

by F1. Thus the factorsp1 and p0 in the likelihood function couple information aboutF1 with

information aboutθ.

However,μ1 is determined by the tail behavior ofF1, and in the situations we aim at the 1-

intervals are much longer than the 0-intervals, and hence data collected in the short observation

window [0,w] contains little information about the tail ofF1. For a special case, a continuous time

0-1 Markov chain, Alvarez (2005) indicates that the loss of information from using the conditional

likelihood instead of the full likelihood can be sizeable if the 0- and 1-intervals are of comparable

lengths, but that the loss is small if the lengths are substantially different. The loss should be even

smaller in the present situation. Thusp1 andp0 contain little useful information aboutθ.
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We hence use a conditional log likelihood function, which in addition to being conditional on

the observation window intersecting at least one 0-interval, also is conditional on the observed

valuesn1 = nnc + nrc andn0 = nlc + ndc. Omitting factors which do not depend onθ and hence do

not play a role in ML-estimation, the conditional log likelihood function then is

`(θ) = `(θ| n0,n1) =

nnc∑

k=1

log f0(`nc,k; θ) +
nrc∑

k=1

log F̄0(`rc,k; θ) (3)

+

nlc∑

k=1

log f r
0(`lc,k; θ) + ndc log F̄r

0(w).

Estimates ofθ are obtained aŝθ = arg maxθ `(θ).

Example. A simple and important special case is whenF0 is an exponential distribution,F0(x) =

1− e−x/σ, f0(x) = σ−1e−x/σ, where we have writtenθ = σ. Then the residual life distribution is the

same as the original distribution, and hence

`(σ) = −σ−1




nnc∑

k=1

`nc,k +

nrc∑

k=1

`rc,k +

nlc∑

k=1

`lc,k + ndcw


 − (nlc + nnc) logσ.

Hence the conditional maximum likelihood estimate ofσ0 is the standard estimate of the scale

parameter for a right censored exponential distribution,

σ̂ =

∑nnc
k=1 `nc,k +

∑nrc
k=1 `rc,k +

∑nlc
k=1 `lc,k + ndcw

nlc + nnc
.

The standard error may be estimated by the inverse ˆσ/
√

nlc + nnc of the observed information.�

If the exponential distribution does not fit, a possibility could be to use a gamma distribution:

the exponential distribution can be thought of as the time it takes for performing one task, and the

gamma distribution is then the time it takes to perform a number of identical tasks. The next, more

general and, perhaps, most natural model would be a phase type distribution, i.e. the distribution

of the time to absorption in a finite state Markov chain. In reliability applications, the Weibull
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distribution may instead be more useful. For the convenience of the reader, formulas for the gamma

and Weibull distributions are given in Supplementary Materials.

2.2 Semi-parametric tail estimation

In this section we consider the situation where the tail of the distribution of the length of a 0-interval

is at the center of interest.

Using all of the data and a full parametric model produces an estimated distribution which is

mainly determined by the shape of the center of the distribution. This often leads to bad fit in

the tail of the distribution. We hence here instead only assume a parametric model for the tails of

F0, i.e. for F0(x) for values ofx greater than some thresholdu, and use non-parametric Kaplan-

Meier estimates ofF(x) for x < u. Specifically, we use the Peaks over Thresholds model with a

generalized Pareto Distribution (GPD) for the excesses ofu, see Coles (2001). We thus assume

that

F̄0(x) = F̄0(u)Ḡ0(x− u), for x > u, (4)

where the thresholdu < w is chosen large enough to make model fit acceptable. HereG0 is a

generalized Pareto cumulative distribution function,

G0(y) = G0(y;σ, γ) = 1−
(
1+
γ

σ
y
)−1/γ

+
, y > 0,

where the+ signifies that the expression in parentheses should be replaced by 0 if it is negative.

Thus the distribution has a finite right endpointσ/|γ| if γ < 0, and an infinite right endpoint

otherwise. To ensure a finite mean, we assume thatγ < 1. Forγ = 0 the expression should be

interpreted as its limit asγ → 0,

G0(y;σ,0) = e−y/σ,
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i.e. as an exponential distribution with scale parameterσ. Typically the choice ofu is aided by

diagnostic data plots. Coles (2001), Section 4.3 contains a discussion of data driven methods for

this threshold choice, and of the ramifications surrounding it. Methods for checking model fit in

the present situation are discussed in Section 2.3.

The only part of the observations to be used for estimation ofσ andγ are the excessesX = L−u

of u. Thus we will use

nc) then̄nc excessesxnc,1, . . . xnc,n̄nc of u by non-censored observations,

rc) then̄rc excessesxrc,1, . . . xrc,n̄rc of u by right censored observations,

lc) then̄lc excessesxlc,1, . . . xlc,n̄lc of u by left censored observations,

dc) then̄dc valuesw− u which come from doubly censored variables.

It follows from (4) that the cumulative distribution function ofX, conditional onL > u, is G0,

and that the corresponding probability density function, forγ , 0, is

g0(x;σ, γ) =





σ−1
(
1+

γ

σ
x
)−1/γ−1

+
, for x > 0 andγ , 0

σ−1e−x/σ, for x > 0 andγ = 0.

By (1) and (4), the residual life densityf r
0 has the form

f r
0(x;σ, γ) = F̄0(u)Ḡ(x− u;σ, γ)/μ0, for x > u,

and, forγ , 0, the probability density of the excess of a residual life time overu is

gr
0(x;σ, γ) =

F̄0(u)Ḡ(x;σ, γ)/μ0∫ ∞
u

F̄0(u)Ḡ(y− u;σ, γ)dy/μ0

=
1

e(σ, γ)
Ḡ(x;σ, γ), (5)

for x > 0, wheree(σ, γ) =
∫ ∞

0
Ḡ(y;σ, γ)dy = σ/(1− γ) is the mean of the GPD. Integration then

gives the residual life tail function

Ḡr
0(x;σ, γ) =

(
1+
γ

σ
x
)−1/γ+1

+
. (6)
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Forγ = 0, insteadgr
0(x) = σ−1e−x/σ andḠr

0(x) = e−x/σ.

In this model, the form of the cumulative distribution function forx < u is supposed not to be

connected with the parametric form assumed forx ≥ u, and thus the numbers of excesses do not

to contain any information aboutμ or σ. Hence we condition on ˉnnc, n̄rc, n̄lc, n̄dc, and obtain the

conditional log likelihood function

`u(σ, γ) =

n̄nc∑

k=1

logg0(xnc,k;σ, γ) +
n̄rc∑

k=1

logḠ0(xrc,k;σ, γ)

+

n̄lc∑

k=1

loggr
0(xlc,k;σ, γ) + n̄dc logḠr

0(w− u;σ, γ).

Thus, ifγ , 0, then

`u(σ, γ) = −(1/γ + 1)
n̄nc∑

k=1

log
(
1+
γ

σ
xnc,k

)
− 1/γ

n̄rc∑

k=1

log
(
1+
γ

σ
xrc,k

)

−1/γ
n̄lc∑

k=1

log
(
1+
γ

σ
xlc,k

)
− n̄dc(1/γ − 1) log

(
1+
γ

σ
(w− u)

)

−(n̄nc + n̄lc) logσ + n̄lc log(1− γ). (7)

For exponential caseγ = 0 the log likelihood function, the estimate ofσ and of its standard error

is the same as in the example at the end of Section 2.1.

It remains to find an estimator of̄F0(x) for x ≤ u, and in particular forF̄0(u). For this we

use the Kaplan-Meier estimator based on the non-censored and right censored observations. (Cf.

Gill and Keiding (2010), p. 576). Also left and doubly censored observations contain information

aboutF̄0(u). However, to use them requires non-parametric estimation of a density function. This

can only be done with much less precision, and using left and doubly censored observations for

non-parametric estimation is expected to add little to the precision of the estimate.
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2.3 Complements

Confidence intervals:The simplest approach often is to use the inverse of the observed information

matrix to estimate standard errors, and then to construct confidence intervals based on the assump-

tion of normality. However, for some models bootstrap or parametric bootstrap methods may be

simpler, and are also expected to lead to more accurate intervals if interest is centered at non-linear

functions of the parameters, such as high quantiles.

Regression type modeling:Covariate dependence may be handled by making the parameters of

the distribution be functions of the covariates. For non-censored observations and the Peaks over

Thresholds model this is extensively discussed in, e.g., Coles (2001). In particular, models of

the popular Accelerated Failure Time type may be obtained by letting the scale parameterσ in

the generalized Pareto distribution depend on covariatesx = (x1, . . . , xd)′ and parametersβ =

(β1, . . . , βd) asσ = exp(βx).

Goodness of fit plots:These are less standard. There are two types of observations of lengths

of 0-intervals, a) left censored and doubly censored observations and b) non-censored and right-

censored ones. We propose to do model control separately in two plots, one for the type a) lengths

and one for type b) lengths, as follows. Letθ̂ be the estimate of the parameters. The first plot

displays the empirical tail function of the type a) observations and the parametric estimateF̄r
0(∙; θ̂)

of the length-biased tail function. The second plot shows the non-parametric Kaplan-Meier es-

timate of the tail function of the interval lengths for the type b) observations together with the

corresponding parametric estimatēF0(∙; θ̂).

The goodness of fit plots can also indicate whether the assumption of independence between

the length of a starting 1-interval and the following 0-interval is reasonable, or if is violated in ways

which influence estimation. This assumption may also be checked by estimating the parameters

separately from the type a) and the type b) observations, and comparing the results. If these
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estimates are similar it is an indication that the independence assumption is acceptable. Finally,

making these plots for different thresholdsu can be used to help choosing an appropriateu.

Maximum likelihood using the first two interval lengths:Write nno for the number of observation

windows which contain no observed 0-intervals, and writesnc
lc and src

lc for the observations from

windows which start withX(0) = 0, then have a 0-interval which is shorter thanw, and then an

1-interval which is fully observed, or right censored, respectively. Further, writennc
lc for the number

of snc
lc -observations andnrc

lc for the number ofsrc
lc -observations. Then, assumingθ also includes a

fully parametric specification ofF1, and with obvious notation, the full likelihood for the first two

observed interval lengths is

L(θ) = pnnc+nrc+nno
1

nnc∏

k=1

f r
1(snc,k) f0(`nc,k; θ) ×

nrc∏

k=1

f r
1(src,k)F̄0(`rc,k; θ) × F̄r

1(w)nno

×p
nnc

lc +nrc
lc+ndc

0

nnc
lc∏

k=1

f r
0(`lc,k; θ) f1(s

nc
`c,k; θ) ×

nrc
lc∏

k=1

f r
0(`nc,k)F̄1(s

rc
`c,k; θ) × F̄r

0(w)ndc.

Maximizing this likelihood gives an estimate of the parameters of the distribution of the lengths of

both 0-intervals and 1-intervals. This approach is suitable for situations where the 0-intervals and

1-intervals are of similar or shorter lengths than the observation window.

Long windows:If the observation windows are long compared with the 0- and 1-intervals, there

will often be several 0-intervals in an observation window, and it is wasteful to only use the first

observed 0-interval. For the fully parametric specification ofF0 and an alternating renewal process

the conditional likelihood (3) still applies if one uses all 0-intervals in the window, and not just the

first one, and confidence intervals can be obtained from the observed information matrix. If there

instead is dependence between the intervals in an observation window (3) is not a true conditional

likelihood if all 0-intervals in the windows are used. But then (3) can instead be used as an esti-

mating equation. This will provide consistent estimators, but standard deviations typically will be

larger than those given by the inverse of the observed information matrix. However, since mea-
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surements from different observation windows are assumed to be independent, standard deviations

and confidence intervals may be obtained using the sandwich method, or a block bootstrap with

blocks equal to observation windows.

Unless windows are very long or there is a quite high dependence between long 0-intervals,

it is rare that windows contain more than one 0-interval which is longer than the thresholdu.

Still, there might sometimes be windows which start with one or a few short 0-intervals, and then

comes a long one. If one only uses the first 0-interval, such windows will not contribute to the

estimation of the parameters of the generalized Pareto distribution. However, for such data sets

one can for each observation window instead of the first 0-interval use the first 0-interval which

exceeds the thresholdu and consider (7) as an estimating equation. Again the resulting estimators

are consistent, and confidence intervals may be obtained using block bootstrap.

Asymptotic normality:Using numerical computation, see Supplementary Materials, we show

asymptotic normality of the GPD parameter estimates, for the most important case,γ > 0, when

the distribution is heavytailed. For the exponential sub-model,γ = 0, asymptotic normality follows

from standard results about right-censored observation of an exponential distribution. The asymp-

totics appropriate for the present problem isn → ∞ with u andw fixed, rather than the extreme

value type asymptotics where alsou andw would tend to infinity. It may be noted that maximum

likelihood estimation of GPD parameters is non-regular forγ ≤ −0.5, see Drees et al. (2004).

3 Simulation study

In this section the small sample precision and coverage probabilities for confidence intervals are

studied by simulation. The simulation was set up to resemble the visual inattention data discussed

in the next section. In particular, throughout the observation window had length 6 s, and the 0-

1 process was an alternating renewal process, with a mean 6 s exponential distribution for the

length of the 1-intervals. Further simulations, not included in the paper, produced very similar
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results for short (mean 0.1 s) 1-intervals. We used the MatLab fmincon minimization algorithm

to find the ML-estimators. Confidence intervals were computed from the observed information

matrix using a custom made MatLab function to compute the Hessian at the ML-estimates (MatLab

fmincon estimates of the Hessian led to unsatisfactory results). For each choice of parametric and

non-parametric distribution, and choice ofN, the number of simulated glances that intersect the

observation windoww, we estimated the parameter(s) of the distribution from 10,000 replicates of

the experiment.

For the fully parametric method the simulations were from exponential, gamma and Weibull

distributions with means of the 0-intervalsμ = 0.2,1, and 5, representing mild, medium and severe

censoring, respectively.

For the semi-parametric tail estimation method we simulated from a mixture of a uniform [0,1]

and (1+ a GPD) distributions. The mixing probabilities were 0.5 and 0.5, respectively. For the

GPD distribution we used the shape parameters−0.25,0,0.25 and scale parameters 0.75,1,1.25.

These choices made the density continuous and led to the means 1.15,1.25,1.42 for the mixture

distributions. In estimation we used the thresholdu = 2.

Table 1 shows that for the fully parametric exponential model the root mean square error

(RMSE) was less than 15% of the true parameter value, except for samples of 50 observation win-

dows for the most heavily censored caseμ = σ = 5. The coverage probabilities of the confidence

intervals were close to the nominal value 0.95.

For the gamma distribution the scale parameter wask = 3, roughly resembling the value in the

visual inattention data. Since (with parametrization as given in Supplementary Materials)μ = kσ

for the gamma distribution,σ was 0.067,0.33, and 1.67. From Table 2 it can be seen that for

sample sizes 250 and 1000 the estimates of both parameters had RMSE-s which were smaller than

15% of the true parameter value, and that the coverage probabilities of confidence intervals were

close to 95%.

For the Weibull simulation the shape parameter wask = 1/2, which leads to a heavier than
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exponential tail. Sinceμ = σΓ(1+1/k) for this distribution, the values forσ were 0.1,0.5, and 2.5.

The estimates of both parameters had RMSE less than 19% of the estimated parameter for sample

sizes 250 and 1000. The coverage probabilities of the confidence intervals were close to 95% in

all cases.

Thus it was possible to find reasonable estimates even for the heavily censored case,μ = 5 for

some sample sizes. Nevertheless the method may still often not be practical in such cases, since

the fit of the tail part of the model cannot be checked. For the semi-parametric tail estimation simu-

lations, on average only around 11-18% of the observation windows contained an observed glance

off road which was longer than the thresholdu = 2 seconds, and hence, e.g., in the simulations

with N=500 observation windows the estimators were based on roughly 55-90 off-road glances

in excess of 2 seconds. Together with the information loss caused by censoring, this explains the

rather low precision (in particular forγ = −0.25) for N = 500.

For samples consisting ofN = 2,500 and 10,000 glances, the RMSE-s of theγ-estimators

were less than 0.07 and the RMSE-s of theσ-estimators were less than 10% of the true value, and

the coverage probabilities of the confidence intervals were close to the nominal value, see Table 3.

Finally, except for the smallest sample size, the empirical distribution of the estimators were

close to a normal distribution, both for the fully parametric models and for the semi-parametric

models (plots not shown here).

4 Visual inattention in driving

In a naturalistic driving study ordinary cars with ordinary drivers are equipped with cameras which

film driver behavior and the surrounding traffic; radars which measure the distance to road edges

and other cars; GPS instruments; and sensors which measure things like brake and gas pedal

actions. The vehicles are then used in everyday driving, just as if the instrumentation was not there,

and driving behavior is recorded in extensive detail, both for normal driving and when accidents
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occur. In this section we analyze visual behavior in the 100-car naturalistic driving study (Wu and

Jovanis (2012), data may be downloaded at http://forums.vtti.vt.edu). For 4,803 randomly chosen

6 second long observation windows obtained during normal driving, human annotators have used

web camera recordings of the driver’s face to construct a 6 second 0-1 process, where 0 means that

the driver looks away from the road, and 1 that she looks at the road. Out of these windows, 2,602

contained at least one off-road glance.

In addition to individual off-road glance lengths, “task duration” periods which may include

several off-road glances, such as the time period used to find a new program on the car radio, have

important safety and economic consequences. Here we simply define a task as starting with an

off-road glance and continuing until there is a on-road glance which is longer than 1 second (thus

off-road glances separated by less than 1 second are joined). A more refined task duration analysis

could (sometimes) be made by using further information from the annotation. However this is

beyond the scope of the present analysis.

This section illustrates our methods by using them to find the (tail) distribution of off-road

glances and task durations during normal driving. As a first step we used the method from Section

2.1 to fit gamma and Weibull distributions to the lengths of off-road glances and to task durations.

The Weibull distribution gave visually a slightly better fit. The parameter estimates for the Weibull

distribution werek̂ = 1.39 andσ̂ = 0.99 for the lengths of off-road glances, and̂k = 1.16 and

σ̂ = 1.26 for the task durations. From the goodness of fit plots in Figure 3 it can be seen that

the Weibull fit did not catch tail behavior well for the off-road glances. This was even more

pronounced for the task durations (plots not shown here). In the literature it is often stated that

off-road glances longer than 1.8-2 seconds are dangerous, and hence we used the tail estimation

method from Section 2.2 to fit a GPD distribution to the excesses of 2 seconds. There were all in

all 124 off-road glances longer than 2 seconds, and the GPD parameter estimates were ˆγ = 0.13

andσ̂ = 1.09, with 95% confidence intervals (−0.07,0.33) and (0.72,1.46), respectively. Hence

γ was not significantly different from 0. Fitting the model withγ = 0, i.e. assuming that the
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excess lengths of off-road glances longer that 2 seconds have an exponential distribution, gave

an estimated value ofσ = 1.30 with 95% confidence interval (1.05,1.57). The plots in Figure 4

show good fit of the GPD. The fit of the exponential distribution was almost identical. Further,

the Kaplan-Meier estimate of the probability that an off-road glance was longer than 2 seconds,

based on the non-censored and right-censored observations (Subsection 2.2), was 0.048, with a

95% confidence interval (0.038,0.058).

The same analysis for the task durations gave the GPD parameter estimates ˆγ = 0.03 and

σ̂ = 1.84, with 95% confidence intervals (−0.11,0.17) and (1.51,2.17), respectively, based on

424 tasks longer than 2 seconds. This is almost exactly an exponential distribution. Figure 4

shows good fit. The Kaplan-Meier estimate of the probability that a task duration was longer

than 2 seconds, based on the non-censored and right-censored observations, was 0.17, with a 95%

confidence interval (0.16,0.19).

The conclusion of this analysis, that the excess length (=length - 2 seconds) of off-road glances

and task durations both follow an exponential distribution seems both simple and useful to us. It is

also somewhat surprising since we expect that glance behavior is different in different traffic situa-

tions and for different drivers. This presumably could lead to a relation between the length-biased

distribution and the distribution itself which is different than for identically distributed observed

0-intervals. However, Figure 4 shows little indication of this (although Figure 3 perhaps points to

such an effect). Still, the next step in the analysis of visual inattention will be to investigate how

glance distributions depend on traffic situation or driver characteristic covariates. We will pursue

this further in a paper directed at traffic safety research.

Finally, the goodness of fit plots show that the estimates which are obtained if one ignores
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censoring and size-bias can be quite bad.
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Table 1: Bias, standard deviation (STD), and root mean square error (RMSE) of the ML-estimator ofσ in
the full exponential model, and coverage probability (CP) for 95% confidence intervals.

N Bias STD RMSE CP

μ
=

0.
2 50 0.000 0.028 0.028 0.94

250 0.000 0.013 0.013 0.95
1000 0.000 0.006 0.006 0.95

μ
=

1 50 0.003 0.149 0.149 0.94
250 0.000 0.067 0.067 0.95

1000 0.000 0.034 0.034 0.95
μ
=

5 50 0.091 0.952 0.956 0.95
250 0.018 0.416 0.416 0.95

1000 0.007 0.205 0.206 0.95

Table 2: Bias and root mean square error (RMSE) of the ML-estimators ofk andσ for gamma and Weibull
distributions, and coverage probability (CP) for 95% confidence intervals.

N
Bias RMSE CP

k̂ σ̂ k̂ σ̂ k̂ σ̂

G
a

m
m

a

μ
=

0.
2 50 0.184 −0.001 0.677 0.014 0.96 0.92

250 0.035 −0.000 0.267 0.006 0.95 0.94
1000 0.007 −0.000 0.131 0.003 0.95 0.95

μ
=

1 50 0.233 −0.008 0.794 0.076 0.95 0.90
250 0.040 −0.001 0.293 0.033 0.95 0.95

1000 0.011 −0.000 0.145 0.017 0.95 0.95

μ
=

5 50 0.550 −0.038 2.285 0.589 0.96 0.89
250 0.083 −0.007 0.462 0.253 0.95 0.94

1000 0.020 −0.002 0.217 0.125 0.95 0.95

W
e

ib
u

ll

μ
=

0.
2 50 0.013 0.003 0.059 0.032 0.95 0.93

250 0.002 0.001 0.024 0.014 0.95 0.95
1000 0.001 0.000 0.012 0.007 0.95 0.95

μ
=

1 50 0.010 0.022 0.058 0.170 0.95 0.93
250 0.002 0.005 0.025 0.074 0.95 0.95

1000 0.000 0.001 0.012 0.037 0.95 0.94

μ
=

5 50 0.011 0.212 0.077 1.184 0.95 0.93
250 0.002 0.042 0.032 0.477 0.95 0.95

1000 0.001 0.013 0.016 0.237 0.95 0.95
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Table 3: Bias and root mean square error (RMSE) of the semi-parametric tail parameter estimators ofγ and
σ, and coverage probability (CP) for 95% confidence intervals.

N
Bias RMSE CP

γ̂ σ̂ γ̂ σ̂ γ̂ σ̂
G

e
n

e
ra

liz
e

d
P

a
re

to γ = −0.25
500 −0.078 0.061 0.211 0.207 0.89 0.94

σ = 0.75
2500 −0.015 0.011 0.067 0.069 0.93 0.94

10000 −0.004 0.003 0.030 0.032 0.94 0.95

γ = 0
500 −0.020 0.027 0.169 0.260 0.89 0.89

σ = 1
2500 −0.006 0.007 0.066 0.093 0.94 0.95

10000 −0.002 0.001 0.032 0.045 0.95 0.95

γ = 0.25
500 −0.019 0.043 0.135 0.284 0.94 0.95

σ = 1.25
2500 −0.003 0.007 0.056 0.119 0.95 0.95

10000 −0.001 0.002 0.028 0.059 0.95 0.95
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230 235 240 245 250 255 260 265 270 275

Off

On

Time t, seconds

Figure 1: Visual behavior during a 45-second sideswiping near-crash (ID 8731) from the 100-Car naturalistic
driving study. ‘On’ indicates eyes on road, ‘Off’ - eyes off road. The near-crash started at second 258.
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0

lc 1
0
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0
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Figure 2: Censoring of the first 0-interval in the observation window: nc= no censoring, rc= right censoring,
lc = left censoring, dc= double censoring. Thes andl-values are the starting position and the length of the
observed 0-interval, respectively. Grey indicates un-observed parts of the process.
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Figure 3: Left: Empirical tail function for left censored off-road glances (jagged line) and fitted residual
life Weibull tail function (smooth line).Right: Kaplan-Meier tail function estimate for non-censored plus
right-censored off-road glances (jagged line) and fitted Weibull tail function (smooth line).Left and Right:
Measurement resolution was 0.1 s. Dotted line is the fit obtained when not taking censoring and size-bias
into account.
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Figure 4: Excess lengths longer than 2 seconds.Top row, left: Empirical tail function for left censored
off-road glances (jagged line) and estimate from fitted residual life GPD distribution (smooth line).Top row,
right: Kaplan-Meier estimate of tail function for non-censored plus right-censored off-road glances (jagged
line) and estimate from fitted GPD (smooth line).Bottom row:the same plots for task durations.All plots:
Measurement resolution was 0.1 s. Dotted line shows fit obtained when not taking censoring and size-bias
into account.
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