MATEMATISKA VETENSKAPER
CHALMERS/GÖTEBORGS UNIVERSITET
Teacher: Andreas Rosén
Email: andreas.rosen@chalmers.se

HAND-IN ASSIGNMENTS
Multivectors, spinors and index theorems HT 2014

Home work 1: exterior algebra

1. Let $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be the standard basis for \mathbf{R}^{4}, where e_{1}, e_{2} span the z-plane and e_{3}, e_{4} span the w-plane, and consider the 2 -surface

$$
M=\left\{(z, w) \in \mathbf{R}^{4} ; w=z^{2},|z|<1, \operatorname{Re} z>0, \operatorname{Im} z>0\right\}
$$

using standard complex notation. Compute its oriented area $\int_{M} d \hat{x}$ and its (scalar) area $\int_{M}|d \hat{x}|$. Discuss the geometric significance of these quantities/coordinates, and relationships between them. Determine if the bivector $\int_{M} d \hat{x} \in \wedge^{2} \mathbf{R}^{4}$ is simple.
2. Let $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be the standard basis for \mathbf{R}^{4}. Consider an invertible linear map $T: \mathbf{R}^{4} \rightarrow \mathbf{R}^{4}$ and its inverse T^{-1}. Express the matrix of $2 / 2$ subdeterminants for T^{-1} in terms of the determinant of T and its $2 / 2$ subdeterminants. Use the basis $\left\{e_{12}, e_{13}, e_{14}, * e_{14}, * e_{13}, * e_{12}\right\}$.
3. Proposition 2.28 gives, in particular for $w \in \wedge^{2} V$, a criteria for w to be simple in terms of the dimension of a certain subspace of V. State and prove an analogous criteria for tensors in the tensor product $V_{1} \otimes V_{2}$ of two linear spaces V_{1} and V_{2} to be simple (in terms of the dimension of a certain subspace of either V_{1} or V_{2}). Also briefly explain how to determine the simplicity of a tensor in $V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}$, when $k \geq 3$?

Home work 2: Clifford algebra

1. Let $v_{1}=\frac{1}{\sqrt{2}}\left(e_{1}+e_{2}\right)$ and $v_{2}=\frac{1}{3}\left(2 e_{1}-e_{2}+2 e_{3}\right)$ be two unit vectors in a three dimensional euclidean space V with ON-basis $\left\{e_{1}, e_{2}, e_{3}\right\}$. Find all bivectors $b \in \wedge^{2} V$ such that the rotor/unit quaternion $q=v_{1} v_{2}$ equals $q=e^{b / 2}$. Describe the corresponding rotation $v \mapsto q v q^{-1}$ (rotation-axis, angle and sense of rotation).
2. Consider the bivector

$$
b=e_{12}+2 e_{13}+5 e_{14}+5 e_{23}-2 e_{24}+e_{34}
$$

in a four dimensional euclidean space V with ON-basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. Write b in canonical form $b=b_{1}+b_{2}$, where b_{1}, b_{2} are simple and commuting bivectors.
3. Let $\left\{e_{1}, e_{2}\right\}$ be an ON-basis for the euclidean plane V. Let $\left\{e_{1}^{+}, e_{2}^{+}, e_{1}^{-}, e_{2}^{-}\right\}$be the Clifford generators for $\mathcal{L}(\wedge V)$ from Definition 3.33. Do part of Exercise 3.38: Write the left Hodge star operator $w \mapsto * w$ in the Clifford basis $\left\{e_{s}^{+} e_{t}^{-}\right\}_{s, t \subset\{1,2\}}$.
4. Consider Minkowski spacetime W with two spatial dimensions: We fix ON-basis $\left\{e_{0}, e_{1}, e_{2}\right\}$ with $e_{0}^{2}=$ $-1, e_{1}^{2}=e_{2}^{2}=+1$. Find equations for the coordinates of a multivector in the induced basis which describe the non-invertible elements in the Clifford algebra $\triangle V$.

Home work 3: Complex spinor spaces

1. Consider the anti-euclidean plane V, with ON-basis $\left\{\tilde{e}_{1}, \tilde{e}_{2}\right\}, \tilde{e}_{1}^{2}=\tilde{e}_{2}^{2}=-1$. Set $e_{-1}:=i \tilde{e}_{2}$ and $e_{1}:=i \tilde{e}_{1}$ and consider the standard representation of the complex spinor space $\not \Delta V$.
(a) Calculate a sesquilinear spinor duality $\langle\cdot, \cdot\rangle_{*}$ on $\not \Delta V$. Is it possible to normalize this duality so that it becomes a complex inner product in the sense of Definition 1.31, and if so, what is the signature?
(b) Calculate a spinor conjugation ψ^{\dagger} on $\not \subset V$. Is it possible to normalize this spinor conjugation so that it becomes a real structure on $\not \Delta V$ in the sense discussed after Definition 1.29?
2. Consider the euclidean plane V, with ON-basis $\left\{\tilde{e}_{1}, \tilde{e}_{2}\right\}, \tilde{e}_{1}^{2}=\tilde{e}_{2}^{2}=+1$. Set $e_{-1}:=\tilde{e}_{2}$ and $e_{1}:=\tilde{e}_{1}$ and consider the standard representation of the complex spinor space $\not \subset V$, equipped with the duality and
conjugation from Proposition 5.18. Calculate the two spinor maps $T_{S}: \not \Delta V \rightarrow \not \Delta V$ induced by the linear $\operatorname{map} T: V \rightarrow V$ with matrix

$$
T=\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]
$$

in the basis $\left\{\tilde{e}_{1}, \tilde{e}_{2}\right\}$.

Home work 4: Affine multivector calculus

1. Projecting with pullbacks: Do Exercise 7.14.
2. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be a basis and consider the constant vector field $v(x)=e_{1}$. Compute the pushed forward vector field $\rho_{*}(v)$ under

$$
\rho:\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}, e^{x_{1}} x_{2}, e^{x_{1}} x_{3}\right) .
$$

Compute the divergence of $\rho_{*}(v)$ as well as the divergence of the normalized pushed forward field $\tilde{\rho}_{*}\left(e_{1}\right)$ defined as in Definition 7.17. Make sure that your result agrees with the fundamental commutation theorem!
3. Let $F: D \rightarrow \Delta V$ be a multivector field in an oriented three-dimensional euclidean space V. Write $F(x)=\alpha(x)+v(x)+* u(x)+* \beta(x)$, where α, β are scalar functions and v, u are vector fields. Rewrite the Hodge-Dirac equation $\mathbf{D} F=0$ for monogenic fields in classical vector calculus notation, i.e. as a number of equations involving α, v, u, β and the gradient, curl (the classical vector field!) and divergence operators.

Home work 5: Multivectors and manifolds

1. Do Exercise 6.33: Compute the Christoffel symbols for the Levi-Civita covariant derivative for the tangent bundle $T M$ over a Riemannian manifold M, in a general frame $\left\{\mathbf{e}_{i}\right\}$. In particular, write down the formula for the vector fields $\omega_{i j}$.
2. Outline the details of the proof of Proposition 11.8: The Hodge and L_{2} dualities between d_{M} and δ_{M} on a Riemannian manifold. We assume that the manifold is compact (without boundary). Your job is to identify all the key steps in the proof.
3. Poincaré's inequality for a compact Riemannian manifold M, states there exists a constant $C<\infty$ such that

$$
\int_{M}\left|u(p)-u_{M}\right|^{2} d p \leq C \int_{M}\left|\nabla_{M} u(p)\right|^{2} d p
$$

for all scalar functions $u \in C^{1}(M ; \mathbf{R})$. Here $u_{M}:=\int_{M} u d p / \int_{M} d p$ denotes the average of u over M. Show how such inequality directly follows from the Hodge decomposition in Section 11.5.

Home work 6: Chern-Gauss-Bonnet

1. Let V be euclidean n-dimensional space. Consider the real algebra isomorphism between $\mathcal{L}(\wedge V)$ and $\triangle\left(V^{2}\right)$ from Theorem 3.32, where $V^{2}=V \oplus V$ has signature zero. Show that under this isomorphism, we have

$$
\operatorname{Tr}(T)=\left.2^{n} T\right|_{\wedge^{0} V^{2}}
$$

for all $T \in \mathcal{L}(\wedge V) \approx \triangle\left(V^{2}\right)$.
2. Do Exercise 12.12. The integrand should be expressed in terms of $|R|^{2}:=\sum_{i j k l} R_{i j k l}^{2},|\operatorname{Ric}|^{2}:=\sum_{i j} \operatorname{Ric}_{i j}^{2}$ and scalar curvature S, following the notation in Section 11.3.
3. Compute the three Betti numbers $\beta_{0}(M), \beta_{1}(M)$ and $\beta_{2}(M)$, for the two dimension sphere $M=S^{2}$ as well as the two dimensional torus $M=S^{1} \times S^{1}$, using Hodge star maps and Gauss-Bonnet's theorem.

Home work 7: Atiyah-Singer

1. Prove that \emptyset_{M} maps $L_{2}\left(M ; \forall^{+} M\right)$ into $L_{2}\left(M ; \Delta^{-} M\right)$, and vice versa. That is, prove that $\not \square$ swaps the sub bundles $\forall^{ \pm} M$.
2. Following the lecture notes (20), and not Definition 12.28 in the book, let $p\left(t_{1}, t_{2}, \ldots, t_{m / 2}\right)$ be the polynomial for which

$$
\left(a_{1}, \ldots, a_{m}\right) \mapsto p\left(\operatorname{Tr}\left(A^{2}\right), \operatorname{Tr}\left(A^{4}\right), \ldots, \operatorname{Tr}\left(A^{m}\right)\right)
$$

is the m-homogeneous part in the Taylor expansion of

$$
f\left(a_{1}, \ldots, a_{m}\right)=\frac{a_{1} / 2}{\sin \left(a_{1} / 2\right)} \cdot \ldots \cdot \frac{a_{m} / 2}{\sin \left(a_{m} / 2\right)}
$$

Here A is the block diagonal $2 m / 2 m$ matrix with diagonal blocks $\left[\begin{array}{cc}0 & a_{i} \\ -a_{1} & 0\end{array}\right]$. Compute p, at least for $m=2$ and 4 (that is for 4 and 8 dimensional manifolds).
3. Fix $\omega>0$. Consider the rescaled Mehler kernel

$$
K_{\omega}(t, x, y):=\sqrt{\frac{\omega}{2 \pi \sinh (2 \omega t)}} \exp \left(\frac{\omega}{\sinh (2 \omega t)}\left(-\cosh (2 \omega t)\left(x^{2}+y^{2}\right) / 2+x y\right)\right) .
$$

Show that, for fixed $y \in \mathbf{R}$, the $\operatorname{PDE} \partial_{t} K_{\omega}=\partial_{x}^{2} K_{\omega}-\omega^{2} x^{2} K_{\omega}$ holds for $x \in \mathbf{R}, t>0$. Compute also $\lim _{t \rightarrow 0^{+}} \int_{\mathbf{R}} K_{\omega}(t, x, y) f(y) d y$ for $f \in C_{0}^{\infty}(\mathbf{R})$.

