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Home work 1: exterior algebra

1. Let {e1, e2, e3,e4} be the standard basis for R*, where ey, e5 span the z-plane and es, e4 span the w-plane,
and consider the 2-surface

M = {(z,w) € R* ; w=2%]z] <1,Rez > 0,Imz > 0},

using standard complex notation. Compute its oriented area [, di and its (scalar) area [, |dZ|. Discuss
the geometric significance of these quantities/coordinates, and relationships between them. Determine if
the bivector [, di € A°R* is simple.

2. Let {e1, e, e3,e4} be the standard basis for R*. Consider an invertible linear map 7 : R* — R* and its
inverse T~!. Express the matrix of 2/2 subdeterminants for 7! in terms of the determinant of 7" and its
2/2 subdeterminants. Use the basis {e12, €13, €14, ¥€14, ¥€13, *€12}.

3. Proposition 2.28 gives, in particular for w € A2V, a criteria for w to be simple in terms of the dimension
of a certain subspace of V. State and prove an analogous criteria for tensors in the tensor product V; ® V5
of two linear spaces V7 and V3 to be simple (in terms of the dimension of a certain subspace of either V3
or V3). Also briefly explain how to determine the simplicity of a tensor in V; ® Vo ® ... ® V;,, when k > 37

Home work 2: Clifford algebra

1. Letv; = \/ii (e1+e2) and v = %(261 —ea+2e3) be two unit vectors in a three dimensional euclidean space V

with ON-basis {e1, ea, e3}. Find all bivectors b € A2V such that the rotor /unit quaternion ¢ = vyvy equals
q = e%2. Describe the corresponding rotation v — qug~! (rotation-axis, angle and sense of rotation).

2. Consider the bivector
b= ei2 + 2e13 + 5e1q + Seag — 2e24 + €34

in a four dimensional euclidean space V with ON-basis {e1, ea, €3, e4}. Write b in canonical form b = by + b,
where b1, by are simple and commuting bivectors.

3. Let {e1,ea} be an ON-basis for the euclidean plane V. Let {e],es, e, e; } be the Clifford generators for
L(AV) from Definition 3.33. Do part of Exercise 3.38: Write the left Hodge star operator w +— *w in the
Clifford basis {eFe; }s1cq1,2}-

4. Consider Minkowski spacetime W with two spatial dimensions: We fix ON-basis {eq, €1, e2} with e =
—1,e? = €2 = +1. Find equations for the coordinates of a multivector in the induced basis which describe
the non-invertible elements in the Clifford algebra AV

Home work 3: Complex spinor spaces
1. Consider the anti-euclidean plane V, with ON-basis {€1,é2}, €2 = €3 = —1. Set e_1 := ié and e; := ié;
and consider the standard representation of the complex spinor space AV.

(a) Calculate a sesquilinear spinor duality (-,), on AV. Is it possible to normalize this duality so that it
becomes a complex inner product in the sense of Definition 1.31, and if so, what is the signature?

(b) Calculate a spinor conjugation ¢ on AV. Is it possible to normalize this spinor conjugation so that
it becomes a real structure on AV in the sense discussed after Definition 1.297

2. Consider the euclidean plane V, with ON-basis {1,652}, €7 = €3 = +1. Set e_1 := &3 and e; := &; and
consider the standard representation of the complex spinor space AV, equipped with the duality and



conjugation from Proposition 5.18. Calculate the two spinor maps T : AV — AV induced by the linear
map T : V — V with matrix
1 0
r-|s 3

in the basis {€1, é2}.

Home work 4: Affine multivector calculus

1. Projecting with pullbacks: Do Exercise 7.14.

2. Let {e1,e2,e3} be a basis and consider the constant vector field v(x) = e;. Compute the pushed forward
vector field p,(v) under
p:(x1, 22, 23) — (21, 20, e x3).

Compute the divergence of p,(v) as well as the divergence of the normalized pushed forward field p.(e1)
defined as in Definition 7.17. Make sure that your result agrees with the fundamental commutation
theorem!

3. Let F : D — AV be a multivector field in an oriented three-dimensional euclidean space V. Write
F(z) = a(x) + v(zr) + *xu(zr) + *6(z), where a, § are scalar functions and v,u are vector fields. Rewrite
the Hodge-Dirac equation DF = 0 for monogenic fields in classical vector calculus notation, i.e. as a
number of equations involving a, v, u, 8 and the gradient, curl (the classical vector field!) and divergence
operators.

Home work 5: Multivectors and manifolds

1. Do Exercise 6.33: Compute the Christoffel symbols for the Levi-Civita covariant derivative for the tangent
bundle T M over a Riemannian manifold M, in a general frame {e;}. In particular, write down the formula
for the vector fields w;;.

2. Outline the details of the proof of Proposition 11.8: The Hodge and Lo dualities between dj; and d,; on
a Riemannian manifold. We assume that the manifold is compact (without boundary). Your job is to
identify all the key steps in the proof.

3. Poincaré’s inequality for a compact Riemannian manifold M, states there exists a constant C' < oo such
that

/ hu(p) — une[2dp < © / IV aru(p) 2dp,
M M

for all scalar functions v € C*(M;R). Here ups := [, udp/ [, dp denotes the average of u over M. Show
how such inequality directly follows from the Hodge decomposition in Section 11.5.

Home work 6: Chern—Gauss—Bonnet

1. Let V be euclidean n-dimensional space. Consider the real algebra isomorphism between L(AV) and
A(V?) from Theorem 3.32, where V2 = V @V has signature zero. Show that under this isomorphism, we
have

Tr(T) = 2T | poy2

for all T € L(AV) ~ A(V?).

2. Do Exercise 12.12. The integrand should be expressed in terms of |R|? := D ijkl R}, IRic|? := > i Ricfj
and scalar curvature S, following the notation in Section 11.3.

3. Compute the three Betti numbers 3o(M), $1(M) and B2(M), for the two dimension sphere M = S? as
well as the two dimensional torus M = S* x S1, using Hodge star maps and Gauss-Bonnet’s theorem.



Home work 7: Atiyah—Singer

1. Prove that ID,; maps Lo(M; 4A+M) into Lo(M; /A~ M), and vice versa. That is, prove that ID) swaps the
sub bundles A M.

2. Following the lecture notes (20), and not Definition 12.28 in the book, let p(t1,t2,. ..ty /2) be the poly-
nomial for which
(a1,...,am) — p(Tr(A%), Tr(A%Y),..., Tr(A™))

is the m-homogeneous part in the Taylor expansion of

B a1/2 ' ) am/2
flay, ... am osin(a1/2) 7 sin(am/2)”

Here A is the block diagonal 2m/2m matrix with diagonal blocks { (; (g} Compute p, at least for
—a1

m = 2 and 4 (that is for 4 and 8 dimensional manifolds).

3. Fix w > 0. Consider the rescaled Mehler kernel

Roltzy) = 27 sinuljl(th) P <sinhb(02wt) ( — cosh(2ut) (" +37°)/2 + :cy)) '

Show that, for fixed y € R, the PDE 8,K,, = 0?K,, — w?z?K,, holds for x € R, t > 0. Compute also
1irnt—>0Jr fR Kw(tu Z, y)f(y)dy for f € Cgo (R)



