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Home work 1: exterior algebra

1. Let {e1, e2, e3, e4} be the standard basis for R4, where e1, e2 span the z-plane and e3, e4 span the w-plane,
and consider the 2-surface

M = {(z, w) ∈ R
4 ; w = z2, |z| < 1,Re z > 0, Im z > 0},

using standard complex notation. Compute its oriented area
∫

M dx̂ and its (scalar) area
∫

M |dx̂|. Discuss
the geometric significance of these quantities/coordinates, and relationships between them. Determine if
the bivector

∫

M
dx̂ ∈ ∧2

R
4 is simple.

2. Let {e1, e2, e3, e4} be the standard basis for R4. Consider an invertible linear map T : R4 → R
4 and its

inverse T−1. Express the matrix of 2/2 subdeterminants for T−1 in terms of the determinant of T and its
2/2 subdeterminants. Use the basis {e12, e13, e14, ∗e14, ∗e13, ∗e12}.

3. Proposition 2.28 gives, in particular for w ∈ ∧2V , a criteria for w to be simple in terms of the dimension
of a certain subspace of V . State and prove an analogous criteria for tensors in the tensor product V1⊗V2
of two linear spaces V1 and V2 to be simple (in terms of the dimension of a certain subspace of either V1
or V2). Also briefly explain how to determine the simplicity of a tensor in V1 ⊗V2 ⊗ . . .⊗Vk, when k ≥ 3?

Home work 2: Clifford algebra

1. Let v1 = 1√
2
(e1+e2) and v2 = 1

3
(2e1−e2+2e3) be two unit vectors in a three dimensional euclidean space V

with ON-basis {e1, e2, e3}. Find all bivectors b ∈ ∧2V such that the rotor/unit quaternion q = v1v2 equals
q = eb/2. Describe the corresponding rotation v 7→ qvq−1 (rotation-axis, angle and sense of rotation).

2. Consider the bivector
b = e12 + 2e13 + 5e14 + 5e23 − 2e24 + e34

in a four dimensional euclidean space V with ON-basis {e1, e2, e3, e4}. Write b in canonical form b = b1+b2,
where b1, b2 are simple and commuting bivectors.

3. Let {e1, e2} be an ON-basis for the euclidean plane V . Let {e+1 , e
+
2 , e

−
1 , e

−
2 } be the Clifford generators for

L(∧V ) from Definition 3.33. Do part of Exercise 3.38: Write the left Hodge star operator w 7→ ∗w in the
Clifford basis {e+s e

−
t }s,t⊂{1,2}.

4. Consider Minkowski spacetime W with two spatial dimensions: We fix ON-basis {e0, e1, e2} with e20 =
−1, e21 = e22 = +1. Find equations for the coordinates of a multivector in the induced basis which describe
the non-invertible elements in the Clifford algebra △V .

Home work 3: Complex spinor spaces

1. Consider the anti-euclidean plane V , with ON-basis {ẽ1, ẽ2}, ẽ
2
1 = ẽ22 = −1. Set e−1 := iẽ2 and e1 := iẽ1

and consider the standard representation of the complex spinor space /△V .

(a) Calculate a sesquilinear spinor duality 〈·, ·〉∗ on /△V . Is it possible to normalize this duality so that it
becomes a complex inner product in the sense of Definition 1.31, and if so, what is the signature?

(b) Calculate a spinor conjugation ψ† on /△V . Is it possible to normalize this spinor conjugation so that
it becomes a real structure on /△V in the sense discussed after Definition 1.29?

2. Consider the euclidean plane V , with ON-basis {ẽ1, ẽ2}, ẽ
2
1 = ẽ22 = +1. Set e−1 := ẽ2 and e1 := ẽ1 and

consider the standard representation of the complex spinor space /△V , equipped with the duality and
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conjugation from Proposition 5.18. Calculate the two spinor maps TS : /△V → /△V induced by the linear
map T : V → V with matrix

T =

[

1 0
3 2

]

in the basis {ẽ1, ẽ2}.

Home work 4: Affine multivector calculus

1. Projecting with pullbacks: Do Exercise 7.14.

2. Let {e1, e2, e3} be a basis and consider the constant vector field v(x) = e1. Compute the pushed forward
vector field ρ∗(v) under

ρ : (x1, x2, x3) 7→ (x1, e
x1x2, e

x1x3).

Compute the divergence of ρ∗(v) as well as the divergence of the normalized pushed forward field ρ̃∗(e1)
defined as in Definition 7.17. Make sure that your result agrees with the fundamental commutation
theorem!

3. Let F : D → △V be a multivector field in an oriented three-dimensional euclidean space V . Write
F (x) = α(x) + v(x) + ∗u(x) + ∗β(x), where α, β are scalar functions and v, u are vector fields. Rewrite
the Hodge–Dirac equation DF = 0 for monogenic fields in classical vector calculus notation, i.e. as a
number of equations involving α, v, u, β and the gradient, curl (the classical vector field!) and divergence
operators.

Home work 5: Multivectors and manifolds

1. Do Exercise 6.33: Compute the Christoffel symbols for the Levi-Civita covariant derivative for the tangent
bundle TM over a Riemannian manifoldM , in a general frame {ei}. In particular, write down the formula
for the vector fields ωij .

2. Outline the details of the proof of Proposition 11.8: The Hodge and L2 dualities between dM and δM on
a Riemannian manifold. We assume that the manifold is compact (without boundary). Your job is to
identify all the key steps in the proof.

3. Poincaré’s inequality for a compact Riemannian manifold M , states there exists a constant C < ∞ such
that

∫

M

|u(p)− uM |2dp ≤ C

∫

M

|∇Mu(p)|
2dp,

for all scalar functions u ∈ C1(M ;R). Here uM :=
∫

M
udp/

∫

M
dp denotes the average of u overM . Show

how such inequality directly follows from the Hodge decomposition in Section 11.5.

Home work 6: Chern–Gauss–Bonnet

1. Let V be euclidean n-dimensional space. Consider the real algebra isomorphism between L(∧V ) and
△(V 2) from Theorem 3.32, where V 2 = V ⊕V has signature zero. Show that under this isomorphism, we
have

Tr(T ) = 2nT |∧0V 2

for all T ∈ L(∧V ) ≈ △(V 2).

2. Do Exercise 12.12. The integrand should be expressed in terms of |R|2 :=
∑

ijkl R
2
ijkl, |Ric|

2 :=
∑

ij Ric
2
ij

and scalar curvature S, following the notation in Section 11.3.

3. Compute the three Betti numbers β0(M), β1(M) and β2(M), for the two dimension sphere M = S2 as
well as the two dimensional torus M = S1 × S1, using Hodge star maps and Gauss–Bonnet’s theorem.
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Home work 7: Atiyah–Singer

1. Prove that /DM maps L2(M ; /△
+
M) into L2(M ; /△

−
M), and vice versa. That is, prove that /D swaps the

sub bundles /△
±
M .

2. Following the lecture notes (20), and not Definition 12.28 in the book, let p(t1, t2, . . . , tm/2) be the poly-
nomial for which

(a1, . . . , am) 7→ p(Tr(A2),Tr(A4), . . . ,Tr(Am))

is the m-homogeneous part in the Taylor expansion of

f(a1, . . . , am) =
a1/2

sin(a1/2)
· . . . ·

am/2

sin(am/2)
.

Here A is the block diagonal 2m/2m matrix with diagonal blocks

[

0 ai
−a1 0

]

. Compute p, at least for

m = 2 and 4 (that is for 4 and 8 dimensional manifolds).

3. Fix ω > 0. Consider the rescaled Mehler kernel

Kω(t, x, y) :=

√

ω

2π sinh(2ωt)
exp

(

ω

sinh(2ωt)

(

− cosh(2ωt)(x2 + y2)/2 + xy
)

)

.

Show that, for fixed y ∈ R, the PDE ∂tKω = ∂2xKω − ω2x2Kω holds for x ∈ R, t > 0. Compute also
limt→0+

∫

R
Kω(t, x, y)f(y)dy for f ∈ C∞

0 (R).

3


