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Spectral geometry and asymptotically
conic convergence

Julie Rowlett

We define a new conic metric collapse, asymptotically conic conver-
gence,1 in which a family of smooth Riemannian metrics degen-
erates to have an isolated conic singularity. For a conic metric
(M0, g0) and an asymptotically conic or “scattering” metric (Z, gz),
we construct a new non-standard blowup, the resolution blowup,
in which the conic singularity in M0 is resolved by Z. This blowup
induces a smooth family of metrics {gε} on the compact resolution
space M. (M, gε) is said to converge asymptotically conically to
(M0, g0) as ε → 0.

Let Δε and Δ0 be geometric Laplacians on (M, gε) and (M0, g0),
respectively. Our first result is convergence of the spectrum of Δε

to the spectrum of Δ0 as ε → 0. Note that this result implies spec-
tral convergence for the k-form Laplacian under certain geometric
hypotheses. This theorem is proven using rescaling arguments,
standard elliptic techniques and the b-calculus of [33]. Our second
result is technical: we construct a parameter (ε) dependent heat
operator calculus which contains, and hence describes precisely, the
heat kernel for Δε as ε → 0. The consequences of this result include
the existence of a polyhomogeneous asymptotic expansion for Hε

as ε → 0, with uniform convergence down to t = 0. To prove this
result, we construct heat spaces as manifolds with corners using
both standard and non-standard blowups on which we construct
suitable heat operator calculi. A parametrix construction mod-
eled after Melrose’s heat kernel construction [33] and a maximum
principle argument complete the proof.

1. Introduction

In the 1970s and 80s, Cheeger [6] initiated a study of the spectrum of
the Laplacian and heat kernel on manifolds with isolated conical singular-
ities. Simultaneously, Melrose [33] developed pseudodifferential techniques

1The name “asymptotically conic convergence” was chosen because the geometry
of the collapsing neighborhood is described by an asymptotically conic space.

735



736 Julie Rowlett

to study elliptic operators on manifolds with cylindrical ends and conic sin-
gularities. Other works include [2, 3, 24, 34, 35]. Manifolds with isolated
conical singularities are instructive models for the more singular Calabi–
Yau orbifolds which are of particular interest to physicists, see for exam-
ple [21]. Although an isolated conical singularity is the simplest example of
a metric singularity, the spectral geometry of Riemannian manifolds with
isolated conic singularities is still not completely understood; see, for exam-
ple, [29, 31]. One approach to understanding the spectral geometry of a
singular space is to consider a family of smooth manifolds which converge
in some sense to the singular space; that is the approach taken here and
in [7–9,11,13,25,26,30,32]. The goal of our somewhat lengthy and technical
spectral convergence results is to provide new tools for understanding the
spectral geometry of manifolds with isolated conic singularities. Our results
also apply to the singular spaces studied in [10, 29]. With sufficient control
on the metric degeneration, uniform spectral convergence results for k-form
Laplacians and their heat kernels are applicable to understanding more sub-
tle spectral invariants such as the η invariant, as in [30]. Our work is in the
spirit of [30] and generalizes the work of McDonald [32]. We briefly recall
the setup and main results of those authors.

Let M be a fixed compact manifold with Riemannian metric, and let
H be an embedded orientable hypersurface with defining function x and
smooth metric gH . Let

gε := dx2 + (ε2 + x2)gH , ε ∈ [0, 1).

As ε → 0, gε → dx2 + x2gH , which has an isolated conic singularity at x = 0.
Geometrically, M is pinched along the hypersurface H as ε → 0 and the
resulting metric has a conic singularity at x = 0. The study of this metric
collapse is the content of the 1990 thesis of McDonald [32]. In 1995, Mazzeo
and Melrose [30] developed pseudodifferential techniques to describe the
behavior of the spectral geometry under another specific type of metric
collapse known as analytic surgery. As ε → 0, the metrics

|dx|2
x2 + ε2 + h = gε −→ g0 =

|dx|2
x2 + h.

g0 is an exact b-metric on the compact manifold with boundary M obtained
by cutting M along H and compactifying as a manifold with boundary, hence
the name, analytic surgery. Under certain assumptions on the associated
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Dirac operators,2 they proved

lim
ε→0

η(∂ε) = ηb(∂M ),

where ηb(∂M ) is the b-version of the eta invariant introduced by Melrose.
These results were proven by analyzing the resolvent family of the Dirac
operators ∂ε uniformly near zero. This led to a precise description of the
behavior of the small eigenvalues. In our work, we obtain uniform con-
vergence results for heat kernels under conic metric degeneration. Since
many interesting spectral invariants (including the η invariant) are com-
putable via the heat kernel and its trace, it is reasonable to expect that our
results will yield applications like [30]. Our results are necessarily quite
technical; without such a detailed analysis, it is simply not possible to
calculate spectral invariants, see, for example, Perelman’s counterexample
in [9].

The metric degeneration we consider, asymptotically conic convergence
(acc), encompasses the conic collapse of [32], the analogous smooth col-
lapse of a higher codimension submanifold and the collapse of an open
neighborhood with some restrictions on the local geometry. Before stating
our spectral convergence results for geometric Laplacians, we recall their
definition.

Definition 1.1. Let (E, ∇) be a Hermitian vector bundle over a Rieman-
nian manifold (M, g) with metric-compatible connection ∇. A geometric
Laplacian is an operator Δ acting on sections of E which has the form

Δ = ∇∗∇ + R,

where R is a non-negative self-adjoint endomorphism of E. By the
Weitzenböck Theorem [36], the Laplacian on k-forms is a geometric Lapla-
cian, as is the Hodge Laplacian and the conformal Laplacian; any geometric
Laplace-type operator is a geometric Laplacian.

Our results are the following.

Theorem 5.1. Let (M0, g0) be a compact Riemannian n-manifold with
isolated conic singularity, and let (Z, gz) be an asymptotically conic (ac)

2In a later collaboration with Hassell et al. [18], these hypotheses were removed.
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space, with n ≥ 3. Assume (M, gε) converges asymptotically conically to
(M0, g0). Let (E0,∇0) and (Ez,∇z) be rank k Hermitian vector bundles over
(M0, g0) and (Z, gz), respectively, so that each of these bundles in a neigh-
borhood of the boundary is the pullback from a bundle over the boundary
(Y, h). Let Δ0, Δz be the corresponding Friedrichs extensions of geomet-
ric Laplacians, and let Δε be the induced geometric Laplacian on (M, gε).
Assume Δz has no L2 nullspace. Then the accumulation points of the spec-
trum of Δε as ε → 0 are precisely the points of the spectrum of Δ0, counting
multiplicity.

The setting for our next result is the acc heat space, a manifold with
corners constructed in Section 7. Note that the hypotheses for this result
are weaker: Δz may have nontrivial L2 cohomology and the dimension may
be 2 or greater.

Theorem 7.2. Let (M0, g0) be a compact Riemannian n-manifold with iso-
lated conic singularity, and let (Z, gz) be an ac space, with n ≥ 2. Assume
(M, gε) converges asymptotically conically to (M0, g0). Let (E0,∇0) and
(Ez,∇z) be rank k Hermitian vector bundles over (M0, g0) and (Z, gz),
respectively, so that each of these bundles in a neighborhood of the bound-
ary is the pullback from a bundle over the boundary (Y, h). Let Δ0 and Δz

be the corresponding Friedrichs extensions of geometric Laplacians, and let
Δε be the induced geometric Laplacian on (M, gε). Then the associated heat
kernels Hε have a full polyhomogeneous expansion as ε → 0 on the acc heat
space with the following leading terms:

• At the conic front face, F0101, Hε(z, z′, t) → H0(z, z′, t), the heat kernel
for (M0, g0).

• At the rescaled b front face, F1010,2, Hε(z, z′, t) → (ρ1010,2)(ρ1010)
(ρ0101)−1Hb(τ), the b heat kernel with rescaled time variable τ.

• At the exact conic front face, F1111,2, Hε(z, z′, t) → H0(τ̃), the heat
kernel for the exact cone with rescaled time variable τ̃ .

• At the side faces F1001, F0110 and the residual b face F1010, the heat
kernel has polyhomogeneous expansion with leading term vanishing to
at least second order.

This convergence is uniform in ε for bounded time and moreover, the
error term is bounded by CεtN as t → 0, for any N ∈ N0, where C may
depend on N.
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Remarks.

• This theorem immediately implies the uniform convergence

Hε(z, z′, t) → H0(z, z′, t), T > t > 0,

as well as the convergence

Hε(z, z′, t) → H0(z, z′, t) + O(ε), t, ε → 0,

with explicit error given by the leading terms above in the polyhomo-
geneous expansion of Hε(z, z′, t) on the acc heat space as ε → 0.

• We have dropped the half-density factor,

(ρ1111,2)n+1(ρ1010,2)n(ρ1010)n−1(ρd2)(n+1)/2(ρ1001ρ0110)(n−1)/2√ν,

where above ν is a smooth non-vanishing density on the acc heat space.

These theorems are proven in Sections 5 and 7, respectively. In Section 2,
we define the resolution blowup and ac convergence. Sections 3 and 4 contain
a brief review of geometric and analytic results and terminology on manifolds
with corners. In Section 6, we construct the heat spaces and heat operator
calculi that will be used to prove the main theorem in Section 7.

This work is based on the author’s doctoral dissertation completed at
Stanford University in June 2006 under the supervision of Rafe Mazzeo.
The author wishes to thank Rafe Mazzeo for excellent advising, Andras
Vasy for many helpful conversations and suggestions, Richard Melrose for
enlightening conversations and correspondence and the anonymous referee
for useful comments.

2. Asymptotically conic convergence

The conic collapse in ac convergence is locally modeled by an ac scattering
metric or ac space. The following definitions, which may be used differently
by other authors, were motivated to impose as few restrictions on the geom-
etry of the collapse as possible while simultaneously maintaining sufficient
control to uniformly analyze the Laplacian and its heat kernel.

Definition 2.1. An ac scattering metric (Z̄, gz) is a smooth complete met-
ric on a compact manifold with boundary so that a neighborhood of the
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boundary is diffeomorphic to a product (0, r1)r × Y , where r is a boundary-
defining function for the boundary Y . On this neighborhood,

gz ∼ dr2

r4 +
h(r)
r2 , h(r) ∼ h0 + rh1 + r2h2 + · · · , as r → 0,

where {hk}k≥0 are a smooth family of Riemannian metrics on Y .3 Uniquely
associated to the ac scattering metric (Z̄, gz) is the complete non-compact
manifold Z with ac end; Z is known as an ac space.4 Letting ρ = 1

r , there
is a compact subset Kz ⊂ Z so that

Z − Kz
∼=

(

1
r1

,∞
)

ρ

× Y, gz

∣

∣

(Z−Kz) = dρ2 + ρ2h(1/ρ).

A familiar example of an ac scattering metric is the radial compactifi-
cation of R

n with boundary S
n−1. The intuitive geometric picture of an ac

space is the “big end of a complete cone”.

Definition 2.2. Let M be a compact metric space with Riemannian metric
g. Then, (M, g) has an isolated conical singularity at the point p and g is
called a conic metric if

1. (M − {p}, g) is a smooth, open manifold.

2. There is x1 > 0 and a neighborhood N of p with a function x : (N −
{p}) → (0, x1] such that N − {p} is diffeomorphic to (0, x1]x × Y and

g ∼ dx2 + x2h(x), h(x) ∼ h0 + xh1 + x2h2 + . . . , as x → 0,

where {hk}k≥0 are a smooth family of metrics on Y .

By “blowing up” the cone point p adding a copy of (Y, h0) at x = 0, a conic
metric is an incomplete metric on a compact manifold with boundary whose
metric has the above degenerate form in a neighborhood of the boundary
defined by {x = 0}.

3For technical reasons, we require the stronger assumption that h has a formal
power series at the boundary rather than the standard regularity assumption that
h(r) extends smoothly to a metric on the boundary.

4Note that ac spaces are sometimes called “asymptotically locally Euclidean”, or
ALE. However, that term is often used for the more restrictive class of spaces that
are asymptotic at infinity to a cone over a quotient of the sphere by a finite group,
so to avoid confusion, we use the term asymptotically conic.
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The intuitive geometric picture of a conic metric is an open manifold,
with a boundary that pinches to the point of a cone. It is an incomplete
metric because the cone point is not included in the smooth Riemannian
structure.

In the definition of resolution blowup, we use the notation M ∪φ N for a
smooth manifold constructed from the smooth manifolds M and N with a
diffeomorphism φ from V ⊂ N to U ⊂ M that gives the equivalence relation,
V � p ∼ φ(p) ∈ U. M ∪φ N is the disjoint union of M and N modulo the
equivalence relation of φ. The smooth structure on M ∪φ N and the topology
are induced by those of M and N .

Definition 2.3. Let (M0, g0) be a compact n dimensional manifold with
isolated conic singularity and let (Z, gz) be an ac space of dimension n, so
that ∂M0 = ∂Z̄ = (Y, h0). Then, the interior of M0,

M0
0 = K0 ∪ V0,

where V0 ∼= (0, x1)x × Y, and K0 is compact. With this diffeomorphism

g0 = dx2 + x2h̃(x) on (0, x1)x × Y ,

and the boundary of K0 in M0 is of the form ∂K0 = {x = x1} ∼= Y. Similarly,

Z = Kz ∪ Vz,

where Vz
∼= (ρ1,∞)ρ × Y, and Kz is compact. With this diffeomorphism,

gz = dρ2 + ρ2h(ρ, y) on (ρ1,∞)ρ × Y,

and the boundary of Kz in Z is of the form ∂Kz = {ρ = ρ1} ∼= Y.
Let δ = min {x1, 1/ρ1}. Then for 0 < ε < δ, and R > 1

δ , let

M0,ε = {(x, y) ∈ M0 : x > ε} ∪ K0, ZR = {(ρ, y) ∈ Z : ρ < R} ∪ Kz.

The resolution blowup of (M0, g0) by (Z, gz) is

Mε := M0,ε ∪φε
Z1/ε,

where the joining map φ is defined for each ε by

φε : M0,ε − M0,δ → Z1/ε − Z1/δ, φε(x, y) =
( x

δε
, y

)

.
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For δ > ε > ε′ > 0, the manifolds Mε and Mε′ are diffeomorphic, and so
the resolution blowup of M0 by Z, which we call M , is unique up to
diffeomorphism.

Remark. The resolution blowup is a smooth compact manifold which
resolves a conical singularity using an ac space. Instead of resolving the
singularity in M0 using Z, we may equivalently define the resolution blowup
to resolve the boundary of Z̄ using M0 as follows. Let r = 1/ρ be the defining
function for ∂Z̄. The resolution blowup of Z̄ by M0 is

Mε := M0,ε ∪ψε
Z1/ε, ψε(x, y) =

(

εδ

x
, y

)

,

where the joining map ψε : M0,ε − M0,δ → Z1/ε − Z1/δ is defined by ψε(x, y)
= (εδ/x, y) = (r, y). The resulting smooth compact resolution space is dif-
feomorphic to M .

The ac single space, analogous to the analytic surgery single space in [30],
is the setting for the definition of ac convergence.

Definition 2.4. Let (M0, g0) be a conic metric and let (Z̄, gz) be a scat-
tering metric; assume both are dimension n with ∂M0 = ∂Z̄ = (Y, h), and
assume δ = 1 (Definition 2.3). Then, M0 ∼= ((0, 1)x × Y ) ∪ K0 and Z̄ ∼=
((0, 1)r × Y ) ∪ Kz with ∂K0 ∼= Y ∼= ∂Kz. The acc single space S is

S := [0, 1)x × [0, 1)r × Y ∪ (K0 × {x = 1, r �= 1}) ∪ (Kz × {r = 1, x �= 1}).

The smooth structure of S is induced by that of M0 and Z̄. Namely,
smooth functions on S are functions which are smooth jointly in x and r
on (0, 1)x × (0, 1)r × Y and smoothly extend to a smooth function on K0 at
x = 1, on Kz at r = 1, on M0 at r = 0 and on Z̄ at x = 0.

Definition 2.5. Let S be the acc single space associated to M0 and Z̄ as in
Definition 2.4. Let ε(p) = x(p)r(p) : S → [0, 1), where x and r are extended
to K0 and Kz, respectively, to be identically 1. We define the acc tensor G
as follows:

G =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
2

(

dx2 + x2
(

h(x) + r2
(

dr2

r4 +
h(r)
r2

)))

, x, r ∈ (0, 1),

(xr)2(gz

∣

∣

Kz
), r = 1,

g0
∣

∣

K0
, x = 1.
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For 0 < ε < 1, let Mε = {xr = ε} ⊂ S; note that Mε is diffeomorphic to
the resolution blowup M of M0 by Z. The family of metrics {gε = G

∣

∣

Mε
} on

M is said to converge asymptotically conically to (M0, g0).

Remarks.

1. In the definition of the acc single space to simplify calculations, we have
assumed δ = 1; no generality is lost by this assumption. On {xr = ε},
we then have r = εδ

x , equivalently ρ = 1
r = x

εδ . Letting δ = 1 in the
definition of resolution blowup, the identification of {xr = ε} ⊂ S with
the resolution blowup Mε follows immediately.

2. The acc single space has two boundary hypersurfaces at ε = 0. These
are diffeomorphic to M0 at r = 0 and Z̄ at x = 0, and they meet in a
codimension 2 corner diffeomorphic to Y .

3. The acc single space contains a submanifold diffeomorphic to a cone
over [0, 1)r × Y ⊂ Z̄ with radial variable x.

4. At r = 0, G restricts to G
∣

∣

{r=0} = g0. On Mε ⊂ S where 0 < r(p),
x(p) < 1,

r =
ε

x
=⇒ dr2 =

ε2

x4 dx2 =⇒ gε = dx2 + x2h(x),

which shows that gε extends smoothly to g0
∣

∣

K0
as x → 1. Similarly, we

compute

gε = ε2
(

dr2

r4 +
h(r)
r2

)

,

so gε extends smoothly to (ε2)(gz

∣

∣

Kz
) as r → 1. G is a smoothly poly-

homogeneous symmetric 2-cotensor on S, and its restriction gε is also
smooth and polyhomogeneous as ε → 0.

The following lemma is useful for visualizing ac convergence and for
proving spectral convergence.

Lemma 2.6. Let (M0, g0) and (Z, gz) be as in Definitions 2.3 to 2.5 and
let (M, gε) converge asymptotically conically to (M0, g0). Then, there exists
a family of diffeomorphisms {φε} from a fixed open proper subset U ⊂ M

to increasing neighborhoods Z1/ε ⊂ Z such that gε

∣

∣

U
∼=

(

ε2(φε)∗(g
∣

∣

Z1/ε
)
)

∣

∣

U
.

Moreover, on M − U, gε → g0 smoothly as ε → 0, and any K ⊂⊂ M0
0 is

diffeomorphic to some fixed K ′ ⊂ M so that gε → g0 smoothly and uniformly
on K ′.
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Proof. The existence of φε and U ⊂ M follows immediately from the defi-
nition of resolution blowup and the diffeomorphism between the resolution
blowup M and {xr = ε} ⊂ S. By the above remarks, on the neighborhood
U ⊂ M where this diffeomorphism is defined, gε

∣

∣

U
= (ε2)(φε)∗

(

gz

∣

∣

Z1/ε

)

.

Since gε = g0 + O(ε2), the smooth convergence of gε to g0 on M − U
follows immediately. Any compact subset K ⊂⊂ M0 is contained in M0,ε

for some ε > 0 and so is diffeomorphic to Kε ⊂⊂ Mε and also to K ′ ⊂⊂
(M − U ′). Conversely, any K ⊂⊂ (M − U) is diffeomorphic to Kε ⊂ Mε for
some ε > 0 and also to K ′ ⊂⊂ M0,ε ⊂ M0.

3. Geometric preliminaries

This section is a brief review of the theory and terminology of manifolds
with corners, b maps, and blowups; see also [28,33].

3.1. Manifolds with corners

Let X be a manifold with corners. This means that near any of its points,
X is modeled on a product [0,∞)k × R

n−k, where k depends on the point
and is the maximal codimension of the boundary face containing that point.
We also assume that all boundary faces of X are embedded so they too are
manifolds with corners. The space V(X) of all smooth vector fields on X
is a Lie algebra under the standard bracket operation. It contains the Lie
subalgebra

(3.1) Vb(X) := {V ∈ V(X) : V is tangent to each boundary face of X}.

Then Vb(X) is itself the space of all smooth sections of a vector bundle,

Vb(X) = C∞(X; bTX),

where bTX is the bundle defined so that the above holds and is called the
b-tangent bundle.

3.1.1. Blowing up. An embedded codimension k submanifold Y of a
manifold with corners X is called a p-submanifold (p for product) if near
each point of Y there are local product coordinates so that Y is defined
by the vanishing of some subset of them. In other words, X and Y must
have consistent local product decompositions. Then one can define a new
manifold with corners [X; Y ] to be the normal blowup of X around Y. This is
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obtained by replacing Y by its inward-pointing spherical normal bundle. The
union of this normal bundle and X − Y has a unique minimal differential
structure as a manifold with corners so that the lifts of smooth functions
on X and polar coordinates around Y are smooth. One can also consider
iterated blowups, written [[X; Y1];Y2]] , where Y1 and Y2 are p-submanifolds
of X. However, depending on the geometry, this may not yield the same
space as [[X; Y2];Y1] . In the special case of embedded p-submanifolds,

X ⊃ Y1 ⊃ Y2 ⊃ Y3 ⊃ · · · ⊃ Yn

the iterated blowup

[[X; Y1];Y2]; · · · ; Yn]

can be performed in any order with the same result [30]. Blowups may
also be defined using equivalence classes of curves [33]. Let r be a defining
function for the p submanifold Y and consider the family of curves γ(t) =
(r(t), y(t)) such that

γ(t) ∈ Y ⇐⇒ t = 0,

r(t) = O(t).

Let E be the set of equivalence classes of all such curves with

γ ∼ γ′ ⇐⇒ (y − y′)(t) = O(t) and (r − r′)(t) = O(t2).

There is a natural R
+ action on E given by

R
+ � a : γ(t) → γ(at).

E modulo this equivalence relation is naturally diffeomorphic to N+(Y ), the
inward-pointing spherical normal bundle of Y, so we can define [X; Y ] by

[X; Y ] = (X − Y ) ∪ E/(R+ − {0}).

We can also define parabolic blowups in certain contexts [12]. Let Y be a
p-submanifold of codimension k so that there exist local coordinates (r, y) =
(r1, . . . , rk, y1, . . . , yn−k) in a neighborhood of Y with ri vanishing precisely
at Y and so that dr1 induces a sub-bundle of the tangent bundle TX. Instead
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of the above equivalence classes of curves, we consider γ(t) such that

γ(t) = (r1(t), . . . , rk(t), y1(t), . . . yn−k(t)) ∈ Y ⇐⇒ t = 0,

ri(t) = O(t), i �= 1, r1(t) = O(t2).

Two such curves are equivalent if

γ ∼ γ′ ⇐⇒ (yj − y′
j)(t) = O(t), (ri − r′

i)(t) = O(t2) i �= 1,

(r1(t) − r′
1(t)) = O(t3).

Since dr1 is a sub-bundle of TX, there is a natural R
+ action on the set of

equivalence classes E2 of all such curves,

R
+ � a : γ(t) → (r1(a2t), ri(at), . . . , yj(at)).

The set of equivalence classes of all such curves modulo this R
+ action is

naturally diffeomorphic to the inward-pointing r1-parabolic normal bundle
of Y,

E2/(R+ − {0}) ∼= PN+
r1

(Y ).

We define the r1-parabolic blowup of X around Y as the union of X − Y
and this inward-pointing r1-parabolic bundle,

[X; Y, dr1] := (X − Y ) ∪ PN+
r1

(Y ).

The union of this r1-parabolic bundle and X − Y again has a unique minimal
differential structure as a manifold with corners so that the lifts of smooth
functions on X and r1-parabolic coordinates around Y are smooth. By
r1-parabolic coordinates around Y, we mean the coordinates,

ρ = (r2
1 + r4

2 + · · · + r4
k)

1/4, θ = (θ1, . . . , θn) ∈ S
n−1,

with local coordinates (r1, . . . , rk, y1, . . . , yn−k) in a neighborhood of Y
satisfying

ri = ρθi, i �= 1, r1 = ρ2θ1, yj = ρθj .

For any parabolic or spherical blowup, there is a natural blow-down map
β∗ : [X; Y ] → X and corresponding blowup map β∗ : X → [X; Y ], so that
the image of Y under β∗ is a boundary hypersurface of [X; Y ] diffeomorphic
to the inward-pointing spherical (or parabolic) normal bundle of Y. As such,

[X; Y ] = (X − Y ) ∪ β∗(Y ).
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3.1.2. b-Maps and b-fibrations

Definition 3.1. Let M1 be a manifold with boundary hypersurfaces,
{Nj}k

j=1, and defining functions rj . Let M2 be a manifold with bound-
ary hypersurfaces, {Li}l

i=1, and defining functions ρi. Then f : M1 → M2
is called a b-map if for every i there exist non-negative integers e(i, j) and a
smooth non-vanishing function h such that f∗(ρi) = h

∏k
j=1 r

e(i,j)
j .

The image under a b-map of the interior of each boundary hypersurface
of M1 is either contained in or disjoint from each boundary hypersurface
of M2, and the order of vanishing of the differential of f is constant along
each boundary hypersurface of M1. The matrix (e(i, j)) is called the lifting
matrix for f.

In order for the map f to preserve polyhomogeneity, stronger conditions
are required. Associated to a manifold with corners are the b-tangent and
cotangent bundles, bTM (3.1) and bT ∗M.5 The map f may be extended to
induce the map bf∗ :b TM1 →b TM2.

Definition 3.2. The b-map, f : M1 → M2, is called a b-fibration if the
associated maps bf∗ at each p ∈ ∂M1 are surjective at each p ∈ ∂M1, and
the lifting matrix (e(i, j)) has the property that for each j there is at most
one i such that (e(i, j)) �= 0. In other words, f does not map any boundary
hypersurface of M1 to a corner of M2.

3.1.3. b-Manifolds and the b-blowup A b-manifold is a complete mani-
fold with boundary whose metric is closely related to conic and ac scattering
metrics.

Definition 3.3. Let (X, g) be a smooth Riemannian manifold with bound-
ary (Y, h) and boundary-defining function x so that a neighborhood of the
boundary is diffeomorphic to a product [0, x1)x × Y and in this neighbor-
hood

g =
dx2

x2 + h(x),

where h(x) is a smoothly varying family of metrics on Y that converges
smoothly to h as x → 0. Then (X, g) is said to be a b-manifold.

Equivalently, under the change of variables r �→ e−t, a b-manifold is seen
to be the compactification as a manifold with boundary of a complete man-
ifold with asymptotically cylindrical end(s). To study the regularity and

5These are also called the totally characteristic tangent and cotangent bundles.
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Figure 1: The b-blowup X2
b .

mapping properties of geometric operators on b-manifolds, melrose [33] intro-
duced the b-double space. This space is obtained from X2 by performing
a radial blowup called the b-blowup along the codimension 2 corner at the
boundary in each copy of X, and it is written X2

b (Figure 1),

(3.2) X2
b = [X × X; ∂X × ∂X] = [X × X; Y × Y ].

For any manifold M with boundary having a product structure in a
neighborhood of the boundary, we may define the b-blowup in the analogous
way, M2

b := [M × M ; ∂M × ∂M ].

3.2. Asymptotically conic convergence double space

The acc double space is an instructive model for the more complicated acc
heat space in Section 7. Let

S2
b := [S2; Y × Y ].

The acc double space D is the submanifold of S2
b defined by the vanishing

set of
f(p) = x(p)r(p) − x′(p)r′(p) = ε(p) − ε′(p),

so that

D = {p ∈ S2
b : f(p) = x(p)r(p) − x′(p)r′(p) = 0} = {p ∈ S2

b : ε(p) = ε′(p)}.
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The acc double space has four boundary faces at ε = 0, described in the
following table. Here and throughout, we label each face Fwxyz where the
subscript indicates the order to which each of the scalar variables x, r, x′, r′

vanishes at that face.

Scalar variables Face Geometry
x = 0, x′ = 0, F1010 [Z̄ × Z̄; Y × Y ]
x = 0, r′ = 0 F1001 [Z̄ × M0; Y × Y ]
r = 0, x′ = 0 F0110 [M0 × Z̄; Y × Y ]
r = 0, r′ = 0 F0101 [M0 × M0; Y × Y ]

To see that D is a smooth submanifold of S2
b , we consider the function

(3.3) f(p) = x(p)r(p) − x′(p)r′(p).

Away from the boundary faces, f is smooth with non-vanishing differential.
In a neighborhood of S11 − F1001, let

f0110(p) =
x(p)
x′(p)

− r′(p)
r(p)

.

Since x′rf0110 = f, we see that f0110 is smooth near the ε = 0 boundary faces
away from where those faces meet F0110. Moreover, wherever defined, f0110
has non-vanishing differential and its zero set coincides with that of f away
from F0110. Similarly, let

f1001(p) =
x(p)
r′(p)

− x′(p)
r(p)

.

f1001 is smooth with non-vanishing differential and has the same vanishing
set as f in a neighborhood of {ε = 0} − F1001. This shows that D is a smooth
submanifold of S2

b . While the acc double space will not be used here, we note
that the acc double space, with an additional blowup along the diagonal for
ε ≥ 0, would be the natural space on which to study the resolvent behavior
under ac convergence.

4. Analytic preliminaries

Since we are working on manifolds with singularities corners and boundaries,
we briefly review some key features of the analysis in these settings.
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4.1. Polyhomogeneous conormal functions

On a manifold M with corners having a consistent local product structure
near each boundary and corner, a natural class of functions (or sections) with
good regularity near the boundary and corners are the polyhomogeneous
conormal functions (or sections); see [28]. In a neighborhood of a corner,
we have coordinates (x1, . . . , xk, y1, . . . , yn−k), where x1, . . . , xk vanish at
this corner and (y1, . . . , yn−k) are smooth local coordinates on a smooth
compact n − k manifold Y. The edge tangent bundle Ve in a neighborhood
of this corner is spanned over C∞(M) by the vector fields,

{xi∂xi
, ∂yα}.

The basic conormal space of sections is

A0(M0) = {φ : V1 · · ·Vlφ ∈ L∞(M0),∀Vi ∈ Ve, and ∀ l}.

Let α and p be multi-indices with αj ∈ C and pj ∈ N0. Then we define

Aα,p(M0) = xα(log x)pA0.

The space A∗ is the union of all these spaces for all α and p. The space
A∗

phg(M0) consists of all conormal distributional sections which have an
expansion of the form

φ ∼
∑

Re(αj)→∞

pj
∑

p=0

xαj (log x)paj,p(x, y), aj,p ∈ C∞.

We define an index set to be a discrete subset E ⊂ C × N0 such that

(αj , pj) ∈ E, |(αj , pj)| → ∞ =⇒ Re(αj) → ∞.

Then, the space AE
phg(M0) consists of those distributional sections φ ∈ A∗

phg

having polyhomogeneous expansions with (αj , pj) ∈ E.

4.2. Conic differential operators and b-operators

Let (M0, g0) be a Riemannian manifold with isolated conic singularity so
that in a neighborhood of the singularity,

M0 ∼= (0, x1)x × Y, g0 = dx2 + x2h(x).
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A conic differential operator of order m is a smooth differential operator on
M0 which can be expressed in neighborhood of the singularity by

A = x−m
m

∑

k=0

Bk(x)(−x∂x)k

with Bk ∈ C∞((0, x1), Diffm−k(Y )), where Diffj(Y ) denotes the space of dif-
ferential operators of order j ∈ N0 on Y with smooth coefficients. The
cone differential operators are elements of the cone operator calculus; for
a detailed description, see [24]. These cone operators are closely related to
b-operators. A b-operator of order m is a smooth differential operator such
that near the boundary it can be expressed by

A =
m

∑

k=0

Bk(x)(−x∂x)k

with Bk ∈ C∞((0, x1), Diffm−k(Y )). Note that a cone differential operator
of order m is equal to a rescaled b-differential operator of order m; if A is an
order m cone differential operator, then xmA is a b-differential operator. In
local coordinates (x, y1, . . . , yn−1) near the boundary a b-operator may be
expressed as

A =
∑

j+|α|≤m

aj,α(x, y)(−x∂x)j(∂yα).

The b-symbol of A is

bσm(A) =
∑

j+|α|=m

aj,α(x, y)λjηα.

Here λ and η are linear functions on the b-cotangent bundle defined by the
coordinates so that a generic element of the b-cotangent bundle is

λ
dx

x
+

n
∑

i=1

ηi dyi.

The b-operator is b-elliptic if the b-symbol bσm(A) is non-zero off the zero
section.
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The scalar Laplacian on M0 is

x−2{(−x∂x)2 + (−n + 1 + xH−1(∂xH)(−x∂x)) + Δh(x)} = x−2Lb,

where Lb is an elliptic order 2 b-operator and H is a smooth function that
depends on the metric. Similarly, a geometric Laplacian Δ0 on M0 is also
of the form

Δ0 = x−2Lb,

for an elliptic order two b-operator acting on sections of the vector bundle.
The Schwartz kernel of Lb is a distribution on the b-double space. By the
b-calculus theory, [33] Lb has a parametrix Gb such that Gb is a b-operator
of order −2 with

GbLb = I − R,

where I is the identity operator and R is a b-operator with polyhomogeneous
Schwartz kernel on the b-double space. For any u ∈ L2(xn−1 dx dy) with
Δ0u = f ∈ L2(xn−1 dx dy),

(x2Gb)(x−2Lbu) = (x2Gb)f = u − Ru =⇒ u = x2Gbf + Ru = α + β.

The first term, α ∈ x2H2
b ⊂ x2L2(xn−1 dx dy). The second term β ∈ L2

(xn−1 dx dy) has a polyhomogeneous expansion as x → 0,

β ∼
∞

∑

j=0

Nj
∑

k=0

xγj+kϕj(y).

Above γj is an indicial root for the operator Lb and ϕj is an eigensection
for the induced geometric Laplacian on (Y, h). Then,

(4.1) u = α +
∞

∑

j=0

Nj
∑

k=0

xγj+kϕj(y)

where α ∈ x2L2(xn−1 dx dy). This decomposition plays a key role in our
proof of spectral convergence.

4.3. Friedrichs domain of the conic Laplacian

A geometric Laplacian Δ0 on a conic manifold is an unbounded operator
on L2 sections of the bundle. It can be extended to various domains in L2.
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The minimal domain Dmin is the completion of C∞
c (M0) with respect to the

norm ‖u‖ + ‖Δ0u‖, while the maximal domain

Dmax = {u ∈ L2(M0)|Δ0u ∈ L2(M0)}.

Both Dmin and Dmax are dense in L2(M0), and the extension of the Laplacian
to either domain is a closed operator. On complete manifolds Dmin = Dmax
by the Gaffney–Stokes theorem [14]. Conic metrics are incomplete and these
domains will not in general be equal. The Friedrichs domain DF lies between
Dmin and Dmax and is the closure of the graph of Δ0 in L2 with respect to
the densely defined Hermitian form,

Q(u, v) =
∫

M0

〈∇u, ∇v〉.

The extension of the Laplacian to the Friedrichs domain, known as the
Friedrichs extension of the Laplacian, preserves the operator’s lower bound
and is essentially self adjoint. Here, we work exclusively with the Friedrichs
extension of the conic Laplacian.

For elements of Dmax, with u ∈ L2 and Δ0u = f ∈ L2, we have the
expansion (4.1) from the preceding section,

u = α +
∞

∑

j=0

Nj
∑

k=0

xγj+kϕj(y).

The volume form on M0 near the singularity is asymptotic to xn−1 dx dy.
Therefore, the exponents γj must all be strictly greater than −n

2 . For v ∈
Dmin ⊂ Dmax the decomposition (4.1) and the definition of Dmin imply that
Dmin ⊂ x2L2. The equality of Dmin and Dmax then depends on the indicial
roots of Lb = x2Δ0. For further discussion of domains of the conic Laplacian,
see [16], whose results include:

DF = {f ∈ L2 : Δ0f ∈L2 and

f =O(x(2−n+δ)/2) as x → 0, for some δ > 0}.

We will use this characterization of the domain of the Friedrichs extension
of the conic Laplacian in the proof of the first theorem.
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5. Spectral convergence

We now have all the necessary ingredients to prove spectral convergence.

Theorem 5.1. Let (M0, g0) be a compact Riemannian n-manifold with iso-
lated conic singularity, and let (Z, gz) be an ac space, with n ≥ 3. Assume
(M, gε) converges asymptotically conically to (M0, g0). Let (E0,∇0) and
(Ez,∇z) be rank k Hermitian vector bundles over (M0, g0) and (Z, gz),
respectively, so that each of these bundles in a neighborhood of the boundary
is the pullback from a bundle over the boundary (Y, h). Let Δ0, Δz be the
corresponding Friedrichs extensions of geometric Laplacians, and let Δε be
the induced geometric Laplacian on (M, gε). Assume Δz has no L2 nullspace.
Then the accumulation points of the spectrum of Δε as ε → 0 are precisely
the points of the spectrum of Δ0, counting multiplicity.

The theorem follows from the inclusion accumulation σ(Δε) ⊂ σ(Δ0),
the reverse inclusion accumulation σ(Δε) ⊃σ(Δ0), and correct multiplicities.

5.1. Accumulation σ(Δε) ⊂ σ(Δ0)

We extract a smoothly convergent sequence of eigensections corresponding to
a converging sequence of eigenvalues as ε → 0 and show that the limit section
of this sequence is an eigensection for the conic metric, and its eigenvalue
is the accumulation point. For this argument, we work with sequences of
metrics {gεj

} which we abbreviate {gj} with corresponding Laplacians Δj .
Let λ(εj) be an eigenvalue of Δj , with eigensection fj . Assume that

λ(εj) → λ̄. Over any compact set K ⊂ M0
0 , gj = gεj

converges smoothly to
g0 by Lemma 2.6, thus so do the coefficients of Δj . Hence, normalizing fj by
supM |fj | = 1, it follows using standard elliptic estimates and the Arzela–
Ascoli theorem that fj converges in C∞ on any compact subset of M0

0 [22].
Furthermore, the limit section f̄ satisfies the limiting equation

Δ0f̄ = λ̄f̄ .

However, we do not yet know that f̄ �≡ 0, nor, even if this limit is non-
trivial, that it lies in the domain of the Friedrichs extension of Δ0. This is
the content of the arguments to follow.

5.1.1. Weight functions Let φε : M0,ε − M0,δ → Z1/ε − Z1/δ as in Defi-
nition 2.3. We identify Z1/δ with a fixed K ⊂ U ⊂ M so that M0,ε − M0,δ

∼=
(U − K), K ∼= Z1/δ.
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Let

wε =

⎧

⎨

⎩

c on M − U ,
ε (φ−1

ε )∗ρ on U − K,
cε on K.

Above, c is a constant, and no generality is lost by assuming c = 1. Let
wj = wεj

. For some δ > 0 to be chosen later, replacing fj by fj

‖wδ
j fj‖∞

we

assume the supremum of |fjw
δ
j | is 1 on M . Since M is compact, |fj | attains

a maximum at some point pj ∈ M , and we may assume pj converges to some
p̄ ∈ M . The argument splits into three cases depending on how and where
pj accumulates in M.

5.1.2. Case 1: wj(pj) → c > 0 as j → ∞. In this case, the points {pj}
accumulate in a compact subset of M − U, which we may identify with a
compact subset of M0

0 by Lemma 2.6. So, we may assume that these points
converge to some point p̄ �= p (the conic singular point). The maximum of
|fjw

δ
j | on M is 1 and occurs at pj , so

|fj | ≤ w−δ
j on M for each j =⇒ |fj(pj)| → c−δ as j → ∞.

The locally uniform C∞ convergence of fj to f̄ implies that |f̄ | satisfies
a similar bound,

|f̄ | ≤ x−δ as x → 0,

and clearly |f̄(p̄)| = c−δ �= 0. By the dimension assumption n ≥ 3 and the
characterization of the Friedrichs domain of the Laplacian, we may choose
δ so that

2 − n

2
< −δ < 0.

Then f̄ lies in the Friedrichs domain of the Laplacian and satisfies

Δ0f̄ = λ̄f̄ ,

so λ̄ is an eigenvalue of Δ0.

5.1.3. Case 2: |wj(pj)| ≤ cεj as j → ∞. Analysis on Z in this case leads
to a contradiction. Let φj = φεj

and f̃j = fj(φ−1
j ). Let p̃j = φj(pj). Because

|fjw
δ
j | attains its maximum value of 1 at pj , |f̃j(p̃j)| = (wj(pj))−δ. Rescale

fj and f̃j , replacing them respectively with (wj(pj))δfj and (wj(pj))δf̃j , so
that the maximum of |f̃jρ

δ| occurs at the point p̃j ∈ Zj = Z1/εj
and is equal

to 1. Since wj(pj) = O(εj), ρ(p̃j) = ε−1
j wj(pj) stays bounded for all j, we

assume p̃j converges to p̃ ∈ Z. By Lemma 2.6, (Zj , ε
−2
j φ∗

jgj

∣

∣

U
) converges
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smoothly to (Zj , gz). This implies the following equation is satisfied by f̃j

on Zj ,

Δz f̃j = ε2
jλ(εj)f̃j + O(εj).

Since λ(εj) converge to λ̄ and |f̃jρ
δ| ≤ 1 on Zj ,

Δz f̃j → 0 as j → ∞, on any compact subset of Z.

This implies fj → f̄ on M and correspondingly, f̃j → f̃ locally uniformly
C∞ on Z, and f̃ satisfies

Δz f̃ = 0, |f̃ρδ| ≤ 1.

Equality holds in the second equation at the point p. This shows that f̃
is not identically zero on Z and f̃ = O(ρ−δ) as ρ → ∞. Since f̃ is smooth
on any compact subset of Z and is therefore in L2

loc(Z), choosing δ > n − 2
contradicts the assumption that Z has trivial L2 nullspace.

5.1.4. Case 3: wj(pj) → 0, εj

wj(pj)
→ 0 as j → ∞. In this case, the points

φj(pj) → ∞ in Z, so we rescale and derive a contradiction on the complete
cone over (Y, h). Consider the coordinates (ρ, y) on Z defined for ρ ≥ ρ1.
In these coordinates gz = dρ2 + ρ2h(ρ). Let rj = εj

wj(pj)
ρ and g̃j on Zj be

defined by

g̃j =
(

εj

wj(pj)

)2

gz.

Then,

(Zj , g̃j) ∼=
(

(

ρ1εj

wj(pj)
,

1
wj(pj)

)

rj

× Y, dr2
j + r2

j h

(

rjεj

wj(pj)

)

)

.

As j → ∞, h
(

rjεj

wj(pj)

)

converges smoothly to h, and

g̃j → gC = dr2 + r2h

on the complete cone C over (Y, h). Let f̃j = (wj(pj))δfj(φ−1
j ). Since |fjw

δ
j |

≤ 1 with equality at pj ,

|f̃jr
δ
j | ≤ 1 on (Zj , g̃j) with equality at p̃j = φj(pj).
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Let Δ̃j on Zj be the Laplacian induced by g̃j on Zj ,

Δ̃j =
wj(pj)2

ε2
j

ΔZ .

Then,

Δ̃j f̃j = ε2
j

wj(pj)2

ε2
j

λ(εj)f̃j + O(εj) on (Zj , g̃j).

Since wj(pj) → 0 as j → ∞, there is a locally uniform C∞ limit fc of {f̃j}
on C which satisfies

|fcr
δ| ≤ 1, Δcfc = 0.

Since the points p̃j stay at a bounded radial distance with respect to the
radial variable rj on Zj , we may assume p̃j → pc for some pc ∈ C. At this
point, |fc(pc)r(pc)δ| = 1, so fc is not identically zero. By separation of vari-
ables (see, for example, [27]), fc has an expansion in an orthonormal eigen-
basis {φj} of L2(Y, h),

fc =
∑

j≥0

aj,+rγj,+φj(y) + aj,−rγj,−φj(y),

where γj,+/− are indicial roots corresponding to φj and aj,+/− ∈ C. In order
for |fcr

δ| ≤ 1 globally on C, we must have only one term in this expansion;
fc = ajr

−δφj(y). Because the indicial roots are discrete, we may choose δ
so that −δ is not an indicial root. This is a contradiction.

5.2. σ(Δ0) ⊂ accumulation σ(Δε)

We use the Rayleigh–Ritz characterization of the eigenvalues [4]. Let λl(εj)
be the lth eigenvalue of Δj and let

Rj(f) :=
〈�f,�f〉j

〈f, f〉j
.

The subscript j indicates that the inner product is taken with respect
to the L2 norm on M with the gj metric. The eigenvalues are characterized
using Mini-Max by

λl(εj) = inf
dim L=l,L⊂C1(M)

sup
f∈L,f �=0

Rj(f).
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Similarly, this characterization holds for the eigenvalues of the Friedrichs
extension of the conic Laplacian which are known to be discrete (see [6], for
example). Because C∞

0 (M0) is dense in L2(M0), we may restrict to subspaces
contained in C∞

0 (M0). Then, the lth eigenvalue of Δ0 is

λ̄l = inf
dim L=l,L⊂C∞

0 (M0)
sup

f∈L,f �=0
R0(f).

Let λ̄l be the lth eigenvalue in the spectrum of Δ0. Fix ε > 0. Then
there exists L ⊂ C∞

0 with dim(L) = l and

sup
f∈L,f �=0

R0(f) < λ̄l + ε.

Since any f ∈ L is also in C∞
0 (M) and because L is finite dimensional, by

the local convergence of gj to g0, for large j

|Rj(f) − R0(f)| < ε, for any f ∈ L.

Since λl(εj) is the infimum

λl(εj) ≤ λ̄l + 2ε.

This shows {λl(εj)} is bounded in j, and so we extract a convergent sub-
sequence and a corresponding convergent sequence of eigensections which
exists by our previous arguments. For each l, we take

λl(εj) → μl ≤ λ̄l,

fj,l → ul, Δ0ul = μlul.

These limit eigensections ul are seen to be orthogonal as follows. Fix l, k,
with fj,k → uk and fj,l → ul. Since C∞

0 (M0) is dense in L2(M0), we may
choose a smooth cutoff function χ vanishing identically near the singularity
in M0 such that

‖χuk − uk‖L2(M0) < ε,

‖χul − ul‖L2(M0) < ε,

V olj(M − spt(χ)) < ε.
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Then on the support of χ, gj → g0 uniformly so for large j,

|〈uk, ul〉0 − 〈χuk, χul〉0| < ε,

|〈χuk, χul〉0 − 〈χuk, χul〉j | < ε,

|〈χuk, χul〉j − 〈χuk, χfj,l〉j | < ε,

|〈χuk, χfj,l〉j − 〈χfj,k, χfj,l〉j | < ε.

Since the eigensections for Δj were chosen to be orthonormal and the volume
of (M − support(χ)) is small with respect to gj ,

|〈χfj,k, χfj,l〉j | < 2ε.

Thus, 〈uk, ul〉0 can be made arbitrarily small and uk, ul are orthogonal for
l �= k. We complete this basis to form an eigenbasis of L2(M0). Let f̄l be
an arbitrary element of this eigenbasis with eigenvalue λ̄l. We wish to show
that this f̄l is actually the ul above, defined to be the limit of (a subsequence
of) {fj,l}, and hence the corresponding μl is equal to λ̄l. Again, assume the
smooth cut-off function χ is chosen so that

‖χf̄l − f̄l‖L2(M0) < ε.

For each j, we expand χf̄l in eigensections of Δj ,

χf̄l =
∞

∑

k=0

aj,kfj,k, where aj,k = 〈χf̄l, fj,k〉j .

Now, fix k and choose χ such that

‖χuk − uk‖L2(M0) < ε.

Then,

|〈χf̄l, fj,k〉0 − 〈χf̄l, fj,k〉j | < ε,

|〈χf̄l, fj,k〉j − 〈χf̄l, uk〉j | < ε,

|〈〈χf̄l, uk〉j − 〈χf̄l, uk〉0| < ε,

|〈χf̄l, uk〉0 − 〈f̄l, uk〉0| < ε.

By the orthogonality 〈f̄l, uk〉0 = 0 if f̄l �= uk, and otherwise is 1, so for each k,
aj,k → 0 as j → ∞, for all k with uk �= f̄l. Because f̄l is not identically zero,
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there must be some k with uk = f̄l. This shows that every eigensection of Δ0
is the limit of (a subsequence of) {fj,k}, and the corresponding eigenvalue
λ̄k is the limit of the corresponding eigenvalues.

5.3. Correct multiplicities

We show by induction that the eigenvalues of Δ0 are achieved as accu-
mulation points with correct multiplicity. The spectrum of Δ0 listed with
multiplicity is

λ1 ≤ λ2 ≤ · · · , where Δ0fi = λifi,

and the eigensections are L2 orthonormal. For each ε, the spectrum of Δε is

λ1,ε ≤ λ2,ε ≤ · · · , where Δεfi,ε = λi,εfi,ε.

By previous arguments, there is a sequence {f1,j} which converges to h1 and
λ1,j → λ1. If there is some other {f1,k} → h2 where h2 is also an eigensection
for Δ0 with eigenvalue λ1, then we have shown in preceding arguments
that both h1 and h2 are equal to eigensections of Δ0 listed above, and
both have eigenvalue λ1. If the multiplicity of λ1 is one, we must have
h1 = h2 = f1. By preceding arguments, the limit of any converging sequence
λk,j is λk, so that when λ1 is an eigenvalue of multiplicity one, λ1 < λ2, so
λ1 is an accumulation point of multiplicity one. If the multiplicity of λ1 is
greater than one, then λ2 = λ1, and we have shown that there is a sequence
λ2,j → λ2, and we have shown that the corresponding limit eigensection f2
is orthogonal to f1. By these arguments and the preceding orthogonality
arguments, it is clear that the multiplicity of λ1 as an eigenvalue is equal
to the multiplicity of λ1 as an accumulation point. By induction, the same
argument shows that all eigenvalues of Δ0 are achieved as accumulation
points with the correct multiplicity, thereby completing the proof of spectral
convergence.

6. Heat kernels

The heat kernels for each of the geometries in ac convergence are elements of
a pseudodifferential heat operator calculus that is defined on a corresponding
heat space. For the details in the construction of these heat calculi, kernels
and spaces, see [37].
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6.1. b-Heat kernel

Let (M, g) be a b-manifold with local coordinates z = (x, y) in a neighbor-
hood of ∂M so that near the boundary

g =
dx2

x2 + h(x, y).

Let (z, z′) be coordinates on M × M and let Δb be a geometric Laplacian on
M. The b-heat kernel H(z, z′, t) is the Schwartz kernel of the fundamental
solution of the heat operator ∂t + Δb. The heat kernel is a distributional
section acting on smooth sections of M and satisfying

(∂t + Δb)H(z, z′, t) = 0, t > 0,

H|t=0 = δ(z − z′).

By self adjointness since we work with the Friedrichs extension of Δb,

H(z, z′, t) = H(z′, z, t)∗.

For a smooth section u on M,

u(z, t) :=
∫

M
〈u(z′), H(z, z′, t)〉dz′

satisfies

(∂t + Δb)u(z, t) = 0 for t > 0, u(z, 0) = u(z).

Physically, u(z, t) describes the heat on M at time t > 0 where the initial
heat applied to M is given by u(z).

Recall the Euclidean heat kernel,

G(z, z′, t) = (4πt)−n/2 exp
(

−|z − z′|2
2t

)

.

For a compact manifold without boundary, the heat kernel can be con-
structed locally using the Euclidean heat kernel, Riemannian normal coor-
dinates, the “transport equations” determined by the local geometry and
Duhamel’s principle; see for example [36]. On the interior of a manifold
with boundary (or singularity), the Euclidean heat kernel is also a good
model; however, near the boundary (or singularity) a different construction
is required.
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6.1.1. b-Heat space It is convenient to study the heat kernel on a mani-
fold with boundary (or singularity) as an element of a heat operator calculus
defined on a corresponding heat space (Figure 2). This space is a manifold
with corners constructed from M × M × R

+ by blowing up along subman-
ifolds at which the heat kernel may have interesting or singular behavior.6

For example, the diagonal is always blown up at t = 0, since away from the
boundary the heat kernel behaves like the Euclidean heat kernel which is
singular along the diagonal at t = 0. To construct the b-heat space, we first
blow up the codimension 2 corner at the boundary in both copies of M to
create the b-double space,

M2
b = [M × M ; ∂M × ∂M ].

The b-heat space M2
b,h is then

M2
b,h =

[

M2
b × R

+
t ; Δ(M × M) × {t = 0}, dt

]

,

where Δ(M × M) is the diagonal in M × M. The b-heat space has five
boundary faces, two of which result from blowing up. The remaining three
boundary faces are at t = 0 off the diagonal and at the boundary in each
copy of M. More precisely, we have the following.7

Face Geometry of face Defining function in local coordinates
F110 N+(Y × Y ) × R

+ ρ110 = (x2 + (x′)2)1/2

Fd2 PN+
t (Δ(M × M)) ρd2 = (|z − z′|4 + t2)1/4

F100 Y × (M − ∂M) × R
+ ρ100 = x

F010 Y × (M − ∂M) × R
+ ρ010 = x′

F001 (M − ∂M)2 − Δ(M × M) ρ001 = t

Above PN+
t denotes the inward-pointing t parabolic normal bundle,

while N+ denotes the inward-pointing spherical normal bundle. Note that

6The key idea is to blow-up appropriate submanifolds and introduce a new “sym-
bol” or “normal operator” for each blown-up face and then solve these normal oper-
ators. In the classical microlocal sense, we invert the symbol for each face. In this
way, the complexity of the operator on the original space is handled geometrically
by blowing up, thereby allowing one to use the powerful tools of classical microlocal
analysis in non-classical (non-compact) geometric settings. For a detailed exposi-
tion, see [33].

7The subscript “d” indicates a face created by blowing up along the diagonal, so
for example Fd2 is the face created by blowing up along the diagonal parabolically
in the t direction.
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Figure 2: Schematic diagram of the b-heat space.

the local coordinates x, x′, t lift from M × M × R
+ to M2

b,h as follows:

β∗(x) = ρ110ρ100, β∗(x′) = ρ110ρ010, β∗(t) = (ρd2)
2 ρ001,

so these coordinates are only local defining functions.

6.1.2. b-Heat calculus The b-heat calculus consists of distributional sec-
tion half-density kernels on M2

+ = M × M × R
+ which are smooth on the

interior and lift to be polyhomogeneous on M2
b,h with specified leading orders

at the boundary faces. By constructing the b-heat kernel as an element of the
b-heat calculus, it is polyhomogenous on M2

b,h with specified leading orders.
Once the calculus is defined and the composition rule is proven, construc-
tion of the heat kernel as an element of the heat calculus proceeds like the
classical microlocal constructions in [19, 20, 38]. The following definition is
from [33].

Definition 6.1. For any k ∈ R and index set E110, A is an element of the
b-heat calculus ΨE110,k

b,H if A is smooth on the interior of M2
b,h and satisfies

the following.

1. A ∈ A−1/2+E110

phg (F110).

2. A vanishes to infinite order at F001, F100 and F010.

3. A ∈ ρ
−((n+3)/2)−k
d2 C∞(Fd2).

Because the heat calculus is defined with half-densities, the normalizing
factors at F110 and Fd2 simplify the composition rule. An element A of the
b-heat calculus is the Schwartz kernel of an operator acting on a smooth
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half-density section f of M by

Af(z, t) =
∫

M
〈A(z, z′, t), f(z′)〉dz′.

Furthermore, A acts by convolution in the t variable so for a smooth half-
density section f of M × R

+
t ,

Af(z, t) =
∫ t

0

∫

M
〈A(z, z′, t − s), f(z′, s)〉dz′ ds.

Two elements of the b-heat calculus compose as follows.

Technical Theorem 6.2. Let A ∈ Ψka,A
b,H and let B ∈ Ψkb,B

b,H . Then the com-
position, A ◦ B, is an element of Ψka+kb,A∪̄B

b,H .

The proof of this composition rule is in [33].8

6.1.3. Construction of the b-heat kernel First we construct a model
heat kernel H1 as an element of the b-heat calculus that solves the heat equa-
tion up to an error vanishing to positive order at the boundary faces of M2

b,h.

On the interior of M2
b,h restricting to a coordinate patch with coordinates

(z, z′, t), we locally define

H1(z, z′, t) := (4πt)−n/2e(|z−z′|g)2/2t,

where |z − z′|g is the distance from z to z′ with respect to the metric g. As
t → 0 away from the diagonal, this construction immediately implies infinite
order vanishing at F001. At Fd2 we solve exactly: for each p ∈ M and for
each point z ∈ Fd2 in the fiber over (p, p, 0), the heat kernel at that point is
determined by the coefficients of the metric (and its derivatives) at p.

The normal operator of ∂t + Δb is the restriction to F110 of the lift
of ∂t + Δb to M2

b,h. H1 is defined at F110 to be the kernel of a first-order
parametrix of this normal operator and is smooth at this face. At F100, F010

8Note that in order for the composition to be defined, A and B must satisfy
certain compatibility conditions. In all our applications, these conditions are a
priori satisfied. The notation ∪̄ denotes the extended union of index sets, see [28].
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and F001, the model kernel vanishes to infinite order. As constructed, H1
satisfies

(∂t + Δ)H1 = K1, H1 ∈ Ψ−2,0
b,H .

K1 vanishes to positive order at the boundary faces of M2
b,h. Next, define

H2 = H1 − H1 ∗ K1,

where now the error term,

K2 = (∂t + Δ)H2,

vanishes to one order higher on each of the boundary faces of M2
b,h by the

composition rule. This construction is iterated and the Borel summation [38]
gives H∞ ∈ Ψ−2,0

b,H with H∞ − HN = O(tN−(n+3)/2), for N > 0, so that

(∂t + Δ)H∞ = K.

K vanishes to infinite order on the boundary faces of M2
b,h, so we may push

K forward to M × M × R
+. We solve away the residual error term using

the action of elements of the b-heat calculus as t-convolution operators. As
a t-convolution operator, the heat kernel is the identity. Above, K as a
t-convolution operator is of the form K = Id − A, where A is a Volterra
operator, and Id is the identity. An operator of this form has an inverse of
the same form, so defining

H := H∞(Id − A)−1

solves away this residual error term. By construction, the leading order
behavior of the b-heat kernel is that of the model heat kernel and is sum-
marized below.

Face Leading order
F110 0; O(t−1) as t → ∞
Fd2 (−(n + 3)/2 − (−2))
F100 ∞ order vanishing
F010 ∞ order vanishing
F001 ∞ order vanishing

6.2. Conic heat kernel

Let (M0, g0) be a compact manifold with isolated conic singularity, and let
Δ0 be the Friedrichs extension of a geometric Laplacian associated to a
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Hermitian vector bundle over (M0, g0). We construct the conic heat kernel
using the same steps for constructing the b-heat kernel: first we construct
the conic heat space with its calculus and composition rule, then we solve the
normal operators by constructing a model parametrix and use the calculus
to solve up to infinite order, and finally we solve away the residual error
using the action as a t-convolution operator.

6.2.1. The conic heat space This construction comes from [34]. The
conic heat space M2

0,h is a manifold with corners obtained from M0 × M0 ×
R

+ = M2
0,+ by blowing up along two submanifolds (Figure 3),

M2
0,h := [[M0 × M0 × R

+; ∂M0 × ∂M0 × {t = 0}, dt];

Δ(M0
0 × M0

0 ) × {t = 0}, dt].

The conic heat space has five boundary faces described in the following
table in which z = (x, y) and z′ = (x′, y′) are local coordinates in a neigh-
borhood of the singularity in each copy of M0 so that x = 0, x′ = 0 define
the singularity as well as the boundary of M0.

Face Geometry of face Defining function in local coordinates
F112 PN+

t (Y × Y ) ρ112 = (x4 + (x′)4 + t2)1/4

Fd2 PN+
t (Δ(M0

0 × M0
0 )) ρd2 = (|z − z′|4 + t2)1/4

F100 Y × R
+ ρ100 = x

F010 R
+ × Y ρ010 = x′

F001 M0
0 × M0

0 − Δ(M0
0 × M0

0 ) ρ001 = t

Figure 3: Schematic diagram of the conic heat space.
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Note that the coordinates x, x′, t lift from M0 × M0 × R
+ to M2

0,h as
follows:

β∗(x) = ρ100ρ112, β∗(x′) = ρ010ρ112, β∗(t) = ρ2
112ρ

2
d2ρ001,

so again these are only local defining functions.

6.2.2. The conic heat calculus Let μ be a conic half-density on M2
0,+.

We may assume

μ = (xx′)(n−1)/2
√

dz dz′ dt =
√

dVc dt.

Fix also a smooth, non-vanishing half-density ν on M2
0,h. Elements of the

conic heat calculus are distributional section half densities on M2
0,+ which

are smooth on the interior and lift to be polyhomogeneous on M2
0,h.

Definition 6.3. Let k ∈ R and let E100, E010 and E112 be index sets. Then
A ∈ Ψk,E100,E010,E112

0,H if A is a smooth half-density section on the interior of
M2

0,h and satisfies the following.

1. A ∈ AE100
phg at F100.

2. A ∈ AE010
phg at F010.

3. A ∈ AE112
phg at F112.

4. A vanishes to infinite order at F001.

5. A ∈ ρ
(−(n+3)/2)−k
d2 C∞(Fd2).

With this normalization, the conic heat kernel has order k = −2, and
the composition rule is the following.

Technical Theorem 6.4. Let A ∈ ΨA100,A010,A112,ka

0,h and B ∈ ΨB100,B010,B112,kb

0,H

with leading index terms satisfying

β112+α010 >0, α112 + β100 >0, −ka >0, −kb > 0, β100 + α010 > −1.

Then, the composition B ◦ A is an element of ΨA100,B010,Γ112,k
0,H with Γ112 =

A112 ∪̄ B112 and k = (ka + kb).

The proof of this theorem is in [37] and is originally due to [34]; see
also [15,27].
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Away from F112, F100 and F010, the model heat kernel is locally con-
structed using the Euclidean heat kernel. At the front face F112, which arises
from blowing up the singularity, the coordinates x, x′, t vanish. Instead, con-
sider the projective coordinates9

s =
x

x′ , s′ = x′, τ =
t

(x′)2
.

In these coordinates, the heat operator

∂t + Δ = (s′)−2(∂τ + (∂s)2 + s−2Δh),

where Δh is the induced geometric Laplacian on the boundary (Y, h). Since
s′ is a defining function for F112, we see that the normal operator is the heat
operator for the exact cone over (Y, h), so we define the model heat kernel
at F112 to be

H0(s, s′, y, y′, τ),

where H0 is the heat kernel for the exact cone over (Y, h). Using the scaling
properties of the heat kernel for an exact cone, this is equivalent to

(ρ112)−nH0(s, 1, y, y′, τ),

which is well defined away from F010 and has a polyhomogeneous expansion
up to F100; see [5, 23]. With the Friedrichs extension, symmetry in space
variables defines the model heat kernel on all of F112, and we define it on
F100 and F010 by extending the polyhomogeneous expansion at the corners
of these faces with F112.

6.3. Asymptotically conic scattering heat kernel

A summary of the ac scattering heat kernel, space and calculus is given here;
details are contained in the appendix. Let (Z̄, gz) be an ac scattering metric
with boundary defined by {x = 0} and with local coordinates z = (x, y) near
the boundary. Let Δz be the Friedrichs extension of a geometric Laplacian
on Z̄.

9It is generally helpful to work with projective coordinates since differential oper-
ators transform nicely under projective coordinate changes.
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6.3.1. Asymptotically conic scattering heat space First, we con-
struct the ac scattering double space,

Z̄2
sc :=

[

[Z̄ × Z̄; ∂Z̄ × ∂Z̄]; Δ(Y × Y ) ∩ F110
]

,

where F110 is the face created by the first blowup. This construction comes
from [17, Figure 4]. The ac scattering heat space is

Z̄2
sc,h =

[

Z̄2
sc × R

+; Δ(Z × Z) × {t = 0}, dt
]

.

The ac scattering heat space has six boundary faces described in the
following table.

Face Geometry of face Defining function in local coordinates
F220 N+(Δ(Y × Y )) × R

+ ρ220 = (x2 + (x′)2 + |y − y′|2)1/2

F110 N+((Y × Y )
−Δ(Y × Y )) × R

+ ρ110 = (x2 + (x′)2)1/2

F100 Z × Y × R
+ ρ100 = x

F010 Y × Z × R
+ ρ010 = x′

Fd2 PN+
t (Δ(Z × Z)) ρd2 = (|z − z′|4 + t2)1/4

F001 (Z × Z) − Δ(Z × Z) ρ001 = t

6.3.2. Asymptotically conic scattering heat calculus Elements of
the ac scattering heat calculus are distributional section half- densities of
Z̄2

+ which are smooth on the interior and lift to be polyhomogeneous on
Z̄2

sc,h. Let μ be a smooth, non-vanishing half- density on Z̄2
+, and let ν be a

smooth, non-vanishing half- density on Z̄2
sc,h.

Figure 4: Schematic diagram of the ac scattering heat space.
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Definition 6.5. For any k∈R and index sets E110 and E220, A∈ΨE110,E220,k
sc,H

if A is smooth on the interior of Z̄2
sc,h and satisfies the following.

1. A ∈ A−(1/2)+E110

phg at F110.

2. A ∈ A−((n+2)/2)+E220

phg at F220.

3. A vanishes to infinite order at F001, F100 and F010.

4. A ∈ ρ
−((n+3)/2)−k
d2 C∞(Fd2).

Two elements of the ac scattering heat calculus compose as follows.

Technical Theorem 6.6. Let A ∈ ΨA110,A220,ka

sc,H , and B ∈ ΨB110,B220,kb

sc,H .
Then, the composition B ◦ A is an element of ΨA110∪̄B110,A220∪̄B220,ka+kb

sc,H .

The ac scattering heat kernel is constructed analogously to the b and
conic heat kernels. The model heat kernel in this case is the lift of the
Euclidean heat kernel to Z̄2

sc,h.10

Technical Theorem 6.7. Let (Z̄, gz) be an ac scattering metric with
boundary (Y, h). Let (E, ∇) be a Hermitian vector bundle over (Z, gz) which
induces a compatible bundle over (Y, h). Let Δ be a geometric Laplacian on
(Z̄, gz) associated to the bundle (E, ∇). Then there exists H ∈ ΨE110,E220,−2

sc,H

satisfying

(∂t + Δ)H(z, z′, t) = 0, t > 0,

H(z, z′, 0) = δ(z − z′).

Moreover, H vanishes to infinite order at F110 and is smooth up to F220.

The proof of this theorem is in the appendix.

7. Heat kernel convergence

These heat kernels interact on the acc heat space.

10Since the standard example of an ac scattering metric is the radial compactifi-
cation of R

n, it is natural that the ac scattering model heat kernel is the lift of the
Euclidean heat kernel to Z̄2

sc,h.
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7.1. Asymptotically conic convergence heat space

This construction is similar to the heat space constructions in Section 6 and
the acc double space construction in Section 3. First, let

H0 := {ε = ε′} ⊂ S × S.

Next, let

H1 := [H0 × R
+
t ; Y × Y × {t = 0}, dt].

This blowup must be done first to create the F112 face in the conic heat
space. The scalar variables on S × S × R

+
t are (x, r, x′, r′, t),11 so by our

notation, the face created by this blowup is F1111,2. Let

H2 := [H1; Z × Z × {t = 0}, dt].

This blowup is less obvious: the ac metric is scaled by ε2, so the correspond-
ing Laplacian is scaled by ε−2, and the time should also be scaled. To create
a face with rescaled time, we perform this blowup, and the resulting face is
F1010,2, which has the geometry of a compactified b-heat space at t, ε = 0.

Finally, the acc heat space results from blowing up the closure of the lift
of the diagonal in S × S at {t = 0},

H := [H2; β∗(Δ(S × S − (Y × Y )) × {t = 0}), dt].

The face created by this last blowup is Fd2.
The ε = 0 boundary faces of H are summarized below:

S × S × R
+
t corner H face geometry

x = 0, x′ = 0, r = 0,
r′ = 0, t = 0 F1111,2 PN+(Y × Y )

x = 0, x′ = 0, t = 0, F1010,2 [Z̄ × Z̄ × R
+
τ ; Y × Y ];

Δ(Z × Z) × {0}, dτ ]
x = 0, x′ = 0, F1010 [Z × Z × R

+ − {t = 0}]
r = 0, r′ = 0 F0101 M2

0,h

x = 0, r′ = 0 F1001 [Z̄ × M0 × R
+; Y × Y × {0}, dt]

r = 0, x′ = 0 F0110 [M0 × Z̄ × R
+; Y × Y × {0}, dt]

Δ(S × S) × {t = 0} Fd2 PN+(Δ(S × S))
{t = 0} F0000,1 ({ε = ε′} ⊂ S × S) − Δ(S × S)

11Note that these variables are not independent; they are related by xr = x′r′ = ε.
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7.1.1. Asymptotically conic convergence half-density calculations
We calculate the lift to H of dV gε dV g′

ε dt dε. The Jacobian determinant
factors which result from blowing up are

(ρ1111,2)4(ρ1010,2)2(ρd2)n+1.

Next, we calculate the lift of the variables x, x′, r, r′ to H,12

β∗(x) = ρ1010ρ1010,2ρ1111,2ρ1001,

β∗(x′) = ρ1010ρ1010,2ρ1111,2ρ0110,

β∗(r) = ρ1111,2ρ0101ρ0110,

β∗(r′) = ρ1111,2ρ0101ρ1001.

We calculate the volume form dV gε in a neighborhood of the faces of H at
ε = 0. At F0101, dV gε ∼ dV0 and

dV gεdV g′
ε ∼ (ρ1111,2ρ1010ρ1010,2)2n−2(ρ1001ρ0110)n−1

× (ρ1111.2)4(ρ1010,2)2(ρd2)n+1μ.

At F1010 and F1010,2, dV gε ∼ ε2dVz, consequently

dV gεdV g′
ε ∼ (ρ1111,2)2n−2(ρ1010,2ρ1010)2n(ρ0101)−2(ρ1001ρ0110)n−1

× (ρ1111.2)4(ρ1010,2)2(ρd2)n+1μ,

where μ is a smooth non-vanishing spatial density on H.13

Then, we arrive at the following half-density calculation at F0101 and
F1111,2,

β∗(
√

dV gε dV g′
ε dt dε) ∼ (ρ1111,2)n+1(ρ1010,2)n(ρ1010)n−1

× (ρ1001ρ0110)(n−1)/2(ρd2)(n+1)/2√ν,

where ν is a smooth non-vanishing density on H. At F1010 and F1010,2,

β∗(
√

dV gε dV g′
ε dt dε) ∼ (ρ1111,2)n+1(ρ1010,2)n+1(ρ1010)n(ρ0101)−1

× (ρ1001ρ0110)(n−1)/2(ρd2)(n+1)/2√ν.

12The recipe for these exponents is: (codimension of space variables −1)
+ (codimension of parabolic variables ∗ 2).

13We have used that dV0 ∼xn−1 dx dy and dVz ∼ εn

rn+1 dr dy and that ε = xr = x′r′.
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7.2. Asymptotically conic convergence heat calculus

The acc heat calculus is a parameter (ε) dependent operator calculus incor-
porating the smooth, conic, and b-heat calculi.14

Definition 7.1. The acc heat calculus of order k, written
Ψk,E0101,E1010,2,E1111,2

acc,H , consists of half-density kernels A which are smooth
on the interior of H and satisfy the following.

1. For each ε > 0, A restricts to an element of Ψk
ε,H , the standard heat

calculus of order k for (M, gε).15

2. In a neighborhood of F1010,2, A has an asymptotic expansion in ρ1010,2
with index set E1010,2 and coefficients in the b-heat calculus of order
k. Such an expansion is of the form

A ∼
∑

j≥1

∑

0≤p0≤p≤pj

(ρ1010,2)αj (log ρ1010,2)pAj,l,

with Aj,l ∈ Ψk,Ej
110

b,H . Above, if for some j, pj = 0, then there are no log
terms.

3. In a neighborhood of F0101, A has an asymptotic expansion in ρ0101
with index set E0101, and coefficients are elements of the conic heat
calculus of order k.

4. In a neighborhood of F1111,2, A has an asymptotic expansion in ρ1111,2
with index set E1111,2 so that the coefficients in the conic heat calculus
are of order k for the exact cone over Y.

5. A has a smooth polyhomogeneous expansion up to the side faces
F1001, F1010, F0110, and these expansions extend smoothly to the cor-
ners meeting the other faces of H.

14The ac scattering heat calculus was expected to arise in the acc heat space and
calculus, but after calculating the normal operators as ε → 0, it became clear that
the b-heat space and calculus rather than the ac scattering heat space and calculus
were needed.

15The heat space for a smooth compact manifold M is M2
h := [M × M ×

R
+
t ; Δ(M) × {t = 0}, dt]. The standard heat calculus Ψk

H consists of half-density
sections which are smooth on the interior of M2

h , vanish identically at t = 0 away
from the blown-up face, and which are ρ−(1/2)(n+3)−kC∞ at the blown-up face
defined by ρ; see, for example, [33, 37].
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The composition rule is not required for the proof of our main theorem,
but we would expect it to follow from the composition rules for the smooth
(compact manifolds), b, and conic heat calculi, together with the result for
combining polyhomogeneous index sets as in [28].

Theorem 7.2. Let (M0, g0) be a compact Riemannian n-manifold with iso-
lated conic singularity, and let (Z, gz) be an ac space, with n ≥ 2. Assume
(M, gε) converges asymptotically conically to (M0, g0). Let (E0,∇0) and (Ez,
∇z) be rank k Hermitian vector bundles over (M0, g0) and (Z, gz), respec-
tively, so that each of these bundles in a neighborhood of the boundary is
the pullback from a bundle over the boundary (Y, h). Let Δ0 and Δz be the
corresponding Friedrichs extensions of geometric Laplacians, and let Δε be
the induced geometric Laplacian on (M, gε). Then the associated heat kernels
Hε have a full polyhomogeneous expansion as ε → 0 on the acc heat space
with the following leading terms:

• At the conic front face, F0101, Hε(z, z′, t) → H0(z, z′, t), the heat kernel
for (M0, g0) with half-density factor

(∗) = (ρ1111,2)n+1(ρ1010,2)n(ρ1010)n−1(ρ1001ρ0110)(n−1)/2(ρd2)(n+1)/2√ν.

• At the rescaled b front face, F1010,2, Hε(z, z′, t) → (ρ1010,2)(ρ1010)
(ρ0101)−1Hb(τ), the b heat kernel with rescaled time variable τ and
with half-density (∗).

• At the exact conic front face, F1111,2, Hε(z, z′, t) → H0(τ̃), the heat ker-
nel for the exact cone with rescaled time variable τ̃ with half-density (∗).

• At the side faces F1001, F0110 and the residual b face F1010, the heat
kernel has polyhomogeneous expansion with leading term vanishing to
at least second order.

This convergence is uniform in ε for bounded time and moreover, the
error term is bounded by CεtN as t → 0, for any N ∈ N0, where C may
depend on N.

7.3. Proof

This proof is modeled after the parametrix construction of [33]. First, we
lift the operator ∂t + Δε to H and construct the acc model heat kernel as
an element of the acc heat calculus which solves the normal operators of
∂t + Δε on H. We use the b-heat calculus and introduce the acc conic triple
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heat space to use the conic heat calculus and solve up to infinite order, then
we estimate the error term of this solution kernel and finally solve away the
residual error.

7.3.1. Lifted heat operator We must carefully choose good coordinates
in a neighborhood of each of the front faces F0101, F1010,2 and F1111,2 and
calculate the leading term of ∂t + Δε as ε → 0, or in the terminology of
[1, 28, 33], we calculate the “normal operators” at the ε = 0 boundary faces
of H. In a neighborhood of F0101, gε is smoothly approaching the conic
metric, so

∂t + Δε → ∂t + Δ0.

In a neighborhood of F1010,2, the metric gε → ε−2gz, so

∂t + Δε → ∂t + ε−2Δz = (x)−2(∂τ + Δb),

where τ = t/(x2). In the above calculation, we have used xr = ε together
with the relation between the ac scattering Laplacian and the rescaled b
Laplacian Δz = r2Δb. Note that x lifts to define F1010, F1010,2 and F1111,2.
This indicates that the leading part of ∂t + Δε at F1010,2 is

(ρ1010,2ρ1010ρ1111,2)−2(∂τ + Δb).

In a neighborhood of F1111,2, the scalar variables (x, x′, r, r′, t) are not
good coordinates since they all vanish. Better coordinates are the projective
(s, s′, σ, σ′, τ), where

s =
x

x′ , s′ = x′, σ =
r

x′ , σ′ =
r′

x′ , τ̃ =
t

(x′)2
.

Note that

(r∂r) = (σ∂σ), xr = ε =⇒ r2

ε2 = x−2.

At F1111,2 we see both the conic metric g0 near the singularity and the
rescaled ac scattering metric ε2gz near the boundary. Using the projective
coordinates around the conic singularity, we compute

∂t + Δε → (s′)−2(∂τ̃ + (∂s)2 + (s)−2(Δh) = (ss′)−2(∂τ + (s∂s)2 + Δh),

where Δh is the Laplacian on Y for h = h(x = 0), and we note that τ = t
(ss′)2 .

Using the projective coordinates near the boundary of Z̄, we compute

∂t + Δε → (ss′)−2(∂τ + (σ∂σ)2 + Δh) = (s′)−2(∂τ̃ + (s)−2((σ∂σ)2 + Δh),
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where in the last equality we have used xr = ε = x′r′, which gives s∂s = σ∂σ.
Since (ss′) = x lifts to H to define F1111,2, F1010 and F1010,2 as does s′, this
indicates that the leading term of ∂t + Δε at F1111,2 is

(ρ1111,2ρ1010ρ1010,2)−2(∂τ̃ + Δ0,s),

where Δ0,s is the Laplacian for the exact cone over (Y, h). Note that these
calculations demonstrate that the model operators are consistent at the
corners.

These calculations together with the half-density calculation indicate
how to define the acc model heat kernel as a parametrix for ∂t + Δε as
ε → 0.

7.3.2. Asymptotically conic convergence model heat kernel, H1

• At F0101, let H1(z, z′, t, ε) ∼ H0, the heat kernel for (M0, g0), with half-
density factor16

(∗) = (ρ1111,2)n+1(ρ1010,2)n(ρ1010)n−1(ρ1001ρ0110)(n−1)/2(ρd2)(n+1)/2√ν.

• At F0101,2, let H1(z, z′, t, ε) ∼ (ρ1010ρ1010,2)(ρ0101)−1Hb(τ)(∗), where
Hb(τ) is the b heat kernel with rescaled time variable.

• At F1111,2, let H1(z, z′, t, ε) ∼ H0(τ̃)(∗), where H0(τ̃) is the heat kernel
for the exact cone over (Y, h) with rescaled time.

At the side faces of H, it is instructive to recall the side faces in the
conic heat space. The conic heat kernel has normal operator

∂t + (∂x)2 + x−2Δh,

where Δh is the induced Laplacian on the boundary (Y, h). At the side face
F100, x vanishes and there is no natural “normal operator”. However, the
side faces meet the front face, so we define the conic model heat kernel on
the side faces by extending the asymptotic expansion from the front face to
the side faces and using symmetry of the Friedrichs extension. When the
conic density is included, the conic model heat kernel vanishes to positive
order at the side faces. Similarly, there is no natural normal operator at

16Note that we do not require any additional vanishing factors to account for
the singular factors in the normal operators since the half-density already includes
sufficient vanishing factors to remove the singular factors when the normal operators
are applied.
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F1010, F1001 and F0110. However, the acc model heat kernel is defined on
F0101 which meets F1001 and F0110, and so it may be defined on these faces
by extending the expansion as in the conic case. At the corner of F1010,2
with F1010, the rescaled time variable τ → ∞, and the b heat kernel vanishes
to positive order as t → ∞, so we define the acc model heat kernel at F1010
by extending the expansion at F1010,2 as τ → ∞. For ε > 0, let H1(z, z′, t, ε)
be the heat kernel for ∂t + Δε.

7.3.3. Asymptotically conic convergence model heat kernel con-
struction along diagonal at t = 0 In a neighborhood of the faces dif-
feomorphic to the parabolic normal bundle of the diagonal, PN+(Δ), we
carry out a local construction as in [33, chapter 7]. Let X be a manifold;
since this construction is the same for X = M, X = M0 and X = Z̄, we use
X to simplify notation. Let FX denote the PN+(Δ(X)) face in H, where
Δ(X) is the diagonal in X × X. Let N(∂t + ΔX) be the restriction to FX

of the lift of (∂t + ΔX) to H, where ΔX is our geometric Laplacian on X.
With the heat calculus normalization at FX , an element A of the acc heat
calculus of order −k restricts to FX as follows

N(A) = t(k+n+2)/2A|FX
.

As in [33] we observe that FX is naturally diffeomorphic to a radial com-
pactification of the tangent space of X, with each fiber of FX over (x, x, 0)
diffeomorphic to the tangent space at x. From [33, 7.15],

(7.1) N(t(∂t + ΔX)A) =
[

σ(ΔX) − 1
2
(R + n + k + 2)

]

N(A),

where R is the radial vector field on the fibers of TX. Note that if G0 satisfies

t(∂t + ΔX)G0 = O(t∞) as t → 0, G0|t=0 = δ(x − x′),

then G0 also satisfies

(7.2) (∂t + ΔX)G0 = O(t∞) as t → 0, G0|t=0 = δ(x − x′).

So, we may work with t(∂t + ΔX) as in [33]. Our initial parametrix G0 has
order k = −2 at FX . From (7.1), we have the following equation for G0,

[

σ(ΔX) − 1
2
(R + n)

]

N(G0) = 0.
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From [33, 7.13], in order for G0 to satisfy the initial condition, it must satisfy
∫

fiber
N(G0) = 1.

Since these conditions are fiber-by-fiber, we introduce local coordinates so
that

σ(ΔX) = D2
1 + · · · + D2

n on TxX.

Then we have

(7.3)
[

D2
1 + · · · + D2

n − 1
2
(R + n)

]

N(G0) = 0,

so

(7.4) N(G0) = (2π)−n/2 exp
(

−|X|2x
4

)

is the desired solution, where X is a projective local coordinate on Fx,
X = x−x′

t1/2 (see [33, 7.36]), and | ∗ |x is the Riemannian norm on TX induced
by the metric at x. To see that this is the desired solution, consider the
Fourier transform of (7.3) with u = N(G0)|TxX ,

(ξ∂ξ + 2|ξ|2)û = 0, û(0) = 1.

Then by standard results in ordinary differential equations, the expression
in (7.4) is the unique decaying solution.

Now we may iterate this to solve up to higher order. Assume we have
found G0, . . . , Gk satisfying

t(∂t + ΔX)Gj = Rj ,

where Rj is of order −3 − j at FX . To find Gk+1 = Gk − Tk, we wish to
solve

t(∂t + ΔX)Tk = Rk + Rk+1,

where we have already found Rk of order −3 − k, and Rk+1 will be of order
−4 − k. Lifting to TX this becomes

[

σ(ΔX) − 1
2
(R + n − j − 1)

]

N(Tk) = N(Rk),
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which we may again solve via Fourier transform. Letting u = N(Tk) and
f = N(Rk), we find

û(ξ) =
∫ 1

0
exp((r − 1)|ξ|2)f̂(rξ)rk+1 dr

is the desired solution. This completes the inductive construction for all
k. Now the successive Tj = Gj+1 − Gj give a formal power series at FX

which can be summed by Borel’s lemma so that G is order −2 at FX ,
and satisfies (7.2). We then set the acc model heat kernel H1 = G in a
neighborhood of FX .

7.3.4. Asymptotically conic convergence model heat kernel con-
struction off diagonal at t = 0 Consider F1010,2 ∼= Z̄2

b,h,τ . This face has
the following geometry.

Boundary face Geometry of face Arising from
Fbd2 PN+(Δ(Z × Z)) Parabolic blowup of diagonal

at τ = 0
Fb110 N+(Y × Y ) × R

+ Blowup of Y × Y for all τ
Fb100 Y × Z × R

+ Boundary in first copy of Z
Fb010 Z × Y × R

+ Boundary in second copy of Z
Fb001 (Z × Z) − Δ(Z × Z) τ = 0 Away from diagonal

At this face, H1 is asymptotic to Hb(z, z′, τ), which vanishes to infinite order
at the side faces Fb100 and Fb010. At the diagonal face Fbd2, we have solved
H1 up to error vanishing to infinite order in t. So, we have at this point an
approximation H1 whose error vanishes to infinite order on the interior of
F1010,2 and at all boundary faces except Fb110. The indicial operator for Δb,σ

at Fb110 is

I(Δb,σ) = (σ∂σ)2 + Δy

on R
+
σ × Y. We would like to find u which is polyhomogeneous on Z̄2

b,h,τ and
solves

(∂τ + Δb)|Fb110u = −K|Fb110 ,

where K(z, z′, t, ε) = (∂t + Δε)H1. Since H1 is polyhomogeneous on H and
smooth up to Fb110, so also the error term K. Expanding K, where we use
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simply ρ for the projective defining function for Fb110,

K|Fb110 ∼
∑

j≥0

(ρ)jkj , kj ∈ C∞
0 .

Expanding the desired solution u,

u ∼
∑

j≥0

(ρ)juj .

We may use either separation of variables expanding in eigenfunctions of Δy

or the Mellin transform [33], to find u0 satisfying

(∂τ + I(Δb))u0 = −k0,

with u0 vanishing to infinite order at the side faces Fb100 and Fb010. Since
Δb − I(Δb) = ρL1, where L1 is also a b-differential operator, we may now
iteratively solve for u1, u2, . . . , to solve the equation to increasingly higher
order. Recall that in the projective coordinates near this face, σ′ defines
Fb110, and since the operator does not differentiate with respect to σ′ = r,′

the defining function commutes past the operator. Using Borel summation,
we construct u so that

(∂τ + Δb)u = −K + K2,

where K2 vanishes to infinite order at Fb110. Using a smooth cutoff function
χ supported in a neighborhood of these faces, the second approximation
H2 = H1 + χu now satisfies

(∂τ + Δb)H2 = K2,

where K2 vanishes to infinite order on both the interior and all boundary
faces of F1010,2.

A similar exact construction applies to F1111,2, since this face is the heat
space for the exact cone over (Y, h).

7.3.5. Asymptotically conic convergence conic triple heat space
Since the error now vanishes to infinite order at all boundary faces except
F0101, we restrict attention to this face. It is convenient to use the conic
heat calculus composition rule which requires the conic triple space. We
construct a partial acc triple heat space,17 the acc conic triple heat space,

17The full acc triple heat space is constructed in the second appendix although
it is not needed for this proof.
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which contains the conic triple heat space, thereby allowing us to solve
away the error at F0101 using the conic composition rule. The acc conic
triple heat space H3

c is a submanifold constructed from S3 × R
+ × R

+ by
eight blowups. Let X, X ′, X ′′ denote the three copies of the submanifold X
in X3. The blowups are listed in the following table by the order in which
the blowups are performed together with the name of the face created.

Blowup Face
Y × Y ′ × Y ′′ × {t = 0, t′ = 0}, dt, dt′ F11122
Y × Y ′ × {t = 0}, dt F11020
Y ′ × Y ′′ × {t′ = 0}, dt′ F01102
Y × Y ′′ × {t′′ = |t − t′| = 0}, dt′′ F10122
Δ(S × S ′ × S ′′) × {t = 0, t′ = 0}, dt, dt′ Fd3
Δ(S × S ′) × {t = 0}, dt Fd20
Δ(S ′ × S ′′) × {t′ = 0}, dt′ Fd02
Δ(S × S ′′) × {t′′ = 0}, dt′′ Fd22

Let β∗H2 be the lift of H2 to H3
c , and let β∗K2 be the lift of K2 to H3

c .
Then, β∗K2 vanishes to infinite order at all boundary faces except those
arising from the lift of F0101. Now let

H3 := β∗(β∗H2 − β∗H2β
∗K2),

where β∗ is the push forward to H from H3
c . Since β∗K2 vanishes to infinite

order at all boundary faces except F0101, the push forward of (β∗H2)(β∗K2)
to H vanishes to infinite order at all boundary faces except F0101, where the
result is given by the conic heat calculus composition rule. Consequently,

H3 = H2 − β∗(β∗H2β
∗K2)

vanishes to higher order at the boundary faces of F0101 by the conic heat
calculus composition rule. Continuing this construction and using the Borel
summation, we arrive at H∞ with expansion asymptotic to H2, H3, . . . and
satisfying

(∂τ + Δ0)H∞ = K∞,

where K∞ now vanishes to infinite order on F0101. Using a smooth cutoff
function, we now have H∞ defined on all of H satisfying

(∂t + Δε)H∞ = K∞,

where K∞ vanishes to infinite order at all boundary faces of H.
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7.3.6. Error term approximation For each ε > 0, let E(z, z′, t, ε) =
Hε(z, z′, t) − H1(z, z′, t, ε). Let K be defined for each ε > 0 by

(∂t + Δε)E(z, z′, t, ε) = K(z, z′, t, ε).

By construction of H1, K = O(εt∞) as ε, t → 0, so for any N ∈ N, there is
C > 0 such that for any (z, z′) ∈ M × M,

|K(z, z′, t, ε)| < CεtN .

Moreover, K has a polyhomogeneous expansion down to ε = 0.
For each ε > 0, E is smooth on H for t > 0 by parabolic regularity

applied for each ε > 0 since K is O(t∞). By construction, E is smooth down
to t = 0, so E(z, z′, t, ε) is smooth on the blown-down space, M × M × R

+ ×
(0, 1]ε. The following maximum principle argument on M × [0, T ]t shows
that E is also O(εt∞) as ε, t → 0 in the same sense as K.

Fix ε > 0, z′ ∈ M. Since K = O(εt∞), fix C > 1 and N � N >> 1 such
that |K(z, z′, t, ε)|2 ≤ Cε2t2N for all z ∈ M. Let u(z, t) = |E(z, z′, t, ε)|2. Let
Δ be the scalar Laplacian for (M, gε). Then u satisfies

(∂t + Δ)u = 2〈(∂t + ∇∗∇)E, E〉 − |∇E|2 = 2〈K − RE, E〉 − |∇E|2

≤ 2〈K, E〉 ≤ 2|K||E| ≤ |K|2 + |E|2 = |K|2 + u.

Above we have used the positivity of R and the compatibility of the bundle
connection with the metric. Now, let ũ = e−tu. Then ũ satisfies

(∂t + Δ)ũ ≤ e−t|K|2 ≤ Cε2t2N .

Let w = ũ − Cε2t2N+1. Since E and hence u and ũ vanish at t = 0, w|t=0 = 0,
and w satisfies

(∂t + Δ)w ≤ Cε2t2N − C(2N + 1)ε2t2N < 0.

Fix T > 0 and consider w on M × [0, T ]t. If w has a local maximum for
z ∈ M and t ∈ (0, T ), then

(∂t + Δ)w > 0,

and this is a contradiction. If w has a maximum at t = T, then ∂tw ≥ 0,
and

(∂t + Δ)w > 0,
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which is again a contradiction. Therefore, the maximum of w occurs at t = 0
and so

w ≤ Cε2t2N+1.

This implies

u ≤ eT Cε2t2N , for 0 < t ≤ T,

which in turn implies that E = O(εtN ) as ε, t → 0, for any N ∈ N.

7.3.7. Solving away the residual error term To complete this con-
struction, we must remove the residual error term which vanishes to infinite
order at the boundary faces of H. It is now convenient to consider the ele-
ments of the acc heat calculus as t-convolution operators acting on S × R

+.
For an element A which vanishes to infinite order at the boundary faces of
H and u, a smooth half-density section of S × R

+, the t-action of A on u is

(7.5) Au(t) =
∫ t

0
〈Au(t − s), u(s)〉ds,

where the spatial variables have been suppressed. As a function of s′, s ≥ 0,
[Au(s′)](s) vanishes to infinite order at s′ = 0. Restricting to s′ = t − s,

[Au(t − s)](s) = s−k/2−1(t − s)juk,j(t − s, s),

for any −k, j ∈ N0, where uk,j is a smooth half-density, so for any −k ≥ 1
this is integrable. Consequently, Au(t) as in (7.5) is smooth in t and vanishes
rapidly as t → 0. So, an element A of the acc heat calculus which vanishes
to infinite order at all boundary faces of H gives rise to a Volterra operator.
Since as a t-convolution operator we have

(∂t + Δ)H∞ = Id − K∞,

we would like to invert (Id − K∞). Formally, the inverse should be

(Id − K∞)−1 =
∑

j≥0

Kj
∞,

where Kj
∞ is the j-fold composition of K∞. To show that this Neumann

series converges, we estimate the kernel of Kj
∞. Since K∞ vanishes to infinite

order at all boundary faces of H, we may restrict to submanifolds of H,
estimating as in [33] and then combine these estimates to estimate Kj

∞
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on H. The kernel kj
∞ of the restriction of Kj

∞ to M × M × R
+ × {ε} is

bounded by

|kj
∞(z, z′, t, ε)| ≤ Cε,j

tj

(j + 1)!
, t < T.

This follows from the composition rule for the heat calculus on M and the
analogous bound in [33, 7.3], where we have taken k = −2, with k as above,
which we are free to choose since A vanishes to infinite order. Similarly,
by the composition rule for the heat calculus on M0 and the same estimate
of [33], the kernel of the restriction of Kj

∞ to M0 × M0 × R
+ is bounded by

|kj
∞(z, z′, t)|F0101 ≤ C0,j

tj

(j + 1)!
, t < T.

Similarly, the kernel of the restriction of Kj
∞ to Z̄ × Z̄ × R

+
τ is bounded by

|kj
∞(z, z′, t)|F1010,2 ≤ Cz,j

tj

(j + 1)!
, t < T.

These three bounds imply that the constants Cε,j stay bounded as ε → 0,

and so we have the following global bound for the kernel of Kj
∞ on both H

and the blown-down space {ε = ε′} ⊂ S × S × R
+

|kj
∞(z, z′, t, ε)| ≤ Cj

tj

(j + 1)!
, t < T.

It follows that the Neumann series for (Id − K∞)−1 is summable and has an
inverse which as a t-convolution operator is also of the form (Id − A), where
A is an element of the acc heat calculus that vanishes to infinite order at
the boundary faces of H. Then, the full acc heat kernel is

H = H∞(Id − K∞)−1.

As a consequence of this construction, H has a fully polyhomogeneous
expansion down to ε = 0 with leading order terms given by the acc model
heat kernel, H1.
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Remarks. A consequence of this theorem is the uniform convergence
for 0 < t < T,

Hε → H0 + O(ε) as ε → 0.

This extends the convergence results of [11] for scalar heat kernels to heat
kernels for geometric Laplacians acting on vector bundles. Due to the
rescaled time variables at the faces contained in ε, t = 0, we expect to see
interesting applications involving the short time asymptotic behavior of the
heat trace; see [31]. We have not computed the t → ∞ asymptotics but
expect this will also yield interesting applications.

A. Asymptotically conic scattering heat kernel

Let (Z̄, gz) be an ac scattering metric with boundary defined by {x = 0}
and local coordinates (x, y) near the boundary. Let Δz be the Friedrichs
extension of a geometric Laplacian on Z̄. We motivate the definition of the
acc heat space by lifting the Euclidean heat kernel to Z̄2

+.
Recall the Euclidean heat kernel for R

n,

G(z, z′, t) = (4πt)−n/2e−|z−z′|2/2t.

Consider the coordinates z = (r, y) on the complete ac space. With the
compactification given by x = 1

r in the local coordinates (x, y, x′, y′, t) on
Z̄2

+ near the boundary of Z̄, the Euclidean heat kernel is

G(x, y, x′, y′, t) = (4πt)−n/2 exp

(

−
(

|(1/x) − (1/x′)|2 + |y − y′|2
)

2t

)

.

This motivates blowing up

{(x, y, x′, y′, t) : x = 0, x′ = 0}.

In the projective coordinates s = x
x′ and s′ = x′, the Euclidean heat kernel is

G(s, y, s′, y′, t) = (4πt)−n/2 exp

(

−
(

|(s − 1)/ss′|2 + |y − y′|2
)

2t

)

.

This motivates a second blowup at s = 1, along the submanifold where the
diagonal in Z̄ × Z̄ meets the first blown-up face

{(x, y, x′, y′, t) : x = 0, x′ = 0, y = y′}.
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A.1. Asymptotically conic scattering heat space

As motivated above, the ac scattering heat space is constructed from Z̄2
+ by

performing three blowups.
The scattering double space, Z̄2

sc, originally constructed by [17], is

Z̄2
sc :=

[

[Z̄ × Z̄; ∂Z̄ × ∂Z̄]; Δ(Y × Y ) ∩ F110
]

,

where F110 is the face created by the first blowup. Including the time vari-
able, we perform one more blowup to construct the ac scattering heat space,

Z̄2
sc,h =

[

Z̄2
sc × R

+; Δ(Z × Z) × {t = 0}, dt
]

.

The ac scattering heat space has six boundary faces described in the follow-
ing table.

Face Geometry of face Defining function in local coordinates

F220 N+(Δ(Y × Y )) × R
+ ρ220 = (x2 + (x′)2 + |y − y′|2)1/2

F220 N+((Y × Y )
−Δ(Y × Y )) × R

+ ρ110 = (x2 + (x′)2)1/2

F100 Z × Y × R
+ ρ100 = x

F010 Y × Z × R
+ ρ010 = x′

Fd2 PN+
t (Δ(Z × Z)) ρd2 = (|z − z′|4 + t2)1/2

F001 (Z × Z) − Δ(Z × Z) ρ001 = t

A.2. Asymptotically conic scattering heat calculus

Elements of the ac scattering heat calculus are distributional section half-
densities on Z̄2

+ which are smooth on the interior and lift to be poly-
homogeneous on Z̄2

sc,h. Let μ be a smooth, non-vanishing half-density on
Z̄ × Z̄ × R

+, and let ν be a smooth, non-vanishing half-density on Z̄2
sc,h.

Definition A.1. For any k ∈ R and index sets E110 and E220, A ∈
ΨE110,E220,k

sc,H , if A is smooth on the interior of Z̄2
sc,h and satisfies the following.

1. A ∈ A−(1/2)+E110

phg at F110.

2. A ∈ A(−(n+2)/2)+E220

phg at F220.
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3. A vanishes to infinite order at F001, F100 and F010.

4. A ∈ ρ
−((n+3)/2)−k
d2 C∞(Fd2).

Elements of the ac scattering heat calculus act on sections of Z̄ in the
usual way and on sections of Z × R

+
t by t-convolution. The composition

rule is proven using the ac scattering triple heat space, Z̄3
sc,h. This space has

partial blow-down and projection maps to three identical copies of the ac
scattering heat space as well as full blow-down and projection maps to three
identical copies of Z̄2

+; these are called the left, right and center. Formally,
two elements of the ac heat calculus are composed by lifting from the left and
right copies of Z̄2

sc,h to Z̄3
sc,h, then multiplying and blowing down/projecting

to the center copy of Z̄2
sc,h. It is key that the triple space be constructed

so that these lifts and push-forward maps are b-fibrations in order that
polyhomogeneity be preserved.

A.2.1. Asymptotically conic scattering triple heat space In a
neighborhood of the boundary in each copy of Z̄, we have the local coordi-
nates (x, y), which provide the local coordinates (x, y, x′, y′, x′′, y′′) on Z̄3.
First, we blow up the codimension 3 corner defined by {x= 0, x′ = 0, x′′ = 0},
resulting in the face F11100 with defining function locally given by

ρ11100 = (x2 + (x′)2 + (x′′)2)1/2.

Next, we blow up the three codimension 2 corners corresponding to the F110
faces in each of the three copies of Z̄2

sc,h. These faces are as follows.

Face Submanifold to be blown up Defining function
F11000 S11000 = {x = 0, x′ = 0} − F11100 ρ11000 = (x2 + (x′)2)1/2

F01100 S01100 = {x′ = 0, x′′ = 0} − F11100 ρ01100 = ((x′)2 + (x′′)2)1/2

F10100 S10100 = {x = 0, x′′ = 0} − F11100 ρ10100 = ((x)2 + (x′′)2)1/2

Next we blow up the codimension 2n + 1 corner where the diagonals
meet F11100. After the F11100 blowup, we have coordinates (θ, θ′, θ′′, y, y′, y′′,
ρ11100), with

x = (ρ11100)θ, x′ = (ρ11100)θ′, x′′ = (ρ11100)θ′′, (θ)2 + (θ′)2 + (θ′′)2 = 1.
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Using these coordinates, we next blow up

S22200 = {θ = θ′ = θ′′, y = y′ = y′′, r0 = 0}.

The face created by this blowup is called F22200 with defining function

ρ22200 = ((θ − θ′)2 + (θ′ − θ′′)2 + |y − y′|2 + |y′ − y′′|2 + r2
0)

1/2.

After this, we blow up the three codimension n corners corresponding
to the F220 faces in the three copies of the double heat space. These are as
follows.

Face Submanifold to be blown up Defining function
F22000 S22000 = {θ = 0, θ′ = 0, y = y′} ρ22000 = (θ2 + (θ′)2

+|y − y′|2)1/2

F02200 S02200 = {θ′ = 0, θ′′ = 0, y′ = y′′} ρ02200 = ((θ′)2 + (θ′′)2

+|y′ − y′′|2)1/2

F20200 S20200 = {θ = 0, θ′′ = 0, y = y′′} ρ20200 = ((θ)2 + (θ′′)2

+|y − y′′|2)1/2

We have now constructed the ac scattering triple space, Z̄3
sc. We next

introduce the time variables and perform the parabolic temporal diagonal
blowups. We must first blow up the codimension 2 corner of R

+ × R
+ to

preserve symmetry. Let

T 2
0 = [R+ × R

+; t = t′ = 0].

The defining function for the blowup of {t = t′ = 0} is ρ00011, which we call
t′′ because it plays the role of the third time variable. We now take Z3

sc × T 2
0

and blow up the temporal diagonal faces. First, we blow up the codimension
2n + 3 triple diagonal, Sd3, defined by

{z = z′ = z′′, t′′ = 0}.

The defining function of this face is ρd3,

ρd3 = (|z − z′|4 + |z − z′′|4 + (t′′)2)1/4.
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Next, we blow up the three temporal diagonals corresponding to the diagonal
faces in the three copies of the double heat space. These are as follows.

Face Submanifold to be blown up Defining function
Fd20 Sd20 = {z = z′} ρd20 = (|z − z′|4 + t2)1/4

Fd02 Sd02 = {z′ = z′′} ρd02 = (|z′ − z′′|4 + (t′)2)1/4

Fd22 Sd22 = {z = z′′} ρd22 = (|z − z′′|4 + (t′′)2)1/4

We have now constructed the ac scattering triple heat space and proceed
with the composition rule.

Technical Theorem A.2. Let A ∈ ΨA110,A220,ka

sc,H and B ∈ ΨB110,B220,kb

sc,H .
Then, the composition B ◦ A is an element of ΨA110∪̄B110,A220∪̄B220,ka+kb

sc,H .

A.2.2. Proof. Formally we have,

(A.1) κB◦Aν = (βC)∗((βR)∗(κAν)(βL)∗(κBν)).

Multiplying both sides of (A.1) by ν and using the fact that (βc)∗(βc)∗

(ν) = ν,

(A.2) κB◦Aν2 = (βC)∗((βR)∗(κAν)(βL)∗(κBν)(βc)∗(ν)).

Next we calculate the lifts of the defining functions and half densities
from Z̄2

sc,h to Z̄3
sc,h. A calculation gives the half density on the heat space ν

in terms of the half density μ on Z̄2
+,

ν = (βh)∗
(

(ρ110)−1/2(ρ220)−n/2(ρd2)−n+1/2μ
)

.

The ac scattering triple heat space has partial blow-down/projection
maps βL, βR and βC to three identical copies of Z̄2

sc,h. If we denote the three
copies of Z̄ by Z̄, Z̄ ′, Z̄ ′′ and the three time variables (t, t′, t′′), where t′′ is
from the blowup of R

+ × R
+, then the three copies of Z̄2

sc,h are as follows.

Copy of Z̄2
sc,h Associated to in Z̄3

sc,h

Left Z̄ × Z̄ ′ × R
+
t

Right Z̄ ′ × Z̄ ′′ × R
+
t′

Center Z̄ × Z̄ ′′ × R
+
t′′
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Next, we compute the lifts of the defining functions for the boundary
faces of the heat space to the triple heat space.

Lifting map Defining function on Z̄2
sc,h Lift to Z̄3

sc,h
(βL)∗ ρ100 ρ10000ρ10100

(βL)∗ ρ010 ρ01000ρ01100

(βL)∗ ρ110 ρ11100ρ11000

(βL)∗ ρ220 ρ22200ρ22000

(βL)∗ ρd2 ρd3ρd20

(βL)∗ ρ001 ρ00010ρ00011ρd22

(βR)∗ ρ100 ρ01000ρ01100

(βR)∗ ρ010 ρ00100ρ10100

(βR)∗ ρ110 ρ11100ρ01100

(βR)∗ ρ220 ρ22200ρ02200

(βR)∗ ρd2 ρd3ρd02

(βR)∗ ρ001 ρ00001ρ00011ρd22

(βC)∗ ρ100 ρ10000ρ11000

(βC)∗ ρ010 ρ001000ρ01100

(βC)∗ ρ110 ρ11100ρ10100

(βC)∗ ρ220 ρ22200ρ20200

(βC)∗ ρd2 ρd3ρd22

(βC)∗ ρ001 ρ00022ρ00011ρd22

Then,

(βL)∗(ν) = (βL)∗((ρ110)−1/2(ρ220)−n/2(ρd2)−n+1/2μ).

Next, we use the fact that

(βL)∗(μ)(βR)∗(μ)(βC)∗(μ) = μ2
3.

Here, μ2
3 is a smooth density on Z̄ × Z̄ × Z̄ × R

+ × R
+, so we may assume

μ2
3 = dz dz′ dz′′ dt dt′.

A Jacobian calculation gives the lift of μ2
3 to the triple heat space.

First note

(β3)∗(x) = (ρ11100)(ρ11000)(ρ10100)(ρ10000),
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(β3)∗(x′) = (ρ11100)(ρ11000)(ρ01100)(ρ01000),
(β3)∗(x′′) = (ρ11100)(ρ01100)(ρ10100)(ρ00100).

This implies

(β3)∗(μ2
3) = (ρ11100)2(ρ11000ρ01100ρ10100)(ρ22000ρ02200ρ20200)n

(ρ22200)2n+1(ρd20ρd02ρd22)n+1ρ2n+3
d3 (t′′)ν2

3 .

Here, ν2
3 is a smooth, non-vanishing density on the triple heat space.

Combining this with the above lifts, we arrive at the following formula

(βL)∗(ν)(βR)∗(ν)(βC)∗(ν) = (ρ11100)1/2(ρ10100ρ01100ρ10100)1/2

(ρ22000ρ02200ρ20200)n/2(ρ22200)(n+1)/2(ρd3)(n+3)/2(ρd20ρd02ρd22)(n+1)/2(t′′)ν2
3 .

To use the push-forward theorem of [28], we need to write each of these
in terms of b-densities. First, we have on the center copy of Z̄2

sc,h,

bν2 = (ρ100ρ010ρ110ρ220ρ001ρd2)−1ν2.

Then, we have

bν2 = (βc)∗(βc)∗((ρ100ρ010ρ110ρ220ρ001ρd2)−1ν2).

We observe

(βc)∗((ρ100ρ010ρ110ρ220ρ001ρd2)−1) =

(ρ10000ρ00100ρ11000ρ01100ρ10100ρ11100ρ22200ρ02200ρ20200ρd3ρd22ρ00011)−1.

So now we multiply both sides of (A.2) by (βc)∗(βc)∗(ρ100ρ010ρ110ρ220
ρ001ρd2)−1) and inside the right side of (A.2) we have

(ρ11100ρ11000ρ01100ρ10100)−1/2(ρ22000ρ02200ρ22200)n/2(ρ20200)(n−2)/2

(ρd3)(n+1)/2(ρd20ρd02)(n+1)/2(ρd22)n/2(ρ10000ρ00100)−1ν2
3 .

To use the push-forward theorem, we must change the density ν2
3 to a

b-density. We observe

bν2
3 = (ρ11100ρ11000ρ01100ρ10100ρ22200ρ22000ρ02200ρ20200

ρ10000ρ01000ρ00100ρd3ρd20ρd02ρd22ρ00011ρ00010ρ00001)−1ν2
3 .
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So, we now have for the composition formula

(βc)∗(κ̃Aκ̃B(ρ11100ρ11000ρ01100ρ10100)1/2(ρ22200ρ22000ρ02200)(n+2)/2

(ρ20200)n/2(ρd3ρd20ρd02)(n+3)/2(ρd22)(n+1)/2ρ01000ρ00011ρ00010ρ00001(bν2
3)).

We observe the following orders of κ̃A on Z̄3
sc,h.

Face κ̃A Index set/leading order
F11100 −1/2 + A110
F11000 −1/2 + A220
F01100, F10100, F02200, F20200, Fd22 ∞
F22200, F22000 −(n + 2)/2 + A220
Fd3, Fd20 −(n + 3)/2 − ka

F10000, F01000, F00100, F00010, F00011 ∞

Similarly, for κ̃B, we have orders as follows.

Face κ̃B Index set/leading order
F11100 −1/2 + B110
F01100 −1/2 + B220
F11000, F10100, F22000, F20200, Fd22 ∞
F22200, F02200 −(n + 2)/2 + B220
Fd3, Fd02 −(n + 3)/2 − kb

F10000, F01000, F00100, F00010, F00011 ∞

Now, recalling the formula:

(βc)∗(κ̃Aκ̃B(ρ11100ρ11000ρ01100ρ10100)1/2(ρ22200ρ22000ρ02200)(n+2)/2

(ρ20200)n/2(ρd3ρd20ρd02)(n+3)/2(ρd22)(n+1)/2ρ01000ρ00011ρ00010ρ00001(bν2
3)).

We see that the quantity on the right-hand side to be pushed forward
by (βc)∗ has the following indices on the boundary faces.

Face Index set/leading order
F11100 −1/2 + A110 ∪̄B110
F11000, F01100, F10100, F22000, F02200, F20200 ∞
F22200 −(n + 2)/2 + A220 ∪̄B220
Fd3 −(n + 3)/2 − (ka + kb)
Fd20, Fd02, Fd22 ∞
F10000, F01000, F00100, F00010, F00001, F00011 ∞
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The push forward under (βc)∗ sends the boundary faces of Z̄3
sc,h to Z̄2

sc,h
as follows.

Z̄3
h face Boundary face of Z̄2

sc,h or interior
F11100 F110
F10100 F110
F22200, F20200 F220
Fd3, Fd22 Fd2
F10000 F100
F00100 F010
F00011 F001
F11000, F01100F22000, F02200, Interior
Fd20, Fd02, F01000, F00010, F00001 Interior

The quantity to be pushed forward is integrable with respect to bν2
3

at the faces that are mapped to the interior, so we may apply the push-
forward theorem [28] to arrive at the result of the composition rule. The
kernel, κB◦A, will have the following polyhomogeneous index sets and leading
orders on Z̄2

h.

Face of Z̄2
h Index set/leading order

F110 −1/2 + A110 ∪̄B110
F220 −(n + 2)/2 + A220 ∪̄B220
Fd2 −(n + 3)/2 − (ka + kb)
F100 ∞
F010 ∞
F001 ∞

This concludes the proof of the composition rule.

Technical Theorem A.3. Let (Z, gz) be an ac scattering space with bound-
ary (Y, h). Let (E, ∇) be a Hermitian vector bundle over (Z, gz) so that near
the boundary E is the pullback of a bundle over (Y, h). Let Δ be a geomet-
ric Laplacian on (Z, gz) associated to the bundle (E, ∇). Then there exists
H ∈ ΨE110,E220,−2

ac,H satisfying

(∂t + Δ)H(z, z′, t) = 0, t > 0,

H(z, z′, 0) = δ(z − z′).

Moreover, H vanishes to infinite order at F110 and is smooth up to F220.
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On the interior of Z̄2
ac,h, the ac scattering model heat kernel is locally

defined by the Euclidean heat kernel and a partition of unity. At Fd2, we
construct the model heat kernel explicitly using the jet of the metric at the
base point of each fiber. At F001, the model heat kernel vanishes to infinite
order. At F110 and F220, the model heat kernel is the lift of the Euclidean
heat kernel. Then the ac scattering model heat kernel H1 satisfies

(∂t + Δ)H1 = K1,

where K1 vanishes to positive order on the boundary faces of Z̄2
sc,h. We now

define

H2 = H1 − H1K1,

with

(∂t + Δ)H2 = K2,

where K2 vanishes to one order higher on the boundary faces of Z̄2
sc,h.

Similarly,

H3 := H2 − H2K2.

Using the Borel summation, we construct H∞ with expansion asymptotic
to H1, H2, H3, . . . and satisfying

(∂t + Δ)H∞ = K,

where now K vanishes to infinite order on the boundary faces of Z̄2
sc,h. As a

t-convolution operator, we wish to have

H∞ = Id.

However, we currently have

H∞ = Id + K,

but this is not a problem since (Id + K) is invertible with inverse of the
same form. Then the ac scattering heat kernel

H = H∞(Id − K)−1

is an element of the ac scattering heat calculus with leading orders on the
boundary faces of Z̄2

sc,h determined by those of the model kernel.
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B. Asymptotically conic convergence triple heat space

Let

T := [[[[S × S × S; Y × Y ′ × Y ′′];Y × Y ′];Y ′ × Y ′′];Y × Y ′′],

where we have used Y, Y ′, Y ′′ to denote the three copies of Y in S3. Let

T := {p ∈ T : fi(p) = 0, i = 1, 2}, f1(p) = x(p)r(p) − x′(p)r′(p),
f2(p) = x′(p)r′(p) − x′′(p)r′′(p).

Like the acc double and heat space, T is a smooth manifold with corners.
Let

R
+
2,b := [R+

t × R
+
s ; {0} × {0}].

Then the acc triple heat space is constructed from T × R
+
2,b by blowing up

along 12 submanifolds, creating the following 12 boundary faces. Below, let
tD be the lift to T of the diagonal in S × S ′ × S ′′, let D110 be the lift of the
diagonal in S × S ′, D011 be the lift of the diagonal in S ′ × S ′′, and D101 be
the lift of the diagonal in S × S ′′.

Submanifold blown up Face created
Y × Y ′ × Y ′′ × {0} × {0}, dt, ds S11122
Y × Y ′ × {t = 0}, dt S11020,
Y ′ × Y ′′ × {s = 0}, ds S01102
Y × Y ′′ × {t = s = 0}, ds, dt S10122
Y × Y ′ × Y ′′ S111
Y × Y ′ S110
Y ′ × Y ′′ S011
Y × Y ′′ S101
tD × {t, s = 0}, ds, dt Std

D110 × {t = 0}, dt Sd20
D011 × {s = 0}, ds Sd02
D101 × {s = t = 0}, ds, dt Sd22

As constructed, the acc triple heat space has full and partial projection/
blow-down maps to three identical copies of the acc heat space, the left,
right and center, and to three corresponding copies of the blown-down space
{ε = ε′} ⊂ S2 × R

+. To compose two elements A and B, we view the element
A as acting from the left to the right while B acts from the right to the center.
Formally, the composition B ◦ A is the push forward from the acc triple heat
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space of the product of the lifts of A and B. Compatibility assumptions on
the leading orders of A and B at boundary faces of the acc heat space are
required so that we can push forward. With these assumptions and with the
possible inclusion of normalizing factors at boundary faces of the acc heat
space, two elements compose as one would expect. The technical details
in the proof of this composition rule are expected to be analogous to the
technical details in the proof of the ac scattering heat calculus composition
rule (Appendix A). Although the full acc triple heat space and composition
rule are not necessary in our analysis of the heat kernels, its construction
may be an instructive model for employing our methods and those of [33]
to construct solution kernels of geometric operators under conic and more
general metric degenerations.
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