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Spectral geometry and asymptotically
conic convergence

JULIE ROWLETT

We define a new conic metric collapse, asymptotically conic conver-
gence,! in which a family of smooth Riemannian metrics degen-
erates to have an isolated conic singularity. For a conic metric
(Mpy, go) and an asymptotically conic or “scattering” metric (Z, g ),
we construct a new non-standard blowup, the resolution blowup,
in which the conic singularity in My is resolved by Z. This blowup
induces a smooth family of metrics {g.} on the compact resolution
space M. (M,g.) is said to converge asymptotically conically to
(Mo, go) as € = 0.

Let A and Ag be geometric Laplacians on (M, g.) and (My, go),
respectively. Our first result is convergence of the spectrum of A,
to the spectrum of Ag as € — 0. Note that this result implies spec-
tral convergence for the k-form Laplacian under certain geometric
hypotheses. This theorem is proven using rescaling arguments,
standard elliptic techniques and the b-calculus of [33]. Our second
result is technical: we construct a parameter (¢) dependent heat
operator calculus which contains, and hence describes precisely, the
heat kernel for A, as € — 0. The consequences of this result include
the existence of a polyhomogeneous asymptotic expansion for H,
as € — 0, with uniform convergence down to t = 0. To prove this
result, we construct heat spaces as manifolds with corners using
both standard and non-standard blowups on which we construct
suitable heat operator calculi. A parametrix construction mod-
eled after Melrose’s heat kernel construction [33] and a maximum
principle argument complete the proof.

1. Introduction

In the 1970s and 80s, Cheeger [6] initiated a study of the spectrum of
the Laplacian and heat kernel on manifolds with isolated conical singular-
ities. Simultaneously, Melrose [33] developed pseudodifferential techniques

IThe name “asymptotically conic convergence” was chosen because the geometry
of the collapsing neighborhood is described by an asymptotically conic space.
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to study elliptic operators on manifolds with cylindrical ends and conic sin-
gularities. Other works include [2, 3,24, 34, 35]. Manifolds with isolated
conical singularities are instructive models for the more singular Calabi-
Yau orbifolds which are of particular interest to physicists, see for exam-
ple [21]. Although an isolated conical singularity is the simplest example of
a metric singularity, the spectral geometry of Riemannian manifolds with
isolated conic singularities is still not completely understood; see, for exam-
ple, [29,31]. One approach to understanding the spectral geometry of a
singular space is to consider a family of smooth manifolds which converge
in some sense to the singular space; that is the approach taken here and
in [7-9,11,13,25,26,30,32]. The goal of our somewhat lengthy and technical
spectral convergence results is to provide new tools for understanding the
spectral geometry of manifolds with isolated conic singularities. Our results
also apply to the singular spaces studied in [10,29]. With sufficient control
on the metric degeneration, uniform spectral convergence results for k-form
Laplacians and their heat kernels are applicable to understanding more sub-
tle spectral invariants such as the 7 invariant, as in [30]. Our work is in the
spirit of [30] and generalizes the work of McDonald [32]. We briefly recall
the setup and main results of those authors.

Let M be a fixed compact manifold with Riemannian metric, and let
H be an embedded orientable hypersurface with defining function x and
smooth metric gg. Let

ge = da® + (€ + 2%) gy, €€ [0,1).

As e = 0, g — dx® + 2%gy, which has an isolated conic singularity at z = 0.
Geometrically, M is pinched along the hypersurface H as ¢ — 0 and the
resulting metric has a conic singularity at x = 0. The study of this metric
collapse is the content of the 1990 thesis of McDonald [32]. In 1995, Mazzeo
and Melrose [30] developed pseudodifferential techniques to describe the
behavior of the spectral geometry under another specific type of metric
collapse known as analytic surgery. As e — 0, the metrics

|da|?
x2 + €2

dz|?
th=g. — g0= |x2‘ + h.

go is an exact b-metric on the compact manifold with boundary M obtained
by cutting M along H and compactifying as a manifold with boundary, hence
the name, analytic surgery. Under certain assumptions on the associated
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Dirac operators,? they proved

lim 7(9e) = 15(937),

where 1,(057) is the b-version of the eta invariant introduced by Melrose.
These results were proven by analyzing the resolvent family of the Dirac
operators 0. uniformly near zero. This led to a precise description of the
behavior of the small eigenvalues. In our work, we obtain uniform con-
vergence results for heat kernels under conic metric degeneration. Since
many interesting spectral invariants (including the 7 invariant) are com-
putable via the heat kernel and its trace, it is reasonable to expect that our
results will yield applications like [30]. Our results are necessarily quite
technical; without such a detailed analysis, it is simply not possible to
calculate spectral invariants, see, for example, Perelman’s counterexample
in [9].

The metric degeneration we consider, asymptotically conic convergence
(acc), encompasses the conic collapse of [32], the analogous smooth col-
lapse of a higher codimension submanifold and the collapse of an open
neighborhood with some restrictions on the local geometry. Before stating
our spectral convergence results for geometric Laplacians, we recall their
definition.

Definition 1.1. Let (E,V) be a Hermitian vector bundle over a Rieman-
nian manifold (M, g) with metric-compatible connection V. A geometric
Laplacian is an operator A acting on sections of £ which has the form

A =V*V +R,

where R is a non-negative self-adjoint endomorphism of E. By the
Weitzenbock Theorem [36], the Laplacian on k-forms is a geometric Lapla-
cian, as is the Hodge Laplacian and the conformal Laplacian; any geometric
Laplace-type operator is a geometric Laplacian.

Our results are the following.

Theorem 5.1. Let (Mp,gp) be a compact Riemannian n-manifold with
isolated conic singularity, and let (Z,g.) be an asymptotically conic (ac)

2In a later collaboration with Hassell et al. [18], these hypotheses were removed.
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space, with n > 3. Assume (M, g.) converges asymptotically conically to
(Mo, g0)- Let (Ep, Vo) and (E;, V) be rank k& Hermitian vector bundles over
(Mo, go) and (Z, g.), respectively, so that each of these bundles in a neigh-
borhood of the boundary is the pullback from a bundle over the boundary
(Y,h). Let Ag, A, be the corresponding Friedrichs extensions of geomet-
ric Laplacians, and let A, be the induced geometric Laplacian on (M, g.).
Assume A, has no £2 nullspace. Then the accumulation points of the spec-
trum of A, as e — 0 are precisely the points of the spectrum of Ay, counting
multiplicity.

The setting for our next result is the acc heat space, a manifold with
corners constructed in Section 7. Note that the hypotheses for this result
are weaker: A, may have nontrivial £2 cohomology and the dimension may
be 2 or greater.

Theorem 7.2. Let (M, go) be a compact Riemannian n-manifold with iso-
lated conic singularity, and let (Z,g,) be an ac space, with n > 2. Assume
(M, ge) converges asymptotically conically to (Mo, go). Let (Ey, Vo) and
(E., V) be rank k Hermitian vector bundles over (My,go) and (Z,g.),
respectively, so that each of these bundles in a neighborhood of the bound-
ary is the pullback from a bundle over the boundary (Y, h). Let Ag and A,
be the corresponding Friedrichs extensions of geometric Laplacians, and let
A, be the induced geometric Laplacian on (M, g.). Then the associated heat
kernels H, have a full polyhomogeneous expansion as € — 0 on the acc heat
space with the following leading terms:

e At the conic front face, Foi01, He(z,2',t) — Ho(z, 2/, t), the heat kernel
for (Mo,go).

e At the rescaled b front face, F101072, HE(Z,Z,,t) — (p101072)(p1010)
(por01) "' Hy(7), the b heat kernel with rescaled time variable .

e At the exact conic front face, 11112, He(z,2',t) = Ho(T), the heat
kernel for the exact cone with rescaled time variable 7.

e At the side faces Figo1, Fp110 and the residual b face Figip, the heat
kernel has polyhomogeneous expansion with leading term vanishing to
at least second order.

This convergence is uniform in e for bounded time and moreover, the
error term is bounded by Cet" as t — 0, for any N € Ny, where C' may
depend on N.
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Remarks.

e This theorem immediately implies the uniform convergence
Hc(z,2',t) = Ho(z,2/,t), T >t>0,
as well as the convergence
H(z,2',t) = Hy(z,2',t) + O(e), t,e—0,

with explicit error given by the leading terms above in the polyhomo-
geneous expansion of H¢(z,2',t) on the acc heat space as € — 0.

e We have dropped the half-density factor,

(p1111.2)" (p1010.2)™ (P1010)" " (pa2) T2 (1001 p0110) V2V,

where above v is a smooth non-vanishing density on the acc heat space.

These theorems are proven in Sections 5 and 7, respectively. In Section 2,
we define the resolution blowup and ac convergence. Sections 3 and 4 contain
a brief review of geometric and analytic results and terminology on manifolds
with corners. In Section 6, we construct the heat spaces and heat operator
calculi that will be used to prove the main theorem in Section 7.

This work is based on the author’s doctoral dissertation completed at
Stanford University in June 2006 under the supervision of Rafe Mazzeo.
The author wishes to thank Rafe Mazzeo for excellent advising, Andras
Vasy for many helpful conversations and suggestions, Richard Melrose for
enlightening conversations and correspondence and the anonymous referee
for useful comments.

2. Asymptotically conic convergence

The conic collapse in ac convergence is locally modeled by an ac scattering
metric or ac space. The following definitions, which may be used differently
by other authors, were motivated to impose as few restrictions on the geom-
etry of the collapse as possible while simultaneously maintaining sufficient
control to uniformly analyze the Laplacian and its heat kernel.

Definition 2.1. An ac scattering metric (Z, g.) is a smooth complete met-
ric on a compact manifold with boundary so that a neighborhood of the
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boundary is diffeomorphic to a product (0,71), x Y, where r is a boundary-
defining function for the boundary Y. On this neighborhood,

dr? @

9~ —1 5 h(r) ~ ho +rhy +12hg 4+ -+, as 7 — 0,
,

r
where {hy }r>0 are a smooth family of Riemannian metrics on .3 Uniquely
associated to the ac scattering metric (Z, g,) is the complete non-compact
manifold Z with ac end; Z is known as an ac space.* Letting p = %, there
is a compact subset K, C Z so that

1
7 - K, = <r1,oo> XY, gz|(Z_KZ):dp2+p2h(1/P).
p

A familiar example of an ac scattering metric is the radial compactifi-
cation of R" with boundary S"~!. The intuitive geometric picture of an ac
space is the “big end of a complete cone”.

Definition 2.2. Let M be a compact metric space with Riemannian metric
g. Then, (M, g) has an isolated conical singularity at the point p and g is
called a conic metric if

1. (M —{p}, g) is a smooth, open manifold.
2. There is 1 > 0 and a neighborhood N of p with a function = : (N —
{p}) — (0, 1] such that N — {p} is diffeomorphic to (0,z1], x ¥ and
g ~dz® + 22h(z), h(z) ~ho+zhy +2%ho+ ..., asz — 0,

where {hy}r>0 are a smooth family of metrics on Y.

By “blowing up” the cone point p adding a copy of (Y, hg) at x = 0, a conic
metric is an incomplete metric on a compact manifold with boundary whose
metric has the above degenerate form in a neighborhood of the boundary
defined by {z = 0}.

3For technical reasons, we require the stronger assumption that » has a formal
power series at the boundary rather than the standard regularity assumption that
h(r) extends smoothly to a metric on the boundary.

4Note that ac spaces are sometimes called “asymptotically locally Euclidean”, or
ALFE. However, that term is often used for the more restrictive class of spaces that
are asymptotic at infinity to a cone over a quotient of the sphere by a finite group,
so to avoid confusion, we use the term asymptotically conic.
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The intuitive geometric picture of a conic metric is an open manifold,
with a boundary that pinches to the point of a cone. It is an incomplete
metric because the cone point is not included in the smooth Riemannian
structure.

In the definition of resolution blowup, we use the notation M Uy N for a
smooth manifold constructed from the smooth manifolds M and N with a
diffeomorphism ¢ from V' C N to U C M that gives the equivalence relation,
Vop~o(p)eU. MUgN is the disjoint union of M and N modulo the
equivalence relation of ¢. The smooth structure on M Uy N and the topology
are induced by those of M and N.

Definition 2.3. Let (Mjy, go) be a compact n dimensional manifold with
isolated conic singularity and let (Z,g.) be an ac space of dimension n, so
that OMy = 0Z = (Y, hg). Then, the interior of My,

Mg = Ko U Vg,
where Vg = (0,z1), x Y, and Ky is compact. With this diffeomorphism

go = dz® + 2%h(z) on (0,21); X Y,

and the boundary of Ky in My is of the form 0Ky = {x = x1} = Y. Similarly,

Z=K,UV,
where V, = (p1,00), x Y, and K, is compact. With this diffeomorphism,

9= = dp® + p’h(p,y) on (p1,00), x Y,

and the boundary of K, in Z is of the form 0K, = {p=p1} =Y.
Let § = min {z1,1/p1}. Then for 0 < € <, and R > %, let

Moe=A{(x,y) e My:z>€e}UKy, Zr={(py)€Z:p<R}UK,.
The resolution blowup of (My, go) by (Z,g.) is
M, = M07€ U¢E Zl/ea

where the joining map ¢ is defined for each € by

X
¢e : MO,e - MD,<5 — Zl/e - Zl/(Sa qbe(x)y) = (&73/) .
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For § > € > ¢ >0, the manifolds M, and M. are diffeomorphic, and so
the resolution blowup of My by Z, which we call M, is unique up to
diffeomorphism.

Remark. The resolution blowup is a smooth compact manifold which
resolves a conical singularity using an ac space. Instead of resolving the
singularity in My using Z, we may equivalently define the resolution blowup
to resolve the boundary of Z using My as follows. Let r = 1/p be the defining
function for 3Z. The resolution blowup of Z by M is

€
Me = MO,G U’l/le Zl/€7 wE(x7y) = <m7y) )

where the joining map 9. : Mo — Mo s — Z1/c — Zy s is defined by t(z,y)
= (ed/x,y) = (r,y). The resulting smooth compact resolution space is dif-
feomorphic to M.

The ac single space, analogous to the analytic surgery single space in [30],
is the setting for the definition of ac convergence.

Definition 2.4. Let (Mg, go) be a conic metric and let (Z,g.) be a scat-
tering metric; assume both are dimension n with OMg = 9Z = (Y, h), and
assume 6§ = 1 (Definition 2.3). Then, My = ((0,1), x Y)U Ky and Z =
((0,1), xY)U K, with 0K¢ =Y = JK,. The acc single space S is

S§:=[0,1), x[0,1), x YU (Ko x{x=1,r#1}) U (K, x {r=1,z #1}).

The smooth structure of S is induced by that of My and Z. Namely,
smooth functions on § are functions which are smooth jointly in  and r
on (0,1); x (0,1), x Y and smoothly extend to a smooth function on Ky at
z=1,on K,atr=1,on Myatr=0and on Z at x = 0.

Definition 2.5. Let S be the acc single space associated to My and Z as in

Definition 2.4. Let ¢(p) = z(p)r(p) : S — [0,1), where x and r are extended
to Ko and K, respectively, to be identically 1. We define the acc tensor G

as follows:
1 9 9 9 dr? h(r)
3 <d:c +z <h(a:) +r <r4 + 2 , xz,r€(0,1),
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For 0 < e <1, let M. = {ar = €} C S; note that M, is diffeomorphic to
the resolution blowup M of My by Z. The family of metrics {g. = g} A ) on
M is said to converge asymptotically conically to (Mo, go).

Remarks.

1. In the definition of the acc single space to simplify calculations, we have
assumed 0 = 1; no generality is lost by this assumption. On {zr = €},
we then have r = %, equivalently p = % = 5. Letting =1 in the
definition of resolution blowup, the identification of {xr = ¢} C S with

the resolution blowup M, follows immediately.

2. The acc single space has two boundary hypersurfaces at ¢ = 0. These
are diffeomorphic to My at r =0 and Z at x = 0, and they meet in a
codimension 2 corner diffeomorphic to Y.

3. The acc single space contains a submanifold diffeomorphic to a cone
over [0,1), x Y C Z with radial variable x.

4. At r =0, G restricts to g]{rzo} =go. On M. C S where 0 < r(p),
z(p) <1,

2

= = d? = ge = da® + 2*h(z),

r =
x4

T

which shows that g. extends smoothly to 90’ K, A8 T = 1. Similarly, we

compute
dr? h(r)
_ 2
ge =€ <7”4 + T2 > 9

so g extends smoothly to (62)(QZ‘K ) as 7 — 1. G is a smoothly poly-
homogeneous symmetric 2-cotensor on &, and its restriction g, is also
smooth and polyhomogeneous as ¢ — 0.

The following lemma is useful for visualizing ac convergence and for
proving spectral convergence.

Lemma 2.6. Let (Mo, qgo) and (Z,g,) be as in Definitions 2.3 to 2.5 and
let (M, ge) converge asymptotically conically to (Mo, go). Then, there exists
a family of diffeomorphisms {¢.} from a fixed open proper subset U C M

9 Zl/g)) [
Moreover, on M — U, g — go smoothly as € — 0, and any K CC M{ is
diffeomorphic to some fivred K' C M so that ge — go smoothly and uniformly

on K'.

to increasing neighborhoods Z, ;. C Z such that gC‘U = (62(¢>€)*(
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Proof. The existence of ¢ and U C M follows immediately from the defi-
nition of resolution blowup and the diffeomorphism between the resolution
blowup M and {zr =€} C S. By the above remarks, on the neighborhood

U C M where this diffeomorphism is defined, g€|U = (e2)(¢e)* (gz‘zl/ > .

Since g. = go + O(€?), the smooth convergence of g. to go on M — U
follows immediately. Any compact subset K CC My is contained in My
for some € > 0 and so is diffeomorphic to K, CC M, and also to K' CC
(M —U’). Conversely, any K CC (M — U) is diffeomorphic to K. C M, for
some € > 0 and also to K/ CC My, C M.

3. Geometric preliminaries

This section is a brief review of the theory and terminology of manifolds
with corners, b maps, and blowups; see also [28,33].

3.1. Manifolds with corners

Let X be a manifold with corners. This means that near any of its points,
X is modeled on a product [0, o0)* x R"* where k depends on the point
and is the maximal codimension of the boundary face containing that point.
We also assume that all boundary faces of X are embedded so they too are
manifolds with corners. The space V(X) of all smooth vector fields on X
is a Lie algebra under the standard bracket operation. It contains the Lie
subalgebra

(3.1) WVp(X) :={V € V(X) : V is tangent to each boundary face of X}.
Then V,(X) is itself the space of all smooth sections of a vector bundle,
Vo(X) = C(X; 'T'X),

where *TX is the bundle defined so that the above holds and is called the
b-tangent bundle.

3.1.1. Blowing up. An embedded codimension k submanifold Y of a
manifold with corners X is called a p-submanifold (p for product) if near
each point of Y there are local product coordinates so that Y is defined
by the vanishing of some subset of them. In other words, X and Y must
have consistent local product decompositions. Then one can define a new
manifold with corners [X; Y] to be the normal blowup of X around Y. This is
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obtained by replacing Y by its inward-pointing spherical normal bundle. The
union of this normal bundle and X — Y has a unique minimal differential
structure as a manifold with corners so that the lifts of smooth functions
on X and polar coordinates around Y are smooth. One can also consider
iterated blowups, written [[X;Y7]; Y32]], where Y7 and Y5 are p-submanifolds
of X. However, depending on the geometry, this may not yield the same
space as [[X;Y3]; Y1]. In the special case of embedded p-submanifolds,

XOoOY1D0Y%>OY;3D>---D%,

the iterated blowup
(X ] Yols -1 Y]

can be performed in any order with the same result [30]. Blowups may
also be defined using equivalence classes of curves [33]. Let r be a defining
function for the p submanifold Y and consider the family of curves ~(t) =
(r(t),y(t)) such that

y(t)eY <= t=0,
r(t) = O(t).

Let E be the set of equivalence classes of all such curves with
Yo = =) =0) and (r—1)(t) = O@).
There is a natural RT action on F given by
R* > a:v(t) = v(at).

E modulo this equivalence relation is naturally diffeomorphic to N*(Y), the
inward-pointing spherical normal bundle of Y, so we can define [X;Y] by

[X;Y] = (X -Y)UE/(R" —{0}).

We can also define parabolic blowups in certain contexts [12]. Let Y be a
p-submanifold of codimension k so that there exist local coordinates (r,y) =
(r1y..., Tk, Y1, -, Yn—g) in a neighborhood of Y with r; vanishing precisely
at Y and so that dr; induces a sub-bundle of the tangent bundle 7'X. Instead
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of the above equivalence classes of curves, we consider 7(¢) such that

V(t) = (rl(t)v s 7Tk(t)’y1(t)’ o 'yn—k(t)) €Y <— t=0,
ri(t) =O(t), i #1, ri(t)=O0().

Two such curves are equivalent if

v~ = (g -y ) =0, (ri—ri)(t) = 0(t%) i # 1,
(r1(t) = r5(t) = O(F).

Since drq is a sub-bundle of T'X, there is a natural RT action on the set of
equivalence classes Fs of all such curves,

R 2 a:qy(t) — (r1(at),ri(at),...,y;(at)).

The set of equivalence classes of all such curves modulo this R action is
naturally diffeomorphic to the inward-pointing ri-parabolic normal bundle
of Y,

Ey/(RT —{0}) = PN (Y).

We define the ri-parabolic blowup of X around Y as the union of X —Y
and this inward-pointing r1-parabolic bundle,

[X;Y,dr] == (X —Y)UPN,(Y).

The union of this r1-parabolic bundle and X — Y again has a unique minimal
differential structure as a manifold with corners so that the lifts of smooth
functions on X and rj-parabolic coordinates around Y are smooth. By
ri-parabolic coordinates around Y, we mean the coordinates,

p:(r%+r§+...+r%)l/47 0:(61,...,0n)68n_17

with local coordinates (ri,...,7%,y1,...,Yn—k) in a neighborhood of Y
satisfying
Ti:peia Z?é]-v | 292917 Yj :pej
For any parabolic or spherical blowup, there is a natural blow-down map
B« : [X;Y] — X and corresponding blowup map *: X — [X;Y], so that
the image of Y under 3* is a boundary hypersurface of [X; Y] diffeomorphic
to the inward-pointing spherical (or parabolic) normal bundle of Y. As such,

X;Y] = (X —Y)UB (V).
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3.1.2. b-Maps and b-fibrations

Definition 3.1. Let M; be a manifold with boundary hypersurfaces,
{Nj}g‘f’:l, and defining functions r;. Let My be a manifold with bound-
ary hypersurfaces, {L;}._;, and defining functions p;. Then f: M; — My
is called a b-map if for every i there exist non-negative integers Q%@', j) and a
smooth non-vanishing function h such that f*(p;) = hH?Zl r]e.(m .

The image under a b-map of the interior of each boundary hypersurface
of Mj is either contained in or disjoint from each boundary hypersurface
of M, and the order of vanishing of the differential of f is constant along
each boundary hypersurface of M;. The matrix (e(7, 7)) is called the lifting
matrix for f.

In order for the map f to preserve polyhomogeneity, stronger conditions
are required. Associated to a manifold with corners are the b-tangent and
cotangent bundles, *TM (3.1) and *T*M.5 The map f may be extended to
induce the map bf* DT M, =Y TM,.

Definition 3.2. The b-map, f: M; — Ms, is called a b-fibration if the
associated maps °f, at each p € M, are surjective at each p € 9M;, and
the lifting matrix (e(7,j)) has the property that for each j there is at most
one i such that (e(7,7)) # 0. In other words, f does not map any boundary
hypersurface of M7 to a corner of M.

3.1.3. b-Manifolds and the b-blowup A b-manifold is a complete mani-
fold with boundary whose metric is closely related to conic and ac scattering
metrics.

Definition 3.3. Let (X, g) be a smooth Riemannian manifold with bound-
ary (Y, h) and boundary-defining function x so that a neighborhood of the
boundary is diffeomorphic to a product [0,z1), X Y and in this neighbor-

hood )
dx
i h(z),
where h(x) is a smoothly varying family of metrics on Y that converges
smoothly to h as z — 0. Then (X, g) is said to be a b-manifold.

Equivalently, under the change of variables r — e~!, a b-manifold is seen
to be the compactification as a manifold with boundary of a complete man-
ifold with asymptotically cylindrical end(s). To study the regularity and

5These are also called the totally characteristic tangent and cotangent bundles.



748 Julie Rowlett

Blown up
corner

Figure 1: The b-blowup X b2 .

mapping properties of geometric operators on b-manifolds, melrose [33] intro-
duced the b-double space. This space is obtained from X? by performing
a radial blowup called the b-blowup along the codimension 2 corner at the
boundary in each copy of X, and it is written X7 (Figure 1),

(3.2) X=X xX;0X x90X]=[X x X;Y xY].

For any manifold M with boundary having a product structure in a
neighborhood of the boundary, we may define the b-blowup in the analogous
way, M7 = [M x M;0M x OM].

3.2. Asymptotically conic convergence double space

The acc double space is an instructive model for the more complicated acc
heat space in Section 7. Let

St = [S%LY x Y.

The acc double space D is the submanifold of S7 defined by the vanishing
set of

so that

D={peS;: f(p)=z(p)r(p) —'(p)r'(p) =0} ={p € S; : e(p) = € (p)}.
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The acc double space has four boundary faces at ¢ = 0, described in the
following table. Here and throughout, we label each face F,;,. where the
subscript indicates the order to which each of the scalar variables z,r, 2/, r’
vanishes at that face.

Scalar variables Face Geometry
.%':0,$/:0, F1010 [?XZ,YXY}
.%':0,7"/:0 F1001 [ZXM97YXY]
T‘:O,l'/zo F0110 [M()XZ;YXY]
r= 0,7'/ =0 F0101 [M() X M(); Y x Y]

To see that D is a smooth submanifold of Sb2 , we consider the function

(33) f(p) = z(p)r(p) — ' (p)r' (p).

Away from the boundary faces, f is smooth with non-vanishing differential.
In a neighborhood of S17 — Figo1, let

fono(p) =

Since 2'r fo110 = f, we see that fo110 is smooth near the e = 0 boundary faces
away from where those faces meet Fyi19. Moreover, wherever defined, fp110
has non-vanishing differential and its zero set coincides with that of f away
from Fyi19. Similarly, let

z(p) 2'(p)

r(p)  rp)

f1o01(p) =

f1001 is smooth with non-vanishing differential and has the same vanishing
set as f in a neighborhood of {€¢ = 0} — Figp1. This shows that D is a smooth
submanifold of Sf. While the acc double space will not be used here, we note
that the acc double space, with an additional blowup along the diagonal for
€ > 0, would be the natural space on which to study the resolvent behavior
under ac convergence.

4. Analytic preliminaries

Since we are working on manifolds with singularities corners and boundaries,
we briefly review some key features of the analysis in these settings.
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4.1. Polyhomogeneous conormal functions

On a manifold M with corners having a consistent local product structure
near each boundary and corner, a natural class of functions (or sections) with
good regularity near the boundary and corners are the polyhomogeneous
conormal functions (or sections); see [28]. In a neighborhood of a corner,
we have coordinates (x1,...,Zk,Y1,..-,Yn—k), Where x1,..., 2, vanish at
this corner and (yi,...,yn—k) are smooth local coordinates on a smooth
compact n — k manifold Y. The edge tangent bundle V, in a neighborhood
of this corner is spanned over C*°(M) by the vector fields,

{204, Oye }.
The basic conormal space of sections is
AY(My) = {¢p: Vi---Vip € L®(My),VV; € V,, and V1}.
Let o and p be multi-indices with «; € C and p; € Ny. Then we define
AP (My) = z%(log )P A°.

The space A* is the union of all these spaces for all a and p. The space

A%y g (Mo) consists of all conormal distributional sections which have an

expansion of the form

pj
& ~ Z Zxo‘f (logx)Pa;,(x,y), ajp € C™.
Re(a;)—00 p=0
We define an index set to be a discrete subset £ C C x Ny such that

(aj,pj) € B, |(aj,p;)| = 0o = Re(ay) — oo.

Then, the space Afh 4(Mo) consists of those distributional sections ¢ € A7,

having polyhomogeneous expansions with («;,p;) € E.
4.2. Conic differential operators and b-operators

Let (Mo, go) be a Riemannian manifold with isolated conic singularity so
that in a neighborhood of the singularity,

Mo = (0,21); X Y, go = da® + 2%h().
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A conic differential operator of order m is a smooth differential operator on
My which can be expressed in neighborhood of the singularity by

m

A=z Z By (x)(—x0,)"
k=0

with By, € C*((0,z1), Diff " *(Y")), where Diff(Y") denotes the space of dif-
ferential operators of order j € Ng on Y with smooth coefficients. The
cone differential operators are elements of the cone operator calculus; for
a detailed description, see [24]. These cone operators are closely related to
b-operators. A b-operator of order m is a smooth differential operator such
that near the boundary it can be expressed by

m

A=>" By(x)(—zd,)"

k=0

with By, € C®((0,x1),Diff " #(Y)). Note that a cone differential operator
of order m is equal to a rescaled b-differential operator of order m; if A is an
order m cone differential operator, then £ A is a b-differential operator. In
local coordinates (z,y1,...,yn—1) near the boundary a b-operator may be
expressed as

A= D" aja(z,y)(—20,) ().

Jtlal<m
The b-symbol of A is
Pom(A) = Y ajalzy)Nn.

jtlaf=m

Here A\ and 7 are linear functions on the b-cotangent bundle defined by the
coordinates so that a generic element of the b-cotangent bundle is

dx i
A— i dy; .
- +;n y

The b-operator is b-elliptic if the b-symbol Yo, (A) is non-zero off the zero
section.
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The scalar Laplacian on My is
e H(=20)” + (~n+ 1+ a0 H) (~20,) + Ay} = 2L,

where L is an elliptic order 2 b-operator and H is a smooth function that
depends on the metric. Similarly, a geometric Laplacian Ay on My is also
of the form

Ag = xisz,

for an elliptic order two b-operator acting on sections of the vector bundle.
The Schwartz kernel of L is a distribution on the b-double space. By the
b-calculus theory, [33] L, has a parametrix Gj such that G} is a b-operator
of order —2 with

GyL, =1 — R,

where [ is the identity operator and R is a b-operator with polyhomogeneous
Schwartz kernel on the b-double space. For any u € L£2(z"~ ! dx dy) with
Aou = f € L2(2" L dx dy),

(2%Gy)(x 2 Lyu) = (2°Gy)f =u — Ru = u = 2°Gyf + Ru= o + 3.

The first term, o € x2H? C 2*L%(2" ' dxdy). The second term 3 € £?
(z"~!dz dy) has a polyhomogeneous expansion as x — 0,

o N,
B> a ey,
=0 k=0

Above ~v; is an indicial root for the operator L; and ¢; is an eigensection
for the induced geometric Laplacian on (Y, h). Then,

o N;
(4.1) u=qa+ Z Zx%Jrkcpj(y)
=0 k=0

where o € 22£%(z" 1 dx dy). This decomposition plays a key role in our
proof of spectral convergence.

4.3. Friedrichs domain of the conic Laplacian

A geometric Laplacian Ag on a conic manifold is an unbounded operator
on £2 sections of the bundle. It can be extended to various domains in £2.
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The minimal domain D,y is the completion of C2°(My) with respect to the
norm ||u|| + ||Aoul|, while the maximal domain

Drnax = {u € L2(Mg)|Agu € L*(My)}.

Both Dpin and Diax are dense in £2(Mjy), and the extension of the Laplacian
to either domain is a closed operator. On complete manifolds Dy, = Dmax
by the Gaffney—Stokes theorem [14]. Conic metrics are incomplete and these
domains will not in general be equal. The Friedrichs domain Dy lies between
Dmin and Dpax and is the closure of the graph of Ag in £2 with respect to
the densely defined Hermitian form,

Qu,v) = /M0<vu, Vo).

The extension of the Laplacian to the Friedrichs domain, known as the
Friedrichs extension of the Laplacian, preserves the operator’s lower bound
and is essentially self adjoint. Here, we work exclusively with the Friedrichs
extension of the conic Laplacian.

For elements of Dpax, with uw € £2 and Agu = f € £?, we have the
expansion (4.1) from the preceding section,

oo Nj
u=a+ ZZaﬂﬁkgpj(y).

§=0 k=0

The volume form on My near the singularity is asymptotic to 2"~ dx dy.
Therefore, the exponents v; must all be strictly greater than —45. For v €
Diin € Diax the decomposition (4.1) and the definition of Dy, imply that
Dmin C 2L2. The equality of Dpyin and D,q. then depends on the indicial
roots of Ly, = 22/Aq. For further discussion of domains of the conic Laplacian,
see [16], whose results include:

D ={f € L?: Aof€L? and
F=0(z2)/2) a5 2 — 0, for some § > 0}.

We will use this characterization of the domain of the Friedrichs extension
of the conic Laplacian in the proof of the first theorem.
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5. Spectral convergence

We now have all the necessary ingredients to prove spectral convergence.

Theorem 5.1. Let (Mo, go) be a compact Riemannian n-manifold with iso-
lated conic singularity, and let (Z,g,) be an ac space, with n > 3. Assume
(M, ge) converges asymptotically conically to (Mo, go). Let (Eo, Vo) and
(E;, V) be rank k Hermitian vector bundles over (Moy,go) and (Z,g.),
respectively, so that each of these bundles in a neighborhood of the boundary
is the pullback from a bundle over the boundary (Y, h). Let Ao, A, be the
corresponding Friedrichs extensions of geometric Laplacians, and let A be
the induced geometric Laplacian on (M, g.). Assume A, has no £L? nullspace.
Then the accumulation points of the spectrum of A¢ as € — 0 are precisely
the points of the spectrum of Ag, counting multiplicity.

The theorem follows from the inclusion accumulation o(A) C o(Ay),
the reverse inclusion accumulation o(A.) D o(Ap), and correct multiplicities.

5.1. Accumulation o(A¢) C o(Ao)

We extract a smoothly convergent sequence of eigensections corresponding to
a converging sequence of eigenvalues as ¢ — 0 and show that the limit section
of this sequence is an eigensection for the conic metric, and its eigenvalue
is the accumulation point. For this argument, we work with sequences of
metrics {gc,} which we abbreviate {g;} with corresponding Laplacians A;.
Let A(ej) be an eigenvalue of Aj, with eigensection f;. Assume that
A(ej) — X. Over any compact set K C My, gj = ge; converges smoothly to
go by Lemma 2.6, thus so do the coefficients of A;. Hence, normalizing f; by
supyy | fi| = 1, it follows using standard elliptic estimates and the Arzela—
Ascoli theorem that f; converges in C* on any compact subset of M{ [22].
Furthermore, the limit section f satisfies the limiting equation

Aof = Mf.

However, we do not yet know that f # 0, nor, even if this limit is non-
trivial, that it lies in the domain of the Friedrichs extension of Ag. This is
the content of the arguments to follow.

5.1.1. Weight functions Let ¢.: Mo — Mos — Z1/e — 215 as in Defi-
nition 2.3. We identify Z; /5 with a fixed K C U C M so that My — Mo s =
(U—-K), K= 2.
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Let
c on M —U,
We = 6(¢e_1)*p onU — K,
ce on K.

Above, ¢ is a constant, and no generality is lost by assuming ¢ = 1. Let

wj = w,. For some § >0 to be chosen later, replacing f; by W we
jJilleo

assume the supremum of | fjw?\ is 1 on M. Since M is compact, |f;| attains

a maximum at some point p; € M, and we may assume p; converges to some

p € M. The argument splits into three cases depending on how and where

p; accumulates in M.

5.1.2. Case 1: w;(pj) - ¢ >0 as j — oco. In this case, the points {p;}
accumulate in a compact subset of M — U, which we may identify with a
compact subset of Mg by Lemma 2.6. So, we may assume that these points
converge to some point p # p (the conic singular point). The maximum of
|fjw§| on M is 1 and occurs at p;, so

1fil < wj_‘S on M for each j = |f;(p;)| = ¢ as j — oc.

The locally uniform C* convergence of f; to f implies that |f| satisfies
a similar bound,

1fl<z™® asz—0,

and clearly |f(p)| = ¢™® # 0. By the dimension assumption n > 3 and the
characterization of the Friedrichs domain of the Laplacian, we may choose
0 so that
2—n
2
Then f lies in the Friedrichs domain of the Laplacian and satisfies

< =6 <0.

AU.]? = j\f_7
so \ is an eigenvalue of Ag.

5.1.3. Case 2: |wj(p;)| < cej as j — co. Analysis on Z in this case leads
to a contradiction. Let ¢; = ¢, and f; = fj(¢;1). Let p; = ¢;(p;). Because
\fjw;?\ attains its maximum value of 1 at p;, £ = (w;(p)) 2. Rescale
fj and f;, replacing them respectively with (w; (pj))‘sfj and (w; (pj))(sfj, SO
that the maximum of |fj,05| occurs at the point p; € Z; = 7y, and is equal
to 1. Since w;(p;) = O(¢j), p(pj) = 6;1wj(pj) stays bounded for all j, we
assume p; converges to p € Z. By Lemma 2.6, (Zj,ej_zqﬁ;gj}U) converges
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smoothly to (Z;,g.). This implies the following equation is satisfied by fj
on Zj,

A.f; = EXe)fi+ O(e)).

Since A(e;) converge to A and |f;p°| <1 on Z;,
Azfj — 0 as j — oo, on any compact subset of Z.

This implies f; — f on M and correspondingly, fj — f locally uniformly
C* on Z, and f satisfies

Equality holds in the second equation at the point p. This shows that f
is not identically zero on Z and f = O(p~%) as p — oo. Since f is smooth
on any compact subset of Z and is therefore in £2 (Z), choosing § > n — 2
contradicts the assumption that Z has trivial £2 nullspace.

5.1.4. Case 3: w;(p;) — 0, ( 5 = 0 as j — oco. In this case, the points
¢j(p;) = oo in Z, so we rescale and derive a contradiction on the complete
cone over (Y,h). Consider the coordinates (p,y) on Z defined for p > p;.
In these coordinates g, = dp® + p®h(p). Let r; = ( RO and g; on Z; be

defined by
g = ( L )29 :
T \wjilp))

J

Then,

Asj— o0, h ( TJ(;j )) converges smoothly to h, and

jj—>gc:dr2+r2h

on the complete cone C over (Y, h). Let f; = (w; (pj))éfj(¢;1). Since ]f]wf\
< 1 with equality at p;,

]fjr?\ <1 on (Zj,g;) with equality at p; = ¢;(p;).
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Let A~j on Z; be the Laplacian induced by g; on Zj,

2

C wilp

A, = Jg” Ag.
J

Then,
< 7 owi(py)? z -
Ajfi = €j—5 &) fi + O(ej) on (Z, gj)-
J

Since w;(p;) — 0 as j — oo, there is a locally uniform C* limit f. of {f;}
on C' which satisfies

1fer®] <1, Acfe=0.

Since the points p; stay at a bounded radial distance with respect to the
radial variable r; on Z;, we may assume p; — p. for some p. € C. At this
point, |fe(p.)r(pe)°| = 1, so f. is not identically zero. By separation of vari-
ables (see, for example, [27]), f. has an expansion in an orthonormal eigen-
basis {¢;} of L2(Y,h),

fo= Z aj+r"7 i (y) + aj -7 ¢ (y),

320

where ;  ,_ are indicial roots corresponding to ¢; and a; ., € C. In order
for | f.r?| <1 globally on C, we must have only one term in this expansion;
fe= ajr*‘s@- (y). Because the indicial roots are discrete, we may choose §
so that —9 is not an indicial root. This is a contradiction.

5.2. 0(Ag) C accumulation o(A,)

We use the Rayleigh-Ritz characterization of the eigenvalues [4]. Let \;(e;)
be the [th eigenvalue of A; and let

Ri(f) = (VI V)
’ (£ 1)
The subscript j indicates that the inner product is taken with respect
to the £2 norm on M with the g; metric. The eigenvalues are characterized
using Mini-Max by

MN(e;) = inf Ri(f).
1<) dim L=L,LcC! (M) fESLI?;,éO i(f)
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Similarly, this characterization holds for the eigenvalues of the Friedrichs
extension of the conic Laplacian which are known to be discrete (see [6], for
example). Because C5°(Mp) is dense in £2(My), we may restrict to subspaces
contained in C§°(Mp). Then, the Ith eigenvalue of Ay is

\ = inf sup  Ro(f).
dim L=I,LCC (Mo) fe L, f#0 ()

Let )\; be the [th eigenvalue in the spectrum of Ag. Fix € > 0. Then
there exists L C C§° with dim(L) = [ and

sup Ro(f) <\ +e
fEL,f#0

Since any f € L is also in C§°(M) and because L is finite dimensional, by
the local convergence of g; to go, for large j

|R;(f) — Ro(f)| <e, forany f € L.
Since A;(€;) is the infimum
M(ej) < N+ 2e.

This shows {)\;(¢;)} is bounded in j, and so we extract a convergent sub-
sequence and a corresponding convergent sequence of eigensections which
exists by our previous arguments. For each [, we take

Ni(eg) = < A,
fig— u, Doup = .

These limit eigensections wu; are seen to be orthogonal as follows. Fix [, k,
with fjx — w; and fj; = w. Since C§°(Mp) is dense in L£L*(My), we may
choose a smooth cutoff function x vanishing identically near the singularity
in My such that

Ixur — ugll L2 (ay) < €
Ixw —willpz(as0) <6,
Vol;j(M — spt(x)) < e.
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Then on the support of x, g; — go uniformly so for large j,

| (uks wio — (xuk, xu)o| < €,
| Oxuks xu)o — (xuks xur) 5| < €,
| Ocugs xw)j — (xuks X Fi0 51 < €
|Oxurs X fi0)5 — i xFiil < e

Since the eigensections for A; were chosen to be orthonormal and the volume
of (M — support(yx)) is small with respect to g,

[(OX fi X005 < 2e.

Thus, (ug,u;)p can be made arbitrarily small and u,w; are orthogonal for
I # k. We complete this basis to form an eigenbasis of £2(My). Let f; be
an arbitrary element of this eigenbasis with eigenvalue ;. We wish to show
that this f; is actually the u; above, defined to be the limit of (a subsequence
of) {fj1}, and hence the corresponding 4 is equal to ;. Again, assume the
smooth cut-off function y is chosen so that

Ixfi — J?IHL2(M0) < €.
For each j, we expand Yy f; in eigensections of Ay,
p— e —
XFi =Y ajrfix,  where ajr = (xJi, fin);-
k=0
Now, fix k and choose x such that
Xk = ukllL2(ay) < €.
Then,
|t Fiwdo — O Fiwil <6
|Ofos Fikds — (X un) il <€
)

|<<Xflauk: i <Xfl7uk>0| < €,
(X fi, uk)o — (fi, ukdo| < e

By the orthogonality (f;, ux)o = 0 if f; # uy, and otherwise is 1, so for each k,
a;jr — 0as j — oo, for all k with uy # f;. Because f; is not identically zero,
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there must be some k with u;, = f;. This shows that every eigensection of Ag
is the limit of (a subsequence of) {f;x}, and the corresponding eigenvalue
Ag is the limit of the corresponding eigenvalues.

5.3. Correct multiplicities

We show by induction that the eigenvalues of Ay are achieved as accu-
mulation points with correct multiplicity. The spectrum of Ag listed with
multiplicity is

A <A <---, where Aof; = Aifi,

and the eigensections are £? orthonormal. For each €, the spectrum of A, is
)\l,e S )\276 S ey where Aefi,e = )\i,efi,e-

By previous arguments, there is a sequence { fi j} which converges to h; and
A1,j — A1. If there is some other { fl,k} — ho where hy is also an eigensection
for Ay with eigenvalue A\i, then we have shown in preceding arguments
that both h; and hs are equal to eigensections of Ay listed above, and
both have eigenvalue A;. If the multiplicity of Ay is one, we must have
h1 = he = f1. By preceding arguments, the limit of any converging sequence
Akj i8S Ak, so that when Ay is an eigenvalue of multiplicity one, A\; < A2, so
A1 is an accumulation point of multiplicity one. If the multiplicity of A\ is
greater than one, then Ay = A;, and we have shown that there is a sequence
A2.; — A2, and we have shown that the corresponding limit eigensection fa
is orthogonal to fi. By these arguments and the preceding orthogonality
arguments, it is clear that the multiplicity of A\; as an eigenvalue is equal
to the multiplicity of A\; as an accumulation point. By induction, the same
argument shows that all eigenvalues of Ay are achieved as accumulation
points with the correct multiplicity, thereby completing the proof of spectral
convergence.

6. Heat kernels

The heat kernels for each of the geometries in ac convergence are elements of
a pseudodifferential heat operator calculus that is defined on a corresponding
heat space. For the details in the construction of these heat calculi, kernels
and spaces, see [37].
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6.1. b-Heat kernel

Let (M, g) be a b-manifold with local coordinates z = (x,y) in a neighbor-
hood of OM so that near the boundary

dax?
g= 72 + h(z,y).

Let (2, 2") be coordinates on M x M and let A, be a geometric Laplacian on
M. The b-heat kernel H(z,2',t) is the Schwartz kernel of the fundamental
solution of the heat operator d; + Ap. The heat kernel is a distributional
section acting on smooth sections of M and satisfying

(0 + Ap)H(2,2/,t) =0, t>0,
Hli—o=6(z — 7).

By self adjointness since we work with the Friedrichs extension of Ay,
H(z,2' t)= H(, 2 t)*.

For a smooth section v on M,

u(z,t) == /M<u(z'),H(z,z’,t)>dz’

satisfies
(0 + Ap)u(z,t) =0 for t >0, u(z,0)=u(z).

Physically, u(z,t) describes the heat on M at time ¢ > 0 where the initial
heat applied to M is given by u(z).
Recall the Euclidean heat kernel,

12
G(z, 2, t) = (4mt) ™2 exp <_‘272t27’> :

For a compact manifold without boundary, the heat kernel can be con-
structed locally using the Euclidean heat kernel, Riemannian normal coor-
dinates, the “transport equations” determined by the local geometry and
Duhamel’s principle; see for example [36]. On the interior of a manifold
with boundary (or singularity), the Euclidean heat kernel is also a good
model; however, near the boundary (or singularity) a different construction
is required.
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6.1.1. b-Heat space It is convenient to study the heat kernel on a mani-
fold with boundary (or singularity) as an element of a heat operator calculus
defined on a corresponding heat space (Figure 2). This space is a manifold
with corners constructed from M x M x RT by blowing up along subman-
ifolds at which the heat kernel may have interesting or singular behavior.”
For example, the diagonal is always blown up at t = 0, since away from the
boundary the heat kernel behaves like the Euclidean heat kernel which is
singular along the diagonal at ¢ = 0. To construct the b-heat space, we first
blow up the codimension 2 corner at the boundary in both copies of M to
create the b-double space,

M2 = [M x M;dM x OM).
The b-heat space Mb%h is then
My, = [M§ xRS AM x M) x {t =0},dt],

where A(M x M) is the diagonal in M x M. The b-heat space has five
boundary faces, two of which result from blowing up. The remaining three
boundary faces are at t = 0 off the diagonal and at the boundary in each
copy of M. More precisely, we have the following.”

Face Geometry of face Defining function in local coordinates
Fijp NT(Y xY) xRt p110 = (22 + (2)?)1/2

Fp PN (A(M x M)) paz = (|2 — 2/|* + t2)1/4

F100 Y'X(]W—((?]W)X]RJr P100 = T

F010 Y x (M — 8M) x Rt £010 = x

F()()1 (M — 8M)2 — A(M X M) Po01 = t

Above PNt+ denotes the inward-pointing ¢ parabolic normal bundle,
while N denotes the inward-pointing spherical normal bundle. Note that

6The key idea is to blow-up appropriate submanifolds and introduce a new “sym-
bol” or “normal operator” for each blown-up face and then solve these normal oper-
ators. In the classical microlocal sense, we invert the symbol for each face. In this
way, the complexity of the operator on the original space is handled geometrically
by blowing up, thereby allowing one to use the powerful tools of classical microlocal
analysis in non-classical (non-compact) geometric settings. For a detailed exposi-
tion, see [33].

"The subscript “d” indicates a face created by blowing up along the diagonal, so
for example Fys is the face created by blowing up along the diagonal parabolically
in the t direction.
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Figure 2: Schematic diagram of the b-heat space.

the local coordinates x, 2/, t lift from M x M x RT to sz, ,, as follows:

B*(x) = priopioo, B (x') = prioporo, B (t) = (pa2)? poot,

so these coordinates are only local defining functions.

6.1.2. b-Heat calculus The b-heat calculus consists of distributional sec-
tion half-density kernels on M2 = M x M x RT which are smooth on the
interior and lift to be polyhomogeneous on Mb2 5, With specified leading orders
at the boundary faces. By constructing the b-heat kernel as an element of the
b-heat calculus, it is polyhomogenous on sz p, With specified leading orders.
Once the calculus is defined and the compc;sition rule is proven, construc-
tion of the heat kernel as an element of the heat calculus proceeds like the
classical microlocal constructions in [19,20, 38]. The following definition is
from [33].

Definition 6.1. For any k£ € R and index set E71g, A is an element of the

b-heat calculus \Ibe}}O’k if A is smooth on the interior of Mb% ,, and satisfies

the following.
L A€ A2 (),
2. A vanishes to infinite order at Fygr, Figo and Fpig.
3. A p IR (B,
Because the heat calculus is defined with half-densities, the normalizing

factors at F119 and Fyo simplify the composition rule. An element A of the
b-heat calculus is the Schwartz kernel of an operator acting on a smooth
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half-density section f of M by

Af(z,t) = /M<A(z,z’,t),f(z’)>dz'.

Furthermore, A acts by convolution in the ¢ variable so for a smooth half-
density section f of M x Rzr ,

t
At = [ [ (A=, ()i ds.
0 JM
Two elements of the b-heat calculus compose as follows.

Technical Theorem 6.2. Let A € \Il’;‘}’f‘ and let B € \Ijlgbl,f‘. Then the com-
position, Ao B, is an element of \I]’gal_}‘rkbyAUB'

The proof of this composition rule is in [33].%

6.1.3. Construction of the b-heat kernel First we construct a model
heat kernel H; as an element of the b-heat calculus that solves the heat equa-
tion up to an error vanishing to positive order at the boundary faces of M 1;2, b
On the interior of sz, ,, restricting to a coordinate patch with coordinates
(z,2',t), we locally define

Hi(z,2',t) = (4mt) "/ 2ellz=21)7/2t

where |z — 2|4 is the distance from z to 2’ with respect to the metric g. As
t — 0 away from the diagonal, this construction immediately implies infinite
order vanishing at Fyo1. At Fyo we solve exactly: for each p € M and for
each point z € Fyo in the fiber over (p,p,0), the heat kernel at that point is
determined by the coefficients of the metric (and its derivatives) at p.

The normal operator of Oy + Ay is the restriction to Fiig of the lift
of 0y + Ay to MbZh' Hi is defined at Fj19 to be the kernel of a first-order
parametrix of this normal operator and is smooth at this face. At Figg, Fo1o

8Note that in order for the composition to be defined, A and B must satisfy
certain compatibility conditions. In all our applications, these conditions are a
priori satisfied. The notation U denotes the extended union of index sets, see [28].
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and Fjo1, the model kernel vanishes to infinite order. As constructed, H;
satisfies

O+ A)Hy =Ky, Hy €W, 7

K vanishes to positive order at the boundary faces of Mb% n- Next, define
Hy = Hy — Hy x Kq,
where now the error term,
Ky = (0¢ + A)Ha,

vanishes to one order higher on each of the boundary faces of Mb2 5 by the
composition rule. This construction is iterated and the Borel summation [38§]
gives Ho € W, 2 with Hoo — Hy = O(N=("3)/2) for N > 0, so that

K vanishes to infinite order on the boundary faces of Mb% 5, SO we may push
K forward to M x M x RT. We solve away the residual error term using
the action of elements of the b-heat calculus as t-convolution operators. As
a t-convolution operator, the heat kernel is the identity. Above, K as a
t-convolution operator is of the form K =1d — A, where A is a Volterra
operator, and Id is the identity. An operator of this form has an inverse of
the same form, so defining

H:=H,(Id—A)!

solves away this residual error term. By construction, the leading order
behavior of the b-heat kernel is that of the model heat kernel and is sum-
marized below.

Face Leading order

Fiqo 0; O(t_l) ast — oo
Fin (~(n+3)/2 — (~2))
Floo oo order vanishing
Foio oo order vanishing
Foor oo order vanishing

6.2. Conic heat kernel

Let (Mo, go) be a compact manifold with isolated conic singularity, and let
Ag be the Friedrichs extension of a geometric Laplacian associated to a
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Hermitian vector bundle over (M, go). We construct the conic heat kernel
using the same steps for constructing the b-heat kernel: first we construct
the conic heat space with its calculus and composition rule, then we solve the
normal operators by constructing a model parametrix and use the calculus
to solve up to infinite order, and finally we solve away the residual error
using the action as a t-convolution operator.

6.2.1. The conic heat space This construction comes from [34]. The
conic heat space Mg 5 is a manifold with corners obtained from My x My x
Rt = M& + by blowing up along two submanifolds (Figure 3),

Mg, = [[Mo x Mo x R;0My x dMy x {t = 0}, dt];
A(MY x M) x {t =0}, dt].

The conic heat space has five boundary faces described in the following
table in which z = (z,y) and 2’ = (2/,y') are local coordinates in a neigh-
borhood of the singularity in each copy of My so that z = 0,2’ = 0 define
the singularity as well as the boundary of M.

Face  Geometry of face Defining function in local coordinates
Fliz PN (Y xY) pi12 = (24 + (&)Y + £2)1/4

Fip PN/ (A(Mg x Mg)) paz = (|2 — 2'* + 2)1/4

Floo Y xRT P100 =

F010 RJF XY 010 = JZI

FOOI M(()) X Mg — A(Mg X Mg) £001 = t

Figure 3: Schematic diagram of the conic heat space.
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Note that the coordinates z,2’,t lift from My x Mo x RY to Mg, as
follows:

B*(x) = proopriz,  B*(x') = poropriz,  B(t) = pTi2pizp001,
so again these are only local defining functions.

6.2.2. The conic heat calculus Let i be a conic half-density on Mg, ey
We may assume

p= (z2) V2 dz d2' dt = \/dV, dt.

Fix also a smooth, non-vanishing half-density v on M02,h' Elements of the
conic heat calculus are distributional section half densities on ng 4 which
are smooth on the interior and lift to be polyhomogeneous on Mgh.

Definition 6.3. Let k& € R and let F1g9, Eo1o and E112 be index sets. Then
Ae \I/g’ff““’Em"’E“"' if A is a smooth half-density section on the interior of
Mgh and satisfies the following.

1. Ae Afﬁ;o at Floo.

.Ae Af};];]o at Foio.

E112
.Ae ‘Aphg at Fii9.

2
3
4. A vanishes to infinite order at Fyp1.
5. A€ pl, IRk (B,

With this normalization, the conic heat kernel has order k = —2, and
the composition rule is the following.

Technical Theorem 6.4. Let A € \1’64}1007‘4010”4“2’]"’“ and B € \Ilg}go’Bowﬁmkb
with leading index terms satisfying

Bri2+aoi0>0, ari2 + Piroo>0, —ke>0, —ky >0, [Broo+ oo > —1.

. . Av00,Bo1o,Tii2k
Then, the composition B o A is an element of W, 57" "% with I'112 =

Aq19 U Bi1g and k = (ka + kb).

The proof of this theorem is in [37] and is originally due to [34]; see
also [15,27].
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Away from Fii9, Fg9 and Fpig, the model heat kernel is locally con-
structed using the Euclidean heat kernel. At the front face F12, which arises
from blowing up the singularity, the coordinates x, z’, t vanish. Instead, con-
sider the projective coordinates®

In these coordinates, the heat operator
O+ A = ()07 +(05)* + s77An),

where Ay, is the induced geometric Laplacian on the boundary (Y, h). Since
s’ is a defining function for Fj12, we see that the normal operator is the heat
operator for the exact cone over (Y, h), so we define the model heat kernel
at I} 112 to be

H0(57 8/7 Y, y/7 7_)7

where Hj is the heat kernel for the exact cone over (Y, h). Using the scaling
properties of the heat kernel for an exact cone, this is equivalent to

(p112)_nH0(87 17 Y, yla 7_)7

which is well defined away from Fj;9 and has a polyhomogeneous expansion
up to Figo; see [5,23]. With the Friedrichs extension, symmetry in space
variables defines the model heat kernel on all of Fji2, and we define it on
Fipo and Fp19 by extending the polyhomogeneous expansion at the corners
of these faces with Fy1s.

6.3. Asymptotically conic scattering heat kernel

A summary of the ac scattering heat kernel, space and calculus is given here;
details are contained in the appendix. Let (Z, g.) be an ac scattering metric
with boundary defined by {z = 0} and with local coordinates z = (x, y) near
the boundary. Let A, be the Friedrichs extension of a geometric Laplacian
on Z.

91t is generally helpful to work with projective coordinates since differential oper-
ators transform nicely under projective coordinate changes.
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6.3.1. Asymptotically conic scattering heat space First, we con-
struct the ac scattering double space,

Zs2c = [[Z X Z,@Z X 82],A(Y xY) mFllO] ,

where F1i1g is the face created by the first blowup. This construction comes
from [17, Figure 4]. The ac scattering heat space is

Zo =22 xRY;A(Z x Z) x {t = 0}, dt] .

The ac scattering heat space has six boundary faces described in the
following table.

Face Geometry of face Defining function in local coordinates
Fa20 N*AY xY)) xR* pazo = (¢ + (2') + |y — /|))'/?
F110 N+((Y X Y)
—A(Y x V) x RT p110 = (2% + (2/)?)1/?
Fioo Z XY xRF p100 = T
Foio Y x Z x Rt pot0 = '
Fi PN (A(Z x Z)) pan = (|2 — /|4 + 12)1/4
Foo (ZxZ)—A(Z x Z) poo1 =t

6.3.2. Asymptotically conic scattering heat calculus Elements of
the ac scattering heat calculus are distributional section half- densities of
Zi which are smooth on the interior and lift to be polyhomogeneous on
ch,h' Let 1 be a smooth, non-vanishing half- density on Z2, and let v be a
smooth, non-vanishing half- density on Z;h.

N

110
F

110

010

N F
Y

100

001

220
001
d2

F

Figure 4: Schematic diagram of the ac scattering heat space.
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El 10 7E220 7k

Definition 6.5. For any k€R and index sets E119 and Eago, A€ V_'};

if A is smooth on the interior of Z sc.n, and satisfies the following.

1. Ae .Aph;/Q)JrElm at Fiqp.

2. Ae Aphgn+2 /2)+Bazo at Fhyp.
3. A vanishes to infinite order at Fyg1, Figo and Fpio.
4. A cp —((n+3)/2) COO(ng)

Two elements of the ac scattering heat calculus compose as follows.

Technical Theorem 6.6. Let A € \I’it}j’Am’k“, and B € \IJBI}E}’B”O’M

Then, the composition B o A is an element of \Iiil}_f}UB“O’AzzOUBzzo’k“+kb

The ac scattering heat kernel is constructed analogously to the b and
conic heat kernels. The model heat kernel in this case is the lift of the
Euclidean heat kernel to ZS2C h 10

Technical Theorem 6.7. Let (Z,g.) be an ac scattering metric with
boundary (Y,h). Let (E, V) be a Hermitian vector bundle over (Z,g,) which
induces a compatible bundle over (Y,h). Let A be a geometric Laplacian on

(Z,g.) associated to the bundle (E,V). Then there exists H € \IJSCI;’I’E”“’
satisfying

(O + A)H (z,2/,t) =0, t>0,

H(z,2,0)=6(z—2).

Moreover, H vanishes to infinite order at F119 and is smooth up to Faoq.
The proof of this theorem is in the appendix.
7. Heat kernel convergence

These heat kernels interact on the acc heat space.

10Gince the standard example of an ac scattering metric is the radial compactifi-
cation of R™, it is natural that the ac scattering model heat kernel is the lift of the
Euclidean heat kernel to Zs2c7h.
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7.1. Asymptotically conic convergence heat space

This construction is similar to the heat space constructions in Section 6 and
the acc double space construction in Section 3. First, let

Ho:={e=¢€} S xS.

Next, let
Hy = [Ho x R; Y x Y x {t = 0}, dt].

This blowup must be done first to create the Fj15 face in the conic heat
space. The scalar variables on S x S x R} are (x,r,2',7',t),!! so by our
notation, the face created by this blowup is Fii11,2. Let

Ho = [H1; Z x Z x {t =0}, dt].

This blowup is less obvious: the ac metric is scaled by €2, so the correspond-
ing Laplacian is scaled by €2, and the time should also be scaled. To create
a face with rescaled time, we perform this blowup, and the resulting face is
F1010,2, which has the geometry of a compactified b-heat space at ¢,e = 0.

Finally, the acc heat space results from blowing up the closure of the lift
of the diagonal in § x S at {t = 0},

H = [Ho: B (AS x S — (Y x ¥)) x (¢ =0}), dt].

The face created by this last blowup is Fyo.
The € = 0 boundary faces of H are summarized below:

S x S x R} corner ‘H face geometry
z=0,2=0,r=0,

T‘IZO,t:O F1111’2 PN+(YXY)
l':o,l‘,:(),t:(), F1010’2 [ZXZXRj;YXY};

A(Z x Z) x {0}, dT]

z=0,2 =0, Fio1o [ZXZXR+—{t:O}}
r= 0, r =0 F0101 Mg,h
z=0,7=0 Fion [Z x My x RY;Y x Y x {0}, dt]
r=0,2'=0 Foi1o [Mo x Z x RY;Y x Y x {0}, dt]
A(S x 8) x {t=0} Fyo PNT(A(S x 8))

{t = 0} FOOOO,l ({6 = 6,} C S x S) — A(S X S)

' Note that these variables are not independent; they are related by zr =a/r' =e.
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7.1.1. Asymptotically conic convergence half-density calculations
We calculate the lift to H of dVg.dVg.dtde. The Jacobian determinant
factors which result from blowing up are

(p1111.2)* (p1010.2)* (paz)™ .

Next, we calculate the lift of the variables x,2’, 7, 7" to H,'?

(35) £1010£1010,2£1111,201001 »

(95 ) £1010£1010,201111,2£01105
B (r) = P1111,2£010100110,

(7“/) P1111,2£0101 1001 -

We calculate the volume form dV g, in a neighborhood of the faces of ‘H at
e = 0. At Foi01, dVge ~ dVp and

dV gedV gl ~ (p1111,2P1010P1010,2)>" (1001 po110)"
x (p1111.2)*(p1010,2)% (paz)" T p.

At Fig10 and Figio,2, dV ge ~ €2dV., consequently

dV gedV gl ~ (p1111,2)*" 2 (p1010,201010)*" (Po101) " 2(p1001 p0110)"
n+1

x (p1111.2) " (p10102)* (pa2)" 11,
where p is a smooth non-vanishing spatial density on .13
Then, we arrive at the following half-density calculation at Fyip; and
Fi111,2,

\/dvge dvg/ dt dE) (p1111’2)n+1 (p101072)n(p1010)n71
< (pr001 po110) ™ D/2 () V12

where v is a smooth non-vanishing density on H. At Fig1p and Fio10,2,

B (VdVgedVg,dt de) ~ (p11112)" ™ (p1010.2)" " (pr010)" (po101)
x (p1001p0110) " V2 (pag) V2 /.

12The recipe for these exponents is: (codimension of space variables —1)
+ (codimension of parabolic variables x 2).
13We have used that dVy ~ 2"~ ! dz dy and dV, ~ Tflﬁ dr dy and that e =xr =2'r".
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7.2. Asymptotically conic convergence heat calculus

The acc heat calculus is a parameter (¢) dependent operator calculus incor-
porating the smooth, conic, and b-heat calculi.!*

Definition 7.1. The acc heat calculus of order k, written
\Il];f‘}_}o“Elomz’E““ﬂ, consists of half-density kernels A which are smooth
on the interior of H and satisfy the following.

1. For each € > 0, A restricts to an element of \Iff - the standard heat
calculus of order k for (M, g.).*

2. In a neighborhood of Figi0,2, A has an asymptotic expansion in p1g10,2
with index set F1910,2 and coefficients in the b-heat calculus of order
k. Such an expansion is of the form

A~ Z Z (p1010,2)" (log p1010,2)P Aj 1.

Jj=1  0<po<p<p;

with A;; € \I,’;’gfm_ Above, if for some j, p; = 0, then there are no log
terms.

3. In a neighborhood of Fjig1, A has an asymptotic expansion in pg1o1
with index set Fjy191, and coefficients are elements of the conic heat
calculus of order k.

4. In a neighborhood of Fii112, A has an asymptotic expansion in p1111,2
with index set F1111,2 so that the coefficients in the conic heat calculus
are of order k for the exact cone over Y.

5. A has a smooth polyhomogeneous expansion up to the side faces
Fioo1, Fio10, Fo110, and these expansions extend smoothly to the cor-
ners meeting the other faces of H.

4The ac scattering heat calculus was expected to arise in the acc heat space and
calculus, but after calculating the normal operators as e — 0, it became clear that
the b-heat space and calculus rather than the ac scattering heat space and calculus
were needed.

I5The heat space for a smooth compact manifold M is M }QL =[M x M x
Ry s A(M) x {t = 0},dt]. The standard heat calculus W% consists of half-density
sections which are smooth on the interior of M7, vanish identically at ¢ = 0 away
from the blown-up face, and which are p~(1/2)("+3)=kC> at the blown-up face
defined by p; see, for example, [33,37].
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The composition rule is not required for the proof of our main theorem,
but we would expect it to follow from the composition rules for the smooth
(compact manifolds), b, and conic heat calculi, together with the result for
combining polyhomogeneous index sets as in [28].

Theorem 7.2. Let (Mo, go) be a compact Riemannian n-manifold with iso-
lated conic singularity, and let (Z,g,) be an ac space, with n > 2. Assume
(M, ge) converges asymptotically conically to (Mo, go). Let (Eo, Vo) and (E.,
V) be rank k Hermitian vector bundles over (Mo, go) and (Z,g), respec-
tively, so that each of these bundles in a neighborhood of the boundary is
the pullback from a bundle over the boundary (Y,h). Let Ag and A, be the
corresponding Friedrichs extensions of geometric Laplacians, and let A be
the induced geometric Laplacian on (M, gc). Then the associated heat kernels
H, have a full polyhomogeneous expansion as € — 0 on the acc heat space
with the following leading terms:

e At the conic front face, For01, He(z,2',t) — Ho(z, 2',t), the heat kernel
for (My, go) with half-density factor

() = (p1111.2)" " (p1010.2) ™ (P1010)" " (Pr001£0110) /2 (pa2) "I/ 2 /.

o At the rescaled b front face, Fioi02, He(z,2',t) = (p1o10.2)(pi010)
(po101) "'Hy(T), the b heat kernel with rescaled time variable T and
with half-density (x).

o At the exact conic front face, Fii11,2, He(z, 2, t) — Ho(T), the heat ker-
nel for the exact cone with rescaled time variable T with half-density (x).

o At the side faces Figo1, Fo110 and the residual b face Fig10, the heat
kernel has polyhomogeneous expansion with leading term vanishing to
at least second order.

This convergence is uniform in € for bounded time and moreover, the
error term is bounded by CetN as t — 0, for any N € Ng, where C may
depend on N.

7.3. Proof

This proof is modeled after the parametrix construction of [33]. First, we
lift the operator 0; + A¢ to H and construct the acc model heat kernel as
an element of the acc heat calculus which solves the normal operators of
Oy + A¢ on H. We use the b-heat calculus and introduce the acc conic triple
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heat space to use the conic heat calculus and solve up to infinite order, then
we estimate the error term of this solution kernel and finally solve away the
residual error.

7.3.1. Lifted heat operator We must carefully choose good coordinates
in a neighborhood of each of the front faces Fyio1, Fio10,2 and Fi111,2 and
calculate the leading term of 0; + A, as € — 0, or in the terminology of
[1,28,33], we calculate the “normal operators” at the e = 0 boundary faces
of H. In a neighborhood of Fpig1, ge is smoothly approaching the conic
metric, so

8t+A€—>8t+A0.

In a neighborhood of Fip19,2, the metric g. — € 2g,, so
O+ A= O+ e 2N, = (2) 728, + Ay),

where 7 = t/(2?). In the above calculation, we have used zr = € together
with the relation between the ac scattering Laplacian and the rescaled b
Laplacian A, = r2A;. Note that z lifts to define Fio1o, Fip10,2 and Fii11,2.
This indicates that the leading part of 0y + A at Fipig,2 is

(p1o10,201010P1111,2) 2 (07 + Ap).

In a neighborhood of Fii11,2, the scalar variables (z,2’,r,r/,t) are not
good coordinates since they all vanish. Better coordinates are the projective
(s,8',0,0',7), where

x , r , t
S:?, s =, O':?, O':*/7 T:(x/)Z.
Note that )
r
(10r) = (005), ar=¢ = — = 2.
€

At Fi1112 we see both the conic metric go near the singularity and the
rescaled ac scattering metric €2g, near the boundary. Using the projective
coordinates around the conic singularity, we compute

O+ Ac — (87207 + (05)* + (5)2(AR) = (s8')72(0r + (s05) + Ay),

where Ay, is the Laplacian on Y for h = h(z = 0), and we note that 7 = G
Using the projective coordinates near the boundary of Z, we compute

O+ Ac — (58) 720y + (005)% + Ap) = (5') 7207 + (5) " 2((005)* + Ap),
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where in the last equality we have used zr = € = 2'r’, which gives s9s = 00,.
Since (ss') = x lifts to H to define Fii11.2, Fio10 and Figo2 as does s, this
indicates that the leading term of 0; + A¢ at Fii112 is

(p1111.20101001010,2) (05 + Ag.s),

where Ay s is the Laplacian for the exact cone over (Y, h). Note that these
calculations demonstrate that the model operators are consistent at the
corners.

These calculations together with the half-density calculation indicate
how to define the acc model heat kernel as a parametrix for 0; + A, as
e — 0.

7.3.2. Asymptotically conic convergence model heat kernel, H;

o At Foio1, let Hy(z, 2, t,€) ~ Hy, the heat kernel for (Mjy, go), with half-
density factor!'6

() = (p1111,2)"+1(,01010,2)n(p1010)n_1(p1001p0110)(n_1)/2(Pd2)<n+1)/2ﬁ~

o At Foio12, let Hy(z,2',t,€) ~ (pro10p1010,2) (po101) " Hy(7)(*), where
Hy(7) is the b heat kernel with rescaled time variable.

o At Fiin12, let Hi(z,2',t,€) ~ Ho(T)(*), where Ho(7) is the heat kernel
for the exact cone over (Y, h) with rescaled time.

At the side faces of H, it is instructive to recall the side faces in the
conic heat space. The conic heat kernel has normal operator

O+ (02)? + 272 Ay,

where Ay, is the induced Laplacian on the boundary (Y, h). At the side face
Fio0,  vanishes and there is no natural “normal operator”. However, the
side faces meet the front face, so we define the conic model heat kernel on
the side faces by extending the asymptotic expansion from the front face to
the side faces and using symmetry of the Friedrichs extension. When the
conic density is included, the conic model heat kernel vanishes to positive
order at the side faces. Similarly, there is no natural normal operator at

6Note that we do not require any additional vanishing factors to account for
the singular factors in the normal operators since the half-density already includes
sufficient vanishing factors to remove the singular factors when the normal operators
are applied.
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Fio10, Froo1 and Fpi19. However, the acc model heat kernel is defined on
Fp101 which meets Figor and Fpi10, and so it may be defined on these faces
by extending the expansion as in the conic case. At the corner of Figio,2
with Fig10, the rescaled time variable 7 — oo, and the b heat kernel vanishes
to positive order as t — oo, so we define the acc model heat kernel at Figig
by extending the expansion at Figip2 as 7 — co. For € > 0, let Hy(z, 2, t, €)
be the heat kernel for 0; + A..

7.3.3. Asymptotically conic convergence model heat kernel con-
struction along diagonal at ¢t =0 In a neighborhood of the faces dif-
feomorphic to the parabolic normal bundle of the diagonal, PN*(A), we
carry out a local construction as in [33, chapter 7]. Let X be a manifold;
since this construction is the same for X = M, X = My and X = Z, we use
X to simplify notation. Let Fx denote the PNT(A(X)) face in H, where
A(X) is the diagonal in X x X. Let N(9, + Ax) be the restriction to Fx
of the lift of (0, + Ax) to H, where Ax is our geometric Laplacian on X.
With the heat calculus normalization at Fx, an element A of the acc heat
calculus of order —k restricts to F'x as follows

N(A) =t 2/2 45
As in [33] we observe that Fy is naturally diffeomorphic to a radial com-

pactification of the tangent space of X, with each fiber of Fx over (z,z,0)
diffeomorphic to the tangent space at x. From [33, 7.15],

1
— 5 (B+n+k+2)| N(A),

(7.1) N0+ Ax)A) = |o(Ax)
where R is the radial vector field on the fibers of T'X. Note that if G satisfies
tO0 + Ax)Go = O0(t*) ast — 0, Goli=o = 0(z — '),

then G also satisfies

(7.2) (0 + Ax)Go = O(t®) as t = 0, Goli=o = §(x — 2').

So, we may work with ¢(0; + Ax) as in [33]. Our initial parametrix G has
order k = —2 at Fx. From (7.1), we have the following equation for Gy,

o(Ax) — =(R+n)| N(Go) = 0.

1
2
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From [33, 7.13], in order for Gy to satisfy the initial condition, it must satisfy
N(Gp) = 1.
fiber

Since these conditions are fiber-by-fiber, we introduce local coordinates so
that

o(Ax)=D?+4---+D? on T, X.

Then we have

2

is the desired solution, where X is a projective local coordinate on F,,
X = ”il_—ﬂj (see [33, 7.36]), and | * |, is the Riemannian norm on 7'X induced
by the metric at x. To see that this is the desired solution, consider the
Fourier transform of (7.3) with w = N(Go)|1, x,

(60¢ + 2Py =0, a(0) = 1.

Then by standard results in ordinary differential equations, the expression
in (7.4) is the unique decaying solution.

Now we may iterate this to solve up to higher order. Assume we have
found Gy, ..., Gy satisfying

t(@t + Ax)Gj = Rj,

where R; is of order —3 — j at Fx. To find Gyy1 = G, — T}, we wish to
solve

t(0y + Ax)Ty = Ry + Ry,

where we have already found Ry of order —3 — k, and Ry, will be of order
—4 — k. Lifting to T'X this becomes

o(Ax) = s(R+n—j—1)| N(T}) = N(Rg),

1
2
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which we may again solve via Fourier transform. Letting u = N(7}) and
f = N(Ry), we find

1 A
ae) = /0 exp((r — 1)[€[2) f(r&)r*+ dr

is the desired solution. This completes the inductive construction for all
k. Now the successive Tj = Gj1 — G give a formal power series at Fx
which can be summed by Borel’s lemma so that G is order —2 at Fl,
and satisfies (7.2). We then set the acc model heat kernel H; =G in a
neighborhood of Fx.

7.3.4. Asymptotically conic convergence model heat kernel con-
struction off diagonal at t = 0 Consider Figpip2 = Zgh - This face has
the following geometry.

Boundary face Geometry of face Arising from

Frao PNt (A(Z x Z)) Parabolic blowup of diagonal
at 7=0

Fyii0 NT(Y xY) xR Blowup of Y x Y for all 7

Fyi00 Y x Z xRt Boundary in first copy of Z

Fyo10 ZxY xRt Boundary in second copy of Z

Froo1 (ZxZ)—A(Zx Z) 7 =0 Away from diagonal

At this face, H; is asymptotic to Hy(z, 2/, 7), which vanishes to infinite order
at the side faces Fp100 and Fpp19. At the diagonal face Fpqo, we have solved
H; up to error vanishing to infinite order in ¢. So, we have at this point an
approximation H; whose error vanishes to infinite order on the interior of
Fio10,2 and at all boundary faces except Fy119. The indicial operator for Ay ,
at FbllO is

I(Dpo) = (90,)° + 4,

on R x Y. We would like to find u which is polyhomogeneous on Zf h.r and
solves

(67' + Ab)‘Fbuou = _K’Fbllu’

where K(z,7',t,€) = (0 + A¢)Hi. Since H; is polyhomogeneous on H and
smooth up to Fy119, so also the error term K. Expanding K, where we use



780 Julie Rowlett

simply p for the projective defining function for Fy;1g,

K|Fb110 ~ Z(p)Jk?] k] € CSO
=0

Expanding the desired solution w,

U ~ Z(p)juj.

320

We may use either separation of variables expanding in eigenfunctions of A,
or the Mellin transform [33], to find ug satisfying

(87 + I(Ab))uo = —k‘o,

with ug vanishing to infinite order at the side faces Fpigo and Fpo1g. Since
Ay — I(Ap) = pL1, where L is also a b-differential operator, we may now
iteratively solve for ui,us, ..., to solve the equation to increasingly higher
order. Recall that in the projective coordinates near this face, o’ defines
Fy119, and since the operator does not differentiate with respect to o/ = ./
the defining function commutes past the operator. Using Borel summation,
we construct u so that

(0r + Ap)u = —K + Ko,

where K5 vanishes to infinite order at Fp119. Using a smooth cutoff function
x supported in a neighborhood of these faces, the second approximation
Hy = Hy + xu now satisfies

(87' + Ab)HQ = K27

where K5 vanishes to infinite order on both the interior and all boundary
faces of F101072.

A similar exact construction applies to F1111,2, since this face is the heat
space for the exact cone over (Y, h).

7.3.5. Asymptotically conic convergence conic triple heat space
Since the error now vanishes to infinite order at all boundary faces except
Fy101, we restrict attention to this face. It is convenient to use the conic
heat calculus composition rule which requires the conic triple space. We
construct a partial acc triple heat space,!” the acc conic triple heat space,

TThe full acc triple heat space is constructed in the second appendix although
it is not needed for this proof.
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which contains the conic triple heat space, thereby allowing us to solve
away the error at Fpyig1 using the conic composition rule. The acc conic
triple heat space H> is a submanifold constructed from S® x Rt x R* by
eight blowups. Let X, X', X” denote the three copies of the submanifold X
in X3. The blowups are listed in the following table by the order in which
the blowups are performed together with the name of the face created.

Blowup Face
Y xY' xY" x {t = O,t/ = 0},dt,dt/ F11122
Y xY' % {tZO},dt F11020
Y'xY" x {t/ = 0}, dt F01102
Y xY" x {t” = ‘t — t/| = 0},dt” Fip109
ASE xS xS8")y x {t=0,t =0},dt,dt Fy3
A(S X Sl) X {t = O}, dt ngo
A(S’ X S”) X {t/ = 0}, dt’ FdDQ
A(S X S”) X {t// = 0}, dt" Fd22

Let 8*Hs be the lift of Hs to Hg, and let 8* Ky be the lift of K5 to 7—[2
Then, §*Ks vanishes to infinite order at all boundary faces except those
arising from the lift of Fj191. Now let

H3 := (3,(6"Hy — " H23" K>),

where f3, is the push forward to H from H2. Since 3* Ky vanishes to infinite
order at all boundary faces except Fpio1, the push forward of (5*Ha)(5* K2)
to ‘H vanishes to infinite order at all boundary faces except Fy191, where the
result is given by the conic heat calculus composition rule. Consequently,

H3 = Hy — (8" H23" K2)

vanishes to higher order at the boundary faces of Fyi19; by the conic heat
calculus composition rule. Continuing this construction and using the Borel
summation, we arrive at H,, with expansion asymptotic to Hs, Hs,... and
satisfying

(87' + AO)HOO = Nooy
where K., now vanishes to infinite order on Fpig1. Using a smooth cutoff
function, we now have Hy, defined on all of H satisfying

(at +A6)HOO = Nooy

where K, vanishes to infinite order at all boundary faces of .
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7.3.6. Error term approximation For each € >0, let E(z,2 t€) =
H.(z,2',t) — Hi(z,7,t,€). Let K be defined for each € > 0 by

(O + A)E(z, 2 t,e) = K(2,2,t,¢).

By construction of Hy, K = O(et™) as €,t — 0, so for any N € N, there is
C > 0 such that for any (z,2') € M x M,

|K (2,7 t,€)| < Cet?.

Moreover, K has a polyhomogeneous expansion down to € = 0.

For each € >0, E is smooth on H for ¢ > 0 by parabolic regularity
applied for each € > 0 since K is O(t*°). By construction, E is smooth down
tot =0,s0 E(z, 2t ¢) is smooth on the blown-down space, M x M x RT x
(0,1]c. The following maximum principle argument on M x [0,7]; shows
that F is also O(et®) as €,t — 0 in the same sense as K.

Fix € > 0, 2/ € M. Since K = O(et™), fix C > 1 and N> N >> 1 such
that |K(z, 2/, t,€)|> < Ce2t2N for all z € M. Let u(z,t) = |E(z,2,t,€)|. Let
A be the scalar Laplacian for (M, g.). Then u satisfies

(0 + A)u = 2((0y + V*V)E,E) — |VE|> = 2(K — RE,E) — |VE|?
< 2(K,E) <2|K||E| < |K|> + |E]’ = |K[” + u.

Above we have used the positivity of R and the compatibility of the bundle
connection with the metric. Now, let & = e~*u. Then % satisfies

(0 + A < e YK < Ce?Y,

Let w = @ — Ce?t>N*1, Since F and hence v and @ vanish at t = 0, w|;—g = 0,
and w satisfies

(0 + Ayw < C2*N — C(2N + 12N < 0.

Fix T > 0 and consider w on M x [0,T];. If w has a local maximum for
z€ M andte (0,7), then

(8t + A)w > 0,

and this is a contradiction. If w has a maximum at ¢ =T, then dyw > 0,
and

(8t + A)w > 0,
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which is again a contradiction. Therefore, the maximum of w occurs at ¢t = 0
and so

This implies
u<elCet?™, for 0<t<T,

which in turn implies that E = O(et"V) as ¢, — 0, for any N € N.

7.3.7. Solving away the residual error term To complete this con-
struction, we must remove the residual error term which vanishes to infinite
order at the boundary faces of H. It is now convenient to consider the ele-
ments of the acc heat calculus as t-convolution operators acting on S x RT.
For an element A which vanishes to infinite order at the boundary faces of
H and u, a smooth half-density section of S x RT, the t-action of A on u is

(7.5) Au(t) = /0 (Au(t — 5), u(s))ds,

where the spatial variables have been suppressed. As a function of s’, s > 0,
[Au(s")](s) vanishes to infinite order at s’ = 0. Restricting to s’ =t — s,

[Ault — $)](s) = 5271t = 8P ug(t s, 9),

for any —k,j € No, where uy ; is a smooth half-density, so for any —k > 1
this is integrable. Consequently, Au(t) as in (7.5) is smooth in ¢ and vanishes
rapidly as t — 0. So, an element A of the acc heat calculus which vanishes
to infinite order at all boundary faces of H gives rise to a Volterra operator.
Since as a t-convolution operator we have

(9 + A)Hoo = Id — Ko,
we would like to invert (Id — K ). Formally, the inverse should be

(Id - Koo)' =Y KL,

Jj=0

where K2, is the j-fold composition of K. To show that this Neumann
series converges, we estimate the kernel of K2.. Since K, vanishes to infinite
order at all boundary faces of H, we may restrict to submanifolds of H,
estimating as in [33] and then combine these estimates to estimate K2
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on H. The kernel ki, of the restriction of KZ to M x M x RT x {e} is
bounded by
t

|kéo(z,z',t,e)\ < Ce,jm, t<T.

This follows from the composition rule for the heat calculus on M and the
analogous bound in [33, 7.3|, where we have taken k = —2, with k as above,
which we are free to choose since A vanishes to infinite order. Similarly,
by the composition rule for the heat calculus on My and the same estimate
of [33], the kernel of the restriction of K%, to My x My x R is bounded by

. 7
J ! .
‘koo(’z?Z?t)’Foml SCO,](]_’_l)'a t<T

Similarly, the kernel of the restriction of K to Z x Z x R} is bounded by

t
<C,j——, t<T.

k7 't
‘ OO(Z7Z7 ) (]+1)'7

|F1010,2

These three bounds imply that the constants C¢ ; stay bounded as € — 0,
and so we have the following global bound for the kernel of K%, on both H
and the blown-down space {e = €'} C § x § x RT

. 7
J ! L
|koo(zazat7€)‘ SCJ (j+1)'7 t<T.

It follows that the Neumann series for (Id — K,)~! is summable and has an
inverse which as a t-convolution operator is also of the form (Id — A), where
A is an element of the acc heat calculus that vanishes to infinite order at
the boundary faces of ‘H. Then, the full acc heat kernel is

H=H,(Id - Ks)™ "

As a consequence of this construction, H has a fully polyhomogeneous
expansion down to € = 0 with leading order terms given by the acc model
heat kernel, H;.
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Remarks. A consequence of this theorem is the uniform convergence
for 0 <t <T,

H. — Hy+ O(e) as € — 0.

This extends the convergence results of [11] for scalar heat kernels to heat
kernels for geometric Laplacians acting on vector bundles. Due to the
rescaled time variables at the faces contained in €,t = 0, we expect to see
interesting applications involving the short time asymptotic behavior of the
heat trace; see [31]. We have not computed the ¢ — oo asymptotics but
expect this will also yield interesting applications.

A. Asymptotically conic scattering heat kernel

Let (Z,g.) be an ac scattering metric with boundary defined by {z = 0}
and local coordinates (z,y) near the boundary. Let A, be the Friedrichs
extension of a geometric Laplacian on Z. We motivate the definition of the
acc heat space by lifting the Euclidean heat kernel to Zi.

Recall the Euclidean heat kernel for R™,

G(Z7 2/7 t) = (47Tt)7n/267|2*2/‘2/2t.

Consider the coordinates z = (r,y) on the complete ac space. With the
compactification given by xz = % in the local coordinates (z,y,2’,y',t) on
Zi near the boundary of Z, the Euclidean heat kernel is

(/) = (/) + |y — y’P)) |

G(mayax/aylat) == (47Tt)_n/2 exp <_ ( 2t
This motivates blowing up
{(x,y,2",y/,t) : x =0,2" = 0}.

In the projective coordinates s = 7 and s’ = 2/, the Euclidean heat kernel is

(s — 1) /s8']> + |y — y'|2)>
2t )

G(s,y, 8,y t) = (4nt) "% exp (—(

This motivates a second blowup at s = 1, along the submanifold where the
diagonal in Z x Z meets the first blown-up face

/

{(%Z/,ﬂﬁl,@/at) cx =02 =0,y = y/}'
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A.1. Asymptotically conic scattering heat space

As motivated above, the ac scattering heat space is constructed from Zi by
performing three blowups.
The scattering double space, Z2

sc)

originally constructed by [17], is
ZSZC = [[Z X Z; 07 x 82],A(Y xY)n Fn()] ,

where Flpg is the face created by the first blowup. Including the time vari-
able, we perform one more blowup to construct the ac scattering heat space,

Zion = |Za x RYSA(Z % Z) x {t = 0},dt] .

The ac scattering heat space has six boundary faces described in the follow-
ing table.

Face Geometry of face Defining function in local coordinates
Fag NFT(A(Y xY)) x RF pazo = (2% + (') + |y — y/'1*)"/?
F220 N+((Y X Y)
—A(Y xY)) xRt pr10 = (22 + (2)%)/?
Fioo ZxY xRt p100 =
Foio Y x Z xRt poto = &'
Fn  PN(A(Zx2)) par = (|2 — #[* 4+ 12)1/2
Fo(n (Z X Z) — A(Z X Z) £001 = t

A.2. Asymptotically conic scattering heat calculus

Elements of the ac scattering heat calculus are distributional section half-
densities on Zi which are smooth on the interior and lift to be poly-
homogeneous on ZSQQh. Let © be a smooth, non-vanishing half-density on
Z x Z x RT, and let v be a smooth, non-vanishing half-density on ZSQQ he

Definition A.1. For any k € R and index sets Fjij90 and Faog, A €

\IlsEcl}g’Em’k, if A is smooth on the interior of Z2, , and satisfies the following.

1. Ac ;}fgl/QHE“O at Flig-
2. A e AL +2/2)+Ea

phg at FQQ().
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3. A vanishes to infinite order at Fyg1, Figo and Foyio-

4. A e p koo (),

Elements of the ac scattering heat calculus act on sections of Z in the
usual way and on sections of Z x R;r by t-convolution. The composition
rule is proven using the ac scattering triple heat space, ch 5~ This space has
partial blow-down and projection maps to three identical copies of the ac
scattering heat space as well as full blow-down and projection maps to three
identical copies of Z2; these are called the left, right and center. Formally,
two elements of the ac heat calculus are composed by lifting from the left and
right copies of chyh to ngc,h’ then multiplying and blowing down/projecting
to the center copy of ZS2C n- It is key that the triple space be constructed
so that these lifts and phsh—forward maps are b-fibrations in order that
polyhomogeneity be preserved.

A.2.1. Asymptotically conic scattering triple heat space In a
neighborhood of the boundary in each copy of Z, we have the local coordi-
nates (z,y), which provide the local coordinates (z,y,2’,y,z",y") on Z3.
First, we blow up the codimension 3 corner defined by {x =0, 2’ =0, 2" =0},
resulting in the face F1100 with defining function locally given by

P11100 = (932 + (ﬂf/)2 + ($//)2)1/2‘

Next, we blow up the three codimension 2 corners corresponding to the Fiig
faces in each of the three copies of Zs.2c 5~ These faces are as follows.

Face Submanifold to be blown up Defining function
F11000 St1000 = {z = 0,2" = 0} — Fi1100 pr1000 = (22 + (27)2)1/2
Foi100 So1100 = {2’ = 0,2" = 0} — Fi1100 po1100 = ((z)2 + (2™)?)1/2

Fio100 Si0100 = {z = 0,2" =0} — Fi1100 pro100 = ((z)2 + (2)2)1/2

Next we blow up the codimension 2n + 1 corner where the diagonals
meet Fi1100. After the Fi1109 blowup, we have coordinates (6,6',60”, v,y ,y",
P11100), With

z = (p11100)0, ' =(p11100)0s " =(p11100)0", (0)* + (6')* + (0")* = 1.
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Using these coordinates, we next blow up
Sozmoo ={0=0"=0"y =y =4", ro =0}
The face created by this blowup is called Fy909 with defining function
pazoon = ((0 = 02 + (0 = 0" + [y —y/ P + [y — /> +r5)"/>.

After this, we blow up the three codimension n corners corresponding
to the Fhog faces in the three copies of the double heat space. These are as
follows.

Face Submanifold to be blown up Defining function
F52000 Sa2000 ={0 =0,0' =0,y =y} p22000 = (0% + (0')?
+ly —y'[HY?
Fy2200 So2200 = {0/ =0,0" =0,y =¢"} po2200 = ((8')% + (9”)?
+|y/ _ y//|2)1/2
F>0200 So0200 = {0 =0,0" =0,y =y"} pao200 = ((0)% + (0")?
+y — y"|})Y?

We have now constructed the ac scattering triple space, Z3,. We next
introduce the time variables and perform the parabolic temporal diagonal
blowups. We must first blow up the codimension 2 corner of RT x R to
preserve symmetry. Let

T =[RT xR t=1'=0].

The defining function for the blowup of {t = ¢’ = 0} is pggo11, which we call
" because it plays the role of the third time variable. We now take Z3, x 72
and blow up the temporal diagonal faces. First, we blow up the codimension
2n + 3 triple diagonal, Sy3, defined by

{z=2=2"1"=0}
The defining function of this face is pys,

Pz = (|Z B Z/|4 + |Z o Z”‘4 + (#/)2)1/4.
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Next, we blow up the three temporal diagonals corresponding to the diagonal
faces in the three copies of the double heat space. These are as follows.

Face Submanifold to be blown up Defining function

Faso Sao0 = {2 = 2"} pazo = (|z = 2/|* +2)1/4
Faoz Saoz = {2 = 2"} paog = (|2 = 2"|* + (/)*)M/*
Fd22 Sd22 — {Z — Z”} Pdo2 = (’Z _ Z”|4 + (t”)2)1/4

We have now constructed the ac scattering triple heat space and proceed
with the composition rule.

Technical Theorem A.2. Let A € \I/SALI}}’A”O’k“ and B € \IISBCI}?B”D’kb.

Then, the composition B o A is an element of WQI};UBHO’AZZOUBzzO’k“+kb.

A.2.2. Proof. Formally we have,

(A.1) rBoaV = (Bc)«((Br)" (kav)(BL)" (KBV)).

Multiplying both sides of (A.1) by v and using the fact that (8.).(6.)*

V) =v,
(A.2) kpoar” = (Bc)+((Br)" (kav)(BL)* (k5v) (Be)* (v)).

Next we calculate the lifts of the defining functions and half densities
from Zs2c,h to ch’ n- A calculation gives the half density on the heat space v

in terms of the half density p on Z_%_,

v=(Bn) (<p110)_1/2(0220)_n/2(Pd2)_"+1/2“> .

The ac scattering triple heat space has partial blow-down/projection
maps 0, Or and G¢ to three identical copies of ZSQQ 5 1f we denote the three
copies of Z by Z,Z',Z" and the three time variables (¢,t,t"), where " is
from the blowup of RT x R, then the three copies of chvh are as follows.

Copy of ZSQC ,  Associated to in ZS?’C L
Left ZxZ'xRf

Right 7' x Z" x R}

Center Z x 7" x R,
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Next, we compute the lifts of the defining functions for the boundary
faces of the heat space to the triple heat space.

Lifting map Defining function on Zszc’h Lift to Zg’q h
(BL)* £100 £1000010100
(5L)* 010 £01000£01100
(BL)* P110 £11100£11000
(BL)* 220 2220022000
(BL)* pd2 Pd3Pd20

(BL)* 001 £00010£00011Pd22
(Br)* £100 £01000£01100
(5R)* 010 £00100£10100
(Br)* P110 £11100£01100
(Br)* 220 2220002200
(Br)* Pd2 Pd3Pdo2

(Br)* 001 £00001 200011 Pd22
(Bc)* £100 £10000£11000
(Bc)* £010 £001000£01100
(Bc)* p110 £11100£10100
(Bc)* £220 02220020200
(Bc)* Pd2 Pa3Pd22

(Bo)* P01 £00022£00011 Pd22

(BL)*(v) = (BL) " ((pr10) ™% (p220) " (pa2) "'/ ).
Next, we use the fact that
(BL)* (1) (Br)" (1) (Be)* (1) = 4.
Here, 13 is a smooth density on Z x Z x Z x RT x RT, so we may assume
p3 = dzdz d2" dtdt’.

A Jacobian calculation gives the lift of u2 to the triple heat space.
First note

(83)*(x) = (p11100)(P11000)(PL10100)(P10000),
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(83)"(2") = (p11100) (P11000)(P01100) (PO1000);
(B3)*(«") = (p11100)(P01100) (P10100) (P00100)-

This implies

(53)*('u§) = (,011100)2(,011000001100010100)(Pz2000002200020200)n
n+1 2n+3(t,,)y2,

(22200)" T (pazopaozpaze) ™t p7s
Here, 3 is a smooth, non-vanishing density on the triple heat space.
Combining this with the above lifts, we arrive at the following formula

(Br)* () (Br)* (V) (Bc)*(v) = (p11100) "2 (p10100P01100£10100) /2
n+

)" (p2200) "2 () I )28,

(p22000p02200p20200 P22200 Pd3 Pd20Pd02Pd22

To use the push-forward theorem of [28], we need to write each of these
in terms of b-densities. First, we have on the center copy of Zs2c7h,

b2 = (Ploopmopl10P220!)001pd2)71’/2'

Then, we have

0% = (Be)«(Be)*((pr00porop110p2200001 pa2) V%)

We observe

(Be)*((pr00porop110p220p001 pa2) L) =
(p10000p00100ﬂ11000/301 100£10100£11100£22200 20220020200 Ld3 Pd22 00011 ) -1

So now we multiply both sides of (A.2) by (Bc)«(8:)*(p100001001100220
poo1pd2) 1) and inside the right side of (A.2) we have
/2(

)(n=2)/2

~1/2
(P11100911000201100210100) ~ /2 (P22000P02200922200)™ % (p20200

(pd3)(n+1)/2( )(n+1)/2( )n/2(

-1.2
Pd20Pd02 Pd22 ploooopoomo) V3.

To use the push-forward theorem, we must change the density 1/?3 to a
b-density. We observe

b, 2
Vg = (P11100P11000P01100,010100P22200P22000P02200P20200

-1, 2
Pl0000P01000POO100Pd3pd20pd02pd22P00011P00010P00001) V3.
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So, we now have for the composition formula

(n+2)/2

(Be)« (KarB(1110011000001100210100) /2 (922200922000 P02200 )

(920200)™ 2 (paspazopaoz) ™37 (pazz) ™72 po1000 pooo11 poooropoooor (P12)).

We observe the following orders of K4 on Zs?)c e

Face K4 Index set/leading order
Fi1100 —1/2+ Ao

Fi1000 —1/2 + Ao

Fo1100, F101005 F02200, F20200, Fa22 00

F52200, F22000 —(n+2)/2+ A
Fd3,Fd20 —(n+3)/2—ka

F10000, F01000, F00100, F00010, Fo0011 00

Similarly, for kg, we have orders as follows.

Face kp Index set/leading order
Fi1100 —1/2+ Bi1o

Fo1100 —1/2 + Baao

F11000, F10100, F22000, 20200, Fa22 00

F22900, Fo2200 —(n+2)/2 + Bayg

Fa3, Fyoz —(n+3)/2 -k

F10000, F01000, F00100, Fo0010, Fo0011 00

Now, recalling the formula:

(B2)«(KaKB(P11100011000001100210100) /2 ( )(n+2)/2

)n/2( )(n+3)/2( )(n+1)/

£22200022000 02200

2 b, 2
(P20200 Pd3Pd200d02 Pd22 £01000200011 0001000001 (" ¥3))-

We see that the quantity on the right-hand side to be pushed forward
by (5¢)« has the following indices on the boundary faces.

Face Index set/leading order
Fi1100 —1/2+ A110U Brio
F11000, Fo11005 F101005 F22000, F02200, F20200 00

F29900 —(n +2)/2 + Az20U Bag
Fd3 —(n+3)/2—(ka+kb)
Fao0, Faoz, Faz2 00

F10000, £01000, F00100, F000105 Fo00015 F00011 00




Spectral geometry and asymptotically conic convergence 793

The push forward under (/.)* sends the boundary faces of ch, p to ZSQC’ L
as follows.

Z,?; face Boundary face of ch,h or interior
Fi1100 Fiio

Fio100 Fiio

F52200, F20200 Fsop

Fy3, Foo Fyo

F10000 Fioo

Foo100 Foio

Fooo11 Foor

F11000, Fo1100F22000, F02200, Interior

Fao0, Fao2, Fo1000, Foo010, Foooo1 Interior

The quantity to be pushed forward is integrable with respect to by§
at the faces that are mapped to the interior, so we may apply the push-
forward theorem [28] to arrive at the result of the composition rule. The
kernel, ko4, will have the following polyhomogeneous index sets and leading
orders on Z,?L.

Face of Z3 Index set/leading order
Fi1o —1/2+ A110U B

Fyop —(n+2)/2 + Agz0 U Bagg
Fyo —(n+3)/2 — (ka + k)
Fioo 00

Fo1o 00

Foo1 00

This concludes the proof of the composition rule.

Technical Theorem A.3. Let (Z,g.) be an ac scattering space with bound-

ary (Y, h). Let (E,V) be a Hermitian vector bundle over (Z,g.) so that near

the boundary E is the pullback of a bundle over (Y,h). Let A be a geomet-

ric Laplacian on (Z,g.) associated to the bundle (E,V). Then there exists
EllO E2207_2 - N

Hev, 'y satisfying

(O + A)H(z,2',t) =0, t>0,
H(z,2',0) =6(z — 2).

Moreover, H vanishes to infinite order at Fy19 and is smooth up to Fbag.
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On the interior of ch n, the ac scattering model heat kernel is locally

defined by the Euclidean heat kernel and a partition of unity. At Fyo, we
construct the model heat kernel explicitly using the jet of the metric at the
base point of each fiber. At Fyo1, the model heat kernel vanishes to infinite
order. At Fi10 and Fyop, the model heat kernel is the lift of the Euclidean
heat kernel. Then the ac scattering model heat kernel H; satisfies

(8,5 + A)Hl = Kl,

where K vanishes to positive order on the boundary faces of Z2

sch We now
define

Hy, = Hy — Hi Ky,
with
(815 + A)HQ = Ko,

where Ky vanishes to one order higher on the boundary faces of Zs2c,h'
Similarly,

H3 = H2 — HQKQ.

Using the Borel summation, we construct H,, with expansion asymptotic
to Hyi, Ho, Hs, ... and satisfying

(8t + A)Hoo =K,

where now K vanishes to infinite order on the boundary faces of Zs2c7h. Asa
t-convolution operator, we wish to have

Hy =1d.
However, we currently have
Ho=1ld+ K,

but this is not a problem since (Id 4+ K) is invertible with inverse of the
same form. Then the ac scattering heat kernel

H = H,(Id - K)™!

is an element of the ac scattering heat calculus with leading orders on the
boundary faces of ZSQC,]”L determined by those of the model kernel.
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B. Asymptotically conic convergence triple heat space

Let
T=[[[SxSxS&Y xY x Y'Y x Y'Y x Y";Y x ¥,
where we have used Y,Y’,Y” to denote the three copies of Y in S3. Let

T:={peT: filp)=0,i=1,2}, fi(p)==z(p)r(p) —2'(p)r'(p),
fa(p) = ' (p)r' (p) — 2" (p)r" (p).

Like the acc double and heat space, T is a smooth manifold with corners.
Let

R, = [Rf x BY; {0} x {0},

Then the acc triple heat space is constructed from 7T x R;b by blowing up
along 12 submanifolds, creating the following 12 boundary faces. Below, let
tD be the lift to T of the diagonal in S x &’ x 8", let D19 be the lift of the
diagonal in S x &', Dg11 be the lift of the diagonal in &’ x §”, and D191 be
the lift of the diagonal in & x S§”.

Submanifold blown up Face created
Y xY' ' xY" x {0} X {0},dt,d$ 511122
Y xY' x {t = 0},dt 511020,
Y' xY" x {8 = O},ds 501102
Y xY" x {t =5 = 0}, ds,dt S10122
Y xY' xY” 5111
Y xY' 5110
Y'xY” 5011
Y xY” S101
tD x {t,s = 0},ds,dt Std
D110 X {t = 0}, dt Sdgo
D011 X {S = 0}, ds Sd02
D101 X {8 =t= 0}, dS, dt Sd22

As constructed, the acc triple heat space has full and partial projection/
blow-down maps to three identical copies of the acc heat space, the left,
right and center, and to three corresponding copies of the blown-down space
{e =€} C 82 x R*. To compose two elements A and B, we view the element
A as acting from the left to the right while B acts from the right to the center.
Formally, the composition B o A is the push forward from the acc triple heat
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space of the product of the lifts of A and B. Compatibility assumptions on
the leading orders of A and B at boundary faces of the acc heat space are
required so that we can push forward. With these assumptions and with the
possible inclusion of normalizing factors at boundary faces of the acc heat
space, two elements compose as one would expect. The technical details
in the proof of this composition rule are expected to be analogous to the
technical details in the proof of the ac scattering heat calculus composition
rule (Appendix A). Although the full acc triple heat space and composition
rule are not necessary in our analysis of the heat kernels, its construction
may be an instructive model for employing our methods and those of [33]
to construct solution kernels of geometric operators under conic and more
general metric degenerations.
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