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1. WHAT IS VOLUME?

It turns out that volume is not actually a singularly defined notion. It depends upon the
definition of a measure. Usually when someone talks about volume what they mathematically
mean is three dimensional Lebesgue measure. We will see that there are many notions of
volume, corresponding to many different measures...

Definition 1.1. Let X be a set. A subset A C P(X) is called an algebra if
(1) XeAd
2)YeAd = X\Y=Y°ecA
3) A, Be A = AUBcA

A is a o-algebra if in additon

{Antnen CA = (J An € A

neN
Remark 1. Note that algebras are always closed under intersections, since for A, B € A,
ANB=(A°UB°)° € A,

since algebras are closed under complements and unions. Consequently, o-algebras are closed
under countable intersections.

We will often use the symbol ¢ in describing countably-infinite properties. Think about a few
examples of algebras.

Example Let X be a topological space. An important example of a o-algebra is the Borel
o-algebra, which is the smallest which contains all open sets. Prove that this satisfies the above
axioms.

Definition 1.2. Let X be a set and A C P(X) a c-algebra. We will call (X, .A) a measure
space. We may be a bit laid-back about this and also use measure space to refer to a set, a
o-algebra, as well as a measure. A measure p is a countably additive, monotone set function
which is defined on our g-algebra. It must vanish on the empty set. We will only work with
non-negative measures, but there is such a thing as a signed measure. Just so you know those
beasties are out there.

(1) Monotone means that if A C B then p(A) < u(B).
(2) Countably additive means that for a countable disjoint collection of sets in the o-algebra

{A,} C Asuch that A, N Ay, = 0Vn £m = pu (U An) =" u(4,).

Remark 2. Note that we can always disjoin sets. So, if {A,} C A is a countable collection of
sets, setting
By :=A,, B,:=A4, \ Uz;llAlw k>2,

1We are grateful to Mary Cosgrove Roberts for photographing and posting a koala picture to Facebook which
we have included to indicate the end of a proof.
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we have
UB, =UA,, B, CAVn = u(B,) < u(4,)
and by countable additivity and since UB,, = UA,,

p(UAR) = pn(UBR) = u(By) < Y p(An).
So, for not-necessarily disjoint sets, we have countable subadditivity.

Example Cook up some examples of o-algebras and measures on them. An easy one is to take
X = N and the algebra A = P(X). Note that all elements of A are either countably infinite,
finite, or empty. Define the measure to be 1 on a single element of N and 0 on the emptyset.
Prove that this satisfies the definition of a measure space. It was suggested that we could take
the analogously defined point measure on R and let A = P(R). Will this work?

Definition 1.3. A measure space is called o-finite if there exists a collection of sets in the
o-algebra which cover the whole space, each of which has finite mass.What is mass? That is
the notion of “volume” induced by the associated measure. So, the mass of an element of the
o-algebra is simply the value of the measure evaluated on that element. Mathematically for
A € A the mass of A is u(A) where p is our measure defined on elements of A. We call the
elements of A measurable sets. Why is the whole space always a measurable set? Why is the
emptyset always a measurable set? Now, the whole space need not have finite mass, but if it
does, then it’s said to have finite mass, in which case one can normalize the measure so that the
whole space has mass equal to one. Such a space is called a probability space, and the elements
of A are called events. The interpretation of the mass of an event is the probability that it’s
gonna happen.

1.1. Lebesgue Volume. The n-dimensional Lebesgue measure is the unique, complete mea-
sure which agrees with our intuitive notion of n-dimensional volume. To make this precise, first
we define a generalized interval and our notion of intuitive volume.

Definition 1.4. A generalized interval in R™ is a set for which there exist real numbers ax < by
for k =1,...n, such that this set has the form

I:{meR"7x=Zwkek, arp < or <z < or <b,k=1,...,n}

Above we are using e to denote the standard unit vectors for R™. The intuitive volume function
on R" is defined on such a set to be

vn(I) = [ (bx — ax).
Next we can extend our intuitive notion of volume to elementary sets.

Definition 1.5. An elementary subset of R™ is a set which can be expressed as a finite disjoint
union of generalized intervals. The collection of all of these is denoted by &,.

Exercise: Prove that v, is well-defined on &,.
What we shall call Lebesgue’s Theorem (note that this is not his only awesome theorem, and
his original statement may have been somewhat different) is the following.

Theorem 1.6 (Lebesgue). There exists a unique complete measure on R™ which agrees with
v, on &, and such that the corresponding o algebra is the smallest which contains &,.

To prove this we will require techniques from another great French mathematician, Carathéodory.
One unfortunate fact about measures is that they’re not defined on arbitrary sets, only on mea-
surable sets (remember, those are the ones in the associated o algebra). However, there is a
way to define a set function which is almost like a measure and is defined for every imaginable
or unimaginable set. This thing is called an outer measure.

Definition 1.7. Let X be a set. An outer measure p* on X is a map from P(X) — [0, 0]
such that
w (@ =0, ACB = u"(A) <u*(B),
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and
(UA) < i (An)

Whenever things are indexed with n or some other letter and are not obviously indicated to
be uncountable or finite, we implicitly are referring to a set indexed by the natural numbers
(which unlike in France start with 1, not 0).

Now we can finally prove something.

2. CARATHEODORY’S EXTENSION OF OUTER MEASURES

Proposition 2.1 (Outer Mass Existence). Let E C P(X) such that() € E. Let p be a map from
elements of E to [0, 00] such that p(§) = 0. Then we can define for every element A € P(X)

P ( mf{Zp ): E; € E,A € UE;},

where we assume that inf{()} = co, so that if it is impossible to cover a set A by elements of £
then p*(A) := 0o. So defined, p* is an outer measure.

Proof: Note that p* is defined for every set. Now since ) C 0 = UE; for all E; = 0 € E we
have that since p > 0

0<p*(0) <0 = p*(0) =0.

This is the first condition an outer measure must satisfy. Next, let’s assume A C B. (By C
we always mean C). Then, since any covering of B by elements of F is also a covering of A by
elements of FE| it follows that the infimum over coverings of A is an infimum over a potentially
larger set of objects (namely coverings) as compared with the infimum over coverings of B.
Hence we have

=inf{> p(E;): E; € E,A € UE;} <inf{)_p(E;): E; € E,B € UE;} = p*(B).

This is the second condition. Finally, we get to do some analysis here. Let € > 0 be arbitrary.
Since the definition of p* is by means of an infimum, if we have a countable collection of sets

{45} X,
then for each j € N there exists a countable collection of sets {E}}2, where each Ef € E,
such that
) ¢ k)
Aj) =Y plE)) — o = P4 QJ_ZpE
E>1 k>1

Well then, the collection {EJ’“} is a countable collections of elements of E which covers
UA;.
Therefore by the definition of p* we have
pUA) < D7 p(ER) <3 pr(A +—7e+2p
Jik=>1 j>1 j>1

Since this inequality holds for arbitrary € > 0, we may let ¢ — 0, and the inequality also holds
without that pesky €, and this is precisely the third requirement for p* to be an outer measure.

Now we can say what we mean for a measure to be complete.
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Definition 2.2. Let (X, A, 1) be a measure space. Then, there is a canonically associated
outer measure induced by p defined by

W (A) = it {3 u(E,), {E;} C A ACUE,}.
We say that the measure p is complete if, for each A C X such that
w(A) =0 = Aec A

2.1. Exercise Set 1.

(1) Prove that v, is well defined on &, for all n € N. Prove that &, is not an algebra. Give
a construction of the smallest algebra which contains &,.
(2) Given a measure space (X, A, u) and E € A, define

n5(A) = p(AN E)

for A € A. Prove that ug is a measure.

(3) Prove that the intersection of arbitrarily many o-algebras is again a o-algebra. Does
the same hold for unions?

(4) Let A be an infinite o-algebra. Prove that A contains uncountably many elements.

Theorem 2.3 (Carathéodory). Let p* be an outer measure on X. A set A C X s called
measurable with respect to u* <V E C X the following equation holds:

W(B) = (BN A) + 1 (BN AD). (+)
Then M :={A C X|A is u* measurable} is a o-algebra and u*|M is a complete measure.

Proof: Note that A € M = A® € M because (*) is symmetric in A and A°. § € M since
p*(0) = 0.
Next we will show that M is complete under finite unions of sets:
For A,B € M and F C X we get, by multiple use of (*):
pr(E) = p"(ENA)+p"(ENAS) = p"(ENA)NB) + p*((ENA) N BY)
+p (ENA)NB) + p*((ENA°)NB°).

Furthermore, we can write AU B = (AN B)U (AN B°) U (A°N B), which gives us

P ((ENANB)+p (ENA°NB) +p (ENANB®) > p*(EN(AUB))
Using this inequality in the above equation gives us:

W' (B) = w*(E N (AU B)) + *(E N (AU B)°)
This inequality is actually an equality, as ”<” follows from the outer measure axioms. Hence
AUB e M.
p* is finitely-additive: VA, B € M, ANB = 0 = p*(AUB) = p*((AUB)NA)+u*((AUB)NA®) =
p*(A) + p*(B)
Now we will show that M is actually a o-algebra: For {4;};en C M we can define a sequence
of disjoint sets {B;}jen C M fulfilling (J; .y 45 = U,;en By by:
By := A, By:= A2\A17 B3 := A3\(A1 UAQ)

Let us also define B, := (J'_, B;.

=1
So, we need to show that (J,;cy B; € M. For E C X:

WHNENB) Y (BN B, N B + 1 (EN By ByS) = w*(EN By) + p*(EN Bu_y)

Using p*(E N By,) = p*(EN By) 4+ p*(E N B,_1) inductively we get:

p(ENBy) =p (ENB,) + pu*(ENBy1) + p*(ENBy ) = .= p*(ENBy)
k=1

n
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Using this result we get:
p*(E) = p*(EN By) + p*(ENBS) = p*(EN By) + p*(EN BE)
k=1

Z (ENBg)+p (BN ( U ()
k=1

This inequality holds for any n € N. Taking the limit and using the outer measure axioms gives
us

pr(B) = 3 (B0 By) + (B (| B))
k=1

ECE@

(@
C8

> (BN (U Br)) + 17 (BN (

1 k

By))

k

1

Since p*(E) < p*(ENY)+p*(E\Y) holds for any Y C X, the above inequality is an equality:

(@
C8

pr(B) = p (B0 () Br) + 1 (E\(

1 k

By))

k

This shows that (J;-, Bx € M. Hence M is a o-algebra.

1

Now we want to show that p* |M is countably additive. Let {By}ren C M be pairwise disjoint
sets. Defining E := | J,-, By and using (**), we get

/L*(UBk):,u,* (*>* Z EﬂBk +,u @ ZM Bk >/J, UBk
k=1 k=1 k=1 k=1

(@:

(U B =Y i (By)
k=1

k

1

So p* |M is a measure. It is even a complete measure: For Y C X such that p*(Y) = 0 and for
arbitrary £ C X we have

W(E) < 5 (ENY) + i (ENY®) < (V) + () = i (E)
Therefore Y € M.

Homework: We have v,* defined von R". Carathéodory’s theorem shows that we get a
complete measure and c-algebra from it. Is this the Lebesgue measure £,, and M,? Prove
your answer.

To prove the Lebesgue theorem in an original way..... we will show that

(1) v,* on &," is a “pre-measure” which is o-finite. £," is the smallest algebra containing
En-

(2) Prove another extension theorem which will show that there is a unique extension of
vn ™ to the smallest o-algebra containing &, which is a measure.

(3) Prove completeness.
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3. COMPLETENESS OF A MEASURE

The following gives two equivalent definitions for completeness. This is why I couldn’t decide
which one to use.

Proposition 3.1 (Completeness Proposition). The following are equivalent for a measure space
(X, M, ). If either of these hold, then u is called complete.

(1) If there exists N € M with u(N) =0, and Y C N then Y € M.

(2) If u”*(Y) =0 then Y € M.

Proof:

So you see why I couldn’t decide which definition of completeness was correct: they both are!
First let us assume (1) holds. Then if Y C X with p*(Y) = 0, by the definition of p* for each
k € N there exists

{E:’i}ﬂzl - M7 Y C UnE»,’zy Z,U/(Ef;) < 2_k.
n
Well, then
Y CN:=n,U, Ef e M,
and since N C U, E¥ for each k € N, by monotonicity of the measure
1(N) < p(UnEE) < 27"k e N = p(N) =0.

By the assumption of (1) since Y C N € M and p(N) = 0, it follows that ¥ € M. So, every
set with outer measure zero is measurable (that’s what (2) says!)
Next, we assume (2) holds. Then if there exists N € M with ;(N) =0 and ¥ C N, then

YCUA]', Ay =N, AJZQVJZ2,
and {A;} C M. So, by definition of outer measure,
0<p*(Y)=inf... <> u(4;) = p(N) =0,

Consequently p*(Y) = 0, and by the assumption (2), Y € M. This shows that (2) = (1).
Hence, they are equivalent.

Theorem 3.2 (Completion of a measure). Let (X, M, u) be a measure space. Let N := {N €
M | u(N) =0} and

M={EUF|EcMand F C N for some N € N'}.
Then M is a o-algebra and 3! extension fi of p to a complete measure on M.

Proof:

First, note that every element of M can be written as itself union with ), and ) C § € N, so it
follows that every element of M is an element of M. Next, if {A,} ¢ M and {E,,N,} C M
such that

A, =E,UF, F,CN,ecN.
Then
N:=UN, €M, and p(UN,) <> pu(N,)=0.
Similarly, E := UE,, € M (why?), and we also have F' := UF,, C N. It follows that
UA, =EUF e M.
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Consequently M is closed under countable unions. What about complements? If A = EUF €
M with F C N € N then note that
(FEUFR)*=E‘NF°=((E°NN)U(E°NN°))NF°,
and since F C N = F*° D N°¢, the intersection of the last two terms is just £°N N¢, so
(FUF)=(E°NNNF°)U(E°NN°).

Since E,N € M = E°‘NN°®e€ M, and ESNNNF°C N € N we see that (EUF)® € M. So,
M is closed under complements. Hence, we have shown that M is a o-algebra which contains
M.

Next, we must demonstrate that p is a well-defined, complete, and unique extension of u. It is
natural to ignore the subset of the zero-measure set, so we define

(B U F) = u(E).
If we have another representation of EUF = GUH with G € M and F,H C N,M € N,
respectively, then

HEUF) =pE) < p(GUM) < p(G) = (GUH) < p(EUN) < p(E) = u(E).

Hence the whole line is an equality, and p is well-defined.
Now, let’s show that [ is really a measure. By definition, for £ C M

A(E) = p(E), = ) =0.
If {A,} = {E, UF,} C M are disjoint, then
A, NA,DE,NE, — E,NE, =0, Vn#m.
Consequently,

[(UA,) = p(UE,) = ZM(En) = Zﬂ(An)~

So, fi is countably additive. Let’s show that fi is complete. If Y € M with a(Y) = 0, and
Z C Y, then there is N € N such that Y € N with pu(N) = 0. Consequently we also have
Z C N with u(N) =0 hence Z = QU Z € M (with “E” =@ and F = Z C N € N). Therefore,
[i is a complete measure on M.

Finally the uniqueness. Let’s assume v also extends p to a complete measure. Consequently,
v(A) = p(A) for all A € M. Tt follows that the elements of A/ also have v-measure zero. By
the completeness proposition, all subsets of elements of A" must be elements of the o-algebra
corresponding to v, and conversely, all subsets of A" must be elements of M, and so presuming
the o-algebra corresponding to v is the smallest possible needed to complete p, it must coincide
with M.

ForY=FEUF € M,

and conversely

So, we’ve got equality all across, and in particular, v(Y) = ().

Proposition 3.3 (Null Set Proposition). Let (X, M, 1) be a non-trivial measure space, meaning
there exist measurable subsets of positive measure. Then

N ={Y e M:uY)=0}

is not a o-algebra, but it is closed under countable unions.
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Proof: If {N,} C N is a countable collection, then since M is a o-algebra,
UN,, € M.

Moreover, we have

p(UN,) < Zu(Nn) =0 = p(UN,) =0.
This shows that N is closed under countable unions. Why is it however, not a o-algebra? It’s
not even an algebra! This is because it is not closed under complements. What is always an
element of N7 The () is always measurable and has measure zero. Hence () € N'. What about
its complement? This is where the non-triviality hypothesis plays a role. There is some Y € M
such that u(Y) > 0. Since Y C X, by monotonicity

p(X)>puY)>0 = X =0°¢ N.

4. EXTENSION OF PRE-MEASURES

What seems an intuitive way to prove Lebesgue’s theorem is to use our notion of volume v,
defined on disjoint unions of intervals. This happens to be an example of something called
pre-measure.

Definition 4.1. Let A C P(X) be an algebra. A function pg : A — [0,00] is called a pre-
measure if

(1) u(®) =0
(2) If {A;} is a countable collection of disjoint elements of A such that
UA]‘ € A,
then

po(UA;) = > pio(4;).

The name pre-measure is appropriate because it’s almost a measure, it’s just possibly not
countably additive for every disjoint countable union, since these need not always be contained
in a mere algebra (which is not necessarily a o-algebra). However, Carathéodory can help us
to extend pre-measures to measures. First, we require the following.

Proposition 4.2. If g is a pre-measure on A and
o (V) i=inf{d> " po(A;) : Aj € AV5,Y C UA;},
then (i) p*(A) = puo(A)VA € A and (i) every set in A is pux measurable.
Proof: First note that pre-measures are by definition finitely additive since for A, B € A with
AN B =, then
AUB:UAJ', A1:A,A2:B,AJ:®VI]>2

We further note that finite additivity imply monotonicity for all elements of the algebra, so if
A C B are both elements of A, then

u(B) = u(B\ A) + pu(A) = p(A) = p(B) — u(B\ A) < pu(B).
The union is in A because it’s an algebra, and since pg(@)) = 0, the definition of pre-measure
shows that

po(AU B) = Z/U’O(Aj) = po(A) + po(B).
To prove (i) let E € A. If E C UA; with A; € A Vj, then let
B, :=En (A, \U'A)).
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Then
B, € AVn, B, NB,, =0Vn+#m.

Since the union
UB, =FE € A,
by definition of pre-measure,

po(E) = po(UBn) =Y po(Bn) < Y po(An),

since B,, C A,Vn. Taking the infimum over all such covers of E comprised of elements of A,
we have

o(E) < o+ (E).
On the other hand, E C UA; with Ay = F € A, and A; = (Wj > 1. Then, this collection is
considered in the infimum defining u*, so

pr (B) <Y po(4;) = u(E).

We’ve shown the inequality is true in both directions, hence p*(F) = po(E).
To show (ii) if A € A and E C X and € > 0 there exists {B;} C A with E C UB; and

S ho(By) < ' (B) +<.
Since g is additive on A,
pr(E)+e > po(BjNA)+po(BjNAY) = po(BiNA)+Y | po(BjNAS) > px(ENA)+px(ENAS).
This is true for any € > 0, so we have
pwx(E)>px(ENA)+px(ENA°) > px(E).

So, these are all equal, which shows that A satisfies the definition of being p* measurable since

FE was arbitrary.
Now we will prove that we can always extend a pre-measure to a measure.

Theorem 4.3 (Pre-measure extension theorem). Let A C P(X) be an algebra, po a pre-
measure on A, and M the smallest o-algebra generated by A. Then there exists a measure
on M which extends pg, namely

W= p* restricted to M.

If v also extends ug then v(E) < u(E)VE € M with equality when pu(E) < co. If ug is o-finite,
then v = on M, so p is the unique extension.

Proof: The existence of u follows from Carathéodory’s theorem. Note that the o-algebra in
that theorem must contain A, since all elements of A are p* measurable by the pre-measure
proposition. Consequently, the Carathéodory o-algebra, on which p* is a measure, contains M,
and therefore p* restricted to M is a measure since it must still satisfy the requisite properties
on M which is contained in the possibly larger Carathéodory o-algebra. We will investigate
when in fact these algebras coincide.

So, we only need to consider the statements about a possibly different extension v which
coincides with pg on A and is a measure on M. If £ € M and

E C UAJ', Aj S .AV],
then

v(E) <Y v(4;) =) mol4y).
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This holds for any such covering of E by elements of A, so taking the infimum we have
V(E) < px*(FE) = pu(F) since E € M.
If W(E) < o0, let € > 0. Then we may choose {A;} C A which are WLOG (without loss of
generality) disjoint (why?) such that
E CUA;,  p(UA) = pol(4; (E) +e=pu(E)+e,
since £ € M. Note that for
A=UA;, v(A) = lim v(ULA;) = nli_)rr;ozl:u(Aj) = nli_)rr;oz;uo(Aj) = pu(A).

n—o0

Then we have since £ € M,
u(A) = (AN E) + p(A\ E) = p(E) + p(A\ E) < u(E) +e

which shows that

WA\ E)<e
Consequently,

pw(E) < p(A)=v(A) =v(ENA)+v(A\E) <v(E)+ p(A\ E) <v(E) +e.

This holds for all € > 0, so

u(E) < v(E).
Consequently in this case u(F) = v(E).
Finally, if X = UA; with A; € A, po(4,) < ooVj, we may WLOG assume the A; are disjoint.
Then for £ € M,

E=U(ENA4;),

which is a disjoint union so by countable additivity

WE) = p(UENAj) =Y w(ENA) =Y v(ENA),
since E N A; C Aj shows that p(E N A;) < p(4;) < oo, so p(ENA;) = v(ENA;).

5. METRIC OUTER MEASURES AND HAUSDORFF MEASURE

In the following we will make a little detour and introduce metric outer measures. These are
outer measures defined on metric spaces with one crucial additional property. We consider:
metric space (X, d) and for A, B C X define

dist(A, B) := inf{d(x,y) : © € A,y € B}.
Define also the diameter of a set A C X
diam(A) := sup{d(z,y) : z,y € A},diam(0) := 0.

Definition 5.1. Given an outer measure p* on (X, d). Then p* is called metric outer measure
iff for each A, B C X we have

dist(4, B) > 0= p*(AUB) = u*(A) + u*(B).
Recall: A C X is p*-measurable iff for each £ C X
1 () = u* (B0 A) + 1 (B0 AC).

Denote by M(u*) the p*-measurable subsets. We now prove a Theorem due to Carathéodory
which states that the Borel sets in X are contained in M(p*). Recall that the Borel sets B(X)
is the smallest o-algebra generated by the topology of X (induced by the metric).
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Theorem 5.2 (Carathéodory). Let p* be a metric outer measure on (X,d). Then we have

B(X) C M(p*).
Proof:

Note that since M(u*) is a o-algebra (by Thm. 2.3) it is enough to prove that every closed set
is p*-measurable. So let F' C X be a closed subset. It suffices to show that for any set A

i(A) > W (AN F) + ' (A\ F).
Define the sets

A ={r € A: dist(z, F) > %}

Then dist(A, AN F) > 1, so since p* is metric we have

(+) WA F) + 1" (A) = i (AN F) U Ay) < p* (A).
cA
Then

ANF = A

since F' is closed (which gives Ve 4\ pdist(x, F') > 0) and (Ay) is increasing.

The main and last step in the proof is to calculate the limit in (4). If the limit is infinity there
is nothing to do. Hence assume the limit exists.

For this define a pairwise disjoint cover like this: By := Ay, Bs := Ay \ A1, B3 := A3\ A; etc..
Then we show that for [j — k| > 2 we have dist(B;, B;) > 0. This follows from the inclusions
fori>j+2

B; C A\(FUAifl) C A\(FUAJ‘+1).

But z € A\ (FUA,;;1) implies that there is a z € F with

1
d(z,z) > ——
Jj+1
hence
d(z,y) > d(z,2) — d(y,2) > > — —— >0
T xT,z) — ,2) > = — ——
v = Y g Jj+1

And thus dist(B;, B;) > 0.
This means we can apply the metric property (for even and odd indices) and by induction we
conclude that

W (U 32k1> = ZM*(B%%%
k=1 k=1

w* (U sz) = ZM*(B%)~
k=1 k=1

Because these unions are contained in As, the sums are < p*(As,). The values u*(Asg,) are
increasing and by assumption bounded. Hence both sums are convergent for n — oco.
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Therefore we conclude for any j
W(ANF) = p’ (U&)
i

=u” AjU U By,
k>j+1

o0

<A+ Y (B
k=j+1

< lm (A + Y i (By).
k=j+1
iy s
Since the latter sum goes to 0 by convergence we obtain
W(ANF) < Tim it (A,).
Together with (+) this yields
pH(A) 2 im gt (Ap) + (AN E) 2 p (AN F) + (AN F)

which is the desired inequality.
We let C denote a collection of sets which cover X. Then for each A C X we denote by CC(A) the
collection of sets in C such that there is an at most countable sequence of sets { Ey, }nen € CC(A)
such that

Ac | En
n=1
These are the countable covers of A by sets belonging to C.

Definition 5.3. i) Fix on the metric space a set function v: C — [0, 00| with v(0) = 0. We
define the following set function depending on C,v

(5.1) phe(A) = _inf " (D).

Dece() f=

Theorem 5.4. The measure given by (5.1) is the unique outer measure u* on X such that
1(A) S v(A4), AeC
and for any other outer measure i* with the above condition we have
ff(A) < pt(4), Ac X

The proof follows basically the same lines as the construction of Lebesgue outer measure and
is therefore omitted.
Given the same data as in the above definition we define for € > 0

C.:={AeC:diam(4) < ¢}

and assume this is a cover for X (i.e. each z € X is covered by a C € C with diam(C) < ¢).
Now define the measure depending on this cover as a special case of (5.1), in particular we set

pe (A) = e (A).
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As C. C Cu for € < € we have
prer(A) = pie(A).
Theorem 5.5. The limit pi(A) = lim_,o pf(A), A C X defines a metric outer measure.

Proof: The outer measure property is preserved under this limit (Exercise).
Let A, B C X be such that dist(4, B) > 0 and hence dist(A, B) > L for n > ng. Let § > 0 be
given and cover the union AU B with sets £}’ such that

WA(AUB) +6> S (B
" k=1
and such that for each k we have diam(E}) <
A or B and not both in the sense that
EiNA#0=ENB=0, E;NB#0=E;NA=0.

Denote by {E} C {E}'} the subsequence of sets such that Ef N (AU B) # ) for each k.
Define also the subsequences

E"(A):={E} :E}NA#0}, E"(B) :={E}: E} N B # 0}
and as already remarked E"(A) and E"(B) have no sets in common and together they yield
the sequence (E}')72 ;.
We can then write

%. Hence we have that the E} intersect either

ECEn"(A) EcE™(B)

Hence by exclusion of extraneous sets in the cover we can show that (for n sufficiently large) it
follows
pi(AUB) > i

n

It follows in particular that pg is metric.
A particular case of the canonical metric outer measure is the so-called Hausdorff measure.

Definition 5.6 (Hausdorfl pre-measures). Let (X, d) be a metric space, S C X,§ > 0 and
t € [0,00), then define the set function

i=1 =1

where the infimum is taken over all countable covers of S by sets U; C X with diam(U;) < 0.

Remark 3. e Setting v(U) := diam(U)* then H(S) = o, (S) is just a special case of
our canonical outer measure.
We therefore immediately know some things. First:

H!(S) = lim H5(S)

makes sense as a definition of outer measure and is called Hausdorff-measure.
We know that H?! is a metric outer measure 5.5, all the Borel sets are H!-measurable
2.3 and the H’-measurable sets form a o-algebra 5.5.
e If we consider the special case (R™,|-|) = (X, d) with the standard euclidean metric
then the Hausdorff measure H™ agrees for n € N (up to a scaling factor for n > 1) with
Lebesgue outer measure A" (Exercise).
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6. EXISTENCE AND UNIQUENESS OF LEBESGUE MEASURE

Theorem 6.1. There exists a unique complete measure on R™ known as the Lebesgue Measure,
which extends v, to the smallest o-algebra containing €, such that the extension on this o-
algebra is complete.

Proof:
To make an algebra containing &,,, in particular the smallest algebra containing €, it is neces-
sary to include compliments. Define

A={YCR"|Ye€eg,orIZee,st. Y =2
Claim 1. A is an algebra.

Proof:
(1) @ =[]z, 2l for x € R™. Notation: we use la,bl to denote either ]a,b|, [a,b], ]a,b] or
[a, b]. Notation which is unnecessary shall be simplified when possible.
(2) By definition, A is closed under compliments
(3) Let A,B € A. If A/B € ¢, then first consider the case where A, B are each single
intervals ie. A = [[la;, oI, B = [[1b;, 81 for a; < oy, b; < B;. For each i, if
Ibi, ﬂlI - Iai, OLZ‘I then note that
Iai, OéZI\Ibl, ﬁzI = Iai, bl]: U IBZ, aiI
If Ibl, ﬂzl ¢ Iai, OéiI, then either Ib“ ﬂzI N Iai, OéiI = @ in which case Iai, OélI\Ib“ ﬂzl =
Ia;, o1, or Ib;, B;1 N 1a;, ;1 # 0 so that
Iai,bil if b, < ai(: Bi > Oéi)
Iﬁi, o;lif a; < betai(:> b; < ai)

Iai, CVZI\IbZ, 61:[ =

In both cases Ia;, a;I\Ib;, B;1 is the disjoint union of intervals. Repeating for each
i =1,..,n gives A\B € ¢g,, and similarly B\A € ¢,. Note that AN B = []Iz;, ]
with x; = max{a;, b;}, y; = min{«;, 8;} (and should z; > y; then it is understood that
Ix;, ;1 = 0. Therefore,
AUB = (A\B)U(B\A)U(ANDB) € ¢,.
In fact, for A = []Ia;, ;1 € &, note that
A° =R™\A

=HI—oo,aiIUHIai,ooI

Allowing the endpoints z; and/or y; of Ix;, y;1 to be +oo, the same arguments for
A, B as above show that A°U B and A¢ U B¢ are elements of A.

k m
More generally, for A = |J I; € ¢, with I; ka Iy =0 and B = |JJ; € g, with
j=1 J =1
Jp r; lJm = () with end points possibly +o0, repeated application of the above arguments
m
shows that Iy UJ; € g, (I1 UJ;) U I € €,, and so forth. Therefore, AUB € ¢,,. So A
is closed under finite unions and hence A is an algebra.

Homework: Show that v,, is well-defined on A where

. 0, if a; = oy for some i
vn (| Hai, ou1) :=<
(H ) {H(ai —a;), else
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Claim 2. v, is a pre-measure on A.

Proof:

(1) vn(0) =0, by definition.
(2) Let {A;,}m>1 C A such that Li1Am €A A, kQ A = 0 then 3{I;}¥_, disjoint in A

k 00
such that J I, = U Am.

j=1 m=1

M M k
By definition, v,( U Am) = ZZ: On(Am) < v L:J I;) = Zvn(Ij)

m=1

-
~
I

-

So v, is a pre-measure on the algebra A. Note by the definition of A, it is the smallest algebra
which contains e,,. By the pre-measure extension theorem, since v, is o-finite on A, there exists
a unique extension of v, to a measure M on the smallest o-algebra containing &,,. Unique,

because R"™ = Lil[fM, M™ = Li1IM and vy, (Inr) = (2M)™ < oo for each M.

Canonically completing this measure to M by applying the completion theorem yields the
Lebesgue measure and the Lebesgue o-algebra, the smallest o-algebra generated by ¢,, such that

the extension of v,, to a measure with respect to this o-algebra is complete.

Remark 4. In the completion theorem, M is the smallest o-algebra containing M such that f
is complete, recalling

M={AcCX|IEEM,FCNeM,AEUF}
N={Y eM|uY)=0}.

This follows from fi is complete < VZ C X such that 3Y € M with a(Y) =0, ZCY = X €
M=VZC X with ZCY € M &€ M such that u(Y) =0= Z € M. Soif A C X such that
JE € M and F C NVM such that A = E'U F then F' must be i measurable. By definition of
the extension E is i measurable, which implies £ U F' must be i measurable. The o-algebra
for any complete extension of 1 must contain all such sets, therefore contains M.

6.1. Properties of the Lebesgue o-algebra.

(1) Borel sets are Lebesgue measurable. To prove this, it suffices to show that open sets
are Lebesgue measurable. So, let O C R™ be open. Then we will show that O € M.
First consider O = []]a;, ;[€ €, C M. For an arbitrary open set O, for each z € O
there exists ¢ € Q,e > 0 such that z € [[ |gm — &,¢m +[C O, g €Q, m =1,...,n.
Taking the union of all such intervals, namely those contained in O such that end-
points are rational is a countable union. Countability of course follows since Q™ C R” is
countable and Q is countable so a union of intervals with endpoints in Q™ is countable.
Therefore, O € M.
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(2) FEzercise: Prove B C M

(3) It is difficult to construct sets ¢ M, but actually there are many natural examples...
Exercise: Construct a subset of R™ which is not measurable. Recall that f: R® — R™
is “measurable” usually is understood to mean that VB € B™, f~Y(B) € M™. More
precisely, f is (R™, B"), (R™, B™) measurable. In general, f : X — Y is (X, A), (Y, B)
measurable if VB € B, f~}(B) € A, where A and B are o-algebras.

(4) n—1 dimensional sets have £™ measure 0. Note that by completeness, this implies that
lower than n— 1 dimensional sets have L" = 0. WLOG Y = {z1,..,2,} € R" | z, = 0}.

Y = [0,0]z] — o0, 00[" '= 1, (Y) = L(Y) =0

All subsets are then measurable and have measure 0.

7. HAUSDORFF MEASURES REVISITED
In geometric analysis it is useful to have a method for describing the size of lower
dimensional sets in R™, such as curves and surfaces in R3. - Gerald Folland
We have seen that all such sets have £3 measure equal to 0. So, £™ is too coarse for lower

dimensional subsets.

Definition 7.1 (Metric outer measures). On a metric space (X, p) we call u* a metric outer
measure if A, B C X and p(A, B) > 0 implies p*(AU B) = p*(A) + p*(B).

Proposition 7.2. Borel sets are always pu* measurable, for any metric outer measure.

Proof:

It suffices to show that closed sets are p* measurable because they generate B. Let FF C X be
closed. For A C X, we want to show that u*(A) = p*(ANF) + u*(A\ F).

For sets A with p*(A) = oo, we have

p(A) 2 (ANFE) + p* (A F) > p*(A)

which implies the equality. From now we assume p*(A) < co. Let
1
By —={z€ A\F:p(w,F)> 1},
n

so we obtain B, C Bp41 C ---. If x € A\ F, then noting that A\ FF = AN F*¢ and F* is open,
there exists n € N such that Bi(z) € F° and therefore p(z, F) > 1. So due to the definition
of B,,, we have x € B,,. Hence

UBncA\Fc B, = A\F=[]B.

n>1 n>1 n>1
For each n, p(By, F) > %, so by definition since (AN F) U B,, C A, we have
pr(A) > p (ANF)U By) = p* (AN F) + p* (By).

. Therefore it

1
n

This follows by the definition of metric outer measure because p(B,,, AN F) >
suffices to show that

1 (Ba) = w* (A\ F).

Let Cyp, := Bpt1 \ By If x € Cppq and p(z,y) < m then
1 1 1

F) < F —_——
oy, F) < p(z,y) + p(z, )<n(n+1)+n+1 -

Hence p(y, F) < % =y & By. So any y with p(z,y) < n(n1+1)
1

Therefore p(z,y) > eyl holds for all y € B, and for each z € Cp41. = p(Cpt1,Bn) >

is not in B,,, where z € Cj41.
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m. Then
W (Bogy1) > p(Cop UBog_1) = pu*(Cog) + p*(Bag—1)
> " (Cox) + 1" (Cop—2 U By _3)
k
> 2t (Cy) + (B,
=1
Also,
w(Bak) > p*(Cok—1UBag_g = " (Cog—1) + p* (Bag—2)
> p(Cop-1) + " (Cop—3U Bog_4)
k
> >t (Cooa) + pt(By).
=1

Now since B,, C A is true for all n, we get p*(B,) < p*(A) for all n. Then we obtain

k
pr(A) > > pt(Cyy) + p(By) and
j=1
k
w(4) > Zu*(ng,l) + p*(By) for all k.
j=1

As a consequence, > 72, p*(C;) converges and therefore 3°°2  1*(Cj) — 0 with n — oo. We
have

A\Fc |JB,=BiU|]JC.=B,U]Ch

n>1 n>1 k>n
Now back to pu*(A\ F):
WHANF) < p*(Ba) + Y 1*(Cy)
j=n

holds and it follows that
p (A\F) < lim inf p*(B,) < lim sup p*(B,) < u*(A\ F),

m—oo n>m M—=00 n>m,

since pu*(By) < p*(A\F) is true for all n. Therefore F is p*-measurable.

Definition 7.3 (Hausdorff measure). Let (X, p) be a metric space, p > 0 and § > 0. For
ACX, let

o0

H,s(A) :=inf Z(diam(Bj))p cAC U B; and diam(Bj) <
j=1 j=1
Recall and define

diam(B) = sup p(z,y) and inf{0} = +oc.
z,yeB

Now define the Hausdorff measure
H,(A) := lim H, 5(A).
5—0

Remark 5. (1) If one requires the B;’s to be closed, the result is the same because

diam(B;) = diam(B;).
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(2) If one requires the B;’s to be open, the result is the same because we can replace B;
by
Uj={re X :p(x,Bj)<e 27771} fore>0.
Thendiam(U;) < diam(B;) + € - 277 and therefore
> (diam(U;))? <> (diam(B;) + €-277)P < Y "(diam(B;))? + c(e),
j=1 j=1 j=1
where ¢ depends only on p and e. We have ¢ — 0 as ¢ — 0. Hence we get the same
result in H, 5.

(3) The intuition is the following: if p € N and A is p-dimensional, then the amount of A
contained in a region of diam = r” should be proportional to rP. This is because a ball
in p-dimensional space has volume proportional to r?. We’ll see more about this!

(4) We need to let the diameters — 0 to capture irregularly shaped sets!

Ezample 7.4. Let A, = {(z,sin(mz)) : |z| < 7} C R

It is diam(A,,) < (4 + 472)z for all m. If we didn’t take § — 0, we would cover A,,
by A,, and measure (p = 1) would be bounded. We need ¢ << % before Hy 5(Anm)
actually measured the length, which diverges to infinity as m — oo.

Proposition 7.5. H,, is a metric outer measure.

Proof:
We will use the outer measure Proposition 1 (Outer Mass Existence). Observe that H,, 5(0) = 0,
because diam(@)) = 0. Therefore as defined, Hj, 5 is an outer measure. We now want to carry

this to H,.

If p(A,B) >0 and AU B C |JC,; such that diam(C;) < ¢ < p(A, B) for all j, then
CjﬁA#@éCjﬁB:Q], CjﬂB#@@C]‘ﬁA:@
= Let Dj:Cj. = Let Ej:Cj.

We have A C |UD;, B C JE;, and
> diam(Cj)P =Y " diam(D;)” + > diam(E;)? > H, 5(A) + H, +(B)
for all § < p(A, B). Now taking the infimum, we have
Hy(AUB) > Hy(A) + H,(B).
Next we will show that H,, is also an outer measure. This will imply the inequality
Hy(A) + Hy(B) > Hy(AU B),

and so combined with the reverse inequality shows that H, is then a metric outer measure.
(1) Note that H,(0) = 0.
(2) If A C B then Hp5(A) < H, 5(B) for all § > 0, which implies H,(A) < H,(B).
(3) We have
Hys((JA) <> Hps(Aj) ¥5>0.

On the right side we can simply replace Hy, 5(A;) by H,(A;) because Hy, 5 T Hp as 0 | 0.
So, for any § > 0

H,s(JA)) <D Hu(4)).
Letting § | 0 on the left, we now have the countable subadditivity (clever no?)
HP(U Aj) < ZHP(Aj)‘

This completes the proof that H,, is an outer measure, and the above arguments also
show that it is a metric outer measure.
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Proposition 7.6. H, is invariant under isometries. If f, g : Y — X satisfying p(f(y), f(z)) <
Cp(9(y),9(2)) Yy, z €Y, then Hy(f(A)) < CPHp(g(A)).

Proof:
Let I : (X,p) — X be an isometry. If A C U E]7 diam(E;) < ¢ Vj then I(A4) < U I(E)

diam(I(E;)) < § Vj. This implies that H, s (A) H,s(I(A)), taking 6 — 0 then gives H »(A) =
H,(I(4).
Let €, >0, A CY. Assume g(A4) C 'UlBj such that diam(B;) < Zv; and 3 diam(B;)P <
= Jj=1
H,(g(A)) +¢e. Then for any y € A, there exists j such that g(y) € B; = y € g~!(B;). Then
F(y) € f(g~Y(B;)) =: B, therefore f(A) C ,°u°lBj.
Jj=
By hypothesis, Vf(y), f(z) € Bj, p(f(y), f(2)) < Cu(g(y),9(2)). By the definition of By,
Ju,v € Bj such that f(y) = f(g~ (v)) € f(g7'(By)) and f(2) = f(g7(v)) € f(g~(By))). We
have
. Ccé
Cyo(u,v) = Cy(g(y), 9(2)) < Cdiam(B;) = = 1)
So Hy 5(f(A4)) < > (diam(B;)?. We also have
j>1
(diam(Bj))? < CP(diam(B;))? = Z (diam(B;))? < sz (diam(B;))? < CP(Hp(9(A))) + ¢
Jj=1 j>1

Since this is true for all €, we have that H,(f(A)) < CPH,(g(A))

Proposition 7.7 (H-Dimension Proposition). If H,(A) < oo, then Hy(A) = 0 Yq > p. If
H,(A) >0, then Hy(A) = o0 Vg < p.

Proof:
For the first statement, assume H,(A) < oo. Then V§ > 0, 3{B,};>1 with A C flej,
j:

diam(B;) < ¢ and Hy 5(A) < > (diam(B;))? < Hp(A) + 1. If ¢ > p, then

A) < Z(diam(Bj))q = Z(diam(Bj))p+q_p < Z(diam ))POTTP < §TP(HL(A) +1) — 0

as 6 — 0. Hence Hy;(A) = 0. Then second statement is the contrapositive argument, hence

H,(A) > 0 for some g > p gives H,(A) = oo.
Let A C X. By the above H-Dimension Proposition,
inf{p > 0| Hy(4) = 0} = sup{p > 0| Hy(4) = 0}
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This defines the Hausdorff dimension of A.
Theorem 7.8. There exists a constant ¢, such that H,, = ¢, L,
To prove this will require some more work and theory.....

Definition 7.9. Let v and p be measures on (X, M). Then v is absolutely continuous with
respect to p and we write v << p if ¥(Y) = 0 VY € M with pu(Y) = 0. We say that p and
v are mutually singular and write pv if there exists B, F € M with ENF =0, FEUF = X,

w(E)=0,v(F)=0.
Proposition 7.10. H, << L,, and L, << H,.

Proof:
First, we consider I = [[la;, b1, I; := b; — a;. If any I; = 0 let’s WLOG assume that I;, ...,
are all non-zero and l4+1 = ... = [, = 0. Then Ve > 0, we can cover an interval of length L by

k
% balls (one-dimensional) of radius €. Similarly, we can cover I by 1:[1% balls of radius . It
follows that

k

Z _ n—kon
3(25) el |

i=1

Vo <e,H,s(I) <

u’:];v

§—>O:Hn(1)—0.
If [; = 0 for all ¢, then I is either a point or the empty set which both have H, = 0. Finally, if
for all 7, I; # 0, then we can cover I by ]:[ll;’ balls of radius €. Then

n h
V6 > e, H, 5(I) < HS(Q‘W =2"L,(I)
=1

If £,(I) =0, then H, s = 0 which implies that H,(I) = 0.
If £,,(A) =0, then H{I }j>1 such that A C U I; and, for a fixed € > 0, > L,(I;) < 57. Then

i>1
) < ZH ) < 2”Z£

7>1 j>1

Hence H,,(A) = 0. Therefore H,, << L,,.

Now, we want to proof the second statement of the proposition, i. e. £, << H,,.
Therefore, let A C R™ such that H,,(A) = 0, where A € B. Then, since H,, s < Hn,

My 5(A) =0Y5 >0

= 3 a sequence {B,};>1, which is closed in R", such that A C U Bj and )" (diam(B;))" < ¢,
j=1 j>1

where £ > 0. Note that for z € B, p(z,y) < §; = diam(B;)Vx € B;. So we can fix z; € Bj,

and we get B; C Bj, (z;).

So we have

L, (Bj) < Ln(Bs, (25)) = wnd}
where w,, = Vol (B1(0)) denotes the volume of the unit ball with radius 1 (around zero).
Alltogether, we get
ﬁ (35 x]

€ > Zdiam(Bj)" :ZT Zﬁ

j>1 i>1 "1
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o0
and since A C |J we get
j=1

1 1
e> w—nz,cn(Bj) >—L,
7>1

Letting e | 0 = £,(A) =0.
Proposition 7.11. The volume of the unit ball in R™ is

272
n-I(

1
/r”_l drdo
0

wy, = Vol (B1(0)) =

Our goal is to compute

S1(0)

Proof:
We split the proof into four steps:
(i) First, we claim that

/e*’r‘zﬁdx =1.

Rn
Note that I,, = (I;)™ by Fubini-Tonelli. Therefore, I,, = (I3)* and
2m
I = /6_”27' drdé

0
0

=27 - /e_”2r dr
0
—nr? o
e
= 2 .
0
=1

é[lz\/EZIandIk:1Vk}€N.
(ii) Let

I'(s) = /ts_le_tdt
0

for s > 0 (extends to C). Then

(7.1) I'(s+1)= /tse*tdt = [-t%e7"] - / —e tst*Tldt = 5 - T'(s)
0 0

Applying equation 7.1 to the natural numbers, one gets

T(k)=(k—1)! VkeN

21
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and
1 1 3 1

3) = (k=)= 3)T(3)

Question 1. But what is I'(3)?

T'(k+

By definition, first of all it is

(7.2) tretdt

Il
oy

-

Let s = t2, ds = Lt72dt, t = s2, 2ds = t~2dt. Then we get F(%) = [e"2ds. Let

o—y

l\')\»—t

furthermore u = T ,v/mu = s. Then, 7.2 can be simplified to
I
1“(5) =2 [ e ™ VTdu

0
o0

= / e ™ /rdu

=Vrl =7

Therefore, I'(3) = /7.
(iii) Now, we want to compute o, the area of S1(0). First, we know

o0 oo
1= /e‘”'””‘2 dx = / /e‘”2r”_1 drde = an/e_mzr"_l dr
Rm S1(0) O 0
Letting s = r2m, one gets ds = 2rndr, and therefore
o0 n—1
On _s(S\ =z ds
RO
21 ] m (ﬂ)z
: s % ds
Since 22 =7, 5= = dr.
s r
Now, we have
oo
On _ 91 On n
1=—"" [ e ssn/271qs = I'(=
27r~7r%_%/ 2rn/2 <2)
0

on/2

= Op — @
(iv) In this step, we want to compute w,.

/ dx = Vol (B, (0 //" ldrda—an/ - ldr—[n} =0,
n n

B1(0) S1(0)

Therefore, we have w,, = 737127(2), which finishes our proof.
2

Corollary 7.12. Vz € R" and r > 0, the area of S,(z) is 7" 'o, and Vol (B,(x)) = w,r".
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Proof:

Analogously for B,.(z).

/ do = / do = / r"ldo =r" "o,
Sy (z) 5,-(0) 51(0)

Theorem 7.13. The relationship between Hausdorff and Lebesgue measures in non-negative
integer dimensions restricted to Borel sets is as follows.
(i) Ho = counting measure

(i) Hi = L4

(iii) Hy = 2E2 forn > 2
Proof:

(i) Exercise.

(i)

(iii)

For n = 1, note that for any interval I, L, (I) = diam([). For any § > 0, I = (a,b), where
(+,) denotes an interval, which is either opened or closed, can be covered by intervals
(a + kd,a+ (k +1)d). For k =0, one gets I’TT“ =1, and therefore

0-(b—

% —b—a=L(])

= H(I) < Li(I) = Hip-a(I) < Hi(I), which we get by covering I by I. = H.(I) =
L1(1).

Since intervals generate B, we get = Hi|g = L1]|5, because H; and £; are both measures
on B. Alternatively, apply pre-measure extension Theorem to Hi|4 = £1|4. Since R is
o-finite, we also get H; = £1 on B.

For n > 2, note that H,(B;) > Hpr(By) = (2r)" =2"r" =2"L,(B,)
= WnHa(Br) > £ (B,) for any ball B, C R™.

Let € > 0. By definition of £}, 3 symmetric intervals {R;} such that

Ln(Br) =Y Lu(R;)—¢

H, s(I) <

1
Wn,

where B, C | Rj, diam(R;) < 2r. Furthermore, 3{A;};>1 C &, such that all are
i1

n m; o .
finite and B, C |J Aj, and since A; = |J I} each I can be choped into finitely many
j=1 k=1

symmetric intervals. In particular, B, C |J A; and
j=1
Ln(Br) =Y La(A)) —e=) Ln(R;)—¢
Therefore, we get | JA; = JR;.
If R; has side length [;, then diam(R;) = (X7 12)7 = n3l; = L, (R;) = 17 = Sl

J na

£.(B,) > Z(‘“a\“}fff))n s Hus(Br)

nn/2

Because we can make diam R; as small as we like, we can let 6 | 0. If then also ¢ | 0, we
get
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The same argument shows VA € B with £,,(A) < oo the following inequality
Hn(A)
nn/2
Let 6 > 0. Claim: 3 balls {Bjk} with diamBj < § such that £, (R; \ U7 B]k) = 0 and
BN BY = () Vk # k'. Then

Wp, . n Wn,
Ln(By)+e>Y Ln(BY) = o > diam(Bf)" > 27Hn,é(U BY)
7,k

(7.3) Ln(A) >

Claim and 7.3 let us conclude

= L.(Jr\UBH=0=mn.Rr,\UBY
7.k

= H,s(UR;\U Bjk) = 0 and therefore also H,, 5(|J B;?)—i—Hn,g(U R\U Bf) =H,s(UR;j)
Hy5(UB}) = Hns(UR;) > Hy 5(B,). Therefore, we get

W, W,
3,61 0=L,(B,) >w,/2"H,(B;) > L,(B,) = L, = H, on balls = generate on B.

To complete the proof relating Hausdorff and Lebesgue measures on the
Borel o-algebra for dimensions in N, we require the following, which may already be clear, but
we include for completeness.

Claim 3. For any interval I C R™, there exists a series {B;};>1 such that

(1) Each Bj is a ball in I.

(2) It is BN By, =0 for all j # k.

(3) We have L,(I \UB;) =0 (and therefore L, (I) = L, (U Bj))-
Proof: )
First note that £,(I \ I) = 0. So without loss of generality we can assume that I is open.
For x € I, there is 6 € Q,0 > 0 such that Bs(z) C I. Also there exists ¢ € Q™ such that
|z —q| < 6-1075. This implies for every y with |y — q| < (1 — 1079)4,

ly—a[<ly—ql+|x—q/<é = yeBs(x)Cl
So we have
By := B1_10-¢)s(q) C I

For N > 1 and z € I, it is either = € UkN:1 By, or not. We are assuming { By} C I are disjoint
balls with rational radii and rational centers (centers are elements of Q™). If x € Ufcvzl By, we

consider x € T\ Uszl By.. Note that this set is open. So, if there exists x € T \ U,Ile By, then
the same argument shows that there is a new ball,
N

z€ ByjiCI)\ U By
k=1
with the center and radius of By, rational (same argument as above). Then we note further
that the set of balls
{Bs(q): 6€Q, andqgeQ"}
is countable. Consequently, we require at most countably many of these balls to ensure that

Ic|JBr and L,(By\Bi) =0forallk = L,( J(Bk\ B)) =0.
k=1
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So we get

Lo(I) = Lo(In|JBr) + La(I\|UBk) = Lo Br) + Lo (U Br \ Br) = Lo Br)-

8. SELF-SIMILARITY AND HAUSDORFF DIMENSION

Definition 8.1. For r > 0, a similitude with scaling factor r is a map S : R™ — R" of the form
S(x) =rO(x) +b

where @ is an orthogonal transformation (rotation, reflection, or composition of these), and
beR™ If S = (5, S,) is a family of similitudes with common scaling factor r» < 1, for
E C R™ we define

S%E)=E, S(E)= 6 S;(E),  S*E)=S(S*1(E)) for k > 1.

We say that E is invariant under S if S(E) = E.
Lemma 8.2. If S(E) = E, then S*(E) = E for all k > 0.

Proof:
Itis S(E) =, S;(F) = E and also

j=1
m

Jj=1

Cs

.
Il
-

By induction we have S*(E) = E for k > 2.
But what does that mean?

Well, the scaling factor r is less than one, so applying each S; spins/flips/shrinks and slides E.
Hence E looks like, for each k, m* copies of itself which are scaled down by a factor of 7*. If
these copies are disjoint or have little (negligible) overlap, E is “self-similar”.

Example 8.3. Let 8 € (0,1) and Iy = [0, 1]. Now define

Bla,b) = (a;rb—ﬂ<b2a),a;rb+ﬁ<b2a>>.

Let I := I\ ng. This is closed and the union of two intervals, written I} = U? 1 Ijl Then
we define

2
L= I;\ BI},
j=1

12

which is a union of two disjoint unions of two closed intervals. Again we write I = U i1 I

In general we write and define

2k 2k
L={JIf and I =] I\ BI
j=1

=1
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As defined note that
InD>5LD...D1x DIy

are a sequence of nested compact sets in R which is complete. Consequently,
ﬂ[k = lim I} =: Cj

k—o0

is a compact subset of R. Note that
Li(Io) =1, Li(L) =(1=B)Li(lo), Li(Te+1) = (1 - B)L1(Lr),
and so
L1(Cp) = lim (1-pB)* =0,
k—o0

since B € (0,1). Note that more generally, one can let 8 vary at each step, so that

2
L=1I\plo=J 1},

j=1
and in general
2k
Iy = J I\ Bed}.
j=1
Similarly we have nested compact sets and so
C := lim I is a compact subset of R.

k—oc0
This is known as a generalized Cantor set. The Lebesgue measure
£:(C) =[] =B
k>0

Now, let’s see that when the scale factor 3 is constant, the Cantor set Cj is invariant under a
similitude. Let

§:=(81,8), Si(x):=pz, S(zr)=pz+(1-7p).

Then we compute

S(lo) = S1(1o) U S2(lp) = [0,/ U1 — B, 1] = I1.
Analogously we have

S(h) =1 = S*(Iy), Ir41 =S (1Lo).

So, since each S; is continuous we have

S(lim S*(Iy)) = S(Cp) = lim S*+1(Iy) = Cs.

k—o0 k—o0
Consequently we see that Cjg is invariant under the family of similitudes S = (57, S2).
Lemma 8.4. Let A C R™. Then we have dimg(A) < n. More generally, if A C B, then
dim(A) < dim(B).
Proof:
If AC B, and Hy(B) =0, then H,(A) = 0. Therefore
dim(B) = inf{p > 0|H,(B) = 0} > inf{p > 0|H,(A4) = 0} = dim(A4)

= dim(A4) < dim(R™). We can write the euclidian space R"™ as R® = |J B,,, where B,, are
m>1
balls of radius m centered at the origin. For p < n,
Hp,5(Bm) = inf{> _ diam(E;)?|By, C | J E; with diam(E;) < 6}
J J
We have proven that

H,(B,,) = cp Ly = cpym™w,.
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We can conclude, that Ye > 0,38 > 0 and {E;},>1 C R" such that diam(E;) < ¢ < ¢,
B, CUE and Zdlam( i) > Hy(Bp) —¢.

W.L.O. G we may assume ¢’ < 1. Let §; := diam(E};). Then we have §; < § < ¢’ < 1. Let
q:=mn—p. Then % > % > 1 and therefore

1
> —
09

mofé‘ =

Thus, we get
dost=) sre :Z&y5 %Z = Zdiam(Ej)" > %(Hn(Bm)—g)
J J J J

The RHS tends to oo as 6 | 0 = Hp(By,) = oo.
= Vp <n, Hy(By,) = o and H,(B,,) = ¢c,m™w,, < co. Hence, sup{p > 0|H,(B,,) = oo} < n.
For p > n, we can show that H,(B, ) = 0 using the same argument. We have

P _ n+p—n P—n -
PILED IS BUL D DL
J J J J
since each J; < d. Pulling the constant factor 6~ out front, we have

> <Y 68 < 6P Hy(By) — 0 as 61 0.

Homework: dim(R") = supdim(B,,) = sup{n} = n. (Proof given in remarks below).

Remark 6. o
(i) (PK) One can also use H,(A) > H,(A) for ¢ > p to simplify the proof.

(ii) Since we have already shown

dim(| J E;) > dim(E;) VjeN

we get
dim(U E;) > supdim E;
: J
J
Now, if ¢ > sup dim(E;), then we get the following chain of implications

Hy(E;) = 0vj = Hy(( JE;) <) Hy(E;) =0
J J
= dim(U E;) <q VYq>supdim(E};)
: J
J
So the Hausdorff-measure is logical because it sees the maximal “fatness” of the union of
sets.

8.1. Subsets of R".

Lemma 8.5. Let E C R" such that dim(E) < n. Then E= 0.
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Proof: If E # 0, then there Ir > 0 and = € FE such that B.(z) C E. = dim(E) >
dim(B,(z)) =n

Sowe get n >dimE >n=dimFE =n.
Lemma 8.6. Let E C R™. If dim(FE) > 0, then E is uncountable.
Proof: If E is countable, then E = Je;, where e; € R™ is a point. Then we get
J
0 < dim(FE) = supdim({e;}) = sup(0) =0
Since {e;} C Bs(e;) V9 > 0, Vp > 0 Hp 5({e;}) < (2)P, which tends to 0 as d | 0.

Therefore, Hy({e;}) = 0¥p > 0.

Remark 7. The Hausdorff Dimension of a subset £ C R” is the same if we consider E as a
subset of R™ for any m > n via the canonical embedding (R™ +— R™ x {0}. In this sense,
if we have a set E which naturally lives in k-dimensions, if we view the set E as living in 10
zillion dimensions, the Hausdorff dimension of E remains the same. This is simply because
the Hausdorff dimension, which is determined by the Hausdorff (outer) measure is defined in
terms of diameter, and the diameter of sets does not change if we embed the sets into higher
dimensional Euclidean space. That is another reason the Hausdorff dimension is “a good notion
of dimension,” because it is invariant of the ambient space.

Similitudes are finite families of maps of the form r - O(x) + b, where O(z) is an orthogonal
transformation, and b is a vector in R™. These are therefore affine linear maps. We would like
to understand how similitudes and invariant sets under similitudes relate to Hausdorff measure
which motivates the following.

Proposition 8.7. Ifk <n, A C R¥ and T: R* — R" is an affine linear map, then Hy(T(A)) =
T(T)Hi(A), where T(T) = \/det(M*M), Tx = Mz +b and M* = M7T.

Proof: First note that Hj is translation invariant because Hy(A + b) = Hy(A) since A C
UE; & A+bC |J(E; +b) and diam(FE;) = diam(E; +b). If n = k, then
J

Ho(T(A)) = 0 Ln(T(A)) = e /T .

ALy, = cn / T(T)dL,
A

(Caused by the translation invariance, we may assume b = 0.)

=c,T(T)L,(A) =T(T)H,(A)
If k < n, then let R be an isometry of R", such that
R: T(R*) - R* x {0} = {y € R"|y = Y < y;e;j,y; = OVj > k}

Note that Tx = Mx + b. Since M is k x n, Mx is a linear combination of the columns, and
these columns are all contained in R*. Consequently the span of the columns has dimension at
most k, and therefore the image MR* +b has dimension at most k. For this reason there exists
an isometry R of R™ (a change of coordinates composed with a translation) which maps T'(R*)
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to the canonical embedding of R* in R™. Now, to reduce to the case in which we map between
the same dimensional Euclidean space, let ®: R™ — R* be the orthogonal projection,

n k
@(Z yiei) = Z Yi€q

and let S := ® o RoT: R* — RF.
Note that we assumed b = 0. Therefore, Tz = Mz = TRF = MRF.
We can write R = Uz, where U is unitary. Thus, ® = [§;;]i=1,. kj=1,..n-
By the first case,
Hi(S(A)) =T(S)Hi(A)

and

T(S) = /det(S*S) = y/det(® o RoT)*(®o Ro T)

= \/det(MU[5,5]7 [6,]UM) = Vet M*U*UM = Vet M*M
=T(T)

We have used the fact that U is unitary and therefore U « U = I.
8.2. Ingredients: Useful analytic tools.

Lemma 8.8 (Urysohn-light). Let (X, p) be a complete metric space and A, B C X non-empty,
closed sets with AN B = (). Assume that either A and B are both compact or that A and B are
at a positive distance apart. Then 3f € C(X) s.t.

fla=0 flp=1

Proof: First we know that the distance between A and B is finite because Jda € A,
be B p(A,B) < pla,b) < oo.

In the case that A and B are compact, if they were at a distance of zero, then we would have
sequences p(an,b,) — 0 for {a,} C A, {b,} C B = p(a,,B) — 0. By compactness which
implies sequential compactness, we may assume without loss of generality that a,, — a € A and
b, — b € B. Then by the triangle inequality,

plan,b) < plan,by) + p(bp,b) =0 = a, b = a=be ANB,

which contradicts the assumption that A and B are disjoint. So in all cases there exists § > 0
such that p(A, B) = 0.
Let

U ={xeX|p(x,B) > (1—-r)d}, re(0,1), U;:=X,
and

f(z) :==inf{r € (0,1]| z € U, }.

Note that f(x) is well defined because it’s an infimum and defined Vz € X since every x € Uy.
If x € B, then p(z,B) =0
=Vre(0,1)is p(z,B) < (1 —1)¢
= f(x) =1 because z € U; = X but not in U, Vr € (0,1).

If x € A, then p(z,B) > §
=Vr>0,is p(z,B) =2 (1-r)d = zeU, Vre(0,1].
= f(z) =0.
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We need to show now that f € C(X). Let x € X. If z,, — z, then note that this means
p(xn, ) = 0. We estimate

p(z, B) < p(x,2n) + p(Tn, B),  p(xn, B) < p(zn,z) + p(z, B),
and therefore
1p(2n, B) — pl(, B)| < plwn,7) — 0 as n - .

It follows that p(z,, B) — p(z, B) as n — oo. Since B is closed, p(z,B) =0 < x € B. In
this case, since z,, — =,

p(xn, B) < p(an,z) -0 = for r € (0,1)
there exists N € N such that for any n > N,
p(zn,z) < (1—1)0 = V' <,

p(xn, ) <(1=r)¥d<(1—7") = z, €U,

and therefore

f(zp) > r¥n > N.
Letting r — 1 shows that f(z,) = 1 = f(x). If z ¢ B, then first we assume p(z,B) > 0 =
f(z) =0. Since

p(zn, B) = p(z, B),
for every r € (0,1) there is N € N such that for all n > N,

p(xn,B)>(1—-71)0 = f(z,) <.

We can let # — 0 which shows that f(z,) — 0 = f(z). If on the other hand p(z, B) < 4, then
there is some r € (0,1) such that

plz,B) = (1 —1)d.
It follows from the definition of f that
fl@) =r.

Without loss of generality we may assume that, since p(x,,, B) — p(x, B) we have p(z,,B) =
rn, < 0 Vn. Consequently, we also have

flan) =rn = 1= f(2).

Therefore, for any sequence z,, — x € X, we have shown f(x,) — f(z) and f is consequently

continuous.
We require Urysohn’s Lemma (at least on metric spaces; it holds in the more general setting of
a normal topological space under the assumption that the sets are closed and disjoint) to prove
one of Riesz’s Representation Theorems.

Theorem 8.9 (Riesz Representation for C.(X)). If 0 < I € C.(X) = 3 measure p on X
s.t.

1) = [ £

and Borel sets are 1 measurable.



DYNAMICAL GEOMETRIC MEASURE THEORY 31

Proof:

Write f < U if U open, f € C.(X), 0< f <1, and supp(f) C U.
(Rmk: f € C.(X) < supp(f) € X)

w(U) :==sup{I(f)| f < U}, u(0) := 0 defined for U open.

This is a non-negative set-function with p(@) =0

make an
= outer measure.

w*(E) = inf{u(U)| E C U, U open}
Note: Urysohn gives existence of such f
p(supp(f),U¢) >0 =3f=1on K €U, f =0 on U".

If p(A, B) > 0 then p*(AUB) = inf{u(U)] AUB C U,U open}
W) = sup{I(f)] f <U > AU B}
>sup{Il(f+g9)=I(f)+1(g)| f<XVDA g<WDBVNW =10}
— u(V) + (W)

Taking the infimum over V and W which contain A and B respectively,

= u(U) = inf{u(V)|V open, A C V} + inf{u(W)|W open, B C W} = p*(A4) + p*(B).
Next taking the infimum over U, it oger U pw(AUB) = p*(A) 4+ p*(B) > p* (AU B)
= u* is a metric outer measure.

We have proven that all B are measurable V metric outer measure.

= B is p* measurable

To show I(f) = [ f du Vf € C.(X), we first show
w(K) = nf{I(f)| f € Co(X), f2xx} VKEX.
(Note: [ xx dpu = p(K) by def.)

Let U, := {x| f(z) > 1 —¢} for such an f € C.(X), f > xk- U: is open.
Ifg<U. =(1—-¢e)tf-g=>0 :I((l—s)_lf—g) >0

= (1-¢)7'I(f) 2 I(g)

= uK) < plU:) < (1-¢)7'(f)

KEUE inf over g
el0
= w(K) < I(f)
On the other hand for U open with U D K, by Urysohn
JfeCo(X)st. f2xrxand f<U
= I(f) < p(U) (by def. of ).
w(K) =inf{u(U)| U > K,U open}
= u(K) <I(f) <pU) YU openU DK
inf on S
B (K) < I(f) < p(K)
= u(K) =inf{I(f)| f € Cc(X), f>xx} VK CX.

It is therefore enough to show
1) = [ £ dufor 1 € Co(X,0,1)

since C, is the linear span of such f, and both I and the integral [ du are linear functionals
on C..

For Ne N, 1<j <N let K; :={z| f(z) > %} and Ky := supp(f).
Then note that
KioDKiDKyD....
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Define
0 ifx g K;_
f](x) = f(l’) — (];[1) if x EKj_l\Kj
+ ifz e K;
So defined, f; vanishes on K7_;, and on Kj, fj = i , whereas on K;_; \ K, since
j -1
< = =0 1/N.
N =< N <fi<1/
Consequently,
(8.1) N7k, < fj < N'xk,_,
1 1
(82) = K. fi dp < Gu(Kj-1)-

If U is open and U D K;_1, then

ij =< U,
because the support of f; is K;_; which is compactly contained in U. Therefore, by the
definition of p(U) as the supremum over all such f;, we have

I(f;) S N“1u(U).
Now since for a compact set (which we note K; is) we showed that p(K) is the infimum over
I(f) for all f € C. with f > xk,, by (8.1)

1 _
FHEG) < I(f;) < N7Hp(O).

Taking the infimum over all open U which contain K;_; as in the definition of ;1 we then have
1 1

(3) () < T(f) < ~on(E ).

Note that so defined
N
F=>"f
j=1

so summing over (8.2) by linearity of the integral,

L N | N2
= NZM(K]) < Zl(f]) < N Z juese
j=1 j=1 j=0

Next we sum over (8.3) using the linearity of the functional T

1N ;N1
~ 2 HE)) </f dp < Y K
j=1 j=0
Finally, we subtract these inequalities which leaves only the first and last terms, and so
/fd < ) HEN)  plsupp(f))
N
Note that the measure of the support of f is finite because the support is compact, and for

compact sets, u(K) is defined as the infimum of I(f), and I is a linear functional (which
implies I is continuous and hence has bounded norm). Therefore we have I(f) = [ f dpu.

= |I(f

— 0, as N — oo.
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Proposition 8.10. Let S be a family of similarities with common scaling factor r € (0,1). If
there exists U open, non-empty and bounded such that S(U) C U, then there exists a unique
X CC R™ such that S(X) = X # 0. More generally, if there exists X CC R™ such that
S(X) =X, X #0, then it is unique.

Proof:
U is compact (BWHB). Each S; is an affine linear function from R” — R".

Si(x) = rO;(x) + b;, so S;(U) is compact. By continuity, S;(U) C S;(U) which implies that
;lesi(f]) =S(U)c S(U) c U. So S(U) is compact.
For X := kQOSk(U), S2(U) c S(U) and S*(U) c S¥~1(U). S*(U) is compact and non-empty
which implies that X # () and compact.

X = lim S¥(U)

k—o0

= lim S*H(T)

k—oc0

= S( Jim 5*(0))

= 5(X)

Therefore, X is invariant.

If Y # () is compact, and S(Y) =Y, we wish to show that Y = X. We have,

d(Y, X) :=supp(y, X)
yey

Y :ig Si(Y) = S(Y)
= d(Y, X) = max d(S;Y, X) = d(S;Y, X) for some j € {1, ...,m}.

1<i<m
For fixed

yeY, p(S;y,X) = weX}lngkamP(Sjya Swz) < 1nf p(S;y, Sjz) = p(S;y, 5;X).

Taking the supremum over y € Y, we have
d(S;Y, X) < d(S;Y, 5;X) = rd(Y, X).
Since r < 1 this is only possible if

d(Y,X) =0=supp(y,X) =0=p(y,X) =0, VyeY.
yey

The same argument shows that d(X,Y) = 0. By compactness of X and Y, which implies
sequential compactness,

py, X)=0=yeX,VyeY =Y CX
and similarly,
px,Y)=0=>2€YV2eX=>XCY =Y =X.

Definition 8.11. For z € R", E C R", a measure u, {i1,...,it} C {1,...,m} we define
(1) Tiy iy = Si1 0..0 Sik (I’),
(2) E; =5;,0..08;(F), and

1.0k
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(3) iy .y = N’((Sl o"'OSik)il(E)'

Theorem 8.12. S = (54, ..., Sm) is a family of similitudes with common scaling factor r € (0,1)
X CCR™, X #0, S(X)=X. Then there exists a Borel measure p on R™ such that u(R™) =1,
supp(p) = X, and

1 m
Vk €N, Pk Z iy g
i1..0=1

Proof:
We will construct g on X extend it to R™ \ X to be 0. Let z € X,

1, z€eFE
0. (E) = {0 v ¢ B

For {E;};>1 disjoint then either there exists i, j such that
v € By = 0:(Y B =1= Zaw(Ej),
j21
or not; in which case

0o U Ej) =0=" 0,(E;).

Jj=1 5
Jj=1
Consequently, we have for any A,B € R", 6,(A) = 0,(AN B) 4+ §,(A\ B). This shows that
every set in R"™ is measurable for J,.

We define
1 m
k
=7 Ouliy iy -
0 mk.E (6211

i1..0=1
Then note that
1 i i -IE i i E
[6$]111k(E):6w(51 o...OSi (E)):{ ) 3:6(510 OS ) ( )<:>SIO oSk(I)G

0, otherwise

For f € C (or more generally f € C.(R™))

/fd:u’k = % Z f(xiluik)v

11..7k 1
and
1 U mk
k n
R") = — l=—=1.
pr(R™) mE Z mk
i1..0=1

Let ¢ > 0. That X compact implies 3k > 0 such that
|z —y| < rfdiam(X), z,ye X = |f(z) - f(y)| <e.

Above we have used the fact that r < 1 hence ¥ — 0 as k — .
If | > k > K, then since

Tiy.qy € Xiy iy = Si, 0...08;, (X) =5;,0...08,..08;, (X)

Si (X) C X, - Sil o... OSik... OS”(X) C Si1 o... OS%(X),

kt1---01
and

diam X, = rfdiam X,

b1
we have
|f(@iy ) — e a)| <e

which follows because f(x;, 4,) and f(x;, ;) are both in X, ;,, so

|iy i — @iy | < dlam(X5, 4,) = rkdiam(X).
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Summing over iy 1..7;, and using the trick

> f@ii)

tpt1-0=1

f(xiluik)

because the sum on the right is simply f(z;, ;,) repeated m!~! times, we have

1 " " 1
F@ia) = ——= > flaa)| =0 D flna) = f@ia)—
g1 =1 igy1..dp=1
1 m
Sml,k Z |f($111k) - f(‘rllll))l
Qgt1-.0=1
ml=ke
ik

Next we sum over 77..7; and use the estimate above

m m

1 & 1 1
mi Z 1'11 zk _m Z ( Z f(‘rllll))m

i1..05=1 ik+1..i121

B m 1 m
i1..0=1 ik+1..iL:1
ik 1 <
Z xn 1k - lf Z f(xhniz)‘
11 lk 1 ik+1..iL:1
mFe
<— =c¢
g
Since
1 m m
JEZEE10 SR G N BT DTN
il..ilzl 21..Z =1
we have

[ it [ it

We have therefore shown that for any € > 0 there exists K € N such that for [ > k > K,

[ st = [ gault <= [ gather c v

is Cauchy and therefore converges.
Consequently we define a bounded linear functional on C(R™) by

£)i=tim [ fag

fzo:/fdukZOVk:I(f)ZO.

So, I is non-negative. For g € C.(R"™),

17 +9) = Jim [(f + o) =t [ fat + Jim [ g = 1(5) + 1),

Similarly, for A € R,

If

I(Af) = lim / Afdpk = \I(f).
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Therefore I is linear and non-negative. The functional is bounded because

‘ [ ra /X Fdi] < 1 flloort® (R = [[]loc,

LN <Ilflle V[ €CRY,

which implies

where we note that

| lloc == sup [f ()]
zeX

By Reisz Representation Theorem there exists a Borel measure p such that

1) = [ fdn, £ ecen)
Note since
PR\ X) =0 VK,
if a function f has support in R™ \ X, then

/fduk =0Vk = /fdu: 0.
Since we can approximate the characteristic function of any compact subset of R™ by continuous,
non-negative functions, it follows that
pF(E) = u(E)  for any E CCR" = u(E) =0YE CR"\ X.
Therefore we have
supp(p)¢ = UG, G C R" open, such that pu(G) =0,
supp(p)¢ D R"\ X = supp(u) C X.
By the Lebesgue dominated convergence theorem,

By definition,
Zi, i, € Xiy.i, foreachkeN.
We also have
diam(X;, ;) = r*diam(X) — 0 as k — oo.

By the invariance of X under the family S, we have

X =" =1 X i
Then note that for any € > 0 there exists £ € N such that

diam(X;, ;) = r*diam(X) < e.

This means that for any point y € X, since

y S X = U;?,“ikleiluik)

1.0k

the point y lies in at least one of the elements in the union,
(VRS Xi1.<’ik — |y — xil___ik| < diam(Xil__,-k) = rkdiam(X) < €.
This shows that the collection of points
Haira il =11
is dense in X, and hence the closure of this collection of points is X. By the definition of ¥,
k
supp(p”) = {Ti, i, }Zb.uikzl'

Let p be one of these points, and let f be a compactly supported continuous function with
f(p) =1, and 0 < f < 1. Then there exists ¢ > 0 and N € N such that

ly—pl<e = fly)>1/2, k>N = rkdiam(X)<e, DE Xiy in-
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Note that we have already seen
Xiyigois CXiy i = Uiy CUXG -
Consequently for any [ > N we know that p € X, ;, and consequently
Tiy iy € Xiyin = f(Tiyin) 2 1/2.
Similarly, we also have
f(@iyinq) 2 1/2 Vinga.d
Then we also have for any k <,

[ faut =

and in the second sum taking the specific choice i;...ixy we have

1 S 1 m 1
2 > N @irinei) 2 5 =

ml—N

m

Z % Z f(xil....il)

gy =1 i1 =1

iN41-.0=1

Keeping N fixed and letting [ — oo, this shows that

[ fan=tim [ pant = .

37

If we had p € supp(p)°, then since by definition this is an open set, there would be an open
neighborhood of this point contained in supp(u)¢, and so for such an f with support contained

in this neighborhood we’d have

/fdu < p(supp(f)) = 0.
That is a contradiction. Hence the entire set of points

Uiy i Yir . ip=1 J>1 C supp(p),

and by definition supp(p) is closed so supp(u) contains the closure of these points which is X.

We have already seen that supp(p) C X, so this shows that we have equality.

Finally, by definition,

1 m
,Uk+l = W Z [6w]i1--ik+w
iy =1
and
1 m
A
,LL 7ml_Z [5 ]11 a4
Zl..’LZZI
l 1<
= [U]h i T T [[6 ]]1 31]11 ik
Ji--gi=1
[00) 1.5 ((Siy 0. 085,) M (E)) = 62((Sj, 0.0 85,) " (Si, 0..08:,)~
5((5’ ..onjvloSiZlo..oS-
J1 = kg1, J2 7= gt = gl = = [0a)iy i (B)
Therefore
1 m
/~Lk+l - Tk Z [/‘l’l]ll Lk
i.ip=1
Note that
L,z € o~ 1(E)
X _ =
v I(E)(z) {O,else

and

H(E)

T H(E))
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X o p(a) = {3:5:12? e
Therefore,
Xo-1(p) = XE 0.
Analogously, (integration is the limit over simple functions i.e sums) and using the definition
of p,

/ Fldillsy o0 = / foSi 0. 08 d

—>/foSilo..oSikdu

l—o0

— [ flauds.s

Let us now assume k is fixed. By the above calculation relating ;/**! and p! and the linearity
of the integral,

[ = 205 [ st

i.ip=1
1 & y
T ko Z 1 flduli, i,
1.0 =

Since
lim [ fduftt = /fdu
l—o0
by definition, this shows that
fan= 1S [ flaud.,.
M*m. _ iy g, -
11..Zk:1
This means that on the right side, we also have a linear functional, namely
1 m
Fro— > | flduli
i1.ip=1

which coinicides with our linear functional I. By the proof of the Riesz representation theorem
assuming the measure associated with our functional above is constructed in the same way,
these measures are therefore the same, and so

1 m
H= mk Z; [y i

11..lk—1

The k € N was arbitrary and fixed, hence this holds for all £ € N.

Lemma 8.13 (Ball counting Lemma). Let ¢,C,0 > 0. {U,} open, disjoint, s.t. a ball of radius
cd C U, C ball of radius C§. Then no ball of radius § intersects more than (1 4+ 2C)"c™™ of
the sets U, (note: we are in R™).
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Proof:

If B is a ball of radius 6, and BNU,, # (), then let p be the center of B, so B = Bs(p). 3¢ € U,
s.t. U, C Bcg(q).

If # € U,, then for z € BNU,, |z—p| < § and so |z —p| < |z —z|+|z—p| < diam (Bes(q)) +6 =
(1+20C)6.

f €Ua
R Ua C B(i+20)5(p)

If N of the U,’s intersect B (i.e. have # () intersection), then since they are disjoint and each
contains a ball of radius cd, and they are all contained in B(1420y5(p)-

= adding up the Lebesgue measures of all these N disjoint balls of radius ¢§

= N(cd)"wp < L (By20ys(p)) = (14 20)"5"w,

= N < (1+20)%c™.

Theorem 8.14 (Dimension of self-similar sets). S = (51, ..., Sim) s a family of similitudes with
common scale factor r € (0,1). Let U be a separating set, that is an open set, bounded, with
S(U)CU, and S;(U)NS;(U) =0 ifi # j. Let X be the unique, non-empty, compact set s.t.
S(X) =X. Let p:=logi(m)

i) Hy(X) € (0,00) = p=dim(X)

i) Hy (Si(X)NS;(X)) =0 #j

Proof: . .
Forany ke N, X =S*X)= |J Sj0..08,X)= U Xi. i
i1y =1 W15 =1
Each of these X;, ;, has diameter =r*diam(X), so if §; = r*diam(X), then
m
Hys(X) <Y (diam (X, 5,))" = m*rP diam(X)?
i15emip=1

By definition p = logi(m) = (l)p =m=mF=r"P" = H,,; (X) < diam(X)P.

T
Okd0 H,(X) < diam(X)? < oo, because X is compact hence bounded.

Let 0 < ¢ < C s.t. U contains a ball of radius & and is contained in a ball of radius C (: %)

Let N = (1 +2C)"c™™. We will prove that H,(X) > 575 by showing that if {E;};>1 cover X

with diam(E;) < 1Vj, then Y diam(E;)P > 5.

Since any set E of diameter 0 is contained in a ball (closed) of radius 6 = diam(FE) = diamf(B‘S) =
P

Yo diam(E;)P =Y (diamf(B‘s)) = = > diam(Bs)?
(e e}

= enough to show that if X C UB; = UB;s, with §; < 1Vj, then 5? > % To prove this, we
j=1

will prove:
* If radius of B is 0 < 1 then u(B) < NéP.
This shows that 1 = pu(X) < Y u(B;) < N Y6,

m

To prove x let k € Ns.t. r¥ < § < r*~1. Then u(B) = ﬁ S iy (B). Since X C U,
i1yemrik=1

Supp(fhiy,.ovin) = Xiyyin C Uiy ins = Hig,in(B) 0= BNU;,,. ;. #0.
S;(U)NS;(U)=01i+#j = Since S(U) C U, we have

Sk(Sl(U)) - Sk(U)

Si(S:(U)) c Si(U)
Sk(Si(U)), Sk(S;(U)), i # j are also disjoint because S;(U) N S;(U) = 0 if i # j and Sy is
injective. This shows that if i1,...,i5 # J1, ..., jk, then U;, ., N U, 5 = 0.

= Si(S:(U)) N Sy(S;(U)) = 0 if k #1

..........
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U contains a ball of radius = = Uy, .., contains a ball of radius %rk = ¢rk-1

Note: that er*=1 > ¢6 and Cr* < C6.

Ui,,...i,, contains a ball of radius erF=1 > ¢§, and is contained in a ball of radius Cr¥ < C§.
Ball coungbg Lemma —_—

B can intersect at most N = (14 2C)"c™" of the {U;, ... i, }i"

k

,,,,, =1

m
= u(B)= > i (B) < Nk
i1yeeyip=1
Note that for the last inequality we have used the fact that s, . s, is supported in X;, 5, C
Ui, .....ir,» and the mass of each of these is at most 1 because the total mass is one. Since B
intersects at most N of them, the right side of the inequality m~*N follows. Now, recalling
that
p=log1(m)= m~F =" = u(B) < NrkP < N6P, since r* < § < 1. This is *.
Finally since S; scales by r, we have proven that H,(S;(X)) = r?H,(X) = m™'H,(X), using
the definition of p. Consequently,

Since
X =Jsx),
=1

this holds iff H,(S;(X) N S;(X)) = 0 whenever ¢ # j. More generally, for any measure v,
measurable sets A and B

v(AUB)=v(A)+v(B) = v(ANB)=0

9. COMPLEX ANALYSIS ALL-STARS

Definition 9.1. A function f is holomorphic in a neighbourhood D,.(z2¢) of 2, iff Vz € D,.(z)
exists
L fw) ()

w—2z w —z

(Note: This implies that f is continuous on D,.(zp).)

< 3 continuous function at z: Vz € D, (z9) we have f(w) = w(z) + (w — 2) A, (w), where A, is
continous at z, for all w in a neighbourhood of z.

(=). Let A, (w) = W for w # z and f'(z) for w = z.

(). Timy_,. L=FE) ) FEE@=2A@)FC) _ 4.

w—z w—z

Why do holomorphic functions have so many properties (theorems)? Bcause they satisfy a
PDE. PDEs may endow solutions with special properties depending on the PDE.

Example 9.2 ("Boot strapping”). Let A := —92 — 85. A priori: f € C?. Then we have Af =
Af for A € R, on a domain Q where foo =0. fEC? = Af=\f=fecCl=...= fecC>.
This is only a heuristic. The actual rigorous argument uses the Sobolev spaces. The solution f
is & priori in H2, but then Af is also in H?, which shows that f € H*. Continuing this we get
that f € H?* for all k which by the Sobolev Embedding Theorem shows that f € C™.
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Proposition 9.3. f is holomorphic on D, (z) < f is R? differentiable andu = R(f), v = I(f)
satisfy uy = vy and uy = —v,. These are the Cauchy-Riemann equations.

(& df) = 0.

Proof:
Assume that f is holomorphic. Near z, f(w)

(Z’E)GCgR2’Wegetx:Z;E,yZZQ:Zand%
of 0fox  Ofdy 1 1, 1
32_8x82+3y35_2f$ 2ny_2(f9c vfy)

f(z) + (w — 2)A,(w). For the coordinates
= 0. Therefore we get

1 1
= §(u$ + 2w, + 1(uy +wy)) = i(ux —vy +2(vy +uy)) =0

& Uy = vy and uy = —Vg.
On the other hand, assume f is R? differentiable and
of _0fdx 0f dy

9z 0xdz ' Oyoz

Since Of = % = 0, we have near z:

f(z) = f(z0) + M - E:ig] + B(z)
where ILm % ‘ — 0.
Since df =0 = M = {Z 8} and therefore
F(2) = f(z0) + (2 — 20) (<a )t B<>>
Z— 20

= f(20) + (2 = 20)A(2),  A(2) = (a+b) + %,
(2)

and A(z) is continuous because i—ZO — 0 as z — zg. Consequently

i 1) = F(z0)

Z—20 zZ— 20

=a+b

exists.

9.1. Properties of holomorphic functions.
(1) f(2) =z and f(z) = c are holomorphic as in R.
(2) f, g holomorphic = fg, f + g, f/g9(g # 0) also just as in R.

(3) Not like in R: Given f: R — R continuous. 3F: R — R such that F/ = f? Yes.
F(z) = [ f(t)dt.

This is not necessarily true in C.

Lemma 9.4. If f: Q — C, where Q is a domain, is continuous, and if IF: Q — C such that
F' = f then fw f(z)dz = OV closed curve v C Q.

Example 9.5. f(z) = % has no primitive since

/8D,. fla)dz = 0

2

2
fy@®)Y (t)dt = /0 %m’e“ =21 #0

re
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Theorem 9.6 (Goursat). If f is holomorphic on Q, then faT f =0V triangle T CC Q where
T CqQ.

Proof:

,-’A‘-\
L | N
g =
’// N
¥ / 4 T
-~
‘ \/ N;
/ /, - ¥ ey
FIGURE 1.

First, we split the triangle into four triangles by joining the midpoints of each of the sides of
T. Then integration along the interior edges cancel and so

/. f|<z/ f<tmlf

We define Ty to be any T! such that the integral achieves the maximum. We repeat this process
with Ty, defining T2 for i = 1,2, 3,4, such that the integral over the boundary of T} is equal to
the sum of the integrals over the boundaries of the T??. The triangle whose integral is maximal
is defined as T,. This triangle is again split into four, and so forth, defining a nested sequence
of triangles

TOTyDT3D ...

Note that the length of the boundary |0T| = §|0T| and therefore [0T;| = 27*|8T|. Further-
more, we have diam(T;) = diam(T) and therefore diam(7}) = 2~ *diam(T).

Since the triangles are compact and nested, and their diameters converge to zero, the intersec-
tion

ﬂTk = {2} = Jim Ty,
Since f is holomorphic at zy which is in the interior of 2,
f(2) = f(20) + (2 = 20) f'(20) + (2 — 20)(A(2) — A(20))
= f(20) + (2 — 20)(A(2))-

Note that B(z) := A(z) — A(zg) is continuous at zg because A is, and that B(zp) = 0. Since
the function

f(z0) + (2 = 20) f'(20)
has a primitive, namely
F(2) = 2(f(20) = 20f (20)) + 5 f'(20) = F'(2) = f(z0) + (= = 20)f'(20),

the integral

/<f<zo>+<z—zO>f'<zo>>dz:o, / ((z0) + (2 — 20) " (0))dz = 0, V.
T Ty
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Consequently by linearity of the integral
f(z)dz = / (z — 2z9)B(z)dz

=] f(2)dz| < |0Ty| max |z — 2||B(2)| < |0T}|diam(T},) max |B(z)| = 2~ Fdiam(T) max | B(z)| - 27*|0T|
ot OTx OTx ATy, |

:>|/ f(2)dz| < 4% - 47Fdiam(T)|0T | max | B(z)|
or 9Ty,

Since T — 2o and B(z) — B(z9) = 0 as z — 2, it follows that the maximum over 9T}
of |B(z)| tends to 0 as k — oo. Consequently the integral on the left above must vanish.

Recall that a domain is called star-shaped if there exists a point in the domain such that the
line segment connecting this point and any other point of the domain lies entirely within the
domain. This really looks like a star. Examples include all convex domains.

Proposition 9.7. If Q is star-shaped, f holomorphic, f has primitive F(z f f, and f f=
0V closed 7.

Proposition 9.8. If f holomorphic on G\ zy and continous on G, we also get fﬂ{f = 0V~

with v U~y CcC G.

The converse is also true: If [ f = 0VT satisfying the hypothesis, then f is homolomorphic on
ar

G.

Remark 8. If f is holomorphic on T'\ z, where z denotes a point, then [ = 0.
orT

9.2. Cauchy Integral Formula. Let f be holomorphic on D = D,.(z9) 3 z. Then

1 fw)
)—%/fzdw
oD

[ Gy o,
glw) =4, "7*

Proof: [Sketch] Let

() w=z

Then ¢ is holomorphic on D \ z and it is continous at z.
Therefore since D is convex and hence star-shaped

/g(w)dw:O

oD

L w) G /
op W — 2 aDw—Z

Compute f d“’ ~dw = 2mi and prove that the function h(z) == —1‘; is constant on D.
aD




44 JR, MH, KH, KB, PR, JK, PB, YA, C O, AND MCR

(1) Expanding ﬁ in a geometric series one can prove that f has a power series expansion.
f(z) = Zak(z — z)*.
k>0

(2) It follows from the above theorem and the Lebesgue Dominated Convergence Theorem

that
|
F® () = /6 o Ji (Z)))k —rdw.

- 2mi
(3) The coefficients in the power series expansion are therefore
F®) (2)
k'
(4) Super-Mega-Differentiability The derivative of a holomorphic function is holomor-

phic as are all derivatives. Holomorphic functions are infinitely differentiable (and in
fact much better than merely C*).

ap =

Another straightforward application of the Cauchy Integral Formula is the Maximum Principle.

Theorem 9.9 (Maximum Principle). |f| has its mazimum on the boundary. Otherwise, f is
constant.

Theorem 9.10 (Identity Theorem). TFAE
1. f=g

2. f*(20) = g*(20) Yk and some 2y

3. f(zn) = g(2n) V0, 20 # 20,20, — 20 € G.

One way to prove the Identity Theorem is to show that 3 = 2 by considering h = f — g and
the power series expansion at zg. By continuity h(zo) = 0. So, using the power series expansion
of h at zy, assume all coefficients up to a; vanish (we know this is true for j > 1 some j, because
ag = h(zp) = 0. Then use the assumption to show that a; = 0 also. By induction this shows 2.
To show the first statement follows from 2, show that the set of points where f = g is clopen
(closed and open). Since the set is non-empty, this means that the set is the entire domain.

Theorem 9.11 (Open Mapping Theorem). Let f: G — C be holomorphic and non-constant.
Then f is an open map, i. e. f(G) is a domain.

Proof: Since G is connected and f is continuous, f(G) is also connected.
Let wy = f(20) and r > 0 such that D,(z9) CC G and

(91) f|D1v(zo)\zo 7é Wo

This follows from the Identity Theorem. Otherwise, we’d have {z,} — zo with z, # 2zp. Then
f(zn) =wo = f(z0) = f = f(20) 4 since f is non-constant.
Let

§:= i - >0
piin | f(z) — wol

Because 0D,.(2p) is compact, the minimum is assumed at some point because of 9.1.

Claim. D%(wo) C f(D,(20)). = Every point in f(G) has an open disk about it in f(G) and
therefore, f(G) is open.

Fix w with |w — wo| < 4. Then we get for z € D, () the following equation:

f(z) —wl| = [f(2) = wol| — [w — w

Therefore, we have |f(z) — w| > § — §. The function g(z) := f(z) — w satisfies |g(z)| > & on
9D, (z) and |g(z0)| < & because |g(zo)| = |wo — w| < § by assumption.
= either ¢ has a zero in D,(zp) or if not % is holomorphic on D,(z) and \%| < 2 on D, (z0),
but |%(zo)| > 2 = % has interior maximum and therefore it is constant.
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= f constant. 4. = g must have a zero in D, (2p).
= 3z € D,(20) such that g(z) = 0 & f(z) = w = w € f(D,(20). Since w with |w — wo| < 3

was arbitrary, we get D%(wo) C f(Dy(20))-

Corollary 9.12. f: G — Q is biholomorphic < ['| ., #0, and f is 1:1.

2

Proof:
(=). f is biholomorphic = f~!o f =id. = Differentiate (f~1)'(f(2))f’(z) = 1 and therefore
Flg 20

(<). f” o 7 0. Then f is not constant. Therefore f(G) = (2 is open. The inverse is continuous
by the open mapping theorem. Then we compute

: SN w) = fH20) &o 1
lim = lim &)

=
w—z0=Ff (o) w — 20 e=f-1(w) f(§) —

This exists because f is holomorphic and f’ | c 7 0.

Definition 9.13. If G, Q2 are domains in C such that 3f: G — € biholomorphic, then G and 2
are biholomorphically equivalent. A map f: G — C such that f’| , # 0 is known as a conformal
map and G is conformally equivalent to f(G).

o

Remark 9. ”Conformal” means angle-preserving.

Theorem 9.14 (Uniformization Theorem). Let G C C be simply connected. Then G is con-
formally equivalent to one of 1) C or 2) D of 3) C=CUo.

Moreover, the same holds for any simply connected Riemann surface (2-dimensional Riemann-
ian manifold with biholomorphic coordinate charts — C).

Theorem 9.15 (Liouville). Let f: C — C be holomorphic. If f is bounded, then it is constant.
Proof: Assume |f| < M on C. The Cauchy Ingegral Formula implies
_ 1 f(w)
1= 5 [ e
ODg

Therefore, we have

| f(w)
fz) = 2ri /(')DR(ZO) (w — Z)de

190 = o [ L

T 2w
ODRr

and

Therefore, we get the estimation

k! 2nRM
|F (0] < 5 gt VR>0
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Letting R — oo, we get f(*)(0) = 0¥k > 1. Using the Identity Theorem, we get since f*)(0) =

g® (0)VE >0, g(2) = f(0) = f =g = f = f(0) is constant.
Theorem 9.16 (Fundamental theorem of Algebra). p(2) is a polynomial with coefficients in C,

degree of p is k > 1. Then 3! (up to rearrangement) {r;}¥_ in C such that p(z) = ro ﬁ (z—rj).
j=0

Proof: If degree of p is 1, then p(z) =az+band a #0= 19 =a and r; = —g. finish.

By induction on K. If p|(C # 0 then % is entire and — 0 at co. = bounded = constant = p

constant 4

p has at least one zero ry = p is polynomial,

polynomial.

p(z) = (2 — rg)q(z) where ¢ has degree k — 1 < k. = by induction 3!{r; ?;& such that

fﬁ—i)k is a rational funcion without poles =

k-1 k

q(z) =ro [[(z=1;). = p(z) =10 [] (2 —1y).

Jj=1 Jj=0

Definition 9.17. If f is holomorphic on D, (zp) \ {20}, then zj is an isolated singularity.
(i) Removable < 3! holomorphic extension to zp.
(ii) f(z) — oo as z — zp < 3!g(z) holomorphic on D, (zy) where p < r such that g(zg) =0
and f(z) = ﬁ on D, (z0) \ {z0}. 20 is a pole.
(iii) Neither 1 nor 2. ”Essential singularity”. If f only has a finite set of singularities on G C C
of type 1 and/or type 2, f is called ”meromorphic”.

Theorem 9.18 (Big Picard Theorem). If f is holomorphic on D,(z0)\zo and zy is an essential
singularity, then Ve € (0,1), #{C\ f(D:(z0) \ z0)} < 1.

Definition 9.19. If f is entire and ILm f(2) = o0, then f has a pole at co.

Corollary 9.20. By Liouvilles Theorem if f is entire, then either 1) f is constant 2) f has a
pole at 0o or neither 1) nor 2) = [ has an essential singularity at co.

f has a pole at oo & ﬁ =: g(z) is holomorphic near z =0 and g(0) = 0.

f has an essential singulariy at co & ﬁ =: h(z) has an essential singularity at 0.
Theorem 9.21 (Riemann’s Removable Singularity Theorem). Let f: D,(29) \ 20 — C be
holomorphic and bounded. Then zg is removable.

Proof: g¢(z) := (2 — 20)f(2), 2 # 20. g is holomorphic on D,(2g) \ 2o ILm g9(z) = 0 = define
z zZ0

9(2)—g(z0) _

9(20) = 0 = g is continuous on D;(20). = g is holomorphic on D, (zp) and so lim #==1

zZ—r20

g'(20) exists, and lim % =: f(z0). Consequently this limit exists, is unique, and defining
Z— 20

f(20) by this limit is unique and makes f continuous at zp. Moreover, any holomorphic function
on a punctured disk which is continuous on the whole disk is in fact holomorphic, which follows
from the fact that the integral of such a function over any triangle in the disk vanishes, hence
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the function has a well-defined primitive. By super-mega differentiability the original function,

that is the derivative of the primitive, is also holomorphic.

10. THE BAsics oF HOLOMORPHIC DYNAMICS

Holomorphic Dynamics is the study of {f™ = fo...o f} and where {f™} converge or not.
Consider {f™} where f is defined on a simply connected domain G C C. Assume that f: G — G.
Let

o1 E— G,
be the conformal map given by the Uniformization Theorem, where £ = D, C, or C. Then let
f::(bofO(b_l:E—)E.

Note that f* = ¢o f"o¢p~!. Therefore dynamics of {f™} on G are the same as those of {f"} on
E. Therefore the study of holomorphic dynamics on any simply connected domain is reduced,
by the Uniformization Theorem, to the study of holomorphic dynamics on D, C, and C.

One of the pioneers of the field was Montel (“This is how we do it.”)

Definition 10.1. A family of holomorphic functions F defined on a domain G C C is normal
if for any sequence in F, there exists a subsequence which converges locally uniformly (this
means uniformly on compact subsets).

Theorem 10.2 (Montel’s Little Theorem). If a family F is uniformly bounded then it is
normal.

Proof: Let M > ||f||c for all f € F. Fix zp € G and R > 0 such that
DR(Z()) CcCG.

Then for any z € Dg/2(20) we have by the Cauchy Integral Formula for f € F,

! —L Mw
P =55 oy = 7 =

- 2mi w— 2)?
, 2rR M B
1f'(2)| < ?m =:c.

It follows that the family F is equicontinuous. Since it was already assumed to be bounded,
the Arzela-Ascoli theorem implies that every sequence has a locally uniformly convergent sub-

sequence.
Remark 10. The locally uniform limit of holomorphic functions is again holomorphic.

By Montel’s Theorem, if a function f : D — D, then F := {f™} is a normal family. So, we can
already say something about the holomorphic dynamics on D. Now let’s consider holomorphic
dynamics on C. We want to exclude freaky behavior (i.e. essential singularities).

Theorem 10.3. If f : C — C is entire and without essential singularity at infinity, then f is
a polynomial.
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Proof: First note that if f is bounded, then it is constant, and hence a polynomial of degree
0. How interesting (not). Let us assume that f is non-constant and therefore unbounded, then
we must have |f(z)| — oo as |z| = co. Consequently the function
1
Fajm %
is holomorphic on a disk about 0 with ¢g(0) = 0. Since f # oo, we cannot have g = 0, and
therefore there exists k € N such that

o2 = Y, o

Jizk

Consequently,

1 1 P X
f(z) = = — = ~ z% as k — oo.

g(1/2)  agz=F+... ap+agyiz+...
Next since |f| — oo as |z| — oo, there exists R > 0 such that for all |z| > R, |f(z)| > 100000.
In particular for all such z, f £ 0. So, the set of zeros of f is contained in a compact set. Since
we assumed that f is not constant, by the identity theorem f can only have a finite set of zeros
(of finite order) because they are all contained in a compact set, and so any infinite set would
accumulate there thus implying f vanishes identically (ID theorem) which it does not.
Let {2 }7 be the zeros of f of respective degrees dj. Then consider

f(z)
IT7 (2 = 2%
We know that |f(z)| ~ |z|* as |z| — oo. If on the one hand k < Y d;, then this function tends
to 0 at infinity and is entire, hence bounded, hence constant by Liouville’s theorem. Since it
tends to zero at infinity, this would imply the function is identically 0, hence so is f, which is

a contradiction. So we must have k > >~ d;. Now, on the other hand, we consider

I3 (2 — 2)%
fz)
This function is also entire. If k > ) d;, then by the same argument we also get a contradiction.
Hence k = ) d;, and so both of these functions are again bounded and entire, hence constant
(and that constant cannot be zero), so there is ¢ € C\ {0} such that
1) :

e =c = f(z)=c]|[(z —z)¥
[T5(z = 2)% 1:[

which is a polynomial.
So, we now see that holomorphic dynamics for entire functions without essential singularity at
oo is reduced to the study of iteration of polynomial functions.

Proposition 10.4. FEntire functions without essential singularity at infinity which are non-
constant are surjective.

Proof: By the theorem, such a function is a polynomial p(z) of degree d > 1. Proceeding by
contradiction we assume there is ¢ € C such that p(z) # ¢ for all z inC. Then the function

1
p(z) —q
is entire. Moreover, since |p(2)| ~ |z|¢ as |z| — oo, it follows that this function tends to zero at
infinity and hence is bounded. By Liouville the function is constant, which furthermore implies
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that p is constant which it is not. Therefore the assumption that p(z) # ¢ for all z inC must

be false, and hence p is surjective.
Next let’s consider holomorphic dynamics for meromorphic functions on C.

Theorem 10.5. Any meromorphic function on C is a rational function. If it is non-constant,
then it is surjective.

Proof: Let’s assume f(z) is non-constant and meromorphic. Let {pg}7 be the poles of f with
corresponding degrees di. Then

n
F(z) = f(2) [[(z = pe)™
1
is entire, and has at worst a pole at co. Therefore this function is a polynomial ¢(z) and hence

q(z)
f@) =mm——a
[T} (2 — pi)
is a rational function. To show surjectivity first note that a meromorphic function defined on ¢
without pole is constant by Liouville’s theorem (it is entire and bounded!) Therefore the value
oo is assumed at a pole. For p # oo, for the sake of contradiction we assume f(z) # p for all
z € C. The function f(z) — p may have poles, but it has no zeros, so
1
= =9(2)
flz)—p
is entire. It has at worst a pole at infinity. If it has no pole at infinity, then it is constant and
hence so is f which is a contradiction. So, this function has a pole at infinity and hence is a
polynomial. Therefore
1
fZ)—p=——=—0as z— oo.
9(2)

Since f is meromorphic, this shows that

f(z) > pasz— o0 = f(o0) =p.

Hence f does assume the value p since oo € C.
So, holomorphic dynamics for meromorphic functions on C is reduced to the study of iteration
of rational functions.

The first two mathematicians to make big progress in holomorphic dynamics were Fatou and
Julia, and consequently the two main sets one studies in holomorphic dynamics are named after
them.

Definition 10.6. Let f: G — G. The Fatou set of f is defined to be
{#z € G : 3r > 0 such that {f"} is a normal family on D, (z)}.
The complement of this set is the Julia set.

What are some elements of the Fatou set? Fixed points are certainly a likely candidate, but
they do not always belong to the Fatou set. To understand when they do and do not belong
to the Fatou set, we classify fixed points into the following types depending upon the local
behavior of the function f.
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11. FIXED POINTS
Definition 11.1. Let f be holomorphic in a neighborhood of zy and assume f(zg) = z9. The
value A := f/(zp) is known as the multiplier at the fixed point zp.
(1) If |A] < 1, then 2 is an attracting fixed point. (hot) If |A| = 0, then zo is a super-
attracting fixed point. (super hot).
(2) If |A] > 1, then z is a repelling fixed point. (not hot)
(3) If there exists n € N such that A™ = 1, then z is a rationally neutral fixed point.
(boring).
(4) Otherwise zg is an irrationally neutral fixed point. (weird).

Note that near the fixed point
f@=z0+Mz—20)+..., A#D0,
or presuming f is non-constant, then if A = 0 there is some p € N such that
flz0) =20+ ap(z—20)P +....

Since the dynamics of f are the same as the dynamics of f: ¢~ o fo¢ with

¢(z) = z + 2o,
and ]?(VO) =0, let’s assume zg = 0. Then near the fixed point
fle)=Az+..., or apP+....

So, roughly speaking f looks like either Az or a,zP. Let’s call that function g (either g(z) = Az
if A#£ 0 or g(z) = apz? if A =0). These functions are significantly more simple than f.
Schroder asked the question:

Question 2. Does there exist a neighborhood of the fixed point and a holomorphic map ¥ which
conjugates f to g? In other words, does there exist a solution v to

Yof=goy?

This equation is known as Schréder’s equation. Note that it immediately implies that 1!
is uniquely defined on g(v(D,)) via ¥~!(g(¢(x)) = f(g9(¥(x))) and hence any solution to
Schroder’s equation is a locally conformal map.

Proposition 11.2. Let zg be an attracting fixed point for an holomorphic function f on D, (z0).
Then there exists 0 < p < r such that

f"(z) = 20
on Dp(zp).
Proof: Since f is holomorphic on D,.(z), we can write it as a power series
f(z)= Z ar(z — 20)" = a9 Nz — 20) + (2 — 20)* Z apyo(z — 29)F !
k>0 ined k>0

=20

this is a convergent power series onD,.(z¢)

For A € (|A],1), note that

1£(2) = f(z0)l = |A(z = 20) + (2 — 20) D aky2(z — 20)"| < Al|2 — 20| + |2 — 20]|z — 20| | D axya(z — 20)"
k>0 k>0

convergent

Because Y, < art2(z —20)" converges in D, (z), it follows that there are 0 < p < r and M > 0
such that

(1) on Dy(z0), Zkzo aga(z — 20)" < M;
(2) on Dy(20), |z — 20| < &7, ie. p < 222,
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Therefore,
A=A

1£(2) = ()| S Allz = 20l + == Mz — 2

=A|z—2zo0]

on Dy(zp). Since A < 1 we have
|f(2) = f(20)] = [f(2) = 20| < Alz = 20| < |2 — 20
which shows that
f(Dp(20)) € Dp(20)-

Hence we can apply our estimate to f(f(z)) since f(z) € Dp(z0) presuming z € D,(2), and
we have

[f2(2) = f2(20)] < Alf(2) = f(20)] < A?|z — o]
and in general
1f"(2) = ["(20)z0] = |f"(2) — 20| < A"z — 20| = 0

as n — oo because A < 1.

This proves that f™(z) — 2o for all z € D,(z).

Definition 11.3. For an attracting fixed point zg, the basin of attraction of zy is
A(zp) :={z]f™(2)is defined for all z andf™(z) — 2o}.

We have proven that D,(z9) C A(zo).

Proposition 11.4.

A(z) = U S (Dp(20))-
n>1
Proof: "C:” If f™(z) — 2o, then there exists N € N such that for all m > N |f™(z) — 20| < p.
Thus f™(z) € D,(z0) and therefore z € f~™(f™(z)) € f~™(Dp(20)).
This means that z € f~"™(D,(z20)), so that A(z0) € U,,>; [~ " (Dp(20))-
"D If 2z € f7(Dp(%0)) for some n > 1, then f™(z) € Dpy(zo).

Thus f*(f"(z)) — 2o, and therefore z € A(z).
—_——
frtk(z)
Corollary 11.5. A(z) is open.

Proof: Since f is continuous, f~"(D,(z0)) is open for all n > 1.

Definition 11.6. The connected component of A(zg) containing zq is the immediate basin of
attraction, denoted A*(zp).
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Definition 11.7. f: U — U is conformally conjugate to g : V- — V  if there exists a conformal
@ :U — V such that g = ¢ o f o p~1. (Schroder’s equation)
(9 and f are like the same, only in different coordinate systems).
Question 3. Can we conjugate f to something simpler?
o f(z0) =20, f=T YofoT, T(z) =24z, f(0)=0, f* =T Lo froT, without loss
of generality: zo = 0.
e 50 f(z) = A2+ D )50 arz® (we can write it loke this because f is holomorphic)

o (R A
™ Yap? i A=0,p=inf{k € Nja # 0}

Can we conjugate f to one of these?

Then we would have

Note 1. If g = po fop™!, then 2 is a fized point for f if and only if v(20) is a fized point
forg.

Proposition 11.8. \ at a fized point for f is the same for g. In words: The multiplier is
invariant under conjugation by conformal maps.

Proof: f'(20) =A. g= o foe tifand only if gop = ¢ o f. Therefore,

(90©)(20) = (o f)(20) = ¢'(f(20))As
9’ (¢(20))¢’ (20)=Ag¢’(20) 20

With ¢ conformal it follows that ¢’(zg) # 0. Thus A\, = Ay.

Theorem 11.9. Koenigs
Let f have an attracting fized point zg with 0 < |A\| < 1. Then there exists a conformal mapping
©(z) that maps a neighborhood of zy onto a neighborhood D,.(0)of zero, such that

9((2)) = Ap(2) = o(f(2))
@ is unique up to multiplication by ¢ # 0.
Proof: Without loss of generality, let zo = 0. Let ¢, (z) := A~ f"(z). Then we claim that
©n(z) = z+ ..., which we will show by induction. It is true for n = 1. Assume that it holds
for n. Then (replacing f with its power series) we have
i1 (2) = AN L(FH(2) = AT () ) = AT =
by the induction assumption. Then
pno f=AT"FH = AT = Ao
Consequently, if ¢,, — @, then from @, o f = Appt1, Ynof = o f and Ap,41 — A it follows
that po f = Aoy and thus p o f(z) = Ap(z).
Note that as {¢,} are holomorphic and converge locally uniformly towards ¢, it follows that ¢
is holomorhpic too, and all that the derivatives converge, too!

Note that from ¢),(z) = 1 for all n, we know that ¢'(z) = 1 (in a neighborhood of z = 0 where
the power series converge). This means that ¢ is conformal and

pofor H(¢) =X
By the convergence of the power series of f, we know that there exist ¢ > 0 fixed, and § > 0
such that

(*) | £(2) = Az| < clz]? for |z] < 6.
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Thus
£ (2)] < Mzl + elz < (Al + co)| 2.

We can now choose ¢ small enough such that (|A| +¢d) < 1 (which is possible because |A| < 1).
Then

(%) 1" ()] < (|A+ cd])"|z] for |2] < 6.
Choose § possibly smaller so that (|A + ¢d])? < [A|? + 2|\|cd + ¢25? < |A|. Then
(=) = A" (=)

(Pns1(2) = gn(2) = NTUF(F(2) = AT ()| = e
) el ()2 O (A + )22 epn|f? (M| + c0)?
< < = h = — 1.
ST S T e e N

Thus {¢,} is Cauchy for |z| < ¢ and therefore converges uniformly.

Furthermore, we have to proof the uniqueness of ¢: On D;s(0) we have ¢(f(z)) = Ap(z) if 3P
which also conjugates ®(f(z)) = A®(z) where ® is conformal. = ¢(f(0)) = ¢(0) = Aé(0),
A # 0 = ¢(0) = 0. Similarly, we show ®(0) = 0.

Pogplod=XoPogp ! Let ) = ®o¢p!. Then we have » o A = X o). Note that
$(0) = ®(¢~1(0)) = ®(0) = 0. Therefore, 1(2) = cz + ... near z = 0 and ¥(\z) = M)(2).
Therefore cAz + ag(A\2)? + ... = AMcz + a22® +...). By the identity theorem, the coefficients
are all identical and we get apA\* = AapVk > 2. By assumption 0 < [A| < 1 = |\¥| # |\|VE > 2.
Therefore, ay = 0Vk > 2. Since ) = ® o ¢~ ! is conformal, ¥(0) = ¢ # 0, and ¥(2) = cz =

Do l(z) = B(2) = ().

Corollary 11.10. If zyp (WLOG = 0) is repelling, then 3! (up to x by ¢ # 0) conformal ¢
conjugating f(z) to \z.

Proof: f(z) = Az+ ... on D,(0). Since |A] > 1 > 0, then f/(0) # 0 and WLOG we may
assume |f'(z)| > 3 on D,(0). Therefore f'|p o) # 0 and f~! is holomorphic on f(D,(0)).
Furthermore, we get (f~1)’(0) = A~!. Moreover f~1(0) =0 and f~!(2) = A"'z+... on D,(0).
Apply Koenig’s Theorem to f~1. 3! (up tp scale) ¢ conjugating f~* to A=!. = f~lop = por~!
= foflop=fopoA™!. Therefore, p = fopoAr™! = ¢po\ = fo¢. The uniqueness follows

from the Theorem.

Theorem 11.11. If f has a super-attracting fized point (WLOG at 0) then for f £ 03! (up to
p— 1 root of unity) conformal ¢ such that foop = go¢d and g(z) = 27, where f(z) = apz? + ...
on D,(0).

Proof: Fix ¢ > 1. Then 3§ > 0 such that V|z| < d, |f(2)] < ¢|z|P. Then
IF(FED] < elf )P < elefz]P)".

Since we know p > 2, we get cc? < ¢ and |f(f(2))] < cc?|z|P” < |27,
Induction assume | f"(2)| < (c|z|)?" Vz € Ds(0) (we can choose § > 0 so small that f(z) € Ds(0)
for |z| <6). Then

@) = £ < el f ()] < ee” ([277)P
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Since p > 2 and ¢ > 1, we get " 1 < *""'. So induction shows that the statement is true
Vn € N.
So f™(z) — 0 super exponentially as n — oo on Ds(0). For z € Ds(0) define

|ap]

where a, := |a,|e’’ and 6 € [0,27). Let ¢(z) := bz. Then f = f = ¢~ o f o ¢ where
F=b"Yap(b2)P +...) = apbP 2P ... = 2P 4 ...
Since f 2 f, we may assume WLOG f(z) = 2” +... on Ds(0). We're looking for ¢(z) = z+ ...
such that ¢(f(z)) = ¢(z)P. Define ¢,(2) := (f*(2))? . Then since f(z) = 2P + ... we get
FUE)) =(fR))P+...= (PP +...=2F +..., s0
i) =2+ = (") "= A4 )P =P (14 )P =214 )P
Thus

e —n1 n —n
Sn-10f = (" = (@) T = (6a(2)
If ¢, = ¢ as n — oo, then ¢ o f = ¢P.
First, assume {ay}n>1 are positive. Then [] a, converges and is positive < " log(a,) con-
n>1
verges. h

¢g1“ converges = @1 converges) where

N
We will prove that [] ¢;“ converges (=
n=1 "

n

Gusr (SO (o(fM)P

b T
since ¢1 o f" = (f(fn))fl = (f"“)pﬂ. Therefore,
(profmP " = ((f"*l)p_l) = (fnJrl)p_l-p_" — (fn+1)p’

:<f"(1—|—f;n—|—..-)p ) = (1 +o(fM)y "

=1+0(p MO [2P") =1+ 0(p™)

n—1

pm

if |2] < ¢!, The last estimate follows since for a sufficiently small z, expanding in a geometric

series
1 \? y
Y o~ o~ _1\"pn o~ _ Y
(1+2x) _<1—|—x> _(E ( 1)x> 21-z+...)
1 4eyz+...21+0(yx)

Since O(p~™") = O(—p™™), >_ log(l+ O(p~™)) = > p~™ converges since p > 2. Therefore,
n>1 n>1

N
Pnia Pni1 _ Pn4a
—g+ converges and Hl 3+ = =3 . Therefore ®,,41 — ©.

Uniqueness: If ¢ o f = 4P, ¥(f(0)) = %(0) = ¥(0)?. Let ® := ¢ o¢p~!. This satisfies
®(2P) = (9(2))P = ®(0) = ®(0)? and &' (2P)pzP~t = p®/(z). For 2 =0 and p > 2 = &'(0) = 0.
Repeat this to show that ®*) = 0Vk > 1. Therefore, ® = ®(0) = ®(0) = ¢ o~ and
®(0)1(2) = ¢(2). Since ®(0) = ®(0)? <= ®(0)P~! = 1 this shows equality up to a p — 1 root

of unity.
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Proposition 11.12. Let A = €™ where § ¢ Q. Then the solution h to f(h(z)) = h(\z), k' (0) =
0, where f is holomorhic and has a fized point at z =0, is 1:1 in D, for some r > 0.

Proof: Assume for some z in D, on which h is defined we have h(z) = h(z’). Then

f(h(z)) = f(M(z)) = h(Az) = h(AY).
We can repeat this and we obtain

h(A\"z) = h(\,2"), VneN.
Since the multiplier A has 6 ¢ Q, the set {\"},¢n is dense in dD. Therefore we have h(wz) =
h(wz") for every w € 9D by continuity of h. Considering the function
gw) = hws) — h(w?), |l <1,

we see that |g| = 0 on 9D. By the Maximum Principle it follows that ¢ = 0 on D. Since
h'(0) =1, we have

g'(0) = zh/(0) — 2'W'(0) = 2 — 2’ =0,

which follows because ¢ is constant, and we have used the chain rule (h is holomorphic). So,

this shows that if h(z) = h(z’) then z = 2’.

Proposition 11.13. A solution h exists iff {f™} is uniformly bounded on some D,.(0).

Proof: The proof is an exercise.

Theorem 11.14. There is A = exp 2wi¢ so that the Schroder Equation has no solution for any
polynomial f. (1917 - Pfeiffer).

Definition 11.15. ¢ is Diophantine (badly approximable by rational numbers) if there exists
¢ >0, < oo so that |¢ — §| > q% for all p,q € Z,q # 0. This is equivalent to |A" — 1| > en!=#
for all n > 1.

Remark 11. Almost all real numbers are Diophantine - but not all!

Theorem 11.16. (Siegel, 1950s) If ¢ is Diophantine, f(0) =0, f'(0) = exp 2wi¢, then there
exists a solution h to Schréder’s Equation.

Remark 12. For P(z) = exp2mi¢z + 22, {Z—:} — ¢ continued fraction expansion, then there is

< oQ.
(Sufficiency was shown by Brunjo in 1965, neccessity in 1988 by Yoccoz.)

(Every real number can be expressed as a limit |z] + 37%—.)

a solution to the Schréder Equation if and only if > logqqin"“

Definition 11.17. A simply connected component of the Fatou set such that f is conformally
conjugate to an irrational rotation is a Siegel disk.

Theorem 11.18. The Julia set contains all repelling fized points and all neutral fized points
which do not correspond to Siegel disks.

The Fatou set contains all attracting fixed points and all those neutral ones corresponding to
Siegel disks.

Proof: Rationally neutral fixed points
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() A=Lp=1
2) A=1,p>1
(3) A" =1,A#1

= f(z) =Xz +azPl+.. . a#0.

Case 1: Conjugate f by ¢(z) = az — f=gpofopl= a(f(2)) =
Az+ 22+ = WLOGa = 1. MoveOtooobyz%_Tl%g z) =z
that ¢ conjugates g to z = z + 1.

Case 2: Another conjugation..

Case 3: Reduce to case 1 or case 2 by considering f".

We conclude that at such a fixed point, there are both “repelling” and “attracting” directions.
Thus all rationally neutral fixed points are in J.

a(/\z) +a(2)?+...) =
+ +g+.... Fatou proved

By definition, if a neutral fixed point is irrationally neutral and corresponds to a Siegel Disk:
Ir > 0 s.t. on D,(2),

f(z) =porp™'(2)

and by definition, the simply connected component of F containing D, (zg) is in F.

By the proposition {f™} is uniformly bounded on some D, (zp). By Montel it follows that {f"}
is normal there. Also by the proposition, {f"} is uniformally bounded on D,.(zg) if and only
if f conjugates to an irrational rotation. Therefore zy € F which is equivalent to f being
conjugated to an irrational rotation, i.e. zg corresponds to a Siegel Disk.

We have proven that for all attracting fixed points zg, Ir > 0 s.t. f™(z) = 2Vz € D,(z) it
follows that D,.(z9) C F.

For repelling fixed points, WLOG zy = 0, we construct a contradiction:

Assume D,.(0) is contained in the Fatou set. Assume the family f™ — ¢ locally uniformly.
Then ¢(0) = 0, and so for sufficiently small z, |g(z)| < r/2, so for large ng, |f™(2)| < 3r/4
hence f™(z) € D,(0). By definition of the conjugating map

pof=Xdp = pofop(2) =)z
whenever the left side is defined. Taking r possibly smaller, since we have proven that the
conjugating map also fixes the fixed point and is locally injective, we may assume ¢~ !(z) €
D,(0) for z € D,(0). Then f is defined there. Then taking § < r such that g(z) € D,(0)
for |z| < & which can be done by the above argument, we also have f™*(z) € D,(0) for ny
sufficiently large. Taking e sufficiently small, |p=1(2)| < § for all |z| < €. So, for |2| <€, f*(2)
is in D,.(0) for all ny, large, hence ¢(f™* (¢~1(2))) is defined for all |z| < € and all ny, sufficiently
large. Moreover, on this disk ¢ o f™ o p™! — o gop~t. So, we have for any z € D.(0) \ {0}

po [ opTl(z) = X"z = o0,
po fMop (z) > pogop(z).

This is a contradiction because the function on the right is holomorphic on D.(0). Consequently
the repelling fixed point cannot be contained in the Fatou set and all such points lie in the Julia

set.

12. ITERATION OF RATIONAL FUNCTIONS

We know how to classify fixed points and whether they are in the Fatou or Julia set. If we are
interested in iteration of meromorphic functions on C, we have proven that all such functions
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are rational functions. In this case we also know precisely how many fixed points such functions
have.

Theorem 12.1. A rational map of degree d has precisely d+ 1 fized points, unless of course it
is the identity.

Proof: We assume that R can be conjugated so as not to fix infinity. For example, for ¢ € C
let

1
$(z):=2""—c, ¢7'(2) = 1o
Then
S::¢_10RO¢:w—>—c—>R(—c)—>ﬁ.

So choosing some —c # R(—c) which is possible unless R is the identity (which we of course
assume it is not) we have S does not fix oo and S is conformally conjugate to R. The fixed
points of R are in bijection with the fixed points of S hence without loss of generality from
now on we assume R(0c0) # oo. Let ¢ # oo be a fixed point of R = P/Q. Then Q(¢) # 0 since
¢ # oo and R({) = (. So it follows that the degree of the 0 of the function R(z) —z at z = ( is
the same as the degree of the 0 of the function P(z) — 2Q(z) at z = ( since
P(¢) = Q)
R(() =¢ <= R(() - ¢ 6 0.

The number of fixed points of R is therefore equal to the number of solutions to P(z) = zQ(z)
counting multiplicity. Since R does not fix co, the degree of the numerator of R is less than or
equal to the degree of the denominator, so the degree of P is less than or equal to the degree
of @ and hence the degree of R is equal to the degree of (). The degree of the polynomial

P(z) — 2Q(z)

is therefore the degree of () plus one which is equal to d + 1. By the Fundamental Theorem of
Algebra this polynomial has precisely d + 1 zeros counting multiplicity. These are in bijection
with the fixed points of R hence R has precisely d + 1 fixed points counting multiplicity.

We will use the above result to prove the following.
Theorem 12.2. The Julia set is not empty for rational functions with degree > 2.

Proof: Assume J = (). Then the family of iterates of R is normal on C which is compact,
hence there exists a uniformly convergent subsequence. Passing to that subsequence we assume
WLOG that R™ — f. Since we have uniform convergence, it follows that f is a meromorphic
function on C, and hence we have shown that all such functions are rational functions. So f
has some degree D. Let d be the degree of R. Then we first claim the following.

Claim 4. R"™ has degree d".
Proof: Write

Consider R(R(2)) =
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Assume n = d is the degree of R, in which case n > m. Then

all(p(z) — req(2))
ba(z)"=" T1(p(2) — sjq(z))

R(R(2)) =

Consider the numerator
a H —1kq(2)) = ap(z)" + l.ot. = a2+ Lot
The numerator has degree n?. Consider the denominator
)y H —5jq(2)) = bg(2)""™p(2)" + L.o.t. = P H gy TmEmN g 6

where we use l.o.t. to denote lower order terms. This has degree

2

2mn—m2§n <= n2+m2—2mn20,

which is true since
n? —2mn +m? = (n —m)? > 0.
So it appears that the degree of R(R(z)) is n?> = d?, but what about cancellation? The
numerator vanishes iff
p(2) = r14(2)

for some r, and some z. The denominator vanishes iff

p(2) = 54(2)

for some s; and some z. If (for the sake of contradiction) there is some z such that both
numerator and denominator vanish, then there are some r; and s; such that

p(2) = r4(2) = 54(2).

By definition of a rational function, p and ¢ have no common zeros. This means that ri, # s;

for all £ and j. In order for the equation above to be satisfied we would need either r, = s; =0

which is a contradiction, or p(z) = ¢(z) = 0 which is also a contradiction. So, the numerator

and denominator of R(R(z)) have no common zeros and hence the degree of R(R(z)) is indeed
2

ne.

If instead the degree of ¢ is greater than or equal to the degree of p, so that m > n, then we

again look at the numerator and denominator. In the numerator we have

ag(z)™" H(p(z) —rrq(2)) = a(H —1)q(2)™ + aq(2)™ "p(2)" +l.0.t.,

which has degree m? unless some 7 = 0. The denominator

bH —5;q(2)) = b(H —s5)q(2)™ +lo.t.,

which also has degree m? unless some s; = 0. We cannot have some 7, = 0 and some s; = 0
because then p and ¢ would have a common root (0). So at least one of these is non-zero, and
the degree of R(R(z)) is m? = d>.

The same argument and a bit of induction shows that the degree of R™ is d".
Now we know that something must go amok. We have R™ — f uniformly on ¢ yet the degree
of R" = d"™ — oo since d > 2, but the degree of f is D which is fixed. We know that R™ has
d™ 4+ 1 fixed points, yet f has only D + 1 fixed points. Consider

R"(2) =z = f(2) - 2,
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and the convergence is uniform on C. Let { fk}kD:f be the fixed points of f. Fix a small disk
Dy, about f;, which contains fi but does not contain any pole of f (presuming fi is not o).
Then by the Argument Principle, the multiplicity of the fixed point at fi is equal to
!
fe-1,
op, f(z) —=
By the uniform convergence of R™ to f, the corresponding integral with R™ replacing f converges
to this. By the Argument Principle this is equal to the number of zeros of R"(z) — z minus the
number of poles. That is an integer. The only way a sequence of integers can converge to an
integer is if it is eventually constant. So, for large n, the number of fixed points of R™ in Dy
minus the number of poles in Dy is equal to the multiplicity my of the fixed point f;. Note
that for fry = co we can use the same argument with a conformal conjugation which moves the
fixed point to a different point (0, for example), because we have seen that z is a fixed point
for f iff ¢=1(2) is a fixed point for f: ¢ Lo fod.
So, for large n, the number of fixed points of R™ in Dy minus the number of poles in Dy is
equal to my. If the number of fixed points of R™ in Dy stays bounded, then since the number
of fixed points is d" + 1 — oo, the fixed points must accumulate in C outside of Dj,. Let’s say
they accumulate at zg so z, is a fixed point for R,, and z,, — zy. Then since R™ — f uniformly,
zo must be a fixed point of f, which it is not. So, for at least one Dy, the number of fixed
points of R™ in Dy, is tending to infinity with n (passing to a subsequence if necessary). Since
the number of fixed points is equal to my plus the number of poles, this means that the number
of poles of R™ in Dy, is tending to infinity. Hence they accumulate somewhere at say zy € Dy.
By the uniform convergence of R™ — f, zy must be a pole of f. However, we assumed that Dy,
did not contain any poles of f. So, this too is a contradiction.
Consequently, this shows that it is impossible for R” — f uniformly on C and hence the family
of iterates {R"} is not normal on C. Therefore at lest one point of C is in the Julia set, which

is therefore non-empty.

13. THE FATOU AND JULIA SETS OF RATIONAL FUNCTIONS

Definition 13.1. E is completely invariant if E and E€ are invariant under R (R rational),
meaning R(F) C E and R(E°) C E°.

Proposition 13.2. This is the case if and only if R(E) = E.
Proof: Assume F is completely invariant. In this case, since
R(C)=R(EUE®)=C=FEUE®=R(E)UR(E®) c EUE®
if R is invariant, but since we have equality, it follows that R(F) = E, R(E°) = E° and there-
fore E = R~! and E¢ = R™1(E°).
On the other hand, if E = R™'(E), it follows that R(E) = E and E¢ = C\R™'(E). Thus
R(E) = R(C\R(R™*(E)) = R(C)\E = C\E

since R(C) = C (R not a constant).
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Theorem 13.3. The Julia set J is completely invariant. Proof: Let zo € D,(z9) C F. Then
R™ converges uniformly on D, /5(20).

= R™*! converges uniformly on R™(D, j2(z0)) which is also compact.

= {R"} is normal on R™(D, 2(2))

= R '(D,2(20)) C F.

This shows that R~Y(F) C F. We need to show equality. Suppose that zo € F and R™+!
converges uniformly on D,/3(20). R is non-constant, holomorphic on D, 3(20) = an open
map. So R(D,/2(20)) is open and R™ converges local uniformly on R(D,/2(20))

—_———
open neighborhood of R(zo)

= R(Zo) e F.
So, R(F) C F, and so R™Y(R(F)) = F C R™Y(F) C F hence equal.
So F is completely invariant by the Prop.

= R(J) = J is also completely invariant since J = F°.
Theorem 13.4. VN > 1, J(R) = J(RY) Proof: If R is normal on D,(z)
= {R"} converges locally uniformly or rather uniformly on D, 5(z). So R™ il f-
= (R™)Y — N (fiz N)
———
=RN7"k
= The family {(R™)"} is normal on D, 3(z) since (RN)"* = RN™ converges uniformly.
= F(R) C F(RN).
Conversely, if {(RN)"} is normal on D, (z0) so (RN)"™ converges uniformly on D, >(zo)
= RN™ = R™ converges uniformly on D, (o)
= {R"} normal there

= F(RN) c F(R). Hence equal. Hence complements (J's) are also equal.

Theorem 13.5 (Montel’s Big Theorem (recall)). If F meromorphic on domain G and 3z1, 22, 23
such that f(G)N{z};_, =0 Vf € F then F is normal. Proof: (Sketch) WLOG z; = 0,2y =
1,23 = c0S := C\{0,1}.

Uniformization Theorem = S is conformal to D. Let ¢ : S <— D. Then for each D, C G, D,
is also conformal to D. WLOG however D, =D so in fact we have ¢po f: D — D

= This family is normal. This also (covering maps) = F is normal.
In addition to fixed points another type of distinctive point is a critical point.

Definition 13.6. A critical point z € C is a critical point iff R is not injective on any open
neighborhood of z iff R'(z) = 0 iff the multiplicity of the zero of the function R(w) — R(z) for
w = z is greater than one.

Definition 13.7. The multiplicity of z € C is the degree of the zero of the function R(w) — z
for w = z and is denoted by mult(z).
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We will use but not prove the following theorem.

Theorem 13.8 (Riemann-Hurwitz). Assume R is not constant and of degree d. Then

> mult(z) — 1 =2(d - 1).

zeC

The proof of this theorem relies upon some rather deep results in topology concerning the Euler
characteristic of Riemann surfaces. Similar to the proof of the fact that the Julia set of any
rational function is non-empty for all rational functions of degree at least two, which relied on
the number of fixed points, we can use the Riemann Hurwitz theorem to prove the following.

Theorem 13.9. Any finite completely invariant set for R rational of degree at least two has at
most 2 elements.

Proof: Assume S is such a set. Then R(S) = S, and so R acts as a permutation on the
elements of S. Assume S has n elements. Then R is uniquely identified with an element o
of the symmetric group S,. This group has n! elements hence the order of o is finite. Let
this order be k. This means that R* acts as the identity element on S. We have already
computed that the degree of R* is d* where d is the degree of R. Note that the multiplicity
of the zero of RF(w) — 2 at w = z is d*. This is because the function R*(w) — z has precisely
d* zeros counting multiplicity by the Fundamental Theorem of Algebra. Perhaps that is not
immediately apparent, but writing

Riw) = 29 R = 2 = g(w) = p(w) — 2g(w) = 0.

q(w)
The function g(w) : C—oCisa polynomial of degree equal to the degree of R*, which is d*.
Hence this function has precisely d* zeros counting multiplicity by the Fundamental Theorem
of Algebra, and g(w) = 0 iff R¥(w) = z. So, if one of these zeros were to be some w # z, then
R™%(z) > w which shows that w € S because S is completely invariant. Then since R* acts as
the identity on S, this means that

R*(w) = w # z = RF(w).

This is a contradiction. So the only solutions to R¥(w) — z = 0 is w = z and hence the
multiplicity of z for R* is d*. This holds for each z € S. So we have

> mult(z) —1=n(d* —1) <) mult(z) — 1 =2(d* — 1)

z€S zeC

which shows that n < 2.
Definition 13.10. The orbit of a point z € Cis

O(z) :={R"(2)}nez-
Note that this includes both the forwards and backwards orbits. If the orbit of a point is finite,
then we say that point is exceptional. The set of all such points is denoted by E(R).

Proposition 13.11. The exceptional set of a rational map of degree at least two has 0, 1, or
2 points.

Proof: If z € E(R), then by definition the orbit of z has finitely many elements. Since the
orbit of z is the same as the orbit of R(z) as well as the same as the orbit of R~!(z), the orbit
is completely invariant. By the preceding theorem the orbit of z has 1 or 2 elements. It has at
least one element because it contains z = R%(2). If the orbit of z contains only z, then it is a
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fixed point. If the orbit of z also contains w so that R(z) = w # z, then we know that either
R(R(z)) = R(w) = w or R(R(2)) = z. Hence either w is a fixed point of R or z is a fixed point
of R%2. Consequently the total number of exceptional points is at most twice the number of
fixed points of R plus the number of fixed points of R?. This is finite because R has precisely
d + 1 fixed points, and R? has precisely 2d + 1 fixed points. Since the orbit of any exceptional
point is completely invariant, and the orbit of any point in the orbit of z is the same as the
orbit of z, it follows that the orbit of each exceptional point is contained in E(R). There are
finitely many of these, they are each completely invariant, hence E(R) is a finite, completely

invariant set. By the theorem it contains 0, 1, or 2 points.

Theorem 13.12. The Julia set of any rational map of degree at least two is infinite, and the
exceptional set is contained in the Fatou set.

Proof: If the Julia set is finite, then because it is completely invariant, it contains at most
2 points. We know that the Julia set is not empty. So, first assume the Julia set contains
one point. We can conjugate such that WLOG this point is co. Then since the Julia set is
completely invariant,
R(0) C J =00 = R(o0) = o0,

and

R Y (0)C T =00 = R *(c0) = 0.
Consequently, R has no poles in C and is an entire function. Since it has degree at least two,
R is a polynomial. For any polynomial oo is a super-attracting fixed point, because 0 is a
super-attracting fixed point for the function

L “1oRo 2=¢ 1 2)=1/z
R =0 oRes s =07 =1/

and ¢~1(0) = co. We have already seen that if two functions are conformally conjugate such as
¢~1oRop = R, then R has a fixed point at oo if and only if R has a fixed point at ¢~ 1(00) = 0.
Moreover the multiplier at the fixed point is the same for R as for R. Since the polynomial R
is of degree d > 2, 1/R tends to 0 of order d as z — oo hence R has a zero of order d at 0.
By the Fundamental Theorem of Algebra, R has precisely d zeros counting multiplicity. Hence
this function has only one zero of order d at zero so

1 =2 c 2)=c 12
Rz ¢ e C\ {0} = R(») .

Since 0 is a super-attracting fixed point for R it lies in the Fatou set for R and consequently
¢~1(0) = oo also lies in the Fatou set of R. This is a contradiction because this point was
assumed to be in the Julia set which is distinct from the Fatou set.

If the Julia set contains two points, we can again assume by conformal conjugation that these
points are {0,00}. By the complete invariance of the Julia set we have a few possibilities.
One possibility is that R(0) = 0 and R(c0) = oo, which reduces to the above argument which
shows that in fact the points 0 and oo both lie in the Fatou set, a contradiction. The other
possibility R(0) = co. In this case R(z) = P(z)/Q(z) has a Laurent expansion about 0 of the
form ¢j277 + ... with ¢; # 0. Consequently when we consider long division of the polynomials
P and @ it follows that the degree of @ is strictly larger than the degree of P. If we were to
have R(oc0) = oo, this requires the degree of P to be strictly larger than the degree of @) which
it is not. Hence R(co) = 0 since R(oo) must be contained in the Julia set by the complete
invariance of the Julia set. If there were any other point p € C such that R(p) = 0, then again
by the complete invariance of 7 such a point would necessarily be contained in J which it is
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not. Hence, the only zero of R is at infinity and this zero must therefore be of degree d which
is the degree of R. Consequently R(z) = cz~?. Then

R%(2) = R(R(2)) = %%

has a super-attracting fixed point at z = 0. It follows that 0 is in the Fatou set of R?, and
by one of our previous results, the Fatou set of RV is the same as the Fatou set of R for any
N € N. Hence 0 is in the Fatou set of R as well, which is a contradiction because 0 was assumed
to be in the Julia set.

So, it is impossible for the Julia set to have 1 or 2 points, and this shows that it must have
infinitely many points because it is not empty.

Next we consider the exceptional set. If it is just one point, by conformal conjugation we may
assume that this point is co. Then the orbit of this point is co and hence R(00) = co = R™!(c0)
and so R is a polynomial because it is an entire non-constant function with pole at infinity. As
we have seen above oo is a super-attracting fixed point for any polynomial of degree at least
two and hence lies in the Fatou set.

If the exceptional set contains two points, without loss of generality we assume these two points
are 0 and oco. Then we either have R(0) = 0, R(co) = oo which implies R(z) = cz¢, and both
0 and oo are in the Fatou set. By the above argument the other possibility is that R(co) = 0,
R(0) = oco. In this case we showed that R(z) = cz~¢, and again both 0 and oo lie in the Fatou
set because this is true for R? (both 0 and oo are in the Fatou set of R? in this case).

So, in all cases the exceptional set lies in the Fatou set.

Theorem 13.13. Any completely invariant closed set A satisfies one of the following: either
ACER)CForADJ.

Proof: Assume A is such a set, and let U := C \ A. Then U is open and completely invariant.
If A is finite, then it has at most two points. It follows that since A is completely invariant, the
orbit of each element of A lies in A and hence is finite, so A C E(R). If A is infinite, consider
{R"} on U. Since U is completely invariant, for each z € U, R*(z) ¢ U ¢ C\ A and hence the
family {R"} on U omits all points of A, of which there are more than three! So, the family R"
is normal on U, and hence U C F. The reverse inclusion therefore holds for their complements,

soU=ADF=J.
Theorem 13.14. The Julia set is perfect.

Proof: Let J’ denote the set of accumulation points of the Julia set. Then since 7 is closed it
follows that J’ C J. Note that since 7 is infinite and is contained in C which is compact, the
Julia set has accumulation points, so J’ # 0. The idea is thus to show that J’ is completely
invariant because then we have proven that any completely invariant closed set is either in the
Fatou set or it contains the Julia set. Since J’ is in the Julia set, it cannot be in the Fatou
set! First let’s show that J' is closed. If z is an accumulation point of J’, then any open
neighborhood U of z contains an element of J’, which we can call z’. Since 2z’ is in U which
is open, and 2’ is an accumulation point of J, it follows that U also contains an element of J.
Hence any open neighborhood U of z contains an element of J, and so z is an accumulation
point of 7 and therefore z € 7. Hence, J' contains all its accumulation points and is therefore
closed.
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Next we show the complete invariance of J'. Let z € J'. Then there is a sequence {z,} C J
which converges to z. The function R is continuous on C, and therefore R(z,) — R(z). Since
R(z,) € J for every n by the invariance of 7, we have a sequence in J converging to R(z’).
Therefore R(z') is also an accumulation point of J and so R(z') € J'. We have thereby shown
the inclusion
RJNcT = J cRNT).

Next let z € R™Y(J’), and w = R(z) € J’. Then since R is open, and w € J', for an open set
U containing z, R(U) is an open point containing w which is an accumulation point of 7, and
so R(U) has non-empty intersection with J. Therefore

RYRUNT)=UNR Y T)=UNJT #0.
So, for any open U containing z, U N J # 0. It follows that z is an accumulation point of J
and so z € J'. This shows that
RYJINcTJ = J cRJ)cCT.
So
R(j/) — jl
is completely invariant. Since it is a closed set, by the previous theorem it is either contained
in F or it contains 7. Since J' C J which is disjoint from F, we cannot have J’' C F, and so
we must have
Jo>I>T = J=J.

Hence every point of 7 is an accumulation point of 7 which is the definition of being perfect.

Theorem 13.15. The Julia set of a rational map R of degree at least two is either C or has
empty interior.

Proof: Let us decompose C as a disjoint union

C=aJUJUF.
Let us also assume that z € J , so the interior of J is not empty. Then there exists r > 0
such that D,(z) C J C J. Applying R, by the Open Mapping Theorem, R(D,(z)) > R(z)

is an open set. By the complete invariance of J this set lies in J. Hence there is an open
neighborhood of R(z) in J, so R(z) € J. This shows that
R(J)c J.
For the reverse inclusion we use continuity, because R~1(D,.(z)) is an open set contained in J
hence contained in J so
RYJ)CJT,
and we see that J is completely invariant. Since the Fatou set is also completely invariant, we
have the following
R(JUF)=JUF = R(0J)=09J,
so the boundary of J is also completely invariant. It is closed since its complement is by
definition open. By a preceding result, since the intersection of the Julia set, which is closed
and hence contains its boundary, with the Fatou set is empty, either the boundary of the Julia
set contains the Julia set, or the boundary of the Julia set is empty. By assumption the Julia

set has non-empty interior, so if it has non-empty boundary, then it cannot be contained in its
boundary. It follows that the boundary of the Julia set is empty. This means that the Julia set
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is open as well as closed, and hence is the entire C. This shows that if the Julia set has non-
empty interior, then it is C. On the other hand, if the Julia set is not C, by the contrapositive,
it cannot have non-empty interior, so if the Julia set is not C, then it has empty interior. These

are the only two mutually exclusive possibilities.
The following proposition will allow us to prove the self-similarity property of J.

Proposition 13.16. Let R be a rational map of degree at least two, U a non-empty open set
such that UNT # (. Then (1)

Un>oR™(U) > C\ E(R) D J,
and moreover (2) there exists N € N such that
R*U)D J
foralln > N.

Proof: Well, it makes sense to prove (1) first, because we will likely need it to prove (2) which
is a stronger statement. Define
U() = UnzoRn(U).
Define
V :=C\ Up.
If V = () then we are done. If V has three or more points, we are led to a contradiction because
this would mean that the family {R"},,>1 on the set U is normal. Then we would have U C F
which contradicts the fact that U N J # (. So, V has at most 2 points. For the sake of
contradiction we assume there is some zg € V' \ E(R). Then it must have an infinite orbit. We
will show that a point has an infinite orbit iff the backwards orbit is infinite. Assume that the
backwards orbit is finite,
O~ (20) = K ={20,-.., 2k}
Then consider R™! on K. R7!(z;) is a set of one or more points in K. If two points z; and z
have a common pre-image meaning the sets
R™Hz) N R (=) # 0,
then applying R to a common point in this pre-image we get that z; = 2. Hence, for each
i=0,...k,
Ril(Zj) CK
is distinct. Each of these sets contains at least one point. Since K is a finite set, this means
that each of these pre-images contains ezactly one point, and so R~! : K — K is a bijection. It
can therefore be identified with a permutation, an element of the group Si41. This is a group
of finite order, so there exists n € N such that (R~1)" = R™™ acts as the identity on K. Now
we consider the forward orbit. For each z; € K we have

R™"(zj) = z; = 2z = R"(%)
for all j =0,1,...,n. In particular R™(29) = z9. Hence

R"*(29) = R*(20), VkeN.
Consequently, the forward orbit O (zy) can have at most n + 1 elements. This shows that if
the backward orbit is finite, then the whole orbit is finite. Consequently, if the whole orbit is
infinite, then the backwards orbit is infinite. Of course the reverse statement is also true: if the

backwards orbit is infinite, then the whole orbit is infinite (because it contains the backward
orbit!). So, we have shown the equivalence

#O7(2) =00 = #0(z) = 0,
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where in this statement z is arbitrary.

In our particular case of concern here, we have zp not in F(R) hence it has infinite orbit, hence
the backwards orbit is infinite. We will use this to achieve a contradiction. First, if some
R~ (z9) € Uy, for some m € N then there is some k € NU {0} such that

R™™(%) € R*(U) = R ™(2) = RF(w), weU.
Then applying R™ to both sides,
29 = R™**(w) € R™*(U) c Uy.

This contradicts zg € V = @\Ug. So, this shows that we must have R~ (zg) Uy for all m € N.
Since the backwards orbit of zy is infinite, there are infinitely many points R~™(z) € C \ Up.
By definition of Uy, the family of iterates R™ on U omits all these points, and there are not
just three but infinitely many! By Montel’s Theorem the family of iterates is therefore normal
on U, so U C F which we have already seen is a contradiction since U N J # 0.

So, the assumption of a point zg € V' \ E(R) leads in all cases to a contradiction, hence there
can be no such problematic point! This shows that V' C E(R) and taking complements reverses
the inclusion,

C\V=U;>C\ER)DJ.
The second statement is rather ingenious. Since we know that the Julia set is infinite and
perfect, the intersection U N J is not only empty, but must contain infinitely many distinct
points. Choose three distinct points. Since they are all in U which is open, let’s call the points
for instance z1, 22, 23, and there exist ¢; > 0 for ¢ € I = {1,2,3} such that D, (z;) C U.
Moreover we can choose

1
€= §min{61,€2,€3, |Zz - Zj|i #£j€ I}

Then D.(z;) := U; are at a positive distance from each other, have non-empty intersection with
J, and are open sets contained in U.
Claim 5. For each i € I there exists j € I and n € N such that

U; ¢ RMUY)
Proof: By contradiction we assume not. Then there exists an ¢ € I such that for each j € I
and every n € N

U; ¢ R™(U;).
Hence

Uj ¢ Up>1 R*(U;), j=1,2,3.

Since these three sets are disjoint, there exist points in U; which are not in U,,>1 R"(U;), and
which are distinct. Hence R™ on U; omits these three points and is therefore normal. This
is again a contradiction because it would imply U; C F which it is not because U; N J # 0.

Claim 6. There exists n € N and i € I such that
U, C R™(U;).
Proof: We have shown that there is some j € I such that
U; C R™(Uh).
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If j = 1, then the claim is proven. Otherwise, without loss of generality (we can change their
names) assume U; = Us. Then by the previous claim once more, we have some k € I and
no € N such that

Ur C R™(Us).
If kK = 2, the claim is proven. Otherwise, if £k = 1, then
U, C an(UQ) C an(Rnl (Ul)) = Rn2tm (Ul),

and so in this case the claim is also proven. So, the remaining case is that kK = 3. Then by the
previous claim, there is [ € I and ng € N such that

U, C R™(Us).
If [ = 3, then the claim is proven. If [ = 2, then
Uy C R™(Us) C R™(R™(Uy)) = R™1"2(Uy),
and so the claim is proven. If [ = 2, then
Uy C R™(Us) C R™(R™(Us)) C R™(R™(R"(Uy)))
= Rretmetruqy)).

So in this case the claim is also proven, and we have proven it in every possible case!
Now we can complete the proof of the proposition, which given the amount of work perhaps
ought to be a theorem. For U; C R™(U;) as in the claim, let

S :=R".
Then S is also a rational map of degree at least two. Since
U; c S(U;)) = S(U;) C S*(U;y)
we have an increasing sequence
U, C S(U;) ... 88Uy < SEFHwy).

We have proven that the Julia set of R and any of its iterates R™ are identical. So the Julia
set of R is the same as that of S, and we write both as J. By definition of U;,

Uuing #0,
and U; is open, so by part (1) applied to U; with respect to S,
J C Unzosn(Ui).

On the right side we have an open cover by the open mapping theorem. The Julia set is a closed
subset of C which is compact, hence J is also compact. Therefore any open cover admits a
finite sub-cover and so there is M € N such that

J c UM s™U;) = SM(Uy),

since S™(U;) € SM(U;) for all n < M, n > 0. Note that S™ = R"™ . So, we have by complete
invariance of J for any s € N

j _ Rb(j) C Rb(RnM(UZ)) _ RnM-‘rS(Ui) C RnM-i-S(U)’
where the last statement follows since U; C U. Hence for any m > N := nM we have

J c R™(U).
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The last lovely result to prove is the following.

Theorem 13.17. The Julia set is self-similar in the sense that for any z € 7,
J ={R7"(2)}nz1-

Proof: Let z € J. Then z ¢ E(R) C F, so the backwards orbit of z is infinite. Let € > 0 and
20 € J. Consider U := D,(2p). By the proposition there is N € N such that

J c RN (U).
Moreover the Julia set is completely invariant which means that R~"(z) € J c RN (U). So
there exists w € U such that R~"(z) = RN (w) and hence w € R~ N (z). By definition of
U>sw

|lw — 20| < €.
This shows that for each zp € J and € > 0, there is an element of O~ (z) = {R™"(2)},>1 which
is at a distance less than e from zp. Hence O~ (z) is dense in J. Therefore the closure of this

set contains the closure of 7 which is equal to J because J is closed.
This last result as well as our previous result shows the connection between Julia sets and sets
of non-integer Hausdorff dimension. Julia sets have an invariance property, a self-similarity
property, and either have empty interior or are the whole space.
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