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1. What is volume?

It turns out that volume is not actually a singularly defined notion. It depends upon the
definition of a measure. Usually when someone talks about volume what they mathematically
mean is three dimensional Lebesgue measure. We will see that there are many notions of
volume, corresponding to many different measures...

Definition 1.1. Let X be a set. A subset A ⊂ P (X) is called an algebra if

(1) X ∈ A
(2) Y ∈ A =⇒ X \ Y =: Y c ∈ A
(3) A, B ∈ A =⇒ A ∪B ∈ A

A is a σ-algebra if in additon

{An}n∈N ⊂ A =⇒
⋃
n∈N

An ∈ A.

Remark 1. Note that algebras are always closed under intersections, since for A,B ∈ A,

A ∩B = (Ac ∪Bc)c ∈ A,
since algebras are closed under complements and unions. Consequently, σ-algebras are closed
under countable intersections.

We will often use the symbol σ in describing countably-infinite properties. Think about a few
examples of algebras.
Example Let X be a topological space. An important example of a σ-algebra is the Borel
σ-algebra, which is the smallest which contains all open sets. Prove that this satisfies the above
axioms.

Definition 1.2. Let X be a set and A ⊂ P (X) a σ-algebra. We will call (X,A) a measure
space. We may be a bit laid-back about this and also use measure space to refer to a set, a
σ-algebra, as well as a measure. A measure µ is a countably additive, monotone set function
which is defined on our σ-algebra. It must vanish on the empty set. We will only work with
non-negative measures, but there is such a thing as a signed measure. Just so you know those
beasties are out there.

(1) Monotone means that if A ⊂ B then µ(A) ≤ µ(B).
(2) Countably additive means that for a countable disjoint collection of sets in the σ-algebra

{An} ⊂ A such that An ∩Am = ∅∀n 6= m =⇒ µ
(⋃

An

)
=
∑

µ(An).

Remark 2. Note that we can always disjoin sets. So, if {An} ⊂ A is a countable collection of
sets, setting

B1 := A1, Bn := An \ ∪n−1
k=1Ak, k ≥ 2,

1We are grateful to Mary Cosgrove Roberts for photographing and posting a koala picture to Facebook which
we have included to indicate the end of a proof.
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we have
∪Bn = ∪An, Bn ⊂ An∀n =⇒ µ(Bn) ≤ µ(An)

and by countable additivity and since ∪Bn = ∪An
µ(∪An) = µ(∪Bn) =

∑
µ(Bn) ≤

∑
µ(An).

So, for not-necessarily disjoint sets, we have countable subadditivity.

Example Cook up some examples of σ-algebras and measures on them. An easy one is to take
X = N and the algebra A = P (X). Note that all elements of A are either countably infinite,
finite, or empty. Define the measure to be 1 on a single element of N and 0 on the emptyset.
Prove that this satisfies the definition of a measure space. It was suggested that we could take
the analogously defined point measure on R and let A = P (R). Will this work?

Definition 1.3. A measure space is called σ-finite if there exists a collection of sets in the
σ-algebra which cover the whole space, each of which has finite mass.What is mass? That is
the notion of “volume” induced by the associated measure. So, the mass of an element of the
σ-algebra is simply the value of the measure evaluated on that element. Mathematically for
A ∈ A the mass of A is µ(A) where µ is our measure defined on elements of A. We call the
elements of A measurable sets. Why is the whole space always a measurable set? Why is the
emptyset always a measurable set? Now, the whole space need not have finite mass, but if it
does, then it’s said to have finite mass, in which case one can normalize the measure so that the
whole space has mass equal to one. Such a space is called a probability space, and the elements
of A are called events. The interpretation of the mass of an event is the probability that it’s
gonna happen.

1.1. Lebesgue Volume. The n-dimensional Lebesgue measure is the unique, complete mea-
sure which agrees with our intuitive notion of n-dimensional volume. To make this precise, first
we define a generalized interval and our notion of intuitive volume.

Definition 1.4. A generalized interval in Rn is a set for which there exist real numbers ak ≤ bk
for k = 1, . . . n, such that this set has the form

I = {x ∈ Rn, x =
∑

xkek, ak < or ≤ xk < or ≤ bk, k = 1, . . . , n}.

Above we are using ek to denote the standard unit vectors for Rn. The intuitive volume function
on Rn is defined on such a set to be

vn(I) =
∏

(bk − ak).

Next we can extend our intuitive notion of volume to elementary sets.

Definition 1.5. An elementary subset of Rn is a set which can be expressed as a finite disjoint
union of generalized intervals. The collection of all of these is denoted by En.

Exercise: Prove that vn is well-defined on En.
What we shall call Lebesgue’s Theorem (note that this is not his only awesome theorem, and
his original statement may have been somewhat different) is the following.

Theorem 1.6 (Lebesgue). There exists a unique complete measure on Rn which agrees with
vn on En and such that the corresponding σ algebra is the smallest which contains En.

To prove this we will require techniques from another great French mathematician, Carathéodory.
One unfortunate fact about measures is that they’re not defined on arbitrary sets, only on mea-
surable sets (remember, those are the ones in the associated σ algebra). However, there is a
way to define a set function which is almost like a measure and is defined for every imaginable
or unimaginable set. This thing is called an outer measure.

Definition 1.7. Let X be a set. An outer measure µ∗ on X is a map from P (X) → [0,∞]
such that

µ∗(∅) = 0, A ⊂ B =⇒ µ∗(A) ≤ µ∗(B),
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and

µ∗(∪An) ≤
∑

µ∗(An).

Whenever things are indexed with n or some other letter and are not obviously indicated to
be uncountable or finite, we implicitly are referring to a set indexed by the natural numbers
(which unlike in France start with 1, not 0).
Now we can finally prove something.

2. Carathéodory’s Extension of Outer Measures

Proposition 2.1 (Outer Mass Existence). Let E ⊂ P (X) such that ∅ ∈ E. Let ρ be a map from
elements of E to [0,∞] such that ρ(∅) = 0. Then we can define for every element A ∈ P (X)

ρ∗(A) := inf{
∑

ρ(Ej) : Ej ∈ E,A ∈ ∪Ej},

where we assume that inf{∅} =∞, so that if it is impossible to cover a set A by elements of E
then ρ∗(A) :=∞. So defined, ρ∗ is an outer measure.

Proof: Note that ρ∗ is defined for every set. Now since ∅ ⊂ ∅ = ∪Ej for all Ej = ∅ ∈ E we
have that since ρ ≥ 0

0 ≤ ρ∗(∅) ≤ 0 =⇒ ρ∗(∅) = 0.

This is the first condition an outer measure must satisfy. Next, let’s assume A ⊂ B. (By ⊂
we always mean ⊆). Then, since any covering of B by elements of E is also a covering of A by
elements of E, it follows that the infimum over coverings of A is an infimum over a potentially
larger set of objects (namely coverings) as compared with the infimum over coverings of B.
Hence we have

ρ∗(A) = inf{
∑

ρ(Ej) : Ej ∈ E,A ∈ ∪Ej} ≤ inf{
∑

ρ(Ej) : Ej ∈ E,B ∈ ∪Ej} = ρ∗(B).

This is the second condition. Finally, we get to do some analysis here. Let ε > 0 be arbitrary.
Since the definition of ρ∗ is by means of an infimum, if we have a countable collection of sets

{Aj} ⊂ X,

then for each j ∈ N there exists a countable collection of sets {Ekj }∞k=1 where each Ekj ∈ E,
such that

ρ∗(Aj) ≥
∑
k≥1

ρ(Ekj )− ε

2j
=⇒ ρ∗(Aj) +

ε

2j
≥
∑
k≥1

ρ(Ekj ).

Well then, the collection {Ekj } is a countable collections of elements of E which covers

∪Aj .

Therefore by the definition of ρ∗ we have

ρ∗(∪Aj) ≤
∑
j,k≥1

ρ(Ekj ) ≤
∑
j≥1

ρ∗(Aj) +
ε

2j
= ε+

∑
j≥1

ρ∗(Aj).

Since this inequality holds for arbitrary ε > 0, we may let ε→ 0, and the inequality also holds
without that pesky ε, and this is precisely the third requirement for ρ∗ to be an outer measure.

Now we can say what we mean for a measure to be complete.
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Definition 2.2. Let (X,A, µ) be a measure space. Then, there is a canonically associated
outer measure induced by µ defined by

µ∗(A) := inf{
∑

µ(Ej), {Ej} ⊂ A, A ⊂ ∪Ej}.

We say that the measure µ is complete if, for each A ⊂ X such that

µ∗(A) = 0 =⇒ A ∈ A.

2.1. Exercise Set 1.

(1) Prove that vn is well defined on En for all n ∈ N. Prove that En is not an algebra. Give
a construction of the smallest algebra which contains En.

(2) Given a measure space (X,A, µ) and E ∈ A, define

µE(A) = µ(A ∩ E)

for A ∈ A. Prove that µE is a measure.
(3) Prove that the intersection of arbitrarily many σ-algebras is again a σ-algebra. Does

the same hold for unions?
(4) Let A be an infinite σ-algebra. Prove that A contains uncountably many elements.

Theorem 2.3 (Carathéodory). Let µ∗ be an outer measure on X. A set A ⊂ X is called
measurable with respect to µ∗ ⇔ ∀ E ⊂ X the following equation holds:

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac). (∗)
Then M := {A ⊂ X|A is µ∗ measurable} is a σ-algebra and µ∗

∣∣
M is a complete measure.

Proof: Note that A ∈ M ⇒ Ac ∈ M because (*) is symmetric in A and Ac. ∅ ∈ M since
µ∗(∅) = 0.
Next we will show that M is complete under finite unions of sets:
For A,B ∈M and E ⊂ X we get, by multiple use of (*):

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) = µ∗((E ∩A) ∩B) + µ∗((E ∩A) ∩Bc)
+ µ∗((E ∩Ac) ∩B) + µ∗((E ∩Ac) ∩Bc).

Furthermore, we can write A ∪B = (A ∩B) ∪ (A ∩Bc) ∪ (Ac ∩B), which gives us

µ∗(E ∩A ∩B) + µ∗(E ∩Ac ∩B) + µ∗(E ∩A ∩Bc) ≥ µ∗(E ∩ (A ∪B))

Using this inequality in the above equation gives us:

µ∗(E) ≥ µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)c)

This inequality is actually an equality, as ”≤” follows from the outer measure axioms. Hence
A ∪B ∈M.
µ∗ is finitely-additive: ∀A,B ∈M, A∩B = ∅ ⇒ µ∗(A∪B) = µ∗((A∪B)∩A)+µ∗((A∪B)∩Ac) =
µ∗(A) + µ∗(B)

Now we will show that M is actually a σ-algebra: For {Aj}j∈N ⊂M we can define a sequence
of disjoint sets {Bj}j∈N ⊂M fulfilling

⋃
j∈NAj =

⋃
j∈NBj by:

B1 := A1, B2 := A2 \A1, B3 := A3 \ (A1 ∪A2) ...

Let us also define B̃n :=
⋃n
j=1 Bj .

So, we need to show that
⋃
j∈NBj ∈M. For E ⊂ X:

µ∗(E ∩ B̃n)
(∗)
= µ∗(E ∩ B̃n ∩ Bn) + µ∗(E ∩ B̃n ∩ Bnc) = µ∗(E ∩ Bn) + µ∗(E ∩ B̃n−1)

Using µ∗(E ∩ B̃n) = µ∗(E ∩Bn) + µ∗(E ∩ B̃n−1) inductively we get:

µ∗(E ∩ B̃n) = µ∗(E ∩Bn) + µ∗(E ∩Bn−1) + µ∗(E ∩ B̃n−2) = ... =

n∑
k=1

µ∗(E ∩Bk)
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Using this result we get:

µ∗(E) = µ∗(E ∩ B̃n) + µ∗(E ∩ B̃cn) =

n∑
k=1

µ∗(E ∩Bk) + µ∗(E ∩ B̃cn)

≥
n∑
k=1

µ∗(E ∩Bk) + µ∗(E \ (

∞⋃
k=1

Bk)) (∗∗)

This inequality holds for any n ∈ N. Taking the limit and using the outer measure axioms gives
us

µ∗(E) ≥
∞∑
k=1

µ∗(E ∩Bk) + µ∗(E \ (

∞⋃
k=1

Bk))

≥ µ∗(E ∩ (

∞⋃
k=1

Bk)) + µ∗(E \ (

∞⋃
k=1

Bk))

Since µ∗(E) ≤ µ∗(E ∩Y ) +µ∗(E \Y ) holds for any Y ⊂ X, the above inequality is an equality:

µ∗(E) = µ∗(E ∩ (

∞⋃
k=1

Bk)) + µ∗(E \ (

∞⋃
k=1

Bk))

This shows that
⋃∞
k=1Bk ∈M. Hence M is a σ-algebra.

Now we want to show that µ∗
∣∣
M is countably additive. Let {Bk}k∈N ⊂M be pairwise disjoint

sets. Defining E :=
⋃∞
k=1Bk and using (**), we get

µ∗(

∞⋃
k=1

Bk) = µ∗(E)
(∗∗)
≥

∞∑
k=1

µ∗(E ∩Bk) + µ∗(∅) =

∞∑
k=1

µ∗(Bk) ≥ µ∗(
∞⋃
k=1

Bk)

µ∗(

∞⋃
k=1

Bk) =

∞∑
k=1

µ∗(Bk)

So µ∗
∣∣
M is a measure. It is even a complete measure: For Y ⊂ X such that µ∗(Y ) = 0 and for

arbitrary E ⊂ X we have

µ∗(E) ≤ µ∗(E ∩ Y ) + µ∗(E ∩ Y c) ≤ µ∗(Y ) + µ∗(E) = µ∗(E)

Therefore Y ∈M.

Homework: We have vn
∗ defined von Rn. Carathéodory’s theorem shows that we get a

complete measure and σ-algebra from it. Is this the Lebesgue measure Ln and Mn? Prove
your answer.
To prove the Lebesgue theorem in an original way..... we will show that

(1) vn
∗ on En∗ is a “pre-measure” which is σ-finite. En∗ is the smallest algebra containing

En.
(2) Prove another extension theorem which will show that there is a unique extension of

vn
∗ to the smallest σ-algebra containing En which is a measure.

(3) Prove completeness.
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3. Completeness of a Measure

The following gives two equivalent definitions for completeness. This is why I couldn’t decide
which one to use.

Proposition 3.1 (Completeness Proposition). The following are equivalent for a measure space
(X,M, µ). If either of these hold, then µ is called complete.

(1) If there exists N ∈M with µ(N) = 0, and Y ⊂ N then Y ∈M.
(2) If µ∗(Y ) = 0 then Y ∈M.

Proof:
So you see why I couldn’t decide which definition of completeness was correct: they both are!
First let us assume (1) holds. Then if Y ⊂ X with µ∗(Y ) = 0, by the definition of µ∗ for each
k ∈ N there exists

{Ekn}n≥1 ⊂M, Y ⊂ ∪nEkn,
∑
n

µ(Ekn) < 2−k.

Well, then

Y ⊂ N := ∩k ∪n Ekn ∈M,

and since N ⊂ ∪nEkn for each k ∈ N, by monotonicity of the measure

µ(N) ≤ µ(∪nEkn) < 2−k∀k ∈ N =⇒ µ(N) = 0.

By the assumption of (1) since Y ⊂ N ∈ M and µ(N) = 0, it follows that Y ∈ M. So, every
set with outer measure zero is measurable (that’s what (2) says!)
Next, we assume (2) holds. Then if there exists N ∈M with µ(N) = 0 and Y ⊂ N , then

Y ⊂ ∪Aj , A1 := N, Aj = ∅∀j ≥ 2,

and {Aj} ⊂ M. So, by definition of outer measure,

0 ≤ µ∗(Y ) = inf . . . ≤
∑

µ(Aj) = µ(N) = 0.

Consequently µ∗(Y ) = 0, and by the assumption (2), Y ∈ M. This shows that (2) =⇒ (1).
Hence, they are equivalent.

Theorem 3.2 (Completion of a measure). Let (X,M, µ) be a measure space. Let N := {N ∈
M | µ(N) = 0} and

M̄ = {E ∪ F | E ∈M and F ⊂ N for some N ∈ N}.

Then M̄ is a σ-algebra and ∃! extension µ̄ of µ to a complete measure on M̄.

Proof:
First, note that every element ofM can be written as itself union with ∅, and ∅ ⊂ ∅ ∈ N , so it
follows that every element of M is an element of M̄. Next, if {An} ⊂ M̄ and {En, Nn} ⊂ M
such that

An = En ∪ Fn, Fn ⊂ Nn ∈ N .
Then

N := ∪Nn ∈M, and µ(∪Nn) ≤
∑

µ(Nn) = 0.

Similarly, E := ∪En ∈M (why?), and we also have F := ∪Fn ⊂ N . It follows that

∪An = E ∪ F ∈ M̄.
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Consequently M̄ is closed under countable unions. What about complements? If A = E ∪F ∈
M̄ with F ⊂ N ∈ N then note that

(E ∪ F )c = Ec ∩ F c = ((Ec ∩N) ∪ (Ec ∩N c)) ∩ F c,

and since F ⊂ N =⇒ F c ⊃ N c, the intersection of the last two terms is just Ec ∩N c, so

(E ∪ F )c = (Ec ∩N ∩ F c) ∪ (Ec ∩N c).

Since E,N ∈M =⇒ Ec∩N c ∈M, and Ec∩N ∩F c ⊂ N ∈ N we see that (E∪F )c ∈ M̄. So,
M̄ is closed under complements. Hence, we have shown that M̄ is a σ-algebra which contains
M.
Next, we must demonstrate that µ̄ is a well-defined, complete, and unique extension of µ. It is
natural to ignore the subset of the zero-measure set, so we define

µ̄(E ∪ F ) := µ(E).

If we have another representation of E ∪ F = G ∪ H with G ∈ M and F,H ⊂ N,M ∈ N ,
respectively, then

µ̄(E ∪ F ) = µ(E) ≤ µ(G ∪M) ≤ µ(G) = µ̄(G ∪H) ≤ µ(E ∪N) ≤ µ(E) = µ̄(E).

Hence the whole line is an equality, and µ̄ is well-defined.
Now, let’s show that µ̄ is really a measure. By definition, for E ⊂M

µ̄(E) = µ(E), =⇒ µ̄(∅) = 0.

If {An} = {En ∪ Fn} ⊂ M̄ are disjoint, then

An ∩Am ⊃ En ∩ Em =⇒ En ∩ Em = ∅, ∀n 6= m.

Consequently,

µ̄(∪An) = µ(∪En) =
∑

µ(En) =
∑

µ̄(An).

So, µ̄ is countably additive. Let’s show that µ̄ is complete. If Y ∈ M̄ with µ̄(Y ) = 0, and
Z ⊂ Y , then there is N ∈ N such that Y ⊂ N with µ(N) = 0. Consequently we also have
Z ⊂ N with µ(N) = 0 hence Z = ∅∪Z ∈ M̄ (with “E” = ∅ and F = Z ⊂ N ∈ N ). Therefore,
µ̄ is a complete measure on M̄.
Finally the uniqueness. Let’s assume ν also extends µ to a complete measure. Consequently,
ν(A) = µ(A) for all A ∈ M. It follows that the elements of N also have ν-measure zero. By
the completeness proposition, all subsets of elements of N must be elements of the σ-algebra
corresponding to ν, and conversely, all subsets of N must be elements of M̄, and so presuming
the σ-algebra corresponding to ν is the smallest possible needed to complete µ, it must coincide
with M̄.
For Y = E ∪ F ∈ M̄,

ν(Y ) ≤ ν(E) + ν(N) = µ(E) + µ(N) = µ(E) = µ̄(Y ),

and conversely

µ̄(Y ) ≤ µ̄(E) + µ̄(N) = µ(E) = ν(E) ≤ ν(Y ).

So, we’ve got equality all across, and in particular, ν(Y ) = µ̄(Y ).

Proposition 3.3 (Null Set Proposition). Let (X,M, µ) be a non-trivial measure space, meaning
there exist measurable subsets of positive measure. Then

N := {Y ∈M : µ(Y ) = 0}

is not a σ-algebra, but it is closed under countable unions.
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Proof: If {Nn} ⊂ N is a countable collection, then since M is a σ-algebra,

∪Nn ∈M.

Moreover, we have

µ(∪Nn) ≤
∑

µ(Nn) = 0 =⇒ µ(∪Nn) = 0.

This shows that N is closed under countable unions. Why is it however, not a σ-algebra? It’s
not even an algebra! This is because it is not closed under complements. What is always an
element of N ? The ∅ is always measurable and has measure zero. Hence ∅ ∈ N . What about
its complement? This is where the non-triviality hypothesis plays a role. There is some Y ∈M
such that µ(Y ) > 0. Since Y ⊂ X, by monotonicity

µ(X) ≥ µ(Y ) > 0 =⇒ X = ∅c /∈ N .

4. Extension of pre-measures

What seems an intuitive way to prove Lebesgue’s theorem is to use our notion of volume vn
defined on disjoint unions of intervals. This happens to be an example of something called
pre-measure.

Definition 4.1. Let A ⊂ P (X) be an algebra. A function µ0 : A → [0,∞] is called a pre-
measure if

(1) µ(∅) = 0
(2) If {Aj} is a countable collection of disjoint elements of A such that

∪Aj ∈ A,
then

µ0(∪Aj) =
∑

µ0(Aj).

The name pre-measure is appropriate because it’s almost a measure, it’s just possibly not
countably additive for every disjoint countable union, since these need not always be contained
in a mere algebra (which is not necessarily a σ-algebra). However, Carathéodory can help us
to extend pre-measures to measures. First, we require the following.

Proposition 4.2. If µ0 is a pre-measure on A and

µ ∗ (Y ) := inf{
∑

µ0(Aj) : Aj ∈ A∀j, Y ⊂ ∪Aj},

then (i) µ∗(A) = µ0(A)∀A ∈ A and (ii) every set in A is µ∗ measurable.

Proof: First note that pre-measures are by definition finitely additive since for A,B ∈ A with
A ∩B = ∅, then

A ∪B = ∪Aj , A1 = A,A2 = B,Aj = ∅∀j > 2.

We further note that finite additivity imply monotonicity for all elements of the algebra, so if
A ⊂ B are both elements of A, then

µ(B) = µ(B \A) + µ(A) =⇒ µ(A) = µ(B)− µ(B \A) ≤ µ(B).

The union is in A because it’s an algebra, and since µ0(∅) = 0, the definition of pre-measure
shows that

µ0(A ∪B) =
∑

µ0(Aj) = µ0(A) + µ0(B).

To prove (i) let E ∈ A. If E ⊂ ∪Aj with Aj ∈ A ∀j, then let

Bn := E ∩ (An \ ∪n−1
1 Aj).
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Then

Bn ∈ A∀n, Bn ∩Bm = ∅∀n 6= m.

Since the union

∪Bn = E ∈ A,
by definition of pre-measure,

µ0(E) = µ0(∪Bn) =
∑

µ0(Bn) ≤
∑

µ0(An),

since Bn ⊂ An∀n. Taking the infimum over all such covers of E comprised of elements of A,
we have

µ0(E) ≤ µ ∗ (E).

On the other hand, E ⊂ ∪Aj with A1 = E ∈ A, and Aj = ∅∀j > 1. Then, this collection is
considered in the infimum defining µ∗, so

µ ∗ (E) ≤
∑

µ0(Aj) = µ(E).

We’ve shown the inequality is true in both directions, hence µ∗(E) = µ0(E).
To show (ii) if A ∈ A and E ⊂ X and ε > 0 there exists {Bj} ⊂ A with E ⊂ ∪Bj and∑

µ0(Bj) ≤ µ∗(E) + ε.

Since µ0 is additive on A,

µ∗(E)+ε ≥
∑

µ0(Bj∩A)+µ0(Bj∩Ac) =
∑

µ0(Bj∩A)+
∑

µ0(Bj∩Ac) ≥ µ∗(E∩A)+µ∗(E∩Ac).

This is true for any ε > 0, so we have

µ ∗ (E) ≥ µ ∗ (E ∩A) + µ ∗ (E ∩Ac) ≥ µ ∗ (E).

So, these are all equal, which shows that A satisfies the definition of being µ∗ measurable since

E was arbitrary.
Now we will prove that we can always extend a pre-measure to a measure.

Theorem 4.3 (Pre-measure extension theorem). Let A ⊂ P (X) be an algebra, µ0 a pre-
measure on A, and M the smallest σ-algebra generated by A. Then there exists a measure µ
on M which extends µ0, namely

µ := µ∗ restricted to M.

If ν also extends µ0 then ν(E) ≤ µ(E)∀E ∈M with equality when µ(E) <∞. If µ0 is σ-finite,
then ν ≡ µ on M, so µ is the unique extension.

Proof: The existence of µ follows from Carathéodory’s theorem. Note that the σ-algebra in
that theorem must contain A, since all elements of A are µ∗ measurable by the pre-measure
proposition. Consequently, the Carathéodory σ-algebra, on which µ∗ is a measure, containsM,
and therefore µ∗ restricted toM is a measure since it must still satisfy the requisite properties
on M which is contained in the possibly larger Carathéodory σ-algebra. We will investigate
when in fact these algebras coincide.
So, we only need to consider the statements about a possibly different extension ν which
coincides with µ0 on A and is a measure on M. If E ∈M and

E ⊂ ∪Aj , Aj ∈ A∀j,

then

ν(E) ≤
∑

ν(Aj) =
∑

µ0(Aj).
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This holds for any such covering of E by elements of A, so taking the infimum we have

ν(E) ≤ µ ∗ (E) = µ(E) since E ∈M.

If µ(E) < ∞, let ε > 0. Then we may choose {Aj} ⊂ A which are WLOG (without loss of
generality) disjoint (why?) such that

E ⊂ ∪Aj , µ(∪Aj) =
∑

µ0(Aj) < µ∗(E) + ε = µ(E) + ε,

since E ∈M. Note that for

A = ∪Aj , ν(A) = lim
n→∞

ν(∪n1Aj) = lim
n→∞

n∑
1

ν(Aj) = lim
n→∞

n∑
1

µ0(Aj) = µ(A).

Then we have since E ∈M,

µ(A) = µ(A ∩ E) + µ(A \ E) = µ(E) + µ(A \ E) < µ(E) + ε

which shows that
µ(A \ E) < ε.

Consequently,

µ(E) ≤ µ(A) = ν(A) = ν(E ∩A) + ν(A \ E) ≤ ν(E) + µ(A \ E) < ν(E) + ε.

This holds for all ε > 0, so
µ(E) ≤ ν(E).

Consequently in this case µ(E) = ν(E).
Finally, if X = ∪Aj with Aj ∈ A, µ0(Aj) <∞∀j, we may WLOG assume the Aj are disjoint.
Then for E ∈M,

E = ∪(E ∩Aj),
which is a disjoint union so by countable additivity

µ(E) = µ(∪E ∩Aj) =
∑

µ(E ∩Aj) =
∑

ν(E ∩Aj),

since E ∩ Aj ⊂ Aj shows that µ(E ∩ Aj) ≤ µ(Aj) < ∞, so µ(E ∩ Aj) = ν(E ∩ Aj).

5. Metric outer measures and Hausdorff measure

In the following we will make a little detour and introduce metric outer measures. These are
outer measures defined on metric spaces with one crucial additional property. We consider:
metric space (X, d) and for A,B ⊂ X define

dist(A,B) := inf{d(x, y) : x ∈ A, y ∈ B}.
Define also the diameter of a set A ⊂ X

diam(A) := sup{d(x, y) : x, y ∈ A},diam(∅) := 0.

Definition 5.1. Given an outer measure µ∗ on (X, d). Then µ∗ is called metric outer measure
iff for each A,B ⊂ X we have

dist(A,B) > 0⇒ µ∗(A ∪B) = µ∗(A) + µ∗(B).

Recall: A ⊂ X is µ∗-measurable iff for each E ⊂ X
µ∗(E) = µ∗(E ∩A) + µ∗(E ∩AC).

Denote by M(µ∗) the µ∗-measurable subsets. We now prove a Theorem due to Carathéodory
which states that the Borel sets in X are contained inM(µ∗). Recall that the Borel sets B(X)
is the smallest σ-algebra generated by the topology of X (induced by the metric).
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Theorem 5.2 (Carathéodory). Let µ∗ be a metric outer measure on (X, d). Then we have
B(X) ⊂M(µ∗).

Proof:
Note that sinceM(µ∗) is a σ-algebra (by Thm. 2.3) it is enough to prove that every closed set
is µ∗-measurable. So let F ⊂ X be a closed subset. It suffices to show that for any set A

µ(A) ≥ µ∗(A ∩ F ) + µ∗(A \ F ).

Define the sets

Ak := {x ∈ A : dist(x, F ) ≥ 1

k
}.

Then dist(Ak, A ∩ F ) ≥ 1
k , so since µ∗ is metric we have

µ∗(A ∩ F ) + µ∗(Ak) = µ∗((A ∩ F ) ∪Ak)︸ ︷︷ ︸
⊂A

≤ µ∗(A).(+)

Then

A \ F =
⋃
Ak

since F is closed (which gives ∀x∈A\Fdist(x, F ) > 0) and (Ak) is increasing.
The main and last step in the proof is to calculate the limit in (+). If the limit is infinity there
is nothing to do. Hence assume the limit exists.
For this define a pairwise disjoint cover like this: B1 := A1, B2 := A2 \A1, B3 := A3 \A2 etc..
Then we show that for |j − k| ≥ 2 we have dist(Bi, Bj) > 0. This follows from the inclusions
for i ≥ j + 2

Bi ⊂ A \ (F ∪Ai−1) ⊂ A \ (F ∪Aj+1).

But x ∈ A \ (F ∪Aj+1) implies that there is a z ∈ F with

d(x, z) ≥ 1

j + 1

hence

d(x, y) ≥ d(x, z)− d(y, z) ≥ 1

j
− 1

j + 1
> 0.

And thus dist(Bi, Bj) > 0.
This means we can apply the metric property (for even and odd indices) and by induction we
conclude that

µ∗

(
n⋃
k=1

B2k−1

)
=

n∑
k=1

µ∗(B2k−1),

µ∗

(
n⋃
k=1

B2k

)
=

n∑
k=1

µ∗(B2k).

Because these unions are contained in A2n the sums are ≤ µ∗(A2n). The values µ∗(A2n) are
increasing and by assumption bounded. Hence both sums are convergent for n→∞.
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Therefore we conclude for any j

µ∗(A \ F ) = µ∗

(⋃
i

Ai

)

= µ∗

Aj ∪ ⋃
k≥j+1

Bk


≤ µ∗(Aj) +

∞∑
k=j+1

µ∗(Bk)

≤ lim
n→∞

µ∗(An) +

∞∑
k=j+1

µ∗(Bj)︸ ︷︷ ︸
→0,j→∞

.

Since the latter sum goes to 0 by convergence we obtain

µ∗(A \ F ) ≤ lim
n→∞

µ∗(An).

Together with (+) this yields

µ∗(A) ≥ lim
k→∞

µ∗(Ak) + µ∗(A ∩ F ) ≥ µ∗(A \ F ) + µ∗(A ∩ F )

which is the desired inequality.
We let C denote a collection of sets which cover X. Then for each A ⊂ X we denote by CC(A) the
collection of sets in C such that there is an at most countable sequence of sets {En}n∈N ∈ CC(A)
such that

A ⊂
∞⋃
n=1

En.

These are the countable covers of A by sets belonging to C.

Definition 5.3. i) Fix on the metric space a set function ν : C → [0,∞] with ν(∅) = 0. We
define the following set function depending on C, ν

µ∗ν,C(A) := inf
D∈CC(A)

∑
D∈D

ν(D).(5.1)

Theorem 5.4. The measure given by (5.1) is the unique outer measure µ∗ on X such that

µ∗(A) ≤ ν(A), A ∈ C

and for any other outer measure µ̃∗ with the above condition we have

µ̃∗(A) ≤ µ∗(A), A ⊂ X.

The proof follows basically the same lines as the construction of Lebesgue outer measure and
is therefore omitted.
Given the same data as in the above definition we define for ε > 0

Cε := {A ∈ C : diam(A) < ε}

and assume this is a cover for X (i.e. each x ∈ X is covered by a C ∈ C with diam(C) < ε).
Now define the measure depending on this cover as a special case of (5.1), in particular we set

µ∗ε (A) := µν,Cε(A).
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As Cε ⊂ Cε′ for ε′ < ε we have

µε′(A) ≥ µε(A).

Theorem 5.5. The limit µ∗0(A) := limε→0 µ
∗
ε (A), A ⊂ X defines a metric outer measure.

Proof: The outer measure property is preserved under this limit (Exercise).
Let A,B ⊂ X be such that dist(A,B) > 0 and hence dist(A,B) > 1

n for n > n0. Let δ > 0 be
given and cover the union A ∪B with sets Enk such that

µ∗1
n

(A ∪B) + δ ≥
∞∑
k=1

ν(Enk )

and such that for each k we have diam(Enk ) ≤ 1
n . Hence we have that the Enk intersect either

A or B and not both in the sense that

Enk ∩A 6= ∅ ⇒ Enk ∩B = ∅, Enk ∩B 6= ∅ ⇒ Enk ∩A = ∅.

Denote by {Ẽnk } ⊂ {Enk } the subsequence of sets such that Ẽnk ∩ (A ∪B) 6= ∅ for each k.
Define also the subsequences

En(A) := {Ẽnk : Ẽnk ∩A 6= ∅}, En(B) := {Ẽnk : Ẽnk ∩B 6= ∅}
and as already remarked En(A) and En(B) have no sets in common and together they yield

the sequence (Ẽnk )∞k=1.
We can then write

µ∗1
n

(A) ≥
∑

E∈En(A)

ν(E)− δ

2
, µ∗1

n
(B) ≥

∑
E∈En(B)

ν(E)− δ

2
.

Hence by exclusion of extraneous sets in the cover we can show that (for n sufficiently large) it
follows

µ∗1
n

(A ∪B) ≥ µ∗1
n

(A) + µ∗1
n

(B).

It follows in particular that µ∗0 is metric.
A particular case of the canonical metric outer measure is the so-called Hausdorff measure.

Definition 5.6 (Hausdorff pre-measures). Let (X, d) be a metric space, S ⊂ X, δ > 0 and
t ∈ [0,∞), then define the set function

Htδ(S) := inf

{ ∞∑
i=1

(diamUi)
t|
∞⋃
i=1

Ui ⊇ S,diam(Ui) < δ

}
where the infimum is taken over all countable covers of S by sets Ui ⊂ X with diam(Ui) < δ.

Remark 3. • Setting ν(U) := diam(U)t then Htδ(S) = µ∗ν,Cδ(S) is just a special case of
our canonical outer measure.

We therefore immediately know some things. First:

Ht(S) := lim
δ→0
Htδ(S)

makes sense as a definition of outer measure and is called Hausdorff-measure.
We know that Ht is a metric outer measure 5.5, all the Borel sets are Ht-measurable

2.3 and the Ht-measurable sets form a σ-algebra 5.5.
• If we consider the special case (Rn, | · |) = (X, d) with the standard euclidean metric

then the Hausdorff measure Hn agrees for n ∈ N (up to a scaling factor for n > 1) with
Lebesgue outer measure λn (Exercise).
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6. Existence and uniqueness of Lebesgue measure

Theorem 6.1. There exists a unique complete measure on Rn known as the Lebesgue Measure,
which extends νn to the smallest σ-algebra containing εn such that the extension on this σ-
algebra is complete.

Proof:
To make an algebra containing εn, in particular the smallest algebra containing εn, it is neces-
sary to include compliments. Define

A := {Y ⊆ Rn | Y ∈ εn or ∃Z ∈ εn s.t. Y = Zc}

Claim 1. A is an algebra.

Proof:

(1) ∅ =
∏

Ix, xI for x ∈ Rn. Notation: we use Ia, bI to denote either ]a, b[, [a, b], ]a, b] or
[a, b[. Notation which is unnecessary shall be simplified when possible.

(2) By definition, A is closed under compliments
(3) Let A,B ∈ A. If A,B ∈ εn then first consider the case where A,B are each single

intervals i.e. A =
∏

Iai, αiI, B =
∏

Ibi, βiI for ai ≤ αi, bi ≤ βi. For each i, if
Ibi, βiI ⊂ Iai, αiI then note that

Iai, αiI\Ibi, βiI = Iai, biI ∪ Iβi, αiI

If Ibi, βiI 6⊂ Iai, αiI, then either Ibi, βiI ∩ Iai, αiI = ∅ in which case Iai, αiI\Ibi, βiI =
Iai, αiI, or Ibi, βiI ∩ Iai, αiI 6= ∅ so that

Iai, αiI\Ibi, βiI =

{
Iai, biI if bi ≤ αi(⇒ βi > αi)

Iβi, αiI if ai ≤ betai(⇒ bi < ai)

In both cases Iai, αiI\Ibi, βiI is the disjoint union of intervals. Repeating for each
i = 1, ..., n gives A\B ∈ εn, and similarly B\A ∈ εn. Note that A ∩ B =

∏
Ixi, yiI

with xi = max{ai, bi}, yi = min{αi, βi} (and should xi ≥ yi then it is understood that
Ixi, yiI = ∅. Therefore,

A ∪B = (A\B) ∪ (B\A) ∪ (A ∩B) ∈ εn.

In fact, for A =
∏

Iai, αiI ∈ εn note that

Ac =Rn\A

=
∏

I−∞, aiI ∪
∏

Iαi,∞I

Allowing the endpoints xi and/or yi of Ixi, yiI to be ±∞, the same arguments for
A,B as above show that Ac ∪B and Ac ∪Bc are elements of A.

More generally, for A =
k⋃
j=1

Ij ∈ εn with Ij ∩
k 6=j

Ik = ∅ and B =
m⋃
l=1

Jl ∈ εn with

Jl ∩
m 6=l

Jm = ∅ with end points possibly ±∞, repeated application of the above arguments

shows that I1 ∪ J1 ∈ εn, (I1 ∪ J1)∪ I2 ∈ εn, and so forth. Therefore, A∪B ∈ εn. So A
is closed under finite unions and hence A is an algebra.

Homework : Show that νn is well-defined on A where

νn(

n∏
Iai, αiI) :=

{
0, if ai = αi for some i∏

(αi − ai), else



DYNAMICAL GEOMETRIC MEASURE THEORY 15

Claim 2. νn is a pre-measure on A.

Proof:

(1) νn(∅) = 0, by definition.
(2) Let {Am}m≥1 ⊂ A such that ∪

m≥1
Am ∈ A, Am ∩

k 6=m
Ak = ∅ then ∃{Ij}kj=1 disjoint in A

such that
k⋃
j=1

Ij =
∞⋃
m=1

Am.

By definition, νn(
M⋃
m=1

Am) =
M∑
m=1

vn(Am) ≤ νn(
k⋃
j=1

Ij) =
k∑
j=1

vn(Ij)

∀M ∈ N,
M∑
m=1

vn(Am) ≤
k∑
j=1

vn(Ij) = νn(
∞⋃
m=1

Am) ≤
M∑
m=1

vn(Am)

⇒ νn(
∞⋃
m=1

Am) =
M∑
m=1

vn(Am)

So νn is a pre-measure on the algebra A. Note by the definition of A, it is the smallest algebra
which contains εn. By the pre-measure extension theorem, since νn is σ-finite on A, there exists
a unique extension of νn to a measure M̄ on the smallest σ-algebra containing εn. Unique,
because Rn = ∪

m≥1
[−M,M ]n = ∪

m≥1
IM and νm(IM ) = (2M)n <∞ for each M .

Canonically completing this measure to M by applying the completion theorem yields the
Lebesgue measure and the Lebesgue σ-algebra, the smallest σ-algebra generated by εn such that

the extension of νn to a measure with respect to this σ-algebra is complete.

Remark 4. In the completion theorem, M̄ is the smallest σ-algebra containing M such that µ̃
is complete, recalling

M̄ = {A ⊂ X | ∃E ∈M, F ⊂ N ∈M, A E ∪ F}
N = {Y ∈M | µ(Y ) = 0}.

This follows from µ̄ is complete ⇔ ∀Z ⊂ X such that ∃Y ∈ M̄ with µ̄(Y ) = 0, Z ⊂ Y ⇒ X ∈
M̄ ⇒ ∀Z ⊂ X with Z ⊂ Y ∈ M ∈ M̄ such that µ(Y ) = 0 ⇒ Z ∈ M̄. So if A ⊂ X such that
∃E ∈M and F ⊂ N∇M such that A = E ∪F then F must be µ̄ measurable. By definition of
the extension E is µ̄ measurable, which implies E ∪ F must be µ̄ measurable. The σ-algebra
for any complete extension of µ must contain all such sets, therefore contains M̄.

6.1. Properties of the Lebesgue σ-algebra.

(1) Borel sets are Lebesgue measurable. To prove this, it suffices to show that open sets
are Lebesgue measurable. So, let O ⊂ Rn be open. Then we will show that O ∈M.

First consider O =
∏

]ai, αi[∈ εn ⊂M. For an arbitrary open set O, for each x ∈ O
there exists ε ∈ Q, ε > 0 such that x ∈

∏
]qm − ε, qm + ε[⊂ O, qm ∈ Q, m = 1, ..., n.

Taking the union of all such intervals, namely those contained in O such that end-
points are rational is a countable union. Countability of course follows since Qn ⊂ Rn is
countable and Q is countable so a union of intervals with endpoints in Qn is countable.
Therefore, O ∈M.
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(2) Exercise: Prove B (M
(3) It is difficult to construct sets 6⊂ M, but actually there are many natural examples...

Exercise: Construct a subset of Rn which is not measurable. Recall that f : Rn → Rm
is “measurable” usually is understood to mean that ∀B ∈ Bm, f−1(B) ∈ Mn. More
precisely, f is (Rn,Bn), (Rm,Bm) measurable. In general, f : X → Y is (X,A), (Y,B)
measurable if ∀B ∈ B, f−1(B) ∈ A, where A and B are σ-algebras.

(4) n−1 dimensional sets have Ln measure 0. Note that by completeness, this implies that
lower than n−1 dimensional sets have Ln = 0. WLOG Y = {x1, .., xn} ∈ Rn | xq = 0}.

Y = [0, 0]x]−∞,∞[n−1⇒ νn(Y ) = Ln(Y ) = 0

All subsets are then measurable and have measure 0.

7. Hausdorff measures revisited

In geometric analysis it is useful to have a method for describing the size of lower
dimensional sets in Rn, such as curves and surfaces in R3. - Gerald Folland

We have seen that all such sets have L3 measure equal to 0. So, Ln is too coarse for lower
dimensional subsets.

Definition 7.1 (Metric outer measures). On a metric space (X, ρ) we call µ∗ a metric outer
measure if A,B ⊂ X and ρ(A,B) > 0 implies µ∗(A ∪B) = µ∗(A) + µ∗(B).

Proposition 7.2. Borel sets are always µ∗ measurable, for any metric outer measure.

Proof:
It suffices to show that closed sets are µ∗ measurable because they generate B. Let F ⊂ X be
closed. For A ⊂ X, we want to show that µ∗(A) = µ∗(A ∩ F ) + µ∗(A \ F ).
For sets A with µ∗(A) =∞, we have

µ∗(A) ≥ µ∗(A ∩ F ) + µ∗(A \ F ) ≥ µ∗(A)

which implies the equality. From now we assume µ∗(A) <∞. Let

Bn = {x ∈ A \ F : ρ(x, F ) ≥ 1

n
},

so we obtain Bn ⊂ Bn+1 ⊂ · · · . If x ∈ A \F , then noting that A \F = A∩F c, and F c is open,
there exists n ∈ N such that B 1

n
(x) ∈ F c and therefore ρ(x, F ) ≥ 1

n . So due to the definition

of Bn, we have x ∈ Bn. Hence⋃
n≥1

Bn ⊂ A \ F ⊂
⋃
n≥1

Bn ⇒ A \ F =
⋃
n≥1

Bn.

For each n, ρ(Bn, F ) ≥ 1
n , so by definition since (A ∩ F ) ∪Bn ⊂ A, we have

µ∗(A) ≥ µ∗((A ∩ F ) ∪Bn) = µ∗(A ∩ F ) + µ∗(Bn).

This follows by the definition of metric outer measure because ρ(Bn, A ∩ F ) ≥ 1
n . Therefore it

suffices to show that

µ∗(Bn)→ µ∗(A \ F ).

Let Cn := Bn+1 \Bn. If x ∈ Cn+1 and ρ(x, y) < 1
n(n+1) then

ρ(y, F ) ≤ ρ(x, y) + ρ(x, F ) <
1

n(n+ 1)
+

1

n+ 1
=

1

n
.

Hence ρ(y, F ) < 1
n ⇒ y /∈ Bn. So any y with ρ(x, y) < 1

n(n+1) is not in Bn, where x ∈ Cn+1.

Therefore ρ(x, y) ≥ 1
n(n+1) holds for all y ∈ Bn and for each x ∈ Cn+1. ⇒ ρ(Cn+1, Bn) ≥
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1
n(n+1) . Then

µ∗(B2k+1) ≥ µ∗(C2k ∪B2k−1) = µ∗(C2k) + µ∗(B2k−1)

≥ µ∗(C2k) + µ∗(C2k−2 ∪B2k−3)

≥ · · · ≥
k∑
j=1

µ∗(C2j) + µ∗(B1).

Also,

µ∗(B2k) ≥ µ∗(C2k−1 ∪B2k−2 = µ∗(C2k−1) + µ∗(B2k−2)

≥ µ∗(C2k−1) + µ∗(C2k−3 ∪B2k−4)

≥ · · · ≥
k∑
j=1

µ∗(C2j−1) + µ∗(B1).

Now since Bn ⊂ A is true for all n, we get µ∗(Bn) ≤ µ∗(A) for all n. Then we obtain

µ∗(A) ≥
k∑
j=1

µ∗(C2j) + µ∗(B1) and

µ∗(A) ≥
k∑
j=1

µ∗(C2j−1) + µ∗(B1) for all k.

As a consequence,
∑∞
j=1 µ

∗(Cj) converges and therefore
∑∞
j=n µ

∗(Cj) → 0 with n → ∞. We
have

A \ F ⊂
⋃
n≥1

Bn = B1 ∪
⋃
n≥1

Cn = Bn ∪
⋃
k≥n

Ck.

Now back to µ∗(A \ F ):

µ∗(A \ F ) ≤ µ∗(Bn) +

∞∑
j=n

µ∗(Cj)

holds and it follows that

µ∗(A \ F ) ≤ lim
m→∞

inf
n≥m

µ∗(Bn) ≤ lim
m→∞

sup
n≥m

µ∗(Bn) ≤ µ∗(A \ F ),

since µ∗(Bn) ≤ µ∗(A\F ) is true for all n. Therefore F is µ∗-measurable.

Definition 7.3 (Hausdorff measure). Let (X, ρ) be a metric space, p ≥ 0 and δ > 0. For
A ⊂ X, let

Hp,δ(A) := inf


∞∑
j=1

(diam(Bj))
p : A ⊂

∞⋃
j=1

Bj and diam(Bj) ≤ δ

 .

Recall and define
diam(B) = sup

x,y∈B
ρ(x, y) and inf{∅} = +∞.

Now define the Hausdorff measure

Hp(A) := lim
δ→0

Hp,δ(A).

Remark 5. (1) If one requires the Bj ’s to be closed, the result is the same because

diam(Bj) = diam(Bj).
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(2) If one requires the Bj ’s to be open, the result is the same because we can replace Bj
by

Uj = {x ∈ X : ρ(x,Bj) < ε · 2−j−1} for ε > 0.

Thendiam(Uj) ≤ diam(Bj) + ε · 2−j and therefore

∞∑
j=1

(diam(Uj))
p ≤

∞∑
j=1

(diam(Bj) + ε · 2−j)p ≤
∞∑
j=1

(diam(Bj))
p + c(ε),

where c depends only on p and ε. We have c → 0 as ε → 0. Hence we get the same
result in Hp,δ.

(3) The intuition is the following: if p ∈ N and A is p-dimensional, then the amount of A
contained in a region of diam = r” should be proportional to rp. This is because a ball
in p-dimensional space has volume proportional to rp. We’ll see more about this!

(4) We need to let the diameters → 0 to capture irregularly shaped sets!

Example 7.4. Let Am := {(x, sin(mx)) : |x| ≤ π} ⊂ R2.

It is diam(Am) ≤ (4 + 4π2)
1
2 for all m. If we didn’t take δ → 0, we would cover Am

by Am and measure (p = 1) would be bounded. We need δ << 1
m before H1,δ(Am)

actually measured the length, which diverges to infinity as m→∞.

Proposition 7.5. Hp is a metric outer measure.

Proof:
We will use the outer measure Proposition 1 (Outer Mass Existence). Observe that Hp,δ(∅) = 0,
because diam(∅) = 0. Therefore as defined, Hp,δ is an outer measure. We now want to carry
this to Hp.
If ρ(A,B) > 0 and A ∪B ⊂

⋃
Cj such that diam(Cj) ≤ δ < ρ(A,B) for all j, then

Cj ∩A 6= ∅ ⇒ Cj ∩B = ∅, Cj ∩B 6= ∅ ⇒ Cj ∩A = ∅
⇒ Let Dj = Cj . ⇒ Let Ej = Cj .

We have A ⊂
⋃
Dj , B ⊂

⋃
Ej , and∑

diam(Cj)
p =

∑
diam(Dj)

p +
∑

diam(Ej)
p ≥ Hp,δ(A) +Hp,δ(B)

for all δ < ρ(A,B). Now taking the infimum, we have

Hp(A ∪B) ≥ Hp(A) +Hp(B).

Next we will show that Hp is also an outer measure. This will imply the inequality

Hp(A) +Hp(B) ≥ Hp(A ∪B),

and so combined with the reverse inequality shows that Hp is then a metric outer measure.

(1) Note that Hp(∅) = 0.
(2) If A ⊂ B then Hp,δ(A) ≤ Hp,δ(B) for all δ > 0, which implies Hp(A) ≤ Hp(B).
(3) We have

Hp,δ(
⋃
Aj) ≤

∑
Hp,δ(Aj) ∀δ > 0.

On the right side we can simply replace Hp,δ(Aj) by Hp(Aj) because Hp,δ ↑ Hp as δ ↓ 0.
So, for any δ > 0

Hp,δ(
⋃
Aj) ≤

∑
Hp(Aj).

Letting δ ↓ 0 on the left, we now have the countable subadditivity (clever no?)

Hp(
⋃
Aj) ≤

∑
Hp(Aj).

This completes the proof that Hp is an outer measure, and the above arguments also
show that it is a metric outer measure.
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Proposition 7.6. Hp is invariant under isometries. If f, g : Y → X satisfying ρ(f(y), f(z)) ≤
Cρ(g(y), g(z)) ∀y, z ∈ Y , then Hp(f(A)) ≤ CpHp(g(A)).

Proof:
Let I : (X, ρ) → X be an isometry. If A ⊂ ∪

j≥1
Ej , diam(Ej) ≤ δ ∀j then I(A) ≤ ∪

j≥1
I(Ej),

diam(I(Ej)) ≤ δ ∀j. This implies that Hp,δ(A) = Hp,δ(I(A)), taking δ → 0 then gives Hp(A) =
Hp(I(A)).

Let ε, δ > 0, A ⊂ Y . Assume g(A) ⊂
∞
∪
j=1

Bj such that diam(Bj) ≤ δ
C νj and

∑
j≥1

diam(Bj)
p ≤

Hp(g(A)) + ε. Then for any y ∈ A, there exists j such that g(y) ∈ Bj ⇒ y ∈ g−1(Bj). Then

f(y) ∈ f(g−1(Bj)) =: Bj therefore f(A) ⊂
∞
∪
j=1

Bj .

By hypothesis, ∀f(y), f(z) ∈ Bj , ρ(f(y), f(z)) ≤ Cρ(g(y), g(z)). By the definition of Bj ,
∃u, v ∈ Bj such that f(y) = f(g−1(u)) ∈ f(g−1(Bj)) and f(z) = f(g−1(v)) ∈ f(g−1(Bj)). We
have

Cρ(u, v) = Cρ(g(y), g(z)) ≤ Cdiam(Bj) =
Cδ

C
= δ

So Hp,δ(f(A)) ≤
∑
j≥1

(diam(Bj)
p. We also have

(diam(Bj))
p ≤ Cp(diam(Bj))

p ⇒
∑
j≥1

(diam(Bj))
p ≤ Cp

∑
j≥1

(diam(Bj))
p ≤ Cp(Hp(g(A))) + ε

Since this is true for all ε, we have that Hp(f(A)) ≤ CpHp(g(A))

Proposition 7.7 (H-Dimension Proposition). If Hp(A) < ∞, then Hq(A) = 0 ∀q > p. If
Hp(A) > 0, then Hq(A) =∞ ∀q < p.

Proof:

For the first statement, assume Hp(A) < ∞. Then ∀δ > 0, ∃{Bj}j≥1 with A ⊂
∞
∪
j=1

Bj ,

diam(Bj) ≤ δ and Hp,δ(A) ≤
∑
j≥1

(diam(Bj))
p ≤ Hp(A) + 1. If q > p, then

Hq,δ(A) ≤
∑
j≥1

(diam(Bj))
q =

∑
j≥1

(diam(Bj))
p+q−p ≤

∑
j≥1

(diam(Bj))
pδq−p ≤ δq−p(Hp(A) + 1)→ 0

as δ → 0. Hence Hq(A) = 0. Then second statement is the contrapositive argument, hence

Hq(A) > 0 for some q > p gives Hp(A) =∞.

Let A ⊂ X. By the above H-Dimension Proposition,

inf{p ≥ 0 | Hp(A) = 0} = sup{p ≥ 0 | Hp(A) =∞}
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This defines the Hausdorff dimension of A.

Theorem 7.8. There exists a constant cn such that Hn = cnLn

To prove this will require some more work and theory.....

Definition 7.9. Let ν and µ be measures on (X,M). Then ν is absolutely continuous with
respect to µ and we write ν << µ if ν(Y ) = 0 ∀Y ∈ M with µ(Y ) = 0. We say that µ and
ν are mutually singular and write µν if there exists E,F ∈ M with E ∩ F = ∅, E ∪ F = X,
µ(E) = 0, ν(F ) = 0.

Proposition 7.10. Hn << Ln and Ln << Hn.

Proof:
First, we consider I =

∏
Iai, biI, li := bi − ai. If any li = 0 let’s WLOG assume that li, ..., lk

are all non-zero and lk+1 = ... = ln = 0. Then ∀ε > 0, we can cover an interval of length L by

L
ε balls (one-dimensional) of radius ε. Similarly, we can cover I by

k∏
i=1

li
ε balls of radius ε. It

follows that

∀δ ≤ ε,Hn,δ(I) ≤
k∏
i=1

li
δ

(2δ)n = δn−k2n
k∏
i=1

li,

δ → 0⇒ Hn(I) = 0.

If li = 0 for all i, then I is either a point or the empty set which both have Hn = 0. Finally, if

for all i, li 6= 0, then we can cover I by
n∏
i=1

li
ε balls of radius ε. Then

∀δ ≥ ε,Hn,δ(I) ≤
n∏
i=1

li
δ

(2δ)n = 2nLn(I)

If Ln(I) = 0, then Hn,δ = 0 which implies that Hn(I) = 0.
If Ln(A) = 0, then ∃{Ij}j≥1 such that A ⊂ ∪

j≥1
Ij and, for a fixed ε > 0,

∑
j≥1

Ln(Ij) <
ε

2n . Then

Hn(A) ≤
∑
j≥1

Hn(Ij) ≤ 2n
∑
j≥1

Ln(Ij) < ε

Hence Hn(A) = 0. Therefore Hn << Ln.

Now, we want to proof the second statement of the proposition, i. e. Ln << Hn.
Therefore, let A ⊂ Rn such that Hn(A) = 0, where A ∈ B. Then, since Hn,δ ≤ Hn,

Hn,δ(A) = 0∀δ > 0

⇒ ∃ a sequence {Bj}j≥1, which is closed in Rn, such that A ⊂
∞⋃
j=1

Bj and
∑
j≥1

(diam(Bj))
n < ε,

where ε > 0. Note that for x ∈ Bj , ρ(x, y) ≤ δj = diam(Bj)∀x ∈ Bj . So we can fix xj ∈ Bj ,
and we get Bj ⊆ B̄δj (xj).
So we have

Ln(Bj) ≤ Ln(Bδj (xj)) = wnδ
n
j

where wn = Vol (B1(0)) denotes the volume of the unit ball with radius 1 (around zero).
Alltogether, we get

ε >
∑
j≥1

diam(Bj)
n =

∑
j≥1

Ln(Bδj (xj))

wn
≥ 1

wn

∑
j≥1

Ln(Bj)
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and since A ⊂
∞⋃
j=1

we get

ε >
1

wn

∑
j≥1

Ln(Bj) ≥
1

wn
Ln

Letting ε ↓ 0⇒ Ln(A) = 0.

Proposition 7.11. The volume of the unit ball in Rn is

wn = Vol (B1(0)) =
2π

n
2

n · Γ(n2 )

Our goal is to compute ∫
S1(0)

1∫
0

rn−1 drdσ

Proof:
We split the proof into four steps:

(i) First, we claim that ∫
Rn

e−π|x|
2

dx = 1.

Note that In = (I1)n by Fubini-Tonelli. Therefore, In = (I2)
n
2 and

I2 =

2π∫
0

e−πr
2

r drdθ

= 2π ·
∞∫

0

e−πr
2

r dr

= 2π ·

[(
e−πr

2

−2π

)]∞
0

= 1

⇒ I1 =
√
I2 = 1 and Ik = 1∀k ∈ N.

(ii) Let

Γ(s) =

∞∫
0

ts−1e−tdt

for s > 0 (extends to C). Then

Γ(s+ 1) =

∞∫
0

tse−tdt =
[
−tse−t

]
−
∞∫

0

−e−tsts−1dt = s · Γ(s)(7.1)

Applying equation 7.1 to the natural numbers, one gets

Γ(k) = (k − 1)! ∀k ∈ N
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and

Γ(k +
1

2
) = (k − 1

2
)(k − 3

2
) · · ·Γ(

1

2
)

Question 1. But what is Γ( 1
2 )?

By definition, first of all it is

Γ(
1

2
) =

∞∫
0

t
1
2 e−tdt(7.2)

Let s = t
1
2 , ds = 1

2 t
− 1

2 dt, t = s2, 2ds = t−
1
2 dt. Then we get Γ( 1

2 ) =
∞∫
0

e−s
2

2ds. Let

furthermore u = s√
π
,
√
πu = s. Then, 7.2 can be simplified to

Γ(
1

2
) = 2

∞∫
0

e−πu
2√πdu

=

∞∫
−∞

e−π
2u
√
πdu

=
√
πI1 =

√
π

Therefore, Γ( 1
2 ) =

√
π.

(iii) Now, we want to compute σn, the area of S1(0). First, we know

1 =

∫
Rn

e−π|x|
2

dx =

∫
S1(0)

∞∫
0

e−πr
2

rn−1 drdσ = σn

∞∫
0

e−πr
2

rn−1 dr

Letting s = r2π, one gets ds = 2rπdr, and therefore

1 =
σn
2π

∞∫
0

e−s
( s
π

)n−1
2 ds

( s
2π )

1
2

Since s
π

1
2 = r, ds

2πr = dr.
Now, we have

1 =
σn

2π · π n2− 1
2

∞∫
0

e−ssn/2−1ds =
σn

2πn/2
Γ(
n

2
)

⇒ σn = 2πn/2

Γ(n2 )

(iv) In this step, we want to compute wn.∫
B1(0)

dx = Vol (B1(0)) =

∫
S1(0)

1∫
0

rn−1 drdσ = σn

1∫
0

rn−1 dr =

[
σn
rn

n

]1

0

=
σn
n

= wn

Therefore, we have wn = 2πn/2

n·Γ(n2 ) , which finishes our proof.

Corollary 7.12. ∀x ∈ Rn and r > 0, the area of Sr(x) is rn−1σn and Vol (Br(x)) = wnr
n.
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Proof: ∫
Sr(x)

dσ =

∫
Sr(0)

dσ =

∫
S1(0)

rn−1dσ = rn−1σn

Analogously for Br(x).

Theorem 7.13. The relationship between Hausdorff and Lebesgue measures in non-negative
integer dimensions restricted to Borel sets is as follows.

(i) H0 = counting measure
(ii) H1 = L1

(iii) Hn = 2nLn
wn

for n ≥ 2

Proof:
(i) Exercise.
(ii) For n = 1, note that for any interval I, L1(I) = diam(I). For any δ > 0, I = (a, b), where

(·, ·) denotes an interval, which is either opened or closed, can be covered by intervals
(a+ kδ, a+ (k + 1)δ). For k = 0, one gets b−a

δ = 1, and therefore

H1,δ(I) ≤ δ · (b− a)

δ
= b− a = L1(I)

⇒ H1(I) ≤ L1(I) = H1,b−a(I) ≤ H1(I), which we get by covering I by I. ⇒ H1(I) =
L1(I).
Since intervals generate B, we get ⇒ H1|B = L1|B, because H1 and L1 are both measures
on B. Alternatively, apply pre-measure extension Theorem to H1|A = L1|A. Since R is
σ-finite, we also get H1 = L1 on B.

(iii) For n ≥ 2, note that Hn(Br) ≥ Hn,r(Br) = (2r)n = 2nrn = 2nLn(Br)
1
wn

⇒ wnHn(Br)
2n ≥ Ln(Br) for any ball Br ⊂ Rn.

Let ε > 0. By definition of L∗n, ∃ symmetric intervals {Rj} such that

Ln(Br) ≥
∑
j

Ln(Rj)− ε

where Br ⊂
⋃
j≥1

Rj , diam(Rj) ≤ 2r. Furthermore, ∃{Aj}j≥1 ⊂ En such that all are

finite and Br ⊂
n⋃
j=1

Aj , and since Aj =
mj⋃
k=1

Ijk each Ijk can be choped into finitely many

symmetric intervals. In particular, Br ⊂
∞⋃
j=1

Aj and

Ln(Br) ≥
∑
Ln(Aj)− ε =

∑
Ln(Rj)− ε

Therefore, we get
⋃
Aj =

⋃
Rj .

If Rj has side length lj , then diam(Rj) = (
∑n

1 l
2
j )

1
2 = n

1
2 lj ⇒ Ln(Rj) = lnj =

diam(Rj)
n

n
n
2

.

Ln(Br) ≥
∑

(
diam(Rj)√

n
)n − ε ≥ Hn,δ(Br)

nn/2
− ε

Because we can make diam Rj as small as we like, we can let δ ↓ 0. If then also ε ↓ 0, we
get

Ln(Br) ≥
Hn(Br)

nn/2
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The same argument shows ∀A ∈ B with Ln(A) <∞ the following inequality

Ln(A) ≥ Hn(A)

nn/2
(7.3)

Let δ > 0. Claim: ∃ balls {Bkj } with diamB∗j ≤ δ such that Ln(Rj \
⋃∞

1 Bkj ) = 0 and

Bkj ∩Bk
′

j = ∅ ∀k 6= k′. Then

Ln(Br) + ε ≥
∑
j,k

Ln(Bkj ) =
wn
2n

∑
diam(Bkj )n ≥ wn

2n
Hn,δ(

⋃
Bkj )

Claim and 7.3 let us conclude

⇒ Ln(
⋃
Rj \

⋃
j,k

Bkj ) = 0 = Hn(
⋃
Rj \

⋃
Bkj )

⇒ Hn,δ(
⋃
Rj\

⋃
Bjk

) = 0 and therefore alsoHn,δ(
⋃
Bkj )+Hn,δ(

⋃
Rj\

⋃
Bkj ) = Hn,δ(

⋃
Rj)

Hn,δ(
⋃
Bkj ) = Hn,δ(

⋃
Rj) ≥ Hn,δ(Br). Therefore, we get

Ln(Br) + ε ≥ wn
2n
Hn,δ(

⋃
Bkj ) ≥

wn
2n
Hn,δ(B) ∀δ > 0 ∀r > 0

δ, ε ↓ 0 ⇒ Ln(Br) ≥ wn/2nHn(Br) ≥ Ln(Br) ⇒ Ln = Hn on balls ⇒ generate on B.

To complete the proof relating Hausdorff and Lebesgue measures on the
Borel σ-algebra for dimensions in N, we require the following, which may already be clear, but
we include for completeness.

Claim 3. For any interval I ⊂ Rn, there exists a series {Bj}j≥1 such that

(1) Each Bj is a ball in I.
(2) It is Bj ∩Bk = ∅ for all j 6= k.
(3) We have Ln(I \

⋃
Bj) = 0 (and therefore Ln(I) = Ln(

⋃
Bj)).

Proof:
First note that Ln(I \ I̊) = 0. So without loss of generality we can assume that I is open.
For x ∈ I, there is δ ∈ Q, δ > 0 such that Bδ(x) ⊂ I. Also there exists q ∈ Qn such that
|x− q| < δ · 10−6. This implies for every y with |y − q| < (1− 10−6)δ,

|y − x| ≤ |y − q|+ |x− q| < δ =⇒ y ∈ Bδ(x) ⊂ I.
So we have

B1 := B(1−10−6)δ(q) ⊂ I.
For N ≥ 1 and x ∈ I, it is either x ∈

⋃N
k=1Bk or not. We are assuming {Bk}N ⊂ I are disjoint

balls with rational radii and rational centers (centers are elements of Qn). If x ∈
⋃N
k=1Bk we

consider x ∈ I \
⋃N
k=1Bk. Note that this set is open. So, if there exists x ∈ I \

⋃N
k=1Bk, then

the same argument shows that there is a new ball,

x ∈ BN+1 ⊂ I \
N⋃
k=1

Bk

with the center and radius of BN+1 rational (same argument as above). Then we note further
that the set of balls

{Bδ(q) : δ ∈ Q, and q ∈ Qn}
is countable. Consequently, we require at most countably many of these balls to ensure that

I ⊂
∞⋃
k=1

Bk and Ln(Bk \Bk) = 0 for all k ⇒ Ln(
⋃

(Bk \Bk)) = 0.
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So we get

Ln(I) = Ln(I ∩
⋃
Bk) + Ln(I \

⋃
Bk) = Ln(

⋃
Bk) + Ln(

⋃
Bk \Bk) = Ln(

⋃
Bk).

8. Self-similarity and Hausdorff dimension

Definition 8.1. For r > 0, a similitude with scaling factor r is a map S : Rn → Rn of the form

S(x) = rO(x) + b,

where O is an orthogonal transformation (rotation, reflection, or composition of these), and
b ∈ Rn. If S = (S1, · · ·Sm) is a family of similitudes with common scaling factor r < 1, for
E ⊂ Rn we define

S0(E) = E, S(E) =

m⋃
j=1

Sj(E), Sk(E) = S(Sk−1(E)) for k > 1.

We say that E is invariant under S if S(E) = E.

Lemma 8.2. If S(E) = E, then Sk(E) = E for all k ≥ 0.

Proof:
It is S(E) =

⋃m
j=1 Sj(E) = E and also

S2(E) =

m⋃
j=1

Sj

 m⋃
j=1

Sj(E)

 =

m⋃
j=1

Sj(E) = E.

By induction we have Sk(E) = E for k ≥ 2.
But what does that mean?

Well, the scaling factor r is less than one, so applying each Sj spins/flips/shrinks and slides E.
Hence E looks like, for each k, mk copies of itself which are scaled down by a factor of rk. If
these copies are disjoint or have little (negligible) overlap, E is “self-similar”.

Example 8.3. Let β ∈ (0, 1) and I0 = [0, 1]. Now define

β(a, b) =

(
a+ b

2
− β

(
b− a

2

)
,
a+ b

2
+ β

(
b− a

2

))
.

Let I1 := I0 \ βI̊0. This is closed and the union of two intervals, written I1 =
⋃2
j=1 I

1
j . Then

we define

I2 :=

2⋃
j=1

I1
j \ βI̊1

j ,

which is a union of two disjoint unions of two closed intervals. Again we write I2 =
⋃4
j=1 I

2
j .

In general we write and define

Ik =

2k⋃
j=1

Ikj and Ik+1 :=

2k⋃
j=1

Ikj \ βI̊kj
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As defined note that

I0 ⊃ I1 ⊃ . . . ⊃ Ik ⊃ Ik+1

are a sequence of nested compact sets in R which is complete. Consequently,⋂
Ik = lim

k→∞
Ik =: Cβ

is a compact subset of R. Note that

L1(I0) = 1, L1(I1) = (1− β)L1(I0), L1(Ik+1) = (1− β)L1(Ik),

and so

L1(Cβ) = lim
k→∞

(1− β)k = 0,

since β ∈ (0, 1). Note that more generally, one can let β vary at each step, so that

I1 = I0 \ β0I0 =

2⋃
j=1

Ikj ,

and in general

Ik+1 =

2k⋃
j=1

Ikj \ βk I̊kj .

Similarly we have nested compact sets and so

C := lim
k→∞

Ik is a compact subset of R.

This is known as a generalized Cantor set. The Lebesgue measure

L1(C) =
∏
k≥0

(1− βk).

Now, let’s see that when the scale factor β is constant, the Cantor set Cβ is invariant under a
similitude. Let

S := (S1, S2), S1(x) := βx, S2(x) = βx+ (1− β).

Then we compute

S(I0) = S1(I0) ∪ S2(I0) = [0, β] ∪ [1− β, 1] = I1.

Analogously we have

S(I1) = I2 = S2(I0), Ik+1 = Sk+1(I0).

So, since each Si is continuous we have

S( lim
k→∞

Sk(I0)) = S(Cβ) = lim
k→∞

Sk+1(I0) = Cβ .

Consequently we see that Cβ is invariant under the family of similitudes S = (S1, S2).

Lemma 8.4. Let A ⊂ Rn. Then we have dimH(A) ≤ n. More generally, if A ⊂ B, then
dim(A) ≤ dim(B).

Proof:
If A ⊂ B, and Hp(B) = 0, then Hp(A) = 0. Therefore

dim(B) = inf{p ≥ 0|Hp(B) = 0} ≥ inf{p ≥ 0|Hp(A) = 0} = dim(A)

⇒ dim(A) ≤ dim(Rn). We can write the euclidian space Rn as Rn =
⋃
m≥1

Bm, where Bm are

balls of radius m centered at the origin. For p < n,

Hp,δ(Bm) = inf{
∑
j

diam(Ej)
p|Bm ⊂

⋃
j

Ej with diam(Ej) ≤ δ}

We have proven that

Hn(Bm) = cnLn = cnm
nwn.
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We can conclude, that ∀ε > 0,∃ δ′ > 0 and {Ej}j≥1 ⊂ Rn such that diam(Ej) ≤ δ ≤ δ′,
Bm ⊂

⋃
j

Ej and
∑
j

diam(Ej)
n ≥ Hn(Bm)− ε.

W.L.O.G., we may assume δ′ < 1. Let δj := diam(Ej). Then we have δj ≤ δ ≤ δ′ < 1. Let
q := n− p. Then 1

δj
> 1

δ > 1 and therefore

1

δqj
≥ 1

δq

Thus, we get∑
j

δpj =
∑
j

δn−qj =
∑
j

δnj
1

δqj
≥ 1

δq

∑
j

δnj =
1

δq

∑
j

diam(Ej)
n ≥ 1

δq
(Hn(Bm)− ε)

The RHS tends to ∞ as δ ↓ 0 ⇒ Hp(Bm) =∞.
⇒ ∀p < n, Hp(Bm) =∞ and Hn(Bm) = cnm

nwn <∞. Hence, sup{p ≥ 0|Hp(Bm) =∞} ≤ n.
For p > n, we can show that Hp(Bn) = 0 using the same argument. We have∑

j

δpj =
∑
j

δn+p−n
j ≤

∑
j

δnj δ
p−n
j ≤

∑
j

δnj δ
p−n,

since each δj ≤ δ. Pulling the constant factor δp−n out front, we have∑
j

δpj ≤ δ
p−n

∑
j

δnj ≤ δp−nHn(Bm)→ 0 as δ ↓ 0.

Homework: dim(Rn) = sup dim(Bm) = sup{n} = n. (Proof given in remarks below).

Remark 6.
(i) (PK) One can also use Hp(A) ≥ Hq(A) for q ≥ p to simplify the proof.
(ii) Since we have already shown

dim(
⋃
j

Ej) ≥ dim(Ej) ∀j ∈ N

we get

dim(
⋃
j

Ej) ≥ sup
j

dimEj

Now, if q > sup
j

dim(Ej), then we get the following chain of implications

Hq(Ej) = 0 ∀j ⇒ Hq(
⋃
j

Ej) ≤
∑
j

Hq(Ej) = 0

⇒ dim(
⋃
j

Ej) < q ∀q > sup
j

dim(Ej)

So the Hausdorff-measure is logical because it sees the maximal “fatness” of the union of
sets.

8.1. Subsets of Rn.

Lemma 8.5. Let E ⊂ Rn such that dim(E) < n. Then
◦
E = ∅.
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Proof: If
◦
E 6= ∅, then there ∃r > 0 and x ∈ E such that Br(x) ⊂ E. ⇒ dim(E) ≥

dim(Br(x)) = n

So we get n ≥ dimE ≥ n⇒ dimE = n.

Lemma 8.6. Let E ⊂ Rn. If dim(E) > 0, then E is uncountable.

Proof: If E is countable, then E =
⋃
j

ej , where ej ∈ Rn is a point. Then we get

0 ≤ dim(E) = sup dim({ej}) = sup(0) = 0

Since {ej} ⊂ Bδ(ej)∀δ > 0, ∀p > 0Hp,δ({ej}) ≤ (2δ)p, which tends to 0 as δ ↓ 0.

Therefore, Hp({ej}) = 0∀p > 0.

Remark 7. The Hausdorff Dimension of a subset E ⊂ Rn is the same if we consider E as a
subset of Rm for any m ≥ n via the canonical embedding (Rn 7→ Rn × {0}. In this sense,
if we have a set E which naturally lives in k-dimensions, if we view the set E as living in 10
zillion dimensions, the Hausdorff dimension of E remains the same. This is simply because
the Hausdorff dimension, which is determined by the Hausdorff (outer) measure is defined in
terms of diameter, and the diameter of sets does not change if we embed the sets into higher
dimensional Euclidean space. That is another reason the Hausdorff dimension is “a good notion
of dimension,” because it is invariant of the ambient space.

Similitudes are finite families of maps of the form r · O(x) + b, where O(x) is an orthogonal
transformation, and b is a vector in Rn. These are therefore affine linear maps. We would like
to understand how similitudes and invariant sets under similitudes relate to Hausdorff measure
which motivates the following.

Proposition 8.7. If k ≤ n, A ⊂ Rk and T : Rk → Rn is an affine linear map, then Hk(T (A)) =

T (T )Hk(A), where T (T ) =
√

det(M∗M), Tx = Mx+ b and M∗ = MT .

Proof: First note that Hk is translation invariant because Hk(A + b) = Hk(A) since A ⊂⋃
j

Ej ⇔ A+ b ⊂
⋃

(Ej + b) and diam(Ej) = diam(Ej + b). If n = k, then

Hn(T (A)) = cnLn(T (A)) = cn

∫
T (A)

dLn = cn

∫
A

T (T )dLn

(Caused by the translation invariance, we may assume b = 0.)

= cnT (T )Ln(A) = T (T )Hn(A)

If k < n, then let R be an isometry of Rn, such that

R : T (Rk)→ Rk × {0} = {y ∈ Rn|y =
∑

< yjej , yj = 0∀j > k}

Note that Tx = Mx + b. Since M is k × n, Mx is a linear combination of the columns, and
these columns are all contained in Rk. Consequently the span of the columns has dimension at
most k, and therefore the image MRk + b has dimension at most k. For this reason there exists
an isometry R of Rn (a change of coordinates composed with a translation) which maps T (Rk)
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to the canonical embedding of Rk in Rn. Now, to reduce to the case in which we map between
the same dimensional Euclidean space, let Φ: Rn → Rk be the orthogonal projection,

Φ(

n∑
i

yiei) =

k∑
i

yiei

and let S := Φ ◦R ◦ T : Rk → Rk.
Note that we assumed b = 0. Therefore, Tx = Mx⇒ TRk = MRk.
We can write R = Ux, where U is unitary. Thus, Φ ∼= [δij ]i=1,...,k;j=1,...,n.
By the first case,

Hk(S(A)) = T (S)Hk(A)

and

T (S) =
√

det(S∗S) =
√

det(Φ ◦R ◦ T )∗(Φ ◦R ◦ T )

=
√

det(M∗U∗[δij ]T [δij ]UM) =
√

detM∗U∗UM =
√

detM∗M

= T (T )

We have used the fact that U is unitary and therefore U ∗ U = I.

8.2. Ingredients: Useful analytic tools.

Lemma 8.8 (Urysohn-light). Let (X, ρ) be a complete metric space and A,B ⊂ X non-empty,
closed sets with A∩B = ∅. Assume that either A and B are both compact or that A and B are
at a positive distance apart. Then ∃f ∈ C(X) s.t.

f |A = 0 f |B = 1.

Proof: First we know that the distance between A and B is finite because ∃a ∈ A,
b ∈ B ρ(A,B) 6 ρ(a, b) <∞.

In the case that A and B are compact, if they were at a distance of zero, then we would have
sequences ρ(an, bn) → 0 for {an} ⊂ A, {bn} ⊂ B ⇒ ρ(an, B) → 0. By compactness which
implies sequential compactness, we may assume without loss of generality that an → a ∈ A and
bn → b ∈ B. Then by the triangle inequality,

ρ(an, b) ≤ ρ(an, bn) + ρ(bn, b)→ 0 =⇒ an → b =⇒ a = b ∈ A ∩B,
which contradicts the assumption that A and B are disjoint. So in all cases there exists δ > 0
such that ρ(A,B) = δ.
Let

Ur := {x ∈ X| ρ(x,B) > (1− r)δ}, r ∈ (0, 1), U1 := X,

and

f(x) := inf{r ∈ (0, 1]| x ∈ Ur}.
Note that f(x) is well defined because it’s an infimum and defined ∀x ∈ X since every x ∈ U1.
If x ∈ B, then ρ(x,B) = 0
⇒ ∀r ∈ (0, 1) is ρ(x,B) < (1− r)δ
⇒ f(x) = 1 because x ∈ U1 = X but not in Ur ∀r ∈ (0, 1).

If x ∈ A, then ρ(x,B) > δ
⇒ ∀r > 0, is ρ(x,B) > (1− r)δ ⇒ x ∈ Ur ∀r ∈ (0, 1].
⇒ f(x) = 0.
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We need to show now that f ∈ C(X). Let x ∈ X. If xn → x, then note that this means
ρ(xn, x)→ 0. We estimate

ρ(x,B) ≤ ρ(x, xn) + ρ(xn, B), ρ(xn, B) ≤ ρ(xn, x) + ρ(x,B),

and therefore

|ρ(xn, B)− ρ(x,B)| ≤ ρ(xn, x)→ 0 as n→∞.

It follows that ρ(xn, B) → ρ(x,B) as n → ∞. Since B is closed, ρ(x,B) = 0 ⇐⇒ x ∈ B. In
this case, since xn → x,

ρ(xn, B) ≤ ρ(xn, x)→ 0 =⇒ for r ∈ (0, 1)

there exists N ∈ N such that for any n ≥ N ,

ρ(xn, x) < (1− r)δ =⇒ ∀r′ < r,

ρ(xn, x) < (1− r)δ < (1− r′)δ =⇒ xn 6∈ U ′r
and therefore

f(xn) ≥ r∀n ≥ N.

Letting r → 1 shows that f(xn) → 1 = f(x). If x 6∈ B, then first we assume ρ(x,B) ≥ δ =⇒
f(x) = 0. Since

ρ(xn, B)→ ρ(x,B),

for every r ∈ (0, 1) there is N ∈ N such that for all n ≥ N ,

ρ(xn, B) > (1− r)δ =⇒ f(xn) ≤ r.

We can let r → 0 which shows that f(xn)→ 0 = f(x). If on the other hand ρ(x,B) < δ, then
there is some r ∈ (0, 1) such that

ρ(x,B) = (1− r)δ.

It follows from the definition of f that

f(x) = r.

Without loss of generality we may assume that, since ρ(xn, B) → ρ(x,B) we have ρ(xn, B) =
rn < δ ∀n. Consequently, we also have

f(xn) = rn → r = f(x).

Therefore, for any sequence xn → x ∈ X, we have shown f(xn)→ f(x) and f is consequently

continuous.
We require Urysohn’s Lemma (at least on metric spaces; it holds in the more general setting of
a normal topological space under the assumption that the sets are closed and disjoint) to prove
one of Riesz’s Representation Theorems.

Theorem 8.9 (Riesz Representation for Cc(X)′). If 0 ≤ I ∈ Cc(X)′ ⇒ ∃ measure µ on X
s.t.

I(f) =

∫
X

f dµ

and Borel sets are µ measurable.
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Proof:
Write f ≺ U if U open, f ∈ Cc(X), 0 6 f 6 1, and supp(f) ⊂ U .
(Rmk: f ∈ Cc(X)⇔ supp(f) b X)
µ(U) := sup{I(f)| f ≺ U}, µ(∅) := 0 defined for U open.
This is a non-negative set-function with µ(∅) = 0
make an⇒ outer measure.
µ∗(E) := inf{µ(U)| E ⊂ U, U open}
Note: Urysohn gives existence of such f
ρ(supp(f), U c) > 0 ⇒ ∃f ≡ 1 on K b U , f ≡ 0 on U c.

If ρ(A,B) > 0 then µ∗(A ∪B) = inf{µ(U)| A ∪B ⊂ U,U open}

µ(U) = sup{I(f)| f ≺ U ⊃ A ∪B}
> sup{I(f + g) = I(f) + I(g)| f ≺ V ⊃ A, g ≺W ⊃ B V ∩W = ∅}
= µ(V ) + µ(W )

Taking the infimum over V and W which contain A and B respectively,
⇒ µ(U) > inf{µ(V )|V open, A ⊂ V }+ inf{µ(W )|W open, B ⊂W} = µ∗(A) + µ∗(B).

Next taking the infimum over U ,
inf over U⇒ µ∗(A ∪B) > µ∗(A) + µ∗(B) > µ∗(A ∪B)

⇒ µ∗ is a metric outer measure.
We have proven that all B are measurable ∀ metric outer measure.
⇒ B is µ∗ measurable

To show I(f) =
∫
f dµ ∀f ∈ Cc(X), we first show

µ(K) = inf{I(f)| f ∈ Cc(X), f > χK} ∀K b X.

(Note:
∫
χK dµ = µ(K) by def.)

Let Uε := {x| f(x) > 1− ε} for such an f ∈ Cc(X), f > χK . Uε is open.
If g ≺ Uε ⇒ (1− ε)−1f − g > 0 ⇒ I

(
(1− ε)−1f − g

)
> 0

⇒ (1− ε)−1I(f) > I(g)
⇒ µ(K) 6

K⊂Uε
µ(Uε) 6

inf over g
(1− ε)−1I(f)

ε↓0⇒ µ(K) 6 I(f)
On the other hand for U open with U ⊃ K, by Urysohn

∃f ∈ Cc(X) s.t. f > χK and f ≺ U

⇒ I(f) 6 µ(U) (by def. of µ).
µ(K) = inf{µ(U)| U ⊃ K,U open}
⇒ µ(K) 6 I(f) 6 µ(U) ∀U open U ⊃ K
inf on RHS⇒ µ(K) 6 I(f) 6 µ(K)
⇒ µ(K) = inf{I(f)| f ∈ Cc(X), f > χK} ∀K ⊂ X.

It is therefore enough to show

I(f) =

∫
f dµ for f ∈ Cc(X, [0, 1))

since Cc is the linear span of such f , and both I and the integral
∫
dµ are linear functionals

on Cc.

For N ∈ N, 1 6 j 6 N let Kj := {x| f(x) > j
N } and K0 := supp(f).

Then note that

K0 ⊃ K1 ⊃ K2 ⊃ . . . .
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Define

fj(x) :=


0 if x 6∈ Kj−1

f(x)− (j−1)
N if x ∈ Kj−1 \Kj

1
N if x ∈ Kj

So defined, fj vanishes on Kc
j−1, and on Kj , fj = 1

N , whereas on Kj−1 \Kj , since

j − 1

N
≤ f < j

N
=⇒ 0 < fj < 1/N.

Consequently,

(8.1) N−1χKj 6 fj 6 N−1χKj−1

(8.2) ⇒ 1

N
µ(Kj) 6

∫
fj dµ 6

1

N
µ(Kj−1).

If U is open and U ⊃ Kj−1, then

Nfj ≺ U,
because the support of fj is Kj−1 which is compactly contained in U . Therefore, by the
definition of µ(U) as the supremum over all such fj , we have

I(fj) 6 N−1µ(U).

Now since for a compact set (which we note Kj is) we showed that µ(Kj) is the infimum over
I(f) for all f ∈ Cc with f ≥ χKj , by (8.1)

1

N
µ(Kj) ≤ I(fj) ≤ N−1µ(U).

Taking the infimum over all open U which contain Kj−1 as in the definition of µ we then have

(8.3)
1

N
µ(Kj) ≤ I(fj) ≤

1

N
µ(Kj−1).

Note that so defined

f =

N∑
j=1

fj ,

so summing over (8.2) by linearity of the integral,

⇒ 1

N

N∑
j=1

µ(Kj) 6
N∑
j=1

I(fj) 6
1

N

N−1∑
j=0

µ(Kj).

Next we sum over (8.3) using the linearity of the functional I,

1

N

N∑
j=1

µ(Kj) 6
∫
f dµ 6

1

N

N−1∑
j=0

µ(Kj).

Finally, we subtract these inequalities which leaves only the first and last terms, and so

⇒ |I(f)−
∫
f dµ| 6 µ(K0)− µ(KN )

N
≤ µ(supp(f))

N
→ 0, as N →∞.

Note that the measure of the support of f is finite because the support is compact, and for
compact sets, µ(K) is defined as the infimum of I(f), and I is a linear functional (which
implies I is continuous and hence has bounded norm). Therefore we have I(f) =

∫
f dµ.
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Proposition 8.10. Let S be a family of similarities with common scaling factor r ∈ (0, 1). If
there exists U open, non-empty and bounded such that S(U) ⊂ U , then there exists a unique
X ⊂⊂ Rn such that S(X) = X 6= ∅. More generally, if there exists X ⊂⊂ Rn such that
S(X) = X, X 6= ∅, then it is unique.

Proof:
Ū is compact (BWHB). Each Si is an affine linear function from Rn → Rn.
Si(x) = rOi(x) + bi, so Si(Ū) is compact. By continuity, Si(Ū) ⊂ ¯Si(U) which implies that
∞
∪
i=1
Si(Ū) = S(Ū) ⊂ ¯S(U) ⊂ Ū . So S(Ū) is compact.

For X := ∩
k≥0

Sk(Ū), S2(Ū) ⊂ S(Ū) and Sk(Ū) ⊂ Sk−1(Ū). Sk(Ū) is compact and non-empty

which implies that X 6= ∅ and compact.

X = lim
k→∞

Sk(Ū)

= lim
k→∞

Sk+1(Ū)

= S( lim
k→∞

Sk(Ū))

= S(X)

Therefore, X is invariant.

If Y 6= ∅ is compact, and S(Y ) = Y , we wish to show that Y = X. We have,

d(Y,X) :=sup
y∈Y

ρ(y,X)

⇒ d(Si(Y ), Si(X)) =d(rOi(Y ) + bi, rOi(X) + bi) = rd(Y,X)

Y =
m
∪
i=1

Si(Y ) = S(Y )

⇒ d(Y,X) = max
1≤i≤m

d(SiY,X) = d(SjY,X) for some j ∈ {1, ...,m}.

For fixed

y ∈ Y, ρ(Sjy,X) = inf
x∈X,1≤k≤m

ρ(Sjy, Skx) ≤ inf
x∈X

ρ(Sjy, Sjx) = ρ(Sjy, SjX).

Taking the supremum over y ∈ Y , we have

d(SjY,X) ≤ d(SjY, SjX) = rd(Y,X).

Since r < 1 this is only possible if

d(Y,X) = 0⇒ sup
y∈Y

ρ(y,X) = 0⇒ ρ(y,X) = 0, ∀y ∈ Y.

The same argument shows that d(X,Y ) = 0. By compactness of X and Y , which implies
sequential compactness,

ρ(y,X) = 0⇒ y ∈ X,∀y ∈ Y ⇒ Y ⊂ X
and similarly,

ρ(x, Y ) = 0⇒ x ∈ Y ∀x ∈ X ⇒ X ⊂ Y ⇒ Y = X.

Definition 8.11. For x ∈ Rn, E ⊂ Rn, a measure µ, {i1, ..., ik} ⊂ {1, ...,m} we define

(1) xi1..ik := Si1 ◦ ... ◦ Sik(x),
(2) Ei1..ik := Si1 ◦ ... ◦ Sik(E), and
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(3) µi1..ik := µ((Si1 ◦ ... ◦ Sik)−1(E).

Theorem 8.12. S = (S1, ..., Sm) is a family of similitudes with common scaling factor r ∈ (0, 1)
X ⊂⊂ Rn, X 6= ∅, S(X) = X. Then there exists a Borel measure µ on Rn such that µ(Rn) = 1,
supp(µ) = X, and

∀k ∈ N, µ
1

mk

m∑
i1..ik=1

µi1..ik .

Proof:
We will construct µ on X extend it to Rn \X to be 0. Let x ∈ X,

δx(E) :=

{
1, x ∈ E
0, x /∈ E

.

For {Ej}j≥1 disjoint then either there exists i, j such that

x ∈ Ej ⇒ δx( ∪
j≥1

Ej) = 1 =
∑
j≥1

δx(Ej),

or not; in which case

δx( ∪
j≥1

Ej) = 0 =
∑
j≥1

δx(Ej).

Consequently, we have for any A,B ∈ Rn, δx(A) = δx(A ∩ B) + δx(A \ B). This shows that
every set in Rn is measurable for δx.
We define

µk :=
1

mk

m∑
i1..ik=1

[δx]i1..ik .

Then note that

[δx]i1..ik(E) = δx(Si1 ◦ ... ◦ Sik(E)) =

{
1, x ∈ (Si1 ◦ ... ◦ Sik)−1(E)⇔ Si1 ◦ ... ◦ Sik(x) ∈ E
0, otherwise

For f ∈ C (or more generally f ∈ Cc(Rn))∫
fdµk =

1

mk

m∑
i1..ik=1

f(xi1..ik),

and

µk(Rn) =
1

mk

m∑
i1..ik=1

1 =
mk

mk
= 1.

Let ε > 0. That X compact implies ∃k > 0 such that

|x− y| ≤ rkdiam(X), x, y ∈ X =⇒ |f(x)− f(y)| < ε.

Above we have used the fact that r < 1 hence rk → 0 as k →∞.
If l > k ≥ K, then since

xi1..il ∈ Xi1..il = Si1 ◦ ... ◦ Sil(X) = Si1 ◦ ... ◦ Sik ... ◦ Sil(X)

Sik+1...il(X) ⊂ X, =⇒ Si1 ◦ ... ◦ Sik ... ◦ Sil(X) ⊂ Si1 ◦ ... ◦ Sik(X),

and

diamXi1..ik = rkdiamX,

we have

|f(xi1..ik)− f(xi1..il)| < ε

which follows because f(xi1..ik) and f(xi1..il) are both in Xi1..ik , so

|xi1..ik − xi1..il | ≤ diam(Xi1..ik) = rkdiam(X).
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Summing over ik+1..il, and using the trick

f(xi1..ik) =
1

ml−k

m∑
ik+1..il=1

f(xi1..ik),

because the sum on the right is simply f(xi1..ik) repeated ml−l times, we have∣∣∣∣∣∣f(xi1..ik)− 1

ml−k

m∑
ik+1..il=1

f(xi1..il)

∣∣∣∣∣∣ =

∣∣∣∣∣∣(
m∑

ik+1..il=1

f(xi1..ik)− f(xi1..il))
1

ml−k

∣∣∣∣∣∣
≤ 1

ml−k

m∑
ik+1..il=1

|f(xi1..ik)− f(xi1..il))|

<
ml−kε

ml−k .

Next we sum over i1..ik and use the estimate above∣∣∣∣∣∣ 1

mk

m∑
i1..ik=1

f(xi1..ik)− 1

mk

m∑
i1..ik=1

(

m∑
ik+1..il=1

f(xi1..il))
1

ml−k

∣∣∣∣∣∣
=

∣∣∣∣∣∣m−k(

m∑
i1..ik=1

(f(xi1..ik)− 1

ml−k

m∑
ik+1..il=1

f(xi1..il))

∣∣∣∣∣∣
≤m−k

m∑
i1..ik=1

|f(xi1..ik)− 1

l − k

m∑
ik+1..il=1

f(xi1..il)|

<
mkε

ε
= ε.

Since ∫
fdµl =

1

ml

m∑
i1..il=1

f(xi1..il),

∫
fdµk =

1

mk

m∑
i1..ik=1

f(xi1..ik),

we have ∣∣∣∣∫ fdµk −
∫
fdµl

∣∣∣∣ < ε.

We have therefore shown that for any ε > 0 there exists K ∈ N such that for l > k ≥ K,

|
∫
fdµk −

∫
fdµl| < ε⇒ {

∫
fdµk}k≥1 ⊂ R

is Cauchy and therefore converges.
Consequently we define a bounded linear functional on C(Rn) by

I(f) := lim
k→∞

∫
fdµk.

If

f ≥ 0⇒
∫
fdµk ≥ 0∀k ⇒ I(f) ≥ 0.

So, I is non-negative. For g ∈ Cc(Rn),

I(f + g) = lim
k→∞

∫
(f + g)dµk = lim

k→∞

∫
fdµk + lim

k→∞

∫
gdµk = I(f) + I(g).

Similarly, for λ ∈ R,

I(λf) = lim
k→∞

∫
λfdµk = λI(f).
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Therefore I is linear and non-negative. The functional is bounded because∣∣∣∣∫ fdµk
∣∣∣∣ =

∣∣∣∣∫
X

fdµk
∣∣∣∣ ≤ ||f ||∞µk(Rn) = ||f ||∞,

which implies
|I(f)| ≤ ||f ||∞ ∀ f ∈ C(Rn),

where we note that
||f ||∞ := sup

x∈X
|f(x)|.

By Reisz Representation Theorem there exists a Borel measure µ such that

I(f) =

∫
fdµ, ∀ f ∈ C(Rn).

Note since
µk(Rn \X) = 0 ∀k,

if a function f has support in Rn \X, then∫
fdµk = 0∀ k =⇒

∫
fdµ = 0.

Since we can approximate the characteristic function of any compact subset of Rn by continuous,
non-negative functions, it follows that

µk(E)→ µ(E) for any E ⊂⊂ Rn =⇒ µ(E) = 0∀E ⊂ Rn \X.
Therefore we have

supp(µ)c = ∪G, G ⊂ Rn open, such that µ(G) = 0,

supp(µ)c ⊃ Rn \X =⇒ supp(µ) ⊂ X.
By the Lebesgue dominated convergence theorem,∫

1dµ = µ(Rn) = lim
k→∞

∫
1dµk = µk(Rn) = 1.

By definition,
xi1..ik ∈ Xi1..ik , for each k ∈ N.

We also have
diam(Xi1..ik) = rkdiam(X)→ 0 as k →∞.

By the invariance of X under the family S, we have

X = ∪mi1...ik=1Xi1..ik .

Then note that for any ε > 0 there exists k ∈ N such that

diam(Xi1..ik) = rkdiam(X) < ε.

This means that for any point y ∈ X, since

y ∈ X = ∪mi1...ik=1Xi1..ik ,

the point y lies in at least one of the elements in the union,

y ∈ Xi1..ik =⇒ |y − xi1...ik | ≤ diam(Xi1..ik) = rkdiam(X) < ε.

This shows that the collection of points

{{xi1...ik}mi1...ik=1}k≥1

is dense in X, and hence the closure of this collection of points is X. By the definition of µk,

supp(µk) = {xi1...ik}mi1...ik=1.

Let p be one of these points, and let f be a compactly supported continuous function with
f(p) = 1, and 0 ≤ f ≤ 1. Then there exists ε > 0 and N ∈ N such that

|y − p| < ε =⇒ f(y) > 1/2, k ≥ N =⇒ rkdiam(X) < ε, p ∈ Xi1...iN .
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Note that we have already seen

Xi1...ik...il ⊂ Xi1...ik =⇒ ∪i1...ik...il ⊂ ∪Xi1...ik .

Consequently for any l ≥ N we know that p ∈ Xi1...iN and consequently

xi1...iN ∈ Xi1...iN =⇒ f(xi1...iN ) ≥ 1/2.

Similarly, we also have

f(xi1..iN ...il) ≥ 1/2 ∀iN+1...il.

Then we also have for any k ≤ l,∫
fdµl =

1

ml−k

m∑
ik+1...il=1

1

mk

m∑
i1...ik=1

f(xi1....il)

and in the second sum taking the specific choice i1...iN we have

≥ 1

ml−N

m∑
iN+1...il=1

1

mN
f(xi1...iN ...il) ≥

ml−N

2ml−NmN
=

1

2mN
.

Keeping N fixed and letting l→∞, this shows that∫
fdµ = lim

l→∞

∫
fdµl ≥ 1

2mN
.

If we had p ∈ supp(µ)c, then since by definition this is an open set, there would be an open
neighborhood of this point contained in supp(µ)c, and so for such an f with support contained
in this neighborhood we’d have ∫

fdµ ≤ µ(supp(f)) = 0.

That is a contradiction. Hence the entire set of points

{{xi1...ik}mi1...ik=1}k≥1 ⊂ supp(µ),

and by definition supp(µ) is closed so supp(µ) contains the closure of these points which is X.
We have already seen that supp(µ) ⊂ X, so this shows that we have equality.
Finally, by definition,

µk+l =
1

mk+l

m∑
i1..ik+l=1

[δx]i1..ik+l ,

and

µl =
1

ml

m∑
i1..il=1

[δx]i1..il

⇒ [µl]i1..ik =
1

ml

m∑
j1..jl=1

[[δx]j1..jl ]i1..ik

[δx]j1..jl((Si1 ◦ .. ◦ Sik)−1(E)) = δx((Sj1 ◦ .. ◦ Sjk)−1(Si1 ◦ .. ◦ Sik)−1(E))

= δx((S−1
j1
◦ .. ◦ S−1

jk
◦ S−1

i1
◦ .. ◦ S−1

ik
(E))

j1 := ik+1, j2 := ik+2...jl := ik+l ⇒ = [δx]i1..ik+l(E)

Therefore

µk+l =
1

mk

m∑
i1..ik=1

[µl]i1..ik .

Note that

Xϕ−1(E)(x) =

{
1, x ∈ ϕ−1(E)

0, else

and
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XE ◦ ϕ(x) =

{
1, ϕ(x) ∈ E ⇔ x ∈ ϕ−1(E)

0, else

Therefore,

Xϕ−1(E) = XE ◦ ϕ.

Analogously, (integration is the limit over simple functions i.e sums) and using the definition
of µ, ∫

f [dµl]i1..ik =

∫
f ◦ Si1 ◦ .. ◦ Sikdµl

−→
l→∞

∫
f ◦ Si1 ◦ .. ◦ Sikdµ

=

∫
f [dµ]i1..ik

Let us now assume k is fixed. By the above calculation relating µk+l and µl and the linearity
of the integral, ∫

fdµk+l =
1

mk

m∑
i1..ik=1

∫
f [dµl]i1..ik

−→
l→∞

1

mk

m∑
i1..ik=1

∫
f [dµ]i1..ik

Since

lim
l→∞

∫
fdµk+l =

∫
fdµ

by definition, this shows that ∫
fdµ =

1

mk

m∑
i1..ik=1

∫
f [dµ]i1..ik .

This means that on the right side, we also have a linear functional, namely

f 7→ 1

mk

m∑
i1..ik=1

∫
f [dµ]i1..ik ,

which coinicides with our linear functional I. By the proof of the Riesz representation theorem
assuming the measure associated with our functional above is constructed in the same way,
these measures are therefore the same, and so

µ =
1

mk

m∑
i1..ik=1

[µ]i1..ik .

The k ∈ N was arbitrary and fixed, hence this holds for all k ∈ N.

Lemma 8.13 (Ball counting Lemma). Let c, C, δ > 0. {Uα} open, disjoint, s.t. a ball of radius
cδ ⊂ Uα ⊂ ball of radius Cδ. Then no ball of radius δ intersects more than (1 + 2C)nc−n of
the sets Uα (note: we are in Rn).
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Proof:
If B is a ball of radius δ, and B∩Uα 6= ∅, then let p be the center of B, so B = Bδ(p). ∃q ∈ Uα
s.t. Uα ⊂ BCδ(q).
If x ∈ Uα, then for z ∈ B∩Uα, |z−p| < δ and so |x−p| 6 |x−z|+ |z−p| < diam (BCδ(q))+δ =
(1 + 2C)δ.
for any x∈Uα⇒ Uα ⊂ B(1+2C)δ(p)

If N of the Uα’s intersect B (i.e. have 6= ∅ intersection), then since they are disjoint and each
contains a ball of radius cδ, and they are all contained in B(1+2C)δ(p).
⇒ adding up the Lebesgue measures of all these N disjoint balls of radius cδ
⇒ N(cδ)nωn 6 Ln

(
B(1+2C)δ(p)

)
= (1 + 2C)nδnωn

⇒ N 6 (1 + 2C)nc−n.

Theorem 8.14 (Dimension of self-similar sets). S = (S1, ..., Sm) is a family of similitudes with
common scale factor r ∈ (0, 1). Let U be a separating set, that is an open set, bounded, with
S(U) ⊂ U , and Si(U) ∩ Sj(U) = ∅ if i 6= j. Let X be the unique, non-empty, compact set s.t.
S(X) = X. Let p := log 1

r
(m)

i) Hp(X) ∈ (0,∞) ⇒ p = dim(X)
ii) Hp (Si(X) ∩ Sj(X)) = 0 6= j

Proof:

For any k ∈ N, X = Sk(X) =
m⋃

i1,...,ik=1

Si1 ◦ ... ◦ Sik(X) =
m⋃

i1,...,ik=1

Xi1,...,ik

Each of these Xi1,...,ik has diameter =rkdiam(X), so if δk = rkdiam(X), then

Hp,δk(X) 6
m∑

i1,...,ik=1

(diam (Xi1,...,ik))
p

= mkrpkdiam(X)p

By definition p = log 1
r
(m) ⇒

(
1
r

)p
= m⇒ mk = r−pk ⇒ Hp,δk(X) 6 diam(X)p.

δk↓0⇒ Hp(X) 6 diam(X)p <∞, because X is compact hence bounded.

Let 0 < c < C s.t. U contains a ball of radius c
r and is contained in a ball of radius C

(
= Cr

r

)
.

Let N = (1 + 2C)nc−n. We will prove that Hp(X) > 1
2pN by showing that if {Ej}j>1 cover X

with diam(Ej) 6 1∀j, then
∑

diam(Ej)
p > 1

N2p .

Since any set E of diameter δ is contained in a ball (closed) of radius δ ⇒ diam(E) = diam(Bδ)
2 ⇒∑

diam(Ej)
p =

∑(
diam(Bδ)

2

)p
= 1

2p

∑
diam(Bδ)

p

⇒ enough to show that if X ⊂ ∪Bj = ∪Bδj with δj 6 1∀j, then
∞∑
j=1

δpj > 1
N . To prove this, we

will prove:
? If radius of B is δ 6 1 then µ(B) 6 Nδp.
This shows that 1 = µ(X) 6

∑
µ(Bj) 6 N

∑
δpj .

To prove ? let k ∈ N s.t. rk < δ 6 rk−1. Then µ(B) = 1
mk

m∑
i1,...,ik=1

µi1,...,ik(B). Since X ⊂ U ,

supp(µi1,...,ik) = Xi1,...,ik ⊂ U i1,...,ik . ⇒ µi1,...,ik(B) 6= 0⇒ B ∩ U i1,...,ik 6= ∅.
Si(U) ∩ Sj(U) = ∅ i 6= j ⇒ Since S(U) ⊂ U , we have

Sk(Si(U)) ⊂ Sk(U)
Sl(Si(U)) ⊂ Sl(U)

⇒ Sk(Si(U)) ∩ Sl(Si(U)) = ∅ if k 6= l

Sk(Si(U)), Sk(Sj(U)), i 6= j are also disjoint because Si(U) ∩ SJ(U) = ∅ if i 6= j and Sk is
injective. This shows that if i1, ..., ik 6= j1, ..., jk, then Ui1,...,ik ∩ Uj1,...,jk = ∅.
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U contains a ball of radius c
r ⇒ Ui1,...,ik contains a ball of radius c

r r
k = crk−1

Note: that crk−1 > cδ and Crk < Cδ.
Ui1,...,ik contains a ball of radius crk−1 > cδ, and is contained in a ball of radius Crk < Cδ.
Ball counting Lemma⇒ B can intersect at most N = (1 + 2C)nc−n of the {Ui1,...,ik}mi1,...,ik=1.

⇒ µ(B) =
1

mk

m∑
i1,...,ik=1

µi1,...,ik(B) 6 Nm−k.

Note that for the last inequality we have used the fact that µi1,..,ik is supported in Xi1,...,ik ⊂
Ui1,...,ik , and the mass of each of these is at most 1 because the total mass is one. Since B
intersects at most N of them, the right side of the inequality m−kN follows. Now, recalling
that
p = log 1

r
(m)⇒ m−k = rkp ⇒ µ(B) 6 Nrkp 6 Nδp, since rk < δ ≤ 1. This is ?.

Finally since Sj scales by r, we have proven that Hp(Sj(X)) = rpHp(X) = m−1Hp(X), using
the definition of p. Consequently,

⇒ Hp(X) =
m∑
j=1

Hp(Sj(X)).

Since

X =

m⋃
j=1

Sj(X),

this holds iff Hp(Si(X) ∩ Sj(X)) = 0 whenever i 6= j. More generally, for any measure ν,
measurable sets A and B

ν(A ∪B) = ν(A) + ν(B)⇔ ν(A ∩B) = 0

9. Complex Analysis All-Stars

Definition 9.1. A function f is holomorphic in a neighbourhood Dr(z0) of z0, iff ∀z ∈ Dr(z0)
exists

lim
w→z

f(w)− f(z)

w − z
(Note: This implies that f is continuous on Dr(z0).)
⇔ ∃ continuous function at z: ∀z ∈ Dr(z0) we have f(w) = w(z) + (w − z)Az(w), where Az is
continous at z, for all w in a neighbourhood of z.

(⇒). Let Az(w) = f(w)−f(w)
w−z for w 6= z and f ′(z) for w = z.

(⇐). limw→z
f(w)−f(z)

w−z = lim f(z)+(w−z)Az(w)−f(z)
w−z = Az(w).

Why do holomorphic functions have so many properties (theorems)? Bcause they satisfy a
PDE. PDEs may endow solutions with special properties depending on the PDE.

Example 9.2 (”Boot strapping”). Let ∆ := −∂2
x− ∂2

y . A priori: f ∈ C2. Then we have ∆f =

λf for λ ∈ R, on a domain Ω where f∂Ω = 0. f ∈ C2 ⇒ ∆f = λf ⇒ f ∈ C4 ⇒ . . .⇒ f ∈ C∞.
This is only a heuristic. The actual rigorous argument uses the Sobolev spaces. The solution f
is à priori in H2, but then ∆f is also in H2, which shows that f ∈ H4. Continuing this we get
that f ∈ H2k for all k which by the Sobolev Embedding Theorem shows that f ∈ C∞.
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Proposition 9.3. f is holomorphic on Dr(z0)⇔ f is R2 differentiable and u = <(f), v = =(f)
satisfy ux = vy and uy = −vx. These are the Cauchy-Riemann equations.
(⇔ ∂̄f) = 0.

Proof:
Assume that f is holomorphic. Near z, f(w) = f(z) + (w − z)Az(w). For the coordinates

(z, z̄) ∈ C ∼= R2, we get x = z+z̄
2 , y = z−z̄

2ı and ∂f
∂z̄ = 0. Therefore we get

∂f

∂z̄
=
∂f

∂x

∂x

∂z̄
+
∂f

∂y

∂y

∂z̄
=

1

2
fx −

1

2ı
fy =

1

2
(fx − ıfy)

=
1

2
(ux + ıvx + ı(uy + ıvy)) =

1

2
(ux − vy + ı(vx + uy)) = 0

⇔ ux = vy and uy = −vx.
On the other hand, assume f is R2 differentiable and

∂f

∂z
=
∂f

∂x

∂x

∂z
+
∂f

∂y

∂y

∂z
.

Since ∂̄f = ∂f
∂z̄ = 0, we have near z0:

f(z) = f(z0) +M ·
[
z − z0

z − z0

]
+B(z)

where lim
z→z0

∥∥∥ B(z)
z−z0

∥∥∥→ 0.

Since ∂̄f = 0⇒M =

[
a 0
b 0

]
and therefore

f(z) = f(z0) + (z − z0)

(
(a+ b) +

B(z)

z − z0

)
= f(z0) + (z − z0)A(z), A(z) = (a+ b) +

B(z)

z − z0
,

and A(z) is continuous because B(z)
z−z0 → 0 as z → z0. Consequently

lim
z→z0

f(z)− f(z0)

z − z0
= a+ b

exists.

9.1. Properties of holomorphic functions.

(1) f(z) = z and f(z) ≡ c are holomorphic as in R.
(2) f , g holomorphic ⇒ fg, f + g, f/g(g 6= 0) also just as in R.

(3) Not like in R: Given f : R → R continuous. ∃F : R → R such that F ′ = f? Yes.
F (x) =

∫ x
a
f(t)dt.

This is not necessarily true in C.

Lemma 9.4. If f : Ω → C, where Ω is a domain, is continuous, and if ∃F : Ω → C such that
F ′ = f then

∫
γ
f(z)dz = 0∀ closed curve γ ⊂ Ω.

Example 9.5. f(z) = 1
z has no primitive since∫

∂Dr

f(z)dz =

∫ 2π

0

f(γ(t))γ′(t)dt =

∫ 2π

0

1

reit
rieit = 2πi 6= 0
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Theorem 9.6 (Goursat). If f is holomorphic on Ω, then
∫
∂T
f = 0 ∀ triangle T ⊂⊂ Ω where

◦
T ⊂ Ω.

Proof:

Figure 1.

First, we split the triangle into four triangles by joining the midpoints of each of the sides of
T . Then integration along the interior edges cancel and so

|
∫
∂T

f | ≤
4∑
i=1

|
∫
∂T 1

i

f | ≤ 4 max
1≤i≤4

|
∫
∂T 1

i

f |

We define T1 to be any T 1
i such that the integral achieves the maximum. We repeat this process

with T1, defining T 2
i for i = 1, 2, 3, 4, such that the integral over the boundary of T1 is equal to

the sum of the integrals over the boundaries of the T 2
i . The triangle whose integral is maximal

is defined as T2. This triangle is again split into four, and so forth, defining a nested sequence
of triangles

T ⊃ T1 ⊃ T2 ⊃ . . .
Note that the length of the boundary |∂T1| = 1

2 |∂T | and therefore |∂Tk| = 2−k|∂T |. Further-

more, we have diam(T1) = 1
2diam(T ) and therefore diam(Tk) = 2−kdiam(T ).

Since the triangles are compact and nested, and their diameters converge to zero, the intersec-
tion ⋂

Tk = {z0} = lim
k→∞

Tk.

Since f is holomorphic at z0 which is in the interior of Ω,

f(z) = f(z0) + (z − z0)f ′(z0) + (z − z0)(A(z)−A(z0))

= f(z0) + (z − z0)(A(z)).

Note that B(z) := A(z) − A(z0) is continuous at z0 because A is, and that B(z0) = 0. Since
the function

f(z0) + (z − z0)f ′(z0)

has a primitive, namely

F (z) = z(f(z0)− z0f
′(z0)) +

z2

2
f ′(z0) =⇒ F ′(z) = f(z0) + (z − z0)f ′(z0),

the integral∫
∂T

(f(z0) + (z − z0)f ′(z0))dz = 0,

∫
∂Tk

(f(z0) + (z − z0)f ′(z0))dz = 0, ∀ k.
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Consequently by linearity of the integral∫
∂Tk

f(z)dz =

∫
∂Tk

(z − z0)B(z)dz

⇒|
∫
∂Tk

f(z)dz| ≤ |∂Tk|max
∂Tk
|z − z0||B(z)| ≤ |∂Tk|diam(Tk) max

∂Tk
|B(z)| = 2−kdiam(T ) max

∂Tk|
|B(z)| · 2−k|∂T |

⇒|
∫
∂T

f(z)dz| ≤ 4k · 4−kdiam(T )|∂T |max
∂Tk
|B(z)|

Since Tk → z0 and B(z) → B(z0) = 0 as z → z0, it follows that the maximum over ∂Tk
of |B(z)| tends to 0 as k → ∞. Consequently the integral on the left above must vanish.

Recall that a domain is called star-shaped if there exists a point in the domain such that the
line segment connecting this point and any other point of the domain lies entirely within the
domain. This really looks like a star. Examples include all convex domains.

Proposition 9.7. If Ω is star-shaped, f holomorphic, f has primitive F (z) =
∫ z
a
f , and

∫
γ
f =

0 ∀ closed γ.

Proposition 9.8. If f holomorphic on G \ z0 and continous on G, we also get
∫
γ
f = 0 ∀γ

with γ ∪ ◦γ ⊂⊂ G.

The converse is also true: If
∫
∂T

f = 0∀T satisfying the hypothesis, then f is homolomorphic on

G.

Remark 8. If f is holomorphic on T \ z, where z denotes a point, then
∫
∂T

= 0.

9.2. Cauchy Integral Formula. Let f be holomorphic on D = Dr(z0) 3 z. Then

f(z) =
1

2πı

∫
∂D

f(w)

w − z
dw

Proof: [Sketch] Let

g(w) :=

{
f(w)−f(z)

w−z w 6= z

f ′(z) w = z

Then g is holomorphic on D \ z and it is continous at z.
Therefore since D is convex and hence star-shaped∫

∂D

g(w)dw = 0

⇒
∫
∂D

f(w)

w − z
dw =

∫
∂D

f(z)

w − z
dw = f(z)

∫
∂D

dw

w − z
Compute

∫
∂D

dw
w−z0 dw = 2πi and prove that the function h(z) :=

∫
∂D

dw
w−z is constant on D.
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(1) Expanding 1
w−z in a geometric series one can prove that f has a power series expansion.

f(z) =
∑
k≥0

ak(z − z0)k.

(2) It follows from the above theorem and the Lebesgue Dominated Convergence Theorem
that

f (k)(z) =
k!

2πi

∫
∂D

f(w)

(w − z)k+1
dw.

(3) The coefficients in the power series expansion are therefore

ak =
f (k)(z0)

k!
.

(4) Super-Mega-Differentiability The derivative of a holomorphic function is holomor-
phic as are all derivatives. Holomorphic functions are infinitely differentiable (and in
fact much better than merely C∞).

Another straightforward application of the Cauchy Integral Formula is the Maximum Principle.

Theorem 9.9 (Maximum Principle). |f | has its maximum on the boundary. Otherwise, f is
constant.

Theorem 9.10 (Identity Theorem). TFAE
1. f ≡ g
2. fk(z0) = gk(z0)∀k and some z0

3. f(zn) = g(zn)∀n, zn 6= z0, zn → z0 ∈ G.

One way to prove the Identity Theorem is to show that 3 =⇒ 2 by considering h = f − g and
the power series expansion at z0. By continuity h(z0) = 0. So, using the power series expansion
of h at z0, assume all coefficients up to aj vanish (we know this is true for j ≥ 1 some j, because
a0 = h(z0) = 0. Then use the assumption to show that aj = 0 also. By induction this shows 2.
To show the first statement follows from 2, show that the set of points where f = g is clopen
(closed and open). Since the set is non-empty, this means that the set is the entire domain.

Theorem 9.11 (Open Mapping Theorem). Let f : G → C be holomorphic and non-constant.
Then f is an open map, i. e. f(G) is a domain.

Proof: Since G is connected and f is continuous, f(G) is also connected.

Let w0 = f(z0) and r > 0 such that Dr(z0) ⊂⊂ G and

f
∣∣
Dr(z0)\z0

6= w0(9.1)

This follows from the Identity Theorem. Otherwise, we’d have {zn} → z0 with zn 6= z0. Then
f(zn) = w0 = f(z0) ⇒ f ≡ f(z0)  since f is non-constant.
Let

δ := min
∂Dr(z0)

|f(z)− w0| > 0

Because ∂Dr(z0) is compact, the minimum is assumed at some point because of 9.1.
Claim. D δ

2
(w0) ⊂ f(Dr(z0)). ⇒ Every point in f(G) has an open disk about it in f(G) and

therefore, f(G) is open.
Fix w with |w − w0| < δ

2 . Then we get for z ∈ ∂Dr(z0) the following equation:

|f(z)− w| ≥ |f(z)− w0| − |w − w0|

Therefore, we have |f(z) − w| > δ − δ
2 . The function g(z) := f(z) − w satisfies |g(z)| > δ

2 on

∂Dr(z0) and |g(z0)| < δ
2 because |g(z0)| = |w0 − w| < δ

2 by assumption.

⇒ either g has a zero in Dr(z0) or if not 1
g is holomorphic on Dr(z0) and | 1g | <

2
δ on ∂Dr(z0),

but | 1g (z0)| > 2
δ ⇒

1
g has interior maximum and therefore it is constant.
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⇒ f constant.  . ⇒ g must have a zero in Dr(z0).
⇒ ∃z ∈ Dr(z0) such that g(z) = 0 ⇔ f(z) = w ⇒ w ∈ f(Dr(z0). Since w with |w − w0| < δ

2

was arbitrary, we get D δ
2
(w0) ⊂ f(Dr(z0)).

Corollary 9.12. f : G→ Ω is biholomorphic ⇐⇒ f ′
∣∣
G
6= 0, and f is 1:1.

Proof:
(⇒). f is biholomorphic ⇒ f−1 ◦ f = id. ⇒ Differentiate (f−1)′(f(z))f ′(z) = 1 and therefore
f ′
∣∣
G
6= 0.

(⇐). f ′
∣∣
G
6= 0. Then f is not constant. Therefore f(G) = Ω is open. The inverse is continuous

by the open mapping theorem. Then we compute

lim
w→z0=f(ξ0)

f−1(w)− f−1(z0)

w − z0
= lim
ξ=f−1(w)

ξ − ξ0
f(ξ)− f(ξ0)

=
1

f ′(ξ0)

This exists because f is holomorphic and f ′
∣∣
G
6= 0.

Definition 9.13. If G,Ω are domains in C such that ∃f : G→ Ω biholomorphic, then G and Ω
are biholomorphically equivalent. A map f : G→ C such that f ′

∣∣
G
6= 0 is known as a conformal

map and G is conformally equivalent to f(G).

Remark 9. ”Conformal” means angle-preserving.

Theorem 9.14 (Uniformization Theorem). Let G ⊂ C be simply connected. Then G is con-

formally equivalent to one of 1) C or 2) D of 3) Ĉ = C ∪∞.
Moreover, the same holds for any simply connected Riemann surface (2-dimensional Riemann-
ian manifold with biholomorphic coordinate charts → C).

Theorem 9.15 (Liouville). Let f : C→ C be holomorphic. If f is bounded, then it is constant.

Proof: Assume |f | ≤M on C. The Cauchy Ingegral Formula implies

f(z) =
1

2πi

∫
∂DR

f(w)

w − z
dw

Therefore, we have

f ′(z) =
1

2πi

∫
∂DR(z0)

f(w)

(w − z)2
dw

and

f (k)(0) =
k!

2πi

∫
∂DR

f(w)

wk+1
dw

Therefore, we get the estimation

|f (k)(0)| ≤ k!

2π

2πRM

Rk+1
∀R > 0
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Letting R→∞, we get f (k)(0) = 0∀k ≥ 1. Using the Identity Theorem, we get since f (k)(0) =

g(k)(0)∀k ≥ 0, g(z) ≡ f(0)⇒ f ≡ g ⇒ f ≡ f(0) is constant.

Theorem 9.16 (Fundamental theorem of Algebra). p(z) is a polynomial with coefficients in C,

degree of p is k ≥ 1. Then ∃! (up to rearrangement) {rj}kj=0 in C such that p(z) = r0

k∏
j=0

(z−rj).

Proof: If degree of p is 1, then p(z) = az + b and a 6= 0⇒ r0 = a and r1 = − b
a . finish.

By induction on K. If p
∣∣
C 6= 0 then 1

p is entire and → 0 at ∞. ⇒ bounded ⇒ constant ⇒ p

constant  
p has at least one zero rk ⇒ p is polynomial, p(z)

z−rk is a rational funcion without poles ⇒
polynomial.
p(z) = (z − rk)q(z) where q has degree k − 1 < k. ⇒ by induction ∃!{rj}k−1

j=0 such that

q(z) = r0

k−1∏
j=1

(z − rj). ⇒ p(z) = r0

k∏
j=0

(z − rj).

Definition 9.17. If f is holomorphic on Dr(z0) \ {z0}, then z0 is an isolated singularity.
(i) Removable ⇔ ∃! holomorphic extension to z0.
(ii) f(z) → ∞ as z → z0 ⇔ ∃!g(z) holomorphic on Dp(z0) where p ≤ r such that g(z0) = 0

and f(z) = 1
g(z) on Dp(z0) \ {z0}. z0 is a pole.

(iii) Neither 1 nor 2. ”Essential singularity”. If f only has a finite set of singularities on G ⊂ C
of type 1 and/or type 2, f is called ”meromorphic”.

Theorem 9.18 (Big Picard Theorem). If f is holomorphic on Dr(z0)\z0 and z0 is an essential
singularity, then ∀ε ∈ (0, r), #{C \ f(Dε(z0) \ z0)} ≤ 1.

Definition 9.19. If f is entire and lim
z→∞

f(z) =∞, then f has a pole at ∞.

Corollary 9.20. By Liouvilles Theorem if f is entire, then either 1) f is constant 2) f has a
pole at ∞ or neither 1) nor 2) ⇒ f has an essential singularity at ∞.
f has a pole at ∞ ⇔ 1

f( 1
z )

=: g(z) is holomorphic near z = 0 and g(0) = 0.

f has an essential singulariy at ∞⇔ 1
f( 1
z )

=: h(z) has an essential singularity at 0.

Theorem 9.21 (Riemann’s Removable Singularity Theorem). Let f : Dr(z0) \ z0 → C be
holomorphic and bounded. Then z0 is removable.

Proof: g(z) := (z − z0)f(z), z 6= z0. g is holomorphic on Dr(z0) \ z0 lim
z→z0

g(z) = 0⇒ define

g(z0) = 0 ⇒ g is continuous on Dr(z0). ⇒ g is holomorphic on Dr(z0) and so lim
z→z0

g(z)−g(z0)
z−z0 =

g′(z0) exists, and lim
z→z0

(z−z0)f(z)
z−z0 =: f(z0). Consequently this limit exists, is unique, and defining

f(z0) by this limit is unique and makes f continuous at z0. Moreover, any holomorphic function
on a punctured disk which is continuous on the whole disk is in fact holomorphic, which follows
from the fact that the integral of such a function over any triangle in the disk vanishes, hence
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the function has a well-defined primitive. By super-mega differentiability the original function,

that is the derivative of the primitive, is also holomorphic.

10. The Basics of Holomorphic Dynamics

Holomorphic Dynamics is the study of {fn = f ◦ . . . ◦ f} and where {fn} converge or not.
Consider {fn} where f is defined on a simply connected domainG ⊂ C. Assume that f : G→ G.
Let

φ−1 : E 7→ G,

be the conformal map given by the Uniformization Theorem, where E = D,C, or Ĉ. Then let

f̃ := φ ◦ f ◦ φ−1 : E → E.

Note that f̃n = φ◦fn ◦φ−1. Therefore dynamics of {fn} on G are the same as those of {f̃n} on
E. Therefore the study of holomorphic dynamics on any simply connected domain is reduced,
by the Uniformization Theorem, to the study of holomorphic dynamics on D, C, and Ĉ.
One of the pioneers of the field was Montel (“This is how we do it.”)

Definition 10.1. A family of holomorphic functions F defined on a domain G ⊂ C is normal
if for any sequence in F , there exists a subsequence which converges locally uniformly (this
means uniformly on compact subsets).

Theorem 10.2 (Montel’s Little Theorem). If a family F is uniformly bounded then it is
normal.

Proof: Let M ≥ ||f ||∞ for all f ∈ F . Fix z0 ∈ G and R > 0 such that

DR(z0) ⊂⊂ G.

Then for any z ∈ DR/2(z0) we have by the Cauchy Integral Formula for f ∈ F ,

f ′(z) =
1

2πi

∫
∂DR(z0)

f(w)

(w − z)2
dw =⇒

|f ′(z)| ≤ 2πR

2π

M

(R−R/2)2
=: c.

It follows that the family F is equicontinuous. Since it was already assumed to be bounded,
the Arzela-Ascoli theorem implies that every sequence has a locally uniformly convergent sub-

sequence.

Remark 10. The locally uniform limit of holomorphic functions is again holomorphic.

By Montel’s Theorem, if a function f : D → D, then F := {fn} is a normal family. So, we can
already say something about the holomorphic dynamics on D. Now let’s consider holomorphic
dynamics on C. We want to exclude freaky behavior (i.e. essential singularities).

Theorem 10.3. If f : C → C is entire and without essential singularity at infinity, then f is
a polynomial.
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Proof: First note that if f is bounded, then it is constant, and hence a polynomial of degree
0. How interesting (not). Let us assume that f is non-constant and therefore unbounded, then
we must have |f(z)| → ∞ as |z| → ∞. Consequently the function

1

f(1/z)
= g(z)

is holomorphic on a disk about 0 with g(0) = 0. Since f 6≡ ∞, we cannot have g ≡ 0, and
therefore there exists k ∈ N such that

g(z) =
∑
j≥k

ajz
j , ak 6= 0.

Consequently,

f(z) =
1

g(1/z)
=

1

akz−k + . . .
=

zk

ak + ak+1z + . . .
∼ zk as k →∞.

Next since |f | → ∞ as |z| → ∞, there exists R > 0 such that for all |z| > R, |f(z)| > 100000.
In particular for all such z, f 6= 0. So, the set of zeros of f is contained in a compact set. Since
we assumed that f is not constant, by the identity theorem f can only have a finite set of zeros
(of finite order) because they are all contained in a compact set, and so any infinite set would
accumulate there thus implying f vanishes identically (ID theorem) which it does not.
Let {zk}n1 be the zeros of f of respective degrees dk. Then consider

f(z)∏n
1 (z − zj)dj

.

We know that |f(z)| ∼ |z|k as |z| → ∞. If on the one hand k <
∑
dj , then this function tends

to 0 at infinity and is entire, hence bounded, hence constant by Liouville’s theorem. Since it
tends to zero at infinity, this would imply the function is identically 0, hence so is f , which is
a contradiction. So we must have k ≥

∑
dj . Now, on the other hand, we consider∏n

1 (z − zj)dj
f(z)

.

This function is also entire. If k >
∑
dj , then by the same argument we also get a contradiction.

Hence k =
∑
dj , and so both of these functions are again bounded and entire, hence constant

(and that constant cannot be zero), so there is c ∈ C \ {0} such that

f(z)∏n
1 (z − zj)dj

≡ c ⇐⇒ f(z) ≡ c
n∏
1

(z − zj)dj

which is a polynomial.
So, we now see that holomorphic dynamics for entire functions without essential singularity at
∞ is reduced to the study of iteration of polynomial functions.

Proposition 10.4. Entire functions without essential singularity at infinity which are non-
constant are surjective.

Proof: By the theorem, such a function is a polynomial p(z) of degree d ≥ 1. Proceeding by
contradiction we assume there is q ∈ C such that p(z) 6= q for all z inC. Then the function

1

p(z)− q
is entire. Moreover, since |p(z)| ∼ |z|d as |z| → ∞, it follows that this function tends to zero at
infinity and hence is bounded. By Liouville the function is constant, which furthermore implies
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that p is constant which it is not. Therefore the assumption that p(z) 6= q for all z inC must

be false, and hence p is surjective.
Next let’s consider holomorphic dynamics for meromorphic functions on Ĉ.

Theorem 10.5. Any meromorphic function on Ĉ is a rational function. If it is non-constant,
then it is surjective.

Proof: Let’s assume f(z) is non-constant and meromorphic. Let {pk}n1 be the poles of f with
corresponding degrees dk. Then

F (z) := f(z)

n∏
1

(z − pk)dk

is entire, and has at worst a pole at ∞. Therefore this function is a polynomial q(z) and hence

f(z) =
q(z)∏n

1 (z − pk)dk

is a rational function. To show surjectivity first note that a meromorphic function defined on Ĉ
without pole is constant by Liouville’s theorem (it is entire and bounded!) Therefore the value
∞ is assumed at a pole. For p 6= ∞, for the sake of contradiction we assume f(z) 6= p for all

z ∈ Ĉ. The function f(z)− p may have poles, but it has no zeros, so

1

f(z)− p
= g(z)

is entire. It has at worst a pole at infinity. If it has no pole at infinity, then it is constant and
hence so is f which is a contradiction. So, this function has a pole at infinity and hence is a
polynomial. Therefore

f(z)− p =
1

g(z)
→ 0 as z →∞.

Since f is meromorphic, this shows that

f(z)→ p as z →∞ =⇒ f(∞) = p.

Hence f does assume the value p since ∞ ∈ Ĉ.
So, holomorphic dynamics for meromorphic functions on Ĉ is reduced to the study of iteration
of rational functions.
The first two mathematicians to make big progress in holomorphic dynamics were Fatou and
Julia, and consequently the two main sets one studies in holomorphic dynamics are named after
them.

Definition 10.6. Let f : G→ G. The Fatou set of f is defined to be

{z ∈ G : ∃r > 0 such that {fn} is a normal family on Dr(z)}.
The complement of this set is the Julia set.

What are some elements of the Fatou set? Fixed points are certainly a likely candidate, but
they do not always belong to the Fatou set. To understand when they do and do not belong
to the Fatou set, we classify fixed points into the following types depending upon the local
behavior of the function f .
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11. Fixed points

Definition 11.1. Let f be holomorphic in a neighborhood of z0 and assume f(z0) = z0. The
value λ := f ′(z0) is known as the multiplier at the fixed point z0.

(1) If |λ| < 1, then z0 is an attracting fixed point. (hot) If |λ| = 0, then z0 is a super-
attracting fixed point. (super hot).

(2) If |λ| > 1, then z0 is a repelling fixed point. (not hot)
(3) If there exists n ∈ N such that λn = 1, then z0 is a rationally neutral fixed point.

(boring).
(4) Otherwise z0 is an irrationally neutral fixed point. (weird).

Note that near the fixed point

f(z) = z0 + λ(z − z0) + . . . , λ 6= 0,

or presuming f is non-constant, then if λ = 0 there is some p ∈ N such that

f(z0) = z0 + ap(z − z0)p + . . . .

Since the dynamics of f are the same as the dynamics of f̃ = φ−1 ◦ f ◦ φ with

φ(z) = z + z0,

and f̃(0) = 0, let’s assume z0 = 0. Then near the fixed point

f(z) = λz + . . . , or apz
p + . . . .

So, roughly speaking f looks like either λz or apz
p. Let’s call that function g (either g(z) = λz

if λ 6= 0 or g(z) = apz
p if λ = 0). These functions are significantly more simple than f .

Schröder asked the question:

Question 2. Does there exist a neighborhood of the fixed point and a holomorphic map ψ which
conjugates f to g? In other words, does there exist a solution ψ to

ψ ◦ f = g ◦ ψ?

This equation is known as Schröder’s equation. Note that it immediately implies that ψ−1

is uniquely defined on g(ψ(Dr)) via ψ−1(g(ψ(x)) = f(g(ψ(x))) and hence any solution to
Schröder’s equation is a locally conformal map.

Proposition 11.2. Let z0 be an attracting fixed point for an holomorphic function f on Dr(z0).
Then there exists 0 < p ≤ r such that

fn(z)→ z0

on Dp(z0).

Proof: Since f is holomorphic on Dr(z0), we can write it as a power series

f(z) =
∑
k≥0

ak(z − z0)k = a0︸︷︷︸
=z0

+λ(z − z0) + (z − z0)1
∑
k≥0

ak+2(z − z0)k+1

︸ ︷︷ ︸
this is a convergent power series onDr(z0)

For Λ ∈ (|λ|, 1), note that

|f(z)− f(z0)| =

∣∣∣∣∣∣λ(z − z0) + (z − z0)
∑
k≥0

ak+2(z − z0)k+1

∣∣∣∣∣∣ ≤ |λ||z − z0|+ |z − z0||z − z0|

∣∣∣∣∣∣
∑
k≥0

ak+2(z − z0)k

∣∣∣∣∣∣︸ ︷︷ ︸
convergent

Because
∑
k≥0 ak+2(z−z0)k converges in Dr(z0), it follows that there are 0 < p ≤ r and M > 0

such that

(1) on Dp(z0),
∑
k≥0 ak+2(z − z0)k ≤M ;

(2) on Dp(z0), |z − z0| < Λ−λ
M , i.e. p < Λ−λ

M .
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Therefore,

|f(z)− f(z0)| ≤ |λ||z − z0|+
Λ− λ
M

M |z − z0|︸ ︷︷ ︸
=Λ|z−z0|

on Dp(z0). Since Λ < 1 we have

|f(z)− f(z0)| = |f(z)− z0| ≤ Λ|z − z0| ≤ |z − z0|
which shows that

f(Dp(z0)) ⊂ Dp(z0).

Hence we can apply our estimate to f(f(z)) since f(z) ∈ Dp(z0) presuming z ∈ Dp(z0), and
we have

|f2(z)− f2(z0)| ≤ Λ|f(z)− f(z0)| ≤ Λ2|z − z0|
and in general

|fn(z)− fn(z0)z0 | = |fn(z)− z0| ≤ Λn|z − z0| → 0

as n→∞ because Λ < 1.

This proves that fn(z)→ z0 for all z ∈ Dp(z0).

Definition 11.3. For an attracting fixed point z0, the basin of attraction of z0 is

A(z0) := {z|fn(z)is defined for all z andfn(z)→ z0}.

We have proven that Dp(z0) ⊂ A(z0).

Proposition 11.4.

A(z0) =
⋃
n≥1

f−n(Dp(z0)).

Proof: ”⊆:” If fm(z)→ z0, then there exists N ∈ N such that for all m ≥ N |fm(z)−z0| < p.
Thus fm(z) ∈ Dp(z0) and therefore z ∈ f−m(fm(z)) ∈ f−m(Dp(z0)).
This means that z ∈ f−m(Dp(z0)), so that A(z0) ⊆

⋃
n≥1 f

−n(Dp(z0)).

”⊇:” If z ∈ f−n(Dp(z0)) for some n ≥ 1, then fn(z) ∈ Dp(z0).

Thus fk(fn(z))︸ ︷︷ ︸
fn+k(z)

→ z0, and therefore z ∈ A(z0).

Corollary 11.5. A(z0) is open.

Proof: Since f is continuous, f−n(Dp(z0)) is open for all n ≥ 1.

Definition 11.6. The connected component of A(z0) containing z0 is the immediate basin of
attraction, denoted A∗(z0).
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Definition 11.7. f : U → U is conformally conjugate to g : V → V , if there exists a conformal
ϕ : U → V such that g = ϕ ◦ f ◦ ϕ−1. (Schröder’s equation)
(g and f are like the same, only in different coordinate systems).

Question 3. Can we conjugate f to something simpler?

• f(z0) = z0, f̃ = T−1 ◦ f ◦ T , T (z) = z + z0, f̃(0) = 0, f̃n = T−1 ◦ fn ◦ T , without loss
of generality: z0 = 0.
• So f(z) = λz +

∑
k≥2 akz

k (we can write it loke this because f is holomorphic)

Then we would have

f(z) ∼

{
λz if λ 6= 0

apz
p if λ = 0, p = inf{k ∈ N|ak 6= 0}

Can we conjugate f to one of these?

Note 1. If g = ϕ ◦ f ◦ ϕ−1, then z0 is a fixed point for f if and only if ϕ(z0) is a fixed point
for g.

Proposition 11.8. λ at a fixed point for f is the same for g. In words: The multiplier is
invariant under conjugation by conformal maps.

Proof: f ′(z0) = λ. g = ϕ ◦ f ◦ ϕ−1 if and only if g ◦ ϕ = ϕ ◦ f . Therefore,

(g ◦ ϕ)′(z0)︸ ︷︷ ︸
g′(ϕ(z0))ϕ′(z0)=λgϕ′(z0)

= (ϕ ◦ f)′(z0) = ϕ′(f(z0)︸ ︷︷ ︸
z0

)λf

With ϕ conformal it follows that ϕ′(z0) 6= 0. Thus λg = λf .

Theorem 11.9. Koenigs
Let f have an attracting fixed point z0 with 0 < |λ| < 1. Then there exists a conformal mapping
ϕ(z) that maps a neighborhood of z0 onto a neighborhood Dr(0)of zero, such that

g(ϕ(z)) = λϕ(z) = ϕ(f(z))

ϕ is unique up to multiplication by c 6= 0.

Proof: Without loss of generality, let z0 = 0. Let ϕn(z) := λ−nfn(z). Then we claim that
ϕn(z) = z + . . . , which we will show by induction. It is true for n = 1. Assume that it holds
for n. Then (replacing f with its power series) we have

ϕn+1(z) = λ−1λ−nf(fn(z)) = λ−1λ−n(λfn(z) + . . . ) = λ−nfn(z) + · · · = z + . . .

by the induction assumption. Then

ϕn ◦ f = λ−nfn+1 = λ(λ−n−1fn+1) = λϕn+1

Consequently, if ϕn → ϕ, then from ϕn ◦f = λϕn+1, ϕn ◦f → ϕ◦f and λϕn+1 → λϕ it follows
that ϕ ◦ f = λ ◦ ϕ and thus ϕ ◦ f(z) = λϕ(z).
Note that as {ϕn} are holomorphic and converge locally uniformly towards ϕ, it follows that ϕ
is holomorhpic too, and all that the derivatives converge, too!
Note that from ϕ′n(z) = 1 for all n, we know that ϕ′(z) = 1 (in a neighborhood of z = 0 where
the power series converge). This means that ϕ is conformal and

ϕ ◦ f ◦ ϕ−1(ζ) = λζ

By the convergence of the power series of f , we know that there exist c > 0 fixed, and δ > 0
such that

(*) |f(z)− λz| ≤ c|z|2 for |z| < δ.
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Thus

|f(z)| ≤ |λ||z|+ c|z|2 ≤ (|λ|+ cδ)|z|.

We can now choose δ small enough such that (|λ|+ cδ) < 1 (which is possible because |λ| < 1).
Then

(**) |fn(z)| ≤ (|λ+ cδ|)n|z| for |z| ≤ δ.

Choose δ possibly smaller so that (|λ+ cδ|)2 ≤ |λ|2 + 2|λ|cδ + c2δ2 < |λ|. Then

|ϕn+1(z)− ϕn(z)| = |λ−n−1fn(f(z))− λ−nfn(z)| =
∣∣∣∣f(fn(z))− λfn(z)

λn+1

∣∣∣∣
(*)

≤ c|fn(z)|2

|λn+1|
(**)

≤ c(|λ|+ cδ)2n|z|2

|λ|n+1
=
cρn|z|2

|λ|
where ρ :=

(|λ|+ cδ)2

|λ|
< 1.

Thus {ϕn} is Cauchy for |z| < δ and therefore converges uniformly.
Furthermore, we have to proof the uniqueness of φ: On Dδ(0) we have φ(f(z)) = λφ(z) if ∃Φ
which also conjugates Φ(f(z)) = λΦ(z) where Φ is conformal. ⇒ φ(f(0)) = φ(0) = λφ(0),
λ 6= 0 ⇒ φ(0) = 0. Similarly, we show Φ(0) = 0.
Φ ◦ φ−1 ◦ λ = λ ◦ Φ ◦ φ−1. Let ψ = Φ ◦ φ−1. Then we have ψ ◦ λ = λ ◦ ψ. Note that
ψ(0) = Φ(φ−1(0)) = Φ(0) = 0. Therefore, ψ(z) = cz + . . . near z = 0 and ψ(λz) = λψ(z).
Therefore cλz + a2(λz)2 + . . . = λ(cz + a2z

2 + . . .). By the identity theorem, the coefficients
are all identical and we get akλ

k = λak∀k ≥ 2. By assumption 0 < |λ| < 1 ⇒ |λk| 6= |λ|∀k ≥ 2.
Therefore, ak = 0∀k ≥ 2. Since ψ = Φ ◦ φ−1 is conformal, ψ(0) = c 6= 0, and ψ(z) = cz =

Φ ◦ φ−1(z)⇒ Φ(z) = cφ(z).

Corollary 11.10. If z0 (WLOG = 0) is repelling, then ∃! (up to ? by c 6= 0) conformal φ
conjugating f(z) to λz.

Proof: f(z) = λz + . . . on Dr(0). Since |λ| > 1 > 0, then f ′(0) 6= 0 and WLOG we may
assume |f ′(z)| ≥ λ

2 on Dr(0). Therefore f ′|Dr(0) 6= 0 and f−1 is holomorphic on f(Dr(0)).

Furthermore, we get (f−1)′(0) = λ−1. Moreover f−1(0) = 0 and f−1(z) = λ−1z+ . . . on Dρ(0).
Apply Koenig’s Theorem to f−1. ∃! (up tp scale) φ conjugating f−1 to λ−1. ⇒ f−1◦φ = φ◦λ−1

⇒ f ◦ f−1 ◦φ = f ◦φ ◦λ−1. Therefore, φ = f ◦φ ◦λ−1 ⇒ φ ◦λ = f ◦φ. The uniqueness follows

from the Theorem.

Theorem 11.11. If f has a super-attracting fixed point (WLOG at 0) then for f 6≡ 0∃! (up to
p− 1 root of unity) conformal φ such that f ◦ φ = g ◦ φ and g(z) = zp, where f(z) = apz

p + . . .
on Dr(0).

Proof: Fix c > 1. Then ∃δ > 0 such that ∀ |z| ≤ δ, |f(z)| ≤ c|z|p. Then

|f(f(z))| ≤ c|f(z)|p ≤ c(c|z|p)p.

Since we know p ≥ 2, we get ccp ≤ cp2 and |f(f(z))| ≤ ccp|z|p2 ≤ cp2 |z|p2 .
Induction assume |fn(z)| ≤ (c|z|)pn ∀z ∈ Dδ(0) (we can choose δ > 0 so small that f(z) ∈ Dδ(0)
for |z| ≤ δ). Then

|fn+1(z)| = |f(fn(z))| ≤ c|fn(z)| ≤ ccp
n

(|z|p
n

)p
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Since p ≥ 2 and c > 1, we get cp
n+1 ≤ cp

n+1

. So induction shows that the statement is true
∀n ∈ N.
So fn(z)→ 0 super exponentially as n→∞ on Dδ(0). For z ∈ Dδ(0) define

b :=

(
1

|ap|

) 1
p−1

· e
i(2π−θ)
p−1

where ap := |ap|eiθ and θ ∈ [0, 2π). Let φ(z) := bz. Then f ∼= f̃ = φ−1 ◦ f ◦ φ where

f̃ = b−1(ap(bz)
p + . . .) = apb

p−1zp + . . . = zp + . . . .

Since f ∼= f̃ , we may assume WLOG f(z) = zp+ . . . on Dδ(0). We’re looking for φ(z) = z+ . . .

such that φ(f(z)) = φ(z)p. Define φn(z) := (fn(z))p
−n

. Then since f(z) = zp + . . . we get

f(f(z)) = (f(z))p + . . . = (zp)p + . . . = zp
2

+ . . ., so

fn(z) = zp
n

+ . . .⇒ (fn(z))p
−n

= (zp
n

(1 + . . .))p
−n

= zp
np−n(1 + . . .)p

−n
= z(1 + . . .)p

−n

Thus

φn−1 ◦ f = (fn−1(f(z)))p
−n+1

= (fn(z))p
−n·p = (φn(z))p

If φn → φ as n→∞, then φ ◦ f = φp.
First, assume {an}n≥1 are positive. Then

∏
n≥1

an converges and is positive ⇔
∑

log(an) con-

verges.

We will prove that
N∏
n=1

φn+1

φn
converges (⇒ φN+1

φ1
converges ⇒ φN+1 converges) where

φn+1

φn
=

(fn+1)p
−n−1

(fn)p−n
=

(φ1(fn))p
−n

(fn)p−n

since φ1 ◦ fn = (f(fn))p
−1

= (fn+1)p
−1

. Therefore,

(φ1 ◦ fn)p
−n

=
(

(fn+1)p
−1
)p−n

= (fn+1)p
−1·p−n =

(
fn+1

)p−n−1

=

(
fn(1 + fn + . . .)p

−1

fn

)p−n
= (1 +O(|f |n))

p−n

= 1 +O(p−n)O(cp
n

|z|p
n

) = 1 +O(p−n)

if |z| ≤ c−1. The last estimate follows since for a sufficiently small x, expanding in a geometric
series

(1 + x)−y ∼=
(

1

1 + x

)y
∼=
(∑

(−1)nxn
)y ∼= (1− x+ . . .)y

∼= 1 + cyx+ . . . ∼= 1 +O(yx)

Since O(p−n) = O(−p−n),
∑
n≥1

log(1 + O(p−n)) ∼=
∑
n≥1

p−n converges since p ≥ 2. Therefore,

∏ Φn+1

Φn
converges and

N∏
n=1

Φn+1

Φn
= ΦN+1

Φ1
. Therefore Φn+1 → Φ.

Uniqueness: If ψ ◦ f = ψp, ψ(f(0)) = ψ(0) = ψ(0)p. Let Φ := φ ◦ ψ−1. This satisfies
Φ(zp) = (Φ(z))p ⇒ Φ(0) = Φ(0)p and Φ′(zp)pzp−1 = pΦ′(z). For z = 0 and p ≥ 2⇒ Φ′(0) = 0.
Repeat this to show that Φ(k) = 0 ∀k ≥ 1. Therefore, Φ ≡ Φ(0) ⇒ Φ(0) = φ ◦ ψ−1 and
Φ(0)ψ(z) = φ(z). Since Φ(0) = Φ(0)p ⇐⇒ Φ(0)p−1 = 1 this shows equality up to a p− 1 root

of unity.
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Proposition 11.12. Let λ = e2πıθ where θ 6∈ Q. Then the solution h to f(h(z)) = h(λz), h′(0) =
0, where f is holomorhic and has a fixed point at z = 0, is 1:1 in Dr for some r > 0.

Proof: Assume for some z in Dr on which h is defined we have h(z) = h(z′). Then

f(h(z)) = f(h(z′)) = h(λz) = h(λz′).

We can repeat this and we obtain

h(λnz) = h(λnz
′), ∀n ∈ N.

Since the multiplier λ has θ 6∈ Q, the set {λn}n∈N is dense in ∂D. Therefore we have h(wz) =
h(wz′) for every w ∈ ∂D by continuity of h. Considering the function

g(w) := h(wz)− h(wz′), |w| ≤ 1,

we see that |g| ≡ 0 on ∂D. By the Maximum Principle it follows that g ≡ 0 on D. Since
h′(0) = 1, we have

g′(0) = zh′(0)− z′h′(0) = z − z′ = 0,

which follows because g is constant, and we have used the chain rule (h is holomorphic). So,

this shows that if h(z) = h(z′) then z = z′.

Proposition 11.13. A solution h exists iff {fn} is uniformly bounded on some Dr(0).

Proof: The proof is an exercise.

Theorem 11.14. There is λ = exp 2πiφ so that the Schröder Equation has no solution for any
polynomial f . (1917 - Pfeiffer).

Definition 11.15. φ is Diophantine (badly approximable by rational numbers) if there exists
c > 0, µ <∞ so that |φ− p

q | ≥
c
qµ for all p, q ∈ Z, q 6= 0. This is equivalent to |λn − 1| ≥ cn1−µ

for all n ≥ 1.

Remark 11. Almost all real numbers are Diophantine - but not all!

Theorem 11.16. (Siegel, 1950s) If φ is Diophantine, f(0) = 0, f ′(0) = exp 2πiφ, then there
exists a solution h to Schröder’s Equation.

Remark 12. For P (z) = exp 2πiφz + z2, {pnqn } → φ continued fraction expansion, then there is

a solution to the Schröder Equation if and only if
∑ log qn+1

qn
<∞.

(Sufficiency was shown by Brunjo in 1965, neccessity in 1988 by Yoccoz.)
(Every real number can be expressed as a limit bxc+ a

b+s... .)

Definition 11.17. A simply connected component of the Fatou set such that f is conformally
conjugate to an irrational rotation is a Siegel disk.

Theorem 11.18. The Julia set contains all repelling fixed points and all neutral fixed points
which do not correspond to Siegel disks.
The Fatou set contains all attracting fixed points and all those neutral ones corresponding to
Siegel disks.

Proof: Rationally neutral fixed points
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(1) λ = 1, p = 1
(2) λ = 1, p > 1
(3) λn = 1, λ 6= 1

⇒ f(z) = λz + azp+1 + . . . , a 6= 0.

Case 1: Conjugate f by ϕ(z) = az → f̃ = ϕ ◦ f ◦ ϕ−1 = a(f( za )) = a(λza ) + a( za )2 + . . . ) =

λz+ z2 + · · · ⇒WLOGa = 1. Move 0 to ∞ by z → −1
z → g(z) = z+ 1 + b

z + . . . . Fatou proved
that ϕ conjugates g to z → z + 1.
Case 2: Another conjugation..
Case 3: Reduce to case 1 or case 2 by considering fn.
We conclude that at such a fixed point, there are both “repelling” and “attracting” directions.
Thus all rationally neutral fixed points are in J .

By definition, if a neutral fixed point is irrationally neutral and corresponds to a Siegel Disk:
∃r > 0 s.t. on Dr(z0),

f(z) = ϕ ◦ λϕ−1(z)

and by definition, the simply connected component of F containing Dr(z0) is in F .

By the proposition {fn} is uniformly bounded on some Dr(z0). By Montel it follows that {fn}
is normal there. Also by the proposition, {fn} is uniformally bounded on Dr(z0) if and only
if f conjugates to an irrational rotation. Therefore z0 ∈ F which is equivalent to f being
conjugated to an irrational rotation, i.e. z0 corresponds to a Siegel Disk.
We have proven that for all attracting fixed points z0, ∃r > 0 s.t. fn(z) → z∀z ∈ Dr(z0) it
follows that Dr(z0) ⊂ F .

For repelling fixed points, WLOG z0 = 0, we construct a contradiction:
Assume Dr(0) is contained in the Fatou set. Assume the family fnk → g locally uniformly.
Then g(0) = 0, and so for sufficiently small z, |g(z)| < r/2, so for large nk, |fnk(z)| < 3r/4
hence fnk(z) ∈ Dr(0). By definition of the conjugating map

ϕ ◦ f = λϕ =⇒ ϕ ◦ f ◦ ϕ−1(z) = λz,

whenever the left side is defined. Taking r possibly smaller, since we have proven that the
conjugating map also fixes the fixed point and is locally injective, we may assume ϕ−1(z) ∈
Dr(0) for z ∈ Dr(0). Then f is defined there. Then taking δ < r such that g(z) ∈ Dr(0)
for |z| < δ which can be done by the above argument, we also have fnk(z) ∈ Dr(0) for nk
sufficiently large. Taking ε sufficiently small, |ϕ−1(z)| < δ for all |z| < ε. So, for |z| < ε, fnk(z)
is in Dr(0) for all nk large, hence ϕ(fnk(ϕ−1(z))) is defined for all |z| < ε and all nk sufficiently
large. Moreover, on this disk ϕ ◦ fnk ◦ ϕ−1 → ϕ ◦ g ◦ ϕ−1. So, we have for any z ∈ Dε(0) \ {0}

ϕ ◦ fnk ◦ ϕ−1(z) = λnkz →∞,

ϕ ◦ fnk ◦ ϕ−1(z)→ ϕ ◦ g ◦ ϕ−1(z).

This is a contradiction because the function on the right is holomorphic on Dε(0). Consequently
the repelling fixed point cannot be contained in the Fatou set and all such points lie in the Julia

set.

12. Iteration of rational functions

We know how to classify fixed points and whether they are in the Fatou or Julia set. If we are
interested in iteration of meromorphic functions on Ĉ, we have proven that all such functions
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are rational functions. In this case we also know precisely how many fixed points such functions
have.

Theorem 12.1. A rational map of degree d has precisely d+ 1 fixed points, unless of course it
is the identity.

Proof: We assume that R can be conjugated so as not to fix infinity. For example, for c ∈ C
let

φ(z) := z−1 − c, φ−1(z) =
1

z + c
.

Then

S := φ−1 ◦R ◦ φ :∞→ −c→ R(−c)→ 1

R(−c) + c
.

So choosing some −c 6= R(−c) which is possible unless R is the identity (which we of course
assume it is not) we have S does not fix ∞ and S is conformally conjugate to R. The fixed
points of R are in bijection with the fixed points of S hence without loss of generality from
now on we assume R(∞) 6=∞. Let ζ 6=∞ be a fixed point of R = P/Q. Then Q(ζ) 6= 0 since
ζ 6=∞ and R(ζ) = ζ. So it follows that the degree of the 0 of the function R(z)− z at z = ζ is
the same as the degree of the 0 of the function P (z)− zQ(z) at z = ζ since

R(ζ) = ζ ⇐⇒ R(ζ)− ζ =
P (ζ)− ζQ(ζ)

Q(ζ)
= 0.

The number of fixed points of R is therefore equal to the number of solutions to P (z) = zQ(z)
counting multiplicity. Since R does not fix ∞, the degree of the numerator of R is less than or
equal to the degree of the denominator, so the degree of P is less than or equal to the degree
of Q and hence the degree of R is equal to the degree of Q. The degree of the polynomial

P (z)− zQ(z)

is therefore the degree of Q plus one which is equal to d+ 1. By the Fundamental Theorem of
Algebra this polynomial has precisely d+ 1 zeros counting multiplicity. These are in bijection
with the fixed points of R hence R has precisely d + 1 fixed points counting multiplicity.

We will use the above result to prove the following.

Theorem 12.2. The Julia set is not empty for rational functions with degree ≥ 2.

Proof: Assume J = ∅. Then the family of iterates of R is normal on Ĉ which is compact,
hence there exists a uniformly convergent subsequence. Passing to that subsequence we assume
WLOG that Rn → f . Since we have uniform convergence, it follows that f is a meromorphic
function on Ĉ, and hence we have shown that all such functions are rational functions. So f
has some degree D. Let d be the degree of R. Then we first claim the following.

Claim 4. Rn has degree dn.

Proof: Write

R(z) =
p(z)

q(z)
, p(z) = a

n∏
1

(z − rk), q(z) = b

m∏
1

(z − sj).

Consider R(R(z)) =

a
∏

(p/q − rk)

b
∏

(p/q − sj)
=
aq(z)−n

∏
(p(z)− rkq(z))

bq(z)−m
∏

(p(z)− sjq(z))
.
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Assume n = d is the degree of R, in which case n ≥ m. Then

R(R(z)) =
a
∏

(p(z)− rkq(z))
bq(z)n−m

∏
(p(z)− sjq(z))

.

Consider the numerator

a
∏

(p(z)− rkq(z)) = ap(z)n + l.o.t. = an+1zn
2

+ l.o.t.

The numerator has degree n2. Consider the denominator

bq(z)n−m
∏

(p(z)− sjq(z)) = bq(z)n−mp(z)n + l.o.t. = bn−m+1anzm(n−m)+mn + l.o.t,

where we use l.o.t. to denote lower order terms. This has degree

2mn−m2 ≤ n2 ⇐⇒ n2 +m2 − 2mn ≥ 0,

which is true since

n2 − 2mn+m2 = (n−m)2 ≥ 0.

So it appears that the degree of R(R(z)) is n2 = d2, but what about cancellation? The
numerator vanishes iff

p(z) = rkq(z)

for some rk and some z. The denominator vanishes iff

p(z) = sjq(z)

for some sj and some z. If (for the sake of contradiction) there is some z such that both
numerator and denominator vanish, then there are some rk and sj such that

p(z) = rkq(z) = sjq(z).

By definition of a rational function, p and q have no common zeros. This means that rk 6= sj
for all k and j. In order for the equation above to be satisfied we would need either rk = sj = 0
which is a contradiction, or p(z) = q(z) = 0 which is also a contradiction. So, the numerator
and denominator of R(R(z)) have no common zeros and hence the degree of R(R(z)) is indeed
n2.
If instead the degree of q is greater than or equal to the degree of p, so that m ≥ n, then we
again look at the numerator and denominator. In the numerator we have

aq(z)m−n
∏

(p(z)− rkq(z)) = a(
∏
−rk)q(z)m + aq(z)m−np(z)n + l.o.t.,

which has degree m2 unless some rk = 0. The denominator

b
∏

(p(z)− sjq(z)) = b(
∏
−sj)q(z)m + l.o.t.,

which also has degree m2 unless some sj = 0. We cannot have some rk = 0 and some sj = 0
because then p and q would have a common root (0). So at least one of these is non-zero, and
the degree of R(R(z)) is m2 = d2.

The same argument and a bit of induction shows that the degree ofRn is dn.
Now we know that something must go amok. We have Rn → f uniformly on Ĉ yet the degree
of Rn = dn → ∞ since d ≥ 2, but the degree of f is D which is fixed. We know that Rn has
dn + 1 fixed points, yet f has only D + 1 fixed points. Consider

Rn(z)− z → f(z)− z,
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and the convergence is uniform on Ĉ. Let {fk}D+1
k=1 be the fixed points of f . Fix a small disk

Dk about fk which contains fk but does not contain any pole of f (presuming fk is not ∞).
Then by the Argument Principle, the multiplicity of the fixed point at fk is equal to∫

∂Dk

f ′(z)− 1

f(z)− z
dz.

By the uniform convergence ofRn to f , the corresponding integral withRn replacing f converges
to this. By the Argument Principle this is equal to the number of zeros of Rn(z)− z minus the
number of poles. That is an integer. The only way a sequence of integers can converge to an
integer is if it is eventually constant. So, for large n, the number of fixed points of Rn in Dk

minus the number of poles in Dk is equal to the multiplicity mk of the fixed point fk. Note
that for fk =∞ we can use the same argument with a conformal conjugation which moves the
fixed point to a different point (0, for example), because we have seen that z is a fixed point

for f iff φ−1(z) is a fixed point for f̃ = φ−1 ◦ f ◦ φ.
So, for large n, the number of fixed points of Rn in Dk minus the number of poles in Dk is
equal to mk. If the number of fixed points of Rn in Dk stays bounded, then since the number
of fixed points is dn + 1→∞, the fixed points must accumulate in Ĉ outside of Dk. Let’s say
they accumulate at z0 so zn is a fixed point for Rn and zn → z0. Then since Rn → f uniformly,
z0 must be a fixed point of f , which it is not. So, for at least one Dk, the number of fixed
points of Rn in Dk is tending to infinity with n (passing to a subsequence if necessary). Since
the number of fixed points is equal to mk plus the number of poles, this means that the number
of poles of Rn in Dk is tending to infinity. Hence they accumulate somewhere at say z0 ∈ Dk.
By the uniform convergence of Rn → f , z0 must be a pole of f . However, we assumed that Dk

did not contain any poles of f . So, this too is a contradiction.
Consequently, this shows that it is impossible for Rn → f uniformly on Ĉ and hence the family
of iterates {Rn} is not normal on Ĉ. Therefore at lest one point of Ĉ is in the Julia set, which

is therefore non-empty.

13. The Fatou and Julia sets of rational functions

Definition 13.1. E is completely invariant if E and Ec are invariant under R (R rational),
meaning R(E) ⊂ E and R(Ec) ⊂ Ec.

Proposition 13.2. This is the case if and only if R(E) = E.

Proof: Assume E is completely invariant. In this case, since

R(Ĉ) = R(E ∪ Ec) = Ĉ = E ∪ Ec = R(E) ∪R(Ec) ⊂ E ∪ Ec

if R is invariant, but since we have equality, it follows that R(E) = E, R(Ec) = Ec and there-
fore E = R−1 and Ec = R−1(Ec).

On the other hand, if E = R−1(E), it follows that R(E) = E and Ec = Ĉ\R−1(E). Thus

R(Ec) = R(Ĉ\R(R−1(E)) = R(Ĉ)\E = Ĉ\E

since R(Ĉ) = Ĉ (R not a constant).
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Theorem 13.3. The Julia set J is completely invariant. Proof: Let z0 ∈ Dr(z0) ⊂ F . Then

Rnk converges uniformly on Dr/2(z0).

⇒ Rnk+1 converges uniformly on R−1(Dr/2(z0)) which is also compact.

⇒ {Rn} is normal on R−1(Dr/2(z0))

⇒ R−1(Dr/2(z0)) ⊂ F .

This shows that R−1(F) ⊂ F . We need to show equality. Suppose that z0 ∈ F and Rnk+1

converges uniformly on Dr/2(z0). R is non-constant, holomorphic on Dr/2(z0) ⇒ an open
map. So R(Dr/2(z0)) is open and Rnk converges local uniformly on R(Dr/2(z0))︸ ︷︷ ︸

open neighborhood of R(z0)

⇒ R(z0) ∈ F .
So, R(F) ⊂ F , and so R−1(R(F)) = F ⊂ R−1(F) ⊂ F hence equal.
So F is completely invariant by the Prop.

⇒ R(J ) = J is also completely invariant since J = Fc.

Theorem 13.4. ∀N ≥ 1, J (R) = J (RN ) Proof: If R is normal on Dr(z0)

⇒ {Rnk} converges locally uniformly or rather uniformly on Dr/2(z0). So Rnk
unif.−→ f .

⇒ (Rnk)N︸ ︷︷ ︸
=RNnk

−→ fN (fix N)

⇒ The family {(RN )n} is normal on Dr/2(z0) since (RN )nk = RNnk converges uniformly.

⇒ F(R) ⊂ F(RN ).

Conversely, if {(RN )n} is normal on Dr(z0) so (RN )nk converges uniformly on Dr/2(z0)

⇒ RNnk = Rmk converges uniformly on Dr/2(z0)
⇒ {Rn} normal there

⇒ F(RN ) ⊂ F(R). Hence equal. Hence complements (J ′s) are also equal.

Theorem 13.5 (Montel’s Big Theorem (recall)). If F meromorphic on domain G and ∃z1, z2, z3

such that f(G)∩{zi}3i=1 = ∅ ∀f ∈ F then F is normal. Proof: (Sketch) WLOG z1 = 0, z2 =
1, z3 =∞S := C\{0, 1}.
Uniformization Theorem ⇒ S is conformal to D. Let φ : S ←→ D. Then for each Dr ⊂ G, Dr

is also conformal to D. WLOG however Dr = D so in fact we have φ ◦ f : D −→ D

⇒ This family is normal. This also (covering maps) ⇒ F is normal.

In addition to fixed points another type of distinctive point is a critical point.

Definition 13.6. A critical point z ∈ Ĉ is a critical point iff R is not injective on any open
neighborhood of z iff R′(z) = 0 iff the multiplicity of the zero of the function R(w)− R(z) for
w = z is greater than one.

Definition 13.7. The multiplicity of z ∈ C is the degree of the zero of the function R(w)− z
for w = z and is denoted by mult(z).
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We will use but not prove the following theorem.

Theorem 13.8 (Riemann-Hurwitz). Assume R is not constant and of degree d. Then∑
z∈Ĉ

mult(z)− 1 = 2(d− 1).

The proof of this theorem relies upon some rather deep results in topology concerning the Euler
characteristic of Riemann surfaces. Similar to the proof of the fact that the Julia set of any
rational function is non-empty for all rational functions of degree at least two, which relied on
the number of fixed points, we can use the Riemann Hurwitz theorem to prove the following.

Theorem 13.9. Any finite completely invariant set for R rational of degree at least two has at
most 2 elements.

Proof: Assume S is such a set. Then R(S) = S, and so R acts as a permutation on the
elements of S. Assume S has n elements. Then R is uniquely identified with an element σ
of the symmetric group Sn. This group has n! elements hence the order of σ is finite. Let
this order be k. This means that Rk acts as the identity element on S. We have already
computed that the degree of Rk is dk where d is the degree of R. Note that the multiplicity
of the zero of Rk(w) − z at w = z is dk. This is because the function Rk(w) − z has precisely
dk zeros counting multiplicity by the Fundamental Theorem of Algebra. Perhaps that is not
immediately apparent, but writing

Rk(w) =
p(w)

q(w)
, Rk(w) = z ⇐⇒ g(w) := p(w)− zq(w) = 0.

The function g(w) : Ĉ → Ĉ is a polynomial of degree equal to the degree of Rk, which is dk.
Hence this function has precisely dk zeros counting multiplicity by the Fundamental Theorem
of Algebra, and g(w) = 0 iff Rk(w) = z. So, if one of these zeros were to be some w 6= z, then
R−k(z) 3 w which shows that w ∈ S because S is completely invariant. Then since Rk acts as
the identity on S, this means that

Rk(w) = w 6= z = Rk(w).

This is a contradiction. So the only solutions to Rk(w) − z = 0 is w = z and hence the
multiplicity of z for Rk is dk. This holds for each z ∈ S. So we have∑

z∈S
mult(z)− 1 = n(dk − 1) ≤

∑
z∈Ĉ

mult(z)− 1 = 2(dk − 1)

which shows that n ≤ 2.

Definition 13.10. The orbit of a point z ∈ Ĉ is

O(z) := {Rn(z)}n∈Z.
Note that this includes both the forwards and backwards orbits. If the orbit of a point is finite,
then we say that point is exceptional. The set of all such points is denoted by E(R).

Proposition 13.11. The exceptional set of a rational map of degree at least two has 0, 1, or
2 points.

Proof: If z ∈ E(R), then by definition the orbit of z has finitely many elements. Since the
orbit of z is the same as the orbit of R(z) as well as the same as the orbit of R−1(z), the orbit
is completely invariant. By the preceding theorem the orbit of z has 1 or 2 elements. It has at
least one element because it contains z = R0(z). If the orbit of z contains only z, then it is a
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fixed point. If the orbit of z also contains w so that R(z) = w 6= z, then we know that either
R(R(z)) = R(w) = w or R(R(z)) = z. Hence either w is a fixed point of R or z is a fixed point
of R2. Consequently the total number of exceptional points is at most twice the number of
fixed points of R plus the number of fixed points of R2. This is finite because R has precisely
d+ 1 fixed points, and R2 has precisely 2d+ 1 fixed points. Since the orbit of any exceptional
point is completely invariant, and the orbit of any point in the orbit of z is the same as the
orbit of z, it follows that the orbit of each exceptional point is contained in E(R). There are
finitely many of these, they are each completely invariant, hence E(R) is a finite, completely

invariant set. By the theorem it contains 0, 1, or 2 points.

Theorem 13.12. The Julia set of any rational map of degree at least two is infinite, and the
exceptional set is contained in the Fatou set.

Proof: If the Julia set is finite, then because it is completely invariant, it contains at most
2 points. We know that the Julia set is not empty. So, first assume the Julia set contains
one point. We can conjugate such that WLOG this point is ∞. Then since the Julia set is
completely invariant,

R(∞) ⊂ J =∞ =⇒ R(∞) =∞,
and

R−1(∞) ⊂ J =∞ =⇒ R−1(∞) =∞.
Consequently, R has no poles in C and is an entire function. Since it has degree at least two,
R is a polynomial. For any polynomial ∞ is a super-attracting fixed point, because 0 is a
super-attracting fixed point for the function

1

R(1/z)
= φ−1 ◦R ◦ φ, φ(z) = φ−1(z) = 1/z,

and φ−1(0) =∞. We have already seen that if two functions are conformally conjugate such as

φ−1 ◦R◦φ = R̃, then R has a fixed point at∞ if and only if R̃ has a fixed point at φ−1(∞) = 0.

Moreover the multiplier at the fixed point is the same for R as for R̃. Since the polynomial R

is of degree d ≥ 2, 1/R tends to 0 of order d as z → ∞ hence R̃ has a zero of order d at 0.

By the Fundamental Theorem of Algebra, R̃ has precisely d zeros counting multiplicity. Hence
this function has only one zero of order d at zero so

1

R(1/z)
= czd, c ∈ C \ {0} =⇒ R(z) = c−1zd.

Since 0 is a super-attracting fixed point for R̃ it lies in the Fatou set for R̃ and consequently
φ−1(0) = ∞ also lies in the Fatou set of R. This is a contradiction because this point was
assumed to be in the Julia set which is distinct from the Fatou set.
If the Julia set contains two points, we can again assume by conformal conjugation that these
points are {0,∞}. By the complete invariance of the Julia set we have a few possibilities.
One possibility is that R(0) = 0 and R(∞) = ∞, which reduces to the above argument which
shows that in fact the points 0 and ∞ both lie in the Fatou set, a contradiction. The other
possibility R(0) = ∞. In this case R(z) = P (z)/Q(z) has a Laurent expansion about 0 of the
form cjz

−j + ... with cj 6= 0. Consequently when we consider long division of the polynomials
P and Q it follows that the degree of Q is strictly larger than the degree of P . If we were to
have R(∞) =∞, this requires the degree of P to be strictly larger than the degree of Q which
it is not. Hence R(∞) = 0 since R(∞) must be contained in the Julia set by the complete
invariance of the Julia set. If there were any other point p ∈ C such that R(p) = 0, then again
by the complete invariance of J such a point would necessarily be contained in J which it is
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not. Hence, the only zero of R is at infinity and this zero must therefore be of degree d which
is the degree of R. Consequently R(z) = cz−d. Then

R2(z) = R(R(z)) = c1−dzd
2

has a super-attracting fixed point at z = 0. It follows that 0 is in the Fatou set of R2, and
by one of our previous results, the Fatou set of RN is the same as the Fatou set of R for any
N ∈ N. Hence 0 is in the Fatou set of R as well, which is a contradiction because 0 was assumed
to be in the Julia set.
So, it is impossible for the Julia set to have 1 or 2 points, and this shows that it must have
infinitely many points because it is not empty.
Next we consider the exceptional set. If it is just one point, by conformal conjugation we may
assume that this point is∞. Then the orbit of this point is∞ and hence R(∞) =∞ = R−1(∞)
and so R is a polynomial because it is an entire non-constant function with pole at infinity. As
we have seen above ∞ is a super-attracting fixed point for any polynomial of degree at least
two and hence lies in the Fatou set.
If the exceptional set contains two points, without loss of generality we assume these two points
are 0 and ∞. Then we either have R(0) = 0, R(∞) = ∞ which implies R(z) = czd, and both
0 and ∞ are in the Fatou set. By the above argument the other possibility is that R(∞) = 0,
R(0) =∞. In this case we showed that R(z) = cz−d, and again both 0 and ∞ lie in the Fatou
set because this is true for R2 (both 0 and ∞ are in the Fatou set of R2 in this case).

So, in all cases the exceptional set lies in the Fatou set.

Theorem 13.13. Any completely invariant closed set A satisfies one of the following: either
A ⊂ E(R) ⊂ F or A ⊃ J .

Proof: Assume A is such a set, and let U := Ĉ\A. Then U is open and completely invariant.
If A is finite, then it has at most two points. It follows that since A is completely invariant, the
orbit of each element of A lies in A and hence is finite, so A ⊂ E(R). If A is infinite, consider

{Rn} on U . Since U is completely invariant, for each z ∈ U , Rn(z) ⊂ U ⊂ Ĉ \A and hence the
family {Rn} on U omits all points of A, of which there are more than three! So, the family Rn

is normal on U , and hence U ⊂ F . The reverse inclusion therefore holds for their complements,

so U c = A ⊃ Fc = J .

Theorem 13.14. The Julia set is perfect.

Proof: Let J ′ denote the set of accumulation points of the Julia set. Then since J is closed it
follows that J ′ ⊂ J . Note that since J is infinite and is contained in Ĉ which is compact, the
Julia set has accumulation points, so J ′ 6= ∅. The idea is thus to show that J ′ is completely
invariant because then we have proven that any completely invariant closed set is either in the
Fatou set or it contains the Julia set. Since J ′ is in the Julia set, it cannot be in the Fatou
set! First let’s show that J ′ is closed. If z is an accumulation point of J ′, then any open
neighborhood U of z contains an element of J ′, which we can call z′. Since z′ is in U which
is open, and z′ is an accumulation point of J , it follows that U also contains an element of J .
Hence any open neighborhood U of z contains an element of J , and so z is an accumulation
point of J and therefore z ∈ J ′. Hence, J ′ contains all its accumulation points and is therefore
closed.
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Next we show the complete invariance of J ′. Let z ∈ J ′. Then there is a sequence {zn} ⊂ J
which converges to z. The function R is continuous on Ĉ, and therefore R(zn) → R(z). Since
R(zn) ∈ J for every n by the invariance of J , we have a sequence in J converging to R(z′).
Therefore R(z′) is also an accumulation point of J and so R(z′) ∈ J ′. We have thereby shown
the inclusion

R(J ′) ⊂ J ′ =⇒ J ′ ⊂ R−1(J ′).
Next let z ∈ R−1(J ′), and w = R(z) ∈ J ′. Then since R is open, and w ∈ J ′, for an open set
U containing z, R(U) is an open point containing w which is an accumulation point of J , and
so R(U) has non-empty intersection with J . Therefore

R−1(R(U) ∩ J ) = U ∩R−1(J ) = U ∩ J 6= ∅.

So, for any open U containing z, U ∩ J 6= ∅. It follows that z is an accumulation point of J
and so z ∈ J ′. This shows that

R−1(J ′) ⊂ J ′ =⇒ J ′ ⊂ R(J ′) ⊂ J ′.

So

R(J ′) = J ′

is completely invariant. Since it is a closed set, by the previous theorem it is either contained
in F or it contains J . Since J ′ ⊂ J which is disjoint from F , we cannot have J ′ ⊂ F , and so
we must have

J ′ ⊃ J ⊃ J ′ =⇒ J ′ = J .
Hence every point of J is an accumulation point of J which is the definition of being perfect.

Theorem 13.15. The Julia set of a rational map R of degree at least two is either Ĉ or has
empty interior.

Proof: Let us decompose Ĉ as a disjoint union

Ĉ = ∂J ∪ J̊ ∪ F .

Let us also assume that z ∈ J̊ , so the interior of J is not empty. Then there exists r > 0
such that Dr(z) ⊂ J̊ ⊂ J . Applying R, by the Open Mapping Theorem, R(Dr(z)) 3 R(z)
is an open set. By the complete invariance of J this set lies in J . Hence there is an open
neighborhood of R(z) in J , so R(z) ∈ J̊ . This shows that

R(J̊ ) ⊂ J̊ .

For the reverse inclusion we use continuity, because R−1(Dr(z)) is an open set contained in J
hence contained in J̊ so

R−1(J̊ ) ⊂ J̊ ,
and we see that J̊ is completely invariant. Since the Fatou set is also completely invariant, we
have the following

R(J̊ ∪ F) = J̊ ∪ F =⇒ R(∂J ) = ∂J ,
so the boundary of J is also completely invariant. It is closed since its complement is by
definition open. By a preceding result, since the intersection of the Julia set, which is closed
and hence contains its boundary, with the Fatou set is empty, either the boundary of the Julia
set contains the Julia set, or the boundary of the Julia set is empty. By assumption the Julia
set has non-empty interior, so if it has non-empty boundary, then it cannot be contained in its
boundary. It follows that the boundary of the Julia set is empty. This means that the Julia set
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is open as well as closed, and hence is the entire Ĉ. This shows that if the Julia set has non-
empty interior, then it is Ĉ. On the other hand, if the Julia set is not Ĉ, by the contrapositive,
it cannot have non-empty interior, so if the Julia set is not Ĉ, then it has empty interior. These

are the only two mutually exclusive possibilities.
The following proposition will allow us to prove the self-similarity property of J .

Proposition 13.16. Let R be a rational map of degree at least two, U a non-empty open set
such that U ∩ J 6= ∅. Then (1)

∪n≥0R
n(U) ⊃ Ĉ \ E(R) ⊃ J ,

and moreover (2) there exists N ∈ N such that

Rn(U) ⊃ J
for all n ≥ N .

Proof: Well, it makes sense to prove (1) first, because we will likely need it to prove (2) which
is a stronger statement. Define

U0 := ∪n≥0R
n(U).

Define
V := Ĉ \ U0.

If V = ∅ then we are done. If V has three or more points, we are led to a contradiction because
this would mean that the family {Rn}n≥1 on the set U is normal. Then we would have U ⊂ F
which contradicts the fact that U ∩ J 6= ∅. So, V has at most 2 points. For the sake of
contradiction we assume there is some z0 ∈ V \E(R). Then it must have an infinite orbit. We
will show that a point has an infinite orbit iff the backwards orbit is infinite. Assume that the
backwards orbit is finite,

O−(z0) = K = {z0, . . . , zk}.
Then consider R−1 on K. R−1(zj) is a set of one or more points in K. If two points zj and zl
have a common pre-image meaning the sets

R−1(zj) ∩R−1(zl) 6= ∅,
then applying R to a common point in this pre-image we get that zj = zl. Hence, for each
j = 0, . . . k,

R−1(zj) ⊂ K
is distinct. Each of these sets contains at least one point. Since K is a finite set, this means
that each of these pre-images contains exactly one point, and so R−1 : K → K is a bijection. It
can therefore be identified with a permutation, an element of the group Sk+1. This is a group
of finite order, so there exists n ∈ N such that (R−1)n = R−n acts as the identity on K. Now
we consider the forward orbit. For each zj ∈ K we have

R−n(zj) = zj =⇒ zj = Rn(zj)

for all j = 0, 1, ..., n. In particular Rn(z0) = z0. Hence

Rn+k(z0) = Rk(z0), ∀k ∈ N.
Consequently, the forward orbit O+(z0) can have at most n + 1 elements. This shows that if
the backward orbit is finite, then the whole orbit is finite. Consequently, if the whole orbit is
infinite, then the backwards orbit is infinite. Of course the reverse statement is also true: if the
backwards orbit is infinite, then the whole orbit is infinite (because it contains the backward
orbit!). So, we have shown the equivalence

#O−(z) =∞ ⇐⇒ #O(z) =∞,
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where in this statement z is arbitrary.
In our particular case of concern here, we have z0 not in E(R) hence it has infinite orbit, hence
the backwards orbit is infinite. We will use this to achieve a contradiction. First, if some
R−m(z0) ∈ U0, for some m ∈ N then there is some k ∈ N ∪ {0} such that

R−m(z0) ∈ Rk(U) =⇒ R−m(z0) = Rk(w), w ∈ U.

Then applying Rm to both sides,

z0 = Rm+k(w) ∈ Rm+k(U) ⊂ U0.

This contradicts z0 ∈ V = Ĉ\U0. So, this shows that we must have R−m(z0) 3 U0 for all m ∈ N.

Since the backwards orbit of z0 is infinite, there are infinitely many points R−m(z0) ∈ Ĉ \ U0.
By definition of U0, the family of iterates Rn on U omits all these points, and there are not
just three but infinitely many! By Montel’s Theorem the family of iterates is therefore normal
on U , so U ⊂ F which we have already seen is a contradiction since U ∩ J 6= ∅.
So, the assumption of a point z0 ∈ V \ E(R) leads in all cases to a contradiction, hence there
can be no such problematic point! This shows that V ⊂ E(R) and taking complements reverses
the inclusion,

Ĉ \ V = U0 ⊃ Ĉ \ E(R) ⊃ J .
The second statement is rather ingenious. Since we know that the Julia set is infinite and
perfect, the intersection U ∩ J is not only empty, but must contain infinitely many distinct
points. Choose three distinct points. Since they are all in U which is open, let’s call the points
for instance z1, z2, z3, and there exist εi > 0 for i ∈ I = {1, 2, 3} such that Dεi(zi) ⊂ U .
Moreover we can choose

ε =
1

2
min{ε1, ε2, ε3, |zi − zj |i 6= j ∈ I}.

Then Dε(zi) := Ui are at a positive distance from each other, have non-empty intersection with
J , and are open sets contained in U .

Claim 5. For each i ∈ I there exists j ∈ I and n ∈ N such that

Uj ⊂ Rn(Ui)

Proof: By contradiction we assume not. Then there exists an i ∈ I such that for each j ∈ I
and every n ∈ N

Uj 6⊂ Rn(Ui).

Hence

Uj 6⊂ ∪n≥1R
n(Ui), j = 1, 2, 3.

Since these three sets are disjoint, there exist points in Uj which are not in ∪n≥1R
n(Ui), and

which are distinct. Hence Rn on Ui omits these three points and is therefore normal. This
is again a contradiction because it would imply Ui ⊂ F which it is not because Ui ∩ J 6= ∅.

Claim 6. There exists n ∈ N and i ∈ I such that

Ui ⊂ Rn(Ui).

Proof: We have shown that there is some j ∈ I such that

Uj ⊂ Rn1(U1).
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If j = 1, then the claim is proven. Otherwise, without loss of generality (we can change their
names) assume Uj = U2. Then by the previous claim once more, we have some k ∈ I and
n2 ∈ N such that

Uk ⊂ Rn2(U2).

If k = 2, the claim is proven. Otherwise, if k = 1, then

U1 ⊂ Rn2(U2) ⊂ Rn2(Rn1(U1)) = Rn2+n1(U1),

and so in this case the claim is also proven. So, the remaining case is that k = 3. Then by the
previous claim, there is l ∈ I and n3 ∈ N such that

Ul ⊂ Rn3(U3).

If l = 3, then the claim is proven. If l = 2, then

U2 ⊂ Rn3(U3) ⊂ Rn3(Rn2(U2)) = Rn3+n2(U2),

and so the claim is proven. If l = 2, then

U1 ⊂ Rn3(U3) ⊂ Rn3(Rn2(U2)) ⊂ Rn3(Rn2(Rn1(U1)))

= Rn3+n2+n1(U1).

So in this case the claim is also proven, and we have proven it in every possible case!
Now we can complete the proof of the proposition, which given the amount of work perhaps
ought to be a theorem. For Ui ⊂ Rn(Ui) as in the claim, let

S := Rn.

Then S is also a rational map of degree at least two. Since

Ui ⊂ S(Ui) =⇒ S(Ui) ⊂ S2(Ui)

we have an increasing sequence

Ui ⊂ S(Ui) ⊂ . . . Sk(Ui) ⊂ Sk+1(Ui).

We have proven that the Julia set of R and any of its iterates Rn are identical. So the Julia
set of R is the same as that of S, and we write both as J . By definition of Ui,

Ui ∩ J 6= ∅,

and Ui is open, so by part (1) applied to Ui with respect to S,

J ⊂ ∪n≥0S
n(Ui).

On the right side we have an open cover by the open mapping theorem. The Julia set is a closed
subset of C which is compact, hence J is also compact. Therefore any open cover admits a
finite sub-cover and so there is M ∈ N such that

J ⊂ ∪Mn=0S
n(Ui) = SM (Ui),

since Sn(Ui) ⊂ SM (Ui) for all n ≤M , n ≥ 0. Note that SM = RnM . So, we have by complete
invariance of J for any s ∈ N

J = Rs(J ) ⊂ Rs(RnM (Ui)) = RnM+s(Ui) ⊂ RnM+s(U),

where the last statement follows since Ui ⊂ U . Hence for any m ≥ N := nM we have

J ⊂ Rm(U).
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The last lovely result to prove is the following.

Theorem 13.17. The Julia set is self-similar in the sense that for any z ∈ J ,

J = {R−n(z)}n≥1.

Proof: Let z ∈ J . Then z 6∈ E(R) ⊂ F , so the backwards orbit of z is infinite. Let ε > 0 and
z0 ∈ J . Consider U := Dε(z0). By the proposition there is N ∈ N such that

J ⊂ RN (U).

Moreover the Julia set is completely invariant which means that R−n(z) ∈ J ⊂ RN (U). So
there exists w ∈ U such that R−n(z) = RN (w) and hence w ∈ R−n−N (z). By definition of
U 3 w

|w − z0| < ε.

This shows that for each z0 ∈ J and ε > 0, there is an element of O−(z) = {R−n(z)}n≥1 which
is at a distance less than ε from z0. Hence O−(z) is dense in J . Therefore the closure of this

set contains the closure of J which is equal to J because J is closed.
This last result as well as our previous result shows the connection between Julia sets and sets
of non-integer Hausdorff dimension. Julia sets have an invariance property, a self-similarity
property, and either have empty interior or are the whole space.
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