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Abstract

Let �0 be a polygon in R
2, or more generally a compact surface with piecewise smooth

boundary and corners. Suppose that �ε is a family of surfaces with C∞ boundary which
converges to �0 smoothly away from the corners, and in a precise way at the vertices to be
described in the paper. Fedosov [6], Kac [8] and McKean–Singer [13] recognised that cer-
tain heat trace coefficients, in particular the coefficient of t0, are not continuous as ε ↘ 0.
We describe this anomaly using renormalized heat invariants of an auxiliary smooth domain
Z which models the corner formation. The result applies to both Dirichlet and Neumann
boundary conditions. We also include a discussion of what one might expect in higher di-
mensions.

1. Introduction

Let � ⊂ R
2 be a domain with smooth boundary, or more generally, any two dimensional

compact Riemannian manifold with smooth boundary. The Laplace operator with Dirichlet
boundary conditions has discrete spectrum {λi } and corresponding eigenfunctions {φi }. The
fundamental solution to the Cauchy problem for the heat equation has Schwartz kernel

H�(t, z, z′) =
∞∑

i=1

e−λi tφi(z)φi(z
′) ;

this converges in C∞((0, ∞) × � × �) and is smooth up to t = 0 away from the diagonal
of � × �. The so-called heat trace is the function

Tr H� =
∞∑

i=1

e−λi t =
∫

�

H�(t, z, z) dz; (1·1)
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this has an asymptotic expansion as t ↘ 0 of the form

Tr H� ∼
∞∑
j=0

a j t
−1+ j

2 . (1·2)

Each coefficient a j is a sum of two terms: an integral over � of some universal polynomial
in the Gauss curvature K of the metric and its covariant derivatives, and an integral over
∂� of another universal polynomial in the geodesic curvature κ of the boundary and its
derivatives. Precise formulæ for these polynomials are complicated (and mostly unknown)
when j is large, but the first few are quite simple:

a0 = 1

4π

∫
�

1 d A = 1

4π
|�|, a1 = − 1

8
√

π

∫
∂�

1 ds = − 1

8
√

π
|∂�|

and

a2 = 1

12π

(∫
�

K d A +
∫

∂�

κ ds

)
= 1

6
χ(�). (1·3)

Here and elsewhere, | · | refers to either area of a domain or length of its boundary, as
appropriate.

Almost all of this remains true if the boundary of � is piecewise smooth. More precisely,
assume that ∂� is a finite union of smooth arcs, γi , i = 1, . . . , k, where (counting indices
mod k) γi meets γi+1 at the vertex pi with an interior angle αi ∈ (0, 2π). In fact, the only
modification in the statements above is that the heat trace coefficients may now include
contributions from the vertices. The formulæ for a0 and a1 are the same as before, but now

a2 = 1

12π

⎛⎝∫
�

K d A +
k∑

j=1

∫
γ j

κ ds

⎞⎠ +
k∑

j=1

π2 − α2
j

24πα j
. (1·4)

The term in parentheses on the right now equals 2πχ(�) − ∑k
j=1(π − α j ). That the coef-

ficient a2 contains an extra contribution from the vertices was already known to Fedosov
[6] (who was studying Riesz means of the eigenvalues on polyhedra of arbitrary dimension)
and to Kac [8], although the explicit expression here was obtained by Dan Ray (this is refer-
enced by Kac and also later by Cheeger [2], but apparently Ray did not publish his result).
A particularly transparent derivation of this corner term appears in a paper by van den Berg
and Srisatkunarajah [1].

The heat trace anomaly in the title of our paper is the discrepancy between the heat coef-
ficients in the smooth and polygonal settings. More specifically, it refers to the fact that at
least one heat invariant is not continuous with respect to Lipschitz convergence of domains.
To phrase this more precisely, let �ε be a family of surfaces with smooth boundary which
converge to a piecewise smoothly bounded domain �0 as ε → 0. We think of �ε as �0 with
each corner ‘rounded out’ slightly, but will give a precise formulation in the next paragraph.
Denoting the heat trace coefficients for �ε by a j (ε), it will be clear from this definition that

lim
ε→0

a2(ε) = lim
ε→0

1

12π

(∫
�ε

Kε d Aε +
∫

∂�ε

κε ds

)
= 1

12π

(∫
�0

K0 d A0 +
k∑

i=1

∫
γi

κ0 ds +
k∑

i=1

(π − αi)

)
,

where Kε and κε are the Gauss curvatures of gε and the geodesic curvatures of ∂�ε for every
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ε � 0, respectively. The anomaly is simply that this formula does not agree with the expres-
sion (1·4). The aim of this paper is to provide a simple explanation for the disagreement
between these two expressions.

We now explain the desingularisation more precisely. For simplicity, suppose that �0 and
�ε all lie in some slightly larger ambient open surface �̃, and that the metrics gε on �ε are
all extended to metrics (still denoted gε) on this larger domain. We assume that this family
of metrics converges smoothly on �̃. Let p be a vertex of �0 and consider the portion of �ε

in some ball of fixed size around p, Bc(p) � �ε . Our main assumption is that the family of
pointed spaces (Bc(p) � �ε, ε

−2gε, p) converges in pointed Gromov–Hausdorff norm, and
smoothly, to a noncompact region Z ⊂ R

2 with smooth boundary, such that at infinity, Z
is asymptotic to a cone with vertex at 0 and with opening angle α, the same angle as at the
vertex p in (�0, g). Note that this is actually pointed Gromov–Hausdorff convergence for
the ambient space (�̃, gε, p).

Note that this definition implies that the distance between p and ∂�ε is bounded above
by a constant times ε, and that gε is a small perturbation, which decreases with ε, of the
rescaling of the standard flat metric on Z � Bc/ε . For convenience we assume in the rest
of this paper that the constant c equals 1. Thus the basic assumption is the existence of a
smoothly bounded asymptotically conic region Z in the plane such that ε−1(�ε � B1(p))

converges to Z .
This definition is a special case of a more general desingularisation construction explored

carefully in [14] and [15], as well as [16], for the case of degeneration to spaces with isol-
ated conic singularities, and in greater generality still in [11]. The aim in these first three
papers, as here, is to analyse the behaviour of the heat kernel under this degeneration pro-
cess. That analysis is quite involved, but yields much sharper results than can be obtained
by the present more naive methods. However, one motivation for the present paper is to
show how some very simple rescaling arguments, which are only slight generalisations of
ones used (in substantially more sophisticated ways) by Cheeger [2], already yield some
interesting results.

Now consider the function

G(t, ε) = Tr H�ε =
∫

�ε

H�ε (t, z, z) dz, (1·5)

which is smooth on the interior of the quadrant Q = {t � 0, ε0 > ε � 0}; our main
theorem concerns its precise regularity at the corner t = ε = 0. This will be decribed in
terms of its regularity on the parabolic blowup of Q which we denote Q0. This space is
diffeomorphic to Q away from the origin, but has an extra ‘front face’ F replacing the point
(0, 0) which encodes all the directions of approach to this point along parabolic trajectories.
It is described more carefully in Section 2 below. One of the aims of this paper, in fact, is to
advertise the utility and naturality of this blowup construction.

THEOREM 1·6. Let (�ε, gε) be a family of smooth surfaces with Riemannian metrics
which converge in the manner described above to a surface with piecewise smooth boundary
(�0, g0). Then the function G(t, ε) lifts to Q0 to be polyhomogeneous at all boundaries and
corners of this space.

See Remark 1·9 below for a more precise explanation of what is actually proven here; as
explained there, the polyhomogeneity at the right face, where ε → 0, turns out to be harder
to establish than the corresponding property at the other faces. This has been verified fully
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in recent work by Sher [16], so we have phrased this theorem to cover all that is known, but
the proofs here will only focus on the polyhomogeneous behaviour at the left and front faces
and then demonstrate the continuity at the right face, which is sufficient to explain the heat
trace anomaly.

Recall that polyhomogeneity means simply that the lift of G has asymptotic expansions
at the boundary hypersurfaces and product type expansions at the corners. The existence of
such expansions brings this phenomenon into better focus; indeed, the heat trace anomaly
is simply the fact that the limit as ε ↘ 0 of the second asymptotic coefficient a2(ε) in
the expansion as t ↘ 0 is not the same as the second asymptotic coefficient of the heat
expansion for �0. The front face F of Q0 separates where these limits are taken (first t → 0
then ε → 0 vs. the other way around) and this extra face allows for the existence of a
function which interpolates between these two values. (Note that in all of these statements
we only use the continuity at the right face, rather than any expansion there; the key point is
the expansion at the left and front faces.) Our second main result describes this function.

THEOREM 1·7. There is a function C2(τ ) defined along the front face of Q0, which is
smooth in the rescaled time variable τ = t/ε2, and satisfies

lim
τ↘0

C2(τ ) = χ(�0)

6
and

lim
τ↗∞

C2(τ ) = χ(�0)

6
+

k∑
j=1

π2 − α2
j

24πα j
− 1

12π

k∑
j=1

(π − α j ).

Its explicit form involves the finite part of a divergent expansion:

C2(τ ) = χ(�0)

6
+

k∑
j=1

f.p.
ε=0

∫
{z∈Z j :|z|�1/ε}

H Z j (τ, z, z) dz − 1

12π

k∑
j=1

(π − α j ),

where Z j is a noncompact region in the plane which models the collapse at the j th corner.

Remark 1·8. When �0 is a triangle (or indeed, any polygon in the plane), the first and
third terms in the formula for limτ→∞ C2(τ ) cancel, and we obtain Ray’s original formula

lim
τ→∞ C2(τ ) = a2(0) =

k∑
j=1

π2 − α2
j

24πα j
.

This interpolating function C2(τ ) therefore ‘explains’ the heat trace anomaly, or altern-
ately, the anomaly is caused by the renormalised heat trace on the complete space Z j . We
also discuss some of the other coefficients in the asymptotic expansions for the lift of G at
the various boundary faces and corners of Q0.

Finally, we note that the behaviour of spectral quantities under ‘self-similar smoothing of
corners’ in two-dimensional domains has been considered elsewhere. In particular, Dauge,
Tordeux and Vial [3] have carried out an extensive analysis of the asymptotic behaviour of
solutions of u = f on such a family of domains.

This paper is organised as follows. In Section 2, we recall some preliminary facts about
parabolic blowups and scaling properties of heat kernels and the standard parametrix con-
struction for heat kernels. The proofs of the two theorems are then presented in Section 3.
In Section 4 we indicate the minor modifications needed to prove the analogous result for
Neumann boundary conditions; the statement of the main theorem in that setting will be
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given there. We discuss what can be done toward a result of this type in higher dimensions
in Section 5. The results then are less explicit, but the proofs carry over fairly directly.

Remark 1·9. In this paper we do not actually prove the polyhomogeneity of G at right
face of Q0, i.e. where ε → 0 for t > 0, although this had been claimed in an earlier
version of this paper. This turns out to be more subtle than we anticipated, and requires an
extensive analysis of the asymptotics of the heat kernel on the region Z at large times and as
the space variables tend to infinity. The relevant information can be obtained using known
facts about the low frequency asymptotics of the resolvent. This is developed carefully in the
thesis of D. Sher [16] (where various interesting applications of this result, in two and higher
dimensions, are developed). As noted earlier, the statement of Theorem 1·6 includes the full
regularity, including the results from [16], but we prove here only that G is continuous at
this right face (and that its restriction to that face has an asymptotic expansion as t → 0).
This does not effect the essential point of this paper, which is the existence of the expansion
at the front face and the behaviour of the function C2(τ ).

2. Preliminaries

In this section we collect the requisite facts and tools: the behaviour of the heat kernel
under scaling of the underlying space, a review of parabolic blowups and polyhomogeneity,
and a slight modification of the standard parametrix construction for heat kernels.

2·1. Heat kernels and dilations

The heat kernel transforms naturally under dilations of the domain, or equivalently, of
the metric. Let (M, g) be any complete Riemannian manifold with smooth (or piecewise
smooth) boundary, and denote by H M(t, z, z′) the minimal heat kernel for the Laplacian with
Dirichlet boundary conditions on M . This is a smooth function on the interior of R

+×M×M
with well-known regularity properties at the various boundaries and corners.

We first relate this heat kernel to the one for the same manifold M but with rescaled
metric gλ = λ2g, λ ∈ R

+. This will be applied when M ⊂ R
2, g is the induced Euclidean

metric, and we relate its heat kernel to the one for λM , the image of M under the dilation
Dλ : R

2 → R
2, z �→ λz. The pullback of the Euclidean metric from λM to M is simply

λ2 g.

PROPOSITION 2·1. The heat kernels on M and λM are related by the formula

HλM(λ2t, λz, λz′)λ2 = H M(t, z, z′).

Implicit in this formula, we are parametrising points in λM with points in M via Dλ. To
prove this proposition, observe that the heat operator ∂t − z on M transforms homogen-
eously with respect to the parabolic dilation (t, z) �→ (λ2t, λz). Hence, the expression on
the left satisfies the heat equation; the additional λ2 is the Jacobian factor accounting for the
fact that HλM(0, w, w′) = δ(w − w′) is homogeneous of order −2 in two dimensions.

2·2. Parabolic blowup

The parabolic dilation Dλ(t, ε) = (λ2t, λε) motivates the introduction of the parabolic
blowup Q0 of the quadrant Q := [0, ∞)t ×[0, ε0)ε at (0, 0). This space is defined as follows.
As a set, Q0 is the disjoint union of Q \ {(0, 0)} and the orbit space F = (Q \ {(0, 0)}) / ∼,
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where (t, ε) ∼ (t ′, ε ′) if (t ′, ε ′) = Dλ(t, ε) for some λ > 0. More concretely, F is dif-
feomorphic to a closed quarter-circle; it is also identified with the set of all equivalence
classes of parametrised curves γ (s) = (t (s), ε(s)) with lims↘0 γ (s) = (0, 0), and where
lims↘0 ε(s)2/t (s) exists (or possibly equals +∞); the identification between curves is given
by

γ ∼ γ̃ ⇐⇒ lim
s→0

ε(s)2

t (s)

/
ε̃(s)2

t̃(s)
= 1.

The curves t = τε2 (parametrised by s �→ (τ s2, s)), τ � 0, provide representatives of
each equivalence class except the one represented by the t axis. There is a unique minimal
C∞ structure on Q0 for which the lifts of smooth functions from Q and the parabolic polar
coordinates r = √

t + ε2, t/r 2 and ε2/r 2 are all smooth. We label the faces of Q0 as follows:
F is the new front face, and L and R are the left and right side faces (the lifts of t = 0 and
ε = 0, respectively). There is a smooth ‘blowdown’ map β : Q0 → Q defined in the
obvious way.

It is usually more convenient to use projective rather than polar coordinates. There are
two such systems,

(τ, ε), τ = t/ε2 and (t, η), η = ε/
√

t,

which are valid away from R and L , respectively. Thus, for example, τ is an ‘angular’
variable which vanishes on L , and in this coordinate system F = {ε = 0}.

Parabolic blowups are described in detail and greater generality in [12].

2·3. Polyhomogeneous conormal functions

Let M be a manifold with corners. A class of functions which is the natural replacement
for (or at least just as good as) the class of smooth functions is the class of polyhomogeneous
conormal functions. We refer to [10] for a detailed exposition, but review a few facts about
these here.

First recall the space Vb of all smooth vector fields on M which are tangent to all bound-
aries of M . If H1, . . . , Hk are boundary hypersurfaces of M meeting at a corner of codi-
mension k, with boundary defining functions x1, . . . , xk , respectively, and local coordinates
y = (y1, . . . , yn−k) on the corner, then Vb is spanned over C∞(M) locally near this corner
by {x1∂x1, . . . , xk∂xk , ∂y1, . . . , ∂yn−k }.

A function (or distribution) u is said to be conormal if it has stable regularity with respect
to Vb. In other words, there exists a k-tuple of real numbers μ1, . . . , μk so that

V1 . . . V� u ∈ xμ1

1 . . . xμk

k L∞(M), ∀ � and ∀ Vj ∈ Vb.

(In particular, the μi are independent of � and the Vj .) Examples include monomials
xs1

1 . . . xsk
k for s j ∈ C, as well as products of arbitrary powers of | log x j |. (This definition

is slightly inaccurate since it omits the distributions supported at the boundary, i.e. delta sec-
tions and their derivatives, which are also conormal, but suffices here.) The special subclass
with which we are interested consists of the functions with asymptotic expansions in terms
of powers of the boundary defining functions and nonnnegative integer powers of the logs
of these defining functions, with coefficients which are smooth in all other variables. The
expansions are formalised using the notion of an index set I . This consists of a countable
sequence of pairs (α, N ) ∈ C × {

N � {0}} such that for each A ∈ R, Re α > A for all but a
finite number of these pairs. By definition, the conormal function u has a polyhomogeneous
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expansion near a corner of codimension k if there are k index sets I1, . . . , Ik so that

u ∼
∑

(α j ,N j )∈I j

∑
� j �N j

xα1
1 (log x1)

�1 · · · xαk
k (log xk)

�k aα,�(y),

where each coefficient function aα,� is C∞. Note that since u is already assumed to be conor-
mal, this expansion may be differentiated.

To be specific, a polyhomogeneous function u on Q0 can be described as follows: near L ,
u has an expansion in powers of t with coefficients smooth in ε; near F in terms of either
of the projective coordinate systems, it has an expansion in powers of ε with coefficients
smooth in τ , or equivalently, in powers of t with coefficients smooth in η; near the corner
L � F it has an expansion in powers of τ and ε, with coefficients now simply numbers. The
polyhomogeneous functions on Q and Q0 which appear below are quite simple. None of
them have log terms in their expansions, and the exponents are integers and half-integers.

The final point here is that if u is polyhomogeneous conormal on Q, then its lift β∗u to
Q0 is also polyhomogeneous conormal and

u ∼
∑

a jkt jεk =⇒ β∗u ∼
∑

a jk(τε2) jεk =
∑

a jkτ
jε2 j+k .

On the other hand, if w is polyhomogeneous on Q0, then its pushforward to Q is always
conormal, but only rarely polyhomogeneous.

2·4. Parametrix construction

We conclude this section by reviewing a parametrix construction for the heat kernel,
which is useful because it accurately captures the asymptotics of the true heat kernel as
t ↘ 0. The construction here is slightly nonstandard, but is well suited for the calculations
below.

Let M be a complete Riemannian manifold, possibly with boundary, and suppose that
M = M1 � M2 where M1 and M2 are two manifolds with boundary with M1 � M2 =
� a hypersurface. If M has boundary, assume that � intersects ∂ M transversely, and M1

and M2 are manifolds with corners of codimension two. Suppose further that M j lies in
a slightly larger complete manifold M ′

j , again possibly with boundary, such that for some
neighbourhood U of �, M ′

j � U = M � U .
Taking the heat kernels on each M ′

j as given, define

H̃ M(t, z, z′) =
2∑

j=1

χ j (z)H M ′
j (t, z, z′)χ j (z

′),

where χ j is the characteristic function of M j in M . In the more customary parametrix
construction, the M j are relatively open in M, and M1 � M2 is also open; the H M ′

j are
pasted together using smooth cutoff functions {ψ j } and {ψ̃ j } with ψ1 + ψ2 = 1, where
supp ψ j ⊂ {ψ̃ j = 1}, and supp ψ̃ j ⊂ M ′

j . We are using sharp (discontinuous) cutoffs rather
than smooth ones, however, so that we can identify certain asymptotic coefficients in the
calculations to follow.

LEMMA 2·2. Let H M(t, z, z′) denote the true heat kernel on M, and set

K (t, z) = H̃ M(t, z, z) − H M(t, z, z).

Then K (t, z) = O(t∞) as t ↘ 0.
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Proof. Rewrite

H̃ M(t, z, z) = χ1(z)
(
H M ′

1(t, z, z) − H M(t, z, z)
)

+ χ2(z)
(
H M ′

2(t, z, z) − H M(t, z, z)
) + H M(t, z, z).

By assumption, M ′
j agrees with M in a neighbourhood of M j , so that H M ′

j (t, z, z) −
H M(t, z, z) = O(t∞) on the support of χ j (remember that the small t expansions of these
operators are local), and this proves the claim.

Remark 2·3. We actually need a slightly stronger version, where the first space de-
pends on a parameter ε. Suppose that (M ′

1(ε), g1(ε)) is a family of spaces which is iso-
metric to (M ′

1(0), g1) for all z with dist(z, �) � c for some c > 0. Assume also that
the heat kernels H ε on this family of spaces satisfy a Gaussian estimate H ε(t, z, w) �
Ct− dim M1/2 exp(−dist (z, w)2/Ct), again uniformly in ε. Then the conclusion of this lemma
holds uniformly in ε, i.e. for each N > 0, |K (t, z)| � CN t N with CN independent of ε. We
shall explain below that this uniform Gaussian estimate holds in our setting.

3. Proofs of main theorems

We have now assembled all the requisite facts and can proceed with the proofs of the main
theorems.

As in the introduction, let G(t, ε) = Tr H�ε . If β : Q0 → Q is the blowdown map, then
let G = β∗G. We need to analyze the behaviour of G near each of the faces and corners of
Q0, and for that we first use the coordinates (τ, ε) introduced in Section 2·2.

We make a simplifying assumption about the geometry in order to focus on the essential
parts of the proof. For each i , let Sαi denote the sector in R

2 with opening angle αi . Choose
a smoothly bounded region Zi in the plane which coincides with Sαi outside B1/2(0), and let
Z ε

i = B1/ε(0)� Zi . Then we assume that near each vertex pi , the restriction of the metric gε

to B1(pi ) � �ε is isometric to the dilation by the factor ε of the region Z ε
i , which obviously

lies in the unit ball. The result remains true in the generality stated earlier, but the proof
requires a few more technical steps which are both standard and not particularly germane to
the main ideas here. Furthermore, for notational convenience, we assume that there is only
a single vertex p and denote the corresponding smooth model region and sector by Z and S,
respectively.

Proof of Theorem 1·6. We first construct a particular family of parametrices for the heat
kernel on �ε . For any 0 � ε < ε0, decompose

�ε = �ε,1 � �′,

where �ε,1 = �ε � B1(p), and �′ = �ε \ (�ε � B1(p)). Note that �′ is independent of ε.
Lemma 2·2 shows that

H�ε (t, z, z) = χ1(z)H εZ (t, z, z) + χ2(z)H�0(t, z, z) + K (t, z), (3·1)

where χ1 is the characteristic function of |z| � 1, χ2 = 1 −χ1, and K is the error term from
Lemma 2·2, hence

G(t, ε) =
∫

|z|�1
H εZ (t, z, z) dz +

∫
�′

H�0(t, z, z) dz +
∫

�ε

K (t, z) dz.

We denote the sum on the right hand side by I + II + III, and analyse the lifts of these terms
successively.
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The discussion now is primarily directed toward establishing polyhomogeneity of G at L
and F. We show later that G is at least continuous up to R, but as noted in the introduction, a
lengthier analysis carried out by Sher [16] shows that it is polyhomogeneous at that face too.

By Proposition 2·1, H εZ (t, z, z′) = ε−2 H Z (t/ε2, z/ε, z′/ε), so setting z = z′ = εw, we
see that

β∗I =
∫

|w|�1/ε

H Z (τ, w, w) dw.

This will be the principal term, and we defer its analysis for the moment.
Next, II is independent of ε, and it is polyhomogeneous as t ↘ 0, with expansion given

by integrating the standard heat coefficients a j (z) over this restricted domain. Hence its lift
to Q0 is clearly polyhomogeneous (at all faces).

Finally, by Lemma 2·2, III depends on ε but decays rapidly in t uniformly in ε. Thus,
β∗III is polyhomogeneous at L � F .

We now examine β∗I more closely. Choose a smoothly bounded compact region W which
agrees with Z in |w| � 2, so that Z = (W � B1) � (S \ B1). Using Lemma 2·2 again, write

H Z (t, z, z) = χ1(z)H W (t, z, z) + χ2(z)H S(t, z, z) + K1(t, z), (3·2)

where K1 is the corresponding error term. Then

β∗I =
∫

|w|�1
H W (τ, w, w) dw +

∫
1�|w|�1/ε

H S(τ, w, w) dw +
∫

|w|�1/ε

K1(τ, w) dw,

which we write as Ii + Ii i + Ii i i .
We first prove polyhomogeneity of these terms at L and F, away from the right face R

of Q0. In this region, we use the coordinates (τ, ε); thus (τ, ε) = (0, 0) corresponds to the
corner L � F, while τ → ∞ corresponds to the face R.

The term Ii has an expansion as τ ↘ 0, decays rapidly as τ → ∞, and is independent of
ε, so β∗Ii is polyhomogeneous at all faces.

To analyse Ii i , set

D(R) :=
∫

|w|�R
H S(1, w, w) dw.

By Proposition 2·1, Ii i (ε, τ ) = D(1/ε
√

τ) − D(1/
√

τ), so it will suffice to show that D
has an expansion in powers of 1/R as R → ∞. For this, we appeal to a calculation by van
den Berg and Srisatkunarajah [1], who prove that

D(R) = αR2

8π
− R2

2π

∫ 1

0
e−R2 y2

√
1 − y2 dy + π2 − α2

24πα
+ O(e−cR2

), (3·3)

for some c > 0 independent of R. We remark that it is not hard to obtain polyhomogeneity
at the right face too; looking at (3·3), only the structure of the second term on the right is
not completely obvious. For that, we may as well replace the upper limit of integration by
1/2 since the integral from 1/2 to 1 decreases exponentially in R. Using the Taylor series
for

√
1 − y2 at y = 0, we find that

R2

2π

∫ 1/2

0
e−R2 y2

(
1 − 1

2
y2 − 1

4
y4 − . . .

)
dy ∼ R

4
√

π
− 1

16
√

π R
+ O(R−3).

We turn finally to the term Ii i i . By Lemma 2·2 again, K1 decreases rapidly as τ → 0, so
this term is also polyhomogeneous at L. Next, by the explicit form of the error term in the
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proof of that lemma, and using the dilation properties of H Z and H S , K1(τ, z) = O(|z|−∞)

uniformly for τ � T < ∞, for any T < ∞; in other words, the difference between H Z and
H S decays rapidly in z uniformly up to any finite time. Hence its integral over |z| � 1/ε

is bounded independently of ε. This gives the polyhomogeneous expansion of Ii i i at L and
along F away from R.

This completes the proof of polyhomogeneity of β∗I for τ in any bounded set, and away
from R. Note that we have actually established polyhomogeneity of G at the right face for
all terms except Ii i i and III.

To finish the proof, we demonstrate that G is continuous up to the interior of R, and is also
continuous at the corner R � F once we subtract off the singular part of the expansion at F.

Consider the continuity up to R away from the corner. For each ε � 0,

Tr H�ε (t) =
∞∑
j=1

e−λ j (ε)t .

We claim that there is a constant C > 0 which is independent of ε such that

λ j (ε) � C j

for all j . This can be proved in several ways. One argument, which works only for Dirichlet
boundary conditions, is to consider a slightly larger domain �′ which contains �ε for all
ε � 0, so that by domain monotonicity,

λ j (ε) � λ j (�
′), ∀ j ∈ N.

By the Weyl asymptotic formula for the eigenvalues,

lim
j→∞

λ j (�
′)

4π j/|�′| = 1,

where |�′| denotes the area of �′. Consequently, since all Dirichlet eigenvalues of �′ are
positive, there exists a constant C > 0 such that

λ j (�
′) � C j, ∀ j ∈ N.

It follows from domain monotonicity that

λ j (ε) � λ j (�
′) � C j, ∀ j ∈ N.

There are other ways to prove this which work equally well for Neumann boundary condi-
tions (and other generalisations). For example, it suffices to show that Tr H�ε (t) � C/t for
some constant C which is independent of ε, see [16] for details.

In any case, fixing δ > 0, this implies that there exists an N so that
∞∑

j=N

e−λ j (ε)t <
δ

2
, for all ε � 0.

It is also known, see [11] and [15], that λ j (ε) → λ j (0) for j = 1, . . . , N . Hence there
exists ε0 > 0 such that ∣∣∣∣∣∣

N∑
j=1

e−λ j (ε)t −
N∑

j=1

e−λ j t

∣∣∣∣∣∣ <
δ

2
,

for ε < ε0. Since these estimates hold uniformly for t in any compact interval
[t0, t1] ⊂ (0, ∞), we obtain continuity of G up to R away from the corner.
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We now analyse each of the terms β∗I, β∗II and β∗III at R � F separately. The second of
these is independent of ε, so its continuity along R up to the corner is obvious. Lemma 2·2
and the remark after it show that III decays rapidly as t → 0, uniformly in ε, hence β∗III
decays rapidly at R � F.

It remains to consider β∗ I in its entirety, which we do using a somewhat different
subdivision. First, using the coordinates η and t ,

β∗ I =
∫

|z|�1/
√

t
H ηZ (1, z, z) dz.

Now, observe that ηZ \ (Bδ(0) � ηZ) is identified with S \ (Bδ(0) � S) provided δ � η, and
that for such δ, we have |Bδ(0) � ηZ |, |Bδ(0) � S| = O(δ2), and in addition,∫

Bδ(0)�ηZ
H ηZ (1, z, z) dz = O(δ2),

∫
Bδ(0)�S

H S(1, z, z) dz = O(δ2). (3·4)

These last two estimates follow by rescaling by 1/δ to obtain integrals over B1(0) � (η/δ)Z
and B1(0) � S, respectively, at time 1/δ2 and then invoking the standard 1/t decay rate of
the heat kernel on compact sets as 1/δ2 ↗ ∞. (This rate of decay is uniform for η/δ � 1.)

Applying (3·3) with R = t−1/2 and the second part of (3·4) gives∫
{δ�|z|�1/

√
t}

H S(1, z, z) dz = α

8π t
− 1

4
√

π t
+ π2 − α2

24πα
+ O(

√
t + δ2)

at this corner. To compare this with∫
{δ�|z|�1/

√
t}

H ηZ (1, z, z) dz,

we proceed as follows. First, on any compact subset δ � |z|, |w| � R,

H ηZ (1, z, w) −→ H S(1, z, w) as η −→ 0.

To prove this, observe that so long as H ηZ has a limit, then by uniqueness of the heat kernel,
this limit must equal H S . By parabolic Schauder estimates, to guarantee convergence it suf-
fices to show that for any sequence (z j , w j ) in this compact set and η j → 0, H η j (1, z j , w j )

is bounded away from 0 and ∞. Convergence to zero is ruled out by the parabolic Harnack
inequality and uniqueness, so we need only consider the case that H η j Z (1, z j , w j ) = A j →
∞. But if this were to occur, then A−1

j H η j (t, z, w j ) would converge to a nontrivial solution
of the heat equation with vanishing initial conditions at t = 0, which is again impossible.

To conclude, we must finally show that∫
{R�|z|�1/

√
t}
(H ηZ (1, z, z) − H S(1, z, z)) dz

can be made as small as desired by taking R sufficiently large. For this we invoke the
(uniform in η) Gaussian upper bounds

H ηZ (t, z, w), H S(t, z, w) � Ct−1e−|z−w|2/Ct

which were already mentioned at the end of Section 2. It follows from these by direct and
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straightforward estimation that the integrand above is bounded by Ce−|z|2/C . We sketch the
argument. Consider the parametrix for H ηZ ,

H̃ ηZ (t, z, w) = χ̃1(z)H Wη (t, z, w)χ1(w) + χ̃2(z)H S(t, z, w)χ2(w),

where Wη is a compact domain which agrees with ηZ for |z| � 1 and is independent of
η in the region |z| � 1, where {χ1, χ2} is a partition of unity relative to the open cover
{|z| < 3/2} � {|z| > 1/2}, and where χ̃ j = 1 on the support of χ j , with χ̃ ′

j of compact
support. The error term E(t, z, w) = H̃ ηZ (t, z, w) − H ηZ (t, z, w) equals

E(t, z, w) =
∫ t

0

∫
ηZ

H ηZ (s, z, v)
([χ̃1, ]H Wη (t − s, v, w)χ1(w)

+[χ̃2, ]H S(t − s, v, w)χ2(w)
)

dvds.

Using that supp χ̃ ′
2 is compact, we obtain E(1, z, z) � Ce−|z|2/C , uniformly in η, hence

H ηZ (1, z, z) − H S(1, z, z) = E(1, z, z) decays rapidly as |z| → ∞, as claimed.
The uniform Gaussian upper bounds of these heat kernels employed here is well known,

see [4, Chapter 3 and 5].
Collecting these various estimates yields

β∗ I = α

8π t
− 1

4
√

π t
+ π2 − α2

24πα
+ o(1),

as (η, t) → (0, 0).
Finally, combining terms and summing over all corners (as explained more carefully in

the proof of Theorem 1·7 at the end of this section), we have proved that

β∗ I (η, t) + β∗ I I (η, t) = |�0|
4π t

− |∂�0|
8
√

π t
+

n∑
j=1

π2 − α2
j

24πα j
+ o(1)

near F � R. This completes our analysis of G0 on Q0.

Proof of Theorem 1·7. This consists of examining the terms in the expansion of G at the
various boundary faces.

First, at L, away from F we may use the variables (t, ε), and

G(t, ε) ∼
∞∑
j=0

a j (ε)t
−1+ j/2.

Near L � F, we substitute t = ε2τ to get

G(τ, ε) ∼
∞∑
j=0

a j (ε)τ
−1+ j/2ε−2+ j . (3·5)

The coefficients a j (ε) are polyhomogeneous as ε → 0 by Theorem 1·6.
Near F � R we use the coordinates t and η = ε/

√
t to see that

G(t, η) ∼
∞∑

j=−1

Bj (η)t j/2,

where each Bj is continuous to η = 0. Along R, G(t, 0) = Tr H�0 .
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Finally, near F, we use the coordinates (τ, ε), so the expansion is in powers of ε, and by
(3·5) it is

G(τ, ε) ∼
∞∑
j=0

C j (τ )ε−2+ j .

We shall identify the coefficients C0, C1 and C2.
By our analysis of the terms Ii , Ii i , Ii i i , II and III, we see that only Ii , Ii i and II contribute

to the coefficients of ε−2 and ε−1. Substituting directly from the expansions of these terms
(using the McKean–Singer asymptotics on W and �′ for Ii and II, respectively, and the first
terms in the expansion of D(1/ε

√
τ) for Ii i ) and then using the definition of the finite part

at ε = 0 of I, we have

G(τ, ε) ∼ 1

ε2τ

( |�′|
4π

+ α

8π

)
− 1

ετ 1/2

( |∂�′|
8
√

π
+ 1

4
√

π

)
+ 1

12π

(∫
�′

K d A +
∫

∂�′
κ ds

)
+ f.p.

ε=0

∫
|w|�1/ε

H Z (τ, w, w) dw + O(ε).

In other words,

C0(τ ) = 1

τ

( |�′|
4π

+ α

8π

)
,

C1(τ ) = − 1√
τ

( |∂�′|
8
√

π
+ 1

4
√

π

)
and

C2(τ ) = 1

12π

(∫
�′

K d A +
∫

∂�′
κds

)
+ f.p.

ε=0

∫
|w|�1/ε

H Z (τ, w, w) dw.

This simplifies by the following observations: first, the area of a circular sector of opening
α and radius 1, i.e. |�0 � B1|, equals α/2, so the coefficient of ε−2τ−1 is just |�0|/4π ;
similarly, the sides of this circular sector are straight lines, so |∂�0 � B1| = 2, which means
that the next coefficient is −|∂�0|/8

√
π ; finally, since g0 is flat in �0 � B1, K ≡ 0 there, so

using that the contribution from ‘turning the corner’ at p in the boundary integral is π − α,
we find that ∫

�′
K d A +

∫
∂�′

κ ds = 2πχ(�0) − (π − α).

This means that

C2(τ ) = f.p.
ε=0

∫
|w|�1/ε

H Z (τ, w, w) dw + 1

6
χ(�0) − π − α

12π
. (3·6)

We conclude by calculating its behaviour for small and large τ . Using the small τ asymp-
totics, we see that∫

|w|�1/ε

H Z (τ, w, w) dw ∼ |Z � B1/ε|
4π

τ−1

− |∂ Z � B1/ε|
8
√

π
τ−1/2 + 1

12π

∫
∂ Z

κ ds + O(ετ 1/2);

hence the finite part of this integral is equal (up to the factor 12π) to the integral of curvature
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on the boundary of Z , which is the total turning angle π − α, so finally, the limit of C2 as
τ → 0 is χ(�0)/6, as claimed.

Finally, we use the dilation one more time to calculate that∫
|w|�1/ε

H Z (τ, w, w) dw =
∫

|w|�1/ε
√

τ

H Z/
√

τ (1, w, w) dw.

Noting that ε
√

τ = √
t , and since Z/

√
τ converges to the sector S as τ → ∞, we can

use the expansion (3·3) to see that the finite part is indeed (π2 − α2)/24πα. Therefore, in
general, with an arbitrary number of vertices,

lim
τ→∞ C2(τ ) = χ(�0)

6
+

k∑
j=1

π2 − α2
j

24πα j
− 1

12π

k∑
j=1

(π − α j );

in particular, if �0 is a polygon, its Euler characteristic is 1, so the first and third terms
cancel.

This completes the proof.

4. Neumann boundary conditions

We now briefly discuss the minor modifications needed to prove the analogues of Theor-
ems 1·6 and 1·7 assuming Neumann rather than Dirichlet boundary conditions.

A cursory inspection of the proof shows that the only real issue is to find an analogue
of the van den Berg–Srisatkunarajah formula (3·3) in this setting. This does not seem to
appear explicitly in the literature, but fortunately, a recent paper by Kokotov [9] contains
the corresponding formula for the complete cone C2α of angle 2α. Let H C denote the heat
kernel on this cone. Then by [9, Proposition 1], there exists c > 0 such that for every R > 0,∫

|z|�R
H C(1, z, z) dz = αR2

4π
+ 1

12

(
4π2 − (2α)2

2π(2α)

)
+ O(e−cR2

). (4·1)

This formula is stated in [9] for fixed radius R and for the heat kernel at time t as t → 0,
but because of the usual scaling properties, it holds equally well for fixed t , say t = 1, and
as the radius R → ∞; indeed, the quantity on the left depends only on the ratio R/t2. The
coefficients in this expansion have been written in a nonreduced form in order to emphasize
the dependence on the angle 2α.

We now observe that the cone C2α is the union of two copies of the sector Sα with the
boundary rays identified. Alternately, let σ be the obvious reflection on the cone C2α; then a
region isometric to the sector Sα is a fundamental domain for this action, and its image σ(Sα)

is the other half of the cone. In any case, using this, the formula for the Neumann heat kernel
follows directly from (3·3) and (4·1). Indeed, let L2(C2α) = L2

+ ⊕ L2
− be the decomposition

into functions which are even and odd with respect to τ . If u ∈ H 2(C2α) � L2
+, then u

has vanishing normal derivative at ∂Sα, while if u ∈ H 1(C2α) � L2
− then u vanishes at ∂Sα.

Since the Laplacian commutes with σ , the heat kernel has a 2-by-2 block decomposition: the
upper left and lower right on-diagonal blocks are canonically identified with the Neumann
and Dirichlet heat kernels of Sα, and we denote these by H S

N and H S
D, respectively. Therefore,∫

|z|�R

(
H S

D(1, z, z) + H S
N(1, z, z)

)
dz =

∫
|z|�R

H C(1, z, z) dz,
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whence ∫
|z|�R

H S
N(1, z, z) dz ∼ αR2

4π
+ R

4
√

π
+ π2 − α2

24πα
+ · · · (4·2)

In other words, in this asymptotic formula, only the signs of the odd powers of R are reversed
from those in the corresponding formula for the Dirichlet heat kernel.

It is now a simple matter to track through the various arguments in this paper to obtain that
GN(τ, ε), the pullback to Q0 of the trace of the heat kernel for the Laplacian with Neumann
boundary conditions on �ε , is polyhomogeneous at L � F and has the expansion

GN(τ, ε) ∼ 1

ε2τ

|�0|
4π

+ 1

ετ 1/2

|∂�0|
8
√

π
+

1

12π

(∫
�′

K d A +
∫

∂�′
κ ds

)
+ f.p.

ε=0

∫
|w|�1/ε

H Z
N (τ, w, w) dw + O(ε)

at F. In particular, the coefficient C2(τ ) of ε0 is exactly the same as in the Dirichlet case. The
proof of continuity at R proceeds as before too, noting that the Gaussian upper bounds hold
for the Neumann heat kernel as well. We leave the details, which are all straightforward, to
the reader.

5. Higher dimensions and other generalizations

We have focused in this paper on two-dimensional domains in order to emphasize the
simplicity of the arguments and to take advantage of the explicit nature of the formulæ. There
are various analogues of these results in higher dimensions, which we now describe briefly.
These generalizations should have some interesting applications, which will be developed
elsewhere (in particular, see [16]).

One direction is to consider a family of Riemannian metrics gε on a compact manifold
Mn of any dimension such that (M, gε) degenerates to a space (M0, g0) which has isolated
conic singularities. We assume that this degeneration is modelled on the rescalings of a com-
plete asymptotically conic space (Z , gZ ), i.e. such that suitable neighbourhoods of (M, gε)

are (asymptotically equivalent to) rescalings of truncations of (Z , gZ ). The behaviour of the
entire heat kernel for this type of degeneration was studied in detail in [14, 15]. The ana-
lysis in those papers is considerably more intricate than what is done here, but also gives
information about the entire heat kernel, not just its behaviour along the diagonal. (Note that
[14] and [15] only treat the case where M has no boundary, so strictly speaking do not apply
to domains in R

2, as considered here, but the techniques there can certainly be adapted to
cover our setting.) One consequence of those results is that the trace of the heat kernel for
gε

lifts to Q0 to be polyhomogeneous conormal at L and F . Continuity up to ε = 0 also
follows from what is written there; the stronger assertions about full polyhomogeneity are
not verified there, however.) In other words, by specializing the results of those papers to
two dimensions, one can recover the results here. One of the motivations for the present
paper, however, is to develop simpler methods to obtain this information about the trace
directly without understanding the entire and considerably more complicated structure of
the family of heat kernels. The difficulty in obtaining polyhomogeneity of the heat trace at
the faces covering ε = 0 is that the behaviour there involves the heat kernel on Z as the
rescaled time τ → ∞, so one must analyze H Z as both the time and spatial variables tend
to infinity separately, even if one is only interested in the behaviour along the diagonal. One
way to manage this difficulty is to represent the heat kernel in terms of the resolvent R(λ)
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and use detailed information about the asymptotics of the resolvent as λ → 0 obtained by
Guillarmou and Hassell [7]; see Sher [16] for this analysis.

In higher dimensions, the coefficients in the expansions at the faces L and R can be still
be determined somewhat explicitly. In particular, the coefficient Cn(τ ) of ε0 at the front face
of Q0 is now equal to the sum∫

M0

qn dV + f.p.
ε=0

∫
|w|�1/ε

H Z (τ, w, w) dw,

where qn is the standard heat invariant integrand for the metric g0. Unfortunately, there is
probably no explicit formula for the limit as τ → ∞ of this regularised trace, except in spe-
cial cases. Work in progress of L. Friedlander give some partial results for three dimensional
piecewise linear sectors.

There should be a similar generalisation of the ideas here to the setting of resolution
blowups of iterated edge spaces (or smoothly stratified spaces), as introduced in [11]; un-
derstanding the structure of the full heat kernel for those degenerating families is likely to
present enormous difficulties, whereas it may be possible to obtain information about just
the traces more simply.

A special and very interesting case would be to find an analogue of Theorem 1·7 for
smoothings of Euclidean polyhedra in arbitrary dimension. The description of a family of
‘self-similar’ smoothings of an arbitrary polyhedron is not difficult and closely follows the
scheme presented in [11]. However, in order to make this formula explicit, one would need
an analogue of (3·3) or (4·1) for higher dimensional polyhedral sectors, which does not seem
to be available. (Analogous results are known for other spectral invariants, however; see [2]
and [6].)
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