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We prove a dynamical wave trace formula for asymptotically hyperbolic
(n + 1)-dimensional manifolds with negative (but not necessarily constant)
sectional curvatures; the formula equates the renormalized wave trace to
the lengths of closed geodesics. This result generalizes the classical theo-
rem of Duistermaat and Guillemin for compact manifolds and the results
of Guillopé and Zworski, Perry, and Guillarmou and Naud for hyperbolic
manifolds with infinite volume. A corollary of this dynamical trace formula
is a dynamical resonance-wave trace formula for compact perturbations of
convex cocompact hyperbolic manifolds. We define a dynamical zeta func-
tion and prove its analyticity in a half plane. In our main result, we produce
a prime orbit theorem for the geodesic flow. This is the first such result
for manifolds that have neither constant curvature nor finite volume. As a
corollary to the prime orbit theorem, using our dynamical resonance-wave
trace formula, we show that the existence of pure point spectrum for the
Laplacian on negatively curved compact perturbations of convex cocompact
hyperbolic manifolds is related to the dynamics of the geodesic flow.

1. Introduction

Mathematicians have been interested for many years in the spectral theory and
dynamics of hyperbolic manifolds. Motivated by recent developments in theoret-
ical physics, they have begun to focus on asymptotically hyperbolic manifolds;
see [Albin 2007; Mazzeo and Melrose 1987; Borthwick and Perry 2002; Joshi and
Sá Barreto 2000; Graham and Zworski 2003; Fefferman and Graham 2002]. These
manifolds arise in connection with the correspondence between conformal field
theory and anti-de Sitter space [Graham 2000; Sá Barreto and Zworski 1997], and
are a class of manifolds on which geometric scattering theory can be developed;
see [Joshi and Sá Barreto 2000; Guillarmou 2005; 2007].

Recall that on a compact manifold, the spectrum of the Laplacian 1 is a dis-
crete subset σ(1)= {λ2

k}
∞

k=1 of R+, and the wave trace is formally the distribution
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k≥1 eiλk t . The singularities of the wave trace occur at t = 0 and at the lengths of

closed geodesics. Duistermaat and Guillemin [1975] computed the principal part
of the singularities for t > 0 to be

l(γ)δ(|t | − kl(γ))√
|det(I −Pk

γ)|
;

they also computed the asymptotics of the “big singularity” at t = 0. One then has,
at least formally,

∑
k≥1

eiλk |t | =
∑
{γ}

∞∑
k=1

l(γ)δ(|t | − kl(γ))√
|det(I −Pk

γ)|
+ A(t),

where {γ} are the primitive closed geodesics with length l(γ), Pk
γ is the k-times

Poincaré map in the cotangent bundle about γ, and the remainder A(t) is exponen-
tially singular at 0 and smooth for t >0. This formula shows a beautiful connection
via the wave trace between the Laplace and length spectra.

On compact hyperbolic surfaces this dynamical formula is well known. The
remainder term A(t) is explicitly computable as a ratio of hyperbolic trigonometric
functions, and the result is known as a Selberg trace formula [Selberg 1956]. Hejhal
[1975; 1976; 1983] proved Selberg trace formulae for cofinite surfaces, congruence
subgroups, and PSL(2,R). Gangolli and Warner [1975; 1980] proved Selberg
trace formulae in higher dimensions. Algebraic group averaging methods have
been used to prove trace formulae in [Guillopé and Zworski 1999; Guillarmou and
Naud 2006; Perry 2003] on manifolds with constant negative curvature and infinite
volume. Further results include [Arthur 1989; Borthwick et al. 2005; Patterson and
Perry 2001; Juhl 2001; Müller 1983]. For manifolds with infinite volume, a renor-
malized wave trace replaces the standard wave trace in the dynamical formula. This
renormalized wave trace is known as the 0-trace and was introduced in [Guillopé
and Zworski 1995]. Using the 0-trace, Joshi and Sá Barreto [2001] generalized
the results of [Duistermaat and Guillemin 1975] to the asymptotically hyperbolic
setting. Our dynamical wave trace formula is a refinement of results of [Joshi and
Sá Barreto 2001] using techniques in [Jakobson et al. 2008] to provide long time
asymptotics with respect to Ehrenfest time T (λ)∼ c ln(λ); see [Bérard 1977] and
[Zelditch 1994].

Theorem 1.1. Suppose (X, g) is an asymptotically hyperbolic (n+1)-dimensional
manifold with negative sectional curvatures. Let 0-tr cos

(
t
√
1− n2/4

)
denote the

regularized trace of the wave group, and let t0 > 0. Let Lp denote the set of
primitive closed geodesics of (X, g), and for γ ∈ Lp, let l(γ) denote the length
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of γ. Then

(1-1) 0-tr cos
(
t
√
1− n2/4

)
=

∑
γ∈Lp

∑
k∈N

l(γ)δ(|t | − kl(γ))√
|det(I −Pk

γ)|
+ A(t)

as a distributional equality in D′([t0,∞)),1 where Pk
γ is the k-times Poincaré map

around γ in the cotangent bundle. The long time asymptotics of the trace formula
are as follows. Let C∞0 ([t0,∞)) 3 φ(t)= cos(λt)ρ(t) such that supp(φ)⊂ [t0, T ],
and T = T (λ)∼ ε ln(λ) for a suitably small constant ε > 0. Then, as λ→∞,

(1-2)
∫

R

φ(t) 0-tr cos
(
t
√
1− n2/4

)
dt =

∑
γ∈Lp

∑
k∈N

l(γ )φ(kl(γ ))√
|det(I −Pk

γ )|
+ O(1).

Recall the results of [Mazzeo and Melrose 1987]: the Laplacian on an asymptot-
ically hyperbolic manifold of dimension n+1 has absolutely continuous spectrum,
σac(1) = [n2/4,∞), and a finite pure point spectrum, σpp(1) ⊂ (0, n2/4). It is
natural in this setting to use the spectral parameter 3= s(n− s). Theorem 1.1 and
the Poisson formula of [Borthwick 2008] produce a dynamical resonance-wave
trace formula in the following corollary.

Corollary 1.2. Suppose (X, g) is a negatively curved2 compact perturbation of
a convex cocompact (n+1)-dimensional hyperbolic manifold (see Definition 3.4).
Then we have the distributional equality

1
2

∑
s∈Rsc

e(s−n/2)|t |
=

∑
γ∈Lp

∑
k∈N

l(γ)δ(|t | − kl(γ))√
|det(I −Pk

γ)|
+C(t)

as an element of D′([t0,∞)) for any t0 > 0. The resonances Rsc are summed with
multiplicity, and the long time asymptotics of the trace formula are given by (1-2).

The next result is analyticity of the dynamical zeta function in a half-plane de-
termined by the topological entropy of the geodesic flow.

Theorem 1.3. Suppose (X, g) is an asymptotically hyperbolic negatively curved
(n+1)-dimensional manifold. Let L p be the set of primitive closed orbits of the
geodesic flow on X , and for γ ∈ L p, let lp(γ) be the length of the primitive period
of γ. Then the dynamical zeta function

Z(s)= exp
(∑
γ∈L p

∑
k∈N

e−kslp(γ)

k

)

1D′(X) is the dual of C∞0 (X).
2We will use “negatively curved” to mean all sectional curvatures are negative.
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converges absolutely for Re(s) > h, where h is the topological entropy of the geo-
desic flow (4-5). The weighted dynamical zeta function

Z̃(s)= exp
(∑
γ∈L p

∑
k∈N

e−kslp(γ)

k
√
|det(I −Pk

γ)|

)
converges absolutely for Re(s) > p(−H/2), where p is the topological pressure
of (4-4) and H is the Sinai–Ruelle–Bowen potential of (4-3).

Our main result, which is primarily an application of [Parry and Pollicott 1983],
produces a prime orbit theorem for the geodesic flow on negatively curved (n+1)-
dimensional asymptotically hyperbolic manifolds with positive topological entropy.
The prime orbit theorem for infinite-volume hyperbolic manifolds is due to Perry
[2001] and Guillarmou and Naud [2006]; see also earlier work of Guillopé [1986]
and Lalley [1988].

Theorem 1.4. Suppose (X, g) is an asymptotically hyperbolic (n+1)-dimensional
manifold with negative sectional curvatures. Let L p be the set of primitive closed
orbits of the geodesic flow, and for γ ∈ L p, let lp(γ) be the length of the primitive
period of γ. Let h be the topological entropy of the geodesic flow (4-5), and assume
h > 0. The dynamical zeta function

Z(s)= exp
(∑
γ∈L p

∑
k∈N

e−kslp(γ)

k

)

has a nowhere vanishing analytic extension to an open neighborhood of Re(s)≥ h
except for a simple pole at s = h. Moreover, the length spectrum counting function

(1-3) N (T ) := #{γ ∈ L : l(γ )≤ T } satisfies lim
T→∞

T N (T )
ehT = 1.

Finally, we use the prime orbit theorem and the trace formula to prove a result
that shows that the existence of pure point spectrum is related to the topological en-
tropy of the geodesic flow and the curvature bounds for negatively curved compact
perturbations of convex cocompact hyperbolic manifolds. In the constant curvature
case, this result is due to [Patterson 1987].

Corollary 1.5. Let (X, g) be a negatively curved compact perturbation of a convex
cocompact (n+1)-dimensional hyperbolic manifold with topological entropy h for
the geodesic flow. Then there exist 0<k2≤1≤k1 such that the sectional curvatures
κ satisfy −k2

1 ≤ κ ≤−k2
2 . If h > nk1/2, then σpp(1) 6=∅, and moreover, there is a

30= s0(n−s0)∈ σpp(1) with s0≥ h+n(1−k1)/2. If h≤ nk2/2, then σpp(1)=∅.

The paper is organized as follows. In Section 2, we recall some basic spectral
and geometric properties of asymptotically hyperbolic manifolds, including the
0-renormalization and key results of [Joshi and Sá Barreto 2001] for the wave
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group. In Section 3, we prove the dynamical trace formula and its corollary. In
Section 4, after defining the dynamical zeta function and recalling some basic
definitions and results from dynamics, we prove our preliminary result for the
dynamical zeta function. We then prove the prime orbit theorem and its corollary
relating the pure point spectrum to the dynamics of the geodesic flow in Section 5.
Concluding remarks comprise Section 6. In the appendix, we provide additional
technical details concerning the long time asymptotics of the trace formula.

2. Asymptotically hyperbolic manifolds

A manifold with boundary (Xn+1, ∂X) is asymptotically hyperbolic if there exists
a boundary-defining function x such that a neighborhood of ∂X admits a product
decomposition (0, ε)x × ∂X , with respect to which the metric takes the form

(2-1) g =
dx2
+ h(x, y, dx, dy)

x2 ,

where h|{x=0} is independent of dx . There is no one canonical metric on ∂X but
rather a conformal class of metrics induced by h|{x=0}=h0, and (∂X, [h0]) is called
the conformal infinity; see [Graham and Zworski 2003; Guillarmou 2007]. Mazzeo
and Melrose [1987] observed that X is a complete Riemannian manifold; more-
over, along any smooth curve in X−∂X approaching a point p ∈ ∂X , the sectional
curvatures of g approach−|dx |2x2g. For each h∈[h0] there exists a unique (near the
boundary) boundary-defining function x such that |dx |x2g= 1, near Y := ∂X . With
this normalization, the sectional curvatures approach −1 at ∂X , hence the name
“asymptotically hyperbolic.” A large class of interesting asymptotically hyperbolic
metrics are the conformally compact metrics. Four-dimensional conformally com-
pact Einstein metrics have received recent attention in both geometric analysis and
mathematical physics due to their relation to quantum field theory and quantum
gravity; see [Albin 2007; Fefferman and Graham 2002].

The wave group and renormalized wave trace. The (even) wave kernel is the
Schwartz kernel of the fundamental solution to

(∂2
t +1−

1
4 n2)U (t, w,w′)= 0, U (0, w,w′)= δ(w−w′), ∂

∂t U (0, w,w′)= 0.

Due to the semigroup property with respect to time, the wave kernel is also referred
to as the wave group and written cos(t

√
1− n2/4). In [2001], Joshi and Sà Barreto

constructed the wave group as an element of an operator calculus on a manifold
with corners obtained by blowing up R+× X × X . This construction was heavily
influenced by Melrose’s work [1993] with b-manifolds.

Since asymptotically hyperbolic spaces have infinite volume, one must introduce
an integral renormalization to take the trace of the wave group. Recall that the finite
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part f.p.ε=0 f (ε) is defined as f0 when f (ε) = f0 +
∑

k fkε
−λk (log ε)mk + o(1),

with Re(λk) ≥ 0 and mk ∈ N ∪ {0}. Then f0 is unique, as shown for example in
[Hörmander 1983].

Definition 2.1 [Guillopé and Zworski 1995]. The 0-regularized integral 0
∫
ω of a

smooth function (or density) f on X is defined, if it exists, as the finite part

0∫
X

f := f.p.ε=0

∫
x(p)>ε

f (p) dvolg(p),

where x is a boundary-defining function.

For an operator A with smooth Schwartz kernel A(z, y) on X×X , we may then
define the 0-trace of A to be

0-tr(A) :=
0∫

X
A(z, z) dvolg(z).

Joshi and Sà Barreto showed that the wave group for an asymptotically hyper-
bolic manifold has a well-defined 0-trace. In [2001, Theorems 4.1 and 4.2], they
prove that the singular support of 0-tr cos(t

√
1− n2/4) is contained in the set of

lengths of closed geodesics of (X, g), and that there exists a compact subset Xε⊂ X
that contains all the closed geodesics of X . These results allow us to generalize
local dynamical arguments and results for compact manifolds to the asymptotically
hyperbolic setting.

3. Dynamical trace formula

The local arguments of [Duistermaat and Guillemin 1975] together with [Joshi
and Sá Barreto 2001, Theorem 4.2] provide the leading terms in the renormalized
wave trace; however, to bound the remainder term we adapt the local techniques
of [Jakobson et al. 2008], and this requires the following two lemmas.

Lemma 3.1. Let (X, g) be a smooth, complete, (n+1)-dimensional Riemannian
manifold whose sectional curvatures κ satisfy−k2

1 ≤ κ ≤−k2
2 for some 0< k2≤ k1.

Then the Poincaré map about a closed orbit γ of the geodesic flow has eigenvalues
λi for i = 1, . . . , 2n such that

ek2l(γ)
≤ |λi | ≤ ek1l(γ) for i = 1, . . . , n,

e−k1l(γ)
≤ |λi | ≤ e−k2l(γ) for i = n+ 1, . . . , 2n,

where l(γ) is the period (or length) of γ.

Proof. Let Pγ be the Poincaré map about the closed orbit γ of the geodesic flow.
Since the flow is Anosov [Anosov 1967], Pγ has n expanding eigenvalues {λi }

n
i=1

and n contracting eigenvalues {λi }
2n
i=n+1. We proceed to estimate the expanding
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eigenvalues using Rauch’s comparison theorem. Let Mi be complete manifolds of
dimension n+1 with constant negative curvature−k2

i for i = 1, 2. Consider Jacobi
fields J and Ji along any geodesic γ0 on X and γi on Mi such that

J (0)= Ji (0)= 0, 〈J ′(0), γ′0(0)〉 = 〈J
′

i (0), γ
′

i (0)〉, |J
′(0)| = |J ′i (0)|.

Assume that γ0 and γi do not have conjugate points on (0, a] for some a > 0.
Then, by Rauch’s comparison theorem [do Carmo 1992]

(3-1) |J2(t)| ≤ |J (t)| ≤ |J1(t)| for t ∈ (0, a].

By definition of the Lyapunov exponents [Barreira and Pesin 2002] for the Poincaré
map on the geodesic flow, the expanding eigenvalues λi of the Poincaré map about
a closed geodesic γ̃ satisfy

(3-2) |λi | = eki l(γ̃)

on the constant curvature manifolds Mi . Since the eigenvalues of the Poincaré map
are determined by the Jacobi fields along the closed geodesics, it follows from (3-1)
and (3-2) that the expanding eigenvalues for Pγ satisfy

ek2l(γ)
≤ |λi | ≤ ek1l(γ) for i = 1, . . . , n.

For each contracting eigenvalue λi with i ∈ {n+1, . . . , 2n}, there is an expanding
eigenvalue λ j (i) with j (i) ∈ {1, . . . , n} such that |λi |

−1
= |λ j (i)|. The inequality

for the contracting eigenvalues follows immediately. �

The next result allows us to estimate the remainder in the trace formula by sep-
arating the periodic orbits and applying the stationary phase method of [Jakobson
et al. 2008]. This separation lemma is a generalization of [Jakobson et al. 2008,
Lemma 2.3] to our (n+1)-dimensional asymptotically hyperbolic variable negative
curvature setting.

Lemma 3.2. Let (X, g) be an asymptotically hyperbolic (n+1)-dimensional man-
ifold with negative sectional curvatures. Let N(γ, ε) denote the ε-neighborhood of
a geodesic γ in the unit tangent bundle SX with respect to the Sasaki metric. Then
there exist positive constants T0, B, and δ (depending only on the injectivity radius
inj(X) and the curvature bounds) such that for any T > T0 the sets N (γ, e−BT ) are
disjoint for all pairs of closed geodesics γ on X with length lγ ∈ [T − δ, T ].

Proof. Since the sectional curvatures of any asymptotically hyperbolic manifold
approach −1 at ∂X , there exist 0< k2 ≤ 1≤ k1 such that

(3-3) −k2
1 ≤ κ ≤−k2

2,

for all sectional curvatures κ on X . Let B > 2k1 and choose 0< δ < inj(X)/3, and
let T0 be such that 2e−k1T0 < δ. We proceed by contradiction. For a given geodesic
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γ1, assume there is a second geodesic γ2 with T −δ < l(γ1)≤ l(γ2)≤ T such that
the corresponding neighborhoods intersect. Assume the geodesics are not inverses
of each other; by the choice of δ, they cannot be integer multiples of each other
unless they are inverses. Let γ j (t) for 0 ≤ t ≤ l(γ j ) denote the geodesic on X ,
and let its corresponding lift to SX be denoted by γ̃ j (t)= (γ j (t), γ

′

j (t)). We may
assume without any loss of generality that dSX (γ̃2(0), γ̃1(0)) ≤ 2e−2k1T . For any
0≤ t ≤ l(γ2), by Lemma 3.1,

(3-4) dSX (γ̃2(t), γ̃1(t))= dSX (G t γ̃2(0),G t(γ̃1(0))≤ 2e−2k1T ek1t
≤ 2e−k1T ,

where G t is the geodesic flow. This implies

(3-5) dX (γ2(t), γ1(t))≤ 2e−2k1T .

Consequently, the entire geodesics γi lie in the 2e−k1T neighborhood of each other.
Now, reparametrize γ1 by defining

β1(s) := γ1(l1s/ l2) for 0≤ s ≤ l2,

where γi : [0, li ] → X . By the triangle inequality,

d(γ2(t), β1(t))≤ d(γ2(t), γ1(t))+ d(γ1(t), β1(t))

≤ 2e−k1t
+ t (1− l1/l2)≤ 2e−k1T

+ δ < 2
3 inj(X).

For any 0 ≤ t ≤ l2, there exists a unique shortest geodesic αt(s) in X connecting
γ2(t) and β1(t). Let the parameter s ∈[0, 1] so that αt(0)=γ2(t) and αt(1)=β1(t).
Define the mapping

8(t, s) : [0, l2]× [0, 1] → X, (t, s) 7→ αt(s).

We will derive a contradiction by showing that8 defines a homotopy between γ2(t)
and β1(t). First, 8(t, 0) = γ2(t), and 8(t, 1) = β1(t). Moreover, since both γ2

and β1 have period l2, we have α0(s)= αl2(s) for all s ∈ [0, 1], so that 8( · , s) is a
closed curve in X . Finally, 8(t, s) is continuous since the function d(γ2(t), β1(t))
is a continuous function of t . This shows that 8 is indeed a homotopy between
γ2(t) and β1(t). Since β1 is just a reparametrization of γ1, this shows that the γi

lie in the same free homotopy class, which contradicts the fact that on a complete
manifold with pinched negative curvature there is at most one closed geodesic in
each free homotopy class [Eberlein et al. 1993]. �

With these preliminary lemmas, we may now prove the dynamical wave trace
formula.

Proof of Theorem 1.1. Note that dependence of the renormalized trace of the wave
group on the choice of boundary defining function is absorbed by the remainder
term in the right side of the formula. Fix t0 > 0, and let φ ∈ C∞0 ([t0,∞)). The
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singular support of 0-tr cos(t
√
1− n2/4) lies in {kl(γ) : γ ∈ Lp} by [Joshi and

Sá Barreto 2001, Theorem 4.2]. The arguments of [Duistermaat and Guillemin
1975, Theorem 4.5] are local, so 0-tr cos(t

√
1− n2/4) has an expansion at each

singularity T ∈ {kl(γ) : γ ∈ Lp} with leading term

(3-6)
l(γ)δ(|t | − kl(γ))√
|det(I −Pk

γ)|
,

and

0-tr cos(t
√
1− n2/4)−

(∑
γ∈Lp

∑
k∈N

l(γ)δ(|t | − kl(γ))√
|det(I −Pk

γ)|

)
= A(t).

By the assumption of negative sectional curvatures together with the calculation
of [Mazzeo and Melrose 1987] that shows that all sectional curvatures approach−1
at ∂X , there exist 0 < k2 ≤ 1 ≤ k1 such that −k2

1 ≤ κ ≤ −k2
2 , for all sectional

curvatures κ . Therefore, the “clean intersection” condition of [Duistermaat and
Guillemin 1975] is satisfied. Since the arguments therein are localized to small
neighborhoods around each γ ∈ L, by (3-6), [Duistermaat and Guillemin 1975],
and [Joshi and Sá Barreto 2001, Theorem 4.1], we have∫

φ(t) 0-tr(cos(t
√
1− n2/4)) dt =

∑∑
γ∈Lp, k∈N

kl(γ)∈supp(φ)

l(γ)φ(kl(γ))√
|det(I −Pk

γ)|
+ A(φ),

where supp(φ) is the support of φ and A(φ)=
∫

A(t)φ(t)dt . By Lemma 3.2, the
periodic orbits are separated, and by [Joshi and Sá Barreto 2001, Theorem 4.1] the
closed geodesics lie in a compact subset of X , so we may apply the local estimates
from the proof of [Jakobson et al. 2008, Theorem 1.3]. Assuming φ satisfies the
hypotheses in our theorem, the dynamical estimates in [ibidem, Section 3] give
the long time asymptotics for our trace formula. Further details of the technical
modifications necessary to adapt their dynamical arguments to our setting may be
found in the appendix. �

As a corollary to this theorem, we combine the dynamical trace formula with
Borthwick’s Poisson formula [2008] to produce a dynamical resonance-wave trace
formula. To state this result we recall a few definitions. The Poisson formula
relates the renormalized wave trace to the poles, called resonances, of the mero-
morphically continued resolvent. Closely related to the resolvent is the scattering
operator whose poles essentially coincide with those of the resolvent; it is more
convenient to state the trace formula in terms of scattering resonances. Recall that
the multiplicities of the resonances are given by

m(ζ )= rank Resζ (1− s(n− s))−1,
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where ζ is a pole of the resolvent, (1− s(n− s))−1.

Definition 3.3. Let (X, g) be an asymptotically hyperbolic (n+1)-dimensional
manifold with boundary defining function x . For Re s = n/2 with s 6= n/2, a
function f1 ∈ C∞(∂X) determines a unique solution u of

(1− s(n− s))u = 0, u ∼ xn−s f1+ x s f2 as x→ 0,

where f2 ∈ C∞(∂X). This defines the scattering operator S(s) : f1 7→ f2.

Heuristically, the scattering operator, which is classically a scattering matrix,
acts as a Dirichlet to Neumann map, and physically it describes the scattering
behavior of particles. The scattering operator extends meromorphically to s ∈ C

as a family of pseudodifferential operators of order 2s − n. Renormalizing the
scattering operator as

S̃(s) :=
0(s− n/2)
0(n/2− s)

3n/2−s S(s)3n/2−s, where 3 := 1
2(1h + 1)1/2,

gives a meromorphic family of Fredholm operators with poles of finite rank. Here
1h is the Laplacian on ∂X for the metric h(x)|x=0. Note that this definition depends
on the boundary-defining function. The multiplicity of a pole or zero of S(s) is
defined to be

ν(ζ )=− tr
(
Resζ S̃′(s)S̃(s)−1).

The scattering multiplicities are related to the resonance multiplicities in [Borth-
wick and Perry 2002; Guillarmou 2005; Guillopé and Zworski 1999] by

ν(ζ )= m(ζ )−m(n− ζ )+
∑
k∈N

(
χn/2−k(s)−χn/2+k(s)

)
dk,

where dk = dim ker S̃( 1
2 n + k) and χp denotes the characteristic function of the

set {p}. The numbers dk are determined by natural conformal operators acting
on the conformal infinity; see [Graham et al. 1992; Guillopé and Zworski 1999;
Guillarmou and Naud 2006].

The set of resolvent resonances will be denoted R, while the set of scattering
resonances are

Rsc
:=R∪

∞⋃
k=1

{
1
2 n− k with multiplicity dk}.

Finally, we recall that for a discrete torsion-free group 0 of isometries of Hn+1, the
quotient Hn+1/0 is said to be convex cocompact when its convex core is compact;
a compact perturbation is defined as follows.
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Definition 3.4. We call an asymptotically hyperbolic manifold (X, g) a compact
perturbation of a convex cocompact hyperbolic manifold if there exists a con-
vex cocompact manifold (X0, g0) (possibly disconnected) such that (X − K , g)∼=
(X0− K0, g0) for some compact sets K ⊂ X and K0 ⊂ X0.

Proof of Corollary 1.2. This corollary is an immediate consequence of our dynam-
ical trace formula and of [Borthwick 2008, Theorem 1.2]. We note that in terms
of the resolvent resonances the spectral side of the trace formula becomes

(3-7) 1
2

∑
s∈R

m(s)e(s−n/2)|t |
+

1
2

∑
k∈N

dke−k|t |. �

Remark. A nice application of our trace formula would be to count resonances
lying in strips in the complex plane. See for example [Perry 2003, Theorem 1.3]
and [Guillopé and Zworski 1999, Theorem 2]. Those results use the existence
of only one closed geodesic; by incorporating more of the length spectrum, one
expects these estimates to be improved to give a fractal Weyl law with exponent
determined by the entropy of the geodesic flow. This remains an interesting open
problem.

4. Dynamical zeta function

The dynamical zeta function is to the geodesic length spectrum as the Riemann
zeta function is to the prime numbers. Let

(4-1) Z(s)= exp
(∑
γ∈L p

∑
k∈N

e−kslp(γ)

k

)
,

where L p consists of primitive closed orbits of the geodesic flow and lp(γ) is the
primitive period (or length) of γ ∈ L p. This definition is the same as Parry and
Pollicott’s [1983] dynamical zeta function for Axiom A flows. We also consider
the weighted dynamical zeta function

Z̃(s)= exp
(∑
γ∈L p

∑
k∈N

e−kslp(γ)

k
√
|det(I −Pk

γ)|

)
,

where Pk
γ is the k-times Poincaré map of the geodesic flow around the closed

orbit γ. As observed in [Patterson and Perry 2001], the weighted zeta function is
particularly interesting for its connections to the resonances of the resolvent; Perry
[2003] and Guillarmou and Naud [2006] used the Hadamard factorization of this
zeta function to prove Selberg trace formulae for convex cocompact hyperbolic
manifolds.

We recall some definitions from dynamics. Let SX denote the unit tangent bun-
dle, and let G t be the geodesic flow on SX . Since X is complete and has negative
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sectional curvatures, the geodesic flow is Anosov [Anosov 1967]; see for example
[Bolton 1979; Eberlein 1972; 1973b; 1973c; Klingenberg 1974]. Consequently,
T (SX)ξ splits for each ξ ∈ SX into a direct sum

(4-2) T (SX)ξ = E s
ξ ⊕ Eu

ξ ⊕ Eξ ,

where E s
ξ is exponentially contracting, Eu

ξ is exponentially expanding, and Eξ
is the one-dimensional subspace tangent to the flow. The Sinai–Ruelle–Bowen
potential is a Hölder continuous function defined by

(4-3) H(ξ) := d
dt

∣∣∣
t=0

ln det dG t
|Eu

ξ
.

This potential is the instantaneous rate of expansion at ξ . The topological pressure p

of a function f : SX→R is defined as follows. For large T and small δ > 0, a finite
set Y ⊂ SX is (T, δ) separated if, given ξ, ξ ′ ∈ Y with ξ 6= ξ ′, there is a t ∈ [0, T ]
with d(G tξ,G tξ ′) ≥ δ. Here the distance on SX is given by the Sasaki metric.
Then

(4-4) p( f )=

lim
δ→0

lim sup
T→∞

T−1 log sup
{∑
ξ∈Y

exp
∫ T

0
f (G tξ)dt : Y is (T, δ) separated

}
.

In the compact setting, the topological pressure of a function f : SX→ R may be
equivalently defined by p( f )= supµ

(
hµ+

∫
f dµ

)
, where the supremum is taken

over all G t invariant measures µ, and hµ denotes the measure theoretical entropy
of the geodesic flow; see [Bowen 1975; Katok and Hasselblatt 1995].

The pressure of a function is a concept in dynamical systems from statistical
mechanics; it measures the growth rate of the number of separated orbits weighted
according to the values of f [Walters 1975]. In particular, p(0) is equal to the
topological entropy h of the geodesic flow, given by

(4-5) h = lim
δ→0

lim sup
T→∞

T−1 log sup #{Y ⊂ SX : Y is (T, δ) separated}.

When X has no conjugate points, the topological entropy of the geodesic flow is
equivalent to the volume growth rate

λ(X)= lim sup
r→∞

1
r

log Vol(Br (x)),

where Br (x) is the ball of radius r and center x in the universal covering of X , and
Vol(Br (x)) is its volume; see [Manning 1979; Freire and Mañé 1982].

For convex cocompact hyperbolic manifolds Hn+1/0, the topological entropy
is equal to δ, the exponent of convergence for the Poincaré series for 0, which
is also equal to the dimension of the limit set of 0. For the Sinai–Ruelle–Bowen
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potential, p(−H) is equal to zero, and the corresponding equilibrium measure that
attains the supremum is the Liouville measure µL on the unit tangent bundle; thus

hµL =

∫
SX

HdµL .

Proof of Theorem 1.3. Note that the sum is∑
γ∈L

k(γ)−1 exp(−
∫
γ sdt)=

∑
r∈N ar ,

where L consists of all closed orbits of the geodesic flow, k(γ) is the multiplicity
of γ, and

ar =
∑

ε(r−1/2)≤l(γ)<ε(r+1/2)

k(γ)−1 exp(−
∫
γ sdt).

The arguments proving [Franco 1977, Lemma 2.8] are entirely local and show that
ar ≤ exp(−(rεp(−s)))/rε. Moreover, p(−s)= p(0)−s by [Walters 1975], so that
the series converges absolutely when Re(s) > p(0). For the weighted dynamical
zeta function, note that Pγ has expanding eigenvalues λ1, . . . , λn and contracting
eigenvalues λn+1, . . . , λ2n , and

|det(I −Pγ)| =

2n∏
1

|1− λi | =

n∏
i=1

|λi |

n∏
j=1

∣∣∣∣1− 1
|λ j |

∣∣∣∣ 2n∏
k=n+1

|1− λk |.

By Lemma 3.1,
|λi |
−1
≤ e−k2l(γ) for i = 1, . . . , n,

|λi | ≤ e−k2l(γ) for i = n+ 1, . . . 2n.

Therefore,

lim
|l(γ)|→∞

∏n
i=1|λi |

|det(I −Pγ)|
= 1,

so we may replace |det(I −Pγ)| by this product of expanding eigenvalues. Since
H is the rate of expansion of volume in Eu , the summand for γ is

k(γ)−1 exp
(∫

γ

1
2 H − s

)
.

Then, after we similarly define ar , [Franco 1977, Lemma 2.8] shows that

ar ≤ exp(rεp( 1
2 H − s))/(rε),

so that the series converges absolutely when p( 1
2 H − s) < 0. Thus, the series

converges absolutely when Re(s) > p( 1
2 H), since p(1

2 H − s)= p(1
2 H)− s. �
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Remark. As observed in [Chen and Manning 1981], if the exponent 1/2 in the
denominator of the weighted dynamical zeta function is replaced by t ∈R, then by
the preceding arguments, Z̃(s) converges absolutely for Re(s) > p(−t H).

5. Prime orbit theorem

To prove the prime orbit theorem we require further definitions to describe the
geodesic flow. The following definitions are from [Eberlein 1972; 1973a]; see also
[Bishop and O’Neill 1969] and [Eberlein et al. 1993]. For ξ ∈ SX , the positive
prolongational limit set is

P+(ξ)= {y ∈ SX : for any neighborhoods O,U of ξ, y, respectively, there is a
sequence tn ⊂ R with tn→∞ such that G tn (O)∩U 6=∅}.

Then ξ is nonwandering if ξ ∈ P+(ξ). The flow is topologically transitive on
�⊂ SM if for any open sets O,U ⊂�, there exists t ∈R such that G t(U )∩O 6=∅.
The flow is topologically mixing if there exists A > 0 such that G t(U )∩ O 6= ∅
for all |t |> A.

A closed invariant set �⊂ SX without fixed points is hyperbolic if the tangent
bundle restricted to � is a Whitney sum T�SX = E + E s

+ Eu of three T G t

invariant subbundles, where E is the one-dimensional bundle tangent to the flow,
and E s and Eu are exponentially contracting and expanding, respectively:

‖T G t(v)‖ ≤ K e−λt
‖v‖ for v ∈ E s and t ≥ 0,

‖T G−t(v)‖ ≤ K e−λt
‖v‖ for v ∈ Eu and t ≥ 0.

Parry and Pollicott [1983] defined a basic set to be a topologically transitive hyper-
bolic set U with no fixed points for which periodic orbits are dense and which
admits an open set O ⊃U such that U =

⋂
t∈R G t O .

Proof of Theorem 1.4. With the work of Bishop and O’Neill [1969], Eberlein
[1973b; 1972; 1973a], and Eberlein and O’Neill [1973] on “visibility manifolds”
(complete manifolds with nonpositive curvature), we are able to give a quick proof
of the prime orbit theorem.

We first use results from [Eberlein 1972]: For X asymptotically hyperbolic and
negatively curved, the nonwandering set �⊂ SX is closed and invariant under the
flow; see [page 502]. By [Theorems 3.9 and 3.10], the periodic vectors are dense
in � since h > 0. By [Theorem 3.13], � is connected, and by [Theorem 3.11], the
geodesic flow restricted to� is topologically transitive. Since the flow is Anosov,�
is a hyperbolic set; see (4-2). Since the periodic orbits are dense in�, and since� is
closed, � is a compact subset of SX by [Joshi and Sá Barreto 2001, Theorem 4.1].
Clearly � cannot have fixed points for the geodesic flow, and by definition of the
nonwandering set, we have

⋂
t∈R G t O = � for any open neighborhood O ⊃ �.
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Therefore � is a basic set. By [Parry and Pollicott 1983, Proposition 1], the flow
restricted to � is topologically mixing. Because all Anosov flows are a priori Ax-
iom A flows, the geodesic flow restricted to � is a topologically mixing Axiom A
flow restricted to a basic set and it satisfies the hypotheses of [Parry and Pollicott
1983, Theorems 1 and 2]; applying these results completes the proof. �

Proof of Corollary 1.5. The proof consists of applying the prime orbit theorem
and analyzing the dominant terms on the spectral and dynamical sides of the trace
formula. First, assume the topological entropy satisfies h > nk1/2. Let φ be a
test function satisfying the hypotheses in the statement of Theorem 1.1. By the
Dirichlet box principle (see [Jakobson et al. 2008, Section 4]; also [Karnaukh 1996;
Phillips and Rudnick 1994; Rubinstein and Sarnak 1994]), there exist infinitely
many pairs (λ, T (λ)= ε ln(λ)) with λ→∞ such that for γ ∈ L with

t0 ≤ l(γ )≤ T (λ),

there exists m ∈ Z such that |λl(γ )−2πm| ≤ 1/2. This implies cos(λl(γ ))≥ 1/2.
Consequently, after integrating against the test function φ, the dynamical side of
the trace formula is bounded below by

N (T (λ))T (λ)
2enk1T (λ)/2 + O(1).

By the prime orbit theorem, this is bounded below by (1/2)e(h−nk1/2)T (λ)+ O(1).
The hypothesis on h implies that the dynamical side of the trace formula grows
exponentially, so this must also hold for the spectral side of the trace formula. By
[Borthwick 2008, Theorem 1.1], this is only possible if there exists 30 ∈ σpp(1)

with corresponding s0 ≥ h+ n(1− k1)/2.
Next, assume the topological entropy satisfies h ≤ nk2/2. We proceed by con-

tradiction. Assume there exists 30 ∈ σpp(1); then the corresponding s0 > n/2.
For λ = 2kπ , cos(λ) = 1. Integrating against the test function φ, the spectral
side of the trace formula is bounded below by (1/2)e(s0−n/2)T (λ)

+ O(eδT (λ)). If
σpp(1) = 0 < 30 < 31 < · · · < n2/4, then δ = s1 − n/2, and if σpp(1) = {30},
then by [Borthwick 2008, Theorem 1.1], we can take any δ > 0. So, we see that
the spectral side of the trace formula grows exponentially as (λ, T (λ))→∞. Note
that the dynamical side of the trace formula is bounded above by

N (T (λ))T (λ)
enk2T (λ)/2 + O(1)≤ e(h−nk2/2)T (λ)+ O(1).

By the hypothesis on h, the dynamical side of the trace formula does not grow
exponentially, which gives a contradiction and proves the second statement of the
corollary. �
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6. Concluding remarks and further directions

This paper was motivated by [Guillopé and Zworski 1999; Guillarmou 2007; Guil-
larmou and Naud 2006]; our aim was to prove trace formulae for asymptotically hy-
perbolic (n+1)-dimensional manifolds and to understand the relationship between
the resonances and dynamics of these manifolds. Although our trace formulae do
not provide an explicit expression for the remainder terms, they — like classical
trace formulae — provide a connection between the Laplace and length spectra.
Applications include computing remainder terms for both the length and resonance
counting functions; see for example [Guillarmou and Naud 2006; Jakobson et al.
2008]. Another application is to counting resonances in regions of C corresponding
to physical phenomena [Guillopé and Zworski 1999]. It would be interesting to
study the remainder terms in our formulae in greater depth; it is almost certain
that an explicit formula for the remainder does not exist in this context of variable
curvature, but perhaps one may show exponential decay at infinity. Numerical
methods indicate that the remainder term A(t) decays as t→∞ without the use of
Ehrenfest time. It would also be interesting to study the behavior as t→ 0. Ideally,
we would like to generalize our trace formulae to all asymptotically hyperbolic
manifolds. The dynamical trace requires hypotheses on the geodesic flow to allow
summation of periodic orbits and to control the remainder term; assuming glob-
ally negative (but not necessarily constant) curvature guarantees this, but based on
[Anosov 1967; Eberlein 1973b; Klingenberg 1974], we expect a weaker hypothesis
to suffice. Such a hypothesis may be quite technical. The Poisson formula is more
delicate and remains an open problem for asymptotically hyperbolic manifolds.
Borthwick’s recent work [2008] is progress in this direction, although Guillarmou’s
careful study [2007] of the scattering phase shows that the Poisson formula for
asymptotically hyperbolic manifolds is subtle and elusive.

Appendix to the proof of Theorem 1.1

By [Joshi and Sá Barreto 2001], there exists a compact subset X ′ ⊂ X which
contains all the closed geodesics. Note that the 0-regularized integral over X of
any function f satisfies

(6-1)
0∫

f =
∫

X ′
f +

0∫
X−X ′

f.

The contribution to the renormalized wave trace coming from 0
∫

X−X ′ is smooth
and has exponential decay as t → ∞ due to the iterative construction of [Joshi
and Sá Barreto 2001] in which the first order parametrix at ∂X is the hyperbolic
wave kernel that has exponential decay as t → ∞. In particular, we have the
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distributional equality

0-tr cos
(
t
√
1− n2/4

)
=

∑
γ∈Lp

∑
k∈N

l(γ )δ(|t | − kl(γ ))√
|det(I −Pk

γ )|
+ A(t)

=

∫
X ′

U (t, w,w) dvol(w)+ E(t),

where E(t)= O(t−∞) as t→∞. So, to estimate the remainder term coming from
the dynamics in the renormalized wave trace, we only need to work over X ′.

In the definition of the h̄ :=λ−1 pseudodifferential calculus used to approximate
the wave kernel, we define T = T (λ) = ε ln(λ), for some small constant ε as in
the arguments of [Jakobson et al. 2008, Section 3]. Since the estimates in [ibidem,
Section 3.4] are on the universal cover M of X , which is not assumed to be compact,
these estimates generalize identically to our setting. In [ibidem, (3.11)], we may
define the cutoff function η for X ′ rather than X , so that this equation becomes∫

X ′
U (t, w,w)dvol(w)=

∫
M

EN (t, w,w; h̄)η(w)dvol(w)+ O(ec|t |h̄N ),

for some constant c > 0. The remaining estimates for the error in the microlocal
parametrix construction of the wave kernel depend only on the curvature bounds
and our dynamical and separation lemmas; our prime orbit theorem is required in
estimate [ibidem, (3.39)], but this is no problem since the proof of the prime orbit
theorem is completely independent. Finally, we note that although the estimates in
[Jakobson et al. 2008] are for surfaces, they generalize naturally to higher dimen-
sions; the higher-dimensional analogue of the main result therein is the subject of
ongoing work of D. Jakobson, I. Polterovich, and R. Schubert.
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