Mats Rudemo, April 5, 2005

Solutions for problems in Examination in Statistical Image
Analysis, March 15, 2005

Problem 1. m a two-colour microarray experiment images were obtained separately
for two colour channels: red cy5 (here corresponding to wild-type Arabidopsis) and green cy3
(corresponding to one transgenic Arabidopsis line). Figure 1 below shows to the left the signal
intensity for the red channel in one part of the array with 9 spots and to the right a detail
with the central of these nine spots. The signal is registered in two bytes, and the signal thus
lies between 0 and 2'® — 1 = 65535. Consider modeling of images such as the right part of

Figure 1.

Figure 1: Left: red channel image of nine spots in a microarray experiment. Right: a detail
with 25x 25 pizels of the left image corresponding to the central spot. In the images black
corresponds to high signal intensity.

a) Formulate a statistical model for an image such as the right part of Figure 1. Assume
that the registered intensity consists of a sum of a signal part and a noise part. The signal
part is assumed to be constant (with a given spot amplitude) within a circle with a given spot
centre and a given spot radius. The noise part is assumed to consist of normal variates with
a constant mean and a constant variance. These noise normal variates are assumed to be
independent for different pizels. The parameters corresponding to spol centre, spot radius,

spot amplitude, noise mean and noise variance are assumed to different for different spots.

Let S denote the set of spots. With each spot s,s € S, we associate a set A,
of pixels, in the present case for instance a square of 20 by 20 pixels with the
spot approximately in the center. We assume that no pixel belongs to more
than one such set, and some pixels may not be associated with any spot. Let
Y = Y(x) denote the (possibly transformed) intensity at a pixel, x, with pixel
centre coordinates x = (z1,Z2).

Consider a spot s and pixels © € A;. Let ¢s = (¢s1,¢52) be the spot centre of
spot s, and let r5(z) = ||z — ¢s|| be the distance from pixel x to the spot centre.
Assume that

Y(z) = Bsml(rs(az) <og)+bs+e(z), z€A, (1)

S
where B, measures the intensity of spot s, by is a constant representing the
background, 1(P) = 1 if P is true and 1(P) = 0 otherwise, o5 > 0 is the radius
of the spot and e(z) corresponds to zero-mean noise at z. We assume that
(e(x),x € As) are independent and normally distribution with mean zero and

constant variance o2.



b) Suggest a method for estimating the parameters for a given spot based on data such as

those shown in the right part of Figure 1.

A suitable method is to use maximum likelihood. We disregard the possibility
that some intensity values are saturated, that is, are above the upper two-byte
limit 2'6 — 1. (Note that at least in the right part of Figure 1 no intensity values
are saturated.)

The 6 parameters By, 0,51, Cs2, bs, 0. may be estimated by maximizing the log
likelihood function

Y
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where ¢ is the standardized normal density function, ¢(y) = \/% exp(—y?/2).

The log likelihood (2) can be maximized by standard iterative maximization
techniques, e.g., quasi-Newton or Nelder-Mead. Such algorithms are available
for instance in the Matlab optimization toolbox.

c) Look at the images in Figure 1. Discuss how reasonable the different assumptions for the

modelling described in a) above seem.

The assumptions are:

e signal part is assumed constant within a circle: seems ok

e the noise part is assumed to consist of normal variates with a constant
mean and a constant variance: constant mean and constant variance seem
ok, normality difficult to judge from figure

e the noise normal variates are assumed to be independent for different
pixels: independence does not seem so well satisfied, note the stripe pattern

Problem 2.

Eqggs of parasites of swines can be detected in fecal samples from the animals. Figure 2
shows 1mages of eggs from seven subspecies of Eimeria parasites. Suppose that we want to
discriminate between subspecies and that we have an image analysis algorithm that finds the
contour of the eggs and the distances X and Y defined in the following way. We assume that
the contour of the eggs is convexr. Let P; and P> be two points on the contour mazimally
apart. Let X be the distance between Py and P». Let Ly be the line going through Py and
Py. Let P3 be the point on .1 midway between Py and P», and let Lo be the line through Ps
perpendicular to Lyi. Let Y be the distance between the two points on the contour where Lo
crosses the contour. Draw an image showing these points, lines and distances. Put 7 =Y/X.
We want to discriminate between parasilte subspecies by use of Z only. Consider for simplicity

the case with two parasite subspecies.
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Fig. 1. Oocysts of group | (A: E. perminuta, B: E. polita, C: E. scabra), group 2 (D E. spinosa) and group 3 (E:
E. debliecki, F: E. suis, G: E. porci) Eimeria spp.

Figure 2: Figure from Daugschies et al. (1999) Differentiation between porcine Eimeria
spp. by morphological algorithms, Veterinary Parasitology 81, 201 210, showing egg shapes
for seven subspecies.



a) Formulate a statistical model for discrimination between the two species by use of 7.

P_4

Figure 3: Drawing showing contour of egg, X is the distance between P; and
P, and Y is the distance between P, and Ps.

Let X and Y be the distances described in the legend of Figure 3, put Z = Y/ X,
and let w; and ws denote the classes corresponding to the two subspecies. Let
m; denote the prior probability of class w;, i = 1,2, and let f; be the probability
density of Z for an observation from class w;.

The problem of deciding if an object comes from class w; or ws is to be based
on observation of the corresponding feature variable Z. To find discrimination
we need further specification corresponding to how costly it is to make different
kinds of errors, that is the cost of choosing class w; when ws is true and vice
versa. Let us assume that these cost are equal, and more specifically, that we
want to minimize the probability of misclassification.

From the course notes we know that the probability of misclassification is min-
imized if we use the following rule:

prefer class w; to w; if m;fi(2) > m; f;(2), (3)

when Z = 2z is observed. Assume further that Z is N(u;,07) in class w;, i = 1,2.

Let us first assume that we have equal variances in the two classes. Then
it follows from (3) that we minimize the probability of misclassification if we
prefer class w; to wj if

(s = 1) (7 = 5 (i + 1)) > n L (4)

which gives linear discrimination.

Let us now find a corresponding rule without the assumption of equal variances.
It follows that we shall prefer class w; to w; if

1, _ _ . . 1 .
50057 =027+ (o = o )2+ 5071 — 0y u)
>n 2%

(5)
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We see that the border between the two regions where we should or should not
prefer w; to w; is given by a quadratic function (quadratic discrimination).



b) Suppose that we have images of ni eggs of variety 1, and na eggs of variety 2. Give

formulas for estimation of the parameters in the model in a).

We now have a training set with n; objects from class w;, i = 1,2. From
both classes we assume that we have obtained independent random samples of
objects. We assume further that the vector Z is normally distributed with ex-
pectation vector p; and variance Uf in class w;. Let the observations be denoted

Zim, m =1,...,n;, 1 =1,2. Then it is natural to estimate the expectation in
class w; by
1 &
ﬂi:;izlzm i=1,2. (6)
m=

If we make no assumption on equality of the variances we use the variance
estimates

ng
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but if we assume variance equality we use the estimate

ny + no — 2

for the common variance.

For the prior probabilities we use the estimates 7; = n;/(n1 +ns), i = 1,2.



