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Prefa
e

The obje
t of this book is to provide an introdu
tion to several subje
ts 
onne
ted to

statisti
al inferen
e from images. Image analysis is an extensive resear
h �eld growing

with 
onsiderable speed. Thus only some sele
ted parts 
an be 
overed here and the


hoi
e of subje
ts is, of 
ourse, heavily in�uen
ed by my experien
e and interests. The

book has grown from notes on a master level 
ourse on statisti
al image analysis that I

have given at Chalmers te
hni
al university and Gothenburg university during a sequen
e

of years.

Some spe
i�
 features 
an be mentioned. The extensive MNIST database on handwrit-

ten integers is used in many examples on pattern re
ognition in the book. The MNIST

database has been a proving ground for many ma
hine learning methods, su
h as neural

nets and support ve
tor ma
hines, and the book 
ontains a brief 
hapter on su
h meth-

ods. An substantial part of the book, 
hapters 9-13, 
onsists of material from about 10

resear
h papers written for resear
hers in applied �elds and where image analysis forms

a 
ru
ial role. In my masters 
ourse mentioned above I asked the students to read these

papers. But as the papers were written mainly with appli
ation audien
es in mind and


ontained mu
h dis
ussion from the spe
i�
 appli
ation areas, the papers turned out to

be di�
ult for the image analysis students to read. In this book I have therefore written


onsiderably 
ondensed versions of the problems dis
ussed in the papers but now with

image analysis students and resear
hers in mind. Hopefully readers of the book that �nd

some of these appli
ations parti
ularly interesting will go to the original papers for more

details.

The �rst part �Images� in
ludes a very brief introdu
tion to basi
 digital image pro
ess-

ing, in
luding image a
quisition, image �ltering and obje
t feature measurements. After

that pattern re
ognition, typi
ally based on features obtained from obje
ts identi�ed in

images, is treated at some length. Both the 
ase with known 
lasses, 
alled dis
rimination

or supervised learning and the 
ase with unknown 
lasses, 
alled 
lustering or unsuper-

vised learning are 
overed. A 
hapter on ma
hine learning gives a brief introdu
tion to

neural nets and support ve
tor ma
hines with image analysis and pattern re
ognition in

mind. The �rst part is 
on
luded by a 
hapter on statisti
al models for images. Markov

models in two dimensions and Markov 
hain Monte Carlo methods are introdu
ed.

The se
ond part �Spatial Statisti
s� starts with some basi
 properties of spatial random

pro
esses: 
ovarian
e properties and predi
tion (kriging). Spatial point pro
esses are

treated in some detail in
luding image models 
onstru
ted from point pro
esses. The

se
ond part is 
on
luded by a brief introdu
tion to shape analysis and the related problems

of image warping and image mat
hing.

The third part �Appli
ations� 
ontains examples of image analysis applied to problems

in biology, bioinformati
s, remote sensing and mi
ros
opy. The examples 
over analysis
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of data from mi
roarray (DNA 
hip) images, two-dimensional ele
trophoresis, aerial pho-

tographs of forests, analysis of di�usion based on sequen
es of images, and �nally image

analysis of transmission ele
tron mi
rographs.

The book 
on
ludes with a 
hapter with mixed exer
ises, a few of them with detailed

solutions, and an appendix with mathemati
al, 
omputational and statisti
al be
kground.

In preparing this book I have bene�ted a lot from dis
ussions with 
urrent and previous


olleagues and students. [Then follows a long list of names℄

In parti
ular I am deeply indebted to Mar
o Long�ls for detailed dis
ussions on the

subje
ts in the book and many 
omputations, in
luding all 
omputations on the MNIST

data set.
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PART 1. IMAGES

[Here should follow about one page preamble℄
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Chapter 1

Digital images

A digital image may be regarded as a matrix of pixels (pi
ture elements), f = (fij) =
(fij, i = 1, . . . , m, j = 1, . . . , n). Here fij ∈ V where V is the set of possible pixel values,

e.g. V = {0, 1} for a binary image, V = {0, . . . , 255} for a grey level image with 256 grey

levels, 
onveniently 
oded as bytes, and V = {0, . . . , 255}3 for a 
olour image with 256

levels in ea
h of the three 
olours Red, Green and Blue. Thus ea
h pixel is spe
i�ed both

by a lo
ation (i, j) and a pixel value fij . The �rst lo
ation index i spe
i�es the row and

the se
ond index j the 
olumn. Rows are 
ounted either from above (most 
ommon in

the image pro
essing literature) or from below, while 
olumns are 
ounted from the left.

1.1 Examples of images

Example 1.1. Aerial photographs of a thinning experiment.
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Figure 1.1: Aerial photograph of the thinning experiment KU in northern Sealand with

Norway spru
e trees. The position of the aeroplane at image a
qusition was 560 m above

�Nadir�.

Figure 1.1 shows an aerial photograph of the thinning experiment KU, in northern

Sealand, with six subplots whi
h were subje
t to di�erent thinning treatments (Dralle &

Rudemo, 1996). The six treatments were

A No thinning

B Light thinning

C Medium-heavy thinning

D Very heavy thinning

D�B In the youth very heavy thinning, later light thinning

R Heavy row thinning

The photograph was a
quired from an aeroplane at the altitude 560 m above the point

�Nadir� in Figure 1.1. An enlargement of the subplot D is shown Figure 1.2.
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Figure 1.2: Detail of the aerial photograph in Figure 1.1 
overing the subplot D with very

heavy thinning.

A further enlargement of the southeast 
orner of subplot D is shown in Figure 1.3.

Here the individual pixels, ea
h 
orresponding to a square of about 15 
m × 15 
m at

ground level, are visible.

In Figure 1.4 we see subplot D from a photograph a
quired with the aeroplane in a

position to the northwest of the experimental area. The time of a
quisition was August

4 at 10:08 AM, whi
h implies that the sun was in the dire
tion southeast, and the trees

were thus ba
klighted in Figure 1.4.

One obje
t of the image analysis of the photographs obtained in this experiment was

to estimate the number of trees in the di�erent subplots and to estimate the positions of

the tree tops. This appli
ation is further dis
ussed in Chapter 11 in Part 3.
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Figure 1.3: Detail of the aerial photograph in Figure 1.2 showing part of the southeastern


orner of subplot D.

�
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Figure 1.4: Detail of aerial photograph of subplot D of ba
klighted Norway spru
e trees

a
quired from an oblique angle with the aeroplane lo
ated to the northwest of the exper-

imental area shown in Figure 1.1.

Example 1.2. Weed seeds.

Figures 5 and 6 show images of 25 seeds of ea
h of two weed spe
ies: 
urly do
k, Rumex


rispus, and thyrse sorrel, Rumex thyrsi�orus. The images were obtained in the study

(Petersen, 1992), where seeds from 40 weed spe
ies were studied. The obje
t was to �nd

features from images of the weed seeds whi
h enable re
ognition of the individual spe
ies.

Problems of this type will be dis
ussed in Chapter 2 on pattern re
ognition.
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Figure 1.5: Images of seeds of Rumex 
rispus.

In Figures 1.5 and 1.6 we see varying orientations and sizes of the seeds but also some

additional variation in the form of the 
ontours. An important problem for series of

images of this type, in addition to the previously mentioned pattern re
ognition, is to

estimate some kind of average shape of a seed from a given spe
ies, and also to quantify

in terms of statisti
al distributions the probable deviations from this average shape. In

Chapter 8 on image warping and image mat
hing su
h problems will be treated.

�
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Figure 1.6: Images of seeds of Rumex thyrsi�orus.

Example 1.3. Weed plants at an early stage.

Weed and 
rop 
lassi�
ation was studied by (Andersson, 1998) using a dataset with 27

images from ea
h of 8 plant spe
ies: 
arrot, Dau
us 
arota, whi
h was the 
rop, and 7

weed spe
ies. Figure 1.7 shows photographs of two 
arrot plants and two ladythumb

smartweed plants. Similarly, Figure 1.8 shows photographs of two fumitory plants and

two 
orn spurry plants.
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Figure 1.7: Above two images of plants of 
arrot, Dau
us 
arota, L., and below two

images of plants of ladythumb smartweed Polygonum persi
aria, L.
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The images were obtained with a Canon EOS500N still 
amera with a 80 mm zoom

lens and mounted on a tri-pod pointing dire
tly towards ground. The images obtained

were in 
olour, although they are shown as grey-level images in Figures 1.7 and 1.8. The


orresponding 
olour images may be obtained from

http://www.math.
halmers.se/�rudemo/Images/WeedPlants/WeedPlants.html

The number of pixels of the images was originally 512×768 but was redu
ed to 512×512
by 
utting. The pixel width 
orresponds to 0.195 mm at ground level.

Figure 1.8: Above two images of plants of fumitory, Fumaria o�
inalis, L., and below

two images of plants of 
orn spurry, Spergula arvensis, L.

�
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Example 1.4. Two-dimensional ele
trophoresis images.

Yeasts are uni-
ellular fungi whi
h reprodu
e rapidly and thus are highly suitable as

model systems for more 
ompli
ated eu
aryoti
 spe
ies su
h as mammals. In parti
ular,

the genome of baker's yeast, Sa

haromy
es 
ervisiae, was fully sequen
ed by (Go�eau

et al., 1996).

Figures 1.9 and 1.10 show four images from an experiment with baker's yeast and two

treatments 
orresponding to growth under normal 
onditions and growth under stress

with salt added to the nutrition solution, see (Gustafsson et al., 2002). In the experiment

there were �ve repetitions both for the standard treatment, 
orresponding to growth

in a standard solution, and the treatment with growth under salt stress, whi
h in this

experiment 
orresponds to growth in a 1 M sodium 
hloride solution. Figure 1.9 shows

the images obtained from two repetitions with the standard treatment and Figure 1.10

shows images from two repetitions with salt added.

Ea
h spot in a 2D ele
trophoresis image su
h as in Figures 1.9 and 1.10 
orresponds

to a protein with a spe
i�
 isoele
tri
 point (pI) determined by isoele
tri
 fo
using in the

horizontal dire
tion as a �rst step and a spe
i�
 mole
ular weight determined by verti
al

separation in a se
ond step. For instan
e, under ideal 
onditions the protein mole
ules

perform in the se
ond

Figure 1.9: Images from 2D gel ele
trophoresis of baker's yeast grown in a standard

solution.
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step a verti
al Brownian motion with drift from a starting position at the top su
h that

small mole
ules travel a longer way than large mole
ules. Typi
ally one 
an separate

proteins in the pH range, or more pre
isely the pI range, 4�7 and with mole
ular weights

in the range 5�200 kDa. Under favourable 
onditions thousands of proteins may thus be

resolved, and the size of a spot in the ele
trophoresis image is a measure of the level of

the 
orresponding protein.

The basi
 problem in an experiment su
h as the one des
ribed with yeast grown under

standard 
onditions and under salt stress is to �nd those proteins that are upregulated

and those that are downregulated under stress. As a �rst step we need to �nd those spots

in the four images in Figures 1.9 and 1.10 that 
orrespond to ea
h other, that is, whi
h

measure the same protein. This is 
alled mat
hing of the images and may be performed

by a warping of images onto ea
h other. It is 
lear from an inspe
tion of the two images in

Figure 1.9, and similarly the two images in Figure 1.10, that also for experimental units

that have re
eived the same treatment the lo
ations of spots 
orresponding to one protein


an vary 
onsiderably due to random variation. And this random variation seems to be

more 
ompli
ated than the variation 
orresponding to a Brownian motion as referred to

above.

Figure 1.10: Images from 2D gel ele
trophoresis of baker's yeast grown under stress in a

solution with salt added.

�
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Example 1.5. Two-
olour spotted mi
roarrays.

In mi
roarray analyses the expression level of thousands of genes 
an be estimated simulta-

neously. In two-
olour spotted mi
roarray analysis DNA fragments 
orresponding to di�erent

genes are typi
ally arrayed on glass slides in spots with a diameter of the order 100 µm.

Gray scale image, 020725cy53x8l30g40avg4.tif, log−transformed Gray scale image, 020725cy3wtl30g40avg4.tif, log−transformed

Figure 1.11: Images from an experiment with two varieties of Arabidopsis, Cy5 
hannel (left)

for a transgeni
 line and Cy3 
hannel (right) for the wild-type in a two-
olour spotted mi
roarray

experiment with 452 genes. The upper half with 20 rows 
ontains all the 452 genes and the lower

half is a repetition of the upper half. The images are shown inverted (high intensity shown as

bla
k) and a logarithmi
 s
ale transformation of intensities is also used.

Complementary DNA (
DNA) is synthesized from two sour
es of RNA of di�erent origins and

labeled with di�erent �uores
ent dyes, for instan
e, one with the green dye Cy3 and the other

with the red dye Cy5. The pools of labeled 
DNA are mixed together and allowed to hybridize

with the DNA fragments in the di�erent spots on the glass slide. The slide is illuminated with

two laser light sour
es ex
iting the two �uores
ent dyes and the intensity of emitted �uores
ent

light is measured at two suitably 
hosen wavelengths.

Figure 1.11 shows grey-level images for the two 
hannels of one array in an experiment


omparing RNA from two varieties of Arabidopsis plants, transgeni
 line 3x8 and wild-type wt

(Kristensen et al., 2005). For 
larity of display the images are shown inverted, that is bla
k


orresponds to high intensity levels and before inversion a logarithmi
 transformation is also

used. Data transformations and spot shape models for spotted mi
roarrays are dis
ussed in

(Ekstrøm et al., 2004) and applied to data from this experiment.
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Gray scale image, 020725cy53x8l30g40avg4.tif

Gray scale image, 020725cy3wtl30g40avg4.tif

Figure 1.12: Blow-up of rows 6�8 and 
olumns 1�4 in Figure 1.11 with the Cy5 
hannel for the

transgeni
 line above and the Cy3 
hannel for the wild-type below.

Figure 1.12 shows a blow-up with 3 rows and 4 
olumns for both 
hannels. One 
ru
ial

question analysed in experiments of this type is to �nd out whi
h genes that are di�erentiably

expressed, that is show signi�
antly higher or lower intensities. In this experiment it turned

out that remarkably few genes in the transgeni
 line were a�e
ted in the 
omparison with the

wild-type. One of the few genes a�e
ted was the gene that 
orresponds to the �rst spot in the

middle row in Figure 1.12. As indi
ated in the �gure it was upregulated in the transgeni
 line.

However, random errors are large in this type of experiments and typi
ally one needs to repeat

the experiment for several slides and make a subsequent statisti
al analysis of the results, 
f.

Chapter 9. �
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Example 1.6. Di�using parti
les.

Colloidal parti
les in a suspension perform randommotion essentially as a three-dimensional

Brownian motion with the di�usion 
oe�
ient as a 
ru
ial parameter. However, as the

parti
les 
ome 
lose they intera
t and this intera
tion may be des
ribed by an intera
tion

potential.

A series of images were obtained by video mi
ros
opy, see (Kvarnström, 2005), in a

joint proje
t with Lennart Lindfors, AstraZene
a, Mölndal. The obje
t in this proje
t

was to estimate the di�usion 
oe�
ient and, if possible, also the parti
le intera
tion

potential.

Figure 1.13: Image obtained by video mi
ros
opy showing di�using parti
les. Parti
les

in pho
us are shown as small distin
t bla
k obje
ts.
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Images of the di�using parti
les were obtained with a time interval of 0.02 se
onds

between images, and two 
onse
utive images are shown in Figure 1.13 and Figure 1.14.

Parti
les in fo
us are shown as small distin
t bla
k obje
ts, while parti
les out of pho
us

are extended, the degree of extension depending on the distan
e to the pho
al plane. An

obje
t 
orresponding to a parti
le out of pho
us is further either white or bla
k in its


entral part 
orresponding to the parti
le being above or below pho
us, respe
tively.

Figure 1.14: Image obtained by video mi
ros
opy showing di�using parti
les. This image

was obtained 0.2 se
onds after the image in Figure 1.13.

�

Example 1.7. Handwritten digits.

The MNIST database of handwritten images 
onsists of a training set with 60000 digits
and an evaluation set of 10000 digits, see (LeCun et al., 1998) and

http://yann.le
un.
om/exdb/mnist/

Examples of images from this set is given in Figure 1.15, a
tually the �rst 100 digits

from the training set. The digit images are 28×28 pixel grey level images obtained from

20x20 pixel binary bla
k and white images. The MNIST dataset has been used extensively

18



as a proving ground for pattern re
ognition methods and it will also be used substantially

in this book in Chapters 2, 3 and 8.

Figure 1.15: Examples of 100 handwritten digits from the MNIST database.

�
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1.2 Image �ltering

Let w = (wk,l) = (wk,l, k = −p,−p + 1, . . . p, l = −p,−p + 1, . . . , p) be a matrix of real

numbers. A new image g may be 
onstru
ted from a given image f by linear �ltering,

gij =

p
∑

k=−p

p
∑

l=−p

wk,lfi+k,j+l. (1.1)

A simple �lter example is a 3×3 averaging �lter

w =





w−1,−1 w−1,0 w−1,1

w0,−1 w0,0 w0,1

w1,−1 w1,0 w1,1



 =
1

9





1 1 1
1 1 1
1 1 1



 . (1.2)

A more smooth averaging �lter is obtained by use of 
ir
ular 2D Gaussian �lter with

a varian
e parameter σ2
,

wk,l = c exp(− 1

2σ2
(k2 + l2)), (1.3)

where c is 
hosen su
h that

p
∑

k=−p

p
∑

l=−p

wk,l = 1, (1.4)

and p is 
hosen so that wk,l is small outside the region determined by |k| ≤ p and |l| ≤ p.
Chose, for instan
e, p to be the smallest integer whi
h is at least as large as 3σ.

Care has to be taken in (1.1) when the indi
es in the summation fall outside the original

image. One possibility is to restri
t the �ltering to those pairs (i, j) for whi
h all indi
es

i+k and j+ l in (1.1) fall inside the image f , another possibility is to extend the original

image in a suitable way, and a third possibility is to modify the �lter 
lose to the image

edges.

The averaging �lter (1.2) is relatively vulnerable to large errors in individual pixels. A

more robust �lter is the nonlinear median �lter whi
h for 3×3 neighbourhood is given by

gij = median{fi+k,j+l : |k| ≤ p, |l| ≤ p} (1.5)

with p = 1. Here median(A) denotes the median for a �nite set A of real numbers.

Image �ltering 
an also be used to emphasize edges. Thus a linear �lter with

w =





w−1,−1 w−1,0 w−1,1

w0,−1 w0,0 w0,1

w1,−1 w1,0 w1,1



 =
1

6





−1 0 1
−1 0 1
−1 0 1



 . (1.6)

will tend to emphasize verti
al edges, and similarly the �lter

w =





w−1,−1 w−1,0 w−1,1

w0,−1 w0,0 w0,1

w1,−1 w1,0 w1,1



 =
1

6





−1 −1 −1
0 0 0
1 1 1



 . (1.7)

will tend to emphasize horisontal edges.
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Figure 1.16: Upper part: Smoothed version of the image in Figure 1.2 by use of 
ir
ular

2D Gaussian �lter with σ = 4.5 pixel-widths. Lower part: The same image viewn in

perspe
tive as a 3D surfa
e with light intensity as the verti
al 
oordinate.

Example 1.8. Aerial photographs of a thinning experiment. Continuation.

Let us smooth the image in Figure 1.2 by use of a 
ir
ular 2D Gaussian �lter with a suit-

ably 
hosen parameter σ to see if we 
an estimate the lo
ations of the trees as 'whiteness'

maxima in the smoothed image. With σ = 4.5 we �nd the image in Figure 1.16.

From Figure 1.16 and Figure 1.2 we see that maxima in the smoothed image seem to


orrespond well to the lo
ation of the trees. This is also indi
ated by Figure 1.17 whi
h

shows the lo
ations of the maxima of the smoothed image (Here we have only in
luded

maxima whi
h have a distan
e from the nearest edge whi
h ex
eeds 3σ.)
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Figure 1.17: Lo
ation of maxima in Figure 1.16.

�

1.3 Histograms, thresholding and segmentation

An important 
hara
teristi
 of an image is its histogram. For a grey s
ale image, f =
(fij) = (fij , i = 1, . . . , m, j = 1, . . . , n), where fij ∈ V with V as a set of real numbers,

the histogram is de�ned as

hk = 
ard({(i, j) : fij ∈ Ik}), k = 1, . . . , K, (1.8)

where 
ard(A) denotes the number of elements in the set A and {I1, . . . , IK} is a set of

disjoint intervals with V as there union.

If an image 
onsists of two parts with grey levels that do not overlap too mu
h the

histogram 
an be used to �nd a threshold level t whi
h enables us to divide the image into

two segments 
orresponding to these parts. Thus we 
an de�ne a binary image b = (bij)
with two levels, 0 and 1, by putting

bij =

{

0 if fij ≤ t
1 if fij > t.

(1.9)

Segmentation by use of a threshold level found by inspe
tion of the histogram of an image

is illustrated in the following example.
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Example 1.9. Weed seeds. Continuation.

In the upper part Figure 1.18 we see one of the seeds from Figure 1.5, a
tually the seed

in the lower left 
orner rotated 90 degrees. In the lower part of the �gure we see the


orresponding histogram.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1000

2000

3000

4000

5000

6000

7000

Figure 1.18: To the left an image of a Rumex 
rispus seed and to the right the 
orre-

sponding histogram.

It seems 
lear that a threshold level somewhere between t = 0.5 and t = 0.8 would

be suitable. In Figure 1.19 we see segmentations with the levels t = 0.5, upper left,

t = 0.8, upper right, and t = 0.65, lower left. In the lower right part of the image we

see a segmentation obtained from the lower left image by �lling out the white �holes�, an

operation that 
an be performed in several ways.

�
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Figure 1.19: Binary images obtained by thresholding of the image in Figure 1.18 with

the levels t = 0.5 (upper left), t = 0.8 (upper right), and t = 0.65 (lower left). The lower
right image is obtained from the lower left image by �lling out holes.
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1.3.1 Segmentation by a normal mixture model

In many 
ases, as in Example 1.9 with a bimodal histogram it is fairly easy to separate


omponents in a mixture. We will now des
ribe a normal mixture model whi
h 
an be

used to get a pre
ise threshold value and whi
h also 
an be used in 
ases where there are

not two modes in the histogram but one 
omponent only shows up as a prolonged tail.

We suppose that the sets Ik in (1.8) 
onsist of 
onse
utive intervals with midpoints xk
and equal lengths ∆. Let φ(x) = (1/

√
2π) exp (−x2/2) and put

f(x; p1, µ1, σ1, µ2, σ2) =
p1
σ1
φ((x− µ1)/σ1) +

(1− p1)

σ2
φ((x− µ2)/σ2). (1.10)

We note that f(·; p1, µ1, σ1, µ2, σ2) integrates to one, and if the interval length ∆ is small

we should have

∆
∑

k

f(xk; p1, µ1, σ1, µ2, σ2) ≈ 1. (1.11)

Let n =
∑

k hk denote the total number of pixels and assume that

hk ≈ n∆f(xk; p1, µ1, σ1, µ2, σ2). (1.12)

To estimate the parameters p1, µ1, σ1, µ2, σ2 we minimize

Q(p1, µ1, σ1, µ2, σ2) =
∑

k

(hk − n∆f(xk; p1, µ1, σ1, µ2, σ2))
2. (1.13)

Example 1.10. Weed plants at an early stage. Continuation

In the upper left part of Figure 1.20 we see the grey level image of a weed plant. The

original a image is 
olour a image with three 
hannels, blue, green and red. To separate

plant pixels from soil pixels we �rst regard the green 
hannel whi
h is shown in the upper

right part of Figure 1.20. To improve the separation of plant and soil pixels we 
onsider

the normalized green 
olour, whi
h for pixel (i, j) has the pixel value

gij = Round( 255Gij / (Bij +Gij +Rij) + 1), (1.14)

where Bij , Gij and Rij are the blue, green and red 
hannel values for the 
olour image, and

Round(·) denotes rounding to the nearest integer. The normalized green image is shown

in the lower left part of Figure 1.20. The histogram for the normalized green 
hannel

is shown in the left part of Figure 1.21. Can you suggest why it is useful to normalize

the green 
hannel before 
omputing the histogram? Now we �t the normal mixture

model given by (1.10) and (1.12) for the normalized green 
hannel by minimizing Q in

(1.13) with the restri
tion µ1 > µ2. Thus the �rst 
omponent should 
orrespond to plant

pixels. Let p̂1, µ̂1, σ̂1, µ̂2, σ̂2 denote the estimated parameters. In Figure 1.21 we show the

histogram and the �tted normal 
omponents.

To segment an images we 
ould then 
hoose to 
onsider a pixel (i, j) as a plant pixel

if gij > T , where the threshold T̂ is obtained by solving the equation

p̂1
σ̂1
φ((T̂ − µ̂1)/σ̂1) =

(1− p̂1)

σ̂2
φ((T̂ − µ̂2)/σ̂2) (1.15)
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(A) (B)

(C) (D)

Figure 1.20: Images of a weed plant, lamb's quarter Chenopodium album, L., (A) grey

s
ale image, (B) green 
hannel image, (C) normalized green 
hannel image, and (D)

binary bla
k and white image after thresholding.
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Figure 1.21: Left: histogram for the normalized green 
hannel shown in the lower left

part of Figure 1.20 and the two 
omponents shown as fully drawn and dashed 
urves.

Right: the two 
omponents shown with a log s
ale on the verti
al axis; here the threshold

where the two 
urves 
ross 
an be seen.

and otherwise as a soil pixel. In the lower right part of Figure 1.20 we show the resulting

binary bla
k and white image obtained by thresholding the normalized green 
hannnel.

For the image shown in Figure 1.20 we �nd the following parameter estimates for the two


omponent normal mixture model

p̂1 = 0.263, µ̂1 = 126, σ̂1 = 7.22, µ̂2 = 79.0, σ̂2 = 3.02, T̂ = 93.6. (1.16)

�
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1.4 The Hough transform

Often one tries to �nd 
urves of spe
i�
 types in images, for instan
e 
ir
les, ellipses or

lines. A useful method to �nd su
h 
urves is the Hough transform (Hough, 1959; Duda

& Hart, 1972). We shall here only look at the use of the Hough transform to �nd straight

lines.

v

r

r = x cos(v) + y sin(v)

x

y

Figure 1.22: Representation of line in terms of angle and distan
e to origo.

Suppose that we have found a set S of points in an image, su
h as the set of tree tops

in Figure 1.17. We are interested in �nding out whether some of these points lie on lines.

It is here 
onvenient to use a representation of a line in terms of the distan
e r to the

origin and the angle that the normal from the origin to the line forms with the horizontal

axis,

r = xcos(v) + ysin(v), (1.17)

see Figure 1.22. A point (x, y) in the original image 
orresponds now to a 
urve in the

(r, v)-plane obtained by regarding r as a fun
tion of v in (1.17) for �xed (x, y). In pra
ti
e
we dis
retize the (r, v)-plane into pixels regarding it as an image H and start by assigning

zero to all the pixels in H . Then for ea
h point (x, y) ∈ S we add one to all pixels in H
whi
h the 
urve (1.17) passes through.

For the set S of maxima in Figure 1.17 the 
orresponding Hough transform for �nding

lines is shown in Figure 1.23. In parti
ular one �nds in Figure 1.23 three maxima in

the upper left part all 
orresponding to the angle v equal to 16 degrees (a 
orresponding
ti
k mark is pla
ed on the horizontal axis) and three distan
es r (marked with three ti
k

marks on the verti
al axis 
lose to the maximal distan
e rmax. The 
orresponding three

lines are shown in Figure 1.24.

The three lines found in Figure 1.24 
orrespond a
tually to three lines in plot R in

Figure 1.1 with �Heavy row thinning�, that is from the original planting in rows thinning

is performed by eliminating totally some rows keeping, say, only every third row. See

also Figure 1.2 where the rows are 
learly seen in the right part of the image.
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Figure 1.23: Hough transform for Figure 1.17 with angle v on the horizontal axis extending
from 0 to 180 degrees and distan
e r on the verti
al axis extending from −rmax to rmax,

where rmax is the length of the diagonal in Figure 1.2.

Figure 1.24: Lo
ation of maxima in Figure 1.16 together with three lines found by the

Hough transform.
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1.5 Morphologi
al operations

Morphologi
al operations 
an be used to regularize or 
lean binary images. Here we will

only des
ribe some of the most basi
 operations su
h as erosion, dilation, opening and


losing. These operations are de�ned by a stru
ture element S 
onsisting of a small

number of pixels with one spe
i�
 pixel 
alled referen
e pixel. We 
an, for instan
e,


hoose S as a 3×3 set of pixels with the 
entre pixel as referen
e. Let Si,j denote the

stru
ture element moved with referen
e pixel to (i, j). Let A be a set of pixels su
h as

the set 
onsisting of bla
k pixels in one of the four images in Figure 1.19.

The erosion of A, denoted A⊖ S, is de�ned by

A⊖ S = {(i, j) : Si,j ⊆ A} (1.18)

The dilation of A, denoted A⊕ S, is de�ned by

A⊕ S = (Ac ⊖ S)c, (1.19)

where Ac
is the 
omplement af A, that is the set of pixels outside A.

The operations opening and 
losing, denoted ψS(A) and φS(A), are de�ned by

ψS(A) = (A⊖ S)⊕ S ′, (1.20)

where S ′
denotes the stru
ture element rotated 180o around the referen
e pixel, and

φS(A) = (A⊕ S)⊖ S ′. (1.21)

Thus an opening 
onsists of an erosion followed by a dilation.

1.6 Obje
t feature measurements

In 
onne
tion with pattern re
ognition as mentioned in examples 1.2 and 1.3 we seek

features of the obje
ts, in the examples seeds and plants, whi
h would enable us to

distinguish between di�erent 
lasses of obje
ts. Examples of su
h features are areas

and perimeters of obje
ts. Consider a set A of pixels as in the previous se
tion on

morphologi
al operations. The area of A is typi
ally de�ned as the number of pixels in

A, possibly with some regularization operation �rst applied to A.

To de�ne the perimeter we need the 
on
ept of neighbouring pixels. Typi
ally we 
on-

sider neighbourhoods 
onsisting of either four or eight neighbours. The 4-neighbourhood

of pixel (i, j) 
onsists of the four pixels (i− 1, j), (i+ 1, j), (i, j − 1) and (i, j + 1). The
8-neighbourhood of pixel (i, j) 
onsists of the aforementioned pixels and in addition the

pixels (i− 1, j − 1), (i− 1, j + 1), (i+ 1, j − 1) and (i+ 1, j + 1).

Edge pixels of a set A may be de�ned as those pixels of A that have at least one

neighbour from Ac
, the 
omplement of A. Let N(A) denote the number of edge pixels of

A with at least one 4-neighbour in Ac
. Then one 
an show that

perimeter(A) = N(A)/k4, (1.22)
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where

k4 =
4

π

∫ π/4

0

cos θ dθ =
4

π/
√
2
≈ 0.900, (1.23)

is an approximately unbiased estimate of the perimeter of A provided that all orientations

of the perimeter are approximately equally 
ommon. The unit of the perimeter estimate

(1.22) is pixel width. As with the area, it may be useful to regularize A in some way

before evaluating the perimeter. For more a

urate perimeter estimates, see (Glasbey &

Horgan, 1995), pp 165�168, and further referen
es given there.

A feature often used is the 
ompa
tness of an obje
t de�ned to be


ompa
tness(A) = 4π
area(A)

(perimeter(A))2
. (1.24)

Sometimes it is useful to 
ompare a set A of pixels with the 
onvex hull of A, that is
the smallest 
onvex set 
ontaining A. Some 
are has to taken in de�ning 
onvexity for a

set of pixels; one possibility is to de�ne 
onvexity for the point set of pixel 
entres. The


onvex perimeter of a set A is then de�ned to be the perimeter of the 
onvex hull of A.
One useful feature is the 
onvexity of A de�ned by


onvexity(A) =

onvex_perimeter(A)

perimeter(A)
. (1.25)

1.6.1 Moment features

Consider a grey level or binary image f = (fij) = (fij), and letA ⊆ {1, . . . , m}×{1, . . . , n}
be a subset of pixels, typi
ally 
orresponding to an obje
t but sometimes the whole image.

The moment of order (p, q) in A is de�ned as

mpq = mpq(A) =
∑

(i,j)∈A

ipjqfij, p = 0, 1. . . . , q = 0, 1, . . . , (1.26)

and the 
entroid is de�ned as


entroid = 
entroid(A) = (
m10

m00
,
m01

m00
). (1.27)

We also 
onsider 
entral moments (with respe
t to the 
entroid)

µpq = µpq(A) =
∑

(i,j)∈A

(i− m10

m00
)p(j − m01

m00
)qfij , p+ q > 1. (1.28)

One 
ould note that 
entral moments are invariant with respe
t to translation of obje
ts.

It is possible to 
onstru
t moments that are also invariant with respe
t to rotations. Two

su
h se
ond order moments are

µ20 + µ02 and (µ20 − µ02)
2 + 4µ2

11. (1.29)

An informative dis
ussion of di�erent types of moments with literature referen
es 
an be

found in (Glasbey & Horgan, 1995), pages 156�161.
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In Example 1.10 we saw how we 
ould dis
riminate between plant and soil pixels

quite well by use of a suitable feature, the normalized green 
olour. To dis
riminate

between 
lasses of obje
ts we 
an as will be seen in detail in the next 
hapter on pattern

re
ognition use a number of suitable 
hosen feature variables. In the following example

we will 
onsider two feature variables and a suitable plotting te
hnique.

Example 1.11. Handwritten digits. Continuation

In this example we will 
onsider dis
rimination between digits �one� and �two� by use

of two se
ond order moments. We use digits �one� and �two� among the �rst 400 digits in

MNIST. Plotting moment µ11 on the verti
al axis versus moment µ20 on the horizontal

axis we get the plot shown in Figure 1.25. Try to draw by free hand �rst a straight line
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Figure 1.25: Plot of µ11 versus moment µ20 for handwritten digits digits 1 and 2 among

the �rst 400 digits in the MNIST data base.

and then an ellipse that gives as good a dis
rimination as possible betweens the �one�

and �two� digits. In the next 
hapter we shall des
ribe systemati
 methods to draw su
h

boundaries. �
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1.6.2 Exer
ises

The images used in the exer
ises below may be found at

http://www.math.
halmers.se/�rudemo/images.html

Exer
ise 1.1. Let R, G and B denote the values in the red, green and blue 
hannels for one

of the images from Example 1.3. Get the grey-level image 
orresponding to normalized

green,

g =
G

R +G+B
.

Exer
ise 1.2. Find the histogram for the image of Exer
ise 1.1. Try to segment the image

by use of the histogram.

Exer
ise 1.3. Compute area, perimeter and 
ompa
tness for the green segment for the

image of the two previous exer
ises.

Exer
ise 1.4. Get one of the seed images from Example 1.2. Note that one has to resample

the image to get the 
orre
t form of the seed. How 
an that be done? After resampling,

redu
e the number of 
olumns to get a square image.

Exer
ise 1.5. Apply the averaging �lter (1.2), the median �lter (1.5) and the edge em-

phasizing �lters (1.6) and (1.7) to the image of the previous exer
ise.

Exer
ise 1.6. Consider the image from Exer
ise 1.4. Compute the histogram and trans-

form to a binary image. Zoom in to see the individual pixels at the obje
t edge. Apply the

operations erosion, dilation, opening and 
losing. What is the e�e
t of theses operations?

What happens when one iterates these operations?

1.6.3 Literature on image analysis

There is a wealth of books on digital image pro
essing. An ex
ellent treatment from

a statisti
al point of view fo
ussing on examples from biology is given in (Glasbey &

Horgan, 1995). A mathemati
ally oriented text is (Rosenfeld & Kak, 1982), whi
h is now

a bit old but still quite useful. A 
omprehensive treatment of image pro
essing, analysis

and ma
hine vision may be found in (Sonka et al., 2015).
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Chapter 2

Pattern re
ognition

Humans are parti
ularly good at re
ognizing many patterns su
h as fa
es and voi
es of

other individuals. A possibly harmful behaviour of another person or the appearan
e

of a possibly dangerous animal may also be qui
kly identi�ed. Obviously su
h pattern

re
ognition abilities have implied a survival advantage during the evolution of humans.

By training humans 
an also be astonishingly good at tasks su
h as re
ognizing the

spe
ies of a bird at a long distan
e, perhaps by using a 
ombination of features su
h as the

bird's shape and 
olours, its vo
alization and its mode of �ight. The human observer's

previous knowledge of how 
ommon possible bird spe
ies are in the 
urrent environment

at the given time of the year may also be highly useful in identifying the spe
ies.

One important task in pattern re
ognition based on digital images is to try to mimi


human pattern re
ognition by 
hoi
e of suitable features for re
ognizing and 
lassifying

observed obje
ts. We 
an divide the �eld of pattern 
lassi�
ation into two dis
iplines

depending on the our previous knowledge of the possible 
lasses. The most well developed

dis
ipline is dis
riminant analysis where we assume that we have a given number of 
lasses

and that we have a new obje
t that we want to assign to one of these 
lasses. Typi
ally

we also assume here that we have a set of obje
ts for whi
h we know the 
lasses. Su
h

a data set, often 
alled a training set, will help us to 
hoose the relevant features of the

obje
ts and to design the algorithm for re
ognizing the 
lass by use of the 
hosen features.

Therefore dis
riminant analysis is often 
alled supervised pattern re
ognition or learning

with a tea
her.

In the se
ond dis
ipline, 
alled 
luster analysis we do not assume any prior knowledge

of possible 
lasses. However, we will typi
ally assume that we also here have a given

data set but without any 
lassi�
ation. The data set will be used to �nd 
lusters, and

the dis
ipline is often referred to as unsupervised pattern re
ognition or learning without

a tea
her.

We will start by dis
ussing dis
riminant analysis. Several of the sets of images in the

previous 
hapter, the weed seeds in Example 1.2, the weed plants in Example 1.3 and the

handwritten digits in Example 1.7 des
ribe problems that 
all for dis
riminant analysis.
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2.1 Optimal dis
rimination with two 
lasses and a one

feature variable

Suppose that we have two 
lasses ω1 and ω2 and a real-valued feature variable X for

ea
h obje
t to be 
lassi�ed. Assume that we know how 
ommon the two 
lasses are, that

is, we know the prior probabilities of the two 
lasses. Assume also that we know the

distributions of the feature variable 
orresponding to the two 
lasses.

For i = 1, 2, let πi denote the prior probability of 
lass ωi and let fi be the probability
density of X for an observation from 
lass ωi, or the probability fun
tion, fi(x) = P (X =
x), if X is a dis
rete random variable.

The problem of de
iding if an obje
t 
omes from 
lass ω1 or ω2 is to be based on

observation of the 
orresponding feature variableX . Thus we need to spe
ify two disjoint

sets A1 and A2 with A1 ∪ A2 = R and 
hoose 
lass ωi if X ∈ Ai. To �nd optimal sets

we need further spe
i�
ation 
orresponding to how 
ostly it is to make di�erent kinds of

errors, that is the 
ost of 
hoosing 
lass ω1 when ω2 is true and vi
e versa. Let us �rst

assume that these 
ost are equal, and more spe
i�
ally, that we want to minimize the

probability of mis
lassi�
ation.

It turns out that the probability of mis
lassi�
ation is minimized if we use the following

rule:


hoose 
lass ω1 if π1f1(x) > π2f2(x), (2.1)


hoose 
lass ω2 if π1f1(x) < π2f2(x). (2.2)

To show that a de
ision rule satisfying (2.1) and (2.2) is optimal we note that the prob-

ability of mis
lassi�
ation is generally given by

Pr(mis
lassi�
ation) = Pr(ω1 true and mis
lassi�
ation) + Pr(ω2 true and mis
lassi�
ation)

= Pr(ω1) Pr(mis
lassi�
ation|ω1) + Pr(ω2) Pr(mis
lassi�
ation|ω2)

= π1

∫

A2

f1(x)dx+ π2

∫

A1

f2(x)dx.

In Figure 2.1 the set A1 extends up to a threshold t while A2 is 
hosen above t. The

probability of mis
lassi�
ation is equal to the area of the 
oloured region, and it follows

that it is minimized pre
isely when the threshold is the horisontal lo
ation of the 
rossing

point of the two 
urves. Thus the mis
lassi�
ation probability is minimized if A1 and A2

are 
hosen as in (2.1) and (2.2). (We note that x-values su
h that π1f1(x) = π2f2(x) may

be brought to either A1 or A2 without a�e
ting the mis
lassi�
ation probability.)

Example 2.12. Two-
lass dis
riminant analysis with estimated normal densities.

Suppose that we have a training set with n1 obje
ts from 
lass ω1 and n2 obje
ts from


lass ω2. We assume that we have obtained random samples from both 
lasses and that

the two samples are independent. We assume further that the variable X is normally

distributed with expe
tation µi and varian
e σ
2
i in 
lass ωi, i = 1, 2, where we assume that

expe
tations are di�erent in the two 
lasses while the varian
es may either be assumed
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Figure 2.1: Probability of mis
lassi�
ation is given by the 
oloured area. The set A1

where 
lass ω1 is 
hosen extends here up to the threshold t, while A2 is 
hosen above t.

to be equal or unequal. Let the observations be denoted Xim, m = 1, . . . , ni, i = 1, 2.
Then it is natural to estimate the expe
tation in 
lass ωi by

µ̂i =
1

ni

ni
∑

m=1

Xim, i = 1, 2. (2.3)

If we make no assumption on equality of the varian
es we use the varian
e estimates

s2i =
1

ni − 1

ni
∑

m=1

(Xim − µ̂i)
2, i = 1, 2, (2.4)

but if we assume varian
e equality we use the estimate

s2 =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
(2.5)

for the 
ommon varian
e. ✷ �

We note that 
ompared to Example 2.12 we have in Example 1.10, where we have


lassi�ed pixels into soil or plant pixels, a similar but more 
ompli
ated situation as we

here do not have training sets for soil and plant pixels but use the model spe
i�ed by

(1.10) and (1.12) for all pixels. Also the proportions of soil and plant pixels are estimated.

2.2 Optimal dis
rimination with k 
lasses and a d-

dimensional feature ve
tor

Suppose now that we have k 
lasses ωi, i = 1, . . . , k, and a d-dimensional feature ve
tor

X for ea
h obje
t to be 
lassi�ed. Let πi be the prior probability of 
lass ωi and let fi be
the probability density of X for an observation from 
lass ωi, i = 1, . . . , k. Let us further
assume that the 
ost of assigning an obje
t to 
lass ωi is c(i|j) when the true 
lass is ωj.

Rather than minimizing the mis
lassi�
ation probability we now want to minimize the

expe
ted 
ost.

A de
ision fun
tion for our problem is now spe
i�ed by a partition of d-dimensional

spa
e R
d
into k disjoint sets A1, . . . , Ak with ∪k

i=1Ai = R
d
. If X ∈ Ai we assign our obje
t

to 
lass ωi, i = 1, . . . , k.
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Now it turns out that the expe
ted 
ost is minimized if the sets Ai satisfy the following


ondition

x ∈ Ai ⇒ subs
ript i minimizes

k
∑

j=1

c(i|j)πjfj(x). (2.6)

If the sum is minimized by several i-values for a 
ertain x-value, then this x-value may

be allo
ated to Ai for any of these i-values.

To show that a de
ision rule whi
h satis�es (2.6) is optimal let us 
onsider an arbitrary

de
ision fun
tion spe
i�ed by a partition A1, . . . , Ak of R
d
. The expe
ted 
ost for this

de
ision rule may be written

k
∑

i=1

∫

Ai

k
∑

j=1

c(i|j)πjfj(x)dx,

from whi
h it follows that a de
ision rule satisfying the 
ondition (2.6) is optimal.

Let us now assume that all mis
lassi�
ations have the same 
ost, and that the 
ost of a


orre
t de
ision is zero. Our 
riterion then implies that we shall minimize the probability

of mis
lassi�
ation, and it is not di�
ult to see that we shall prefer 
lass ωi to 
lass ωj if

πifi(x) > πjfj(x) (2.7)

similar to what we found previously for the 
ase with two 
lasses and one feature variable.

2.3 Normally distributed feature ve
tors, linear and

quadrati
 dis
rimination

A d-dimensional random (
olumn) ve
tor X is said to be N(µ,C), that is have a d-
dimensional normal distribution with expe
tation ve
tor µ and 
ovarian
e matrix C, if
X has the d-dimensional density fun
tion

fX(x) =
1

(2π)d/2(detC)1/2
exp(−1

2
(x− µ)TC−1(x− µ)), (2.8)

where detC denotes the determinant of the matrix C.

An important spe
ial 
ase in dis
rimination is to assume that the d-dimensional fea-

ture ve
tor X has a multivariate normal distribution N(µi,Ci) in 
lass ωi, i = 1, . . . , k.
Sometimes the 
ovarian
e matri
es are assumed to be equal, that is

Ci = C, i = 1, . . . , k. (2.9)

Let us �rst assume that the 
ovarian
e matri
es are all equal to C and that we want to

minimize the probability of mis
lassi�
ation. A 
omputation from (2.7) and (2.8) shows

that if X = x is observed we shall prefer 
lass ωi to ωj if

(µi − µj)
TC−1(x− 1

2
(µi + µj)) > ln

πj
πi
. (2.10)
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We note that (2.10) is linear in x and this 
ase is therefore often 
alled linear dis
rimi-

nation.

Let us now �nd a 
orresponding rule without the assumption (2.9). It follows from

(2.7) and (2.8) that we shall prefer 
lass ωi to ωj if

1

2
xT (C−1

j − C−1
i )x+ (µT

i C
−1
i − µT

j C
−1
j )x+

1

2
(µT

j C
−1
j µj − µT

i C
−1
i µi)

> ln
πj(detCi)

1/2

πi(detCj)1/2
. (2.11)

We see that the border between the two regions in d-dimensional spa
e where we should or

should not prefer ωi to ωj is given by a quadrati
 surfa
e. When we allow the 
ovarian
e

matri
es for the 
lasses to vary we therefore talk about quadrati
 dis
rimination 
ompared

to the linear dis
rimination referred to above.

Example 2.13. k-
lass dis
riminant analysis with estimated normal densities.

Suppose that we have a training set with ni obje
ts from 
lass ωi, i = 1, . . . , k. From

all the 
lasses we assume that we have obtained independent random samples of obje
ts.

We assume further that the ve
tor X is normally distributed with expe
tation ve
tor

µi and 
ovarian
e matrix Ci in 
lass ωi. Let the observations ve
tors be denoted Xim,

m = 1, . . . , ni, i = 1, . . . , k. Then it is natural to estimate the expe
tation ve
tor in 
lass

ωi by

µ̂i =
1

ni

ni
∑

m=1

Xim, i = 1, . . . , k. (2.12)

If we make no assumption on equality of the 
ovarian
e matri
es we use the 
ovarian
e

matrix estimates

Ĉi =
1

ni − 1

ni
∑

m=1

(Xim − µ̂i)(Xim − µ̂i)
T , i = 1, . . . , k. (2.13)

If we assume equality of the 
ovarian
e matri
es we use instead the estimate

Ĉ =
1

∑k
i=1(ni − 1)

k
∑

i=1

(ni − 1)Ĉi (2.14)

for the 
ommon 
ovarian
e matrix C. ✷ �

2.4 Error rate estimation. Resubstitution and 
ross-

validation

An important issue in dis
riminant analysis is to estimate the rates of mis
lassi�
ation

errors. One simple type of error estimates, often 
alled resubstitution error-rate estimates,

is obtained by dire
tly 
omputing the observed error rates in the training set for the 
hosen

allo
ation rule.
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However, the resubstition error-rates are typi
ally too optimisti
 as the obje
ts used to

evaluate the error rates are also used in the 
hoi
e of the dis
riminator in
luding estima-

tion of parameters in the dis
riminator. Parti
ularly if the dis
riminator is 
ompli
ated,

for instan
e if it 
ontains many parameters, we 
an grossly underestimate the error-rate


orresponding to 
lassi�
ation of a new obje
t.

One way of avoiding the bias of resubstitution error rates is to divide the available

data into one training set and one evaluation set, for instan
e, by using half of the data

for estimation and half of it for evaluation. One 
ritisism of this pro
edure is that it may

seem wasteful if data are s
ar
e.

Nowadays one often uses resampling methods for evaluation of error rates. One su
h

method is k-fold 
ross-validation. Then we divide the data set 
onsisting of n obje
ts

into k equal or approximately equal groups, often by random 
hoi
e of whi
h obje
ts that

should go into group j, j = 1, . . . , k. Then we �x j temporarily and use all obje
ts ex
ept

those in group j to estimate parameters and 
ompute error average rates for all obje
ts

in group j. This pro
edure is repeated for all groups and we �nally average error rates

also over groups to get overall error rate estimates. One 
an show that a small k in
reases
the bias but de
reases the varian
e of the error rate estimate. Originally one often used

k = n, whi
h is 
alled leave-one-out 
ross-validation. Currently k = 5 or k = 10 is often

re
ommended.

Example 2.14. Handwritten digits. Digits 1 and 2

We use the same data as in Example 1.11 with one small modi�
ation 
onsisting

of standardization of the two moment features by linear transformations so that they

get average zero and varin
e one. We now use both liner and quadrati
 dis
rimination

and get, respe
tively, the linear and ellipti
 boundaries shown in Figure 2.2. We also


omputed the resubstitution and 5-fold 
ross-validation errors for the liner and quadrati


dis
rimination models. It turned out that all four error rate estimates were identi
al and

equal to 15 %. �

Example 2.15. Handwritten digits. Moment features. Digits 0, 1, . . . , 9.

We use the �rst 8000 digits in the MNIST database, see Example 1.7, and 
onsider

dis
rimination between the 10 digits 0, 1, . . . , 9 by use of all 
entral moment features

µpq in (1.28) with p + q ≤ K. We 
omputed the resubstitution and the 10-fold 
ross-

validation error estimates for all K ≤ 13, see Figure 2.3. Note that both for the linear

dis
rimination with full drawn 
urves and for the quadrati
 dis
rimination with dashed


urves the resubstitution errors are smaller than the 
ross-validation errors. For the

linear dis
rimination the 
ross-validation minimum error is 12.3 % for order 12 and for

the quadrati
 dis
rimination the 
ross-validation minimum error is 9.6 % for order 7.

�
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Figure 2.2: Plot of standardized moments µ11 versus µ20 for handwritten digits 1 and 2
among the �rst 400 digits in the MNIST data base together with the 
lass boundaries


orresponding to linear and quadrati
 dis
rimination.
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Figure 2.3: Plot of error probabilities for linear dis
rimination, full drawn 
urves,

and quadrati
 dis
rimination, dashed 
urves, for dis
rimination between the ten dig-

its 0, 1, . . . , 9. Resubstitution error 
urves are in red and 
ross-validation error 
urves are

in bla
k. Order K on the horizontal axis means that all moments µpq with p+ q ≤ K are

used as features to dis
riminate between the digits.
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2.5 Nearest neighbour 
lassifa
tion

Suppose that we have a distan
e fun
tion δ(x, x′) between feature ve
tors x and x′. Ex-
amples of distan
e fun
tions for d-dimensional feature ve
tors are the Eu
lidean distan
e

δ(x, x′) = (
d
∑

i=1

(xi − x′i)
2)1/2 (2.15)

and δ = 1− r, where r are is the 
orrelation

r(x, x′) =

∑d
i=1(xi − x̄)(x′i − x̄′)

(
∑d

i=1(xi − x̄)2)1/2 (
∑d

i=1(x
′
i − x̄′)2)1/2

(2.16)

where x̄ and x̄′ are the arithmeti
 means of the ve
tors x and x′.

A useful dis
rimination method is the m-nearest neighbour rule, whi
h pro
eeds as

follows. Suppose we have a training set for whi
h we know the 
orre
t 
lassi�
ation. For

a new observation we �nd the m nearest neighbours in the training set, and we 
lassify

the new observation by majority voting among these nearest neighbours.

Example 2.16. Handwritten digits. Nearest neighbour dis
rimination

We use the same data as in Example 2.14. The m-nearest neighbour 
lassi
ations with

m=3 and 5 are shown in Figure 2.4. We also 
omputed the resubstitution and 5-fold
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Figure 2.4: Plot of standardized moments µ11 versus µ20 for handwritten digits digits 1
and 2 among the �rst 400 digits in the MNIST data base together 
lassi�
ations from m-

nearest neighbour 
lassi�
ation form = 3 andm = 5. Digit 
olours indi
ate 
lassi�
ation:
bla
k digits are 
lassi�ed as 1 and grey digits are 
lassi�ed as 2.


ross-validation errors for m-nearest neighbour methods with m ranging from 1 to 10.

the result is shown in Figure 2.5. The minimum 
ross-validated error is obtained for

m = 5 and equals 12 %. �
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ross-validation error estimates form-nearest

neighbour 
lassi
ations for m = 1, . . . , 10.

2.6 Multinomial logisti
 regression

Logisti
 regression with two 
lasses is brie�y des
ribed in Se
tion 14.9. Here we will

generalize to k 
lasses ω1, . . . , ωk. Let Y denote the 
lass number of an observation with

asso
iated explaining ve
tor x, whi
h we here will suppose 
onsists of an image. Assume

that

Pr(Y = i) =
e

βi·x

1 +
∑k−1

j=1 e
βj ·x

, i = 1, . . . , k − 1, (2.17)

and

Pr(Y = k) =
1

1 +
∑k−1

j=1 e
βj ·x

, i = k, (2.18)

where βi denotes a parameter ve
tor of the same dimension as x and βi · x denotes the

s
alar produ
t of βi and x, obtained by multiplying 
omponentwise the elements of βi
and x, and adding the 
orresponding produ
ts. For given data with observations of pairs

(x, Y ) we 
an then estimate the parameter ve
tors βi by maximum likelihood.

Example 2.17. Handwritten digits. Logisti
 regression, 
onfusion matrix, display by

t-SNE.

The 
omputations and �gures in this example are taken from (Long�ls, 2018). In Figure

2.6 we see parameter ve
tors βi estimated from a multinomial logisti
 model by use of

10000 digits from MNIST. In this �gure we 
an rather 
learly identify the digit zero to

the left in the upper row, and perhaps also the digit one next to it. A 
onvenient way
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Figure 2.6: Parameter ve
tors βi for digits 0, . . . , 4 in the upper row and digits 5, . . . , 9
in the lower row estimated from 10000 digits in the MNIST database.

of illustrating the results of a dis
rimination analysis is to 
ompute a 
onfusion matrix

giving the resulting 
lassi�
ations for ea
h 
lass in the data used. In Table 2.1 we see

the 
onfusion matrix 
orresponding to the logisti
 model analysis in Example 2.17 with

estimated error and identi�
ation probabilities. From the 
onfusion matrix we see that the

digit zero seems to be most easy to identify with an estimated identi�
ation probability of

97.6%. The overall estimated identi�
ation probability is (1108+ 922+ . . . 948)/10000 =
92.2%.

In Figure 2.7 we use the method t-SNE, 
ompare Se
tion 14.6 and (Long�ls, 2018),

to visualize how the 28×28-dimensional x-ve
tor may be used to dis
riminate between

hand-written digits.

�

2.7 Sele
tion of features

If we have a large number of possible features it is useful to make a sele
tion of features.

One often used method is forward sele
tion where we start by 
hoosing the single feature

whi
h gives the smallest error rate. Then we add that feature of the remaining ones

whi
h together with the �rst 
hosen feature gives the best performan
e. The pro
edure

is 
ontinued a suitable number of steps. If one uses 
ross-validation error rate estimates,

we typi
ally �nd that the error rates �rst de
rease when we add new variables but then

a minimum is obtained and after that the error rate in
reases due to over�tting.
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Figure 2.7: Visualization by use of t-SNE for the �rst 400 digits in the test set used

in Example 2.17. The numbers 
lose to points are the labels predi
ted by the logisti


regression method, and the 
olours of points 
orrespond to the true labels as given in the

box in the lower right part of the image.
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True Estimated 
lass


lass 0 1 2 3 4 5 6 7 8 9 Sum Per
ent

0 Number 1108 8 2 0 2 3 1 11 0 0 1135 11.4

Per
ent 97.6 0.7 0.2 0.0 0.2 0.3 0.1 1.0 0.0 0.0 100

1 Number 9 922 19 11 4 12 11 32 4 8 1032 10.3

Per
ent 0.9 89.3 1.9 1.0 0.4 1.2 1.1 3.2 0.4 0.8 100

2 Number 2 18 921 2 22 3 10 21 7 4 1010 10.1

Per
ent 0.2 1.8 91.2 0.2 2.2 0.3 1.0 2.1 0.7 0.4 100

3 Number 4 6 4 918 1 9 5 6 27 2 982 9.8

Per
ent 0.4 0.6 0.4 93.5 0.1 0.9 0.5 0.6 2.7 0.2 100

4 Number 5 2 35 9 775 14 6 32 4 10 892 8.9

Per
ent 0.6 0.2 3.9 1.0 86.9 1.6 0.7 3.6 0.4 1.1 100

5 Number 3 8 2 6 17 907 1 2 1 11 958 9.6

Per
ent 0.3 0.8 0.2 0.6 1.8 94.7 0.1 0.2 0.1 1.1 100

6 Number 9 22 8 5 1 0 946 4 31 2 1028 10.3

Per
ent 0.9 2.1 0.8 0.5 0.1 0.0 92.0 0.4 3.0 0.2 100

7 Number 12 7 23 9 24 10 11 857 14 7 974 9.7

Per
ent 1.2 0.7 2.4 0.9 2.5 1.0 1.1 88.0 1.4 0.7 100

8 Number 6 2 9 23 8 0 22 10 922 7 1009 10.1

Per
ent 0.6 0.2 0.9 2.3 0.8 0.0 2.2 1.0 91.4 0.7 100

9 Number 0 2 4 1 13 5 3 3 1 948 980 9.8

Per
ent 0.0 0.2 0.4 0.1 1.3 0.5 0.3 0.3 0.1 96.7 100

Sum Number 1158 997 1027 984 867 963 1007 978 1011 999 10000 100

Per
ent 11.6 10.0 10.3 9.8 8.7 9.6 10.1 9.8 10.1 10.0 100

Table 2.1: Confusion matrix for the logisti
 model analysis of the MNIST data set in

Example 2.17.
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In ba
kward sele
tion we start by in
luding all features. Then we eliminate one feature

so that the resulting error rate is as small as possible. The pro
edure is iterated a suitable

number of steps.

2.8 Cluster analysis, k-means 
lustering

Suppose that we have 
olle
ted a number of 
olonies of ba
teria of a type that has not

been studied before but whi
h we want to order in 
lasses 
orresponding spe
ies or sub-

spe
ies. That is, we want to 
onstru
t a taxonomy for these ba
teria. Instead of an

individual ba
terial parti
le the natural unit here is a homogeneous 
olony of ba
teria.

One possible pro
edure would be to measure a number of variables, say d for ea
h

individual 
olony and to see if these variables tend produ
e 
lusters in d-spa
e. Let X
denote the d-dimensional ve
tor of measurements, and let f(x) denotes the 
orresponding
probability density (or probability fun
tion if X is dis
rete). Corresponding to k 
lasses

we would then expe
t that f 
ould be written as a mixture,

f(x) =

k
∑

i=1

pifi(x), (2.19)

where fi denotes the probability density in the ith 
lass, and pi the proportion of the ith

lass.

Let n denote the number of 
olonies observed, and let Xj , j = 1, . . . , n, denote our

observed d-dimensional ve
tors. The basi
 problem in 
luster analysis 
an then be for-

mulated as estimation of the number k of 
lasses and also the fun
tions fi, i = 1, . . . , k,
on the basis of our observations X1, . . . , Xn. Note that this problem is mu
h more 
om-

pli
ated than the problems previously dis
ussed in this 
hapter as we neither know the

number of 
lasses, nor whi
h observations (in a test set) that belong to the di�erent


lasses.

One pro
edure that is often used is k-means 
lustering. Consider d-dimensional ob-

servations and let us for simpli
ity regard Eu
lidean distan
es between observations. We

assume that there are k 
lasses and 
hoose �rst randomly k 
luster 
enters among the

observations Xj , j = 1, . . . , n. Then we alternate between two types of steps. In the

observation allo
ation step we suppose that we have 
luster 
enters Ci, i = 1, . . . , k, and
allo
ate ea
h observation to the 
losest 
luster 
enter. In the 
luster 
enter re
ompu-

tation step we 
ompute new 
luster 
enters as averages of all observations allo
ated to

ea
h 
luster. We alternate between the two types of steps until there are no 
hanges.

Typi
ally we will also repeat the pro
edure a number of times with di�erent (randomly


hosen) starting 
luster 
entres and �nally 
hoose the 
lustering whi
h has the minimal

total sum of within 
luster square distan
es to 
luster 
entres.

Example 2.18. Handwritten digits. Cluster analysis

We use the same data as in Example 2.14 but now we 
luster them by k-means 
lustering

with k = 2, 3 and 4. The results are shown in Figure 2.8. �
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Figure 2.8: Results from k-means 
lustering with k = 2, 3 and 4 of the same data as used

in Example 2.14. Crosses mark estimated 
luster 
enters.
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2.9 Case studies

Weed seed identi�
ation

In (Petersen, 1992) weed seed identi�
ation was studied with 25 images of seeds for ea
h

of 40 spe
ies.

A large number of possible features were investigated and with 25 features an optimal


ross-validation error rate of 2.3% was found.

Weed plant identi�
ation

(Andersson, 1998) studied identi�
ation of plants at an early stage of 
arrot and seven

weed spe
ies. With 27 images for ea
h of the eight plant spe
ies a 
ross-validation error

rate of about 16% was found with 7 or 8 features.

Comparison of dis
rimination methods for mi
roarray data

In (Dudoit et al., 2002) di�erent dis
rimation methods are 
ompared for 
lassi�
ation

of tumors based on gene expression data from three datasets available on the Internet.

In parti
ular, the nearest neighbour method is found to perform well in these examples.

The number of neighbours is here determined by 
ross-validation.
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2.10 Exer
ises

Images and data sets for the exer
ises below may be found from the 
ourse home pages.

Exer
ise 2.1. Fisher's Iris data, a 
lassi
al data set. One of the famous data sets in

statisti
s is Fisher's Iris data, used in (Fisher, 1936), where dis
riminant analysis was

introdu
ed. Consider the data in Table 2.2 with four variables measured for 50 plants

of ea
h of three Iris spe
ies. The data were assembled by E. Anderson, see (Anderson,

1935), and analysed in detail by (Fisher, 1936).

(a). Draw s
atter plots for all 150 observations and all six pairs of variables. Alternatively,

if you do not have a

ess to a 
omputer, draw s
atter plots for subsets with, say, 5 plants

from ea
h spe
ies, and for, say, two pairs of variables.

(b). Find the best linear dis
riminators using all four variables for dis
rimination between

all pairs of the three spe
ies. Alternatively, without a 
omputer, des
ribe with formulas

how the 
omputations are made. Under what assumptions is this dis
rimination method

optimal.

(
). Find the best quadrati
 dis
riminators using all four variables for dis
rimination

between all pairs of the three spe
ies. Alternatively, without a 
omputer, des
ribe with

formulas how the 
omputations are made. Under what assumptions is this dis
rimination

method optimal.

(d). Find the optimal 
ombination of two variables for dis
riminating between the three

spe
ies. Alternatively, without a 
omputer, des
ribe with formulas how the 
omputations

are made.
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Exer
ise 2.2. Weed seeds. Consider the weed seed images of Rumex 
rispus and Rumex

thyrsi�orus from Figures 1.5 and 1.6 in Example 1.2 or a subset of these 25 plus 25 im-

ages.

(a). Compute the areas of the seeds and the 
onvexity of them for the images 
onsidered.

(b). How well 
an you dis
riminate between the two spe
ies by use of the feature 
on-

vexity and linear dis
rimination?

(
). How well 
an you dis
riminate between the two spe
ies by use of the feature 
onvex-

ity and quadrati
 dis
rimination?

(d). How well 
an you dis
riminate between the two spe
ies by use of the features 
on-

vexity and area and linear dis
rimination?

(e). How well 
an you dis
riminate between the two spe
ies by use of the features 
on-

vexity and area and quadrati
 dis
rimination?

Exer
ise 2.3. Weed plants. Consider images of 
arrot and weed plants su
h as those

des
ribed in Example 1.3. Choose two or more spe
ies and see well you 
an dis
riminate

between them by suitably 
hosen featuers. Compare with the results found by Andersson

(1998).

Exer
ise 2.4. Handwritten digits. Resubstitution error. Consider the data in Example

2.14. Show by use of Figure 2.2 that the resubstitution error is equal to 14/93 both for

linear and quadrati
 dis
rimination.

2.11 Literature on pattern re
ognition

A good introdu
tory text on statisti
al pattern re
ognition is (Fukunaga, 1990). Many

algorithms are des
ribed in (Ripley, 1996) whi
h also 
ontains an extensive list of ref-

eren
es for the period up to 1996. A highly useful review of 
lustering methods with

parti
ular emphasis on appli
ations with image data is given in (Jain et al., 1999).
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Table 2.2: Four �ower features (in 
m) for 50 plants of three Iris spe
ies, from (Fisher, 1936).

Iris setosa Iris versi
olor Iris virgini
a

Sepal Sepal Petal Petal Sepal Sepal Petal Petal Sepal Sepal Petal Petal

length width length width length width length width length width length width

5.1 3.5 1.4 0.2 7 3.2 4.7 1.4 6.3 3.3 6 2.5

4.9 3 1.4 0.2 6.4 3.2 4.5 1.5 5.8 2.7 5.1 1.9

4.7 3.2 1.3 0.2 6.9 3.1 4.9 1.5 7.1 3 5.9 2.1

4.6 3.1 1.5 0.2 5.5 2.3 4 1.3 6.3 2.9 5.6 1.8

5 3.6 1.4 0.2 6.5 2.8 4.6 1.5 6.5 3 5.8 2.2

5.4 3.9 1.7 0.4 5.7 2.8 4.5 1.3 7.6 3 6.6 2.1

4.6 3.4 1.4 0.3 6.3 3.3 4.7 1.6 4.9 2.5 4.5 1.7

5 3.4 1.5 0.2 4.9 2.4 3.3 1 7.3 2.9 6.3 1.8

4.4 2.9 1.4 0.2 6.6 2.9 4.6 1.3 6.7 2.5 5.8 1.8

4.9 3.1 1.5 0.1 5.2 2.7 3.9 1.4 7.2 3.6 6.1 2.5

5.4 3.7 1.5 0.2 5 2 3.5 1 6.5 3.2 5.1 2

4.8 3.4 1.6 0.2 5.9 3 4.2 1.5 6.4 2.7 5.3 1.9

4.8 3 1.4 0.1 6 2.2 4 1 6.8 3 5.5 2.1

4.3 3 1.1 0.1 6.1 2.9 4.7 1.4 5.7 2.5 5 2

5.8 4 1.2 0.2 5.6 2.9 3.6 1.3 5.8 2.8 5.1 2.4

5.7 4.4 1.5 0.4 6.7 3.1 4.4 1.4 6.4 3.2 5.3 2.3

5.4 3.9 1.3 0.4 5.6 3 4.5 1.5 6.5 3 5.5 1.8

5.1 3.5 1.4 0.3 5.8 2.7 4.1 1 7.7 3.8 6.7 2.2

5.7 3.8 1.7 0.3 6.2 2.2 4.5 1.5 7.7 2.6 6.9 2.3

5.1 3.8 1.5 0.3 5.6 2.5 3.9 1.1 6 2.2 5 1.5

5.4 3.4 1.7 0.2 5.9 3.2 4.8 1.8 6.9 3.2 5.7 2.3

5.1 3.7 1.5 0.4 6.1 2.8 4 1.3 5.6 2.8 4.9 2

4.6 3.6 1 0.2 6.3 2.5 4.9 1.5 7.7 2.8 6.7 2

5.1 3.3 1.7 0.5 6.1 2.8 4.7 1.2 6.3 2.7 4.9 1.8

4.8 3.4 1.9 0.2 6.4 2.9 4.3 1.3 6.7 3.3 5.7 2.1

5 3 1.6 0.2 6.6 3 4.4 1.4 7.2 3.2 6 1.8

5 3.4 1.6 0.4 6.8 2.8 4.8 1.4 6.2 2.8 4.8 1.8

5.2 3.5 1.5 0.2 6.7 3 5 1.7 6.1 3 4.9 1.8

5.2 3.4 1.4 0.2 6 2.9 4.5 1.5 6.4 2.8 5.6 2.1

4.7 3.2 1.6 0.2 5.7 2.6 3.5 1 7.2 3 5.8 1.6

4.8 3.1 1.6 0.2 5.5 2.4 3.8 1.1 7.4 2.8 6.1 1.9

5.4 3.4 1.5 0.4 5.5 2.4 3.7 1 7.9 3.8 6.4 2

5.2 4.1 1.5 0.1 5.8 2.7 3.9 1.2 6.4 2.8 5.6 2.2

5.5 4.2 1.4 0.2 6 2.7 5.1 1.6 6.3 2.8 5.1 1.5

4.9 3.1 1.5 0.1 5.4 3 4.5 1.5 6.1 2.6 5.6 1.4

5 3.2 1.2 0.2 6 3.4 4.5 1.6 7.7 3 6.1 2.3

5.5 3.5 1.3 0.2 6.7 3.1 4.7 1.5 6.3 3.4 5.6 2.4

4.9 3.1 1.5 0.1 6.3 2.3 4.4 1.3 6.4 3.1 5.5 1.8

4.4 3 1.3 0.2 5.6 3 4.1 1.3 6 3 4.8 1.8

5.1 3.4 1.5 0.2 5.5 2.5 4 1.3 6.9 3.1 5.4 2.1

5 3.5 1.3 0.3 5.5 2.6 4.4 1.2 6.7 3.1 5.6 2.4

4.5 2.3 1.3 0.3 6.1 3 4.6 1.4 6.9 3.1 5.1 2.3

4.4 3.2 1.3 0.2 5.8 2.6 4 1.2 5.8 2.7 5.1 1.9

5 3.5 1.6 0.6 5 2.3 3.3 1 6.8 3.2 5.9 2.3

5.1 3.8 1.9 0.4 5.6 2.7 4.2 1.3 6.7 3.3 5.7 2.5

4.8 3 1.4 0.3 5.7 3 4.2 1.2 6.7 3 5.2 2.3

5.1 3.8 1.6 0.2 5.7 2.9 4.2 1.3 6.3 2.5 5 1.9

4.6 3.2 1.4 0.2 6.2 2.9 4.3 1.3 6.5 3 5.2 2

5.3 3.7 1.5 0.2 5.1 2.5 3 1.1 6.2 3.4 5.4 2.3

5 3.3 1.4 0.2 5.7 2.8 4.1 1.3 5.9 3 5.1 1.8
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Chapter 3

Ma
hine learning, neural nets, support

ve
tor ma
hines

In re
ent de
ades a number of ma
hine learning methods for patter re
ognition have been

laun
hed su
h as neural nets and support ve
tor ma
hines whi
h will be brie�y dis
ussed

in this 
hapter. To evaluate these methods a number of large datasets have also been

brought forth, 
ompare Table 3.1 and

https://en.wikipedia.org/wiki/List_of_datasets_for_ma
hine_learning_resear
h

for more details.

Table 3.1: Datasets of images and videos for tasks su
h as 
lassi�
ation, obje
t dete
tion

and fa
e re
ognition

Dataset name Brief des
ription Instan
es Format Default task Created

MNIST Handwritten digits 60 000 + Images, text Classif
ation 1998

10 000

CIFAR-10 Images of 10 
lasses 60 000 Images Classi�
ation 2009

of obje
ts

CIFAR-100 Images of 100 
lasses 60 000 Images Classi�
ation 2009

of obje
ts

KITTI Images and videos >100GB Images, text Classi�
ation, 2012

obtained from 
ars of data obje
t dete
tion

SVHN Street View 73 257 + Images Classi�
ation 2011

House Numbers 26 032

FERET Fa
e Re
ognition 11 338 from Images Classi�
ation, 2003

Te
hnology 1 199 individuals fa
e re
ognition

3.1 Neural nets

Let us start by 
onsidering a neural net 
onsisting of one input layer with n1 units


orresponding to input variables xi, i = 1, . . . , n1, an intermediate (hidden) layer with n2
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units and an output layer with K units. For unit j in the intermediate layer we 
ompute

the so-
alled a
tivation value aj , j = 1, . . . , n2, by

zj =

n1
∑

i=1

w
(1)
ji xi + b

(1)
j , (3.1)

aj =
ezj

∑n2

j′=1 e
zj′
, (3.2)

for weights w
(1)
ji and biases b

(1)
j . With some abuse of notation we will write

aj = σ(zj), j = 1, . . . , n2, (3.3)

and we 
all σ given by (3.2) and (3.3) the softmax fun
tion. From the hidden layer

we pro
eed to the output in a similar way and we obtain neural net output variables

fk(k), k = 1, . . . , K, as

fk(x) = fk(x, θ) = σ

(

n2
∑

j=1

w
(2)
kj σ

(

n1
∑

i=1

w
(1)
ji xi + b

(1)
j

)

+ b
(2)
k

)

, k = 1, . . . , K, (3.4)

where x = (x1, . . . , xn1
) is the ve
tor of input variables, and θ is the parameter ve
tor of

all weights, w
(1)
ji and w

(2)
kj , and biases b

(1)
j and b

(2)
k .

We 
an add now add one more hidden layer whi
h gives a neural net with two hidden

layers and output

fk(x) = σ

(

n3
∑

ℓ=1

w
(3)
kℓ σ

(

n2
∑

j=1

w
(2)
ℓj σ

(

n1
∑

i=1

w
(1)
ji xi + b

(1)
j

)

+ b
(2)
ℓ

)

+ b
(3)
k

)

, k = 1, . . . , K,

(3.5)

and it should be 
lear how we 
an extend the neural net with an arbitrary number of

hidden layers.

If we for instan
e 
onsider a neural net for the MNIST database it is natural to 
onsider

n1 = 282 = 784 units in the input layer, ea
h input unit 
orresponding to one pixel value,

and K = 10 
orresponding to the 10 possible digits. We note that the output variables

fk(x) sum to one and we 
an interpret fk(x, θ) as the probability of digit k. To 
lassify

images we 
an �rst in some way estimate the parameter θ by use of a training set. Let θ̂
denote the estimate of θ. To 
lassify an image x we 
an then put

k̂(x) = argmaxkfk(x, θ̂). (3.6)

The 
ru
ial step here is to obtain the estimate θ̂. In pra
ti
e the parameter ve
tor θ may


ontain several thousand 
omponents and the estimation pro
edure is thus quite deli
ate.

We will now dis
uss possible estimation methods.

Parameter estimation for neural nets, regularization

Suppose that we have a training set T of |T | pairs (x, y) and that the neural net output

f(x, θ) should approximate y. Then we introdu
e a suitable loss fun
tion. Let us �rst
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onsider a simple 
ase where y and f(x, θ) are real-valued. Then we may 
hoose the loss

fun
tion

L(θ, T ) =
1

|T |
∑

(x,y)∈T

(y − f(x, θ))2. (3.7)

Let us then 
onsider a 
lassi�
ation setting with K 
lasses, for instan
e for MNIST


lassi�
ation with K = 10. As des
ribed above we then get as output from a neural net

a probability distribution fk(x, θ), k = 1, . . . , K, for the possible 
lass values. For a pair

(x, y) where kc is the 
orre
t 
lass we 
an de�ne yk, k = 1, . . . , K, as

yk =

{

1 if k = kc
0 otherwise

(3.8)

and 
hoose the 
ross-entropy loss fun
tion

L(θ, T ) = − 1

|T |
∑

(x,y)∈T

∑

k

yk log fk(x, θ). (3.9)

We 
an minimize L(θ, T ) and obtain an estimate θ̂ = θ̂(T ). The result is then that

we often get a good �t to the observations in T , but if we go to a new data set the �t is

typi
ally not so good. We say then that we get an over�t. To 
ompensate for over�tting

we 
an introdu
e a regularization term R(θ), for instan
e

R(θ) =

|θ|
∑

i=1

|θi|2, (3.10)

where we sum over all 
omponents of θ = (θ1, . . . , θ|θ|). Then we estimate θ by minimizing

the regularized loss fun
tion

L(θ; T , L, λ, R) = L(θ, T ) + λR(θ), (3.11)

where λ ≥ 0 is a tuning parameter. Note that λ = 0 
orresponds to no regulariza-

tion whi
h typi
ally gives over�tting, while a very large λ 
orresponds to under�tting.

To 
hoose a proper value of the tuning parameter we 
an evaluate the regularized loss

fun
tion for a separate validation set T ′
of pairs (x, y) or use 
ross-validation.

Let us also note that instead of the softmax fun
tion given by a = σ(z), see (3.2) and
(3.3), as a
tivation fun
tion, one often uses a re
ti�ed linear unit given by

a = max(0, z). (3.12)

Convolutional neural nets

Let w = (wkℓ) and g = (gij) be matri
es. The 
onvolution w ∗ g is then de�ned by

(w ∗ g)ij =
∑

k

∑

ℓ

wkℓ gi−k,j−ℓ, (3.13)


ompare Se
tion 1.2 on image �ltering.
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Convolutional neural nets are parti
ularly useful for analysis of images. Su
h neural

nets 
ontain layers with layer transitions of the following 
onvolution type

a
(r+1)
ij = σ

(

p
∑

k=−p

p
∑

ℓ=−p

w
(r)
kℓ a

(r)
i−k,j−ℓ

)

, (3.14)

where p usually is a small positive number. We note that we use here only (2p + 1)2

di�erent weights and that there is the same �lter operation applied in di�erent parts of

a(r) here regarded as an image. The �lter operation 
ould for instan
e 
onsist of �nding

edges in an image.

A 
onvolution layer is often followed by a pooling layer redu
ing the layer size. We


an for instan
e use a maxpool operation where a layer of pixels is divided into adja
ent

and non-overlapping re
tangles and ea
h re
tangle is repla
ed in the following layer by

one pixel with pixel value equal to the maximal pixel value in the re
tangle.

Example 3.19. Handwritten digits. Analysis with a 
onvolutional neural net. The 
om-

putations in this example are taken from (Long�ls, 2018). In Table 3.2 we see the 
on-

fusion matrix 
orresponding to a 
onvolutional neural net trained on 50 000 digits and

evaluated on 10 000 digits from the MNIST data set. The neural network used 
onsisted

of six layers:

1. An input layer (28×28 pixel images)

2. A 
onvolution layer with 20 �lters of size 5×5

3. A re
ti�ed linear unit layer

4. A max pooling layer with size 2×2 pixels

5. A fully 
onne
ted layer

6. A softmax layer (outputting the probability for ea
h of the 10 
lasses)

From the se
ond item in the list above we see that the 
onvolution layer a
tually exists

of 20 di�erent �lters (working in parallel). The resulting 20 �lters are given in Figure

3.1. It is easy to visualize that 
ombinations of 
onvolutions with these �lters 
an be

advantageous in identifying digits.

From the 
onfusion matrix we see that the digit zero seems to be most easy to identify

with an estimated identi�
ation probability of 99.6%. The overall estimated identi�
ation

probability is (1130 + 1016 + . . . 975)/10000 = 98.5%. �

3.2 Support ve
tor ma
hines

The following des
ription is inspired by the more 
omplete des
ription in Chapter 19 of

(Efron & Hastie, 2016). Suppose that we have a training set T 
onsisting of pairs (x, y),
where x is an n-dimensional 
olumn ve
tor and y ∈ {−1,+1} is a two-
lass indi
ator. To
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Figure 3.1: The 20 �lters in the 
onvolutional neural net used for identifying MNIST

integers.

True Estimated 
lass


lass 0 1 2 3 4 5 6 7 8 9 Sum Per
ent

0 Number 1130 1 1 1 0 1 0 1 0 0 1135 11.4

Per
ent 99.6 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.0 100

1 Number 1 1016 2 1 0 1 5 4 1 1 1032 10.3

Per
ent 0.1 98.4 0.2 0.1 0.0 0.1 0.5 0.4 0.1 0.1 100

2 Number 0 3 999 0 1 0 2 4 1 0 1010 10.1

Per
ent 0.0 0.3 98.9 0.0 0.1 0.0 0.2 0.4 0.1 0.0 100

3 Number 0 1 0 974 0 1 0 0 5 1 982 9.8

Per
ent 0.0 0.1 0.0 99.2 0.0 0.1 0.0 0.0 0.5 0.1 100

4 Number 0 1 9 0 874 3 0 3 0 2 892 8.9

Per
ent 0.0 0.1 1.0 0.0 98.0 0.3 0.0 0.3 0.0 0.2 100

5 Number 3 0 0 3 1 942 0 2 0 7 958 9.6

Per
ent 0.3 0.0 0.0 0.3 0.1 98.3 0.0 0.2 0.0 0.7 100

6 Number 3 8 2 0 0 0 1012 2 1 0 1028 10.3

Per
ent 0.3 0.8 0.2 0.0 0.0 0.0 98.4 0.2 0.1 0.0 100

7 Number 0 3 2 1 2 0 5 953 2 6 974 9.7

Per
ent 0.0 0.3 0.2 0.1 0.2 0.0 0.5 97.8 0.2 0.6 100

8 Number 2 0 3 10 3 0 8 2 977 4 1009 10.1

Per
ent 0.2 0.0 0.3 1.0 0.3 0.0 0.8 0.2 96.8 0.4 100

9 Number 0 0 0 0 1 1 2 1 0 975 980 9.8

Per
ent 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.1 0.0 99.5 100

Sum Number 1139 997 1027 984 867 963 1007 978 1011 999 10000 100

Per
ent 11.4 10.0 10.3 9.8 8.7 9.6 10.1 9.8 10.1 10.0 100

Table 3.2: Confusion matrix for a 
onvolutional neural net analysis of the MNIST data

set in Example 2.17.
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begin with we will suppose that the two 
lasses are linearly separable in the sense that

there exists a real parameter β0 and an n-dimensional parameter ve
tor β su
h that with

f(x) = β0 + xTβ
yf(x) > 0 for all (x, y) ∈ T . (3.15)

We 
an then 
lassify a new x-ve
tor and predi
t the 
orresponding y-value as sign(f(x)).
A natural question is then if we 
an 
hoose β0 and β in an optimal way. The suggested

solution here is to maximize the minimal distan
e (margin) to the separating hyperplane

f(x) = 0 in n-spa
e. The solution to this problem turns out to be to �nd

maxβ0,β

{

M : subje
t to
1

||β||y(β0 + xTβ) ≥M for all (x, y) ∈ T
}

, (3.16)

where ||β|| is the Eu
lidean (quadrati
) norm in n-spa
e. An equivalent somewhat simpler

formulation is to �nd

minβ0,β

{

||β|| : subje
t to y(β0 + xTβ) ≥ 1 for all (x, y) ∈ T
}

. (3.17)

In general we 
an not expe
t to �nd a hyperplane giving 
omplete separation between

the two 
lasses. Then we 
an instead �nd a minimum with a regularized loss fun
tion

minβ0,β







∑

(x,y)∈T

[1− y(β0 + xTβ)]+ + λ||β||2






, (3.18)

where [a]+ denotes the positive part of a real number a. For linearly separable 
lasses one

an show that λ = 0 gives the previously des
ribed solution whi
h is determined by a few

points 
lose to the separating boundary. In
reasing λ 
orresponds to taking a

ount of

more and more data points. Similarly as for neural nets one 
an �nd an optimal tuning

parameter λ by use of a separate validation set or by 
ross-validation.

For a multi
lass 
lassi�
ation problem we 
an for instan
e for ea
h 
lass make a two-


lass 
lassi�
ation versus the union of all other 
lasses and then for a new observed

x-ve
tor 
hoose the 
lass giving the largest margin. Another possibility is to 
onsider

voting for all pairwise 
omparisons and for a new observation to 
hoose the 
lass that

gets that the maximal number of votes.

Support ve
tor ma
hines with kernel fun
tions

One 
an show that for a new ve
tor x to be 
lassi�ed one 
an write the 
lassi�er on the

form

f(x) = β0 + xTβ = β0 +

|T |
∑

i=1

αixTxi, (3.19)

where x1, . . . , x|T |
are x-ve
tors in a training set T and α1, . . . , α|T |

are real parameters.

This representation allows us to use a modi�ed 
lassi�er of the form

f(x) = β0 + xTβ = β0 +

|T |
∑

i=1

αik(x, xi), (3.20)
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where k(u, v) is a positive-de�nite kernel fun
tion, for instan
e the Gaussian kernel

k(u, v) = e

−||u−v[[2. (3.21)

Use of kernel fun
tions implies possibilities of nonlinear transformations of the x-ve
tors
and adds 
onsiderable �exibility to support ve
tor ma
hines.

For an appli
ation of support ve
tor ma
hine methods for identifying MNIST integers,

see (Long�ls, 2018). Figure 5 there gives a 
onfusion matrix similar to the 
onfusion

matri
es in Tables 2.1 and 3.2 in the present text.

3.3 Literature on ma
hine learning, neural nets and

support ve
tor ma
hines

Highly useful texts from a statisti
al point of view are (Efron & Hastie, 2016) and (Bishop,

2006). Two re
ent referen
es, both with the title 'Deep Learning' whi
h is a 
urrent term

for advan
ed neural nets, are (LeCun et al., 2015) giving an overview and (Goodfellow

et al., 2016) giving a thorough and up-to-date 
overage of the �eld.

3.4 Exer
ises

Exer
ise 3.1. Draw a �gure illustrating the neural net in (3.5). Choose for instan
e

n1 = 6, n2 = 5, n3 = 4 and K = 2.

Exer
ise 3.2. Think of guessing wrong for handwritten integers, that is guessing integer

y when x is 
orre
t, x = 0, . . . , 9, y = 0, . . . , 9, y 6= x. Whi
h of the possible 90 errors

do you think is the largest one? Look in Table 3.2 and 
ompare with the largest error

probability there.
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Chapter 4

Statisti
al image modelling

In Figure 4.1 we see two examples of images obtained by simulation from simple models

with independent pixel values. To the left we have a 'pepper-and-salt' pattern 
orre-

sponding to equal probababilities for bla
k and white. To the right we have a grey-level

image from a normal distribution (µ, σ2) with µ = 0.5, σ = 0.2 and trun
ated to the

interval [0, 1], that is, if a value less than 0 was generated it was repla
e by 0 and if a

value larger than 1 was generated it was repla
ed by 1.

Figure 4.1: Images of size 64× 64 obtained by simulation from models with independent

pixel values: to the left a bla
k-and-white image with equal probabilities for the two


olours, and to the right a grey-level image with values from a normal distribution with

expe
tation µ = 0.5, a standard deviation σ = 0.2 and trun
ated to the interval [0, 1] .

In the following se
tions we will generalize to models with dependen
e between pixel

values. We will 
onsider Markov random �eld models de�ned by a neighbourhood for

ea
h pixel and a 
orresponding 
onditional distribution for the pixel value given the pixel

values in the neighbourhood. But �rst we will take a look at Markov 
hains in one

dimension.
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4.1 One-dimensional Markov 
hains

A random sequen
e Xt with values in a �nite or 
ountable set V is a Markov 
hain if

Pr(Xt+1 = x|Xs, s ≤ t) = Pr(Xt+1 = x|Xt), x ∈ V. (4.1)

It is not easy to see how this 
an be generalized to pro
esses in the plain. However, one


an prove that the 
ondition (4.1) is equivalent to the 
ondition

Pr(Xt = x|Xs, s 6= t) = Pr(Xt = x|Xt−1, Xt+1), x ∈ V, (4.2)

that is, if we want to predi
t Xt from all values Xs, s 6= t, it is enough to know Xs in

the two neighbouring sites with s = t − 1 and s = t + 1. And the 
ondition (4.2) 
an

be generalized in a straightforward way to several dimensions as will be seen in the next

se
tion.

4.2 Markov random �eld models

Let us regard a random image X = (Xs, s ∈ S), where S denotes the set of sites (pixel

lo
ations). We suppose that to ea
h site s ∈ S there is de�ned a set Ns ⊂ S of neighbour

sites su
h that the following two 
onditions are satis�ed:

(i) s 6∈ Ns,

(ii) t ∈ Ns if and only if s ∈ Nt.

Two often used neighbourhood systems are shown in Figure 4.2. To the left we see the

system where the site s = (i, j) has the neighbourhood

Ns = {(i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1)}. (4.3)

In the system shown in the right part of the �gure there are four additional neighbours

so that Ns then 
onsists of eight sites.

s s

Figure 4.2: Two often used neighbourhood systems: to the left the site s has four neigh-
bours and to the right it has eight neighbours.

Suppose that X = (Xs, s ∈ S) is a set of dis
rete random variables taking values in the

set V . We say that X is a Markov random �eld with respe
t to the system (Ns, s ∈ S)
of neighbourhoods if

Pr(Xs = x|Xt, t 6= s) = Pr(Xs = x|Xt, t ∈ Ns), x ∈ V, s ∈ S. (4.4)

This means that if we want to predi
t the pixel valueXs at s knowing all other pixel values
we get the same predi
tion as when we only know the pixel values in the neighbourhood
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Ns. This will turn out to be highly useful in an iterative sampling method 
alled Gibbs

sampling, whi
h may be used for simulation of a Markov random �eld.

Neighbourhoods of border sites have to be 
onsidered separately. Suppose that the set

of sites is

S = {(i, j) : i = 1, . . . , m, j = 1, . . . , n}. (4.5)

One possibility is to use periodi
 boundary 
onditions whi
h means that sites in the

leftmost 
olumn are 
onsidered as neighbours of sites in the rightmost 
olumn, and,

similarly, that sites in the top row are 
onsidered as neighbours of the bottom row.

Spe
i�
ally, if (4.3) gives neighbourhoods for non-border sites, we de�ne for s = (i, n)
with 1 < i < m

Ns = {(i− 1, n), (i+ 1, n), (i, n− 1), (i, 1)}, (4.6)

with similar de�nitions for other border sites. We 
an think of periodi
 boundary 
ondi-

tions as 
orresponding to a folding of S like a torus (a doughnut).

Example 4.1. The Ising model. Let S be given by (4.5) with periodi
 boundary


onditions. In physi
al appli
ations to be dis
ussed below we are interested in large

values of m and n. Suppose that Xs 
an take two possible values, −1 and +1. Let X+
s

and X−
s denote the number of neighbours of s that take positive and negative values,

respe
tively. Thus X+
s +X−

s = 4. In the basi
 two-dimensional model we assume that

Pr(Xs = +1|Xt, t ∈ Ns) =
exp(2β(X+

s −X−
s ))

1 + exp(2β(X+
s −X−

s ))
. (4.7)

We assume that β > 0. Note that if X+
s > X−

s , that is, if the number of neighbours of s
with positive values is larger than the number of neighbours with negative values, then

the probability that s shall also have a positive value is greater than 1/2.

An alternative way of spe
ifying the probability distribution of X is as a Gibbs distri-

bution,

Pr(X = x) =
1

Z
exp(β

∑

s∼t

xsxt), (4.8)

where Z is a normalizing 
onstant, whi
h is notoriously di�
ult to 
ompute in models

of this type, and where s ∼ t denotes that s and t are neighbours. Thus we sum in the

right member of (4.8) over all pairs (s, t) of sites that are neighbours. In physi
s the

Ising model is used as a model for ferromagnetism and β may be interpreted as inverse

temperature. It turns out that for temperature below a 
riti
al value, that is for β > βc,
there are long range dependen
ies and possible phase transitions, that is a 
lear majority

of the Xs-values will either be equal to +1 or a 
lear majority will be equal to −1. But
for β < βc there are no phase transitions and the value of Xs averaged over large sets of

sites is 
lose to zero. A famous 
omputation by (Onsager, 1944) gives

βc =
1

2
log(1 +

√
2) = 0.44069 (4.9)

A review of Gibbs distributions and their use in mathemati
al physi
s may be found in

(Georgii et al., 2001). ✷
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4.3 Autonormal random �eld models

Let us now also regard Markov random �eld models, where Xs, s ∈ S are 
ontinuous

real-valued random variables. The 
ondition (4.4) needs then a modi�
ation to

Pr(Xs ∈ A|Xt, t 6= s) = Pr(Xs ∈ A|Xt, t ∈ Ns), A ⊆ R, s ∈ S, (4.10)

for all 
onsidered subsets A of R. We here only 
onsider some simple autonormal models

where we assume that the 
onditional distribution of Xs given its neighbours is normal

with a 
onstant varian
e σ2
and an expe
tation that is a linear 
ombination of the neigh-

bour values. Spe
i�
ally, let us 
onsider the neighbourhood system given by the left

part of Figure 4.2 and denote the neighbours of s in the West, North, East and South

dire
tions W (s), N(s), E(s), and S(s), and assume that

E(Xs|Xt, t ∈ Ns) = µ+βW (XW (s)−µ)+βN (XN(s)−µ)+βE(XE(s)−µ)+βS(XS(s)−µ).
(4.11)

4.4 Simulation of Markov random �elds

There are several ways of simulating images from Markov random �eld models. We will

des
ribe one of the most used methods, Gibbs sampling.

In Gibbs sampling we visit the sites s ∈ S in a spe
i�ed way whi
h may be random or

deterministi
. An often used random method is to 
hoose su

essive sites to be visited

independently and in a purely random way from the set of all sites. And an often used

deterministi
 visiting s
heme for a set of sites su
h as (4.5) is to 
hoose sites to be visited

row-wise from left to right starting with the �rst row and pro
eeding until all sites have

been visited. Su
h a set of visits is 
alled a sweep. The pro
edure is iterated a given

number of of sweeps.

Example 4.2. The Ising model. Continuation. Consider Gibbs sampling for the Ising

model by use of (4.7). As start 
on�guration we use a purely random 
on�guration as

in the left part of Figure 4.1. For a set of β-values we see in Figure 4.3 binary images

obtained by deterministi
 row-wise sweeps as des
ribed above. The upper two rows


orrespond to β values under the 
riti
al value (4.9), that is to high temperature, while

the two lower rows 
orrespond to low temperature. In the middle row we have β very


lose to the 
riti
al value, a
tually slightly above.

It may be noted that for large β-values (the two lower rows) the number of iterations

used in Figure 4.3 is far too small to arrive at a stationary distribution for the Markov


hain formed by the su

essive iterations. ✷
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Figure 4.3: Binary images obtained by simulation for the Ising model with β = 0.11,

0.22, 0.4407, 0.88 and 1.76 in rows 1 to 5, respe
tively. In the 
olumns we have to the

left a purely random start 
on�guration and then the result after 1 sweep, after 4 sweeps,

after 16 sweeps and after 64 sweeps, respe
tively.
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Figure 4.4: Grey-s
ale images obtained by simulation for autonormal models. In the


olumns we have to the left a purely random start 
on�guration and then the result

after 1 sweep, after 16 sweeps, after 128 sweeps and after 256 sweeps, respe
tively. The

parameters in (4.11) are in the upper row βW = βE = βN = βS = 0.24, in the se
ond

row βW = βE = 0 and βN = βS = 0.48, and in the third row βW = βE = −0.24 and

βN = βS = 0.24. In all three rows we have µ = 0.5 and the residual standard deviation

σ = 0.3.

Example 4.3. Simulation of an autonormal model. Consider Gibbs sampling for the

autonormal model with 
onditional expe
tations (4.11) and 
onstant 
onditonal varian
e

given the neighbour values. For three sets of parameters we obtain results shown in

Figure 4.4. ✷

4.5 Bayesian analysis of images

A 
ommon approa
h in Bayesian image analysis, is to assume that we start with a random

image X given by a Markov random �eld. Then we observe a distorted image Y and one

basi
 problem is to re
onstru
t X from Y . A simple model for the observed image Y =
(Ys, s ∈ S) is to assume that given X the Ys-variables are independent and furthermore

that the distribution of Ys only depends on Xs, that is we assume that

Pr(Y = y|X) =
∏

s∈S

Pr(Ys = ys|Xs). (4.12)

The re
onstru
tion of X from Y is a di�
ult 
omputional problem, and a series of

iterative algorithms have been developed for this type of problems, most of them based

on Markov 
hain Monte Carlo algorithms.
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The use of Bayesian models for image re
onstru
tion by use of Markov random �eld

models as priors for the unobserved image X has generally su�ered from the problem

that it seems di�
ult to spe
ify realisti
 priors for images typi
ally found in appli
ations.

An interesting approa
h developed in parti
ular by David Mumford and Song Chun Zhu

is based on the following type of models, see for instan
e (Zhu & Mumford, 1997) for

details and examples of whi
h images that might be generated. Brie�y the stru
ture of

the model for the prior is a Gibbs distribution, 
f. (4.8) above, with

Pr(X = x) =
1

Z
exp(−U(x; Λ, F )), (4.13)

where

U(x; Λ, F ) =

K
∑

α=1

∑

s∈S

λ(α)((F (α) ∗ x)(s)). (4.14)

Here F = {F (1), . . . , F (K)} is a set of linear �lters and Λ = {λ(1), . . . , λ(K)} is a set of

fun
tions, 
alled potential fun
tions, a
ting on the features extra
ted by the �lter bank

F .

4.6 Exer
ises

Exer
ise 4.1. Simulate images with independent pixel values as in Figure 4.1 but with k
equi-distributed levels. Choose k = 3 and k = 256. (Note that the left image in Figure 4.1


orresponds to k = 2.)

Exer
ise 4.2. Regard the Ising model with negative β-values. (In physi
s this model is

used as a model for anti-ferromagnetism.) Use Gibbs sampling to simulate images as in

Figure 4.3 with β = -0.11, -0.22, -0.44, -0.88 and -1.76. Try also to guess what the images

will look like before making the simulations.

Exer
ise 4.3. Regard an autonormal model with a neighbourhood system as in the right

part of Figure 4.1. Choose suitable notation and write a model 
orresponding to (4.11).

Use Gibbs sampling to simulate images as in Figure 4.4 and suggest parameter 
ombina-

tions to obtain di�erent types of random textures.

Exer
ise 4.4. Show that if the distribution of X is given by (4.8), then (4.7) holds. Hint:

one 
an use that

Pr(Xs = +1|Xt = xt, t ∈ Ns) =
Pr(Xs = +1, Xt = xt, t ∈ Ns)

Pr(Xs = +1, Xt = xt, t ∈ Ns) + Pr(Xs = −1, Xt = xt, t ∈ Ns)
.

4.7 Markov Chain Monte Carlo methods

Let us brie�y des
ribe Markov Chain Monte Carlo methods. We start with the Metropolis-

Hastings algoritm. Suppose that we want to estimate the expe
tation

E(g(X)) =

∫

g(x)f(x) dx , (4.15)
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where X is a random variable in d-dimensional Eu
lidean spa
e with probability density

f . Suppose further that we only know the density f ex
ept for a multipli
ative 
onstant,

that is we know an unnormalized density

f ⋆(x) = cf(x) (4.16)

but not the normalization 
onstant

c =

∫

f ⋆(x) dx . (4.17)

In the Metropopolis-Hastings algorithm we generate a sequen
e of random variables

X1, . . . , Xn forming a Markov 
hain with a distribution 
onverging to the distribution

of X . To generate Xt+1 from Xt use a proposal distribution q(·|Xt) and generate a d-
dimensional random variable Yt. An often used proposal distribution is obtained by a

random walk model, that is

Yt = Xt + ǫt , (4.18)

where ǫt has d independent zero mean normal 
omponents with varian
e σ2
. The proposed

variable Yt is a

epted as Xt+1 with probability

α(Yt|Xt) = min

{

1,
f ⋆(Yt) q(Xt|Yt)
f ⋆(Xt) q(Yt|Xt)

}

. (4.19)

If Yt is not a

epted we put Xt+1 = Xt. To 
ontrol the a

eptan
e or reje
tion of Y we

generate an independent random variable Ut with a uniform distribution on the interval

(0, 1) independent of Ys and Us for s < t. Then we put

Xt+1 =

{

Yt if Ut < α(Yt|Xt)
Xt otherwise .

(4.20)

An ex
ellent self-
ontained introdu
tion to Markov 
hain Monte-Carlo methods with fo
us

on the Metropolis-Hastings algorithm is given in (Robert, 2016).

4.8 Literature on statisti
al image modelling

Bayesian models for images be
ame popular in the eighties following work by (Grenan-

der, 1983) and (Geman & Geman, 1984). Markov 
hain Monte Carlo methods play an

important role in re
onstru
tion of images observed with noise. Important algorithms are

simulated annealing, the Metropolis algorithm and Gibbs sampling, whi
h all are exam-

ples of randomized algorithms. A simple iterative method, iterated 
onditional modes,

was introdu
ed by (Besag, 1986). (Winkler, 2003) gives a thorough treatment of these

methods from a mathemati
al point of view. For an introdu
tion to randomized algo-

rithms viewed as Markov 
hains, see (Häggström, 2002), in
luding a des
ription of exa
t

or perfe
t simulation algorithms.
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PART 2 SPATIAL STATISTICS
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Chapter 5

Spatial random pro
esses

5.1 Spatial 
ovarian
e fun
tions

Let X = (Xs, s ∈ S) be a spatial random pro
ess also 
alled random �eld, where s is a
spatial 
oordinate. In this 
hapter S may either be a dis
rete set, as when X is a digital

image, or a 
ontinuous set, e.g. a re
tangle S = {(s1, s2) ∈ R
2 : a1 ≤ s1 ≤ b1, a2 ≤

s2 ≤ b2}. In this book we limit ourselves to spatial pro
esses in two dimensions, but

generalizations to d dimensions are fairly straightforward.

A spatial random pro
ess may be 
hara
terized by its mean value fun
tion,

ms = EXs (5.1)

and its 
ovarian
e fun
tion

C(s, t) = E(Xs −ms)(Xt −mt). (5.2)

A spatial random pro
ess X = (Xs, s ∈ S) is Gaussian if the joint distribution of

(Xs1, . . . , Xsn) is an n-dimensional normal distribution for any 
hoi
e of 
oordinates

s1, . . . , sn in S. A Gaussian random pro
ess is 
ompletely spe
i�ed by its mean value

and 
ovarian
e fun
tions.

It should be noted that not all fun
tions of two variables are possible 
ovarian
e fun
-

tions. In fa
t, a ne
essary and su�
ient 
ondition that C is a valid 
ovarian
e fun
tions

is that C is symmetri
, that is C(s, t) = C(t, s), and that it is positive-de�nite, that is

satis�es

∑

i

∑

j

aiajC(si, sj) ≥ 0 (5.3)

for all n, a1, . . . , an, and s1, . . . , sn. Note that the ne
essity of the 
ondition (5.3) follows

dire
tly from the fa
t that

E(

n
∑

i=1

ai(Xsi −msi))
2 =

∑

i

∑

j

aiajC(si, sj). (5.4)

A spatial random pro
ess (Xs), s ∈ S is said to be stationary if its distribution is

invariant under a translation t ∈ R
2
, more pre
isely if for ea
h 
hoi
e of n ≥ 1 and

69



(s1, . . . , sn) the distribution of the n-dimensional random ve
tor (Xs1+t, . . . , Xsn+t) does
not depend on t, as long as si + t ∈ S, i = 1, . . . , n. The mean value for a stationary

spatial pro
ess is a 
onstant m = EXt and the 
ovarian
e fun
tion C(s, t) depends only
on s − t. A stationary spatial pro
ess is further 
alled isotropi
 if its distribution is

invariant under rotation of S. For an isotropi
 spatial pro
ess the 
ovarian
e fun
tion

C(s, t) only depends on |s− t|, the Eu
lidean distan
e between s and t. The 
ovarian
e
fun
tion 
an then be written on the form

C(s, t) = σ2ρ(|s− t|), (5.5)

where ρ = ρ(r), r ≥ 0, is 
alled the 
orrelation fun
tion. Examples of 
orrelation fun
tions

ρ that give valid (positive-de�nite) 
ovarian
e fun
tions are:

the exponential 
orrelation fun
tion

ρ(r, θ) = exp(−r/θ), (5.6)

the Gaussian 
orrelation fun
tion

ρ(r, θ) = exp(−(r/θ)2), (5.7)

the linear 
orrelation fun
tion

ρ(r, θ) = (1− r/θ)1(r < θ), (5.8)

the rational quadrati
 
orrelation fun
tion

ρ(r, θ) =
1

1 + (r/θ)2
(5.9)

and the spheri
al 
orrelation fun
tion

ρ(r, θ) = (1− 2

3
(r/θ) +

1

2
(r/θ)3)1(r < θ). (5.10)

In Se
tion 9.4, see in parti
ular Figure 9.4, we show an example with 
omparison of �ve

�tted 
orrelation fun
tions (5.6) - (5.10).

Suppose that we have a valid 
ovarian
e fun
tion C(s, t), and that σ2
0 > 0. Then we


an 
onstru
t a new valid 
ovarian
e fun
tion C0(s, t) by putting

C0(s, t) =

{

σ2
0 + C(s, t) if s = t
C(s, t) if s 6= t.

(5.11)

The 
onstant σ2
0 in (5.11) is sometimes 
alled a nugget e�e
t with regard to appli
ations

in mining. Another interpretation of the added quantity σ2
0 in (5.11) is that it just


orresponds to adding independent noise with varian
e σ2
0 to all our original observations.

In the geostatisti
s literature one often uses instead of the 
ovarian
e fun
tion the

semivariogram introdu
ed by Matheron, 
f. (Matheron, 1971) and de�ned as

γ(s, t) =
1

2
var(X(s)−X(t)) ,
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or the variogram var(X(s)−X(t)). For an isotropi
 pro
ess with varian
e σ2
and 
orre-

lation fun
tion ρ(r) one �nds

γ(s, t) = σ2(1− ρ(r)) (5.12)

when |s− t| = r.

Let us now look at how one 
an simulate a Gaussian spatial random pro
ess Xs, s ∈ S,
on a re
tangular latti
e S with given mean and 
ovarian
e fun
tions. Let us regard the

pro
ess on a spatial latti
e with n1 rows and n2 
olumns, and let X denote the matrix of

random variables that we want to simulate. Let (here) m and C denote the mean matrix

and 
ovarian
e matrix of X .

Let us reorder the X-values into a 
olumn ve
tor 
alled X̃ . (This 
an be done in

several ways, for instan
e by starting with the �rst 
olumn of X , then take the se
ond


olumn et 
etera.) The transformation from X to X̃ we 
all T and it's inverse we 
all

T −1
. Thus

X̃ = T X and X = T −1X̃ .

Put n = n1n2 and let C̃ denote the n × n 
ovarian
e matrix of X̃ . Let R = 
hol(C̃)
be the 
holesky fa
tor of C̃, here de�ned as the unique upper-triangular matrix with

non-negative diagonal elements su
h that

C̃ = RTR . (5.13)

Let further Z be a 
olumn ve
tor with n independent standard normal random variables

and put

X̃ = RTZ . (5.14)

It follows that the 
ovarian
e matrix of X̃ is

E(RTZZTR) = RTR = C̃

and that

X = m+ T −1X̃ (5.15)

has mean matrix m and 
ovarian
e matri
 C as desired. In the next se
tion we will see

how su
h a simulation fun
tions.

5.2 Matérn's 
ovarian
e fun
tion

A �exible and mu
h used 
orrelation fun
tion is Matérn's 
orrelation fun
tion suggested

1960

ρ(r) = ρ(r; ν, θ) =
21−ν

Γ(ν)

(r

θ

)ν

Kν

(r

θ

)

, (5.16)

where ν > 0 and θ > 0 are smoothness and s
ale parameters, and Kν is a modi�ed Bessel

fun
tion of the se
ond kind, whi
h may be expressed as an integral

Kν(x) =
2νΓ(ν + 1/2)√

πxν

∫ ∞

0

cosxt

(t2 + 1)ν+1/2
dt , (5.17)

see (Matérn, 1986) and (Gelfand et al., 2010) for further details. Some spe
ial 
ases,

where Matérn's 
orrelation fun
tion 
an be expressed in terms of elementary fun
tions

are given in Table 5.1.
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Table 5.1: Spe
ial 
ases of Matérn's 
orrelation fun
tion

Smoothness parameter ν Matérn's 
orrelation fun
tion ρ(r) for s
ale parameter θ = 1
ν = 1/2 ρ(r) = exp(−r)
ν = 3/2 ρ(r) = (1 + r) exp(−r)
ν = 5/2 ρ(r) = (1 + r + r2/3) exp(−r)
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Figure 5.1: Four examples of Matérn 
orrelation fun
tions ρ(r; ν, θ) from (5.16), plot-

ted against distan
e r, with varying smoothness parameters ν and with 
onstant s
ale

parameter θ = 1.

In Figure 5.1 some Matérn 
orrelation fun
tions, in
luding those in Table 5.1, are

plotted. One 
an show that for in
reasing shape parameter ν the Matérn 
orrelation

fun
tion gets 
lose to the Gaussian 
orrelation fun
tion in (5.7), whi
h seems plausible

from Figure 5.1. However, to get a proper limit result one has to normalize with a proper

s
ale parameter, whi
h also seems plausible from Figure 5.1. More pre
isely we 
an put

θ = 1/(2
√
ν) . (5.18)

One 
an show that with ρ(r; ν, θ) given by (5.16) we have

lim
ν→∞

ρ(r; ν, 1/(2
√
ν)) = exp (−r2) . (5.19)

Related to the s
aling (5.18) is the observation that the pra
ti
al 
orrelation range d
range

for Matérn's 
orrelation fun
tion is

d
range

≈ θ
√

(8ν) . (5.20)

Che
k in Figure 5.1 if the relation (5.20) seems reasonable.

Let us now see how we 
an simulate Gaussian pro
esses with Matérn 
orrelation fun
-

tions. We will use the method des
ribed in the previous se
tion, see (5.15), for two

di�erent 
orrelation fun
tions (5.16) with ν = 0.5 and ν = 1.5. To get essentially the
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same 
orrelation range we also use the s
ale normalization (5.18), 
ompare Figure 5.3,

and to get 
ovarian
e fun
tions we multiply the 
orrelation fun
tions with σ2 = 1. Re-

sulting realizations (sample surfa
es) are shown in Figure 5.2. Let us note that the for

both the left and the right part of Figure 5.2 the pra
ti
al 
orrelation range d
range

≈
√
2


orresponding to the length of diagonals.
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Figure 5.2: Two two-dimensional realizations with Matérn 
orrelation fun
tions ρ(r; ν, θ)
from (5.16) with ν = 0.5 (left) and ν = 1.5 (right). The simulation method with real-

izations obtained with (5.15) was used on a square two-dimensional set S = [0, 1]× [0, 1]
with 100 pixels in both the horizontal and verti
al dire
tions. In both 
ases the s
ale

parameter θ is given by (5.18) and to get 
ovarian
e fun
tions we multiply the 
orrelation
fun
tions with σ2 = 1.

One 
an show that realizations from a Matérn pro
ess with ν > 0 are 
ontinuous.

They are m times di�erentiable if and only if ν > m. Thus the left realization in Figure

5.2 is 
ontinuous but not di�erentiable, and the right realization is di�erentiable on
e

but not twi
e. To illustrate 
ontinuity and di�erentiability better we show in Figure

5.4 one-dimensional realizations of Matérn pro
esses with ν equal to 1/2, 3/2 and 5/2,

respe
tively, whi
h thus are zero, one and two times di�erentiable. With v = 1/2 we get

in one dimension the well-known Ornstein-Uhlenbe
k pro
ess, see . It is a Markov pro
ess

with 
orrelation fun
tion

ρ(t) = exp(−t) ,
whi
h similar to the Wiener pro
ess is 
ontinuous but nowhere di�erentiable.

5.3 Eu
lid's hat 
ovarian
e fun
tion

Matérn's 
ovarian
e fun
tion ρ(r; ν, θ) in (5.16) is positive for all r > 0. Sometimes it

is useful to have a 
ovarian
e fun
tion that is zero from a �nite range and onwards. A

family of su
h 
ovarian
e fun
tions is Eu
lid's hat 
ovarian
e fun
tion

ρ(r) = ρ(r;n, θ) = σ2In+1

2
, 1
2

(1− r2/θ2) 1(r < θ) , (5.21)
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Figure 5.3: The two Matérn 
orrelation fun
tions ρ(r; ν, θ) from (5.16) with ν = 0.5 and

ν = 1.5 used in Figure 5.2, plotted against distan
e r. In both 
ases the s
ale parameter

θ is given by (5.18).
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Figure 5.4: Three one-dimensional realizations with Matérn 
orrelation fun
tions ρ(r; ν, θ)
from (5.16) with ν = 0.5 (left), ν = 1.5 (
enter) and ν = 2.5 (right). In all three 
ases

the s
ale parameter θ is given by (5.18) and to get 
ovarian
e fun
tions we multiply the


orrelation fun
tions with σ2 = 1. The pro
esses are simulated on the interval [0, 1] whi
h
is divided into 500 pixels.
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where

In+1

2
, 1
2

(x) =

∫ x

0

√

tn−1(1− t)−1 dt
∫ 1

0

√

tn−1(1− t)−1 dt
(5.22)

is the regularized in
omplete beta fun
tion.

Let us note that n = 1 
orresponds to the linear 
orrelation fun
tion (5.8) and n = 3

orresponds to the spheri
al 
orrelation fun
tion (5.10). Some Eu
lid's hat 
orrelation

fun
tions are shown in Figure 5.5.
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Figure 5.5: Four examples of Eu
lid's hat 
orrelation fun
tions ρ(r;n, θ) from (5.21),

plotted against distan
e r, with varying parameter n and 
onstant s
ale parameter θ = 1.
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5.4 Statisti
al models for observations of random �elds

Suppose that we have measurements Yi, i = 1, . . . , n, taken at spatial lo
ations s1, . . . , sn.
Let B1, . . . , BK be explanatory variables and assume that

Yi =

K
∑

k=1

Bk(si)βk +X(si) + ǫi , (5.23)

where X = (X(s), s ∈ S) is a Gaussian random �eld and ǫ1, . . . , ǫn are zero mean normal

random variables with varian
e σ2
ǫ independent mutually and of X . The questions we

shall look at are:

(i) How 
an we estimate parameters in the model (5.23)?

(ii) How 
an we predi
t an observation at an unobserved lo
ation s0 ?

As an example we shall look at mean summer time (June � August) temperatures in


ontinental US re
orded at 250 weather stations 1997. The temperatures and a number

of possible explanatory variables 
an be obtained from

http://www.image.u
ar.edu/GSP/Data/US.monthly.met/

and some further information in
luding how missing data were estimated 
an be found

in (Johns et al., 2003). Figure 5.6 shows the mean summer temperatures.

Figure 5.6: Mean summer temperatures for 1997 re
orded at 250 weather stations in


ontintental US.

Our �rst approa
h will be to use ordinary least squares with a number (here �ve)


ovariates but without the random �eld X , that is to use the model

Yi =

K
∑

k=0

Bk(si)βk + ǫi , (5.24)

where we also have in
luded an inter
ept β0 and 
orrespondingly we put B0(si) = 1. The
model 
an also be written

Y = Bβ + ǫ , ǫ ∼ N(0, σ2
ǫ I) . (5.25)
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Table 5.2: OLS (Ordinary Least Squares) analysis of US 
ontinental summer tempera-

tures 1997. Residual standard deviation estimate σ̂ǫ = 1.10.
Explaining variable Estimate β̂k Corresponding t-value
Inter
ept 21.63 189.17

Longitude -1.29 -8.15

Latitude -2.70 -22.72

Altitude -2.67 -18.33

East 
oast -0.10 -0.74

West 
oast -1.31 -10.24

Longitude Latitude Altitude

East 
oast West 
oast

Figure 5.7: Five 
ovariates used in the analysis of summer temperature in 
ontintental

US.

The 
ovariates we use are Longitude, Latitude, Altitude, East 
oast and West 
oast,

see Figure 5.7. Table 5.2 shows the parameter estimates

β̂
OLS

= (BTB)−1BTY (5.26)

of the OLS analysis of the data. The residual degrees of freedom is 250-6= 244. From

the 
olumn of t-values we see that all the parameter estimates ex
ept one in Table 5.2

are higly signi�
antly di�erent from zero. The OLS regression surfa
e estimate

Ŷ
OLS

= Bβ̂
OLS

(5.27)

of the temperature surfa
e is shown in Figure 5.8 and the OLS regression residuals

res

OLS

= Y −Bβ̂
OLS

(5.28)

are shown in Figure 5.9. From Figure 5.9 we see that residuals 
lose in lo
ation seem

highly 
orrelated, whi
h indi
ates that the model 
ould be improved.
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Figure 5.8: OLS regression temperature surfa
e estimate

Figure 5.9: OLS regression temperature residuals

To improve the model (5.25) we will assume that

Y = Bβ + ǫ , ǫ ∼ N(0,Σ) , (5.29)

where Σ is a general positive-de�nite 
ovarian
e matrix. One 
an show that with this

model the least squares estimate of β 
alled the GLS (Generalized Least Squares) estimate

is

β̂
GLS

= (BTΣ−1B)−1BTΣ−1Y (5.30)

with 
orresponding GLS regression surfa
e estimate

Ŷ
GLS

= Bβ̂
GLS

(5.31)

and GLS regression residuals

res

GLS

= Y − Bβ̂
GLS

. (5.32)

One problem with GLS is that typi
ally the 
ovarian
e matrix Σ in (5.30) is unknown

and has to be estimated. One possible estimation method is to start with OLS residuals
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Table 5.3: OLS (Ordinary Least Squares) and GLS (Generalized Least Square) parameter

estimates US 
ontinental summer temperatures 1997. Stars indi
ate that the 
orrespond-

ing parameter is signi�
antly di�erent from zero

Explaining variable OLS estimate GLS estimate

Inter
ept 21.63* 20.47*

Longitude -1.29* -1.00*

Latitude -2.70* -2.68*

Altitude -2.67* -4.22*

East 
oast -0.10 -0.01

West 
oast -1.31* -1.01*

and bin them in a suitable way [NOTE this has to be explained℄. For our summer

temperature data this results in the parameter estimates in the third 
olumn in Table 5.3

The GLS regression surfa
e estimate and residuals are shown in Figures 5.10 and 5.11.

Figure 5.10: GLS regression temperature surfa
e estimate
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Figure 5.11: GLS regression temperature residuals

5.5 Literature on spatial random pro
esses

A 
lassi
al, still readable, monograph on spatial statisti
s is Bertil Matérn's do
toral

dissertation from 1960, reprodu
ed 1986 as (Matérn, 1986). Two other 
lassi
al books

are (Ripley, 1981) and (Cressie, 1993). A more modern, highly useful book is (Gelfand

et al., 2010).
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Chapter 6

Point pro
esses. Poisson pro
esses.

Let A be a subset of R
2
with �nite and positive area |A|. We will 
onsider a random

subset X of A 
onsisting of �nitely many points, and 
all X a point pro
ess on A. If

B ⊆ A we let X(B) denote the number of points in X that belong to B.

The point pro
ess X is said to be stationary if the probability distribution of X is

invariant under any translation of the sets B where we regard the point pro
ess, and we

say that X is isotropi
 if the pro
ess is stationary and if, additionally, the distribution of

X is invariant under any rotation of su
h sets B.

Consider a stationary point pro
ess X on A su
h that X(A) has �nite expe
tation.

One 
an then show that

E(X(B)) = λ|B| (6.1)

for some 
onstant λ whi
h we 
all the intensity of the point pro
ess.

Example 6.20. Poisson pro
ess with 
onstant intensity.

A point pro
ess X is 
alled a Poisson pro
ess with 
onstant intensity λ ≥ 0 on A if X(B1)
and X(B2) are independent for disjoint subsets B1 and B2 of A and if X(B) is Poisson
distributed with expe
tation λ|B| for a subset B ⊆ A with area |B|, that is

Pr(X(B) = n) =
(λ|B|)n
n!

exp(−λ|B|). (6.2)

A Poisson pro
ess with 
onstant intensity is stationary and isotropi
.

A Poisson pro
ess on A with intensity λ 
an be generated in the following way. Let �rst
N be Poisson distributed with expe
tation λ|A|. Given that N = n, generate X1, . . . , Xn

as independent and identi
ally distributed variables, ea
h with a uniform distribution

over A. (See Se
tion 14.13 for a des
ription of how to generate random numbers with a

uniform distribution on a given bounded set in two dimensions.) Then we let X 
onsist

of the points X1, . . . , Xn, that is X = {X1, . . . , Xn}.
In Figure 6.1 we see two examples of su
h generation of a Poisson pro
ess in the unit

square with the 
onstant intensity λ = 50.

�
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Figure 6.1: Two examples of Poisson point pro
esses generated in the unit square with

λ = 50. The generated number of points is to the left N = 55 and to the right N = 49.

Example 6.21. Poisson pro
ess with varying intensity.

A point pro
ess X is 
alled a Poisson pro
ess with intensity fun
tion λ(s), s ∈ A, ifX(B1)
and X(B2) are independent for disjoint subsets B1 and B2 of A and if X(B) is Poisson
distributed with expe
tation

∫

B
λ(s) ds for B ⊆ A.

A Poisson pro
ess with intensity fun
tion λ(s), s ∈ A, 
an be generated in the following
way. Let �rst N be Poisson distributed with expe
tation

∫

A
λ(s) ds. Given that N = n,

generate X1, . . . , Xn as independent and identi
ally distributed variables, ea
h with a

distribution spe
i�ed by

Pr(Xi ∈ B) =

∫

B
λ(s) ds

∫

A
λ(s) ds

for B ⊆ A. (6.3)

Then we put X = {X1, . . . , Xn}. �

6.1 The Neyman-S
ott pro
ess, a point pro
esses with


lustering

Consider a Poisson pro
ess with 
onstant intensity λ, and regard the points of this pro
ess
as mother points. From ea
h mother point we generate daughter points su
h that the

number of daughter points from the mother points are all independent and identi
ally

distributed. Further, the two-dimensional ve
tors from a mother point to the daughter

points are all independent and identi
ally distributed. This distribution we 
all the

s
attering distribution. The pro
ess of daughter points is 
alled a Neyman-S
ott pro
ess.

Suppose that we want to generate a Neyman-S
ott pro
ess. If the daughter pro
ess

is regarded on a set A we need to start by generating the mother point pro
ess on a set

larger than A, in fa
t so large that (essentially) all points from whi
h daughters 
an get

82



s
attered into A are in
luded. With this observation it is straightforward to generate a

Neyman-S
ott pro
ess from the de�nition above.

Example 6.22. A Neyman-S
ott plant pro
ess with 2D normal s
attering.

Suppose that we want simulate a Neyman-S
ott pro
ess of mother and daughter plants

within the unit square [0, 1]×[0, 1] with intensity λ = 10 for the Poisson pro
ess of mother

points, with a number of daughter points that is binomial (n, p) with n = 8 and p = 0.5
and with a 2D s
attering distribution that isN(µ1, µ2, σ

2
1, σ

2
2 , ρ) with µ1 = µ2 = σ1 = σ2 =

0.1 and ρ = 0.5 
orresponding to wind spread of seeds with a main wind dire
tion from

south-west. We start by simulating the Poisson mother plant point pro
ess in the axis-

parallell quadrat with south-west and north-east 
orners in (−0.5,−0.5) and (1.3, 1.3),
respe
tively. The result of the simulation is shown in Figure 6.2.
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Figure 6.2: A simulation of a Neyman-S
ott pro
ess with mother points as 
ir
les and

daughter points as dots. OBS OBS a new �gure must be generated.

�

6.2 A hard-
ore inhibition point pro
ess

In the 
luster point pro
ess in the previous se
tion the o

urren
e of a point typi
ally

in
reases the intensity of points in a neighborhood of this point. We will now des
ribe a

point pro
esses with inhibition, suggested 1960 by Matérn, see (Matérn, 1986), whi
h has

the opposite property: the o

urren
e of a point inhibits other points within a 
ertain

distan
e.

Start by generating a Poisson point pro
ess with intensity λ on a bounded set A. To
ea
h pointXi, i = 1, . . . , N , we asso
iate a random mark 
onsisting of random variable Ui,

whi
h is uniformly distributed on the interval (0, 1) and su
h that the Ui's are indendent,

mutually and of the Xi's. We 
an think of Ui as the birth time of the point Xi.

83



Then we thin the X-pro
ess by deleting ea
h point Xi for whi
h there exists an older

pointXj of the original point pro
ess 
loser than a distan
e d, that is a pointXj satisfying

|Xi −Xj | < d and Uj < Ui. The distan
e d is 
alled the hard 
ore distan
e.

6.3 TheK-fun
tion, a diagnosti
 tool for dete
ting 
lus-

tering and inhibition

Consider an isotropi
 point pro
ess with intensity λ and suppose that x is a point of the

point pro
ess X . Let ‖y− z‖ denote the distan
e between two points y and z in R
2
, and

de�ne the K-fun
tion of X as follows,

K(r) =
1

λ
E(number of further points of X within distan
e r from x|x ∈ X) (6.4)

or more pre
isely

K(r) =
1

λ
E(X(Cx(r)|x ∈ X), (6.5)

where Cx(r) = {y : 0 < ‖y − x‖) ≤ r} denotes a 
ir
ular disk with radius r around x
with the point x ex
luded.

For a stationary Poisson pro
ess it follows that

K(r) = πr2. (6.6)

Sometimes one 
hooses to regard L(r) = (K(r))1/2 as this fun
tion is linear in r for a

Poisson pro
ess, for whi
h

L(r) =
√
πr. (6.7)

If we have a point pro
ess with 
lustering as for example the Neyman-S
ott pro
ess

we 
an expe
t that the K-fun
tion will lie above the K-fun
tion for a Poisson pro
ess

for r-values where we have 
lustering, while for a point pro
ess with inhibition su
h as

the Matérn hard-
ore pro
ess it should lie below for those r-values for whi
h we have

inhibition.

6.4 Point pro
esses operations su
h as thinning, dis-

pla
ement and superposition

Consider a point pro
ess X on a set A. Suppose that the points of X are deleted

independently with a probability 1−p, and retained with retention probablity p, 1 ≤ p ≤
1. The resulting point pro
ess of retained points is 
alled a p-thinned point pro
ess. If

X is a Poisson pro
ess with 
onstant intensity λ one 
an show that the p-thinned point

pro
ess is a Poisson pro
ess with intensity pλ. Note that the hard-
ore inhibition point

pro
ess des
ribed in Se
tion 6.2 is obtained from a Poisson pro
ess by a more 
ompli
ated

thinning than independent thinning.
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In Se
tion 6.1 we des
ribed a daughter point pro
ess obtained by a 
lustering operation

on a mother Poisson point pro
ess. The same 
lustering operation with independent and

identi
ally distributed daughter points 
an be obtained starting from an arbitrary mother

point pro
ess. A useful spe
ial 
ase is that ea
h mother point gives birth to one exa
tly

daughter point with a given s
attering distribution. The resulting daughter point pro-


ess then gives a point pro
ess with displa
ements with the original points independently

displa
ed a

ording to the s
attering distribution.

A third useful point pro
ess operation is superposition X ∪ Z of two point pro
esses

X and Z on a given set A. For instan
e, if X is the basi
 point pro
ess that we 
onsider,

then Z 
an be an independent Poisson pro
ess of �ghost� points. In (Dralle & Rudemo,

1997) and (Lund & Rudemo, 2000) a point pro
ess X of tree positions measured on

ground is studied together with positions Y obtained from an aerial photograph su
h as

in Figure 1.2 or 1.4. The points of Y are modeled as obtained from X by the me
hanisms

of thinning, displa
ement and superposition of independent �ghost� points. The analysis

of these me
hanisms as dis
ussed by (Dralle & Rudemo, 1997) is desribed in some detail

Chapter 11 below.

6.5 Estimation of 
hara
teristi
s for point pro
esses

Suppose that we have observed a stationary point pro
ess X on a set A ⊂ R
2
. The

intensity of X we estimate by

λ̂ =
X(A)

|A| . (6.8)

It follows generally that for a stationary point pro
ess with �nite intensity λ the estimator

(6.8) is an unbiased estimator of the intensity, that is, E(λ̂) = λ.

For a Poisson pro
ess we 
an also 
ompute the varian
e of the estimator (6.8). We

�nd

var(λ̂) =
λ

|A| . (6.9)

Let us now regard estimation of the K-fun
tion of a point pro
ess X observed in the

region A. The basi
 problem in estimating K(r) is that for a point x ∈ X we want to


onsider all neighbouring X-points within distan
e r. But some of these neighbours may

be lo
ated outside A.

For our �rst estimator of K(r) we 
onsider pairs of X-points x and y su
h that x ∈ A−
r ,

where A−
r denotes the subset of A of points with a distan
e at least r to the border of

A. Let 1{P} denote the fun
tion whi
h is 1 when P is true and zero else. From the

de�nition (6.4) it follows

∑

x∈X∩A−

r

∑

y∈X

1{0 < ‖y − x‖ < r} (6.10)

is an unbiased estimator of λ2|A−
r |K(r). The pro
edure of restri
ting to points within a


ertain distan
e to the border is 
alled minus-sampling, and the 
orresponding estimator
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ofK(r) is therefore 
alled K̂
minus

(r), and it is obtained from the unbiased estimator (6.10)

of λ2|A−
r |K(r) by repla
ing λ with its estimator (6.8). We get

K̂
minus

(r) =
1

λ̂2|A−
r |

∑

x∈X∩A−

r

∑

y∈X

1{0 < ‖y − x‖ < r}. (6.11)

Let us now give another estimator of the K-fun
tion whi
h utilizes our observations

more e�e
tively. Regard two points x and y in the region A and a 
ir
le with 
entre at

x and radius ‖y − x‖. Let w(x, y) denote the proportion of the perimeter of this 
ir
le

that lies within A. If, for instan
e A is the unit square [0, 1]×[0, 1], x = (1/2, 1/2) and
y = (1/2,−1/2 + 1/

√

(2), then a straightforward 
ompution shows that w(x, y) = 1 and
w(y, x) = 3/4. One 
an now show that

∑

x∈X

∑

y∈X

1{0 < ‖y − x‖ < r}
w(x, y)

(6.12)

is an unbiased estimator of λ2|A|K(r). The 
orresponding estimator of the K-fun
tion is

K̂(r) =
1

λ̂2|A|
∑

x∈X

∑

y∈X

1{0 < ‖y − x‖ < r}
w(x, y)

. (6.13)

There is one minor restri
tion in the use of (6.13) whi
h means that we 
annot 
onsider

r so large that w(x, y) be
ome 
lose to zero. In pra
ti
e this is not important as we are

usually interested in reasonably small r-values. Thus, for observations in the unit square

an upper limit for r is 1/
√
2.

6.6 Simulation-based envelope tests for point pro
esses

Suppose that we have an estimate K̂(r) of the K-fun
tion of a point pro
ess X on the

set A with, say, the estimator (6.13). As indi
ated in the end of Se
tion 6.3 we should

then be able to dete
t 
lustering or inhibition by 
omparing the estimated K-fun
tion

with the K-fun
tion (6.6) valid for a stationary Poisson pro
ess. But how large deviation


ould we expe
t to �nd by pure randomness?

Useful simulation-based envelope-te
hniques have been introdu
ed to ta
kle this prob-

lem, 
ompare (Diggle, 2013). Let us start with des
ribing a te
hnique whi
h is useful

as an exploratory tool. Put n = X(A) and generate M independent 
opies X1, . . . , XM

of a Poisson pro
ess on A 
onditioned on Xm(A) = n,m = 1, . . . ,M . Thus the points

of ea
h Xm 
an be obtained by independent random sampling of n points in A. Let

K̂m(r) denote the K-fun
tion estimate 
orresponding to Xm, m = 1, . . . ,M . We are

interested in evaluating the probability that K̂(r) lies between the envelopes minmK̂m(r)
and maxmK̂m(r).

Assume for simpli
ity that M = 39. Then we have provided that X is a Poisson

pro
ess, and for �xed r,

Pr
(

min1≤m≤MK̂m(r) ≤ K̂(r) ≤ max1≤m≤MK̂m(r
)

=

1− Pr
(

min1≤m≤MK̂m(r) > K̂(r)
)

− Pr
(

K̂(r) > max1≤m≤MK̂m(r
)

=

1− 0.025− 0.025 = 0.95.

(6.14)
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A tempting strategy is then to plot K̂(r) together with the envelopes minmK̂m(r) and
maxmK̂m(r), and to 
on
lude that the Poisson hypothesis is reje
ted if K̂(r) somewhere

falls outside the envelopes. However this pro
edure does not give a valid test at the level

p = 0.05 as the 
al
ulation above is only valid for a �xed r-value. However, it may still

be used as an exploratory te
hnique indi
ating for whi
h r-values the Poisson hypothesis

may not be valid. There have been developed valid tests with envelope bounds, see for

instan
e (Myllymäki et al., 2017).

6.7 Exer
ises

Exer
ise 6.1. Generate a Poisson pro
ess on the unit square [0, 1]×[0, 1] ⊂ R
2
with


onstant intensity 100. Show the result in a �gure.

Exer
ise 6.2. Generate a Poisson pro
ess on the unit square A = [0, 1]×[0, 1] with varying
intensity λ(s) = 200s1, s = (s1, s2) ∈ A. Show the result in a �gure.

Exer
ise 6.3. Generate a Neyman-S
ott pro
ess on the unit square A = [0, 1]×[0, 1] ⊂ R
2

in the following way. Assume that (i ) the mother pro
ess is a Poisson pro
ess with


onstant intensity 50, (ii ) ea
h mother point generates two daughter points, and (iii )

the s
attering distribution (from mother to daughter) is an isotropi
 two-dimensional

normal distribution with zero means and standard deviation 0.01 in both horizontal and

verti
al dire
tions. (Trun
ate here the normal distributions at, say, plus and minus three

standard deviations.) Show the result in a �gure.

Exer
ise 6.4. Compute the expe
ted distan
e from one mother point to its nearest neigh-

bour mother point for the point pro
ess of the previous exer
ise, and also the expe
ted

distan
e between the two daughter points from one mother point (disregard in these 
om-

putations edge e�e
ts, that is the limited size of the set A). Instead of the two expe
ted

distan
es you may 
hoose to 
ompute root-mean square distan
es, that is the square root

of the expe
ted squared distan
es, whi
h are a bit easier to 
ompute.

Exer
ise 6.5. Generate a hard 
ore Matérn point pro
ess on the unit square [0, 1]×[0, 1] ⊂
R

2
with λ = 100 and d = 0.1. Show the result in a �gure.

Exer
ise 6.6. Estimate the intensity and theK-fun
tion for the point pro
esses 
onsidered

in (a) Exer
ise 6.1, (b) Exer
ise 6.3, and (
) Exer
ise 6.5. Compare the three K-fun
tion

estimates.

Exer
ise 6.7. Generate 
opies of Poisson pro
esses X1, . . . , XM with M = 39 and 
orre-

sponding K-fun
tion estimates as des
ribed in Se
tion 6.6 for the point pro
esses 
on-

sidered in (a) Exer
ise 6.1, (b) Exer
ise 6.3, and (
) Exer
ise 6.5. For ea
h of these

three examples plot both the K-fun
tion estimates (as in Exer
ise 6.6) and the envelopes

minmK̂m(r) and maxmK̂m(r).

6.8 Extensions and literature on point pro
esses

Highly readable general introdu
tions to spatial point pro
esses are given in (Diggle,

2013) now in its third edition, (Baddeley et al., 2015) whi
h also provides R programmes
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for point pro
ess analysis, (Daley & Vere-Jones, 2003),(Daley & Vere-Jones, 2008), and

(Illyan et al., 2008). The important 
lass of Markov point pro
esses, whi
h are related to

the Markov image models dis
ussed in Chapter 4, are treated in (van Lieshout, 2000) and

(Møller & Waagepetersen, 2003). In (Chiu et al., 2013) point pro
esses are dis
ussed in

detail but also more general random spatial obje
ts su
h as, for instan
e, random 
losed

sets generated by pla
ing 
losed dis
s with 
enters at points in a point pro
ess and taking

the union these dis
s. Su
h obje
ts are also brie�y dis
ussed in the following Chapter 7.

88



Chapter 7

Marked point pro
esses and patterns of

randomly pla
ed obje
ts

Point pro
esses are natural building blo
ks for more 
ompli
ated spatial pro
esses su
h

as patterns of random obje
ts, for instan
e disks of random sizes. Let us 
onsider a point

pro
ess X and asso
iate with ea
h point Xi of X a random mark Mi, whi
h 
ould be the

radius of a disk 
entered at Xi. By letting the mark be a ve
tor with several 
omponents

we 
ould model more 
omplex obje
ts.

For the 2D gel ele
trophoresis images in Figures 1.9 and 1.10 we 
ould asso
iate with

a protein at position Xi = [X1iX2i]
T
the mark Mi = (Si, Ci), where Si is the expression

level of the 
orresponding protein and Ci 
ould des
ribe the shape of the spot at Xi.

A straightforward model would be to assume that protein mole
ules are in the �rst

step transported horisontally to a position with mean X1i depending on the mole
ules

pI-value (see example 1.4), and in the se
ond step transported verti
ally (downwards)

by 2D Brownian motion with drift to a position with mean X2i with long transports

for small mole
ules. A simple model would thus be to assume that the spot shape is

a two-dimensional normal distribution with 2×2 
ovarian
e matrix Ci with means and


orrelation 
oe�
ient zero. The observed pixel grey level Yx at a pixel with lo
ation x

ould then modeled by

Yx =
∑

i

Sif(x,Xi, Ci) + ǫx, (7.1)

where ǫx is the observation noise at pixel x and

f(x,Xi, Ci) =
1

2π(detCi)1/2
exp(−1

2
(x−Xi)

TC−1
i (x−Xi)). (7.2)

Looking at Figures 1.9 and 1.10 it is evident that the 2D-normal assumption is 
learly

not perfe
t, but anyhow this simple model turns out to be useful s a �rst step.

For the di�using parti
les in Figures 1.13 and 1.14 we 
ould 
onsider a model

Yx =
∑

i

f(x,Xi, zi) + ǫx, (7.3)

where again ǫx is the observation noise at pixel x, but the mark 
onsists of the s
alar zi
representing the verti
al position of a parti
le relative to the fo
al plain. The fun
tion f
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may be estimated from data obtained by a spe
ial arrangement where one lets parti
les

absorb on a glass surfa
e and the glass surfa
e is then moved step-wise verti
ally with

known distan
es to the fo
al plane, see (Kvarnström & Glasbey, 2007) for details.

Similar models 
ould be 
onsidered for the aerial photographs in Figures 1.2 and 1.4

where we 
ould assume a similar shape for trees in a given view. This shape fun
tion 
ould

then be estimated from data 
ombined with a simulation model based on the geometry

and illumination of the trees from the sun (Larsen & Rudemo, 1998).

A spe
i�
 problem is intera
tion between obje
ts that overlap partly. In 2D gel ele
-

trophoresis it is natural to assume an additive model as in (7.1), but in the aerial pho-

tographs, and parti
ularly for the di�using parti
les, obje
ts may o

lude ea
h other and

then an additive model may be an untenable approximation. In some appli
ations su
h

as the one shown in Figure 7.1 obje
ts do (essentially) not overlap.

Figure 7.1: Binary images of two 
uts in 
ast iron showing approximately disk-shaped

defe
ts. Data from Beretta (2000) and Månsson and Rudemo (2002).

Let us regard models for random pla
ed disks. For disks of 
onstant size we 
an then

use the inhibition point pro
ess of Se
tion 6.2 by pla
ing disks of diameter d 
entered

at the points of the thinned point pro
ess. In the following se
tion we shall regard two

modi�
ations of this model.

7.1 Two pro
esses of varying-sized disks

Let us regard marked point pro
esses 
onstru
ted in two steps as follows.

In the �rst step we generate a Poisson point pro
ess with 
onstant intensity λ in the

plane, and to ea
h point in this point pro
ess we generate identi
ally distributed radii

with a proposal distribution fun
tion Fpr. The radii are independent mutually and of the

point pro
ess.

In the se
ond step we thin the generated point pro
ess by letting all pairs of points

whose asso
iated disks interse
t '
ompete'. A point is kept if it has higher weight in all

pairwise 
omparisons, where the, possibly random, weights are assigned to the points

a

ording to two di�erent approa
hes:

1) Pairwise assignment of weights: For ea
h 
omparison, weights are assigned to the

involved pair of points, and assignments are independent both within and between pairs.
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2) Global assignment of weights: Weights are assigned on
e and for all to all points,

and assignments to di�erent points are independent. These weights are then used in all


omparisons.

In both 
ases the weight of a point may depend on the asso
iated radius. (When the

weights are 
onstant or deterministi
 fun
tions of the radii, the two approa
hes 
oin
ide.)

It is possible to 
ompute both the intensity of the point pro
ess after thinning and the

radius distribution fun
tion after thinning. Details are given in Månsson and Rudemo

(2002). Let us here only show a simulation example of disks before and after thinning

with three di�erent thinning pro
edure, see Figure 7.2.
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d) Global thinning, uniform weights

Figure 7.2: Simulation of a disk pro
ess before and after three di�erent thinning pro-


edures. In the �rst step a Poisson pro
ess with intensity 1000 in the unit square is

generated with exponentially distributed disk radii with expe
tation 0.01.
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Chapter 8

Warping and mat
hing

An important problem in analysis of multiple images is to mat
h obje
ts in di�erent

images. Thus we would like to know whi
h spots in the 2D gel ele
trophoresis images in

Figures 1.9 and 1.10 that 
orrespond to ea
h other in order to 
ompare the expression

levels of the proteins. Similarly we want to mat
h obje
ts in Figures 1.13 and 1.14

in to order to be able to follow the di�using parti
les and to estimate the di�usion


oe�
ient of their motion. There is, however, a fundamental di�eren
e between these

two problems. The di�using parti
les move independently of ea
h other ex
ept for the

rare o

asions when they 
ome very 
lose in all three dimensions. Thus displa
ements

of parti
les that are 
lose in the two-dimensional images are essentially independent of

ea
h other. In 
ontrast, displa
ements of nearby spots in the ele
trophoresis images are

highly 
orrelated. The mat
hing of obje
ts in these two situations therefore demand

quite di�erent methods. In the present se
tion we shall study warping methods whi
h

are useful for mat
hing of obje
ts in images su
h as the 2D gel images.

Suppose that we have a referen
e image Y = Y (x) and another image Y ′
that we

want to warp (transform) into Y as 
losely as possible a

ording to some 
riterion by

transforming lo
ations su
h that Y (x′) is 
lose to Y (x). Here we regard x and x′ as
2-dimensional 
olumn ve
tors and put

x′ = f(x) (8.1)

for some warping fun
tion f . The general a�ne warping fun
tion is

x′ = Ax+ b =

[

a11 a12
a21 a22

] [

x1
x2

]

+

[

b1
b2

]

. (8.2)

A spe
ial 
ase of the a�ne transformation is the Pro
rustes transformation for whi
h

x′ =

[

c cos θ c sin θ
−c sin θ c cos θ

]

x+ b. (8.3)

A spe
ial 
ase of the Pro
rustes transformation 
onsists of a dilation (s
ale 
hange with

a �xed fa
tor c) and a translation

x′ =

[

c 0
0 c

]

x+ b = cx+ b, (8.4)
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and another spe
ial 
ase of the Pro
rustes transformation 
onsists of a rotation and a

translation,

x′ =

[

cos θ sin θ
− sin θ cos θ

]

x+ b. (8.5)

A simple nonlinear warping is the bilinear transformation

x′1 = a11x1 + a12x2 + c1x1x2 + b1
x′2 = a21x1 + a22x2 + c2x1x2 + b2.

(8.6)

We note that for �xed x2 the bilinear transformation (8.6) is linear in x1 (with slope

and inter
ept depending on x2) and, similarly, for �xed x1 the transformation (8.6) is

linear in x2. This means that an axes-parallell re
tangle in the x1x2-plane is transformed

into a polygon with four sides and four 
orners in the x′1x
′
2-plane (but generally not with

pairwise parallell sides).

Another nonlinear warping fun
tion is the perspe
tive transformation

x′1 = (a11x1 + a12x2 + b1)/(c11x1 + c12x2 + 1)
x′2 = (a21x1 + a22x2 + b2)/(c21x1 + c22x2 + 1).

(8.7)

The perspe
tive transformation may be used for mat
hing the tree tops in Figures 1.2 and

1.4. Note that both the bilinear and the perspe
tive transformations are generalisations

of the a�ne transformation (8.2).

To 
hoose parameters of a warping transformation x′ = f(x) = (f1(x1, x2), f2(x1, x2))
we may 
onsider minimization of a distortion-weighted least squares 
riterion fun
tion

su
h as

L(Y ′, Y, f) =
∑

x

(Y ′(x′)− Y (x))2 + λD(f), (8.8)

where D(f) is a distortion measure of the warping fun
tion f , and λ is a non-negative

weighting 
onstant determining the balan
e between 
loseness of mat
hing and distortion.

Let us also note that with normally distributed variables least squares minimization 
or-

responds to log-likelihoodmaximization, and a method where we use a distortion measure

as in (8.8) is often 
alled a penalized log-likelihood method. The distortion measure 
ould

for instan
e measure the deviation from linearity of the warping fun
tion, and 
ould be

a sum of squared se
ond derivatives of f integrated over the region regarded,

D(f) =

2
∑

i=1

2
∑

j=1

2
∑

k=1

∫
(

∂fi
∂xj∂xk

)2

dx1dx2, (8.9)

where the partial derivatives in 
omputations are approximated by �nite di�eren
es. The

integrals are also approximated by sums over pixels.

A useful type of warping 
onsists af a grid of lo
al bilinear transformations. This

method is used in (Glasbey & Mardia, 2001) to warp images of �sh, haddo
k and whit-

ing, into ea
h other. Similarly it is used in Gustafsson et al. (2002) to mat
h 2D gels

ele
trophoresis images su
h as those in Figures 1.9 and 1.10 into ea
h other, see Chapter

10 below for details. Here we will now des
ribe how handwritten digits 
an be warped
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into ea
h other, whi
h will also be used for averaging of the handwritten digit images.

Note that simple dire
t averaging of digits su
h as those shown in Figure 8.3 will not

produ
e a useful end-result, although su
h averaging, as we will see, 
an be used as an

initial step.

Example 8.23. Handwritten digits. Warping and averaging. Classi�
ation by minimal

warping e�ort.

Consider 28×28 images from MNIST and warping of the handwritten digit �2� to the left

in the upper row of Figure 8.1 to the digit to the right of it by use of a grid of bilinear

transformations shown in Figure 8.2. The grid has 7×7 
ells and the weighting 
onstant

in (8.8) is λ = 1. Computations and �gures are from (Long�ls, 2018), where more details

are given, in
luding a dis
ussion of the 
hoi
e of the grid size and the weighting 
onstant.

image to warp target image

warped image residuals

Figure 8.1: Warping of the digit �2� left in upper row to the digit �2� right in the same

row. The lower row shows the warped image and the residuals relative to the target

upper right.

Let us now 
onsider averaging of handwritten digits of the same type by use of data

from MNIST as used earlier in Example 2.17. Thus we have for instan
e 958 digits �5�,


ompare Table 2.1, of whi
h 100 are shown in Figure 8.3. To �nd the average handwritten

5-digit we �rst average all the 958 5-digits. Then we warp all 958 digits separately with

the average as target. Then we average the warped 5-digits, warp into the new average

and pro
eed iteratively until 
hanges are su�
iently small. After a few iterations we

obtain the average shown in Figure 8.4.

Let us des
ribe how we 
an use warping te
hniques to 
lassify images. The method was

suggested in (Glasbey & Mardia, 2001) and there used to identify �sh spe
ies. Consider

as before a set of MNIST images, and let µj, j = 0, . . . , 9, denote average iteratively

warped image for digits j as des
ribed above, and where µ5 is shown in Figure 8.4. To
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Figure 8.2: Original and warped handwritten digits also shown in Figure 8.1, upper left

and lower left, here with the 7×7-grid for the bilinear transformations. The target is the

upper right digit in Figure 8.1.

Figure 8.3: First 100 digits �5� in the MNIST database.
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Figure 8.4: Average handwritten digit �5� obtained by sequential warping and averaging.


lassify a new image Y , let Yf denote the image Y warped by the transformation f . Put

Qj = min
f

{

∑

x

(Yf(x)− µj(x))
2 + λ

2
∑

i=1

2
∑

j=1

2
∑

k=1

∫
(

∂fi
∂xj∂xk

)2

dx1dx2

}

, (8.10)

and 
lassify Y as the digit j for whi
h Qj is minimal. In Figure 8.5 
lassi�
ation of 197

digits are shown with two fours and four �ves miss-
lassi�ed.
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Figure 8.5: Classi�
ation of 110 handwritten digits �4� and 87 digits �5� by warping


lassi�
ation. Penalized log-likelihoods for the two types of digits are shown on the axes.

Six digits are miss-
lasi�ed.

�

For reviews of image warping methods, see (Glasbey & Mardia, 1998, 2001).
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PART 3 APPLICATONS
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Chapter 9

Analysis of two-
oloured DNA

mi
roarray images

There are several types of DNA mi
roarrays used to analyze expression levels of genes.

We shall here look at a spe
i�
 type of two-
oloured spotted mi
roarrays brie�y des
ribed

in Example 1.5, and look at spot shape modelling and data transformation of mi
roarray

data as des
ribed in (Ekstrøm et al., 2004). As seen in Figures 1.11 and 1.12 spots are

approximately 
ir
ular with a diameter of about 18 pixels. Let S denote the set of spots,

and for ea
h spot s ∈ S we asso
iate a set As of pixels 
ontaining the spot approximately

in the 
entre. We 
an for instan
e let As be a square with side length 24 pixels. The sets

As and As′ should be disjoint for di�erent spots s and s′.

From Figures 1.11 and 1.12 it is seen that the signal intensity of spots varies from

weak to strong. To see details in weakly expressed spots it is useful to in
rease the

photometri
 gain in the s
anning. However, if we in
rease the gain we 
an get some

pixels in the strongly expressed spots to get saturated, also 
alled 
ensored. One aim in

(Ekstrøm et al., 2004) was to to see if one 
an re
onstru
t the pixel valued in satured

pixels by use of suitable spot shape modelling.

9.1 Data transformations

Let Z = Z(x) denote the intensity of pixel x. For the data in (Ekstrøm et al., 2004) the

intensity Z is a 16-bit integer, 0 ≤ Z ≤ 216 − 1 = 65535. Let Y denote a transformation

of Z. We 
onsider three types of transformations. Firstly, a logarithmi
 transformation

Y = k log(Z + λ1), (9.1)

where λ1 is a positive parameter; se
ondly, a Box-Cox transformation

Y =

{

k((Z + λ1)
λ2 − 1)/λ2 if λ2 6= 0

k log(Z + λ1) if λ2 = 0,
(9.2)

where λ1 > 0; and thirdly, an inverse hyperboli
 sine transformation

Y = k arsinh

(

Z + λ1
λ2

)

, λ2 > 0. (9.3)
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The logarithmi
 transformation is a spe
ial 
ase of the Box-Cox transformation (for

λ2 = 0). One 
an show that arsinh(z) = log(z +
√
z2 + 1) for z > 0, and thus for large z

we have arsinh ≈ log(2z). We see that for large values of z the logarithmi
 transformation

is thus essentially also a spe
ial 
ase of the hyperboli
 sine transformation (for λ2 = 2).

9.2 Spot shape models

Let us 
onsider a spot s and pixels x ∈ As. Let cs = (cs1, cs2) denote the spot 
entre of
spot s, and let rs(x) =‖ x − cs ‖ denote the Eu
lidean distan
e from the spot 
entre to

the pixel x. Assume that

Y (x) = Bshs(rs(x)) + bs + ǫ(x), x ∈ As. (9.4)

Here Bs measures the intensity of spot s, and this intensity is typi
ally the most impor-

tant parameter to be estimated for spot s. Further bs is a ba
kground intensity, hs(r)
is a spot shape fun
tion assumed to be symmetri
 around the spot 
entre, and ǫ(x) 
or-
responds to zero-mean noise at pixel x. We will assume that noise 
ontributions are

normally distributed with 
onstant varian
e σ2
ǫ , and to begin with we will also assume

that noise from di�erent pixels are independent. Thus we assume that (Y (x), x ∈ As)
has a multivariate normal distribution with means

µs(x) = Bshs(rs(x)) + bs, x ∈ As, (9.5)

and 
ovarian
e matrix σ2
ǫ I, where I is an identity matrix. We 
onsider four di�erent


hoi
es of the spot shape fun
tion hs(r):

The 
ylindri
al shape model. Put

hs(x) =
1

πσ2
s

1(r ≤ σs), (9.6)

where 1(P ) = 1 if P is true and 1(P ) = 0 if P is false. The parameter σs 
an be

interpreted as the radius of the spot.

The Gaussian shape model. Here

hs(x) =
1√
2πσ2

s

φ(r/σs), (9.7)

where φ is the standardized one-dimensional normal density φ(r) = (1/
√
2π) exp(−r2/2).

The Gaussian di�eren
e shape model. Put

hs(x) =
1 + αs√
2πσ2

s

φ(
r

σs
)− αs√

2π(βsσs)2
φ(

r

βsσs
), (9.8)

where σs > 0, αs ≥ 0 and 0 < β < 1.

The polynomial-hyperboli
 shape model. Here

hs(r) =

{ Ks

σ2
s
exp(gs(r/σs)) if 0 ≤ r < γsσs

0 if r ≥ γsσs,
(9.9)
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with

gs(r) =
2
∑

i=1

bsir
i − as

γs − r
, 0 ≤ r < γs, (9.10)

where as > 0 and γs > 1, σs represents the radius of the spot, Ks is a normalizing


onstant and

bs1 = as/γ
2
s

bs2 = as
2

{

1
(γs−1)2

− 1
γ2
s

}

.

Some spot-shape parameters may be 
ommon for all spots and some may be spot-spe
i�
.

9.3 Maximum likelihood estimation

To estimate parameters in the spot shapes and the transformations we use the maximum

likelihood method. Let us �rst assume that there are no saturated pixels, that is all

pixel-values are below the maximum level, whi
h is 216 − 1 before data transformation.

Then the log-likelihood for the Y -values in the neighbourhood As of spot s is

LY =
∑

x∈As

log

{

1

σǫ
φ

(

Y (x)− Bshs(rs(x))− bs
σǫ

)}

. (9.11)

Let us now assume that there are some saturated pixel-values, and let ℓc denote the

saturation level for the Y -values. Thus if Y (x) < ℓc we know the value Y (x) but otherwise
we only know that Y (x) ≥ ℓc. Let A′

s = {x ∈ As : Y (x) < ℓc} and A′′
s = {x ∈ As :

Y (x) ≥ ℓc} denote the set of pixels that are unsaturated and saturated, respe
tively.

Then we �nd that the log-likelihood be
omes

LY = L1 + L2, (9.12)

where

L1 =
∑

x∈A′

s

log

{

1

σǫ
φ

(

Y (x)− Bshs(rs(x))− bs
σǫ

)}

(9.13)

and

L2 =
∑

x∈A′′

s

log

{

1− Φ

(

ℓc −Bshs(rs(x))− bs
σǫ

)}

, (9.14)

where Φ denotes the distribution fun
tion of the standardized one-dimensional normal

distribution.

In Figure 9.1 original data (one-dimensional pro�les through spot middle) and model

�ts for one spe
i�
 spot and the four spot shape models are shown. It is seen that the �rst

and parti
ularly the fourth model seem to give 
onsiderably better �ts 
ompared to the

se
ond and the third models. The original data and the �t for the polynomial-hyperboli


model (9.9) are shown in more detail in Figure 9.2 for the same spot as in Figure 9.1.

Let us now look at a simultaneous 
omparison of transformations and spot shape

models by use of maximum likelihood estimation. Results are shown as median di�eren
es

of log-likelihoods relative to the best model �t in Table 9.1 for 25 spots and four di�erent
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Figure 9.1: One-dimensional intensity pro�les (through spot 
enter) for observed inten-

sities of one spot, four photometri
 gains and maximum likelihood �ts for the four spot

shape models (9.6), (9.7), (9.8) and (9.9).

Figure 9.2: Three-dimensional plot (for one photometeri
 gain) of observed intensities

(left surfa
e) for the same spot as in Figure 9.1 and the 
orresponding estimated spot

shape for the polynomial-hyperboli
 shape model (right surfa
e).
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photometri
 gains in the s
anning. The 25 spots were sele
ted to represent both low,

median and high intensity levels. We see that the polynomial-hyperboli
 model is the

best spot shape model followed in order by the 
ylindri
al, the Gaussian di�eren
e and

the Gaussian model, whi
h is also 
learly indi
ated in Figure 9.1. The best 
ombination is

the Box-Cox transformation together with the polynomial-hyperboli
 spot shape model.

Table 9.1: Median de
rease in log-likelihood for 25 spots and four gains relative to the

polynomial-hyperboli
 spot shape model with the Box-Cox transformation

Spot shape model

Transformation Cylindri
al Gaussian Gaussian di�eren
e Polynomial-hyperboli


Logarithm 136.3 329.6 185.4 17.0

Arsinh 127.2 258.7 144.4 13.9

Box-Cox 134.3 320.3 178.2 0.0

As mentioned in the se
ond paragraph of this 
hapter one of the aims of (Ekstrøm

et al., 2004) was to re
onstru
t values in saturated pixels. In Figure 9.3 we show how

arti�
ially saturated levels 
an be re
onstru
ted for one spot.

Figure 9.3: One-dimensional intensity pro�les through the 
enter of one spot together

with re
onstru
tions by use of the polynomial-hyperboli
 spot shape model for di�erent

levels of arti�
ial saturation indi
ated by horizontal lines. Both data (thin 
urves) and

re
onstru
tions (heavy 
urves) are shown for ea
h saturation level.

9.4 Models with dependent pixel residuals

Up till now we have regarded residuals ǫ(x), x ∈ As, in (9.4) as independent. However,

a 
loser look at the left part of Figure 9.2 indi
ates that residuals at least for adja
ent

pixels seem positively 
orrelated.

Following (Ekstrøm et al., 2005) let us assume that the ve
tor Y with 
omponents

Y (x), x ∈ As, has a multivariate normal distribution, Y ∼ N(µ, σ2
ǫR), where µ as before

has 
omponents µ(x) = Bshs(rs(x)) + bs, x ∈ As, but R, instead of being an identity

matrix, 
orresponds to an isotropi
 
orrelation fun
tion. Thus we assume that


ov(Y (x), Y (x′)) = σ2
ǫρ(r, c), (9.15)

where r =
√

(x1 − x′1)
2 + (x2 − x′2)

2
is the Eu
lidean distan
e between x = (x1, x2) and

x′ = (x′1, x
′
2) and c is a real (positive) parameter. We 
onsider �ve di�erent 
orrelation

fun
tions:
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Let us further 
hoose the Box-Cox transformation and the polynomial-hyperboli
 spot

shape model. To estimate parameters in
luding the parameter c for the di�erent 
orre-
lation fun
tion by maximum likelihood we have to maximize the log-likelihood

logL = −n
2
log(2π)− 1

2
log(detC)− 1

2
(Y − µ)TC−1(Y − µ), (9.16)

where n is the number of pixels, µ 
ontains parameters for the spot shape and C =
σ2
ǫR 
ontains the 
orrelation fun
tion parameter c for the di�erent 
orrelation fun
tions


onsidered. The 
omputations turn out to be 
onsiderably more 
ompli
ated 
ompared

to the independent residuals model, see (Ekstrøm et al., 2005) for details.

The resulting log-likelihood improvements 
ompared to the independent residuals

model are shown in Table 9.2. The �t of the di�erent 
orrelation fun
tions are fur-

ther illustrated in Figure 9.4. We see that the two 
orrelation stru
tures that give the

best �t in Table 9.2, that is the Gaussian and the spheri
al 
orrelation, also give the best

agreement with the empiri
al 
orrelation 
oe�
ients in Figure 9.4.

Table 9.2: Median improvement in log-likelihood for 25 spots and four gains relative to

the model with independent residuals for �ve models with residual 
orrelation

Correlation Exponential Gaussian Linear Rational Spheri
al

stru
ture quadrati


69 82 73.5 75 78

Figure 9.4: Median estimated 
orrelation fun
tions for the �ve studied 
orrelation stru
-

tures. The possible observable distan
es between pixel 
entres are shown by verti
al lines

and the 
rosses on these lines show the median empiri
al 
orrelation 
oe�
ients.
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9.5 Exer
ises

Exer
ise 9.1. Che
k that the spot shape fun
tions (9.6), (9.7) and (9.8) satisfy

∫∫

h(x) dx1 dx2 =
1, where x = (x1, x2) and the integral is taken over the entire two-dimensional spa
e. (The

same relation holds for (9.9), but that is a bit more 
ompli
ated to show.)

Exer
ise 9.2. Des
ribe how the re
onstru
tions (heavy 
urves) in Figure 9.3 
an be


omputed.

Exer
ise 9.3. What details in Figure 9.2 should one look at to get an indi
ation of that

residuals for adja
ent pixels are positively 
orrelated?

Exer
ise 9.4. In Figure 9.4 there are 
omputations for the seven smallest inter-pixel

distan
es (marked by 
rosses). Des
ribe how pairs of pixels are lo
ated to a
hieve these

distan
es. One distan
e 
orresponds to a knight move in 
hess; whi
h distan
e is that?
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Chapter 10

Two-dimensional ele
trophoresis

Two-dimensional ele
trophoresis is an experimental te
hnique that 
an be used to measure

the expression of up to several thousands of proteins, 
ompare Example 1.4 with Figures

1.9 and 1.10. In this 
hapter we shall des
ribe te
hniques from (Gustafsson et al., 2002)

based on warping and mat
hing of su
h images. The image data in (Gustafsson et al.,

2002) 
onsist of �ve images similar to Figure 1.9 from 2D gel ele
trophoresis of baker's

yeast grown in a standard solution and �ve images similar to Figure 1.10 from 2D gel

ele
trophoresis of baker's yeast grown under stress in a solution with salt added.

Figure 10.1: Illustration of warping step I with 
orre
tion for 
urrent leakage sideways

through the left and right boundaries during the se
ond-dimensional gel ele
trophresis.

Part a of the �gure shows the original image and part b shows the warped 
urrent-leakage


orre
ted image.

The warping in (Gustafsson et al., 2002) 
onsists of two steps. As des
ribed in Example

1.4 images are obtained by �rst letting protein mole
ules move horizontally along a string
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to a position determined (ex
ept for random noise) by the protein isoele
tri
 point pI.

In the next step, the se
ond-dimensional gel ele
trophoresis, a polya
rylamide gel is


ast between two glass plates separated from ea
h other by thin plasti
 spa
ers and

pla
ed verti
ally in a bath. The protein string is pla
ed horizontally on the top of the

polya
rylamide gel. A voltage is applied between the upper and the lower boundaries of

the plates and the proteins perform a Brownian motion with downwards verti
al drift in

the bath. The verti
al distan
es traveled by the protein mole
ules are determined (ex
ept

for random noise) by the protein mass. During this se
ond step there may be 
urrent

leakage sideways, and the �rst warping step in (Gustafsson et al., 2002) models this by

solving a partial di�erential equation with suitable boundary 
onditions taking 
are of


urrent leakage. The result of the warping is illustrated in Figure 10.1, and we refer to

(Gustafsson et al., 2002) for further details of this warping step. After the �rst warping

step two image transformations are applied. Firstly, to 
ompensate for large s
ale trends

in the ba
kground level, a top-hat transformation is applied, see (Glasbey & Horgan,

1995) for a des
ription of the top-hat transformation and (Gustafsson et al., 2002) for

parameter values used in the transformation. Se
ondly, a logarithmi
 transformation of

pixel values is applied.

Figure 10.2: Illustration of warping step II. The image in a is warped onto the referen
e

image in 
 by use of the grid shown in a warped to the grid in b.

In the se
ond warping step images are transformed by use of a grid of bilinear trans-

formations similar to the warping of handwritten digits shown in Figure 8.2. The result

of su
h a warping is shown in Figure 10.2. One of the �ve images for yeast grown under

standard 
onditions is used as a referen
e image, and the other nine images are warped

onto this referen
e image. We use a penalized log-likelihood method and minimize a


riterion fun
tion su
h as (8.8) with D(f) given by (8.9). Thus we minimize with respe
t

to f the 
riterion fun
tion

L(Y ′, Y, f) =
∑

x

(Y ′(x′)− Y (x))2 + λ

2
∑

i=1

2
∑

j=1

2
∑

k=1

∫
(

∂fi
∂xj∂xk

)2

dx1dx2, (10.1)
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with x′ = f(x) and where we sum over pixels x. The partial derivatives in 
omputations

are approximated by �nite di�eren
es, and the integrals are approximated by sums over

pixels.

Figure 10.3: Further illustration of warping step II. In part a the referen
e image 
oloured

red and the warped image 
oloured blue are superimposed. Displa
ement ve
tors for spots

are shown in part b, and also in part 
, here as relo
ated ve
tors starting at the origin

and ending at dots. In 
 we also show a 
riterion for adja
en
y of spot pairs: adja
ent

spot pairs have dots within the 
ir
le shown.

The se
ond warping step is further illustrated in Figure 10.3. Here we show in part a

of the �gure a superposition of the referen
e image 
oloured red and the warped image


oloured blue. For protein spots that are equally expressed in both images we should

then ideally get bla
k spots. However if the warping is less perfe
t we expe
t adja
ent

spots 
oloured red and blue. (Further even if the warping is perfe
t we 
an get spots that

are predominantly blue or predominantly red for a protein that is di�erently expressed

in the two images.) In part b of Figure 10.3 spot displa
ement ve
tors are shown, and

for more 
lear illustration arrow heads are large for large displa
ements. We see that

large displa
ements mainly o

ur 
lose to the boarders. Spot displa
ement ve
tors are
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also shown in part 
 of the �gure, and here all the displa
ement ve
tors are relo
ated so

that they start in the origin and end in positions shown as dots.

Figure 10.4: Illustration of spot pattern similarity in aligned images. The left part a

shows the e�e
t of 
hanging grid size for the parti
ular λ-value 10−3
. The graph shows

the per
entage of adja
ent spot pairs as a fun
tion of the number of grid size parameters.

The right part b shows the e�e
t of 
hanging the log-likelihood penalizing parameter

λ for the parti
ular grid q = (8, 12), and the graph shows the per
entage of adja
ent

spot pairs as a fun
tion of λ. Cir
les show mean values and error bars show standard

deviations for the nine images aligned to the referen
e image. Verti
al dashed lines show

the �nally 
hosen grid size and likelihood penalty weight.

Two 
ru
ial issues are 
hoi
e of how �ne the grid in the bilinear transformation net

should be and the size of the non-negative parameter λ in the penalization of the likelihood
in (10.1). If we start with a 
ourse net and steadily re�ne it we 
an expe
t the �t to

improve but to level o� at a 
ertain degre of �neness. Similarly if we start with a large

λ-value and then de
rease λ we 
an expe
t an improvement in �t but similarly a leveling

of at some point. As a measure of �t we use the per
entage of spot pairs with dots inside

the 
ir
le in 
 of Figure 10.3. We spe
ify the net grid by q = (q1, q2), where q1 and q2
are the number of re
tangles in the horizontal and the verti
al dire
tions. We note that

in Figure 10.2 we have q = (8, 12). It turns out that the number of parameters in a grid

spe
i�ed by q = (q1, q2) is 2(q1 + 1)(q2 + 1). We use a sequen
e of grids with q equal

to: (1, 1), (2, 3), (4, 6), (8, 12) and (16, 24). Similarly we use the following sequen
e of

λ-values: 30λ0, 10λ0, 3λ0, λ0 and 0.3λ0, with λ0 = 10−3
. Results from some 
omputations

with di�erent grid sizes and di�erent λ parameters are shown in Figure 10.4. The 
hosen

grid size is q = (8, 12), and the 
hosen λ-value is λ0 = 10−3
.

The two warping steps are 
ompared in Figure 10.5, whi
h shows the length distri-

bution of spot displa
ement ve
tors for three sets of images: the original images, the
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Figure 10.5: Length distribution of spot displa
ement ve
tors for the original data (solid

line), after the 
urrent leakage warping step (dashed line) and after both warping steps

(dash-dot line).


urrent leakage 
orre
ted images (only warping step I) and the 
urrent leakage 
orre
ted

and aligned images (warping steps I and II). From the �gure it is 
lear that warping step

I gives some improvement, but the large improvement is obtained with the 
ombination

of both warping steps. In (Gustafsson et al., 2002) there is also a 
omparison of warping

I+II with the use of only warping step II. It turns out that beside a slight improvement

in the per
entage of adja
ent spot pairs, an e�e
t of warping step I is a 
onsiderable

redu
tion of the total 
omputation time.
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Figure 10.6: E�
ien
y pro�les in the left part a showing the number of automati
ally

mat
hed spots in all ten gels (with gel images two-step warped) by the software PDQuest

as a fun
tion of an initial manual mat
hing of a number of spots (in the image 
alled

landmarks) both for the original set of images (dashed line) and for the set of warped

images (solid line). The right part b of the �gure shows the number of dete
ted spots

in the ten gels for the warped gel images. The spots dete
ted in all gels are shown dark

grey, the spots found additionally in 
ommon with the referen
e gel 1 is shown for ea
h

gel in light grey, while dete
ted spots not in 
ommon with the referen
e gel are shown in

white.

Figure 10.6 illustrates the improvement in mat
hing e�
ien
y when the warped images

are used together with the PDQuest software (Garrels, 1989). In the method illustrated in

the �gure the referen
e image is divided into 54 subre
tangles and in ea
h subre
tangle the

most intense spot is 
hosen. The 
hosen spots are ordered a

ording to intensity and an

in
reasing number of theses spots are manually mat
hed. Based on this manual mat
hing

the software PDQuest then automati
ally mat
hes other spots. The left part a of the

�gure shows the global mat
hing e�
ien
y as the number of automati
ally mat
hed spots

found in all ten gel images as a fun
tion of the number of manually found spot pairs. The

dashed line shows the e�
ien
y pro�le for the original images and the solid line shows

the e�
en
y pro�le with warped images (using two-step warping). A 
lear improvement

using warping 
an be seen (
ompare Exer
ise 10.2 below).

In part b of Figure 10.6 we see bars showing the number of spots dete
ted in the ten

gels. Here gels 1�5 are gels with yeast grown in standard solution (in
luding the referen
e

gel 1) and gels 6�10 are gels grown with salt added. The mean number of gels dete
ted

in all ten gels is 1194, and the average number of dete
ted spots in 
ommon with the

referen
e gel (for gels 2�9) is 826, while the number of spots dete
ted in all ten gels is

430.

10.1 Exer
ises

Exer
ise 10.1. As mentioned above a top-hat transformation was used after the �rst
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warping step to 
ompensate for large-s
ale trends in the ba
kground level. Des
ribe

brie�y how alternatively a low pass �ltering te
hnique 
ould be used for that purpose.

Exer
ise 10.2. Determine approximately (both for the original image set and for the set

of warped images) from Figure 10.6 the number of manually mat
hed spots needed to

a
hieve subsequently in the automati
 step a 90% spot number mat
hing in all ten gels.

Exer
ise 10.3 In part b of Figure 10.6 gels 1�5 
orrespond to yeast grown in standard


onditions (in
luding the referen
e gel 1) and gels 6�10 
orrespond to yeast grown in a

salt solution. What are the general features of the �u
tuations of the light grey bars?

Give also an explanation of these general features.
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Chapter 11

Point pro
esses observed with noise,

two examples with aerial photographs

of forests

11.1 Estimation of tree top and tree base positions

from aerial photos

Here we 
onsider how we 
an estimate tree base positions from images su
h as the image,

below 
alled Image 148, shown in the right part of Figure 1.1. A detail of Image 148

is shown Figure 1.2. We follow the exposition (Dralle & Rudemo, 1997) and start by

estimating the tree top positions using a Gaussian �lter as des
ribed in Chapter 1, see

Figures 1.16 and 1.17. Let X = (x1, . . . , xn) denote the tree base positions, and let

Y = (y1, . . . , ym) denote the positions of maxima after the Gaussian �ltering. The obje
t

is to estimate X from Y and also to �nd the 
orresponden
e between y- and x-points.
We will start by going the other way and estimate Y from X . If we know the positions

of tree stems at ground level we 
an estimate the positions of tree tops as indi
ated in

Figure 11.1. The white linear segments in this �gure show the expe
ted positions of tree

trunks proje
ted on ground as seen from the aeroplane with tree ground position at the

segment end point 
losest to the nadir point (the point verti
ally below the aeroplane)

and the tree top position at the segment end point furthest away from the nadir point.

The model used here for the tree top positions is based on �eld measurements of the tree

ground positions and the diameter at breast height (1.3 m), and additionally a regression

of tree height from breast height diameter, whi
h is a well-known method of estimating

tree height in forestry.

In pra
ti
e it is tedious to measure tree ground positions and the obje
t of (Dralle &

Rudemo, 1997) is to use aeroplane photographs to estimate �rst tree top positions and

then tree ground positions. The model used is based on the assumption of three sour
es

of distortion:

1. some trees are lost (errors of omission),
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Figure 11.1: The Image 148 with tree proje
tions superimposed, as seen from the 
am-

era position. The tree proje
tions were 
omputed from the tree ground level lo
ation

measurements and the tree heights estimated from height-diameter regression and breast

diameter �eld measurements, see the text for further details.
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2. the remaining trees be
ome displa
ed as a 
onsequen
e of image geometry and

lighting 
onditions; the displa
ement of a point xi = (xi1, xi2) is 
omposed of a

systemati
 displa
ement from xi to x
′
i and a random displa
ement from x′i to x

′
i+zi,

3. some spurious maxima that do not 
orrespond to real treas are generated (ghost

treas, errors of 
ommission).

In the model we will make the simplifying assumption that these three me
hanisms are

mutually independent, and further that within ea
h of these three 
ategories the trees

behave independently of ea
h other. More spe
i
ally, we assume:

1. For ea
h tree there is a probability θ0, depending on the thinning treatment, that

the tree gives rise to a maximum. Thus the probability of an error of omission is

1−θ0 for ea
h tree, and the events that di�erent trees are omitted are independent.

2. The systemati
 displa
ement to x′i, see Figure 11.2, of the base lo
ation xi of a
tree is obtained by two displa
ements in the horizontal plane, or, eqivalently, in the

image plane. Move �rst along the proje
tion of the tree a distan
e θ1pi, where pi
is the proje
tion length, and move then orthogonally in the horizontal plane (to

the same side of the tree proje
tion as the sun) a distan
e θ2hi sinαi. Here hi is
the height of a tree and αi is the angle between the horizontal proje
tion of the

tree and a line whi
h is the interse
tion of the horizontal plane and a verti
al plane


ontaining both xi and the sun. The subsequent random motion zi = (zi1, zi2) in
the lo
al 
oordinate system with one axis parallel to the tree proje
tion and one

axis orthogonal to it has a two-dimensional normal distribution with means zero,

standard deviations σ1 and σ2 and 
orrelation 
oe�
ient ρ.

3. Spurious maxima are generated by a Poisson pro
ess with the intensity λ maxima

per he
tare.

For the systemati
 displa
ement from xi to x
′
i and for a 
orresponding maximum yj(i)

in the smoothed image we thus assume

x′i = xi + θ1piei1 + θ2hi sinαi ei2 (11.1)

and

yj(i) = x′i + zi = x′i + zi1ei1 + zi2ei2, (11.2)

where zi1 and zi2 are random errors and ei1 and ei2 are unit ve
tors, see Figure 11.2.

We assume that the parameters θ0, θ1, θ2, σ1, σ2, ρ and λ are 
onstant within subplots.
In the dis
ussion in the text 
lose to Table 11.1 below we will see that some of the

parameters vary between subplots in a way that may be interpreted in terms of thinning

treatments and the geometry at image a
quisition.

The parameters are estimated iteratively, and for more details in
luding 
hoi
e of

initial values for parameters see (Dralle & Rudemo, 1997). For trees in a polygonal area

A we 
ompute a displa
ed area Ad, 
ompare Figure 11.3, by moving ea
h border polygon


orner point a

ording to the transformation (11.1) as if the border point was the ground

lo
ation of a tree with a height 
omputed from the height-diameter regression when
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Figure 11.2: Displa
ement model for the positioning of trees. The full-drawn thi
k line

represents the ith tree stem proje
ted, as seen from the 
amera, onto the image with the

base position xi nearest to the nadir point. The length (in pixel units) of the proje
tion is
denoted pi, and the height of the tree (also in pixel units) is hi. The systemati
 displa
e-

ment takes xi to the expe
ted position x′i for the grey-level maximum and an additional

random displa
ement gives the observed lo
ation x′i + zi of a 
orresponding maximum.

The 
oordinates of zi are assumed to have a two-dimensional normal distribution with

zero means.
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Figure 11.3: Subplot D in Image 148 with the net subplot borders (lower right quadri-

lateral) and the 
orresponding displa
ed area where maxima are expe
ted (upper left

quadrilateral). The lo
al maxima after smoothing with the optimal bandwidth are shown

as small bla
k squares (diamonds), and for ea
h lo
al maximum the 
orresponding �water-

shed� segment above median grey level is shown in light grey 
olour with borders between

segments in slightly darker grey 
olour. Tree proje
tions, as seen from the 
amera, based

on ground measurements are shown as line segments and expe
ted positions for lo
al

maxima, a

ording to the model indi
ated in Figure 11.2, as stars. From ea
h star an

ellipse is grown until it hits a lo
al maximum. The ellipse is dashed if this maximum has

already been hit by a smaller ellipse from another star. Thus stars with a dashed ellipse

represent errors of omission, while small squares not hit by an ellipse (these squares have

pointers to them) represent errors of 
ommission. The sun azimuth is marked in the

upper right 
orner of the image.
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the tree diameter 
orresponds to mean trea diameter of the subplot. Here the 
urrent

estimates of θ1 and θ2 are used.

For a tree with base xi we 
ompute the position x′i a

ording to (11.1) and around this

point we let an ellipse with 
onstant probability density a

ording to the model (11.2)

grow. Here the 
urrent estimates of σ1 and σ2 are used but with ρ = 0. Ellipses grow

simultanously at the same rate around all points x′i, i = 1, . . . , n, for the trees in the

regarded area, or, a
tually, in a slightly larger area as shown in Figure 11.3. As soon as

an ellipse starting from x′i 
at
hes a maximum in the smoothed image the growth of that

ellipse is stopped. If this maximum has not been 
at
hed from another point earlier the

maximum (at yj(i)) is asso
iated with the ith tree with base lo
ation xi. (If the maximum

has already been 
at
hed from another tree, no maximum is asso
iated with the ith tree;

it is 
onsidered lost.)

Let xi, i ∈ I ′, be the set of base lo
ations in A for trees that 
at
h maxima, and let

n′ ≤ n be the number of elements in this set. As an estimate for the probability θ0 that
a tree gives rise to a maximum (one minus the probability of omission), put

θ̂0 = n′/n. (11.3)

Using (11.1) and (11.2) estimates for θ1 and θ2 are obtained by 
oordinate-wise linear

regression analyses along the ei1- and ei2-axes, respe
tively, for i ∈ I ′. Corresponding

estimates for σ2
1 , σ

2
2 and ρ are obtained as the sample varian
es and the sample 
orrelation

for the set of the n′
two-dimensional residuals yj(i) − x′i, i ∈ I ′.

An estimate for the density of spurious maxima (errors of 
ommission) is

λ̂ = (m−m′)/|A|, (11.4)

where m is the number of maxima in Ad, m
′ = n′

is the number of maxima in Ad that

are 
aught by trees, and |A| is the area of A.
The estimation pro
edure is performed for ea
h of the subplots D, R, DB and B and

also in groups 'all ex
ept B' and 'all', and the results are shown in Table 11.1, where also

the estimate of the root-mean-square random displa
ement in metres

σ = 0.15(σ2
1 + σ2

2)
1/2

(11.5)

is given.

From Table 11.1 we see that for medium and heavy thinning, around 95% of the trees

are found with a root-mean-square residual error in the displa
ement model of about 60


m or less, and for light thinning around 85% of trees are found and positioned with

an error of about 75 
m. The unthinned 
ontrol was not investigated here be
ause

this treatment gives an ex
eptionally dense population, and a large number of trees are

suppressed whi
h are not possible to see from above.

One 
ould try to use a maximum likelihood method 
orresponding to our statisti
al

model (11.1) - (11.2) for the present data set with both the image and the ground truth

available. However, a straightforward 
omputation that takes all possible 
orresponden
es

between the set of maxima and the set of trees is prohibitive, as the number of su
h


orresponden
es is astronomi
al. One may 
on
entrate on a small number of 'probable'
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Table 11.1: Parameter estimates for subplots in Image 148 with �ve di�erent treatments.

N is the true stem number per he
tare; θ0 is the probability that a tree gives rise to a

maximum (and θ̂0 the 
orresponding parameter estimate) ; θ1 and θ2 spe
ify the system-

ati
 displa
ement from the base lo
ation xi to x
′
i at whi
h the 
orresponding intensity

peak is expe
ted (Figure 11.2); σ1 and σ2 (in pixel units 
orresponding to 15 
m at ground

level) and ρ are parameters in a two-dimensional normal distribution for the random dis-

pla
ement zi from the expe
ted to the observed lo
ation (Figure 11.2); λ is the expe
ted

number of spurious maxima per he
tare; σ is the root-mean-square random displa
ement

in metres.

Subplot N θ̂0 θ̂1 θ̂2 σ̂1 σ̂2 ρ̂ λ̂ σ̂
D 367 0.970 0.651 0.028 2.74 2.94 0.370 15 0.60

C 625 0.971 0.731 0.056 2.48 1.69 0.088 37 0.45

R 746 0.980 0.634 0.082 3.20 2.12 -0.313 15 0.58

DB 824 0.956 0.767 0.006 2.69 2.19 -0.219 40 0.52

B 1257 0.843 0.871 0.045 4.29 2.65 -0.035 168 0.76

All ex
ept B 0.969 0.730 0.046 3.23 2.76 -0.096 26 0.64

All 0.925 0.734 0.045 3.61 2.75 -0.071 55 0.68


orresponden
es. In (Dralle & Rudemo, 1997) we have been even more redu
tionisti
,


onsidering only one su
h 
orresponden
e. After establishing the 
orresponden
e, the

subsequent parameter estimation is straightforward, parti
ularly if we assume that the


orrelation between errors along the tree proje
tion and orthogonal to it is zero. A

likelihood-based analysis with a limited number of 'most probable' 
orresponden
es is

given in (Lund & Rudemo, 2000).

11.2 Optimal templates for �nding tree tops in aerial

photos from di�erent angles

In the previous se
tion we analyzed aerial photos a
quired essentially verti
ally above

the area studied. Following (Larsen & Rudemo, 1998) we shall in this se
tion study

photos obtained from varying angles, in parti
ular three spe
i�
 
ases where the trees are

sidelighted, ba
klighted and frontlighted.

We shall use a tree model from (Larsen, 1997), whi
h extends a model in (Pollo
k,

1994). The tree is modelled as a generalised ellipsoid that in (x, y, z) 
oordinates has the
surfa
e

(z2)n/2

an
+

(x2 + y2)n/2

bn
= 1, (11.6)

where z is the verti
al 
oordinate, the �
entre� of the tree 
rown is at the origin, a is half
the length of the ellipsoid, b is half the width and n is a shape parameter; here we use

a = 17.7 m, b = 2.84 m and n = 1.6 as in (Larsen, 1997). The tree model is shown in

Figure 11.4, where we also show how light from the sun is s
attered by single re�e
tion

into the 
amera on board the aeroplane.
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We will study an algorithm for automati
ally sele
ting tree tops from images and


ompare them with manually obtained �ground truth� data. Let us �rst 
onsider manually

estimated �ground truth� tree top positions. As des
ribed in Dralle & Rudemo (1997),

see Se
tion 11.1, we 
an from known tree base positions estimate the tree top positions

a

ording to (11.1). The tree top positions thus obtained were then manually 
orre
ted

by inspe
tion of the photos to 
ompensate for errors in tree height estimates, variations

due to wind, and impre
ision in image re
ti�
ation.

Figure 11.4: Tree 
rown model from Equation (11.6). The �gure also shows single re�e
-

tion of light from the sun into the airborne 
amera.

In the upper right part of Figure 11.5 we see an ellipse template pla
ed 
lose to the

top of the opti
al model for sidelighted trees. There are three template parameters, size

r, whi
h is the radius of a 
ir
le with the same area as the ellipse, shape s, the width to

length ratio of the ellipse, and t, the translation in r-units of the ellipse 
entre along the
tree trunk su
h that tr is the downwards translation.

The following pro
edure was used to mat
h the set tree top 
andidates with �ground

truth� positions. Pairs of positions from the two sets were found in order of in
reasing

error distan
e su
h that ea
h position in ea
h set was used at most on
e. The pro
edure

was stopped when the error distan
e in the next mat
h ex
eeded dmax = 1 m, and

trees not mat
hed at this stage were de
lared �unmat
hed�. As penalty measure used

for 
omparing a set of tree top 
andidates with �ground truth� the following modi�ed

standard error measure was used

SE⋆ =

√

∑

i∈mat
hed

|xi − x̄|2 + n
unmat
hed

d2max

n
mat
hed

+ n
unmat
hed

, (11.7)
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where the sum is taken over all mat
hed tree tops, xi is the error ve
tor for tree top i,
| · | is the Eu
lidean distan
e, x̄ is the average error ve
tor for all mat
hed trees, while

n
mat
hed

and n
unmat
hed

are the number of mat
hed and unmat
hed tree tops.

In the sear
h for optimal parameters r, s and t with 
riterion fun
tion SE⋆
an iterated

grid sear
h was used, see (Larsen & Rudemo, 1998) for details. The sear
h was performed

separately for the three image with sidelighted, ba
klighted and frontlighted trees as seen

in Figures 11.5 � 11.7. Similar parameter values were obtained with averages radius

r = 1.5 m, width/length ration 0.9 and translation fa
tor t = 0.2. The number of found
and missed trees for the three images are shown in Table 11.2.

Table 11.2: Results for the three images with sidelighted trees, image 120, ba
klighted

trees, image 124, and frontlighted trees 144.

Image

120 124 144

Total number of trees 171 171 171

Number of missed trees 15 6 3

Per
ent of trees found 91 96 98

Standard error in 
m (mat
hed only) 27 24 28

Modi�ed standard error (11.7) in 
m 39 30 31
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Figure 11.5: The sidelighted image �120� with 171 tree tops manually marked (
ir
les) and

automi
ally estimated (dots), and to the right the 
orresponding single re�e
tion opti
al

model with optimal boundary (upper right) and the empiri
al average (lower right).
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Figure 11.6: The ba
klighted image �124� with 171 tree tops manually marked (
ir
les)

and automi
ally estimated (dots), and to the right the 
orresponding single re�e
tion

opti
al model with optimal boundary (upper right) and the empiri
al average (lower

right).
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Figure 11.7: The frontlighted image �144� with 171 tree tops manually marked (
ir
les)

and automi
ally estimated (dots), and to the right the 
orresponding single re�e
tion

opti
al model with optimal boundary (upper right) and the empiri
al average (lower

right).
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11.3 Exer
ises

Exer
ise 11.1. As a motivation for the model (11.1) for the systemati
 displa
ement from

xi to x′i 
onsider the following 
rude �tree� model: A tree 
onsist of thin rod with a

re�e
ting sphere on top. How is then the base lo
ation xi in the image plane displa
ed

to a point x′i in the image plane 
orresponding to the point on the sphere where the sun

is re�e
ted as seen from the airplane? (This will not give exa
tly equation (11.1) but

something quite 
lose to it, at least if the angle αi is small.)

Exer
ise 11.2. In the lower right parts of Figures 11.5 � 11.7 you 
an see empiri
al

average shapes obtained from the use of the templates in the upper right parts in these

�gures. Dis
uss how these empiri
al average shapes 
an be 
omputed, and dis
uss also if

it might be possible to �nd improved templates by use of the empiri
al average shapes.
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Chapter 12

Di�usion

12.1 Tra
king a single di�using parti
le

Let Xi denote the position at time i∆t, i = 0, 1, . . . , K, of a di�using parti
le in d-
dimensional spa
e, where d = 1, 2 or 3 in appli
ations. We assume that

Xi = Xi−1 +∆Gi, (12.1)

where ∆Gi are independent d-dimensional normal ve
tors with a mean ve
tor with all


omponents zero and a 
ovarian
e matrix

C(∆Gi) = 2D∆tI, (12.2)

where D is the di�usion 
oe�
ient and I is the d-dimensional unit matrix. Thus in ea
h

dimension the di�using parti
le has a normally distributed in
rement with mean zero and

varian
e 2D∆t, and the in
rements in di�erent dimensions and at di�erent time-points

are all independent.

Let ||x|| denote the Eu
lidean norm in d-dimensional spa
e, that is ||x||2 =
∑

j x
2
j if x

has 
omponents x1, . . . , xd. Then

E(
K
∑

i=1

||∆Gi||2) = 2dD∆tK (12.3)

and it follows that

D̂ =
1

2d∆tK

K
∑

i=1

||∆Gi||2 (12.4)

is an unbiased estimate of the di�usion 
oe�
ient D.

We 
an also obtain a 
on�den
e interval for D with, say, 
on�den
e degree 95%. The

variable

χ2 =
1

2D∆t

K
∑

i=1

||∆Gi||2 (12.5)
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is 
hi-square distributed with dK degrees of freedom. Thus

Pr(χ2
.025 < χ2 < χ2

.975) = 0.95. (12.6)

Straightforward 
omputations give that (12.6) 
an be rewritten

Pr(
dK

χ2
.975

D̂ < D <
dK

χ2
.025

D̂) = 0.95. (12.7)

and we see that

dK

χ2
.975

D̂ < D <
dK

χ2
.025

D̂ (12.8)

is a 
on�den
e interval for D with 
on�den
e degree 95 %.

12.2 Fluores
en
e re
overy after photoblea
hing (FRAP)

Fluores
en
e re
overy after photoblea
hing (FRAP) is a 
onvenient method for analyzing

di�usion whi
h 
an be applied to the study of possibly heterogenous materials with lo
ally

varying di�usion 
oe�
ients. We shall here follow the exposition in (Jonasson et al.,

2008) whi
h gives a pixel-based likelihood framework for FRAP. In FRAP the di�usion


oe�
ient of �uores
ent mole
ules is determined lo
ally in a mi
ros
ope. Fluores
ent

mole
ules are blea
hed and dea
tivated typi
ally in a verti
al 
ylinder by a high intensity

laser pulse of short duration. This results in a de
reased �uores
ense in the blea
hed

volume, see the upper left image in Figure 12.1 whi
h shows �uores
en
e, observed in a


onfo
al laser s
anning mi
ros
ope, shortly after the laser pulse. The sequen
e of images

in Figure 12.1 shows the evolution of �uores
en
e in a horizontal 2D area 
orresponding

to a thin volume extending a short distan
e in the verti
al dire
tion. From the image

sequen
e we see how �uores
en
e is re
overing due to the fa
t that unblea
hed mole
ules

di�use into and blea
hed mole
ules di�use out of the dea
tivated volume. The re
overy

is 
learly seen in Figure 12.1 and even more 
learly in Figure 12.2.

The observed pixel intensity in the images will be modelled by a 
ombination of a

solution to the di�usion equation and an assumption of independent normally distributed

errors. The di�usion of �uoro
hromes is supposed to follow the di�usion equation (similar

to the heat equation)

∂C

∂t
= D

(

∂2C

∂x2
+
∂2C

∂y2
+
∂2C

∂z2

)

, (12.9)

where C is the 
on
entration of unblea
hed �uoro
hromes and D is the di�usion 
oe�-


ient. Let us regard a rotationally symmetri
 blea
hed region and assume that there is

no net di�usion in the z-dire
tion and further that the �uoro
hromes are initially (before

the high intensity laser pulse) uniformly distributed.

With polar 
oordinates the di�usion equation 
an be written

∂C

∂t
= D

(

1

r

∂C

∂r
+
∂2C

∂r2

)

, (12.10)
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Figure 12.1: Plots of images from the �rst photoblea
hing series with 256 x 256 pixels

des
ribed in Table 12.1. The left top image is the �rst after blea
hing, then follows images

about 1 s, 2 s, 4 s, 8 s and 16 s later.
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where r is the distan
e from the 
entre of the blea
hed region. Let C0(r) denote the

�uoro
hrome 
on
entration at time zero (immediately after the high intensity pulse),

and let I0(x) = (1/π)
∫ π

0
exp(−x cos t) dt denote the modi�ed Bessel fun
tion of order

zero. The solution of equation (12.10) 
an be written on the form

C(r, t) =
1

2Dt
exp

(

− r2

4Dt

)
∫ ∞

0

uC0(u)I0

( ru

2Dt

)

exp

(

− u2

4Dt

)

du. (12.11)

Figure 12.2: Plots of �tted 
on
entration and pixel values, averaged over pixels with equal

distan
es to the blea
hing 
entre, as a fun
tion of distan
e r to the blea
hing 
entre for

the same series as shown in Figure 12.1. The left top image is the �rst after blea
hing,

then follows images about 1 s, 2 s, 4 s, 8 s and 16 s later.

If we would have 
omplete blea
hing the intensity pro�le immediately after blea
hing

would be des
ribed by an inverse top hat fun
tion. However, the blea
hing is not 
omplete

and di�usion starts dire
tly to blur this pro�le and in the upper left images in Figures 12.1

and 12.2 we see a pro�le rather di�erent from a top hat. We will assume that the initial

pro�le is an approximately Gaussian pro�le, and suppose that the initial 
on
entration

has the form

C0(r) = a0 −
a1
r20

exp

(

−r
2

r20

)

du. (12.12)
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Then the solution of equation (12.10) with the initial 
ondition C(0, r) = C0(r) simpli�es

to

C(r, t) = a0 −
a1

4Dt+ r20
exp

(

− r2

4Dt+ r20

)

du. (12.13)

Let p(i, t) denote the observed intensity at time t at pixel i with distan
e ri to the 
entre
of the blea
hed region. We will assume that ex
ept for additive random noise the pixel

intensity is proportional to the �uoro
hrome 
on
entration C(ri, t). Let us further assume

that pixel-wise the noise is normal with mean zero and varian
e σ2
with independen
e

between di�erent pixels and di�erent times. Let S denote the set of pixels and T the

set of times regarded. Thus we assume that the pixel-values p(i, t), i ∈ S, t ∈ T , are
independent with probability density

f(p(i, t); a0, a1, D, r0, σ
2) =

1√
2πσ2

exp

(

−(p(i, t)− C(ri, t))
2

2σ2

)

. (12.14)

The likelihood fun
tion is the joint probability density for all pixels and all times, and

due to independen
e it is

L(θ) =
∏

t∈T

∏

i∈S

1√
2πσ2

exp

(

−(p(i, t)− C(ri, t))
2

2σ2

)

, (12.15)

where θ is the parameter ve
tor θ = (a0, a1, D, r0, σ
2).

The log-likelihood ℓ(θ) = logL(θ) is then

ℓ(θ) =
|T ||S|
2

log(2πσ2)− 1

2σ2

∑

t∈T

∑

i∈S

(p(i, t)− C(ri, t))
2, (12.16)

and it is maximized with respe
t to the parameter ve
tor θ to �nd the ml estimates, the

most likely parameter values given the observed images. Likelihood theory allows 
om-

putation of parameter estimates together with 
orresponding standard errors, 
ompare

Se
tion 14.12. The parameter estimates are approximately multivariate normally dis-

tributed with a 
ovarian
e matrix that is the inverse of the observed information matrix.

The entry in row j and 
olumn k of the observed information matrix is

− ∂2

∂θj∂θk
ℓ(θ), (12.17)

evaluated at θ = θ̂, where θ̂ is the ml estimate of θ. If the 
oordinates of the 
entre of

the blea
hed disk are unknown there will be two extra parameters in the likelihood.

In (Jonasson et al., 2008) results from experiments with a Sodium Fluores
ein probe

in polyethylene gly
ol are reported. Two series of experiments with respe
tively 128×128
pixel images and 256 x 256 pixel images were performed, and in ea
h series four repli
ates

with di�erently pla
ed blea
hing 
entres were used. Results from the experiments are

shown in Table 12.1 and for one of the repli
ates in more detail in Figures 12.1 and 12.2.

As a 
he
k of the FRAP results given in Table 12.1 a 
orresponding NMR di�usometry

experiment was performed. It gave an estimated di�usion 
oe�
ient of 62.0 µm2/s with
a standard error of 1.9 µm2/s, whi
h is well in line with the results in Table 12.1.
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Table 12.1: Results from an experiment with two repli
ate series. For the �rst four

repli
ates (with 128×128 pixels) 48 images were used and for the last four repli
ates (with

256 x 256 pixels) 18 images were used. The 
olumns D and s show di�usion 
oe�
ients

and standard errors estimated by maximum likelihood, while D̄ and srepl show averages

and standard deviation from the repli
ate series.

Repli
ate No of pixels D (µm2/s) s (µm2/s) D̄(µm2/s) srepl (µm
2/s)

1 128×128 64.3 0.8

2 128×128 60.1 0.8

3 128×128 61.1 0.8

4 128×128 59.6 0.8 61.3 2.1

1 256×256 61.0 0.5

2 256×256 61.8 0.5

3 256×256 60.8 0.4

4 256×256 63.8 0.5 61.8 1.4

12.2.1 Exer
ises

Exer
ise 12.1. Verify that χ2
in equation (12.5) is 
hi-square distributed with dK degrees

of freedom.

Exer
ise 12.2. Verify that C(r, t) given by equation (12.13) satis�es equation (12.10) with
the initial 
ondition (12.12).

Exer
ise 12.3. In the 
omputation of the likelihood in equation (12.15) it is assumed that

noise 
ontributions in di�erent pixels are independent. Take a 
lose look at one of the

images in Figure 12.1. Does it seem as the independen
e assumption is valid. Des
ribe

how you 
ould 
he
k the independen
e assumption with a

ess to the images in Figure

12.1.
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12.3 Estimation of parti
le 
on
entration from single-

parti
le tra
king

Nano-sized �uores
ent parti
les observed in a mi
ros
ope 
an typi
ally be dete
ted in a

rather thin re
tangular box su
h as shown in Figure 12.3. To determine parti
le 
on-


entration we need to know the dimensions of the dete
tion region. The extension in

the horizontal dire
tions 
an ususally be determined in a straightforward way from the

mi
ros
ope �eld of view. However, the size in the verti
al dire
tion is mu
h more di�
ult

to measure as it depends on a number of fa
tors su
h as the parti
le dete
tion algorithm

and the brightness of the observed parti
les. Su
h properties are not �xed but 
an vary


onsiderably between experiments. In (Röding et al., 2011) this problem is analyzed

and the verti
al dimension is estimated from the traje
tory length distribution. We will

assume that the dete
tion region thi
kness is 
onsiderably smaller than the horizontal

dimensions whi
h means that parti
les typi
ally enter and leave the dete
tion region by

moving upwards or downwards. The traje
tory length distribution is then essentially

determined by the dete
tion region thi
kness. Roughly, short traje
tory lengths indi
ate

a small thi
kness.

Figure 12.3: A mi
ros
ope dete
tion region modeled as a re
tangular box 
entred in the

liquid suspension where parti
les move. Parti
les outside the dete
tion region 
annot be

observed. The tra
king depth is 2a and the thi
kness of the suspension is 2A.

Let us assume that we observe a parti
le at positions Xi at K equidistant time-points

ti = i∆t, i = 1, . . . , K, typi
ally 
orresponding to K 
onse
utive frames in a video se-

quen
e. We use the same notations as in Se
tion 12.1, just that we start here at time

t1 = ∆ rather than time 0. Thus the parti
le enters the dete
tion region at time t1 and
leaves it after K observed positions. Although the parti
le moves in 3D we will simplify

and only 
onsider the motion in 1D, namely the z-dire
tion. Thus we assume that the par-

ti
le enters and leaves the dete
tion region from above or below, whi
h should be a good

approximation when the verti
le dimension 2a of the dete
tion region is mu
h smaller

than the horizontal dimensions. We also assume that the dete
tion region thi
kness 2a
is mu
h smaller than the thi
kness 2A of the liquid suspension volume.
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Considering only 1D di�usion in the z-dire
tion we assume that initially the parti
le

position is uniformly distributed in the interval [−A,A] and a parti
le outside the dete
ion
region is assumed to be uniformly distributed over [−A,−a]∪ [a, A]. Let f(z) denote the
probability density of the position of a parti
le that has just entered the dete
tion region.

One 
an then show that f(z) = 0 for |z| > a and

f(z) =
h(z)

∫ a

−a
h(z)dz

, z ∈ [−a, a], (12.18)

where

h(z) =
1

2(A− a)

[

Φ

(

z +A√
2D∆t

)

− Φ

(

z + a√
2D∆t

)

+Φ

(

z − a√
2D∆t

)

− Φ

(

z −A√
2D∆t

)]

(12.19)

and Φ denotes the standard normal 
umulative distribution fun
tion. A proof of this is

outlined in Exer
ise 12.5 below. Let Zk denote the position of a parti
le and let fk denote
the non-normalized density of the parti
le position after k steps assuming that K ≥ k,
more pre
isely fk(z) = d/dz[P (Zk ≤ z and K ≥ k)], for k ≥ 1. By de�nition fk(z) is
zero outside [−a, a]. For the �rst position of the parti
le in the dete
tion region we have

f1 = f given by (12.18). To 
ompute the probability density of the parti
le after step 2,

f1 is 
onvolved with the Gaussian propagator

G(z) =
1

2D∆t
φ
( z

2D∆t

)

, (12.20)

where φ is the density of a standardized normal variable. Sin
e we assume that the

parti
le stays in the dete
tion region K steps it 
annot be outside the interval [−a, a] and
the density has to be trun
ated. Generally the density fk 
an be re
ursively 
omputed

from fk−1 a

ording to

fk(z) =

{
∫∞

−∞
fk−1(z0)G(z − z0) dz0, z ∈ [a, a],

0, z 6∈ [−a, a]. (12.21)

Computation of fk for k > 1 
annot be performed analyti
ally, but a fast numeri
al

s
heme with probability densities approximated by translates of a Gaussian kernel is

des
ribed in (Röding et al., 2011). In Figure 12.4 the 
omputation of the sequen
e of

densities fk, k ≥ 1 is illustrated.

The probability that a parti
le stays in the dete
tion region for at most k 
onse
utive

steps is

Pa(K ≤ k) = 1−
∫ a

−a

fk+1(z) dz, (12.22)

where the dependen
e on a is emphasized. The probability distribution for the traje
tory

length is then obtained from

Pa(K = k) = Pa(K ≤ k)− Pa(K ≤ k − 1). (12.23)

Suppose now that we have observed an ensemble of identi
al parti
les with known dif-

fusion 
oe�
ient. The assumption of known (or well estimated) di�usion 
oe�
ient is

reasonable as it 
an readily be estimated from the parti
le traje
tories, 
ompare (12.4).
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Figure 12.4: Illustration of the pro
edure for 
omputing the traje
tory length distribution.

Here f1(z) is the probability density of a parti
le that has just entered the dete
tion

region a

ording to equation (12.18). Trun
ation outside of [−a, a] of the 
onvolution

f1 ⋆G(z) yields the non-normalized density f2(z) whi
h integrates to the probability that

the parti
le still remains in the dete
tion region for a se
ond sampling point, and so forth.

Let us 
onsider traje
tories with length K ≥ kmin. As dis
ussed in (Röding et al., 2011)

it is typi
al to impose a lower threshold like K ≥ 3 or K ≥ 4 for the traje
tory length

as shorter traje
tories are more likely to be false positives. Let Nk denote the number of

observed traje
tories of length k. Then the log-likelihood fun
tion is

ℓ(a) =
∑

k≥kmin

Nk logPa(K = k|K ≥ kmin), (12.24)

where

Pa(K = k|K ≥ kmin) =
Pa(K = k)

Pa(K ≥ kmin)
(12.25)

and Pa(K ≥ kmin) is 
omputed from (12.22). The maximum likelihood estimate â is the
a-value that maximizes ℓ(a) in (12.24).

After having estimated the tra
king depth a it is possible to estimate the parti
le


on
entration (also 
alled the number 
on
entration). Let N̄ denote the mean number of

parti
les per video frame. A suitable point estimator of the parti
le 
on
entration c is

ĉ =
N̄

8âaxay10−12
parti
les/ml, (12.26)

where 2ax and 2ay are the lateral sizes in µm of the dete
tion region. We 
an estimate N̄
by 
ounting traje
tories as follows. Let n be the number of frames, and let Nk as earlier

be the number of observed traje
tories of length k. The number of observed parti
le

positions is the sum of all traje
tory lengths. Dividing by the number of frames we get

an estimate of the mean number of parti
les per frame, and we estimate N̄ by

N̄ =
1

p̂obs

1

n

∑

k≥kmin

kNk. (12.27)
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The fa
tor p̂obs 
orre
ts for underestimation of the 
on
entration due to dis
arding tra-

je
tories with length k < kmin,

p̂obs =

∑

k≥kmin
kPâ(K = k)

∑

k≥1 kPâ(K = k)
. (12.28)

With this 
orre
tion fa
tor the estimate N̄ in (12.27) be
omes approximately unbiased.

The standard error of the 
on
entration estimate 
an be assessed by bootstrapping, 
om-

pare Se
tion 14.12. It is here suitable to perform the bootstrapping on video level,

sin
e videos are (approximately) independent. Thus B bootstrap samples are obtained

by sampling B times with repla
ement from the set of videos, and from ea
h sample

the 
on
entration estimates ĉ1, . . . , ĉB are 
omputed a

ording to (12.26). This gives an

approximate standard deviation estimate

σĉ =

(

1

B − 1

B
∑

i=1

(ĉi − cmean)
2

)1/2

, (12.29)

where cmean is the mean of the bootstrap estimates. This method relies on that the

videos are approximately equally long and independent. The simulation study brie�y

des
ribed below, and in more detail in (Röding et al., 2011), leads to the 
on
lusion that

the tra
king depth and the 
on
entration estimates are approximately unbiased and that

bootstrap errors for B = 50 are quite 
lose to the a
tual standard errors.

In the simulation study parti
les were moving a

ording to 3D random walk with

time in
rements ∆t and independent zero mean normally distributed in
rements with

varian
e 2D∆t in all three dimensions. Parti
les moved in a 
ube with side length 2A =
40 µm, 
ompare Figure 12.3, with periodi
 boundary 
onditions. Parti
le traje
tories

were re
orded when parti
les entered the dete
tion region. In the study three di�erent

di�usion 
oe�
ients, D = 1 µm2/s, D = 2 µm2/s, and D = 5 µm2/s, and a series of

values for the dete
tion region thi
kness from 0.1 to 2 µm were used. The 
on
entration

of parti
les was c = 109 parti
les/ml. For ea
h 
ombination of di�usion 
oe�
ient and

dete
tion region thi
kness 20 000 simulations were performed and the mean obtained

estimates of a and c are shown in Figure 12.5.

In addition to the results from simulations, results from experiments with 0.19-µm
and 0.52-µm parti
les are also reported in (Röding et al., 2011). In Figure 12.6 we

see 
on
entration estimates for 5 dilutions with the 0.19-µm parti
les. Estimated 95%


on�den
e intervals obtained by bootstrapping for ea
h dilution are also shown. Ideally

the 
on
entration estimates should fall on the solid straight line shown. However, this

line is not perfe
tly known as there are some un
ertainties of the size of the parti
les.

Mean parti
le diameter was estimated by use of light s
attering and was found to be

0.207 µm with a standard deviation of 0.008 µm. From this a 95% 
on�den
e interval

for the solid line is obtained and shown in Figure 12.6.

From Figures 12.5 and 12.6 we see that the method suggested in (Röding et al., 2011)

performs well both for simulated and experimental data.
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Figure 12.5: Simulation study of the tra
king depth parameter a (upper) and the 
on-


entration c (lower). Mean estimates are shown for D = 1 µm2/s (red 
ir
les), for D = 2
µm2/s (magenta squares), and for D = 5 µm2/s (blue diamonds) as fun
tions of the true

value of a. The true value of a is given by the bla
k solid line. The true 
on
entration of

parti
les was c = 109 parti
les/ml. The in
reasing bias (negative for a and positive for

c) for in
reasing a is due to the 1D approximation in the model for the traje
tory length

distribution.

Figure 12.6: Experimental results with estimated 
on
entrations for di�erent dilutions

of 0.19-µm parti
les with estimated 95% 
on�den
e intervals. The 
on
entration as es-

timated from the sto
k-solution 
on
entration (solid line) and estimated 95% 
on�den
e

intervals (dashed lines) are also shown.
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12.3.1 Exer
ises

Exer
ise 12.4. In Figure 12.5 we see that there is a negative bias for the estimated thi
k-

ness a of the dete
tion region and a positive bias for the estimated parti
le 
on
entration.

In both 
ases the size of the bias in
reases with in
reasing a and also with de
reasing

di�usion 
oe�
ient D. Give qualitative explanations of these e�e
ts.

Exer
ise 12.5. Try to derive (12.18). You 
an for instan
e start by �nding the distribution

of a parti
le for whi
h you only know that it is outside the interval [−a, a]. Convolve

then this distribution with the Gaussian propagator, 
ompare with (12.21).

12.4 Estimation of parti
le 
on
entration from parti
le


ount time series

The method for estimation of parti
le 
on
entration dis
ussed in the previous se
tion

requires parti
le tra
king, that is pairing parti
les from one frame to the following frame.

This may be di�
ult for fast parti
les and high 
on
entrations. In this se
tion we will

follow (Röding et al., 2013) and des
ribe a method whi
h only requires 
ounting the

number of parti
les in ea
h frame but no tra
king of the individual parti
les.

In Figure 12.7 we see an experimentally observed 
ount pro
ess with the number of

parti
les varying between about 18 and 37 parti
les. Su
h a pro
ess of parti
le 
ounts we

will 
all a Smolu
howski pro
ess in honour of the Polish physi
ist M. von Smolu
howski

who in (von Smolu
howski, 1906) developed an alternative to Einstein's des
ription (Ein-

stein, 1905) of Brownian motion.

Figure 12.7: An example of an experimentally observed Smolu
howski pro
ess obtained

by 
ounting liposomes in whole blood, superimposed over a sample frame from the raw

image data, 
ompare (Brae
kmans et al., 2010).

We will assume that parti
les move in and out of a mi
ros
ope dete
tion region of

the type shown in Figure 12.3. In this se
tion we will 
all the lateral dimensions of

the dete
tion region 2ax and 2ay and the verti
al dimension 2az. Thus 2a in Figure
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12.3 
orresponds here to 2az. The number of parti
les in a sequen
e of frames varies as

illustrated in Figure 12.8.

Figure 12.8: Illustration of a Smolu
howski pro
ess. Di�using parti
les reside both inside

(yellow) and outside (grey) the dete
tion region. Parti
les moving in and out of the

dete
tion region and the number of dete
ted parti
les is �u
tuating, forming a random

time series.

Let us now des
ribe an approximate Markov statisti
al model for the Smolu
howski

pro
ess. We assume that parti
les move independently of ea
h other a

ording to a

Brownian motion with independent in
rements in all three dimensions with mean zero

and varian
e 2D∆t, where ∆t is the interval between observations (frames). Let Xn, n =
1, . . . , N , denote the number of parti
les observed in the nth frame. Then

Xn+1 = Xn −On + In, (12.30)

where On is the number of parti
les, out of the Xn parti
les initially present, exiting the

dete
tion region, and In is the number of parti
les entering that region, between the two

observations Xn and Xn+1. We shall assume that regardless of observation up to (and

in
luding) Xn the random variable In is Poisson distributed with a parameter λ, that is,

Pr(In = k|X1, . . . , Xn) =
λk

k!
e−λ. (12.31)

Another assumption, whi
h we shall make, is that given observations up to (and in
luding)

Xn, the random variable On is binomially distributed with probability-parameter µ, more

pre
isely, that

Pr(On = j|X1, . . . , Xn) =

(

Xn

j

)

µj(1− µ)Xn−j. (12.32)

Based on these assumptions we approximate the distribution of the pro
ess of parti
le


ounts (Xn, n ≥ 1) with a Markov model with transition probabilities pij = Pr(Xn+1 =
j|Xn = i) given by

pij(λ, µ) = e−λ

j
∑

k=max(0,j−i)

λk

k!

(

i
i− j + k

)

µi−j+k(1− µ)j−k. (12.33)

One 
an show that a Markov 
hain with transition probabilities given by (12.33) has a

stationary distribution whi
h is a Poisson distribution with parameter λ/µ, that is

Pr(Xn = k) = πk =
(λ/µ)ke−λ/µ

k!
. (12.34)
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Given the Markov assumption the joint distribution of parti
le 
ounts X1, . . . , XN 
an

be written

Pr(X1 = x1, . . . , XN = xN) = Pr(X1 = x1)
N
∏

k=2

Pr(Xk = xk|Xk−1 = xk−1). (12.35)

For a realization x1, . . . , xN we obtain a log-likelihood fun
tion ℓ(λ, µ) = ℓ(λ, µ|x1, . . . , xN)
given by

ℓ(λ, µ) = log
(λ/µ)x1e−λ/µ

x1!
+
∑

i,j

Nij log pij(λ, µ), (12.36)

where Nij is the number of transitions from state i to state j. We obtain the maximum

likelihood estimates λ̂ and µ̂ by maximizing the log-likelihood ℓ(λ, µ). For estimation

of the lateral dimension parameter az it turns out that the 
ru
ial parameter is µ. The
parameter µ may be interpreted as the probability that a parti
le uniformly distributed

in the dete
tion region exits this region in a time interval of length ∆t, 
ompare (12.32).

With this interpretation one 
an show that

µ = µ(az) = 1− F (ax, D)F (ay, D)F (az, D), (12.37)

with

F (a,D) =

√
2D∆t

2a

{

2a√
2D∆t

[

2Φ

(

2a√
2D∆t

)

− 1

]

+ 2φ

(

2a√
2D∆t

)

− 2φ(0)

}

, (12.38)

where Φ and φ denote the distribution fun
tion and the probability density of a stan-

dardized normal variable. Note that in (12.37) we write µ = µ(az) be
ause here az is

the important unknown parameter. The lateral dimension parameters ax and ay 
an

be measured dire
tly from the mi
ros
ope geometry and D here needs to be estimated

separately, for instan
e by separate parti
le tra
king. Let us also note that in order to

obtain valid standard errors and 
on�den
e intervals it is suitable, as in Se
tion 12.3, to

use bootstrapping on the 'video level'.

To validate the suggested method both simulations and experiments were used. In

the simulations a predetermined number of parti
les were allowed to di�use in three

dimensions in re
tangular box, as the large box in Figure 12.3, with periodi
 boundary


onditions. Three di�erent di�usion 
oe�
ients, D = 1, D = 2 and D = 5 µm2
s

−1
, and

20 di�erent az-values ranging between 0.1 and 2 µm were used. The resulting estimates of

the dete
tion depth parameter az and the 
on
entration are shown in Figure 12.9. From

the �gure we see that the method performs very well ex
ept for some minor bias for small

az-values.

To experimentally verify the method suggested two experiments with �uores
ent poly-

mer nanospheres with diameter 0.2µm and 0.5µm were performed. We will here show

the results for the smaller diameter. A water dispersion of the parti
les was diluted by a

fa
tor of 1900, 2400, 3400, 5800 and 14800. The theoreti
al 
on
entration of parti
les in

parti
les mL

−1

an be estimated from

C
theoreti
al

=
6×1010×SρL

πρSd3
, (12.39)
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Figure 12.9: Simulation study of estimation of the dete
tion depth parameter az and the


on
entration estimate C. For D = 1 µm2
s

−1
(red 
ir
les), D = 2 µm2

s

−1
(magenta

squares) and D = 5 µm2
s

−1
(blue diamonds) the mean estimates of az (divided by the

true value of az) and C are shown as fun
tions of the true value of az. The mean estimates

were 
omputed from 106 simulations for ea
h data point, and the true 
on
entration of

parti
les was C = 109 parti
le mL

−1
.

where S = 1 is the weight per
ent of solids, with a relativ standard deviation of 5%,

ρL = 1.00 g 
m−3
is the density of the suspension, ρS = 1.05 g 
m−3

is the density of the

solid parti
les (all values a

ording to the manufa
turer). Further, using dynami
 light

s
attering the diameter of the parti
les was found to be d = 0.207µm with a standard

deviation of 0.008µm (in 
orresponden
e with the manufa
turer results for the parti
ular

bat
h of nanospheres). Using the standard error-propagation equation the theoreti
al

parti
le 
on
entration with standard deviations were found for all dilutions and 
ompared

with the results from the method suggested. The results are shown in Figure 12.10 and

it 
lear from the �gure that an ex
ellent agreement was found between the theoreti
ally

and experimentally obtained 
on
entration values.

12.4.1 Exer
ises

Exer
ise 12.6. The Markov model used in the present se
tion is based on (12.31) and

(12.32) leading to the transition probabilities (12.33). Motivate why equations (12.31)

and (12.32) are only approximately true.

Exer
ise 12.7. In Figure 12.9 we see that there is a negative bias for the estimated thi
k-

ness az of the dete
tion region and a positive bias for the estimated parti
le 
on
entration.

In both 
ases the size of the bias in
reases with de
reasing az and also with in
reasing

di�usion 
oe�
ient D. Give qualitative explanations of these e�e
ts.

Exer
ise 12.8. Show that (12.34) gives a stationary distribution for a Markov 
hain with

transition probabilities (12.33).

Exer
ise 12.9. Try to derive (12.37) with F (a,D) given by (12.38) by 
omputing the
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Figure 12.10: Estimated 
on
entrations from an experiment with di�erent dilutions of

0.2 µm parti
les with estimated 95% 
on�den
e intervals ('inverse dilution' is a 'relative


on
entration'). The 
on
entration as estimated from the sto
k-solution 
on
entration

(solid line) with estimated 95% 
on�den
e intervals (dashed lines) is shown (upper). Fur-

ther, typi
al examples of the underlying Smolu
howski pro
esses are shown with 
olours

red/green/blue/
yan/magenta in order of of de
reasing 
on
entration (lower).

probability that a di�using parti
le stays within the dete
tion region in all three dimen-

sions.

12.5 Single parti
le raster image analysis of di�usion

As we have seen in the previous se
tions of this 
hapter there are several powerful methods

for estimating di�usion 
oe�
ients from series of images. In this se
tion we shall study

a method that in prin
iple allows us to estimate di�usion 
oe�
ients from single images.

The method is based on using a 
lever raster s
an pattern des
ribed in (Digman et al.,

2005). Images of di�using mole
ules are 
olle
ted with a 
onfo
al laser s
anning mi
ro-

s
ope using a raster s
an pattern with a spe
i�
 time stru
ture. During the s
anning,

adja
ent pixels in the x-dire
tion are visited within a short time interval whereas the time

between visits to adja
ent pixels in the y-dire
tion is mu
h longer, see Figure 12.11. The

method RICS, Raster Image Correlation Spe
tros
opy, is suggested in (Digman et al.,

2005) to analyse raster images by use of 
orrelation fun
tion estimation typi
ally 
om-

puted by the fast Fourier transform method. One 
an show, 
ompare equation (24) in

(Long�ls et al., 2018), that the theoreti
al 
orrelation fun
tion G(ξ, ψ) for the s
anned
image 
orresponding to two points (x, y) and (x+ ξ, y + ψ) is

G(ξ, ψ) =
1

〈N〉

(

1 +
4Dτ(ξ, ψ)

ω2
0

)−1(

1 +
4Dτ(ξ, ψ)

ω2
z

)−1/2

exp

[

− (Sξ)2 + (Sψ)2

ω2
0 + 4Dτ(ξ.ψ)

]

,

(12.40)

where 〈N〉 is the average number of parti
les in the observation volume, S is the pixel

size, and the fun
tion τ(ξ, ψ) takes the form
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τ(ξ, ψ) = |τpξ + τlψ| (12.41)


orresponding to the time it takes to move between the points (x, y) and (x+ ξ, y + ψ).
The parameters ω0 and ωz in (12.40), 
alled lateral and verti
al waists, 
orrespond to the

de
ay rate of the point spread fun
tion in the lateral and verti
al dire
tions and 
an be

estimated as standard deviations of a 2- or 3-dimensional Gaussian fun
tion �tted to the

laser point spread fun
tion.

Figure 12.11: Movement of s
anning beam a

ording to the raster s
an pattern used in

RICS and SPRIA. The s
anning time between adja
ent pixels in the x- and y-dire
tions
are τp and τl, respe
tively, and τp ≪ τl.

In (Long�ls et al., 2017) an alternative analysis method SPRIA, Single Parti
el Raster

Image Analysis, is introdu
ed based on properties of the individual di�using parti
les.

By analysing ea
h parti
le separately possibilities are opened for analysis of systems of

parti
les with a mixture of di�erent di�usion 
oe�
ients and for heterogenous materials

where the di�usion properties vary with lo
ation.

The sampling time stru
ture provides information on the dynami
s of the parti
les

inside ea
h image. In Figure 12.12 typi
al raster s
an images are shown for di�erent time

s
ales demonstrating the e�e
t of varying s
an rates visually on experimental data with

175-nm beads s
anned at de
reasing speed. In (A) at s
an rate 8000 Hz almost immobile

round-shaped parti
les are observed. In (B) the parti
les s
anned at 400 Hz move slowly

and the horizontal parti
le lines look like sequen
es of shifted bright lines. In (C) the

s
an rate is further de
reased to 100 Hz and the sequen
e of bright lines 
orresponding

to one parti
le be
ome even more shifted as the parti
le is moving signi�
antly between

aquisition of 
onse
utive lines.
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Figure 12.12: Raster s
an images of 175 nm beads at a pixel size of 48.1 nm and varying

s
an rate: (A) 8000 Hz, (B) 400 Hz and (C) 100 Hz.

To be able to apply the single parti
le method, individual parti
les have to be extra
ted

from an image as shown in Figure 12.13. The pro
edure is based on two threshold levels

T1 > T2. First �nd lo
al photon 
ount maxima above the level T1. Then �nd around

ea
h 
hosen maximum the smallest axis-parallell re
tangle su
h that all observed photon


ount levels just outside the re
tangle border are below T2, see (Long�ls et al., 2017)

for details. It turns out that the 
hoi
e of levels is not 
riti
al, 
ompare Exer
ise 12.11,

whi
h seems quite plausible from a look at Figure 12.13. In Figure 12.14 we �nd an

axis-parallell re
tangle 
hosen with T1 = 10 and T2 = 5.

Figure 12.13: Freely di�using �uores
ent beads with 175 nm diameter. (A) A 256×256
pixel raster s
an image. (B) The parti
le highlighted with a red square in (A) extra
ted

from the image.

Let a parti
le P be de�ned by the axis-parallell re
tangle

P = {(x, y) : a < x < a+ L, b < y < b+K} (12.42)

around a lo
al maximum of photon 
ounts. The traje
tory of the parti
le 
an be estimated

by use of the extra
ted image and used to estimate the di�usion 
oe�
ient D of the

142



Figure 12.14: Magni�ed neighbourhood of a 175-nm bead in a 2048×2048 raster s
an

image. The numbers 
orrespond to photon 
ounts in ea
h pixel and the lo
al maximum

is 20. The levels 
hosen are T1 = 10 and T2 = 5, and the re
tangle de�ning the parti
le

is found within the 
ontour de�ned by the red lines. The 
orresponding border 
onsists

of the pixels immediately outside the red 
ontour.

parti
le. In (Long�ls et al., 2017) a maximum likelihood method for estimating the

traje
tory and the di�usion 
oe�
ient D is des
ribed, but we will here des
ribe another

more dire
t way to estimate the traje
tory and D. Let t(y) denote the time at whi
h we

s
an the horizontal line at y, and let N(x, y, tk) denote the measured number of photons

for a given parti
le at the pixel with 
entre (x, y) at time t(y) = tk, where k = 0, . . . , K.

The x position at time t(y) = tk is estimated by the 
entroid
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ψk =

∑

{(x,y)∈P :t(y)=tk}
N(x, y, tk) · x

∑

{(x,y)∈P :t(y)=tk}
N(x, y, tk)

. (12.43)

Then

D̂ =
1

2∆tK

K
∑

k=1

(ψk − ψk−1)
2, (12.44)

where ∆t = τl denotes the time between two 
onse
utive line s
ans, is a suitable estimator

of D, 
ompare (12.4). From the simulated image shown in Figure 12.15, where we know

the true traje
tory, it 
an be seen that both the maximum likelihood method (green) and

the 
entroid method (bla
k) give a

urate estimates of the true traje
tory (red).

Figure 12.15: A simulated raster s
an image of a parti
le with true traje
tory (red),

the 
orresponding estimated traje
tory 
omputed with the maximum likelihood method

(green) from (Long�ls et al., 2017) and with the 
entroid method (bla
k) from (Long�ls

et al., 2018), see (12.43).

By use of analyses of images from both simulations and experiments the SPRIA

method is in (Long�ls et al., 2017) evaluated and also 
ompared with the traditional

RICS method. In the simulation study, Gaussian random walk (dis
rete time Brownian

motion) of spheres was generated in a box of with periodi
 boundary 
onditions. The

sphere diameter ranged from 15 to 1000 nm. A minimum image size of 256×256 was


hosen. The number of images simulated in ea
h 
ase varied and was 
hosen su
h that at

least 300 parti
les and at least 100 images were 
olle
ted. Lateral and axial waists of the

point spread fun
tion were ω0 = 248 and ωz = 1270 nm 
orresponding to Gaussian �t to

an average measured z-s
an of immobile 175-nm �uores
ent beads. The pixel dwell time

was τp = 1.71×10−7
s, the line time τl = 1.4×10−3

s and the pixel size S = 0.03µm. The
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results for 10D-values between 0.0625 and 64 µm2
s

−1
are shown in Figure 12.16 in
luding

bootstrap standard deviation estimates obtained by B = 40 repetitions, 
ompare (12.29).

Results from experiments with parti
les of four di�erent sizes: 100 nm, 175 nm, 490 nm

and 1000 nm, are shown in Figure 12.17. Both Figure 12.16 and Figure 12.17 show that

the SPRIA method performs well for the settings 
hosen.
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Figure 12.16: Illustration of simulation results with logarithmi
 s
ales on both axes.

Verti
al bla
k lines 
orrespond to the expe
ted di�usion 
oe�
ient a

ording to Stoke-

Einstein's equation, and ideally the estimated D-values should be lo
ated at the 
rossings
of the bla
k identity line and the verti
al bla
k lines. Blue markers refer to SPRIA and

magenta to RICS, and both estimates are presented as estimates ± standard errors.

Markers have been moved horizontally relative to ea
h true value of the di�usion 
oe�-


ient to make the �gure more legible.

Figure 12.17: Illustration of experimental results for the SPRIA (blue markers) and the

RICS (magenta markers) di�usion-
oe�
ient estimations methods with �uores
ent beads.

A logarithmi
 s
ale is uesd on the y-axis. Verti
al bla
k lines 
orrespond to the expe
ted

di�usion 
oe�
ient a

ording to Stoke-Einsteins's equation, and ideally the measured D-
values should be lo
ated at the 
rossings of the bla
k logarithmi
 
urve and the verti
al

bla
k lines. Markers have been moved horizontally to make the �gure more legible.
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To indi
ate that the SPRIA method may be used to analyse di�usion in heterogenous

media a simple simulation example was performed in (Long�ls et al., 2017) with results

shown in Figure 12.18. Here the dynami
s of parti
les is supposed to vary su
h that the

di�usion 
oe�
ient is 0.8 µm2
s

−1
inside a 
ir
le and 0.4 µm2

s

−1
outside the 
ir
le. In

the simulation 2142 parti
les in 300 images were found. The pixel size was 0.03 µm and

the image resolution was 256×256 pixels. The mobility map shown in the right part of

Figure 12.18 was obtained by smoothing with a Gaussian kernel with bandwidth σ = 15
pixels. The mobility map indi
ates that the SPRIA method allows re
overy of medium

heterogeneity to a 
ertain extent.

Figure 12.18: (A) Image of a heterogenous sample used in a simulation study with pixel


olours 
orresponding to the expe
ted di�usion 
oe�
ient in µm2
s

−1
. (B) Mobility map,

smoothed with a Gaussian kernel with bandwidth σ = 15 pixels, based on 2142 parti
les

in 300 images with the boundary 
ir
le between the two media in bla
k. The pixel size

is 0.03 µm and the resolution of the images is 256×256 pixels.

What are the 
onditions for using the SPRIA method? This is dis
ussed in detail in

(Long�ls et al., 2017). Roughly two 
onditions should be satis�ed. Firstly, the density

of parti
les must not be too large if individual parti
les should be identi�able. Se
ondly,

sampling time between lines should be su
h that adja
ent horizontal parti
le lines should

di�er to some extent, but not too mu
h as parti
les then be
ome split into several parts.

This se
ond 
ondition is illustrated in Figure 12.18. Parti
ularly the lower right part

(D) shows a situation where the dete
tion algorithm will split the bead into several

(presumably �ve) parti
les.

147



Figure 12.19: Typi
al parti
le images with settings: Sx = 0.03µm, τp = 7.5 · 10−7
s,

τl = 2.5 · 10−3
s, and s
an rate 400 Hz. (A) 1000-nm bead; (B) 490-nm bead; (C) 175-nm

bead; (D) 100-nm bead. The extra
tion step will identify exa
tly one bead in (A) and in

(B). In (C) the bead may be split into two parti
les, as the last four to six lines are not


onne
ted to the previous. In (D) the algorithm will (depending on the thresholds used)

split the bead into presumably �ve parti
les (
orresponding to the following maxima: one

in the top left, and four in the middle lower part of the image separated by lines with

low photon 
ounts).

12.5.1 Exer
ises

Exer
ise 12.10. Figure 12.12 shows what happens when we s
an with di�erent s
an rates.

If we instead sample at 
onstant rate but have parti
les (of the same kind and size) in

three di�erent media with high, medium and low vis
osity we would get similar results.

If we have low vis
osity, whi
h of the three 
ases (A), (B) and (C) would that 
orrespond

to?

Exer
ise 12.11. In Figure 12.14 we use thresholds T1 = 10 and T2 = 5. Suppose that we

hange thresholds to T1 = 15 and T2 = 10. How mu
h will that 
hange the estimated

di�usion 
oe�
ient (in per
ent) for the parti
le shown?
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Chapter 13

Image analysis of transmission ele
tron

mi
rographs

13.1 Identi�
ation of three-dimensional gel mi
rostru
-

tures

Mass transport in gels depends 
ru
ially on lo
al properties of the gel network. In (Nisslert

et al., 2007) a method for identifying the three-dimensional gel mi
rostru
ture from sta-

tisti
al information in transmission ele
tron mi
rographs (TEM) is suggested. The gel-

strand network is modelled as a random graph with nodes and edges (bran
hes). The

distribution of edge length, the number of edges at nodes and the angles between edges

at a node are estimated from transmission ele
tron mi
rographs. The 3D gel network

is simulated by Markov 
hain Monte Carlo (MCMC) methods based on statisti
al infor-

mation found from the mi
rographs. The mi
rographs 
an be viewn as proje
tions of

stained gel-strands in sli
es, and a formula is derived for estimating the thi
kness of the

stained gel sli
e based on the total proje
ted gel-strand length and the number of times

that gel-strands enter or exit the sli
e.

To �nd relevant features of a gel-strand network we aim at separating the gel-strands

from the ba
kground, and to 
reate a skeleton showing the network as thin lines. In

Figure 13.1 we see in the left part a TEM mi
rograph of a Sepharose gel to be analysed.

The image 
orresponds to an area of about 1700×1700 nm and shows the mi
rostru
ture

of the gel network at a magni�
ation of 10 000 times. Images are saved as 8-bit grey-

s
ale images of size 1024×1024 pixels. One 
ould hope for dire
tly �nding the gel-strand

network by thresholding, 
ompare Figure 1.18, but the histogram in Figure 13.2 shows

that that seems di�
ult.
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Figure 13.1: Left: one of the 1024×1024 pixel TEM mi
rographs showing a Sepharose

gel at 10 000 times magni�
ation. Right: magni�
ation of the area within the red box in

the upper left part of the left image.

Figure 13.2: Histogram of the grey level intensity of the mi
rograph in the left part of

Figure 13.1.

To �nd the gel-strand network a series of image operations are performed as shown in

Figure 13.3. We will here give a brief des
ription of the di�erent steps illustrated in this

�gure, and refer to (Nisslert et al., 2007) for more details and litterature referen
es. The

upper left image in Figure 13.3 shows the starting image. To de
rease the level of noise a

Wiener �lter is used to smooth the image. The Wiener �lter is a low-pass �lter that uses

prior information about the noise in the image to optimize the noise redu
tion. As the

intensities of pixels that represent the gel-strands vary 
onsiderably, a minimum �lter is
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then applied. This takes the minimum pixel value from a 3×3 neighbourhood, resulting

in an overall darker image with a more uniform grey-level polymer stru
ture as shown in

the right part in the upper �gure row. The minimum �lter also produ
es some new dark

spots in the ba
kground, and to suppress these a 5×5 median �lter is applied.

Figure 13.3: Illustration of the sequen
e of image analysis steps used to �nd the gel-strand

network. In the three upper images we see (from left to right): a 400×400 pixel part of the
image to left in Figure 13.1, the same image after appli
ation of a Wiener �lter, and the

result of applying a minimum �lter. In the middle row we see similarly (from left to right):

the result after appli
ation of a 5×5 median �lter, the binary image after thresholding,

and the result after removal of small bla
k spots. The lower row shows (from left to

right): the skeleton 
reated from the binary image, a skeleton with bran
hes shorter than

10 pixels removed, and �nally to the lower right the resulting skeleton displayed in red

onto the original image.
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The gel-strand network is now somewhat better separated from the ba
kground. Thresh-

olding is still problemati
, but possible. The method of (Otsu, 1979) is used with the

threwsholds determined by minimizing the intra
lass varian
e between dark and light

pixel values. In the thresholding the image was further divided in 25 di�erent parts with

individual thresholds to take 
are of varying intensity in di�erent parts of the image. The

threshold values from Otsu's method are also de
reased with 4% to get the gel-strands

thinner. Further bla
k spots smaller than 80 pixels are removed as shown in the right

image in the middle row of the Figure 13.3.

Having now a binary image whi
h reasonably well represents the gel stru
ture in the

mi
rographs, the next step is to 
reate a skeleton representation of the network. Two

mehods were tried: medial axis transformation and thinning, (Sonka et al., 2015). Both

methods 
reate skeletons that represent the mi
rostru
ture of the gel network rather

well, but a lot of small bran
hes are 
reated without 
orresponden
e in the original

mi
rographs. Comparing skeletons produ
ed by the two methods, thinning was found to

produ
e less of these artefa
ts and was 
hosen. Bran
hes shorter than 10 pixels are also

removed from the skeletons. The resulting network is shown in the middle image of the

lower row in Figure 13.3. Finally in the lower right part of the �gure we see the resulting

skeleton in red overlaid on the original image.

By looking at the lo
ations in the gel-strand network where bran
hes have been re-

moved we 
an �nd a spe
ial type of nodes 
alled bending points, as the removed short

bran
hes were often 
reated where the gel strands 
hange dire
tion. In the left part of

Figure 13.4 part of a skeleton is shown with nodes (with three bran
hes) marked in red,

end points in green and bending points in blue. The bending points are in the sequel

treated as nodes having only two 
onne
ted bran
hes.

Figure 13.4: Left: Part of a mi
rograph skeleton with nodes (with three bran
hes) marked

in red, end points in green and bending points in blue. Right: Skeleton with bran
hes be-

tween nodes marked in blue, bran
hes between end-points in green and bran
hes between

an end point and a node in red.
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By using the end points and nodes we 
an measure bran
h lengths. This is done by

measuring the straight line distan
e between two end points, two nodes or one end point

and one node. The bran
hes are also measured more a

urately by looking at the distan
e

between the pixels in the bran
hes, where the distan
e between horizontally or verti
ally

adja
ent pixels is one and between diagonally adja
ent pixels is

√
2.

In a skeleton we see, 
ompare the right part of Figure 13.4, three types of bran
hes.

Note that we look at proje
tions of a thin se
tion and that we assume full 
onne
tivity

in the gel network. Bran
hes between between two end points 
orrespond to gel-strands

that enter and exit the se
tion. Bran
hes between an end point and a node 
orrespond

to gel-strands that enter or exit the se
tion, and bran
hes between two nodes are fully


ontained in the se
tion.

We want to �nd the distribution of angles between bran
hes at nodes. As we have a

dis
rete pattern of pixels we 
annot just use angles between adja
ent pixels as that would

give only multiples of 45

◦
. Choosing a point too far from a node in
reases the probability

of an in
orre
t bran
h dire
tion. As a 
omprise the dire
tion eight pixels from a node

was used. Further, to �nd the thi
kness of gel-strands a binary representation of the gel

network and a distan
e map (Breu et al., 1995) is 
onstru
ted. The distan
e map gives

the shortest distan
e for ea
h pixel to the nearest non-gelstrand pixel. Combining this

with the skeleton representation of the gel mi
rostru
ture gives the radius distribution of

gel-strands.

Let us now look at sli
e thi
kness estimation. To obtain 
ontrast in the TEM images

a thin sli
e of gel is put into a uranium and lead bath. Uranium and lead are allowed to

di�use into the gel for about one hour and are adsorbed on the gel-strands. In (Nisslert

et al., 2007) a method is proposed to estimate sli
e thi
kness, whi
h 
orresponds to how

far uranium and lead has di�used into the gel. The method as des
ribed below is based

on the total proje
ted gel-strand length and the number of gel-strand 
rossings into or

out of the sli
e.

Assume that the gel-strand network 
onsists of a 
olle
tion of 
urves su
h that es-

sentially all end points in the 2D proje
tion 
orrespond to a 
urve passing into or out

of a sli
e of thi
kness D. Gel-strand 
urves are supposed to have lo
ally a well-de�ned

orientation. Figure 13.5 shows a short approximately linear 
urve segment ∆C of length

∆L that forms an angle α with a verti
al line and has verti
al distan
e y from segment

midpoint to the bottom of the sli
e. Assuming that the line segment is randomly rotated

in 3D around its 
enter one �nds that the angle α has probability density

p(α) = sinα, 0 ≤ α ≤ π/2, (13.1)


ompare Exer
ise 13.1. The length of the horizontal proje
tion of the 
orresponding 
urve

segment ∆C is L
hor

(∆C) = ∆L sinα with expe
tation

E(L
hor

(∆C)) =

∫ π/2

0

∆L sinαp(α)dα =
π∆L

4
, (13.2)


ompare (Baddeley & Jensen, 2005), p. 172.
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Figure 13.5: Short approximately linear 
urve segment ∆C of length ∆L with orientation

α relative to a verti
al line and with a verti
al distan
e y from midpoint to bottom of

sli
e. The sli
e is oriented su
h that it has horizontal upper and lower boundaries.

To evaluate the number of 
rossings we 
ondition on the angle α. The length of the

verti
al proje
tion of the 
urve segment is ∆L cosα, and we get a 
rossing out of the sli
e

if either y < (∆L/2) cosα or y > D − (∆L/2) cosα. Thus the 
onditional expe
tation

of the number of 
rossings of 
urves moving out of the sli
e is (1/D)∆L cosα. Sin
e we
should have equally many 
rossings from 
urves moving into the sli
e, the 
onditional

expe
tation of the total number of 
rossings is (2/D)∆L cosα. Averaging over α we get

the expe
ted number of 
rossings

E(N

ross

(∆C)) =
2

D

∫ π/2

0

∆L cosα sinαdα =
∆L

D
. (13.3)

Summing over all 
urve segments we �nd from (13.2) that the expe
ted horizontal 
urve

length is

E(L
hor

) =
πL

4
, (13.4)

where L is the total 3D 
urve length, and similarly the expe
ted number of 
rossings is

E(N

ross

) =
L

D
. (13.5)

From the last two equations we �nd

E(N

ross

) =
4

πD
E(L

hor

). (13.6)

This means that the sli
e thi
kness D 
an be estimated from the horizontal length L
hor

in the proje
tion and the number of 
rossings N

ross

into or out the sli
e, and we get the

estimate

D̂ =
4L

hor

πN

ross

. (13.7)
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Let us now see how the 3D mi
rostru
ture 
an be modeled as a random graph G =
(V,E) and re
onstru
ted by use of MCMC simulation. A random graph 
onsists of a set

V = {v1, . . . , vN} of nodes (verti
es) and a set E of undire
ted edges between nodes. An

edge between two nodes u and v is denoted 〈u, v〉. In our MCMC modelling of the gel-

strand network we let nodes in the graph be either bran
hing points or bending points.

An edge 〈u, v〉 ∈ E if and only if there is a dire
t 
onne
tion (that is a bran
h) between

the nodes u and v.

De�ne a probability measure for the random graph G = (V,E) by use of a real-valued

energy fun
tion f(g) su
h that the probability density at G = g is

πf (g) =
1

Zf
e

−f(g), (13.8)

where Zf is a normalizing 
onstant ensuring that the probability density πf (g) integrates
to one. The 
hosen energy fun
tion is a sum of three 
omponents,

f(g) = f1(g) + f2(g) + f3(g), (13.9)


orresponding to lengths of edges, number of edges at nodes and angles between edges at

nodes, respe
tively.

The �rst energy 
omponent is

f1(g) = c1
∑

u∼v

(duv − d0)
2, (13.10)

where u and v are nodes of g, duv is the distan
e between them and u ∼ v means that there

is an edge between u and v. The target distan
e d0 is essentially the mean bran
h length

(in pixels) from the mi
rographs multiplied with a fa
tor 4/π to 
ompensate for going

from two to three dimensions, 
ompare (13.2). The 
onstant c1 weighs the importan
e

to the energy of the edge length 
omponent.

The se
ond energy 
omponent 
orresponds to the number edges 
onne
ted to nodes.

In the mi
rographs almost all interse
tion points have three 
onne
ted edges, but sin
e

bending points that have only two edges are also in
luded, the target number n0 of


onne
tions will be somewhat less than three (about 2.7). An energy 
omponent taking

this into a

ount is

f2(g) = c2
∑

v

(nv − n0)
2, (13.11)

where we sum over all nodes v of g and nv is the number of edges at v.

The third energy 
omponent is

f3(g) = c3
∑

v

∑

αv

(αv − α0)
2, (13.12)

where we sum over all nodes v of g and over all angles αv, less than π radians, between

edges 
onne
ted to v. With three edges at a node we expe
t by symmetry angles around

120

◦
degrees, but for nodes with two edges we expe
t somewhat larger angles.
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In the re
onstru
tion of the gel network a sequen
e of graphs, Gn = (Vn, En), n =
0, 1, . . . , n

max

, is updated with a Metropolis algorithm, 
ompare Se
tion 4.7. The updat-

ing from Gn to Gn+1 is performed with two types of steps. In the �rst type of steps we

add or remove an edge to En (or leave En un
hanged). In the se
ond type we move one

of the nodes of Vn a random distan
e (or leave Vn un
hanged). The number N of nodes

in Vn is kept 
onstant. The two types of steps are performed as follows.

Type 1 step. Pi
k a random pair {u, v} of nodes. If 〈u, v〉 ∈ En we �rst remove it.

To obtain En+1 either add 〈u, v〉 or leave the set of edges un
hanged a

ording to the


onditional πf distribution given Vn and all other edges of En.

Type 2 step. Pi
k a node v ∈ Vn and sample a random movement of the position of

the node v. The random movement ∆R is sampled from a uniform distribution in a 3D

sphere with radius 2 pixels. Consider the 
onditional πf distribution given all other nodes
of Vn and the set of edges En+1, and 
hoose a

ording to this distribution Vn+1 either

equal to Vn or equal to Vn with the 
hosen node moved by ∆R.

For further details of the MCMC simulation, in
luding 
hoi
e of the weights (c1, c2, c3)
and the target values (d0, n0, α0) in the energy fun
tion, the reader is referred to (Nisslert

et al., 2007). As always in this type of simulations a large number of updates is needed.

Let us now show some results obtained from the image analysis. In Figure 13.6 we see

distributions of bran
h lengths, of angles between bran
hes and of gel-strand thi
kness.

Figure 13.6: Left: Distribution of bran
h lengths (in nm) between nodes, one pixel


orresponds to 1.66 nm. Middle: Distribution of angles (in degrees) between bran
hes at

nodes. Right: Distribution of gels strand thi
kness (gel-strand radius in nm).

The sli
e thi
kness of the se
tion, from whi
h the mi
rographs are proje
tions, was

estimated by use of (13.7). The total proje
ted length was obtained as the sum of all

bran
h lengths, and the total number of 
rossings was obtained as the total number of end

points in the skeleton (ex
luding end points at borders). From six images this resulted

in a thi
kness estimate of 90.6 nm with a standard error of 3.5 nm. A minor redu
tion of

the thi
kness estimate was used, for details see (Nisslert et al., 2007), where it was also


on
luded that uranium and lead had penetrated most of the sli
e.

Let us now brie�y look at the results from the MCMC simulations whi
h were per-

formed in an approximately 800×800×800 nm 
ubi
 box with periodi
 boundary 
on-

ditions. With a gel sli
e thi
kness of 90 nm, the node intensity per volume unit was

found, 
orresponding to N = 1604 in the 
ubi
 box and this N value was used in the

simulations. To a
hieve approximate stationarity in the MCMC simulations 200 hundred
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iterations were used. In ea
h of these iterations �rst 10 000 iterations were performed

with 
onne
tions between nodes 
reated or removed (see Type 1 step above), and then

10 000 iterations were performed with movement of nodes (see Type 2 step above). For

further details of the MCMC simulations, see (Nisslert et al., 2007). After obtaining the

skeleton, the bran
hes were thi
kened to obtain a volume per
ent of 4%. A result with a

3D rendering of the simulated gel network is shown in Figure 13.7.

Figure 13.7: S
reen shot of a 3D rendering of a simulated gel network with 
onstant

gel-strand radius of 9.2 nm, in a 
ube with 500 pixels side 
orresponding to 830 nm.

To evaluate the image pro
essing algoritms and the MCMC simulation algorithms we


ompare in Figure 13.8 a mi
rograph with 
omputed skeleton (red) to the left with a

simulated �mi
rograph� also with a 
omputed skeleton (red) to the right. Visually the

left and right part look rather similar.

Finally, in Figure 13.9 we show (in bla
k) the proje
tion of an a
tual simulated 3D

skeleton and (in red) the 
orresponding skeleton obtained from image pro
essing. The

skeletons look quite similar, indi
ating that the image pro
essing a
tually su

eeds in


reating a skeleton representation from the mi
rographs.

13.1.1 Exer
ise

Exer
ise 13.1. Consider the approximately linear 
urve segment ∆C in Figure 13.5. Show

that if the 
urve segment is randomly rotated in 3D the angle α has probability density

given by (13.1).
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Figure 13.8: Left: Part of a mi
rograph, 500×500 pixels, with 
orresponding skeleton

marked in red. Right: Simulated �mi
rograph�, 500×500 pixels, with 
orresponding skele-
ton marked in red.

Figure 13.9: Proje
tion of the a
tual simulated 3D skeleton (displayed in bla
k), size

500×500 pixels, 
ompared with the 
orresponding skeleton obtained from the image pro-


essing (displayed in red).
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13.2 Stru
tural 
hara
terization from s
anning trans-

mission ele
tron mi
rographs

In (Nordin et al., 2014) material 
hara
terization from high angle annular dark �eld

s
anning transmission ele
tron mi
rograph (HAADF-STEM) images is studied by use of

maximum likelihood methods. The upper left part of Figure 13.10 shows the intensity

response in 2D from a model material 
onsisting of 20nm sili
a parti
les that have ag-

gregated to form a stable parti
le gel. The approximately square image is obtained by

s
anning a gel sli
e of thi
kness about 90 nm. The mass thi
kness α(x, y) of the sili
a at
a 2D position (x, y) 
an be written as fra
tion of the total sample thi
kness

α(x, y) =
1

z
max

∫ z
max

0

ρS(x, y, z) dz, (13.13)

where ρS(x, y, z) denotes the sili
a density (depending on whether there is a sili
a parti
le
at the point (x, y, z) or not). A simple model for the observed intensity I(x, y) is

I(x, y) = b+ cg(α(x, y)) + ǫ(x, y), (13.14)

where b and c are 
onstants, g is a power fun
tion

g(α) = αβ, (13.15)

and the noise ǫ(x, y) is supposed to be N(0, σ2) and independent for di�erent pixels (x, y).

Let us give a maximum likelhood fun
tion for an image su
h as the one shown in the

upper left part of Figure 13.10. Suppose that in the 
orresponding 3D re
tangular box,


ompare Figure 12.3, there are N sili
a parti
les with 3D 
entres x1, . . . ,xN . Then the

following log-likelihood fun
tion 
orresponds to the model (13.14)

ℓ(θ) = −|M | log
(√

2πσ
)

− 1

2σ2

∑

(x,y)∈M

[I0(x, y)− b− cg(α(x, y))]2 , (13.16)

whereM is the set of pixels, |M | is the number of elements inM and the parameter ve
tor

is θ = (b, c, β,N,x1, . . . ,xN). A 
ompli
ation in �nding maximum likelihood estimates is

the large number parti
les, see Figure 13.10, but it 
an be done (at least approximately),

for instan
e by use of simulated annealing, 
ompare (Nordin et al., 2014).

The maximum likelihood estimate of the power parameter β in (13.15) was β̂ = 0.69,
whi
h gave a 
onsiderably better �t 
ompared to the linear response with β = 1 as shown
in Figure 13.11. The models with β = 1 and a general β are nested and the hypothesis

β = 1 
an be tested for instan
e by use of repeated images. In the present 
ase there was

only one image available. To obtain approximately independent repetitions the image

was divided into 16 subimages of equal size by three verti
al and three horizontal lines.

With the 
orresponding 16 estimates of β a t-test showed reje
tion of the null hypothesis

H0 : β = 1 with a p-value mu
h less than 0.001.

As a 
he
k of the model (13.14) histograms of the pixel intensity in the observed

and estimated mi
rograph images are shown in Figure 13.12. In general there is a good

agreement between the observed and the estimated image intensities. However, the his-

tograms indi
ate that a feature not taken into a

ount of the model is that the edges of

the observed spheres are somewhat blurry.
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Figure 13.10: Upper left: Mi
rograph intensity image I0(x, y) of a 90 nm sli
e of 5

wt% aggregated nano sili
a obtained with HAADF-STEM. Upper right: Regenerated

mi
rograph image I(x, y) obtained by maximizing the log-likelihood fun
tion (13.16).

Lower left: Residual image I(x, y)−I0(x, y) of the original mi
rograph and the regenerated

mi
rograph. Lower right: Blow-up of the top left 
luster in the residual image.
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Figure 13.11: The intensity response I versus mass thi
kness α of sili
a as estimated by

maximizing the likelihood fun
tion (13.16). The mi
rographs are STEM proje
tions of

90 nm thi
k mi
rotomed sample se
tions, where the individual sili
a spheres are 20 nm

in diameter, 
ompare Figure 13.10. One single sphere 
orresponds to α = 0.22. The blue
line shows the estimate with the estimated power β = 0.69 in (13.15), while the bla
k

line 
orresponds to β = 1. The error bars show the estimated standard deviation of the

ba
kground noise.

Figure 13.12: Histogram of the pixel intensity for the observed mi
rograph (blue) and

the estimated mi
rograph intensity (bla
k). The estimated ba
kground noise is also

shown (red). Note that the observed mi
rograph image is blurry at the edges of the

spheres, 
ompare the lower right part of Figure 13.10. This is not taken into a

ount in

the model, whi
h 
an explain why the estimated intensity shows an underestimate just

between I = 0.1 and 0.2.
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13.2.1 Exer
ises

Exer
ise 13.2. Verify that (13.16) gives the log-likelihood 
orresponding to the model

(13.14).

Exer
ise 13.3. How well 
an the 
oordinates of the 3D 
entre positions x1, . . . ,xN be

estimated?

Exer
ise 13.4. Try to 
ount approximately the number of parti
les in the left and the

right upper parts of Figure 13.10.

Exer
ise 13.5. Try to 
ount approximately the number of overlapping parti
les in the left

and the right upper parts of Figure 13.10.
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Chapter 14

Appendix. Mathemati
al,


omputational and statisti
al

ba
kground

Below you 
an �nd 
ondensed des
riptions of 
on
epts and methods used in this book.

If you have a basi
 knowledge of some area these des
riptions 
an serve as a repetition,

but if some 
on
epts are new to you, you presumably need to go to textbooks for more


omplete information. Nowadays quite useful information 
an also be obtained from the

internet, for example from the Wikipedia pages.

14.1 Some matrix algebra

A matrix with m rows and n 
olumns, or brie�y a matrix of type m× n, is a re
tangular
array







a1,1 · · · a1,n
.

.

.

.

.

.

am,1 · · · am,n






(14.1)

of numbers ai,j , sometimes written aij , 
alled matrix elements. If the type is understood

we 
an write A = [ai,j]. Row and 
olumn ve
tors are thin matri
es with m = 1 and n = 1,
respe
tively. If m = n = 1 the matrix is just a number. A square matrix has m = n.

Let A be an m × n matrix. The transpose AT
of A is an n ×m matrix obtained by

making rows in A into 
olumns, that is the (i, j) element in AT
is the (j, i) element in A.

A matrix is symmetri
 if it equal to its transpose.

Matri
es of the same type 
an be added by element-wise addition. If A and B are

matri
es of types m × n and n × k, respe
tively, the produ
t C = AB is a matrix type

m × k with elements ci,j =
∑

r ai,rbr,j . A square n × n matrix A is 
alled invertible (or

non-singular) if there exists an inverse denoted A−1
su
h that

AA−1 = A−1A = I (14.2)
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where I is the unit n×n matrix with diagonal elements ij,j = 1 and o�-diagonal elements

ij,k = 0, j 6= k.

Let us now de�ne re
ursively the determinant detA of a square n×n matrix A = [ai,j].
For n = 1 we de�ne detA = a for the matrix A = [a]. Suppose that we have de�ned

determinants for matri
es of type (n− 1)× (n− 1) and let A be a matrix of type n× n.
Let the minor Ai,j be the determinant of the matrix obtained from A by deleting row

number i and 
olumn number j. Then we put

detA =

n
∑

j=1

(−1)1+ja1,jA1,j . (14.3)

One 
an show that a square matrix A is non-singular if and only if detA 6= 0.

Let A be a square matrix. We say that a real number λ is an eigenvalue of A and that

a 
olumn ve
tor x is an eigenve
tor of a if

Ax = λx. (14.4)

A symmetri
 real n × n matrix A is said to be positive-de�nite or positive-semide�nite

if xTAx > 0 or xTAx ≥ 0, respe
tively, for ea
h non-zero n-dimensional 
olumn ve
tor

x. One 
an show that a symmetri
 matrix is positive-de�nite or positive-semide�nite if

all its eigenvalues are positive or nonnegative, respe
tively. Further, a positive de�nite

matrix is invertible.

Exer
ises

Exer
ise 14.1. Let A =

[

a b
c d

]

. Determine detA by use of (14.3).

Exer
ise 14.2. Let A =

[

a b
c d

]

with ad − bc 6= 0. Determine the inverse of A by solving

a linear equation system with four unknowns.

14.2 Optimization of a real funtion

Let us �rst 
onsider Newton's method for optimization of a twi
e 
ontinuously di�eren-

tiable real-valued fun
tion f(x) of a real variable x. Suppose that f has a maximum or

minumum at x⋆. Then f ′(x⋆) = 0. Newton's iterative method for lo
ating x⋆ is to put

xk+1 = xk − f ′(xk)

f ′′(xk)
. (14.5)

Assuming that f ′′(x⋆) 6= 0 and that we start 
lose enough to x⋆ one 
an show that xk → x⋆

as k → ∞.

Let us now 
onsider Newton's method for optimization of a twi
e 
ontinuously dif-

ferentiable real-valued fun
tion f(x) of an n-dimensional 
olumn ve
tor x. As above we
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suppose that f has a maximum or minumum at x⋆. Let ∇f(x) denote the (
olumn)

gradient ve
tor

∇f(x) = [
∂f

∂x1
. . .

∂f

∂xn
]T (14.6)

and let Hf(x) denote the Hessian matrix

Hf(x) =







∂2f
∂x1∂x1

. . . ∂2f
∂x1∂xn

.

.

.

.

.

.

∂2f
∂xn∂x1

. . . ∂2f
∂xn∂xn






(14.7)

Newton's iterative method for lo
ating x⋆ is to put

xk+1 = xk − (Hf(xk))−1∇f(xk) (14.8)

Assuming that Hf(x⋆) is positive-de�nite and thus invertible, and that we start 
lose

enough to x⋆ one 
an show that xk → x⋆ as k → ∞.

Newton's method is quite e�
ient but has drawba
ks. Computation of derivatives 
an

require a lot of programming. One may use �nite di�eren
es to 
ompute approximate

derivatives but that then it requires extra programming to �nd suitable step lengths.

Often it is more e�
ient to use so 
alled quasi-Newton methods where the Hessian is

automati
ally estimated from su

essively 
omputed gradient ve
tors, see for instan
e

(Press et al., 2007). In MATLAB the fminun
 fun
tion uses a quasi-Newton metod for

minimization.

The Newton and quasi-Newton methods typi
ally work quite well if you start 
lose

to the optimum. A mu
h slower but quite robust optimizer, whi
h does not require


omputation of any derivates, is the simplex method of (Nelder & Mead, 1965) whi
h is

available in MATLAB as the fun
tion nelder_mead. A good strategy in appli
ations


an often be to begin with the simplex metod to get an overview and suitable starting

values and then to use a quasi-Newton method.

14.3 Dis
rete probability distributions

Dis
rete distributions for a random variable X are 
hara
terized by the probability fun
-

tion Pr(X = x), x ∈ V , where V is the �nite or 
ountable set of values that X 
an

take. For a real-valued dis
rete random variable the expe
tation µ, standard deviation

σ and varian
e σ2
are de�ned by µ = E(X) =

∑

x xPr(X = x) and σ2 = var(X) =
∑

x(x− µ)2 Pr(X = x).

A random variable X is said to be Poisson distributed with parameter λ if

Pr(X = n) =
λn

n!
exp(−λ), n = 0, 1, . . . , (14.9)

and for su
h a variable both the expe
tation and the varian
e are equal to λ.

A random variable X is said to be binomial (n,p) if

Pr(X = k) =

(

n
k

)

pk(1− p)n−k, k = 0, . . . , n, (14.10)

and for su
h a variable the expe
tation is np and the varian
e is np(1− p).
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14.4 Continuous probability distributions

Continuous distributions for a real-valued random variable X are 
hara
terized by the

probability density

f(x) =
d

dx
Pr(X ≤ x), x ∈ R, (14.11)

where R = (−∞,∞) is the set of real numbers. For a 
ontinuous random variable

the expe
tation µ, standard deviation σ and varian
e σ2
are de�ned by µ = E(X) =

∫

R
xf(x)dx and σ2 = var(X) =

∫

R
(x− µ)2f(x)dx.

A random variable X is said to have a uniform distribution on the interval (a, b) if the
probability density is

f(x) = 1/(b− a), a < x < b, (14.12)

and f(x) = 0 for x < a and x > b, and for su
h a variable the expe
tation is (a + b)/2
and the varian
e is (b− a)2/12.

A random variable X is said to have an exponential distribution with parameter β if

the probability density is

f(x) = β exp(−βx), x > 0, (14.13)

and f(x) = 0 for x < 0, and for su
h a variable the expe
tation is 1/β and the varian
e

is 1/β2
.

A random variable X is said to be normal(µ,σ2
), or brie�y X ∼ N(µ,σ2) if the prob-

ability density is

f(x) =
1√
2πσ

exp(−(x− µ)2/σ2), x ∈ R, (14.14)

and for su
h a variable the expe
tation is µ and the varian
e is σ2
.

14.5 Multivariate probability distributions

LetX1, . . . , Xd be real-valued random variables. ThenX = [X1 . . .Xd]
T
is a d-dimensional

random (
olumn) ve
tor. The expe
tation of a random ve
tor (or a random matrix) is de-

�ned 
omponentwise. Thus the expe
tation ve
tor µ = µX = E(X) of a random 
olumn

ve
tor X is the 
olumn ve
tor with 
omponents µi = E(Xi), i = 1, . . . , d. The 
ovarian
e
matrix C = CX = C(X) of X is the symmetri
 d× d matrix

C = E(X − µ)(X − µ)T =







E(X1 − µ1)(X1 − µ1) · · · E(X1 − µ1)(Xd − µd)
.

.

.

.

.

.

E(Xd − µd)(X1 − µ1) · · · E(Xd − µd)(Xd − µd)






.

(14.15)

The (i, j)-element of the 
ovarian
e matrix of X is the 
ovarian
e 
ov(Xi, Xj) = E(Xi −
µi)(Xj − µj) of the ith and jth 
omponents of X , whi
h for i = j is the varian
e of Xi.

The d-dimensional ve
tor X has a d-dimensional probability density f = fX if

Pr(X ∈ A) =

∫

A

f(x)dx (14.16)
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for subsets A of d-dimensional spa
e R
d
for whi
h the integral in (14.16) is well-de�ned.

Let µ be a d-dimensional 
olumn ve
tor and let C be a positive-de�nite d× d matrix.

The d-dimensional random ve
tor X is said to be normal(µ,C) or brie�y X ∼ N(µ,C) if
X has the d-dimensional density fun
tion

fX(x) =
1

(2π)d/2(detC)1/2
exp(−1

2
(x− µ)TC−1(x− µ)), (14.17)

where detC denotes the determinant of the matrix C. One 
an show that then X has

expe
tation ve
tor µ and 
ovarian
e matrix C.

An important spe
ial 
ase is the two-dimensional normal distribution. Regard X =
[X1 X2]

T
. Let µi and σ2

i denote the expe
tation and varian
e of Xi, i = 1, 2, and let

ρ = 
ov(X1, X2)/(σ1σ2) denote the 
orrelation between the two 
omponents of X . Thus

the 
ovarian
e matrix of X is

C =

[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]

. (14.18)

One 
an then show that the two-dimensional density fun
ion of X is

f(x) =
1

2πσ1σ2
√

1− ρ2
exp{− 1

2(1− ρ2)
Q(x1, x2)} (14.19)

where

Q(x1, x2) =
(x1 − µ1)

2

σ2
1

− 2ρ(
x1 − µ1

σ1
)(
x2 − µ2

σ2
) +

(x2 − µ2)
2

σ2
2

(14.20)

14.6 Prin
ipal 
omponents, t-SNE

Suppose that we have a d-dimensional random ve
tor X with 
ovarian
e matrix C. Prin-

ipal 
omponents 
an be used to transform the random ve
tor. De�ne the �rst prin
ipal


omponent

Y1 = cT1X, (14.21)

where c1 is a d-dimensional 
olumn ve
tor, determined by the 
ondition that var(Y1) =
cT1Cc1 is maximal subje
t to the restri
tion cT1 c1 = 1. Generally we de�ne the ith prin
ipal

omponent, 1 < i ≤ d as

Yi = cTi X, (14.22)

where ci is a d-dimensional 
olumn ve
tor, determined by the 
ondition that var(Yi) =
cTi Cci is maximal subje
t to the restri
tions cTi ci = 1 and cTj Cci = 0 for 1 ≤ j < i. The
�rst two or three prin
iple 
omponents are sometimes useful to visualize the distribution

of X .

Prin
iple 
omponents are often attributed to (Hotelling, 1933) although they are 
losely

related to singular value de
omposition whi
h has a mu
h older history. A re
ent quite

e�e
tive ma
hine-learning-inspired te
hnique due to (van der Maaten & Hinton, 2008)

for visualizing multidimensional distributions in two or sometimes three dimensions is

t-SNE. The method is used in Figure 2.7, and a 
on
ise des
ription of the method is

given in (Long�ls, 2018).
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14.7 Random, Gaussian and Markov pro
esses on the

real line

A random pro
ess or sto
hasti
 pro
ess X on the real line 
onsists a set of random

variables X = (Xt) indexed by time t ∈ T , where T is a subset of the real line R. We

suppose here that T is either a set of 
onse
utive integers or an interval and then we

talk about a dis
rete time or 
ontinuous time random pro
ess, respe
tively. The set V of

values that Xt 
an take we 
all the state spa
e. A real-valued pro
ess has the real line or

a subset of it as state spa
e. A real-valued random pro
ess may be 
hara
terized by its

mean value fun
tion,

mt = EXt (14.23)

and its 
ovarian
e fun
tion

C(s, t) = E(Xs −ms)(Xt −mt). (14.24)

A random pro
ess is said to be normal or Gaussian if (Xt1 , . . . , Xtn) has an n-dimensional

normal distribution for any 
hoi
e of time points t1, . . . , tn. One 
an show that a Gaussian

pro
ess is fully spe
i�ed by its mean value and 
ovarian
e fun
tions.

A random pro
ess (Xt) is said to be stationary if its distribution is invariant under a

translation τ , more pre
isely if for ea
h 
hoi
e of n ≥ 1 and (t1, . . . , tn) the distribution
of the n-dimensional random ve
tor (Xt1+τ , . . . , Xtn+τ ) does not depend on τ . Consider
the mean value and 
ovarian
e fun
tions of a stationary pro
ess. The mean value is a


onstant m = EXt and the 
ovarian
e fun
tion 
an be written as C(s, t) = σ2ρ(t − s)
where the varian
e σ2 = C(t, t) and ρ(t) is the 
orrelation fun
tion.

We say that (Xt, t ∈ T ) is a Markov pro
ess if the 
onditional distribution of X at a

future time given the history up to time t only depends on the value of X at the 
urrent

time t, more pre
isely if

Pr(Xτ ∈ A|Xs, s ≤ t) = Pr(Xτ ∈ A|Xt), t < τ. (14.25)

A dis
rete time Markov pro
ess with �nite state spa
e V , for notational simpli
ity here

denoted V = {1, . . . v}, is determined by its transition probability matrix P whi
h is the

(v × v) matrix with elements

pij = Pr(Xt+1 = j|Xt = i), 1 ≤ i, j ≤ v. (14.26)

A zero-mean autoregressive pro
ess (Xt) of order p is re
ursively generated from

Xt =

p
∑

i=1

aiXt−i + ǫt, (14.27)

where ǫt are independent and identi
ally distributed random variables with zero mean

and �nite varian
e σ2
. Often ǫt is assumed to be normally distributed. Then Xt is also

normally distributed, provided that starting values have a (multivariate) normal distri-

bution. An autoregressive pro
ess of order p = 1 is a Markov pro
ess. An autogressive
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pro
ess of order one is stationary if |a1| < 1 and the starting value in (14.27) is suitably


hosen.

An example of a 
ontinuous time Markov pro
ess is the Poisson pro
ess with intensity

λ whi
h is 
hara
terized by the fa
t that the in
rement Xt − Xs is Poisson distributed

with expe
ation

E(Xt −Xs) = λ(t− s), s < t, (14.28)

and the in
rements over disjoint time intervals are independent.

Suppose that points are randomly pla
ed on the real line su
h that

(i) the number of points in disjoint intervals are independent,

(ii) the probability that two points are pla
ed in an interval of length h tends to

zero faster than the probability that one point is pla
ed in the same interval when

h→ 0 ,

(iii) the distribution of the number of points in an interval depends only on the

length of the interval and not on where it is pla
ed.

One 
an then show that if Xt denotes the number of points in the interval (0, t), then
(Xt, t > 0) is Poisson pro
ess with intensity λ equal to the expe
ted number of points in

an interval of unit length. For an arbitrary time t let further W denote the waiting time

for the �rst point after t. One 
an then show that W has an exponential distribution

with parameter λ.

Another example of a 
ontinuous time Markov pro
ess is the Brownian motion or

Wiener pro
ess on the interval [0,∞) 
hara
terized by having independent in
rements

over disjoint time intervals and that Xt is normal(0, σ2t) for t ≥ 0.

A third example of a 
ontinuous time Markov pro
ess is the Ornstein-Uhlenbe
k pro-


ess, whi
h is Gaussian pro
ess with mean zero and 
orrelation fun
tion

ρ(t) = exp(−λt) (14.29)

for some positive 
onstant λ.

14.8 Estimation of parameters. Likelihood and least

squares

Suppose that we observe a random variable or ve
tor X with a distribution that depends

on a parameter θ that may be a ve
tor. Let θ̂ = θ̂(X) be an estimate of θ. We say that

θ̂ is an unbiased estimate of θ if
E(θ̂) = θ. (14.30)

Typi
ally we observe a sample of a random variable whi
h means that we have a sequen
e

of independent and identi
ally distributed random variables. We say that θ̂ is a 
onsistent
estimate of θ if for an arbitrary ǫ > 0

Pr(|θ̂ − θ| > ǫ) → 0 (14.31)
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as the number n of observations goes to in�nity. One 
an for instan
e show that θ̂ is a

onsistent estimate of θ if E(|θ̂ − θ|2) → 0 as n→ ∞.

Let X be a dis
rete or 
ontinuous random ve
tor that we observe and that has a

probability distribution depending on θ. If X is dis
rete we put f(x, θ) = Pr(X = x)
and if X is 
ontinuous f(x, θ) denotes the probability density of X . The likelihood value


orresponding to an observed value x of X is written

L(θ) = L(θ|x) = f(x, θ). (14.32)

In parti
ular, if we have a sample X = (X1, . . . , Xn) of a random variable assumed to

be either dis
rete with probability fun
tion Pr(Xi = xi) = f(xi, θ) or 
ontinuous with
probability density f(xi, θ) the 
orresponding likelihood fun
tion is

L(θ) = L(θ|x) =
n
∏

i=1

f(xi, θ), (14.33)

where x = (x1, . . . , xn).

A maximum likelihood estimate θ̂ of θ is a value that maximizes the likelihood fun
tion.

In pra
ti
e it is often more 
onvenient to maximize the log-likelihood fun
tion

ℓ(θ) = log(L(θ)), (14.34)

where log (as always in this book) denotes the natural logarithm.

As an example, suppose that X = (X1, . . . , Xn) is a sample of a variable that is Poisson

distributed with parameter λ, that is X1, . . . , Xn are independent and identi
ally Poisson

distributed. The log-likelihood fun
tion is

ℓ(λ) = log(

n
∏

i=1

λXi

Xi!
exp(−λ)) = c− nλ+ log(λ)

n
∑

i=1

Xi, (14.35)

where c does not depend on λ and thus 
an be disregarded during the maximization. One

�nds that the maximum likelihood estimate of λ is

λ̂ =
1

n

n
∑

i=1

Xi, (14.36)

whi
h one 
an show is a both unbiased and 
onsistent estimate of λ. (In the 
omputations

in this example we have used the notation Xi rather than xi whi
h is often 
onvenient.)

A useful 
omplement to the maximum likelihood method to estimate parameters is

the least squares method whi
h, when appli
able, is often easier to use. Suppose that

X1 . . . , Xn are independent random variables with the same varian
e and with an ex-

pe
tion that depends on a parameter θ. The least squares estimate θ̂ is obtained by

minimizing

Q(θ) =
n
∑

i=1

(Xi −E(Xi))
2. (14.37)
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Let us again 
onsider a sample (X1, . . . , Xn) of a random variable that is Poisson

distributed with parameter λ. The sum of squares (14.37) now be
omes

Q(λ) =

n
∑

i=1

(Xi − λ)2, (14.38)

whi
h is minimized for λ = λ̂ in (14.36). Thus the least squares and the maximum

likelihood estimates 
oin
ide in this example.

14.9 Linear and logisti
 regression

Let us �rst 
onsider linear regression with one explaining real variable x. Suppose that
we observe

Yi = α+ βxi + ǫi, i = 1, . . . n, (14.39)

with independent zero-mean random errors ǫi, i = 1, . . . , n, with identi
al varian
es. The

least squares estimates α̂ and β̂ are obtained by minimizing

Q(α, β) =
n
∑

i=1

(Yi − α− βxi)
2, (14.40)

whi
h gives

α̂ = Y − β̂ x, β̂ =

∑n
i=1(Yi − Y )(xi − x)
∑n

i=1(xi − x)2
, (14.41)

where x = (1/n)
∑

i xi and Y = (1/n)
∑

i Yi.

Let us now 
onsider multiple linear regression with m explaining variables. We assume

that we have observations

Yi = β1xi1 + . . .+ βmxim + ǫi, i = 1, . . . n, (14.42)

with independent zero-mean random errors ǫi, i = 1, . . . , n, with identi
al varian
es. We


an write our observations on ve
tor-matrix form as

Y = Xβ + ǫ, (14.43)

where

Y =







Y1
.

.

.

Yn






, X =







x11 · · · x1m
.

.

.

.

.

.

xn1 · · · xnm






, β =







β1
.

.

.

βm






, ǫ =







ǫ1
.

.

.

ǫn






. (14.44)

It turns out that the least squares estimate of the parameter ve
tor β is

β̂ = (XTX)−1XTY, (14.45)

provided that the matrix XTX is invertible.
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Let us now 
onsider logisti
 regression where we observe independent variables Y1, . . . , Yn
taking values 0 or 1. We suppose that the probability pi = Pr(Yi = 1) = 1 − Pr(Yi = 0)
depends on m explaining variables su
h that

log(
pi

1− pi
) = β1xi1 + . . .+ βmxim, i = 1, . . . n. (14.46)

To estimate the parameters β1, . . . , βm we 
an maximize the likelihood fun
tion

L(β1, . . . , βm) =
n
∏

i=1

(pYi

i (1− pi)
1−Yi). (14.47)

There is no analyti
al expression for the maximum likelihood estimates so to maximize

(14.47) one may use 
omputational optimization methods su
h as those des
ribe in Se
-

tion 14.2 and then it is typi
ally more 
onvenient to maximize the log-likelihood fun
tion.

14.10 Con�den
e intervals and tests, observations from

a normal distribution, the t- and 
hi-square dis-

tributions

Let X denote observations from a distribution depending on a real-valued parameter

θ. We say that the interval (L(X), U(X)) is a 
on�den
e interval for θ with 
on�den
e

degree p if
Pr(L(X) < θ < U(X)) = p. (14.48)

Let X = (X1, . . . , Xn) be a sample from a normal(µ, σ2) distribution. Then

X =
1

n

n
∑

i=1

Xi and s2 =
1

n− 1

n
∑

i=1

(Xi −X)2 (14.49)

are unbiased and 
onsistent estimates of µ and σ2
, respe
tively. To 
ompute 
on�den
e

intervals for µ and σ2
we introdu
e the 
hi-square and t-distributions.

A random variable is said to be 
hi-square distributed with r degrees of freedom if it

has the same distribution as

χ2 =

r
∑

i=1

Z2
i , (14.50)

where Z1, . . . , Zr are independent and normal(0, 1). Let us note that a variable that is


hi-square distributed with r degrees of freedom has expe
tation r. A random variable is

said to be t-distributed with r degrees of freedom if it has the same distribution as

t =
Z

√

χ2/r
(14.51)

where Z and χ2
are independent and distributed normal(0, 1) and 
hi-squared with r

degrees of freedom, respe
tively.
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Let us de�ne quantiles for random variables with a 
ontinuous distribution fun
tion

F (x) = Pr(X ≤ x). A pth quantile xp 
orresponding to su
h a distribution satis�es

F (xp) = p. Let χ2
p denote the pth quantile of a 
hi-square distribution with n− 1 degrees

of freedom. For s2 de�ned by (14.49) one 
an then show that

Pr(χ2
(1−p)/2 < (n− 1)s2/σ2 < χ2

(1+p)/2) = p (14.52)

whi
h gives a 
on�den
e interval for σ2
with 
on�den
e degree p,

Pr(
(n− 1)s2

χ2
(1+p)/2

< σ2 <
(n− 1)s2

χ2
(1−p)/2

) = p. (14.53)

Similarly we let tp denote the pth quantile of a t-distribution with n−1 degrees of freedom.

Then

Pr(X − t(1−p)/2 s/
√
n < µ < X + t(1−p)/2 s/

√
n) = p, (14.54)

whi
h gives a 
on�den
e interval for µ with 
on�den
e degree p.

Let us also brie�y des
ribe one type of test of an hypothesis H0 : θ = θ0. Suppose

that we have a test variable T = T (X) tending to take large values when the hypothesis

H0 is not true and that we for our observations obtain an observed value Tobs of T . The
strategy 
an then be to reje
t the hypothesis H0 if the probability under H0 to obtain a

T -value at least as large as the observed value is small enough. More pre
isely we reje
t

H0 if the p-value
p = Pr0(T ≥ Tobs) (14.55)

is small enough. Here Pr0 denotes a probability evaluated under the probability distri-

bution 
orresponding to H0.

As an example let us suppose that we have a random sample (X1, . . . , Xn) from a

N(µ, σ2) distribution and that we want to test the hypothesis H0 : µ = µ0 with the

alternative hypothesis that µ is either larger or smaller than µ0. Let X and s2 be de�ned
as in (14.49) and put

tobs =
X − µ0

s/
√
n
. (14.56)

The 
orresponding p-value is then

p = P (|t| ≥ |tobs|) (14.57)

evaluated with the assumption that t is t-distributed with n− 1 degrees of freedom.

14.11 The F-distribution, analysis of varian
e

A random variable is F -distributed with (r1, r2) degrees of freedom if it has the same

distribution as

F =
χ2
1/r1
χ2
2/r2

, (14.58)
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where χ2
1 and χ

2
2 are independent 
hi-square distributed variables with r1 and r2 degrees of

freedom, respe
tively. The F -distribution 
an be used to 
ompare two varian
e estimates

and in analysis of varian
e (ANOVA) models. Let us 
onsider a simple ANOVA model.

Assume that Xij, i = 1, . . . , m, j = 1, . . . , ni are independent normal variables with

identi
al varian
e σ2
and expe
tations

E(Xij) = µi, i = 1, . . . , m, j = 1 . . . , ni. (14.59)

To test the hypothesis H0 : µ1 = . . . = µm we 
an use the test variable

F =

∑m
i=1 ni(Xi· −X··)

2 / (m− 1)
∑m

i=1

∑ni

j=1(Xij −Xi·)2 / (
∑

i(ni − 1))
(14.60)

where Xi· = (1/ni)
∑

j Xij and X·· = (
∑

i

∑

j Xij)/(
∑

i ni). It turns out that under H0

the test variable F in (14.60) is F -distributed with (m−1,
∑

i(ni−1))degrees of freedom
and we reje
t the hypothesis H0 if F is large enough.

14.12 Approximate statisti
al methods, bootstrap

In the previous se
tions we have seen how 
on�den
e intervals with exa
t 
on�den
e

degree and exa
t p-values for tests 
an be 
omputed for simple models with normal

random variables. Otherwise su
h exa
t statisti
al inferen
e is typi
ally not possible.

However, for large samples good approximate methods are often available. Let us give

some examples of how su
h approximate methods 
an look.

Suppose that we have a sample X = (X1, . . . , Xn) of a random variables with log-

likelihood ℓ(θ), see (14.34), depending on a parameter ve
tor θ = (θ1, . . . , θd). Under

suitable regularity 
onditions, see for instan
e (Pawitan, 2001), one 
an then show that

for large n the maximum likelihood estimate θ̂ has an approximate d-dimensional normal

distribution, whi
h we write

θ̂
d→ N(θ, I(θ̂)−1

). (14.61)

Here I(θ̂) is the Fisher information matrix with matrix elements

Iij(θ̂) = − ∂2

∂θi∂θj
ℓ(θ)|θ=θ̂ (14.62)

and we suppose that I(θ̂) is invertible. From this we 
an 
ompute 
on�den
e intervals

with approximate p-values for the 
omponents of θ and more generally for linear 
om-

binations of these 
omponents. Let us note that the Fisher information matrix is the

Hessian (see Se
tion 14.2) of the log-likelihood fun
tion and as dis
ussed in Se
tion 14.2

the Hessian 
an be obtained by use of quasi-Newton optimization methods.

Let us now 
onsider two hypotheses H0 and H1, whi
h are nested in su
h a way that

H0 is obtained from H1 by imposing r linear restri
tions on the parameters, for instan
e

by putting r parameters equal to zero. Let ℓ(θ̂0) and ℓ(θ̂1) denote the log-likelihoods


orresponding to the maximum likelihood estimates obtained under H0 and H1. Put

χ2 = 2(ℓ(θ̂1)− ℓ(θ̂0)). (14.63)
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We note that as ℓ(θ̂1) is obtained as a maximum under fewer restri
tions than ℓ(θ̂0) it
follows that ℓ(θ̂1) ≥ ℓ(θ̂0). One 
an show that under the hypothesis H0 the variable χ

2

in (14.63) is approximately 
hi-square distributed with r degrees of freedom for large

samples. We 
an reje
t the hypothesis H0 if the observed χ
2
-value is large enough, that

is if the 
orresponding p-value
p = Pr(χ2 ≥ χ2

obs) (14.64)

evaluated for a 
hi-square distribution with r degrees of freedom is small enough.

One method for obtaining approximate inferen
e that has been mu
h used sin
e its

introdu
tion 1979 is the bootstrap whi
h is based on resampling from observed distribu-

tions in su
h a way that 
on�den
e intervals and test variables 
an be 
omputed, see for

instan
e (Efron & Tibshirani, 1993).

14.13 Random numbers, simulation

An important method to study random systems is to use simulation and this requires gen-

eration of random numbers, or more pre
isely pseudo-random numbers, with 
omputers.

A basi
 random number generator is the linear 
ongruential generator

Xn+1 = (aXn + b) mod m (14.65)

with suitable integers a, b and m and a starting value X0 
alled seed. This generates a

sequen
e with approximately independent random number equidistributed on the set of

integers {0, 1, . . . , m− 1}. This type of generators with some variations are used as basi


random generators in 
omputer languges su
h as for MATLAB. Putting Un = Xn/m
gives a sequen
e of random numbers with an approximate uniform distribution on the

unit interval [0, 1].

Suppose now that we have a random number U with a uniform distribution on the

interval (0, 1) and that we want a random number X with a given distribution fun
tion

F (x) = Pr(X ≤ x). This 
an be obtained by putting

X = F−1(U), (14.66)

where F−1
denotes the inverse of F . Putting

X = − 1

β
log(1− U) (14.67)

gives for instan
e a random variable that is exponentially distributed with parameter β.

Sometimes one wants a random variable X = (X1, X2) with a uniform distribution on

a bounded two-dimensional set A. One 
an then use reje
tion sampling by �rst �nding a

re
tangle R0 = {(x1, x2) : a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2} 
ontaining A as a subset. Generate

then two independent random numbers U1 and U2 with uniform distributions on the unit

interval. Put X = (a1 + (b1 − a1)U1, a2 + (b2 − a2)U2). If X ∈ A a

ept X , otherwise

reje
t X and repeat the pro
edure until we get a point in A.
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14.14 Bayesian inferen
e, Markov 
hain Monte Carlo

In Bayesian inferen
e we have in addition to a model des
ribing the distribution of ob-

servations X given the parameter θ also a random distribution for θ 
alled the prior

distribution. After obtaining observations of X the distribution of θ is modi�ed to the

posterior distribution. Let us show how this goes when both θ and X are dis
rete vari-

ables, the formulas when one or both of these variables have 
ontinuous distributions

being similar. We let πi denote the prior probability, πi = Pr(θ = θi).

From the de�nition of 
onditional probabilities for events A and B we have Pr(A|B) =
Pr(A ∩B)/Pr(B). This gives the posterior distribution for θ when we observe X = x as

Pr(θ = θi|X = x) =
Pr(X = x|θi)πi
Pr(X = x)

=
Pr(X = x|θi)πi

∑

j Pr(X = x|θj)πj
. (14.68)

In Bayesian analysis of noisy observations of 
ompli
ated high-dimensional obje
ts

su
h as images it is not easy to evaluate or sample from the posterior distribution. One

general method that has ben mu
h used in re
ent years is Markov 
hain Monte Carlo,

abbreviated MCMC. Here you 
onstru
t a Markov 
hain whi
h has the distribution of

interest as its stationary distribution. Useful algorithms for 
onstru
ting and analyzing

su
h Markov 
hains are the Gibbs sampler and the Metropolis algorithm, see Se
tion 4.7

in this book for a brief summary and (Gilks et al., 1996) for more details.

14.15 Predi
tion, Kalman �ltering

Let us look at predi
tion and �ltering by use of Kalman �lters. We let the d-dimensional


olumn ve
tor Xt, t = 0, 1, . . . , denote the state of a system at time t. Assume that

X0 ∼ N(µ0, P0) and that

Xt = FtXt−1 +Wt, t = 1, 2, . . . , (14.69)

where Ft is a d × d matrix. Suppose that the dynami
 d-dimensional noise ve
tors

Wt ∼ N(0, Qt) are independent mutually and of the initial state X0. Assume further

that we observe the r-dimensional ve
tors

Yt = HtXt + Vt, t = 1, 2, . . . , (14.70)

where Ht is a r × d matrix and the measurement noise ve
tors Vt ∼ N(0, Rt) are inde-
pendent mutually and of (Wt) and the initial state X0. Let Y1:t = (Y1, . . . , Yt) denote
the a

umulated observations up to time t. We are interested in 
omputing the optimal

estimate of Xt given observations up to time t. It turns out that given Y1:t the 
onditional
distribution of Xt is normal with expe
tation

X̂t|t = E(Xt|Y1:t) (14.71)

and 
ovarian
e matrix Pt|t. We will give a re
ursive algorithm for 
omputing X̂t|t and Pt|t

whi
h also gives the 
onditional expe
tation and 
ovarian
e matrix X̂t|t−1 and Pt|t−1 for
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predi
tion of Xt from observations Y1:t−1 up to time t− 1. The algorithm 
onsists of the

following six equations in going from X̂t−1|t−1 and Pt−1|t−1 to X̂t|t and Pt|t,

X̂t|t−1 = FtX̂t−1|t−1, (14.72)

Pt|t−1 = FtPt−1|t−1F
T
t +Qt, (14.73)

St = HtPt|t−1H
T
t +Rt, (14.74)

Kt = Pt|t−1H
T
t S

−1
t , (14.75)

X̂t|t = X̂t|t−1 +Kt(Yt −HtX̂t|t−1), (14.76)

Pt|t = (I −KtHt)Pt|t−1, (14.77)

where I denotes the unit d× d-matrix.

Consider as an example motion of an obje
t with 
entre at (xt, yt) and velo
ity (ẋt, ẏt)
with a sampling interval ∆t and observation of the position but not the velo
ity. We 
an

then put

Xt =









xt
yt
ẋt
ẏt









, Ft =









1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1









, Ht =

[

1 0 0 0
0 1 0 0

]

. (14.78)
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