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Prefae

The objet of this book is to provide an introdution to several subjets onneted to

statistial inferene from images. Image analysis is an extensive researh �eld growing

with onsiderable speed. Thus only some seleted parts an be overed here and the

hoie of subjets is, of ourse, heavily in�uened by my experiene and interests. The

book has grown from notes on a master level ourse on statistial image analysis that I

have given at Chalmers tehnial university and Gothenburg university during a sequene

of years.

Some spei� features an be mentioned. The extensive MNIST database on handwrit-

ten integers is used in many examples on pattern reognition in the book. The MNIST

database has been a proving ground for many mahine learning methods, suh as neural

nets and support vetor mahines, and the book ontains a brief hapter on suh meth-

ods. An substantial part of the book, hapters 9-13, onsists of material from about 10

researh papers written for researhers in applied �elds and where image analysis forms

a ruial role. In my masters ourse mentioned above I asked the students to read these

papers. But as the papers were written mainly with appliation audienes in mind and

ontained muh disussion from the spei� appliation areas, the papers turned out to

be di�ult for the image analysis students to read. In this book I have therefore written

onsiderably ondensed versions of the problems disussed in the papers but now with

image analysis students and researhers in mind. Hopefully readers of the book that �nd

some of these appliations partiularly interesting will go to the original papers for more

details.

The �rst part �Images� inludes a very brief introdution to basi digital image proess-

ing, inluding image aquisition, image �ltering and objet feature measurements. After

that pattern reognition, typially based on features obtained from objets identi�ed in

images, is treated at some length. Both the ase with known lasses, alled disrimination

or supervised learning and the ase with unknown lasses, alled lustering or unsuper-

vised learning are overed. A hapter on mahine learning gives a brief introdution to

neural nets and support vetor mahines with image analysis and pattern reognition in

mind. The �rst part is onluded by a hapter on statistial models for images. Markov

models in two dimensions and Markov hain Monte Carlo methods are introdued.

The seond part �Spatial Statistis� starts with some basi properties of spatial random

proesses: ovariane properties and predition (kriging). Spatial point proesses are

treated in some detail inluding image models onstruted from point proesses. The

seond part is onluded by a brief introdution to shape analysis and the related problems

of image warping and image mathing.

The third part �Appliations� ontains examples of image analysis applied to problems

in biology, bioinformatis, remote sensing and mirosopy. The examples over analysis
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of data from miroarray (DNA hip) images, two-dimensional eletrophoresis, aerial pho-

tographs of forests, analysis of di�usion based on sequenes of images, and �nally image

analysis of transmission eletron mirographs.

The book onludes with a hapter with mixed exerises, a few of them with detailed

solutions, and an appendix with mathematial, omputational and statistial bekground.

In preparing this book I have bene�ted a lot from disussions with urrent and previous

olleagues and students. [Then follows a long list of names℄

In partiular I am deeply indebted to Maro Long�ls for detailed disussions on the

subjets in the book and many omputations, inluding all omputations on the MNIST

data set.
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PART 1. IMAGES

[Here should follow about one page preamble℄
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Chapter 1

Digital images

A digital image may be regarded as a matrix of pixels (piture elements), f = (fij) =
(fij, i = 1, . . . , m, j = 1, . . . , n). Here fij ∈ V where V is the set of possible pixel values,

e.g. V = {0, 1} for a binary image, V = {0, . . . , 255} for a grey level image with 256 grey

levels, onveniently oded as bytes, and V = {0, . . . , 255}3 for a olour image with 256

levels in eah of the three olours Red, Green and Blue. Thus eah pixel is spei�ed both

by a loation (i, j) and a pixel value fij . The �rst loation index i spei�es the row and

the seond index j the olumn. Rows are ounted either from above (most ommon in

the image proessing literature) or from below, while olumns are ounted from the left.

1.1 Examples of images

Example 1.1. Aerial photographs of a thinning experiment.
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Figure 1.1: Aerial photograph of the thinning experiment KU in northern Sealand with

Norway sprue trees. The position of the aeroplane at image aqusition was 560 m above

�Nadir�.

Figure 1.1 shows an aerial photograph of the thinning experiment KU, in northern

Sealand, with six subplots whih were subjet to di�erent thinning treatments (Dralle &

Rudemo, 1996). The six treatments were

A No thinning

B Light thinning

C Medium-heavy thinning

D Very heavy thinning

D�B In the youth very heavy thinning, later light thinning

R Heavy row thinning

The photograph was aquired from an aeroplane at the altitude 560 m above the point

�Nadir� in Figure 1.1. An enlargement of the subplot D is shown Figure 1.2.
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Figure 1.2: Detail of the aerial photograph in Figure 1.1 overing the subplot D with very

heavy thinning.

A further enlargement of the southeast orner of subplot D is shown in Figure 1.3.

Here the individual pixels, eah orresponding to a square of about 15 m × 15 m at

ground level, are visible.

In Figure 1.4 we see subplot D from a photograph aquired with the aeroplane in a

position to the northwest of the experimental area. The time of aquisition was August

4 at 10:08 AM, whih implies that the sun was in the diretion southeast, and the trees

were thus baklighted in Figure 1.4.

One objet of the image analysis of the photographs obtained in this experiment was

to estimate the number of trees in the di�erent subplots and to estimate the positions of

the tree tops. This appliation is further disussed in Chapter 11 in Part 3.
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Figure 1.3: Detail of the aerial photograph in Figure 1.2 showing part of the southeastern

orner of subplot D.

�
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Figure 1.4: Detail of aerial photograph of subplot D of baklighted Norway sprue trees

aquired from an oblique angle with the aeroplane loated to the northwest of the exper-

imental area shown in Figure 1.1.

Example 1.2. Weed seeds.

Figures 5 and 6 show images of 25 seeds of eah of two weed speies: urly dok, Rumex

rispus, and thyrse sorrel, Rumex thyrsi�orus. The images were obtained in the study

(Petersen, 1992), where seeds from 40 weed speies were studied. The objet was to �nd

features from images of the weed seeds whih enable reognition of the individual speies.

Problems of this type will be disussed in Chapter 2 on pattern reognition.
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Figure 1.5: Images of seeds of Rumex rispus.

In Figures 1.5 and 1.6 we see varying orientations and sizes of the seeds but also some

additional variation in the form of the ontours. An important problem for series of

images of this type, in addition to the previously mentioned pattern reognition, is to

estimate some kind of average shape of a seed from a given speies, and also to quantify

in terms of statistial distributions the probable deviations from this average shape. In

Chapter 8 on image warping and image mathing suh problems will be treated.

�
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Figure 1.6: Images of seeds of Rumex thyrsi�orus.

Example 1.3. Weed plants at an early stage.

Weed and rop lassi�ation was studied by (Andersson, 1998) using a dataset with 27

images from eah of 8 plant speies: arrot, Dauus arota, whih was the rop, and 7

weed speies. Figure 1.7 shows photographs of two arrot plants and two ladythumb

smartweed plants. Similarly, Figure 1.8 shows photographs of two fumitory plants and

two orn spurry plants.
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Figure 1.7: Above two images of plants of arrot, Dauus arota, L., and below two

images of plants of ladythumb smartweed Polygonum persiaria, L.
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The images were obtained with a Canon EOS500N still amera with a 80 mm zoom

lens and mounted on a tri-pod pointing diretly towards ground. The images obtained

were in olour, although they are shown as grey-level images in Figures 1.7 and 1.8. The

orresponding olour images may be obtained from

http://www.math.halmers.se/�rudemo/Images/WeedPlants/WeedPlants.html

The number of pixels of the images was originally 512×768 but was redued to 512×512
by utting. The pixel width orresponds to 0.195 mm at ground level.

Figure 1.8: Above two images of plants of fumitory, Fumaria o�inalis, L., and below

two images of plants of orn spurry, Spergula arvensis, L.

�
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Example 1.4. Two-dimensional eletrophoresis images.

Yeasts are uni-ellular fungi whih reprodue rapidly and thus are highly suitable as

model systems for more ompliated euaryoti speies suh as mammals. In partiular,

the genome of baker's yeast, Saharomyes ervisiae, was fully sequened by (Go�eau

et al., 1996).

Figures 1.9 and 1.10 show four images from an experiment with baker's yeast and two

treatments orresponding to growth under normal onditions and growth under stress

with salt added to the nutrition solution, see (Gustafsson et al., 2002). In the experiment

there were �ve repetitions both for the standard treatment, orresponding to growth

in a standard solution, and the treatment with growth under salt stress, whih in this

experiment orresponds to growth in a 1 M sodium hloride solution. Figure 1.9 shows

the images obtained from two repetitions with the standard treatment and Figure 1.10

shows images from two repetitions with salt added.

Eah spot in a 2D eletrophoresis image suh as in Figures 1.9 and 1.10 orresponds

to a protein with a spei� isoeletri point (pI) determined by isoeletri fousing in the

horizontal diretion as a �rst step and a spei� moleular weight determined by vertial

separation in a seond step. For instane, under ideal onditions the protein moleules

perform in the seond

Figure 1.9: Images from 2D gel eletrophoresis of baker's yeast grown in a standard

solution.
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step a vertial Brownian motion with drift from a starting position at the top suh that

small moleules travel a longer way than large moleules. Typially one an separate

proteins in the pH range, or more preisely the pI range, 4�7 and with moleular weights

in the range 5�200 kDa. Under favourable onditions thousands of proteins may thus be

resolved, and the size of a spot in the eletrophoresis image is a measure of the level of

the orresponding protein.

The basi problem in an experiment suh as the one desribed with yeast grown under

standard onditions and under salt stress is to �nd those proteins that are upregulated

and those that are downregulated under stress. As a �rst step we need to �nd those spots

in the four images in Figures 1.9 and 1.10 that orrespond to eah other, that is, whih

measure the same protein. This is alled mathing of the images and may be performed

by a warping of images onto eah other. It is lear from an inspetion of the two images in

Figure 1.9, and similarly the two images in Figure 1.10, that also for experimental units

that have reeived the same treatment the loations of spots orresponding to one protein

an vary onsiderably due to random variation. And this random variation seems to be

more ompliated than the variation orresponding to a Brownian motion as referred to

above.

Figure 1.10: Images from 2D gel eletrophoresis of baker's yeast grown under stress in a

solution with salt added.

�
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Example 1.5. Two-olour spotted miroarrays.

In miroarray analyses the expression level of thousands of genes an be estimated simulta-

neously. In two-olour spotted miroarray analysis DNA fragments orresponding to di�erent

genes are typially arrayed on glass slides in spots with a diameter of the order 100 µm.

Gray scale image, 020725cy53x8l30g40avg4.tif, log−transformed Gray scale image, 020725cy3wtl30g40avg4.tif, log−transformed

Figure 1.11: Images from an experiment with two varieties of Arabidopsis, Cy5 hannel (left)

for a transgeni line and Cy3 hannel (right) for the wild-type in a two-olour spotted miroarray

experiment with 452 genes. The upper half with 20 rows ontains all the 452 genes and the lower

half is a repetition of the upper half. The images are shown inverted (high intensity shown as

blak) and a logarithmi sale transformation of intensities is also used.

Complementary DNA (DNA) is synthesized from two soures of RNA of di�erent origins and

labeled with di�erent �uoresent dyes, for instane, one with the green dye Cy3 and the other

with the red dye Cy5. The pools of labeled DNA are mixed together and allowed to hybridize

with the DNA fragments in the di�erent spots on the glass slide. The slide is illuminated with

two laser light soures exiting the two �uoresent dyes and the intensity of emitted �uoresent

light is measured at two suitably hosen wavelengths.

Figure 1.11 shows grey-level images for the two hannels of one array in an experiment

omparing RNA from two varieties of Arabidopsis plants, transgeni line 3x8 and wild-type wt

(Kristensen et al., 2005). For larity of display the images are shown inverted, that is blak

orresponds to high intensity levels and before inversion a logarithmi transformation is also

used. Data transformations and spot shape models for spotted miroarrays are disussed in

(Ekstrøm et al., 2004) and applied to data from this experiment.
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Gray scale image, 020725cy53x8l30g40avg4.tif

Gray scale image, 020725cy3wtl30g40avg4.tif

Figure 1.12: Blow-up of rows 6�8 and olumns 1�4 in Figure 1.11 with the Cy5 hannel for the

transgeni line above and the Cy3 hannel for the wild-type below.

Figure 1.12 shows a blow-up with 3 rows and 4 olumns for both hannels. One ruial

question analysed in experiments of this type is to �nd out whih genes that are di�erentiably

expressed, that is show signi�antly higher or lower intensities. In this experiment it turned

out that remarkably few genes in the transgeni line were a�eted in the omparison with the

wild-type. One of the few genes a�eted was the gene that orresponds to the �rst spot in the

middle row in Figure 1.12. As indiated in the �gure it was upregulated in the transgeni line.

However, random errors are large in this type of experiments and typially one needs to repeat

the experiment for several slides and make a subsequent statistial analysis of the results, f.

Chapter 9. �
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Example 1.6. Di�using partiles.

Colloidal partiles in a suspension perform randommotion essentially as a three-dimensional

Brownian motion with the di�usion oe�ient as a ruial parameter. However, as the

partiles ome lose they interat and this interation may be desribed by an interation

potential.

A series of images were obtained by video mirosopy, see (Kvarnström, 2005), in a

joint projet with Lennart Lindfors, AstraZenea, Mölndal. The objet in this projet

was to estimate the di�usion oe�ient and, if possible, also the partile interation

potential.

Figure 1.13: Image obtained by video mirosopy showing di�using partiles. Partiles

in phous are shown as small distint blak objets.
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Images of the di�using partiles were obtained with a time interval of 0.02 seonds

between images, and two onseutive images are shown in Figure 1.13 and Figure 1.14.

Partiles in fous are shown as small distint blak objets, while partiles out of phous

are extended, the degree of extension depending on the distane to the phoal plane. An

objet orresponding to a partile out of phous is further either white or blak in its

entral part orresponding to the partile being above or below phous, respetively.

Figure 1.14: Image obtained by video mirosopy showing di�using partiles. This image

was obtained 0.2 seonds after the image in Figure 1.13.

�

Example 1.7. Handwritten digits.

The MNIST database of handwritten images onsists of a training set with 60000 digits
and an evaluation set of 10000 digits, see (LeCun et al., 1998) and

http://yann.leun.om/exdb/mnist/

Examples of images from this set is given in Figure 1.15, atually the �rst 100 digits

from the training set. The digit images are 28×28 pixel grey level images obtained from

20x20 pixel binary blak and white images. The MNIST dataset has been used extensively
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as a proving ground for pattern reognition methods and it will also be used substantially

in this book in Chapters 2, 3 and 8.

Figure 1.15: Examples of 100 handwritten digits from the MNIST database.

�
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1.2 Image �ltering

Let w = (wk,l) = (wk,l, k = −p,−p + 1, . . . p, l = −p,−p + 1, . . . , p) be a matrix of real

numbers. A new image g may be onstruted from a given image f by linear �ltering,

gij =

p
∑

k=−p

p
∑

l=−p

wk,lfi+k,j+l. (1.1)

A simple �lter example is a 3×3 averaging �lter

w =





w−1,−1 w−1,0 w−1,1

w0,−1 w0,0 w0,1

w1,−1 w1,0 w1,1



 =
1

9





1 1 1
1 1 1
1 1 1



 . (1.2)

A more smooth averaging �lter is obtained by use of irular 2D Gaussian �lter with

a variane parameter σ2
,

wk,l = c exp(− 1

2σ2
(k2 + l2)), (1.3)

where c is hosen suh that

p
∑

k=−p

p
∑

l=−p

wk,l = 1, (1.4)

and p is hosen so that wk,l is small outside the region determined by |k| ≤ p and |l| ≤ p.
Chose, for instane, p to be the smallest integer whih is at least as large as 3σ.

Care has to be taken in (1.1) when the indies in the summation fall outside the original

image. One possibility is to restrit the �ltering to those pairs (i, j) for whih all indies

i+k and j+ l in (1.1) fall inside the image f , another possibility is to extend the original

image in a suitable way, and a third possibility is to modify the �lter lose to the image

edges.

The averaging �lter (1.2) is relatively vulnerable to large errors in individual pixels. A

more robust �lter is the nonlinear median �lter whih for 3×3 neighbourhood is given by

gij = median{fi+k,j+l : |k| ≤ p, |l| ≤ p} (1.5)

with p = 1. Here median(A) denotes the median for a �nite set A of real numbers.

Image �ltering an also be used to emphasize edges. Thus a linear �lter with

w =





w−1,−1 w−1,0 w−1,1

w0,−1 w0,0 w0,1

w1,−1 w1,0 w1,1



 =
1

6





−1 0 1
−1 0 1
−1 0 1



 . (1.6)

will tend to emphasize vertial edges, and similarly the �lter

w =





w−1,−1 w−1,0 w−1,1

w0,−1 w0,0 w0,1

w1,−1 w1,0 w1,1



 =
1

6





−1 −1 −1
0 0 0
1 1 1



 . (1.7)

will tend to emphasize horisontal edges.
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Figure 1.16: Upper part: Smoothed version of the image in Figure 1.2 by use of irular

2D Gaussian �lter with σ = 4.5 pixel-widths. Lower part: The same image viewn in

perspetive as a 3D surfae with light intensity as the vertial oordinate.

Example 1.8. Aerial photographs of a thinning experiment. Continuation.

Let us smooth the image in Figure 1.2 by use of a irular 2D Gaussian �lter with a suit-

ably hosen parameter σ to see if we an estimate the loations of the trees as 'whiteness'

maxima in the smoothed image. With σ = 4.5 we �nd the image in Figure 1.16.

From Figure 1.16 and Figure 1.2 we see that maxima in the smoothed image seem to

orrespond well to the loation of the trees. This is also indiated by Figure 1.17 whih

shows the loations of the maxima of the smoothed image (Here we have only inluded

maxima whih have a distane from the nearest edge whih exeeds 3σ.)
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Figure 1.17: Loation of maxima in Figure 1.16.

�

1.3 Histograms, thresholding and segmentation

An important harateristi of an image is its histogram. For a grey sale image, f =
(fij) = (fij , i = 1, . . . , m, j = 1, . . . , n), where fij ∈ V with V as a set of real numbers,

the histogram is de�ned as

hk = ard({(i, j) : fij ∈ Ik}), k = 1, . . . , K, (1.8)

where ard(A) denotes the number of elements in the set A and {I1, . . . , IK} is a set of

disjoint intervals with V as there union.

If an image onsists of two parts with grey levels that do not overlap too muh the

histogram an be used to �nd a threshold level t whih enables us to divide the image into

two segments orresponding to these parts. Thus we an de�ne a binary image b = (bij)
with two levels, 0 and 1, by putting

bij =

{

0 if fij ≤ t
1 if fij > t.

(1.9)

Segmentation by use of a threshold level found by inspetion of the histogram of an image

is illustrated in the following example.
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Example 1.9. Weed seeds. Continuation.

In the upper part Figure 1.18 we see one of the seeds from Figure 1.5, atually the seed

in the lower left orner rotated 90 degrees. In the lower part of the �gure we see the

orresponding histogram.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1000

2000

3000

4000

5000

6000

7000

Figure 1.18: To the left an image of a Rumex rispus seed and to the right the orre-

sponding histogram.

It seems lear that a threshold level somewhere between t = 0.5 and t = 0.8 would

be suitable. In Figure 1.19 we see segmentations with the levels t = 0.5, upper left,

t = 0.8, upper right, and t = 0.65, lower left. In the lower right part of the image we

see a segmentation obtained from the lower left image by �lling out the white �holes�, an

operation that an be performed in several ways.

�
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Figure 1.19: Binary images obtained by thresholding of the image in Figure 1.18 with

the levels t = 0.5 (upper left), t = 0.8 (upper right), and t = 0.65 (lower left). The lower
right image is obtained from the lower left image by �lling out holes.
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1.3.1 Segmentation by a normal mixture model

In many ases, as in Example 1.9 with a bimodal histogram it is fairly easy to separate

omponents in a mixture. We will now desribe a normal mixture model whih an be

used to get a preise threshold value and whih also an be used in ases where there are

not two modes in the histogram but one omponent only shows up as a prolonged tail.

We suppose that the sets Ik in (1.8) onsist of onseutive intervals with midpoints xk
and equal lengths ∆. Let φ(x) = (1/

√
2π) exp (−x2/2) and put

f(x; p1, µ1, σ1, µ2, σ2) =
p1
σ1
φ((x− µ1)/σ1) +

(1− p1)

σ2
φ((x− µ2)/σ2). (1.10)

We note that f(·; p1, µ1, σ1, µ2, σ2) integrates to one, and if the interval length ∆ is small

we should have

∆
∑

k

f(xk; p1, µ1, σ1, µ2, σ2) ≈ 1. (1.11)

Let n =
∑

k hk denote the total number of pixels and assume that

hk ≈ n∆f(xk; p1, µ1, σ1, µ2, σ2). (1.12)

To estimate the parameters p1, µ1, σ1, µ2, σ2 we minimize

Q(p1, µ1, σ1, µ2, σ2) =
∑

k

(hk − n∆f(xk; p1, µ1, σ1, µ2, σ2))
2. (1.13)

Example 1.10. Weed plants at an early stage. Continuation

In the upper left part of Figure 1.20 we see the grey level image of a weed plant. The

original a image is olour a image with three hannels, blue, green and red. To separate

plant pixels from soil pixels we �rst regard the green hannel whih is shown in the upper

right part of Figure 1.20. To improve the separation of plant and soil pixels we onsider

the normalized green olour, whih for pixel (i, j) has the pixel value

gij = Round( 255Gij / (Bij +Gij +Rij) + 1), (1.14)

where Bij , Gij and Rij are the blue, green and red hannel values for the olour image, and

Round(·) denotes rounding to the nearest integer. The normalized green image is shown

in the lower left part of Figure 1.20. The histogram for the normalized green hannel

is shown in the left part of Figure 1.21. Can you suggest why it is useful to normalize

the green hannel before omputing the histogram? Now we �t the normal mixture

model given by (1.10) and (1.12) for the normalized green hannel by minimizing Q in

(1.13) with the restrition µ1 > µ2. Thus the �rst omponent should orrespond to plant

pixels. Let p̂1, µ̂1, σ̂1, µ̂2, σ̂2 denote the estimated parameters. In Figure 1.21 we show the

histogram and the �tted normal omponents.

To segment an images we ould then hoose to onsider a pixel (i, j) as a plant pixel

if gij > T , where the threshold T̂ is obtained by solving the equation

p̂1
σ̂1
φ((T̂ − µ̂1)/σ̂1) =

(1− p̂1)

σ̂2
φ((T̂ − µ̂2)/σ̂2) (1.15)
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(A) (B)

(C) (D)

Figure 1.20: Images of a weed plant, lamb's quarter Chenopodium album, L., (A) grey

sale image, (B) green hannel image, (C) normalized green hannel image, and (D)

binary blak and white image after thresholding.
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Figure 1.21: Left: histogram for the normalized green hannel shown in the lower left

part of Figure 1.20 and the two omponents shown as fully drawn and dashed urves.

Right: the two omponents shown with a log sale on the vertial axis; here the threshold

where the two urves ross an be seen.

and otherwise as a soil pixel. In the lower right part of Figure 1.20 we show the resulting

binary blak and white image obtained by thresholding the normalized green hannnel.

For the image shown in Figure 1.20 we �nd the following parameter estimates for the two

omponent normal mixture model

p̂1 = 0.263, µ̂1 = 126, σ̂1 = 7.22, µ̂2 = 79.0, σ̂2 = 3.02, T̂ = 93.6. (1.16)

�
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1.4 The Hough transform

Often one tries to �nd urves of spei� types in images, for instane irles, ellipses or

lines. A useful method to �nd suh urves is the Hough transform (Hough, 1959; Duda

& Hart, 1972). We shall here only look at the use of the Hough transform to �nd straight

lines.

v

r

r = x cos(v) + y sin(v)

x

y

Figure 1.22: Representation of line in terms of angle and distane to origo.

Suppose that we have found a set S of points in an image, suh as the set of tree tops

in Figure 1.17. We are interested in �nding out whether some of these points lie on lines.

It is here onvenient to use a representation of a line in terms of the distane r to the

origin and the angle that the normal from the origin to the line forms with the horizontal

axis,

r = xcos(v) + ysin(v), (1.17)

see Figure 1.22. A point (x, y) in the original image orresponds now to a urve in the

(r, v)-plane obtained by regarding r as a funtion of v in (1.17) for �xed (x, y). In pratie
we disretize the (r, v)-plane into pixels regarding it as an image H and start by assigning

zero to all the pixels in H . Then for eah point (x, y) ∈ S we add one to all pixels in H
whih the urve (1.17) passes through.

For the set S of maxima in Figure 1.17 the orresponding Hough transform for �nding

lines is shown in Figure 1.23. In partiular one �nds in Figure 1.23 three maxima in

the upper left part all orresponding to the angle v equal to 16 degrees (a orresponding
tik mark is plaed on the horizontal axis) and three distanes r (marked with three tik

marks on the vertial axis lose to the maximal distane rmax. The orresponding three

lines are shown in Figure 1.24.

The three lines found in Figure 1.24 orrespond atually to three lines in plot R in

Figure 1.1 with �Heavy row thinning�, that is from the original planting in rows thinning

is performed by eliminating totally some rows keeping, say, only every third row. See

also Figure 1.2 where the rows are learly seen in the right part of the image.
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Figure 1.23: Hough transform for Figure 1.17 with angle v on the horizontal axis extending
from 0 to 180 degrees and distane r on the vertial axis extending from −rmax to rmax,

where rmax is the length of the diagonal in Figure 1.2.

Figure 1.24: Loation of maxima in Figure 1.16 together with three lines found by the

Hough transform.
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1.5 Morphologial operations

Morphologial operations an be used to regularize or lean binary images. Here we will

only desribe some of the most basi operations suh as erosion, dilation, opening and

losing. These operations are de�ned by a struture element S onsisting of a small

number of pixels with one spei� pixel alled referene pixel. We an, for instane,

hoose S as a 3×3 set of pixels with the entre pixel as referene. Let Si,j denote the

struture element moved with referene pixel to (i, j). Let A be a set of pixels suh as

the set onsisting of blak pixels in one of the four images in Figure 1.19.

The erosion of A, denoted A⊖ S, is de�ned by

A⊖ S = {(i, j) : Si,j ⊆ A} (1.18)

The dilation of A, denoted A⊕ S, is de�ned by

A⊕ S = (Ac ⊖ S)c, (1.19)

where Ac
is the omplement af A, that is the set of pixels outside A.

The operations opening and losing, denoted ψS(A) and φS(A), are de�ned by

ψS(A) = (A⊖ S)⊕ S ′, (1.20)

where S ′
denotes the struture element rotated 180o around the referene pixel, and

φS(A) = (A⊕ S)⊖ S ′. (1.21)

Thus an opening onsists of an erosion followed by a dilation.

1.6 Objet feature measurements

In onnetion with pattern reognition as mentioned in examples 1.2 and 1.3 we seek

features of the objets, in the examples seeds and plants, whih would enable us to

distinguish between di�erent lasses of objets. Examples of suh features are areas

and perimeters of objets. Consider a set A of pixels as in the previous setion on

morphologial operations. The area of A is typially de�ned as the number of pixels in

A, possibly with some regularization operation �rst applied to A.

To de�ne the perimeter we need the onept of neighbouring pixels. Typially we on-

sider neighbourhoods onsisting of either four or eight neighbours. The 4-neighbourhood

of pixel (i, j) onsists of the four pixels (i− 1, j), (i+ 1, j), (i, j − 1) and (i, j + 1). The
8-neighbourhood of pixel (i, j) onsists of the aforementioned pixels and in addition the

pixels (i− 1, j − 1), (i− 1, j + 1), (i+ 1, j − 1) and (i+ 1, j + 1).

Edge pixels of a set A may be de�ned as those pixels of A that have at least one

neighbour from Ac
, the omplement of A. Let N(A) denote the number of edge pixels of

A with at least one 4-neighbour in Ac
. Then one an show that

perimeter(A) = N(A)/k4, (1.22)
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where

k4 =
4

π

∫ π/4

0

cos θ dθ =
4

π/
√
2
≈ 0.900, (1.23)

is an approximately unbiased estimate of the perimeter of A provided that all orientations

of the perimeter are approximately equally ommon. The unit of the perimeter estimate

(1.22) is pixel width. As with the area, it may be useful to regularize A in some way

before evaluating the perimeter. For more aurate perimeter estimates, see (Glasbey &

Horgan, 1995), pp 165�168, and further referenes given there.

A feature often used is the ompatness of an objet de�ned to be

ompatness(A) = 4π
area(A)

(perimeter(A))2
. (1.24)

Sometimes it is useful to ompare a set A of pixels with the onvex hull of A, that is
the smallest onvex set ontaining A. Some are has to taken in de�ning onvexity for a

set of pixels; one possibility is to de�ne onvexity for the point set of pixel entres. The

onvex perimeter of a set A is then de�ned to be the perimeter of the onvex hull of A.
One useful feature is the onvexity of A de�ned by

onvexity(A) =
onvex_perimeter(A)

perimeter(A)
. (1.25)

1.6.1 Moment features

Consider a grey level or binary image f = (fij) = (fij), and letA ⊆ {1, . . . , m}×{1, . . . , n}
be a subset of pixels, typially orresponding to an objet but sometimes the whole image.

The moment of order (p, q) in A is de�ned as

mpq = mpq(A) =
∑

(i,j)∈A

ipjqfij, p = 0, 1. . . . , q = 0, 1, . . . , (1.26)

and the entroid is de�ned as

entroid = entroid(A) = (
m10

m00
,
m01

m00
). (1.27)

We also onsider entral moments (with respet to the entroid)

µpq = µpq(A) =
∑

(i,j)∈A

(i− m10

m00
)p(j − m01

m00
)qfij , p+ q > 1. (1.28)

One ould note that entral moments are invariant with respet to translation of objets.

It is possible to onstrut moments that are also invariant with respet to rotations. Two

suh seond order moments are

µ20 + µ02 and (µ20 − µ02)
2 + 4µ2

11. (1.29)

An informative disussion of di�erent types of moments with literature referenes an be

found in (Glasbey & Horgan, 1995), pages 156�161.
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In Example 1.10 we saw how we ould disriminate between plant and soil pixels

quite well by use of a suitable feature, the normalized green olour. To disriminate

between lasses of objets we an as will be seen in detail in the next hapter on pattern

reognition use a number of suitable hosen feature variables. In the following example

we will onsider two feature variables and a suitable plotting tehnique.

Example 1.11. Handwritten digits. Continuation

In this example we will onsider disrimination between digits �one� and �two� by use

of two seond order moments. We use digits �one� and �two� among the �rst 400 digits in

MNIST. Plotting moment µ11 on the vertial axis versus moment µ20 on the horizontal

axis we get the plot shown in Figure 1.25. Try to draw by free hand �rst a straight line
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Figure 1.25: Plot of µ11 versus moment µ20 for handwritten digits digits 1 and 2 among

the �rst 400 digits in the MNIST data base.

and then an ellipse that gives as good a disrimination as possible betweens the �one�

and �two� digits. In the next hapter we shall desribe systemati methods to draw suh

boundaries. �
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1.6.2 Exerises

The images used in the exerises below may be found at

http://www.math.halmers.se/�rudemo/images.html

Exerise 1.1. Let R, G and B denote the values in the red, green and blue hannels for one

of the images from Example 1.3. Get the grey-level image orresponding to normalized

green,

g =
G

R +G+B
.

Exerise 1.2. Find the histogram for the image of Exerise 1.1. Try to segment the image

by use of the histogram.

Exerise 1.3. Compute area, perimeter and ompatness for the green segment for the

image of the two previous exerises.

Exerise 1.4. Get one of the seed images from Example 1.2. Note that one has to resample

the image to get the orret form of the seed. How an that be done? After resampling,

redue the number of olumns to get a square image.

Exerise 1.5. Apply the averaging �lter (1.2), the median �lter (1.5) and the edge em-

phasizing �lters (1.6) and (1.7) to the image of the previous exerise.

Exerise 1.6. Consider the image from Exerise 1.4. Compute the histogram and trans-

form to a binary image. Zoom in to see the individual pixels at the objet edge. Apply the

operations erosion, dilation, opening and losing. What is the e�et of theses operations?

What happens when one iterates these operations?

1.6.3 Literature on image analysis

There is a wealth of books on digital image proessing. An exellent treatment from

a statistial point of view foussing on examples from biology is given in (Glasbey &

Horgan, 1995). A mathematially oriented text is (Rosenfeld & Kak, 1982), whih is now

a bit old but still quite useful. A omprehensive treatment of image proessing, analysis

and mahine vision may be found in (Sonka et al., 2015).

33



Chapter 2

Pattern reognition

Humans are partiularly good at reognizing many patterns suh as faes and voies of

other individuals. A possibly harmful behaviour of another person or the appearane

of a possibly dangerous animal may also be quikly identi�ed. Obviously suh pattern

reognition abilities have implied a survival advantage during the evolution of humans.

By training humans an also be astonishingly good at tasks suh as reognizing the

speies of a bird at a long distane, perhaps by using a ombination of features suh as the

bird's shape and olours, its voalization and its mode of �ight. The human observer's

previous knowledge of how ommon possible bird speies are in the urrent environment

at the given time of the year may also be highly useful in identifying the speies.

One important task in pattern reognition based on digital images is to try to mimi

human pattern reognition by hoie of suitable features for reognizing and lassifying

observed objets. We an divide the �eld of pattern lassi�ation into two disiplines

depending on the our previous knowledge of the possible lasses. The most well developed

disipline is disriminant analysis where we assume that we have a given number of lasses

and that we have a new objet that we want to assign to one of these lasses. Typially

we also assume here that we have a set of objets for whih we know the lasses. Suh

a data set, often alled a training set, will help us to hoose the relevant features of the

objets and to design the algorithm for reognizing the lass by use of the hosen features.

Therefore disriminant analysis is often alled supervised pattern reognition or learning

with a teaher.

In the seond disipline, alled luster analysis we do not assume any prior knowledge

of possible lasses. However, we will typially assume that we also here have a given

data set but without any lassi�ation. The data set will be used to �nd lusters, and

the disipline is often referred to as unsupervised pattern reognition or learning without

a teaher.

We will start by disussing disriminant analysis. Several of the sets of images in the

previous hapter, the weed seeds in Example 1.2, the weed plants in Example 1.3 and the

handwritten digits in Example 1.7 desribe problems that all for disriminant analysis.
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2.1 Optimal disrimination with two lasses and a one

feature variable

Suppose that we have two lasses ω1 and ω2 and a real-valued feature variable X for

eah objet to be lassi�ed. Assume that we know how ommon the two lasses are, that

is, we know the prior probabilities of the two lasses. Assume also that we know the

distributions of the feature variable orresponding to the two lasses.

For i = 1, 2, let πi denote the prior probability of lass ωi and let fi be the probability
density of X for an observation from lass ωi, or the probability funtion, fi(x) = P (X =
x), if X is a disrete random variable.

The problem of deiding if an objet omes from lass ω1 or ω2 is to be based on

observation of the orresponding feature variableX . Thus we need to speify two disjoint

sets A1 and A2 with A1 ∪ A2 = R and hoose lass ωi if X ∈ Ai. To �nd optimal sets

we need further spei�ation orresponding to how ostly it is to make di�erent kinds of

errors, that is the ost of hoosing lass ω1 when ω2 is true and vie versa. Let us �rst

assume that these ost are equal, and more spei�ally, that we want to minimize the

probability of mislassi�ation.

It turns out that the probability of mislassi�ation is minimized if we use the following

rule:

hoose lass ω1 if π1f1(x) > π2f2(x), (2.1)

hoose lass ω2 if π1f1(x) < π2f2(x). (2.2)

To show that a deision rule satisfying (2.1) and (2.2) is optimal we note that the prob-

ability of mislassi�ation is generally given by

Pr(mislassi�ation) = Pr(ω1 true and mislassi�ation) + Pr(ω2 true and mislassi�ation)

= Pr(ω1) Pr(mislassi�ation|ω1) + Pr(ω2) Pr(mislassi�ation|ω2)

= π1

∫

A2

f1(x)dx+ π2

∫

A1

f2(x)dx.

In Figure 2.1 the set A1 extends up to a threshold t while A2 is hosen above t. The

probability of mislassi�ation is equal to the area of the oloured region, and it follows

that it is minimized preisely when the threshold is the horisontal loation of the rossing

point of the two urves. Thus the mislassi�ation probability is minimized if A1 and A2

are hosen as in (2.1) and (2.2). (We note that x-values suh that π1f1(x) = π2f2(x) may

be brought to either A1 or A2 without a�eting the mislassi�ation probability.)

Example 2.12. Two-lass disriminant analysis with estimated normal densities.

Suppose that we have a training set with n1 objets from lass ω1 and n2 objets from

lass ω2. We assume that we have obtained random samples from both lasses and that

the two samples are independent. We assume further that the variable X is normally

distributed with expetation µi and variane σ
2
i in lass ωi, i = 1, 2, where we assume that

expetations are di�erent in the two lasses while the varianes may either be assumed
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Figure 2.1: Probability of mislassi�ation is given by the oloured area. The set A1

where lass ω1 is hosen extends here up to the threshold t, while A2 is hosen above t.

to be equal or unequal. Let the observations be denoted Xim, m = 1, . . . , ni, i = 1, 2.
Then it is natural to estimate the expetation in lass ωi by

µ̂i =
1

ni

ni
∑

m=1

Xim, i = 1, 2. (2.3)

If we make no assumption on equality of the varianes we use the variane estimates

s2i =
1

ni − 1

ni
∑

m=1

(Xim − µ̂i)
2, i = 1, 2, (2.4)

but if we assume variane equality we use the estimate

s2 =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
(2.5)

for the ommon variane. ✷ �

We note that ompared to Example 2.12 we have in Example 1.10, where we have

lassi�ed pixels into soil or plant pixels, a similar but more ompliated situation as we

here do not have training sets for soil and plant pixels but use the model spei�ed by

(1.10) and (1.12) for all pixels. Also the proportions of soil and plant pixels are estimated.

2.2 Optimal disrimination with k lasses and a d-

dimensional feature vetor

Suppose now that we have k lasses ωi, i = 1, . . . , k, and a d-dimensional feature vetor

X for eah objet to be lassi�ed. Let πi be the prior probability of lass ωi and let fi be
the probability density of X for an observation from lass ωi, i = 1, . . . , k. Let us further
assume that the ost of assigning an objet to lass ωi is c(i|j) when the true lass is ωj.

Rather than minimizing the mislassi�ation probability we now want to minimize the

expeted ost.

A deision funtion for our problem is now spei�ed by a partition of d-dimensional

spae R
d
into k disjoint sets A1, . . . , Ak with ∪k

i=1Ai = R
d
. If X ∈ Ai we assign our objet

to lass ωi, i = 1, . . . , k.
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Now it turns out that the expeted ost is minimized if the sets Ai satisfy the following

ondition

x ∈ Ai ⇒ subsript i minimizes

k
∑

j=1

c(i|j)πjfj(x). (2.6)

If the sum is minimized by several i-values for a ertain x-value, then this x-value may

be alloated to Ai for any of these i-values.

To show that a deision rule whih satis�es (2.6) is optimal let us onsider an arbitrary

deision funtion spei�ed by a partition A1, . . . , Ak of R
d
. The expeted ost for this

deision rule may be written

k
∑

i=1

∫

Ai

k
∑

j=1

c(i|j)πjfj(x)dx,

from whih it follows that a deision rule satisfying the ondition (2.6) is optimal.

Let us now assume that all mislassi�ations have the same ost, and that the ost of a

orret deision is zero. Our riterion then implies that we shall minimize the probability

of mislassi�ation, and it is not di�ult to see that we shall prefer lass ωi to lass ωj if

πifi(x) > πjfj(x) (2.7)

similar to what we found previously for the ase with two lasses and one feature variable.

2.3 Normally distributed feature vetors, linear and

quadrati disrimination

A d-dimensional random (olumn) vetor X is said to be N(µ,C), that is have a d-
dimensional normal distribution with expetation vetor µ and ovariane matrix C, if
X has the d-dimensional density funtion

fX(x) =
1

(2π)d/2(detC)1/2
exp(−1

2
(x− µ)TC−1(x− µ)), (2.8)

where detC denotes the determinant of the matrix C.

An important speial ase in disrimination is to assume that the d-dimensional fea-

ture vetor X has a multivariate normal distribution N(µi,Ci) in lass ωi, i = 1, . . . , k.
Sometimes the ovariane matries are assumed to be equal, that is

Ci = C, i = 1, . . . , k. (2.9)

Let us �rst assume that the ovariane matries are all equal to C and that we want to

minimize the probability of mislassi�ation. A omputation from (2.7) and (2.8) shows

that if X = x is observed we shall prefer lass ωi to ωj if

(µi − µj)
TC−1(x− 1

2
(µi + µj)) > ln

πj
πi
. (2.10)
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We note that (2.10) is linear in x and this ase is therefore often alled linear disrimi-

nation.

Let us now �nd a orresponding rule without the assumption (2.9). It follows from

(2.7) and (2.8) that we shall prefer lass ωi to ωj if

1

2
xT (C−1

j − C−1
i )x+ (µT

i C
−1
i − µT

j C
−1
j )x+

1

2
(µT

j C
−1
j µj − µT

i C
−1
i µi)

> ln
πj(detCi)

1/2

πi(detCj)1/2
. (2.11)

We see that the border between the two regions in d-dimensional spae where we should or

should not prefer ωi to ωj is given by a quadrati surfae. When we allow the ovariane

matries for the lasses to vary we therefore talk about quadrati disrimination ompared

to the linear disrimination referred to above.

Example 2.13. k-lass disriminant analysis with estimated normal densities.

Suppose that we have a training set with ni objets from lass ωi, i = 1, . . . , k. From

all the lasses we assume that we have obtained independent random samples of objets.

We assume further that the vetor X is normally distributed with expetation vetor

µi and ovariane matrix Ci in lass ωi. Let the observations vetors be denoted Xim,

m = 1, . . . , ni, i = 1, . . . , k. Then it is natural to estimate the expetation vetor in lass

ωi by

µ̂i =
1

ni

ni
∑

m=1

Xim, i = 1, . . . , k. (2.12)

If we make no assumption on equality of the ovariane matries we use the ovariane

matrix estimates

Ĉi =
1

ni − 1

ni
∑

m=1

(Xim − µ̂i)(Xim − µ̂i)
T , i = 1, . . . , k. (2.13)

If we assume equality of the ovariane matries we use instead the estimate

Ĉ =
1

∑k
i=1(ni − 1)

k
∑

i=1

(ni − 1)Ĉi (2.14)

for the ommon ovariane matrix C. ✷ �

2.4 Error rate estimation. Resubstitution and ross-

validation

An important issue in disriminant analysis is to estimate the rates of mislassi�ation

errors. One simple type of error estimates, often alled resubstitution error-rate estimates,

is obtained by diretly omputing the observed error rates in the training set for the hosen

alloation rule.

38



However, the resubstition error-rates are typially too optimisti as the objets used to

evaluate the error rates are also used in the hoie of the disriminator inluding estima-

tion of parameters in the disriminator. Partiularly if the disriminator is ompliated,

for instane if it ontains many parameters, we an grossly underestimate the error-rate

orresponding to lassi�ation of a new objet.

One way of avoiding the bias of resubstitution error rates is to divide the available

data into one training set and one evaluation set, for instane, by using half of the data

for estimation and half of it for evaluation. One ritisism of this proedure is that it may

seem wasteful if data are sare.

Nowadays one often uses resampling methods for evaluation of error rates. One suh

method is k-fold ross-validation. Then we divide the data set onsisting of n objets

into k equal or approximately equal groups, often by random hoie of whih objets that

should go into group j, j = 1, . . . , k. Then we �x j temporarily and use all objets exept

those in group j to estimate parameters and ompute error average rates for all objets

in group j. This proedure is repeated for all groups and we �nally average error rates

also over groups to get overall error rate estimates. One an show that a small k inreases
the bias but dereases the variane of the error rate estimate. Originally one often used

k = n, whih is alled leave-one-out ross-validation. Currently k = 5 or k = 10 is often

reommended.

Example 2.14. Handwritten digits. Digits 1 and 2

We use the same data as in Example 1.11 with one small modi�ation onsisting

of standardization of the two moment features by linear transformations so that they

get average zero and varine one. We now use both liner and quadrati disrimination

and get, respetively, the linear and ellipti boundaries shown in Figure 2.2. We also

omputed the resubstitution and 5-fold ross-validation errors for the liner and quadrati

disrimination models. It turned out that all four error rate estimates were idential and

equal to 15 %. �

Example 2.15. Handwritten digits. Moment features. Digits 0, 1, . . . , 9.

We use the �rst 8000 digits in the MNIST database, see Example 1.7, and onsider

disrimination between the 10 digits 0, 1, . . . , 9 by use of all entral moment features

µpq in (1.28) with p + q ≤ K. We omputed the resubstitution and the 10-fold ross-

validation error estimates for all K ≤ 13, see Figure 2.3. Note that both for the linear

disrimination with full drawn urves and for the quadrati disrimination with dashed

urves the resubstitution errors are smaller than the ross-validation errors. For the

linear disrimination the ross-validation minimum error is 12.3 % for order 12 and for

the quadrati disrimination the ross-validation minimum error is 9.6 % for order 7.

�
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Figure 2.2: Plot of standardized moments µ11 versus µ20 for handwritten digits 1 and 2
among the �rst 400 digits in the MNIST data base together with the lass boundaries

orresponding to linear and quadrati disrimination.
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Figure 2.3: Plot of error probabilities for linear disrimination, full drawn urves,

and quadrati disrimination, dashed urves, for disrimination between the ten dig-

its 0, 1, . . . , 9. Resubstitution error urves are in red and ross-validation error urves are

in blak. Order K on the horizontal axis means that all moments µpq with p+ q ≤ K are

used as features to disriminate between the digits.
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2.5 Nearest neighbour lassifation

Suppose that we have a distane funtion δ(x, x′) between feature vetors x and x′. Ex-
amples of distane funtions for d-dimensional feature vetors are the Eulidean distane

δ(x, x′) = (
d
∑

i=1

(xi − x′i)
2)1/2 (2.15)

and δ = 1− r, where r are is the orrelation

r(x, x′) =

∑d
i=1(xi − x̄)(x′i − x̄′)

(
∑d

i=1(xi − x̄)2)1/2 (
∑d

i=1(x
′
i − x̄′)2)1/2

(2.16)

where x̄ and x̄′ are the arithmeti means of the vetors x and x′.

A useful disrimination method is the m-nearest neighbour rule, whih proeeds as

follows. Suppose we have a training set for whih we know the orret lassi�ation. For

a new observation we �nd the m nearest neighbours in the training set, and we lassify

the new observation by majority voting among these nearest neighbours.

Example 2.16. Handwritten digits. Nearest neighbour disrimination

We use the same data as in Example 2.14. The m-nearest neighbour lassiations with

m=3 and 5 are shown in Figure 2.4. We also omputed the resubstitution and 5-fold
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Figure 2.4: Plot of standardized moments µ11 versus µ20 for handwritten digits digits 1
and 2 among the �rst 400 digits in the MNIST data base together lassi�ations from m-

nearest neighbour lassi�ation form = 3 andm = 5. Digit olours indiate lassi�ation:
blak digits are lassi�ed as 1 and grey digits are lassi�ed as 2.

ross-validation errors for m-nearest neighbour methods with m ranging from 1 to 10.

the result is shown in Figure 2.5. The minimum ross-validated error is obtained for

m = 5 and equals 12 %. �
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Figure 2.5: Plot of resubstitution and 5-fold ross-validation error estimates form-nearest

neighbour lassiations for m = 1, . . . , 10.

2.6 Multinomial logisti regression

Logisti regression with two lasses is brie�y desribed in Setion 14.9. Here we will

generalize to k lasses ω1, . . . , ωk. Let Y denote the lass number of an observation with

assoiated explaining vetor x, whih we here will suppose onsists of an image. Assume

that

Pr(Y = i) =
e

βi·x

1 +
∑k−1

j=1 e
βj ·x

, i = 1, . . . , k − 1, (2.17)

and

Pr(Y = k) =
1

1 +
∑k−1

j=1 e
βj ·x

, i = k, (2.18)

where βi denotes a parameter vetor of the same dimension as x and βi · x denotes the

salar produt of βi and x, obtained by multiplying omponentwise the elements of βi
and x, and adding the orresponding produts. For given data with observations of pairs

(x, Y ) we an then estimate the parameter vetors βi by maximum likelihood.

Example 2.17. Handwritten digits. Logisti regression, onfusion matrix, display by

t-SNE.

The omputations and �gures in this example are taken from (Long�ls, 2018). In Figure

2.6 we see parameter vetors βi estimated from a multinomial logisti model by use of

10000 digits from MNIST. In this �gure we an rather learly identify the digit zero to

the left in the upper row, and perhaps also the digit one next to it. A onvenient way
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Figure 2.6: Parameter vetors βi for digits 0, . . . , 4 in the upper row and digits 5, . . . , 9
in the lower row estimated from 10000 digits in the MNIST database.

of illustrating the results of a disrimination analysis is to ompute a onfusion matrix

giving the resulting lassi�ations for eah lass in the data used. In Table 2.1 we see

the onfusion matrix orresponding to the logisti model analysis in Example 2.17 with

estimated error and identi�ation probabilities. From the onfusion matrix we see that the

digit zero seems to be most easy to identify with an estimated identi�ation probability of

97.6%. The overall estimated identi�ation probability is (1108+ 922+ . . . 948)/10000 =
92.2%.

In Figure 2.7 we use the method t-SNE, ompare Setion 14.6 and (Long�ls, 2018),

to visualize how the 28×28-dimensional x-vetor may be used to disriminate between

hand-written digits.

�

2.7 Seletion of features

If we have a large number of possible features it is useful to make a seletion of features.

One often used method is forward seletion where we start by hoosing the single feature

whih gives the smallest error rate. Then we add that feature of the remaining ones

whih together with the �rst hosen feature gives the best performane. The proedure

is ontinued a suitable number of steps. If one uses ross-validation error rate estimates,

we typially �nd that the error rates �rst derease when we add new variables but then

a minimum is obtained and after that the error rate inreases due to over�tting.
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Figure 2.7: Visualization by use of t-SNE for the �rst 400 digits in the test set used

in Example 2.17. The numbers lose to points are the labels predited by the logisti

regression method, and the olours of points orrespond to the true labels as given in the

box in the lower right part of the image.
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True Estimated lass

lass 0 1 2 3 4 5 6 7 8 9 Sum Perent

0 Number 1108 8 2 0 2 3 1 11 0 0 1135 11.4

Perent 97.6 0.7 0.2 0.0 0.2 0.3 0.1 1.0 0.0 0.0 100

1 Number 9 922 19 11 4 12 11 32 4 8 1032 10.3

Perent 0.9 89.3 1.9 1.0 0.4 1.2 1.1 3.2 0.4 0.8 100

2 Number 2 18 921 2 22 3 10 21 7 4 1010 10.1

Perent 0.2 1.8 91.2 0.2 2.2 0.3 1.0 2.1 0.7 0.4 100

3 Number 4 6 4 918 1 9 5 6 27 2 982 9.8

Perent 0.4 0.6 0.4 93.5 0.1 0.9 0.5 0.6 2.7 0.2 100

4 Number 5 2 35 9 775 14 6 32 4 10 892 8.9

Perent 0.6 0.2 3.9 1.0 86.9 1.6 0.7 3.6 0.4 1.1 100

5 Number 3 8 2 6 17 907 1 2 1 11 958 9.6

Perent 0.3 0.8 0.2 0.6 1.8 94.7 0.1 0.2 0.1 1.1 100

6 Number 9 22 8 5 1 0 946 4 31 2 1028 10.3

Perent 0.9 2.1 0.8 0.5 0.1 0.0 92.0 0.4 3.0 0.2 100

7 Number 12 7 23 9 24 10 11 857 14 7 974 9.7

Perent 1.2 0.7 2.4 0.9 2.5 1.0 1.1 88.0 1.4 0.7 100

8 Number 6 2 9 23 8 0 22 10 922 7 1009 10.1

Perent 0.6 0.2 0.9 2.3 0.8 0.0 2.2 1.0 91.4 0.7 100

9 Number 0 2 4 1 13 5 3 3 1 948 980 9.8

Perent 0.0 0.2 0.4 0.1 1.3 0.5 0.3 0.3 0.1 96.7 100

Sum Number 1158 997 1027 984 867 963 1007 978 1011 999 10000 100

Perent 11.6 10.0 10.3 9.8 8.7 9.6 10.1 9.8 10.1 10.0 100

Table 2.1: Confusion matrix for the logisti model analysis of the MNIST data set in

Example 2.17.
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In bakward seletion we start by inluding all features. Then we eliminate one feature

so that the resulting error rate is as small as possible. The proedure is iterated a suitable

number of steps.

2.8 Cluster analysis, k-means lustering

Suppose that we have olleted a number of olonies of bateria of a type that has not

been studied before but whih we want to order in lasses orresponding speies or sub-

speies. That is, we want to onstrut a taxonomy for these bateria. Instead of an

individual baterial partile the natural unit here is a homogeneous olony of bateria.

One possible proedure would be to measure a number of variables, say d for eah

individual olony and to see if these variables tend produe lusters in d-spae. Let X
denote the d-dimensional vetor of measurements, and let f(x) denotes the orresponding
probability density (or probability funtion if X is disrete). Corresponding to k lasses

we would then expet that f ould be written as a mixture,

f(x) =

k
∑

i=1

pifi(x), (2.19)

where fi denotes the probability density in the ith lass, and pi the proportion of the ith
lass.

Let n denote the number of olonies observed, and let Xj , j = 1, . . . , n, denote our

observed d-dimensional vetors. The basi problem in luster analysis an then be for-

mulated as estimation of the number k of lasses and also the funtions fi, i = 1, . . . , k,
on the basis of our observations X1, . . . , Xn. Note that this problem is muh more om-

pliated than the problems previously disussed in this hapter as we neither know the

number of lasses, nor whih observations (in a test set) that belong to the di�erent

lasses.

One proedure that is often used is k-means lustering. Consider d-dimensional ob-

servations and let us for simpliity regard Eulidean distanes between observations. We

assume that there are k lasses and hoose �rst randomly k luster enters among the

observations Xj , j = 1, . . . , n. Then we alternate between two types of steps. In the

observation alloation step we suppose that we have luster enters Ci, i = 1, . . . , k, and
alloate eah observation to the losest luster enter. In the luster enter reompu-

tation step we ompute new luster enters as averages of all observations alloated to

eah luster. We alternate between the two types of steps until there are no hanges.

Typially we will also repeat the proedure a number of times with di�erent (randomly

hosen) starting luster entres and �nally hoose the lustering whih has the minimal

total sum of within luster square distanes to luster entres.

Example 2.18. Handwritten digits. Cluster analysis

We use the same data as in Example 2.14 but now we luster them by k-means lustering

with k = 2, 3 and 4. The results are shown in Figure 2.8. �
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Figure 2.8: Results from k-means lustering with k = 2, 3 and 4 of the same data as used

in Example 2.14. Crosses mark estimated luster enters.
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2.9 Case studies

Weed seed identi�ation

In (Petersen, 1992) weed seed identi�ation was studied with 25 images of seeds for eah

of 40 speies.

A large number of possible features were investigated and with 25 features an optimal

ross-validation error rate of 2.3% was found.

Weed plant identi�ation

(Andersson, 1998) studied identi�ation of plants at an early stage of arrot and seven

weed speies. With 27 images for eah of the eight plant speies a ross-validation error

rate of about 16% was found with 7 or 8 features.

Comparison of disrimination methods for miroarray data

In (Dudoit et al., 2002) di�erent disrimation methods are ompared for lassi�ation

of tumors based on gene expression data from three datasets available on the Internet.

In partiular, the nearest neighbour method is found to perform well in these examples.

The number of neighbours is here determined by ross-validation.
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2.10 Exerises

Images and data sets for the exerises below may be found from the ourse home pages.

Exerise 2.1. Fisher's Iris data, a lassial data set. One of the famous data sets in

statistis is Fisher's Iris data, used in (Fisher, 1936), where disriminant analysis was

introdued. Consider the data in Table 2.2 with four variables measured for 50 plants

of eah of three Iris speies. The data were assembled by E. Anderson, see (Anderson,

1935), and analysed in detail by (Fisher, 1936).

(a). Draw satter plots for all 150 observations and all six pairs of variables. Alternatively,

if you do not have aess to a omputer, draw satter plots for subsets with, say, 5 plants

from eah speies, and for, say, two pairs of variables.

(b). Find the best linear disriminators using all four variables for disrimination between

all pairs of the three speies. Alternatively, without a omputer, desribe with formulas

how the omputations are made. Under what assumptions is this disrimination method

optimal.

(). Find the best quadrati disriminators using all four variables for disrimination

between all pairs of the three speies. Alternatively, without a omputer, desribe with

formulas how the omputations are made. Under what assumptions is this disrimination

method optimal.

(d). Find the optimal ombination of two variables for disriminating between the three

speies. Alternatively, without a omputer, desribe with formulas how the omputations

are made.
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Exerise 2.2. Weed seeds. Consider the weed seed images of Rumex rispus and Rumex

thyrsi�orus from Figures 1.5 and 1.6 in Example 1.2 or a subset of these 25 plus 25 im-

ages.

(a). Compute the areas of the seeds and the onvexity of them for the images onsidered.

(b). How well an you disriminate between the two speies by use of the feature on-

vexity and linear disrimination?

(). How well an you disriminate between the two speies by use of the feature onvex-

ity and quadrati disrimination?

(d). How well an you disriminate between the two speies by use of the features on-

vexity and area and linear disrimination?

(e). How well an you disriminate between the two speies by use of the features on-

vexity and area and quadrati disrimination?

Exerise 2.3. Weed plants. Consider images of arrot and weed plants suh as those

desribed in Example 1.3. Choose two or more speies and see well you an disriminate

between them by suitably hosen featuers. Compare with the results found by Andersson

(1998).

Exerise 2.4. Handwritten digits. Resubstitution error. Consider the data in Example

2.14. Show by use of Figure 2.2 that the resubstitution error is equal to 14/93 both for

linear and quadrati disrimination.

2.11 Literature on pattern reognition

A good introdutory text on statistial pattern reognition is (Fukunaga, 1990). Many

algorithms are desribed in (Ripley, 1996) whih also ontains an extensive list of ref-

erenes for the period up to 1996. A highly useful review of lustering methods with

partiular emphasis on appliations with image data is given in (Jain et al., 1999).
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Table 2.2: Four �ower features (in m) for 50 plants of three Iris speies, from (Fisher, 1936).

Iris setosa Iris versiolor Iris virginia

Sepal Sepal Petal Petal Sepal Sepal Petal Petal Sepal Sepal Petal Petal

length width length width length width length width length width length width

5.1 3.5 1.4 0.2 7 3.2 4.7 1.4 6.3 3.3 6 2.5

4.9 3 1.4 0.2 6.4 3.2 4.5 1.5 5.8 2.7 5.1 1.9

4.7 3.2 1.3 0.2 6.9 3.1 4.9 1.5 7.1 3 5.9 2.1

4.6 3.1 1.5 0.2 5.5 2.3 4 1.3 6.3 2.9 5.6 1.8

5 3.6 1.4 0.2 6.5 2.8 4.6 1.5 6.5 3 5.8 2.2

5.4 3.9 1.7 0.4 5.7 2.8 4.5 1.3 7.6 3 6.6 2.1

4.6 3.4 1.4 0.3 6.3 3.3 4.7 1.6 4.9 2.5 4.5 1.7

5 3.4 1.5 0.2 4.9 2.4 3.3 1 7.3 2.9 6.3 1.8

4.4 2.9 1.4 0.2 6.6 2.9 4.6 1.3 6.7 2.5 5.8 1.8

4.9 3.1 1.5 0.1 5.2 2.7 3.9 1.4 7.2 3.6 6.1 2.5

5.4 3.7 1.5 0.2 5 2 3.5 1 6.5 3.2 5.1 2

4.8 3.4 1.6 0.2 5.9 3 4.2 1.5 6.4 2.7 5.3 1.9

4.8 3 1.4 0.1 6 2.2 4 1 6.8 3 5.5 2.1

4.3 3 1.1 0.1 6.1 2.9 4.7 1.4 5.7 2.5 5 2

5.8 4 1.2 0.2 5.6 2.9 3.6 1.3 5.8 2.8 5.1 2.4

5.7 4.4 1.5 0.4 6.7 3.1 4.4 1.4 6.4 3.2 5.3 2.3

5.4 3.9 1.3 0.4 5.6 3 4.5 1.5 6.5 3 5.5 1.8

5.1 3.5 1.4 0.3 5.8 2.7 4.1 1 7.7 3.8 6.7 2.2

5.7 3.8 1.7 0.3 6.2 2.2 4.5 1.5 7.7 2.6 6.9 2.3

5.1 3.8 1.5 0.3 5.6 2.5 3.9 1.1 6 2.2 5 1.5

5.4 3.4 1.7 0.2 5.9 3.2 4.8 1.8 6.9 3.2 5.7 2.3

5.1 3.7 1.5 0.4 6.1 2.8 4 1.3 5.6 2.8 4.9 2

4.6 3.6 1 0.2 6.3 2.5 4.9 1.5 7.7 2.8 6.7 2

5.1 3.3 1.7 0.5 6.1 2.8 4.7 1.2 6.3 2.7 4.9 1.8

4.8 3.4 1.9 0.2 6.4 2.9 4.3 1.3 6.7 3.3 5.7 2.1

5 3 1.6 0.2 6.6 3 4.4 1.4 7.2 3.2 6 1.8

5 3.4 1.6 0.4 6.8 2.8 4.8 1.4 6.2 2.8 4.8 1.8

5.2 3.5 1.5 0.2 6.7 3 5 1.7 6.1 3 4.9 1.8

5.2 3.4 1.4 0.2 6 2.9 4.5 1.5 6.4 2.8 5.6 2.1

4.7 3.2 1.6 0.2 5.7 2.6 3.5 1 7.2 3 5.8 1.6

4.8 3.1 1.6 0.2 5.5 2.4 3.8 1.1 7.4 2.8 6.1 1.9

5.4 3.4 1.5 0.4 5.5 2.4 3.7 1 7.9 3.8 6.4 2

5.2 4.1 1.5 0.1 5.8 2.7 3.9 1.2 6.4 2.8 5.6 2.2

5.5 4.2 1.4 0.2 6 2.7 5.1 1.6 6.3 2.8 5.1 1.5

4.9 3.1 1.5 0.1 5.4 3 4.5 1.5 6.1 2.6 5.6 1.4

5 3.2 1.2 0.2 6 3.4 4.5 1.6 7.7 3 6.1 2.3

5.5 3.5 1.3 0.2 6.7 3.1 4.7 1.5 6.3 3.4 5.6 2.4

4.9 3.1 1.5 0.1 6.3 2.3 4.4 1.3 6.4 3.1 5.5 1.8

4.4 3 1.3 0.2 5.6 3 4.1 1.3 6 3 4.8 1.8

5.1 3.4 1.5 0.2 5.5 2.5 4 1.3 6.9 3.1 5.4 2.1

5 3.5 1.3 0.3 5.5 2.6 4.4 1.2 6.7 3.1 5.6 2.4

4.5 2.3 1.3 0.3 6.1 3 4.6 1.4 6.9 3.1 5.1 2.3

4.4 3.2 1.3 0.2 5.8 2.6 4 1.2 5.8 2.7 5.1 1.9

5 3.5 1.6 0.6 5 2.3 3.3 1 6.8 3.2 5.9 2.3

5.1 3.8 1.9 0.4 5.6 2.7 4.2 1.3 6.7 3.3 5.7 2.5

4.8 3 1.4 0.3 5.7 3 4.2 1.2 6.7 3 5.2 2.3

5.1 3.8 1.6 0.2 5.7 2.9 4.2 1.3 6.3 2.5 5 1.9

4.6 3.2 1.4 0.2 6.2 2.9 4.3 1.3 6.5 3 5.2 2

5.3 3.7 1.5 0.2 5.1 2.5 3 1.1 6.2 3.4 5.4 2.3

5 3.3 1.4 0.2 5.7 2.8 4.1 1.3 5.9 3 5.1 1.8

52



Chapter 3

Mahine learning, neural nets, support

vetor mahines

In reent deades a number of mahine learning methods for patter reognition have been

launhed suh as neural nets and support vetor mahines whih will be brie�y disussed

in this hapter. To evaluate these methods a number of large datasets have also been

brought forth, ompare Table 3.1 and

https://en.wikipedia.org/wiki/List_of_datasets_for_mahine_learning_researh

for more details.

Table 3.1: Datasets of images and videos for tasks suh as lassi�ation, objet detetion

and fae reognition

Dataset name Brief desription Instanes Format Default task Created

MNIST Handwritten digits 60 000 + Images, text Classifation 1998

10 000

CIFAR-10 Images of 10 lasses 60 000 Images Classi�ation 2009

of objets

CIFAR-100 Images of 100 lasses 60 000 Images Classi�ation 2009

of objets

KITTI Images and videos >100GB Images, text Classi�ation, 2012

obtained from ars of data objet detetion

SVHN Street View 73 257 + Images Classi�ation 2011

House Numbers 26 032

FERET Fae Reognition 11 338 from Images Classi�ation, 2003

Tehnology 1 199 individuals fae reognition

3.1 Neural nets

Let us start by onsidering a neural net onsisting of one input layer with n1 units

orresponding to input variables xi, i = 1, . . . , n1, an intermediate (hidden) layer with n2
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units and an output layer with K units. For unit j in the intermediate layer we ompute

the so-alled ativation value aj , j = 1, . . . , n2, by

zj =

n1
∑

i=1

w
(1)
ji xi + b

(1)
j , (3.1)

aj =
ezj

∑n2

j′=1 e
zj′
, (3.2)

for weights w
(1)
ji and biases b

(1)
j . With some abuse of notation we will write

aj = σ(zj), j = 1, . . . , n2, (3.3)

and we all σ given by (3.2) and (3.3) the softmax funtion. From the hidden layer

we proeed to the output in a similar way and we obtain neural net output variables

fk(k), k = 1, . . . , K, as

fk(x) = fk(x, θ) = σ

(

n2
∑

j=1

w
(2)
kj σ

(

n1
∑

i=1

w
(1)
ji xi + b

(1)
j

)

+ b
(2)
k

)

, k = 1, . . . , K, (3.4)

where x = (x1, . . . , xn1
) is the vetor of input variables, and θ is the parameter vetor of

all weights, w
(1)
ji and w

(2)
kj , and biases b

(1)
j and b

(2)
k .

We an add now add one more hidden layer whih gives a neural net with two hidden

layers and output

fk(x) = σ

(

n3
∑

ℓ=1

w
(3)
kℓ σ

(

n2
∑

j=1

w
(2)
ℓj σ

(

n1
∑

i=1

w
(1)
ji xi + b

(1)
j

)

+ b
(2)
ℓ

)

+ b
(3)
k

)

, k = 1, . . . , K,

(3.5)

and it should be lear how we an extend the neural net with an arbitrary number of

hidden layers.

If we for instane onsider a neural net for the MNIST database it is natural to onsider

n1 = 282 = 784 units in the input layer, eah input unit orresponding to one pixel value,

and K = 10 orresponding to the 10 possible digits. We note that the output variables

fk(x) sum to one and we an interpret fk(x, θ) as the probability of digit k. To lassify

images we an �rst in some way estimate the parameter θ by use of a training set. Let θ̂
denote the estimate of θ. To lassify an image x we an then put

k̂(x) = argmaxkfk(x, θ̂). (3.6)

The ruial step here is to obtain the estimate θ̂. In pratie the parameter vetor θ may

ontain several thousand omponents and the estimation proedure is thus quite deliate.

We will now disuss possible estimation methods.

Parameter estimation for neural nets, regularization

Suppose that we have a training set T of |T | pairs (x, y) and that the neural net output

f(x, θ) should approximate y. Then we introdue a suitable loss funtion. Let us �rst
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onsider a simple ase where y and f(x, θ) are real-valued. Then we may hoose the loss

funtion

L(θ, T ) =
1

|T |
∑

(x,y)∈T

(y − f(x, θ))2. (3.7)

Let us then onsider a lassi�ation setting with K lasses, for instane for MNIST

lassi�ation with K = 10. As desribed above we then get as output from a neural net

a probability distribution fk(x, θ), k = 1, . . . , K, for the possible lass values. For a pair

(x, y) where kc is the orret lass we an de�ne yk, k = 1, . . . , K, as

yk =

{

1 if k = kc
0 otherwise

(3.8)

and hoose the ross-entropy loss funtion

L(θ, T ) = − 1

|T |
∑

(x,y)∈T

∑

k

yk log fk(x, θ). (3.9)

We an minimize L(θ, T ) and obtain an estimate θ̂ = θ̂(T ). The result is then that

we often get a good �t to the observations in T , but if we go to a new data set the �t is

typially not so good. We say then that we get an over�t. To ompensate for over�tting

we an introdue a regularization term R(θ), for instane

R(θ) =

|θ|
∑

i=1

|θi|2, (3.10)

where we sum over all omponents of θ = (θ1, . . . , θ|θ|). Then we estimate θ by minimizing

the regularized loss funtion

L(θ; T , L, λ, R) = L(θ, T ) + λR(θ), (3.11)

where λ ≥ 0 is a tuning parameter. Note that λ = 0 orresponds to no regulariza-

tion whih typially gives over�tting, while a very large λ orresponds to under�tting.

To hoose a proper value of the tuning parameter we an evaluate the regularized loss

funtion for a separate validation set T ′
of pairs (x, y) or use ross-validation.

Let us also note that instead of the softmax funtion given by a = σ(z), see (3.2) and
(3.3), as ativation funtion, one often uses a reti�ed linear unit given by

a = max(0, z). (3.12)

Convolutional neural nets

Let w = (wkℓ) and g = (gij) be matries. The onvolution w ∗ g is then de�ned by

(w ∗ g)ij =
∑

k

∑

ℓ

wkℓ gi−k,j−ℓ, (3.13)

ompare Setion 1.2 on image �ltering.
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Convolutional neural nets are partiularly useful for analysis of images. Suh neural

nets ontain layers with layer transitions of the following onvolution type

a
(r+1)
ij = σ

(

p
∑

k=−p

p
∑

ℓ=−p

w
(r)
kℓ a

(r)
i−k,j−ℓ

)

, (3.14)

where p usually is a small positive number. We note that we use here only (2p + 1)2

di�erent weights and that there is the same �lter operation applied in di�erent parts of

a(r) here regarded as an image. The �lter operation ould for instane onsist of �nding

edges in an image.

A onvolution layer is often followed by a pooling layer reduing the layer size. We

an for instane use a maxpool operation where a layer of pixels is divided into adjaent

and non-overlapping retangles and eah retangle is replaed in the following layer by

one pixel with pixel value equal to the maximal pixel value in the retangle.

Example 3.19. Handwritten digits. Analysis with a onvolutional neural net. The om-

putations in this example are taken from (Long�ls, 2018). In Table 3.2 we see the on-

fusion matrix orresponding to a onvolutional neural net trained on 50 000 digits and

evaluated on 10 000 digits from the MNIST data set. The neural network used onsisted

of six layers:

1. An input layer (28×28 pixel images)

2. A onvolution layer with 20 �lters of size 5×5

3. A reti�ed linear unit layer

4. A max pooling layer with size 2×2 pixels

5. A fully onneted layer

6. A softmax layer (outputting the probability for eah of the 10 lasses)

From the seond item in the list above we see that the onvolution layer atually exists

of 20 di�erent �lters (working in parallel). The resulting 20 �lters are given in Figure

3.1. It is easy to visualize that ombinations of onvolutions with these �lters an be

advantageous in identifying digits.

From the onfusion matrix we see that the digit zero seems to be most easy to identify

with an estimated identi�ation probability of 99.6%. The overall estimated identi�ation

probability is (1130 + 1016 + . . . 975)/10000 = 98.5%. �

3.2 Support vetor mahines

The following desription is inspired by the more omplete desription in Chapter 19 of

(Efron & Hastie, 2016). Suppose that we have a training set T onsisting of pairs (x, y),
where x is an n-dimensional olumn vetor and y ∈ {−1,+1} is a two-lass indiator. To
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Figure 3.1: The 20 �lters in the onvolutional neural net used for identifying MNIST

integers.

True Estimated lass

lass 0 1 2 3 4 5 6 7 8 9 Sum Perent

0 Number 1130 1 1 1 0 1 0 1 0 0 1135 11.4

Perent 99.6 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.0 100

1 Number 1 1016 2 1 0 1 5 4 1 1 1032 10.3

Perent 0.1 98.4 0.2 0.1 0.0 0.1 0.5 0.4 0.1 0.1 100

2 Number 0 3 999 0 1 0 2 4 1 0 1010 10.1

Perent 0.0 0.3 98.9 0.0 0.1 0.0 0.2 0.4 0.1 0.0 100

3 Number 0 1 0 974 0 1 0 0 5 1 982 9.8

Perent 0.0 0.1 0.0 99.2 0.0 0.1 0.0 0.0 0.5 0.1 100

4 Number 0 1 9 0 874 3 0 3 0 2 892 8.9

Perent 0.0 0.1 1.0 0.0 98.0 0.3 0.0 0.3 0.0 0.2 100

5 Number 3 0 0 3 1 942 0 2 0 7 958 9.6

Perent 0.3 0.0 0.0 0.3 0.1 98.3 0.0 0.2 0.0 0.7 100

6 Number 3 8 2 0 0 0 1012 2 1 0 1028 10.3

Perent 0.3 0.8 0.2 0.0 0.0 0.0 98.4 0.2 0.1 0.0 100

7 Number 0 3 2 1 2 0 5 953 2 6 974 9.7

Perent 0.0 0.3 0.2 0.1 0.2 0.0 0.5 97.8 0.2 0.6 100

8 Number 2 0 3 10 3 0 8 2 977 4 1009 10.1

Perent 0.2 0.0 0.3 1.0 0.3 0.0 0.8 0.2 96.8 0.4 100

9 Number 0 0 0 0 1 1 2 1 0 975 980 9.8

Perent 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.1 0.0 99.5 100

Sum Number 1139 997 1027 984 867 963 1007 978 1011 999 10000 100

Perent 11.4 10.0 10.3 9.8 8.7 9.6 10.1 9.8 10.1 10.0 100

Table 3.2: Confusion matrix for a onvolutional neural net analysis of the MNIST data

set in Example 2.17.
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begin with we will suppose that the two lasses are linearly separable in the sense that

there exists a real parameter β0 and an n-dimensional parameter vetor β suh that with

f(x) = β0 + xTβ
yf(x) > 0 for all (x, y) ∈ T . (3.15)

We an then lassify a new x-vetor and predit the orresponding y-value as sign(f(x)).
A natural question is then if we an hoose β0 and β in an optimal way. The suggested

solution here is to maximize the minimal distane (margin) to the separating hyperplane

f(x) = 0 in n-spae. The solution to this problem turns out to be to �nd

maxβ0,β

{

M : subjet to
1

||β||y(β0 + xTβ) ≥M for all (x, y) ∈ T
}

, (3.16)

where ||β|| is the Eulidean (quadrati) norm in n-spae. An equivalent somewhat simpler

formulation is to �nd

minβ0,β

{

||β|| : subjet to y(β0 + xTβ) ≥ 1 for all (x, y) ∈ T
}

. (3.17)

In general we an not expet to �nd a hyperplane giving omplete separation between

the two lasses. Then we an instead �nd a minimum with a regularized loss funtion

minβ0,β







∑

(x,y)∈T

[1− y(β0 + xTβ)]+ + λ||β||2






, (3.18)

where [a]+ denotes the positive part of a real number a. For linearly separable lasses one
an show that λ = 0 gives the previously desribed solution whih is determined by a few

points lose to the separating boundary. Inreasing λ orresponds to taking aount of

more and more data points. Similarly as for neural nets one an �nd an optimal tuning

parameter λ by use of a separate validation set or by ross-validation.

For a multilass lassi�ation problem we an for instane for eah lass make a two-

lass lassi�ation versus the union of all other lasses and then for a new observed

x-vetor hoose the lass giving the largest margin. Another possibility is to onsider

voting for all pairwise omparisons and for a new observation to hoose the lass that

gets that the maximal number of votes.

Support vetor mahines with kernel funtions

One an show that for a new vetor x to be lassi�ed one an write the lassi�er on the

form

f(x) = β0 + xTβ = β0 +

|T |
∑

i=1

αixTxi, (3.19)

where x1, . . . , x|T |
are x-vetors in a training set T and α1, . . . , α|T |

are real parameters.

This representation allows us to use a modi�ed lassi�er of the form

f(x) = β0 + xTβ = β0 +

|T |
∑

i=1

αik(x, xi), (3.20)
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where k(u, v) is a positive-de�nite kernel funtion, for instane the Gaussian kernel

k(u, v) = e

−||u−v[[2. (3.21)

Use of kernel funtions implies possibilities of nonlinear transformations of the x-vetors
and adds onsiderable �exibility to support vetor mahines.

For an appliation of support vetor mahine methods for identifying MNIST integers,

see (Long�ls, 2018). Figure 5 there gives a onfusion matrix similar to the onfusion

matries in Tables 2.1 and 3.2 in the present text.

3.3 Literature on mahine learning, neural nets and

support vetor mahines

Highly useful texts from a statistial point of view are (Efron & Hastie, 2016) and (Bishop,

2006). Two reent referenes, both with the title 'Deep Learning' whih is a urrent term

for advaned neural nets, are (LeCun et al., 2015) giving an overview and (Goodfellow

et al., 2016) giving a thorough and up-to-date overage of the �eld.

3.4 Exerises

Exerise 3.1. Draw a �gure illustrating the neural net in (3.5). Choose for instane

n1 = 6, n2 = 5, n3 = 4 and K = 2.

Exerise 3.2. Think of guessing wrong for handwritten integers, that is guessing integer

y when x is orret, x = 0, . . . , 9, y = 0, . . . , 9, y 6= x. Whih of the possible 90 errors

do you think is the largest one? Look in Table 3.2 and ompare with the largest error

probability there.
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Chapter 4

Statistial image modelling

In Figure 4.1 we see two examples of images obtained by simulation from simple models

with independent pixel values. To the left we have a 'pepper-and-salt' pattern orre-

sponding to equal probababilities for blak and white. To the right we have a grey-level

image from a normal distribution (µ, σ2) with µ = 0.5, σ = 0.2 and trunated to the

interval [0, 1], that is, if a value less than 0 was generated it was replae by 0 and if a

value larger than 1 was generated it was replaed by 1.

Figure 4.1: Images of size 64× 64 obtained by simulation from models with independent

pixel values: to the left a blak-and-white image with equal probabilities for the two

olours, and to the right a grey-level image with values from a normal distribution with

expetation µ = 0.5, a standard deviation σ = 0.2 and trunated to the interval [0, 1] .

In the following setions we will generalize to models with dependene between pixel

values. We will onsider Markov random �eld models de�ned by a neighbourhood for

eah pixel and a orresponding onditional distribution for the pixel value given the pixel

values in the neighbourhood. But �rst we will take a look at Markov hains in one

dimension.
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4.1 One-dimensional Markov hains

A random sequene Xt with values in a �nite or ountable set V is a Markov hain if

Pr(Xt+1 = x|Xs, s ≤ t) = Pr(Xt+1 = x|Xt), x ∈ V. (4.1)

It is not easy to see how this an be generalized to proesses in the plain. However, one

an prove that the ondition (4.1) is equivalent to the ondition

Pr(Xt = x|Xs, s 6= t) = Pr(Xt = x|Xt−1, Xt+1), x ∈ V, (4.2)

that is, if we want to predit Xt from all values Xs, s 6= t, it is enough to know Xs in

the two neighbouring sites with s = t − 1 and s = t + 1. And the ondition (4.2) an

be generalized in a straightforward way to several dimensions as will be seen in the next

setion.

4.2 Markov random �eld models

Let us regard a random image X = (Xs, s ∈ S), where S denotes the set of sites (pixel

loations). We suppose that to eah site s ∈ S there is de�ned a set Ns ⊂ S of neighbour

sites suh that the following two onditions are satis�ed:

(i) s 6∈ Ns,

(ii) t ∈ Ns if and only if s ∈ Nt.

Two often used neighbourhood systems are shown in Figure 4.2. To the left we see the

system where the site s = (i, j) has the neighbourhood

Ns = {(i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1)}. (4.3)

In the system shown in the right part of the �gure there are four additional neighbours

so that Ns then onsists of eight sites.

s s

Figure 4.2: Two often used neighbourhood systems: to the left the site s has four neigh-
bours and to the right it has eight neighbours.

Suppose that X = (Xs, s ∈ S) is a set of disrete random variables taking values in the

set V . We say that X is a Markov random �eld with respet to the system (Ns, s ∈ S)
of neighbourhoods if

Pr(Xs = x|Xt, t 6= s) = Pr(Xs = x|Xt, t ∈ Ns), x ∈ V, s ∈ S. (4.4)

This means that if we want to predit the pixel valueXs at s knowing all other pixel values
we get the same predition as when we only know the pixel values in the neighbourhood
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Ns. This will turn out to be highly useful in an iterative sampling method alled Gibbs

sampling, whih may be used for simulation of a Markov random �eld.

Neighbourhoods of border sites have to be onsidered separately. Suppose that the set

of sites is

S = {(i, j) : i = 1, . . . , m, j = 1, . . . , n}. (4.5)

One possibility is to use periodi boundary onditions whih means that sites in the

leftmost olumn are onsidered as neighbours of sites in the rightmost olumn, and,

similarly, that sites in the top row are onsidered as neighbours of the bottom row.

Spei�ally, if (4.3) gives neighbourhoods for non-border sites, we de�ne for s = (i, n)
with 1 < i < m

Ns = {(i− 1, n), (i+ 1, n), (i, n− 1), (i, 1)}, (4.6)

with similar de�nitions for other border sites. We an think of periodi boundary ondi-

tions as orresponding to a folding of S like a torus (a doughnut).

Example 4.1. The Ising model. Let S be given by (4.5) with periodi boundary

onditions. In physial appliations to be disussed below we are interested in large

values of m and n. Suppose that Xs an take two possible values, −1 and +1. Let X+
s

and X−
s denote the number of neighbours of s that take positive and negative values,

respetively. Thus X+
s +X−

s = 4. In the basi two-dimensional model we assume that

Pr(Xs = +1|Xt, t ∈ Ns) =
exp(2β(X+

s −X−
s ))

1 + exp(2β(X+
s −X−

s ))
. (4.7)

We assume that β > 0. Note that if X+
s > X−

s , that is, if the number of neighbours of s
with positive values is larger than the number of neighbours with negative values, then

the probability that s shall also have a positive value is greater than 1/2.

An alternative way of speifying the probability distribution of X is as a Gibbs distri-

bution,

Pr(X = x) =
1

Z
exp(β

∑

s∼t

xsxt), (4.8)

where Z is a normalizing onstant, whih is notoriously di�ult to ompute in models

of this type, and where s ∼ t denotes that s and t are neighbours. Thus we sum in the

right member of (4.8) over all pairs (s, t) of sites that are neighbours. In physis the

Ising model is used as a model for ferromagnetism and β may be interpreted as inverse

temperature. It turns out that for temperature below a ritial value, that is for β > βc,
there are long range dependenies and possible phase transitions, that is a lear majority

of the Xs-values will either be equal to +1 or a lear majority will be equal to −1. But
for β < βc there are no phase transitions and the value of Xs averaged over large sets of

sites is lose to zero. A famous omputation by (Onsager, 1944) gives

βc =
1

2
log(1 +

√
2) = 0.44069 (4.9)

A review of Gibbs distributions and their use in mathematial physis may be found in

(Georgii et al., 2001). ✷
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4.3 Autonormal random �eld models

Let us now also regard Markov random �eld models, where Xs, s ∈ S are ontinuous

real-valued random variables. The ondition (4.4) needs then a modi�ation to

Pr(Xs ∈ A|Xt, t 6= s) = Pr(Xs ∈ A|Xt, t ∈ Ns), A ⊆ R, s ∈ S, (4.10)

for all onsidered subsets A of R. We here only onsider some simple autonormal models

where we assume that the onditional distribution of Xs given its neighbours is normal

with a onstant variane σ2
and an expetation that is a linear ombination of the neigh-

bour values. Spei�ally, let us onsider the neighbourhood system given by the left

part of Figure 4.2 and denote the neighbours of s in the West, North, East and South

diretions W (s), N(s), E(s), and S(s), and assume that

E(Xs|Xt, t ∈ Ns) = µ+βW (XW (s)−µ)+βN (XN(s)−µ)+βE(XE(s)−µ)+βS(XS(s)−µ).
(4.11)

4.4 Simulation of Markov random �elds

There are several ways of simulating images from Markov random �eld models. We will

desribe one of the most used methods, Gibbs sampling.

In Gibbs sampling we visit the sites s ∈ S in a spei�ed way whih may be random or

deterministi. An often used random method is to hoose suessive sites to be visited

independently and in a purely random way from the set of all sites. And an often used

deterministi visiting sheme for a set of sites suh as (4.5) is to hoose sites to be visited

row-wise from left to right starting with the �rst row and proeeding until all sites have

been visited. Suh a set of visits is alled a sweep. The proedure is iterated a given

number of of sweeps.

Example 4.2. The Ising model. Continuation. Consider Gibbs sampling for the Ising

model by use of (4.7). As start on�guration we use a purely random on�guration as

in the left part of Figure 4.1. For a set of β-values we see in Figure 4.3 binary images

obtained by deterministi row-wise sweeps as desribed above. The upper two rows

orrespond to β values under the ritial value (4.9), that is to high temperature, while

the two lower rows orrespond to low temperature. In the middle row we have β very

lose to the ritial value, atually slightly above.

It may be noted that for large β-values (the two lower rows) the number of iterations

used in Figure 4.3 is far too small to arrive at a stationary distribution for the Markov

hain formed by the suessive iterations. ✷
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Figure 4.3: Binary images obtained by simulation for the Ising model with β = 0.11,

0.22, 0.4407, 0.88 and 1.76 in rows 1 to 5, respetively. In the olumns we have to the

left a purely random start on�guration and then the result after 1 sweep, after 4 sweeps,

after 16 sweeps and after 64 sweeps, respetively.
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Figure 4.4: Grey-sale images obtained by simulation for autonormal models. In the

olumns we have to the left a purely random start on�guration and then the result

after 1 sweep, after 16 sweeps, after 128 sweeps and after 256 sweeps, respetively. The

parameters in (4.11) are in the upper row βW = βE = βN = βS = 0.24, in the seond

row βW = βE = 0 and βN = βS = 0.48, and in the third row βW = βE = −0.24 and

βN = βS = 0.24. In all three rows we have µ = 0.5 and the residual standard deviation

σ = 0.3.

Example 4.3. Simulation of an autonormal model. Consider Gibbs sampling for the

autonormal model with onditional expetations (4.11) and onstant onditonal variane

given the neighbour values. For three sets of parameters we obtain results shown in

Figure 4.4. ✷

4.5 Bayesian analysis of images

A ommon approah in Bayesian image analysis, is to assume that we start with a random

image X given by a Markov random �eld. Then we observe a distorted image Y and one

basi problem is to reonstrut X from Y . A simple model for the observed image Y =
(Ys, s ∈ S) is to assume that given X the Ys-variables are independent and furthermore

that the distribution of Ys only depends on Xs, that is we assume that

Pr(Y = y|X) =
∏

s∈S

Pr(Ys = ys|Xs). (4.12)

The reonstrution of X from Y is a di�ult omputional problem, and a series of

iterative algorithms have been developed for this type of problems, most of them based

on Markov hain Monte Carlo algorithms.
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The use of Bayesian models for image reonstrution by use of Markov random �eld

models as priors for the unobserved image X has generally su�ered from the problem

that it seems di�ult to speify realisti priors for images typially found in appliations.

An interesting approah developed in partiular by David Mumford and Song Chun Zhu

is based on the following type of models, see for instane (Zhu & Mumford, 1997) for

details and examples of whih images that might be generated. Brie�y the struture of

the model for the prior is a Gibbs distribution, f. (4.8) above, with

Pr(X = x) =
1

Z
exp(−U(x; Λ, F )), (4.13)

where

U(x; Λ, F ) =

K
∑

α=1

∑

s∈S

λ(α)((F (α) ∗ x)(s)). (4.14)

Here F = {F (1), . . . , F (K)} is a set of linear �lters and Λ = {λ(1), . . . , λ(K)} is a set of

funtions, alled potential funtions, ating on the features extrated by the �lter bank

F .

4.6 Exerises

Exerise 4.1. Simulate images with independent pixel values as in Figure 4.1 but with k
equi-distributed levels. Choose k = 3 and k = 256. (Note that the left image in Figure 4.1

orresponds to k = 2.)

Exerise 4.2. Regard the Ising model with negative β-values. (In physis this model is

used as a model for anti-ferromagnetism.) Use Gibbs sampling to simulate images as in

Figure 4.3 with β = -0.11, -0.22, -0.44, -0.88 and -1.76. Try also to guess what the images

will look like before making the simulations.

Exerise 4.3. Regard an autonormal model with a neighbourhood system as in the right

part of Figure 4.1. Choose suitable notation and write a model orresponding to (4.11).

Use Gibbs sampling to simulate images as in Figure 4.4 and suggest parameter ombina-

tions to obtain di�erent types of random textures.

Exerise 4.4. Show that if the distribution of X is given by (4.8), then (4.7) holds. Hint:

one an use that

Pr(Xs = +1|Xt = xt, t ∈ Ns) =
Pr(Xs = +1, Xt = xt, t ∈ Ns)

Pr(Xs = +1, Xt = xt, t ∈ Ns) + Pr(Xs = −1, Xt = xt, t ∈ Ns)
.

4.7 Markov Chain Monte Carlo methods

Let us brie�y desribe Markov Chain Monte Carlo methods. We start with the Metropolis-

Hastings algoritm. Suppose that we want to estimate the expetation

E(g(X)) =

∫

g(x)f(x) dx , (4.15)
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where X is a random variable in d-dimensional Eulidean spae with probability density

f . Suppose further that we only know the density f exept for a multipliative onstant,

that is we know an unnormalized density

f ⋆(x) = cf(x) (4.16)

but not the normalization onstant

c =

∫

f ⋆(x) dx . (4.17)

In the Metropopolis-Hastings algorithm we generate a sequene of random variables

X1, . . . , Xn forming a Markov hain with a distribution onverging to the distribution

of X . To generate Xt+1 from Xt use a proposal distribution q(·|Xt) and generate a d-
dimensional random variable Yt. An often used proposal distribution is obtained by a

random walk model, that is

Yt = Xt + ǫt , (4.18)

where ǫt has d independent zero mean normal omponents with variane σ2
. The proposed

variable Yt is aepted as Xt+1 with probability

α(Yt|Xt) = min

{

1,
f ⋆(Yt) q(Xt|Yt)
f ⋆(Xt) q(Yt|Xt)

}

. (4.19)

If Yt is not aepted we put Xt+1 = Xt. To ontrol the aeptane or rejetion of Y we

generate an independent random variable Ut with a uniform distribution on the interval

(0, 1) independent of Ys and Us for s < t. Then we put

Xt+1 =

{

Yt if Ut < α(Yt|Xt)
Xt otherwise .

(4.20)

An exellent self-ontained introdution to Markov hain Monte-Carlo methods with fous

on the Metropolis-Hastings algorithm is given in (Robert, 2016).

4.8 Literature on statistial image modelling

Bayesian models for images beame popular in the eighties following work by (Grenan-

der, 1983) and (Geman & Geman, 1984). Markov hain Monte Carlo methods play an

important role in reonstrution of images observed with noise. Important algorithms are

simulated annealing, the Metropolis algorithm and Gibbs sampling, whih all are exam-

ples of randomized algorithms. A simple iterative method, iterated onditional modes,

was introdued by (Besag, 1986). (Winkler, 2003) gives a thorough treatment of these

methods from a mathematial point of view. For an introdution to randomized algo-

rithms viewed as Markov hains, see (Häggström, 2002), inluding a desription of exat

or perfet simulation algorithms.
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PART 2 SPATIAL STATISTICS
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Chapter 5

Spatial random proesses

5.1 Spatial ovariane funtions

Let X = (Xs, s ∈ S) be a spatial random proess also alled random �eld, where s is a
spatial oordinate. In this hapter S may either be a disrete set, as when X is a digital

image, or a ontinuous set, e.g. a retangle S = {(s1, s2) ∈ R
2 : a1 ≤ s1 ≤ b1, a2 ≤

s2 ≤ b2}. In this book we limit ourselves to spatial proesses in two dimensions, but

generalizations to d dimensions are fairly straightforward.

A spatial random proess may be haraterized by its mean value funtion,

ms = EXs (5.1)

and its ovariane funtion

C(s, t) = E(Xs −ms)(Xt −mt). (5.2)

A spatial random proess X = (Xs, s ∈ S) is Gaussian if the joint distribution of

(Xs1, . . . , Xsn) is an n-dimensional normal distribution for any hoie of oordinates

s1, . . . , sn in S. A Gaussian random proess is ompletely spei�ed by its mean value

and ovariane funtions.

It should be noted that not all funtions of two variables are possible ovariane fun-

tions. In fat, a neessary and su�ient ondition that C is a valid ovariane funtions

is that C is symmetri, that is C(s, t) = C(t, s), and that it is positive-de�nite, that is

satis�es

∑

i

∑

j

aiajC(si, sj) ≥ 0 (5.3)

for all n, a1, . . . , an, and s1, . . . , sn. Note that the neessity of the ondition (5.3) follows

diretly from the fat that

E(

n
∑

i=1

ai(Xsi −msi))
2 =

∑

i

∑

j

aiajC(si, sj). (5.4)

A spatial random proess (Xs), s ∈ S is said to be stationary if its distribution is

invariant under a translation t ∈ R
2
, more preisely if for eah hoie of n ≥ 1 and
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(s1, . . . , sn) the distribution of the n-dimensional random vetor (Xs1+t, . . . , Xsn+t) does
not depend on t, as long as si + t ∈ S, i = 1, . . . , n. The mean value for a stationary

spatial proess is a onstant m = EXt and the ovariane funtion C(s, t) depends only
on s − t. A stationary spatial proess is further alled isotropi if its distribution is

invariant under rotation of S. For an isotropi spatial proess the ovariane funtion

C(s, t) only depends on |s− t|, the Eulidean distane between s and t. The ovariane
funtion an then be written on the form

C(s, t) = σ2ρ(|s− t|), (5.5)

where ρ = ρ(r), r ≥ 0, is alled the orrelation funtion. Examples of orrelation funtions

ρ that give valid (positive-de�nite) ovariane funtions are:

the exponential orrelation funtion

ρ(r, θ) = exp(−r/θ), (5.6)

the Gaussian orrelation funtion

ρ(r, θ) = exp(−(r/θ)2), (5.7)

the linear orrelation funtion

ρ(r, θ) = (1− r/θ)1(r < θ), (5.8)

the rational quadrati orrelation funtion

ρ(r, θ) =
1

1 + (r/θ)2
(5.9)

and the spherial orrelation funtion

ρ(r, θ) = (1− 2

3
(r/θ) +

1

2
(r/θ)3)1(r < θ). (5.10)

In Setion 9.4, see in partiular Figure 9.4, we show an example with omparison of �ve

�tted orrelation funtions (5.6) - (5.10).

Suppose that we have a valid ovariane funtion C(s, t), and that σ2
0 > 0. Then we

an onstrut a new valid ovariane funtion C0(s, t) by putting

C0(s, t) =

{

σ2
0 + C(s, t) if s = t
C(s, t) if s 6= t.

(5.11)

The onstant σ2
0 in (5.11) is sometimes alled a nugget e�et with regard to appliations

in mining. Another interpretation of the added quantity σ2
0 in (5.11) is that it just

orresponds to adding independent noise with variane σ2
0 to all our original observations.

In the geostatistis literature one often uses instead of the ovariane funtion the

semivariogram introdued by Matheron, f. (Matheron, 1971) and de�ned as

γ(s, t) =
1

2
var(X(s)−X(t)) ,
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or the variogram var(X(s)−X(t)). For an isotropi proess with variane σ2
and orre-

lation funtion ρ(r) one �nds

γ(s, t) = σ2(1− ρ(r)) (5.12)

when |s− t| = r.

Let us now look at how one an simulate a Gaussian spatial random proess Xs, s ∈ S,
on a retangular lattie S with given mean and ovariane funtions. Let us regard the

proess on a spatial lattie with n1 rows and n2 olumns, and let X denote the matrix of

random variables that we want to simulate. Let (here) m and C denote the mean matrix

and ovariane matrix of X .

Let us reorder the X-values into a olumn vetor alled X̃ . (This an be done in

several ways, for instane by starting with the �rst olumn of X , then take the seond

olumn et etera.) The transformation from X to X̃ we all T and it's inverse we all

T −1
. Thus

X̃ = T X and X = T −1X̃ .

Put n = n1n2 and let C̃ denote the n × n ovariane matrix of X̃ . Let R = hol(C̃)
be the holesky fator of C̃, here de�ned as the unique upper-triangular matrix with

non-negative diagonal elements suh that

C̃ = RTR . (5.13)

Let further Z be a olumn vetor with n independent standard normal random variables

and put

X̃ = RTZ . (5.14)

It follows that the ovariane matrix of X̃ is

E(RTZZTR) = RTR = C̃

and that

X = m+ T −1X̃ (5.15)

has mean matrix m and ovariane matri C as desired. In the next setion we will see

how suh a simulation funtions.

5.2 Matérn's ovariane funtion

A �exible and muh used orrelation funtion is Matérn's orrelation funtion suggested

1960

ρ(r) = ρ(r; ν, θ) =
21−ν

Γ(ν)

(r

θ

)ν

Kν

(r

θ

)

, (5.16)

where ν > 0 and θ > 0 are smoothness and sale parameters, and Kν is a modi�ed Bessel

funtion of the seond kind, whih may be expressed as an integral

Kν(x) =
2νΓ(ν + 1/2)√

πxν

∫ ∞

0

cosxt

(t2 + 1)ν+1/2
dt , (5.17)

see (Matérn, 1986) and (Gelfand et al., 2010) for further details. Some speial ases,

where Matérn's orrelation funtion an be expressed in terms of elementary funtions

are given in Table 5.1.
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Table 5.1: Speial ases of Matérn's orrelation funtion

Smoothness parameter ν Matérn's orrelation funtion ρ(r) for sale parameter θ = 1
ν = 1/2 ρ(r) = exp(−r)
ν = 3/2 ρ(r) = (1 + r) exp(−r)
ν = 5/2 ρ(r) = (1 + r + r2/3) exp(−r)
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Figure 5.1: Four examples of Matérn orrelation funtions ρ(r; ν, θ) from (5.16), plot-

ted against distane r, with varying smoothness parameters ν and with onstant sale

parameter θ = 1.

In Figure 5.1 some Matérn orrelation funtions, inluding those in Table 5.1, are

plotted. One an show that for inreasing shape parameter ν the Matérn orrelation

funtion gets lose to the Gaussian orrelation funtion in (5.7), whih seems plausible

from Figure 5.1. However, to get a proper limit result one has to normalize with a proper

sale parameter, whih also seems plausible from Figure 5.1. More preisely we an put

θ = 1/(2
√
ν) . (5.18)

One an show that with ρ(r; ν, θ) given by (5.16) we have

lim
ν→∞

ρ(r; ν, 1/(2
√
ν)) = exp (−r2) . (5.19)

Related to the saling (5.18) is the observation that the pratial orrelation range d
range

for Matérn's orrelation funtion is

d
range

≈ θ
√

(8ν) . (5.20)

Chek in Figure 5.1 if the relation (5.20) seems reasonable.

Let us now see how we an simulate Gaussian proesses with Matérn orrelation fun-

tions. We will use the method desribed in the previous setion, see (5.15), for two

di�erent orrelation funtions (5.16) with ν = 0.5 and ν = 1.5. To get essentially the
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same orrelation range we also use the sale normalization (5.18), ompare Figure 5.3,

and to get ovariane funtions we multiply the orrelation funtions with σ2 = 1. Re-

sulting realizations (sample surfaes) are shown in Figure 5.2. Let us note that the for

both the left and the right part of Figure 5.2 the pratial orrelation range d
range

≈
√
2

orresponding to the length of diagonals.
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Figure 5.2: Two two-dimensional realizations with Matérn orrelation funtions ρ(r; ν, θ)
from (5.16) with ν = 0.5 (left) and ν = 1.5 (right). The simulation method with real-

izations obtained with (5.15) was used on a square two-dimensional set S = [0, 1]× [0, 1]
with 100 pixels in both the horizontal and vertial diretions. In both ases the sale

parameter θ is given by (5.18) and to get ovariane funtions we multiply the orrelation
funtions with σ2 = 1.

One an show that realizations from a Matérn proess with ν > 0 are ontinuous.

They are m times di�erentiable if and only if ν > m. Thus the left realization in Figure

5.2 is ontinuous but not di�erentiable, and the right realization is di�erentiable one

but not twie. To illustrate ontinuity and di�erentiability better we show in Figure

5.4 one-dimensional realizations of Matérn proesses with ν equal to 1/2, 3/2 and 5/2,

respetively, whih thus are zero, one and two times di�erentiable. With v = 1/2 we get

in one dimension the well-known Ornstein-Uhlenbek proess, see . It is a Markov proess

with orrelation funtion

ρ(t) = exp(−t) ,
whih similar to the Wiener proess is ontinuous but nowhere di�erentiable.

5.3 Eulid's hat ovariane funtion

Matérn's ovariane funtion ρ(r; ν, θ) in (5.16) is positive for all r > 0. Sometimes it

is useful to have a ovariane funtion that is zero from a �nite range and onwards. A

family of suh ovariane funtions is Eulid's hat ovariane funtion

ρ(r) = ρ(r;n, θ) = σ2In+1

2
, 1
2

(1− r2/θ2) 1(r < θ) , (5.21)
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Figure 5.3: The two Matérn orrelation funtions ρ(r; ν, θ) from (5.16) with ν = 0.5 and

ν = 1.5 used in Figure 5.2, plotted against distane r. In both ases the sale parameter

θ is given by (5.18).
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Figure 5.4: Three one-dimensional realizations with Matérn orrelation funtions ρ(r; ν, θ)
from (5.16) with ν = 0.5 (left), ν = 1.5 (enter) and ν = 2.5 (right). In all three ases

the sale parameter θ is given by (5.18) and to get ovariane funtions we multiply the

orrelation funtions with σ2 = 1. The proesses are simulated on the interval [0, 1] whih
is divided into 500 pixels.
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where

In+1

2
, 1
2

(x) =

∫ x

0

√

tn−1(1− t)−1 dt
∫ 1

0

√

tn−1(1− t)−1 dt
(5.22)

is the regularized inomplete beta funtion.

Let us note that n = 1 orresponds to the linear orrelation funtion (5.8) and n = 3
orresponds to the spherial orrelation funtion (5.10). Some Eulid's hat orrelation

funtions are shown in Figure 5.5.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Distance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o
rr

e
la

ti
o
n

n=1

n=2

n=3

n=6

Figure 5.5: Four examples of Eulid's hat orrelation funtions ρ(r;n, θ) from (5.21),

plotted against distane r, with varying parameter n and onstant sale parameter θ = 1.
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5.4 Statistial models for observations of random �elds

Suppose that we have measurements Yi, i = 1, . . . , n, taken at spatial loations s1, . . . , sn.
Let B1, . . . , BK be explanatory variables and assume that

Yi =

K
∑

k=1

Bk(si)βk +X(si) + ǫi , (5.23)

where X = (X(s), s ∈ S) is a Gaussian random �eld and ǫ1, . . . , ǫn are zero mean normal

random variables with variane σ2
ǫ independent mutually and of X . The questions we

shall look at are:

(i) How an we estimate parameters in the model (5.23)?

(ii) How an we predit an observation at an unobserved loation s0 ?

As an example we shall look at mean summer time (June � August) temperatures in

ontinental US reorded at 250 weather stations 1997. The temperatures and a number

of possible explanatory variables an be obtained from

http://www.image.uar.edu/GSP/Data/US.monthly.met/

and some further information inluding how missing data were estimated an be found

in (Johns et al., 2003). Figure 5.6 shows the mean summer temperatures.

Figure 5.6: Mean summer temperatures for 1997 reorded at 250 weather stations in

ontintental US.

Our �rst approah will be to use ordinary least squares with a number (here �ve)

ovariates but without the random �eld X , that is to use the model

Yi =

K
∑

k=0

Bk(si)βk + ǫi , (5.24)

where we also have inluded an interept β0 and orrespondingly we put B0(si) = 1. The
model an also be written

Y = Bβ + ǫ , ǫ ∼ N(0, σ2
ǫ I) . (5.25)
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Table 5.2: OLS (Ordinary Least Squares) analysis of US ontinental summer tempera-

tures 1997. Residual standard deviation estimate σ̂ǫ = 1.10.
Explaining variable Estimate β̂k Corresponding t-value
Interept 21.63 189.17

Longitude -1.29 -8.15

Latitude -2.70 -22.72

Altitude -2.67 -18.33

East oast -0.10 -0.74

West oast -1.31 -10.24

Longitude Latitude Altitude

East oast West oast

Figure 5.7: Five ovariates used in the analysis of summer temperature in ontintental

US.

The ovariates we use are Longitude, Latitude, Altitude, East oast and West oast,

see Figure 5.7. Table 5.2 shows the parameter estimates

β̂
OLS

= (BTB)−1BTY (5.26)

of the OLS analysis of the data. The residual degrees of freedom is 250-6= 244. From

the olumn of t-values we see that all the parameter estimates exept one in Table 5.2

are higly signi�antly di�erent from zero. The OLS regression surfae estimate

Ŷ
OLS

= Bβ̂
OLS

(5.27)

of the temperature surfae is shown in Figure 5.8 and the OLS regression residuals

res

OLS

= Y −Bβ̂
OLS

(5.28)

are shown in Figure 5.9. From Figure 5.9 we see that residuals lose in loation seem

highly orrelated, whih indiates that the model ould be improved.
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Figure 5.8: OLS regression temperature surfae estimate

Figure 5.9: OLS regression temperature residuals

To improve the model (5.25) we will assume that

Y = Bβ + ǫ , ǫ ∼ N(0,Σ) , (5.29)

where Σ is a general positive-de�nite ovariane matrix. One an show that with this

model the least squares estimate of β alled the GLS (Generalized Least Squares) estimate

is

β̂
GLS

= (BTΣ−1B)−1BTΣ−1Y (5.30)

with orresponding GLS regression surfae estimate

Ŷ
GLS

= Bβ̂
GLS

(5.31)

and GLS regression residuals

res

GLS

= Y − Bβ̂
GLS

. (5.32)

One problem with GLS is that typially the ovariane matrix Σ in (5.30) is unknown

and has to be estimated. One possible estimation method is to start with OLS residuals
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Table 5.3: OLS (Ordinary Least Squares) and GLS (Generalized Least Square) parameter

estimates US ontinental summer temperatures 1997. Stars indiate that the orrespond-

ing parameter is signi�antly di�erent from zero

Explaining variable OLS estimate GLS estimate

Interept 21.63* 20.47*

Longitude -1.29* -1.00*

Latitude -2.70* -2.68*

Altitude -2.67* -4.22*

East oast -0.10 -0.01

West oast -1.31* -1.01*

and bin them in a suitable way [NOTE this has to be explained℄. For our summer

temperature data this results in the parameter estimates in the third olumn in Table 5.3

The GLS regression surfae estimate and residuals are shown in Figures 5.10 and 5.11.

Figure 5.10: GLS regression temperature surfae estimate
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Figure 5.11: GLS regression temperature residuals

5.5 Literature on spatial random proesses

A lassial, still readable, monograph on spatial statistis is Bertil Matérn's dotoral

dissertation from 1960, reprodued 1986 as (Matérn, 1986). Two other lassial books

are (Ripley, 1981) and (Cressie, 1993). A more modern, highly useful book is (Gelfand

et al., 2010).
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Chapter 6

Point proesses. Poisson proesses.

Let A be a subset of R
2
with �nite and positive area |A|. We will onsider a random

subset X of A onsisting of �nitely many points, and all X a point proess on A. If

B ⊆ A we let X(B) denote the number of points in X that belong to B.

The point proess X is said to be stationary if the probability distribution of X is

invariant under any translation of the sets B where we regard the point proess, and we

say that X is isotropi if the proess is stationary and if, additionally, the distribution of

X is invariant under any rotation of suh sets B.

Consider a stationary point proess X on A suh that X(A) has �nite expetation.

One an then show that

E(X(B)) = λ|B| (6.1)

for some onstant λ whih we all the intensity of the point proess.

Example 6.20. Poisson proess with onstant intensity.

A point proess X is alled a Poisson proess with onstant intensity λ ≥ 0 on A if X(B1)
and X(B2) are independent for disjoint subsets B1 and B2 of A and if X(B) is Poisson
distributed with expetation λ|B| for a subset B ⊆ A with area |B|, that is

Pr(X(B) = n) =
(λ|B|)n
n!

exp(−λ|B|). (6.2)

A Poisson proess with onstant intensity is stationary and isotropi.

A Poisson proess on A with intensity λ an be generated in the following way. Let �rst
N be Poisson distributed with expetation λ|A|. Given that N = n, generate X1, . . . , Xn

as independent and identially distributed variables, eah with a uniform distribution

over A. (See Setion 14.13 for a desription of how to generate random numbers with a

uniform distribution on a given bounded set in two dimensions.) Then we let X onsist

of the points X1, . . . , Xn, that is X = {X1, . . . , Xn}.
In Figure 6.1 we see two examples of suh generation of a Poisson proess in the unit

square with the onstant intensity λ = 50.

�
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Figure 6.1: Two examples of Poisson point proesses generated in the unit square with

λ = 50. The generated number of points is to the left N = 55 and to the right N = 49.

Example 6.21. Poisson proess with varying intensity.

A point proess X is alled a Poisson proess with intensity funtion λ(s), s ∈ A, ifX(B1)
and X(B2) are independent for disjoint subsets B1 and B2 of A and if X(B) is Poisson
distributed with expetation

∫

B
λ(s) ds for B ⊆ A.

A Poisson proess with intensity funtion λ(s), s ∈ A, an be generated in the following
way. Let �rst N be Poisson distributed with expetation

∫

A
λ(s) ds. Given that N = n,

generate X1, . . . , Xn as independent and identially distributed variables, eah with a

distribution spei�ed by

Pr(Xi ∈ B) =

∫

B
λ(s) ds

∫

A
λ(s) ds

for B ⊆ A. (6.3)

Then we put X = {X1, . . . , Xn}. �

6.1 The Neyman-Sott proess, a point proesses with

lustering

Consider a Poisson proess with onstant intensity λ, and regard the points of this proess
as mother points. From eah mother point we generate daughter points suh that the

number of daughter points from the mother points are all independent and identially

distributed. Further, the two-dimensional vetors from a mother point to the daughter

points are all independent and identially distributed. This distribution we all the

sattering distribution. The proess of daughter points is alled a Neyman-Sott proess.

Suppose that we want to generate a Neyman-Sott proess. If the daughter proess

is regarded on a set A we need to start by generating the mother point proess on a set

larger than A, in fat so large that (essentially) all points from whih daughters an get
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sattered into A are inluded. With this observation it is straightforward to generate a

Neyman-Sott proess from the de�nition above.

Example 6.22. A Neyman-Sott plant proess with 2D normal sattering.

Suppose that we want simulate a Neyman-Sott proess of mother and daughter plants

within the unit square [0, 1]×[0, 1] with intensity λ = 10 for the Poisson proess of mother

points, with a number of daughter points that is binomial (n, p) with n = 8 and p = 0.5
and with a 2D sattering distribution that isN(µ1, µ2, σ

2
1, σ

2
2 , ρ) with µ1 = µ2 = σ1 = σ2 =

0.1 and ρ = 0.5 orresponding to wind spread of seeds with a main wind diretion from

south-west. We start by simulating the Poisson mother plant point proess in the axis-

parallell quadrat with south-west and north-east orners in (−0.5,−0.5) and (1.3, 1.3),
respetively. The result of the simulation is shown in Figure 6.2.
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Figure 6.2: A simulation of a Neyman-Sott proess with mother points as irles and

daughter points as dots. OBS OBS a new �gure must be generated.

�

6.2 A hard-ore inhibition point proess

In the luster point proess in the previous setion the ourrene of a point typially

inreases the intensity of points in a neighborhood of this point. We will now desribe a

point proesses with inhibition, suggested 1960 by Matérn, see (Matérn, 1986), whih has

the opposite property: the ourrene of a point inhibits other points within a ertain

distane.

Start by generating a Poisson point proess with intensity λ on a bounded set A. To
eah pointXi, i = 1, . . . , N , we assoiate a random mark onsisting of random variable Ui,

whih is uniformly distributed on the interval (0, 1) and suh that the Ui's are indendent,

mutually and of the Xi's. We an think of Ui as the birth time of the point Xi.
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Then we thin the X-proess by deleting eah point Xi for whih there exists an older

pointXj of the original point proess loser than a distane d, that is a pointXj satisfying

|Xi −Xj | < d and Uj < Ui. The distane d is alled the hard ore distane.

6.3 TheK-funtion, a diagnosti tool for deteting lus-

tering and inhibition

Consider an isotropi point proess with intensity λ and suppose that x is a point of the

point proess X . Let ‖y− z‖ denote the distane between two points y and z in R
2
, and

de�ne the K-funtion of X as follows,

K(r) =
1

λ
E(number of further points of X within distane r from x|x ∈ X) (6.4)

or more preisely

K(r) =
1

λ
E(X(Cx(r)|x ∈ X), (6.5)

where Cx(r) = {y : 0 < ‖y − x‖) ≤ r} denotes a irular disk with radius r around x
with the point x exluded.

For a stationary Poisson proess it follows that

K(r) = πr2. (6.6)

Sometimes one hooses to regard L(r) = (K(r))1/2 as this funtion is linear in r for a

Poisson proess, for whih

L(r) =
√
πr. (6.7)

If we have a point proess with lustering as for example the Neyman-Sott proess

we an expet that the K-funtion will lie above the K-funtion for a Poisson proess

for r-values where we have lustering, while for a point proess with inhibition suh as

the Matérn hard-ore proess it should lie below for those r-values for whih we have

inhibition.

6.4 Point proesses operations suh as thinning, dis-

plaement and superposition

Consider a point proess X on a set A. Suppose that the points of X are deleted

independently with a probability 1−p, and retained with retention probablity p, 1 ≤ p ≤
1. The resulting point proess of retained points is alled a p-thinned point proess. If

X is a Poisson proess with onstant intensity λ one an show that the p-thinned point

proess is a Poisson proess with intensity pλ. Note that the hard-ore inhibition point

proess desribed in Setion 6.2 is obtained from a Poisson proess by a more ompliated

thinning than independent thinning.
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In Setion 6.1 we desribed a daughter point proess obtained by a lustering operation

on a mother Poisson point proess. The same lustering operation with independent and

identially distributed daughter points an be obtained starting from an arbitrary mother

point proess. A useful speial ase is that eah mother point gives birth to one exatly

daughter point with a given sattering distribution. The resulting daughter point pro-

ess then gives a point proess with displaements with the original points independently

displaed aording to the sattering distribution.

A third useful point proess operation is superposition X ∪ Z of two point proesses

X and Z on a given set A. For instane, if X is the basi point proess that we onsider,

then Z an be an independent Poisson proess of �ghost� points. In (Dralle & Rudemo,

1997) and (Lund & Rudemo, 2000) a point proess X of tree positions measured on

ground is studied together with positions Y obtained from an aerial photograph suh as

in Figure 1.2 or 1.4. The points of Y are modeled as obtained from X by the mehanisms

of thinning, displaement and superposition of independent �ghost� points. The analysis

of these mehanisms as disussed by (Dralle & Rudemo, 1997) is desribed in some detail

Chapter 11 below.

6.5 Estimation of harateristis for point proesses

Suppose that we have observed a stationary point proess X on a set A ⊂ R
2
. The

intensity of X we estimate by

λ̂ =
X(A)

|A| . (6.8)

It follows generally that for a stationary point proess with �nite intensity λ the estimator

(6.8) is an unbiased estimator of the intensity, that is, E(λ̂) = λ.

For a Poisson proess we an also ompute the variane of the estimator (6.8). We

�nd

var(λ̂) =
λ

|A| . (6.9)

Let us now regard estimation of the K-funtion of a point proess X observed in the

region A. The basi problem in estimating K(r) is that for a point x ∈ X we want to

onsider all neighbouring X-points within distane r. But some of these neighbours may

be loated outside A.

For our �rst estimator of K(r) we onsider pairs of X-points x and y suh that x ∈ A−
r ,

where A−
r denotes the subset of A of points with a distane at least r to the border of

A. Let 1{P} denote the funtion whih is 1 when P is true and zero else. From the

de�nition (6.4) it follows

∑

x∈X∩A−

r

∑

y∈X

1{0 < ‖y − x‖ < r} (6.10)

is an unbiased estimator of λ2|A−
r |K(r). The proedure of restriting to points within a

ertain distane to the border is alled minus-sampling, and the orresponding estimator
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ofK(r) is therefore alled K̂
minus

(r), and it is obtained from the unbiased estimator (6.10)

of λ2|A−
r |K(r) by replaing λ with its estimator (6.8). We get

K̂
minus

(r) =
1

λ̂2|A−
r |

∑

x∈X∩A−

r

∑

y∈X

1{0 < ‖y − x‖ < r}. (6.11)

Let us now give another estimator of the K-funtion whih utilizes our observations

more e�etively. Regard two points x and y in the region A and a irle with entre at

x and radius ‖y − x‖. Let w(x, y) denote the proportion of the perimeter of this irle

that lies within A. If, for instane A is the unit square [0, 1]×[0, 1], x = (1/2, 1/2) and
y = (1/2,−1/2 + 1/

√

(2), then a straightforward ompution shows that w(x, y) = 1 and
w(y, x) = 3/4. One an now show that

∑

x∈X

∑

y∈X

1{0 < ‖y − x‖ < r}
w(x, y)

(6.12)

is an unbiased estimator of λ2|A|K(r). The orresponding estimator of the K-funtion is

K̂(r) =
1

λ̂2|A|
∑

x∈X

∑

y∈X

1{0 < ‖y − x‖ < r}
w(x, y)

. (6.13)

There is one minor restrition in the use of (6.13) whih means that we annot onsider

r so large that w(x, y) beome lose to zero. In pratie this is not important as we are

usually interested in reasonably small r-values. Thus, for observations in the unit square

an upper limit for r is 1/
√
2.

6.6 Simulation-based envelope tests for point proesses

Suppose that we have an estimate K̂(r) of the K-funtion of a point proess X on the

set A with, say, the estimator (6.13). As indiated in the end of Setion 6.3 we should

then be able to detet lustering or inhibition by omparing the estimated K-funtion

with the K-funtion (6.6) valid for a stationary Poisson proess. But how large deviation

ould we expet to �nd by pure randomness?

Useful simulation-based envelope-tehniques have been introdued to takle this prob-

lem, ompare (Diggle, 2013). Let us start with desribing a tehnique whih is useful

as an exploratory tool. Put n = X(A) and generate M independent opies X1, . . . , XM

of a Poisson proess on A onditioned on Xm(A) = n,m = 1, . . . ,M . Thus the points

of eah Xm an be obtained by independent random sampling of n points in A. Let

K̂m(r) denote the K-funtion estimate orresponding to Xm, m = 1, . . . ,M . We are

interested in evaluating the probability that K̂(r) lies between the envelopes minmK̂m(r)
and maxmK̂m(r).

Assume for simpliity that M = 39. Then we have provided that X is a Poisson

proess, and for �xed r,

Pr
(

min1≤m≤MK̂m(r) ≤ K̂(r) ≤ max1≤m≤MK̂m(r
)

=

1− Pr
(

min1≤m≤MK̂m(r) > K̂(r)
)

− Pr
(

K̂(r) > max1≤m≤MK̂m(r
)

=

1− 0.025− 0.025 = 0.95.

(6.14)
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A tempting strategy is then to plot K̂(r) together with the envelopes minmK̂m(r) and
maxmK̂m(r), and to onlude that the Poisson hypothesis is rejeted if K̂(r) somewhere

falls outside the envelopes. However this proedure does not give a valid test at the level

p = 0.05 as the alulation above is only valid for a �xed r-value. However, it may still

be used as an exploratory tehnique indiating for whih r-values the Poisson hypothesis

may not be valid. There have been developed valid tests with envelope bounds, see for

instane (Myllymäki et al., 2017).

6.7 Exerises

Exerise 6.1. Generate a Poisson proess on the unit square [0, 1]×[0, 1] ⊂ R
2
with

onstant intensity 100. Show the result in a �gure.

Exerise 6.2. Generate a Poisson proess on the unit square A = [0, 1]×[0, 1] with varying
intensity λ(s) = 200s1, s = (s1, s2) ∈ A. Show the result in a �gure.

Exerise 6.3. Generate a Neyman-Sott proess on the unit square A = [0, 1]×[0, 1] ⊂ R
2

in the following way. Assume that (i ) the mother proess is a Poisson proess with

onstant intensity 50, (ii ) eah mother point generates two daughter points, and (iii )

the sattering distribution (from mother to daughter) is an isotropi two-dimensional

normal distribution with zero means and standard deviation 0.01 in both horizontal and

vertial diretions. (Trunate here the normal distributions at, say, plus and minus three

standard deviations.) Show the result in a �gure.

Exerise 6.4. Compute the expeted distane from one mother point to its nearest neigh-

bour mother point for the point proess of the previous exerise, and also the expeted

distane between the two daughter points from one mother point (disregard in these om-

putations edge e�ets, that is the limited size of the set A). Instead of the two expeted

distanes you may hoose to ompute root-mean square distanes, that is the square root

of the expeted squared distanes, whih are a bit easier to ompute.

Exerise 6.5. Generate a hard ore Matérn point proess on the unit square [0, 1]×[0, 1] ⊂
R

2
with λ = 100 and d = 0.1. Show the result in a �gure.

Exerise 6.6. Estimate the intensity and theK-funtion for the point proesses onsidered

in (a) Exerise 6.1, (b) Exerise 6.3, and () Exerise 6.5. Compare the three K-funtion

estimates.

Exerise 6.7. Generate opies of Poisson proesses X1, . . . , XM with M = 39 and orre-

sponding K-funtion estimates as desribed in Setion 6.6 for the point proesses on-

sidered in (a) Exerise 6.1, (b) Exerise 6.3, and () Exerise 6.5. For eah of these

three examples plot both the K-funtion estimates (as in Exerise 6.6) and the envelopes

minmK̂m(r) and maxmK̂m(r).

6.8 Extensions and literature on point proesses

Highly readable general introdutions to spatial point proesses are given in (Diggle,

2013) now in its third edition, (Baddeley et al., 2015) whih also provides R programmes

87



for point proess analysis, (Daley & Vere-Jones, 2003),(Daley & Vere-Jones, 2008), and

(Illyan et al., 2008). The important lass of Markov point proesses, whih are related to

the Markov image models disussed in Chapter 4, are treated in (van Lieshout, 2000) and

(Møller & Waagepetersen, 2003). In (Chiu et al., 2013) point proesses are disussed in

detail but also more general random spatial objets suh as, for instane, random losed

sets generated by plaing losed diss with enters at points in a point proess and taking

the union these diss. Suh objets are also brie�y disussed in the following Chapter 7.
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Chapter 7

Marked point proesses and patterns of

randomly plaed objets

Point proesses are natural building bloks for more ompliated spatial proesses suh

as patterns of random objets, for instane disks of random sizes. Let us onsider a point

proess X and assoiate with eah point Xi of X a random mark Mi, whih ould be the

radius of a disk entered at Xi. By letting the mark be a vetor with several omponents

we ould model more omplex objets.

For the 2D gel eletrophoresis images in Figures 1.9 and 1.10 we ould assoiate with

a protein at position Xi = [X1iX2i]
T
the mark Mi = (Si, Ci), where Si is the expression

level of the orresponding protein and Ci ould desribe the shape of the spot at Xi.

A straightforward model would be to assume that protein moleules are in the �rst

step transported horisontally to a position with mean X1i depending on the moleules

pI-value (see example 1.4), and in the seond step transported vertially (downwards)

by 2D Brownian motion with drift to a position with mean X2i with long transports

for small moleules. A simple model would thus be to assume that the spot shape is

a two-dimensional normal distribution with 2×2 ovariane matrix Ci with means and

orrelation oe�ient zero. The observed pixel grey level Yx at a pixel with loation x
ould then modeled by

Yx =
∑

i

Sif(x,Xi, Ci) + ǫx, (7.1)

where ǫx is the observation noise at pixel x and

f(x,Xi, Ci) =
1

2π(detCi)1/2
exp(−1

2
(x−Xi)

TC−1
i (x−Xi)). (7.2)

Looking at Figures 1.9 and 1.10 it is evident that the 2D-normal assumption is learly

not perfet, but anyhow this simple model turns out to be useful s a �rst step.

For the di�using partiles in Figures 1.13 and 1.14 we ould onsider a model

Yx =
∑

i

f(x,Xi, zi) + ǫx, (7.3)

where again ǫx is the observation noise at pixel x, but the mark onsists of the salar zi
representing the vertial position of a partile relative to the foal plain. The funtion f
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may be estimated from data obtained by a speial arrangement where one lets partiles

absorb on a glass surfae and the glass surfae is then moved step-wise vertially with

known distanes to the foal plane, see (Kvarnström & Glasbey, 2007) for details.

Similar models ould be onsidered for the aerial photographs in Figures 1.2 and 1.4

where we ould assume a similar shape for trees in a given view. This shape funtion ould

then be estimated from data ombined with a simulation model based on the geometry

and illumination of the trees from the sun (Larsen & Rudemo, 1998).

A spei� problem is interation between objets that overlap partly. In 2D gel ele-

trophoresis it is natural to assume an additive model as in (7.1), but in the aerial pho-

tographs, and partiularly for the di�using partiles, objets may olude eah other and

then an additive model may be an untenable approximation. In some appliations suh

as the one shown in Figure 7.1 objets do (essentially) not overlap.

Figure 7.1: Binary images of two uts in ast iron showing approximately disk-shaped

defets. Data from Beretta (2000) and Månsson and Rudemo (2002).

Let us regard models for random plaed disks. For disks of onstant size we an then

use the inhibition point proess of Setion 6.2 by plaing disks of diameter d entered

at the points of the thinned point proess. In the following setion we shall regard two

modi�ations of this model.

7.1 Two proesses of varying-sized disks

Let us regard marked point proesses onstruted in two steps as follows.

In the �rst step we generate a Poisson point proess with onstant intensity λ in the

plane, and to eah point in this point proess we generate identially distributed radii

with a proposal distribution funtion Fpr. The radii are independent mutually and of the

point proess.

In the seond step we thin the generated point proess by letting all pairs of points

whose assoiated disks interset 'ompete'. A point is kept if it has higher weight in all

pairwise omparisons, where the, possibly random, weights are assigned to the points

aording to two di�erent approahes:

1) Pairwise assignment of weights: For eah omparison, weights are assigned to the

involved pair of points, and assignments are independent both within and between pairs.
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2) Global assignment of weights: Weights are assigned one and for all to all points,

and assignments to di�erent points are independent. These weights are then used in all

omparisons.

In both ases the weight of a point may depend on the assoiated radius. (When the

weights are onstant or deterministi funtions of the radii, the two approahes oinide.)

It is possible to ompute both the intensity of the point proess after thinning and the

radius distribution funtion after thinning. Details are given in Månsson and Rudemo

(2002). Let us here only show a simulation example of disks before and after thinning

with three di�erent thinning proedure, see Figure 7.2.
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b) All intersecting discs removed
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c) Large discs kept
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d) Global thinning, uniform weights

Figure 7.2: Simulation of a disk proess before and after three di�erent thinning pro-

edures. In the �rst step a Poisson proess with intensity 1000 in the unit square is

generated with exponentially distributed disk radii with expetation 0.01.
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Chapter 8

Warping and mathing

An important problem in analysis of multiple images is to math objets in di�erent

images. Thus we would like to know whih spots in the 2D gel eletrophoresis images in

Figures 1.9 and 1.10 that orrespond to eah other in order to ompare the expression

levels of the proteins. Similarly we want to math objets in Figures 1.13 and 1.14

in to order to be able to follow the di�using partiles and to estimate the di�usion

oe�ient of their motion. There is, however, a fundamental di�erene between these

two problems. The di�using partiles move independently of eah other exept for the

rare oasions when they ome very lose in all three dimensions. Thus displaements

of partiles that are lose in the two-dimensional images are essentially independent of

eah other. In ontrast, displaements of nearby spots in the eletrophoresis images are

highly orrelated. The mathing of objets in these two situations therefore demand

quite di�erent methods. In the present setion we shall study warping methods whih

are useful for mathing of objets in images suh as the 2D gel images.

Suppose that we have a referene image Y = Y (x) and another image Y ′
that we

want to warp (transform) into Y as losely as possible aording to some riterion by

transforming loations suh that Y (x′) is lose to Y (x). Here we regard x and x′ as
2-dimensional olumn vetors and put

x′ = f(x) (8.1)

for some warping funtion f . The general a�ne warping funtion is

x′ = Ax+ b =

[

a11 a12
a21 a22

] [

x1
x2

]

+

[

b1
b2

]

. (8.2)

A speial ase of the a�ne transformation is the Prorustes transformation for whih

x′ =

[

c cos θ c sin θ
−c sin θ c cos θ

]

x+ b. (8.3)

A speial ase of the Prorustes transformation onsists of a dilation (sale hange with

a �xed fator c) and a translation

x′ =

[

c 0
0 c

]

x+ b = cx+ b, (8.4)
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and another speial ase of the Prorustes transformation onsists of a rotation and a

translation,

x′ =

[

cos θ sin θ
− sin θ cos θ

]

x+ b. (8.5)

A simple nonlinear warping is the bilinear transformation

x′1 = a11x1 + a12x2 + c1x1x2 + b1
x′2 = a21x1 + a22x2 + c2x1x2 + b2.

(8.6)

We note that for �xed x2 the bilinear transformation (8.6) is linear in x1 (with slope

and interept depending on x2) and, similarly, for �xed x1 the transformation (8.6) is

linear in x2. This means that an axes-parallell retangle in the x1x2-plane is transformed

into a polygon with four sides and four orners in the x′1x
′
2-plane (but generally not with

pairwise parallell sides).

Another nonlinear warping funtion is the perspetive transformation

x′1 = (a11x1 + a12x2 + b1)/(c11x1 + c12x2 + 1)
x′2 = (a21x1 + a22x2 + b2)/(c21x1 + c22x2 + 1).

(8.7)

The perspetive transformation may be used for mathing the tree tops in Figures 1.2 and

1.4. Note that both the bilinear and the perspetive transformations are generalisations

of the a�ne transformation (8.2).

To hoose parameters of a warping transformation x′ = f(x) = (f1(x1, x2), f2(x1, x2))
we may onsider minimization of a distortion-weighted least squares riterion funtion

suh as

L(Y ′, Y, f) =
∑

x

(Y ′(x′)− Y (x))2 + λD(f), (8.8)

where D(f) is a distortion measure of the warping funtion f , and λ is a non-negative

weighting onstant determining the balane between loseness of mathing and distortion.

Let us also note that with normally distributed variables least squares minimization or-

responds to log-likelihoodmaximization, and a method where we use a distortion measure

as in (8.8) is often alled a penalized log-likelihood method. The distortion measure ould

for instane measure the deviation from linearity of the warping funtion, and ould be

a sum of squared seond derivatives of f integrated over the region regarded,

D(f) =

2
∑

i=1

2
∑

j=1

2
∑

k=1

∫
(

∂fi
∂xj∂xk

)2

dx1dx2, (8.9)

where the partial derivatives in omputations are approximated by �nite di�erenes. The

integrals are also approximated by sums over pixels.

A useful type of warping onsists af a grid of loal bilinear transformations. This

method is used in (Glasbey & Mardia, 2001) to warp images of �sh, haddok and whit-

ing, into eah other. Similarly it is used in Gustafsson et al. (2002) to math 2D gels

eletrophoresis images suh as those in Figures 1.9 and 1.10 into eah other, see Chapter

10 below for details. Here we will now desribe how handwritten digits an be warped
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into eah other, whih will also be used for averaging of the handwritten digit images.

Note that simple diret averaging of digits suh as those shown in Figure 8.3 will not

produe a useful end-result, although suh averaging, as we will see, an be used as an

initial step.

Example 8.23. Handwritten digits. Warping and averaging. Classi�ation by minimal

warping e�ort.

Consider 28×28 images from MNIST and warping of the handwritten digit �2� to the left

in the upper row of Figure 8.1 to the digit to the right of it by use of a grid of bilinear

transformations shown in Figure 8.2. The grid has 7×7 ells and the weighting onstant

in (8.8) is λ = 1. Computations and �gures are from (Long�ls, 2018), where more details

are given, inluding a disussion of the hoie of the grid size and the weighting onstant.

image to warp target image

warped image residuals

Figure 8.1: Warping of the digit �2� left in upper row to the digit �2� right in the same

row. The lower row shows the warped image and the residuals relative to the target

upper right.

Let us now onsider averaging of handwritten digits of the same type by use of data

from MNIST as used earlier in Example 2.17. Thus we have for instane 958 digits �5�,

ompare Table 2.1, of whih 100 are shown in Figure 8.3. To �nd the average handwritten

5-digit we �rst average all the 958 5-digits. Then we warp all 958 digits separately with

the average as target. Then we average the warped 5-digits, warp into the new average

and proeed iteratively until hanges are su�iently small. After a few iterations we

obtain the average shown in Figure 8.4.

Let us desribe how we an use warping tehniques to lassify images. The method was

suggested in (Glasbey & Mardia, 2001) and there used to identify �sh speies. Consider

as before a set of MNIST images, and let µj, j = 0, . . . , 9, denote average iteratively

warped image for digits j as desribed above, and where µ5 is shown in Figure 8.4. To
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Figure 8.2: Original and warped handwritten digits also shown in Figure 8.1, upper left

and lower left, here with the 7×7-grid for the bilinear transformations. The target is the

upper right digit in Figure 8.1.

Figure 8.3: First 100 digits �5� in the MNIST database.
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Figure 8.4: Average handwritten digit �5� obtained by sequential warping and averaging.

lassify a new image Y , let Yf denote the image Y warped by the transformation f . Put

Qj = min
f

{

∑

x

(Yf(x)− µj(x))
2 + λ

2
∑

i=1

2
∑

j=1

2
∑

k=1

∫
(

∂fi
∂xj∂xk

)2

dx1dx2

}

, (8.10)

and lassify Y as the digit j for whih Qj is minimal. In Figure 8.5 lassi�ation of 197

digits are shown with two fours and four �ves miss-lassi�ed.
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Figure 8.5: Classi�ation of 110 handwritten digits �4� and 87 digits �5� by warping

lassi�ation. Penalized log-likelihoods for the two types of digits are shown on the axes.

Six digits are miss-lasi�ed.

�

For reviews of image warping methods, see (Glasbey & Mardia, 1998, 2001).
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PART 3 APPLICATONS
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Chapter 9

Analysis of two-oloured DNA

miroarray images

There are several types of DNA miroarrays used to analyze expression levels of genes.

We shall here look at a spei� type of two-oloured spotted miroarrays brie�y desribed

in Example 1.5, and look at spot shape modelling and data transformation of miroarray

data as desribed in (Ekstrøm et al., 2004). As seen in Figures 1.11 and 1.12 spots are

approximately irular with a diameter of about 18 pixels. Let S denote the set of spots,

and for eah spot s ∈ S we assoiate a set As of pixels ontaining the spot approximately

in the entre. We an for instane let As be a square with side length 24 pixels. The sets

As and As′ should be disjoint for di�erent spots s and s′.

From Figures 1.11 and 1.12 it is seen that the signal intensity of spots varies from

weak to strong. To see details in weakly expressed spots it is useful to inrease the

photometri gain in the sanning. However, if we inrease the gain we an get some

pixels in the strongly expressed spots to get saturated, also alled ensored. One aim in

(Ekstrøm et al., 2004) was to to see if one an reonstrut the pixel valued in satured

pixels by use of suitable spot shape modelling.

9.1 Data transformations

Let Z = Z(x) denote the intensity of pixel x. For the data in (Ekstrøm et al., 2004) the

intensity Z is a 16-bit integer, 0 ≤ Z ≤ 216 − 1 = 65535. Let Y denote a transformation

of Z. We onsider three types of transformations. Firstly, a logarithmi transformation

Y = k log(Z + λ1), (9.1)

where λ1 is a positive parameter; seondly, a Box-Cox transformation

Y =

{

k((Z + λ1)
λ2 − 1)/λ2 if λ2 6= 0

k log(Z + λ1) if λ2 = 0,
(9.2)

where λ1 > 0; and thirdly, an inverse hyperboli sine transformation

Y = k arsinh

(

Z + λ1
λ2

)

, λ2 > 0. (9.3)
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The logarithmi transformation is a speial ase of the Box-Cox transformation (for

λ2 = 0). One an show that arsinh(z) = log(z +
√
z2 + 1) for z > 0, and thus for large z

we have arsinh ≈ log(2z). We see that for large values of z the logarithmi transformation

is thus essentially also a speial ase of the hyperboli sine transformation (for λ2 = 2).

9.2 Spot shape models

Let us onsider a spot s and pixels x ∈ As. Let cs = (cs1, cs2) denote the spot entre of
spot s, and let rs(x) =‖ x − cs ‖ denote the Eulidean distane from the spot entre to

the pixel x. Assume that

Y (x) = Bshs(rs(x)) + bs + ǫ(x), x ∈ As. (9.4)

Here Bs measures the intensity of spot s, and this intensity is typially the most impor-

tant parameter to be estimated for spot s. Further bs is a bakground intensity, hs(r)
is a spot shape funtion assumed to be symmetri around the spot entre, and ǫ(x) or-
responds to zero-mean noise at pixel x. We will assume that noise ontributions are

normally distributed with onstant variane σ2
ǫ , and to begin with we will also assume

that noise from di�erent pixels are independent. Thus we assume that (Y (x), x ∈ As)
has a multivariate normal distribution with means

µs(x) = Bshs(rs(x)) + bs, x ∈ As, (9.5)

and ovariane matrix σ2
ǫ I, where I is an identity matrix. We onsider four di�erent

hoies of the spot shape funtion hs(r):

The ylindrial shape model. Put

hs(x) =
1

πσ2
s

1(r ≤ σs), (9.6)

where 1(P ) = 1 if P is true and 1(P ) = 0 if P is false. The parameter σs an be

interpreted as the radius of the spot.

The Gaussian shape model. Here

hs(x) =
1√
2πσ2

s

φ(r/σs), (9.7)

where φ is the standardized one-dimensional normal density φ(r) = (1/
√
2π) exp(−r2/2).

The Gaussian di�erene shape model. Put

hs(x) =
1 + αs√
2πσ2

s

φ(
r

σs
)− αs√

2π(βsσs)2
φ(

r

βsσs
), (9.8)

where σs > 0, αs ≥ 0 and 0 < β < 1.

The polynomial-hyperboli shape model. Here

hs(r) =

{ Ks

σ2
s
exp(gs(r/σs)) if 0 ≤ r < γsσs

0 if r ≥ γsσs,
(9.9)
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with

gs(r) =
2
∑

i=1

bsir
i − as

γs − r
, 0 ≤ r < γs, (9.10)

where as > 0 and γs > 1, σs represents the radius of the spot, Ks is a normalizing

onstant and

bs1 = as/γ
2
s

bs2 = as
2

{

1
(γs−1)2

− 1
γ2
s

}

.

Some spot-shape parameters may be ommon for all spots and some may be spot-spei�.

9.3 Maximum likelihood estimation

To estimate parameters in the spot shapes and the transformations we use the maximum

likelihood method. Let us �rst assume that there are no saturated pixels, that is all

pixel-values are below the maximum level, whih is 216 − 1 before data transformation.

Then the log-likelihood for the Y -values in the neighbourhood As of spot s is

LY =
∑

x∈As

log

{

1

σǫ
φ

(

Y (x)− Bshs(rs(x))− bs
σǫ

)}

. (9.11)

Let us now assume that there are some saturated pixel-values, and let ℓc denote the

saturation level for the Y -values. Thus if Y (x) < ℓc we know the value Y (x) but otherwise
we only know that Y (x) ≥ ℓc. Let A′

s = {x ∈ As : Y (x) < ℓc} and A′′
s = {x ∈ As :

Y (x) ≥ ℓc} denote the set of pixels that are unsaturated and saturated, respetively.

Then we �nd that the log-likelihood beomes

LY = L1 + L2, (9.12)

where

L1 =
∑

x∈A′

s

log

{

1

σǫ
φ

(

Y (x)− Bshs(rs(x))− bs
σǫ

)}

(9.13)

and

L2 =
∑

x∈A′′

s

log

{

1− Φ

(

ℓc −Bshs(rs(x))− bs
σǫ

)}

, (9.14)

where Φ denotes the distribution funtion of the standardized one-dimensional normal

distribution.

In Figure 9.1 original data (one-dimensional pro�les through spot middle) and model

�ts for one spei� spot and the four spot shape models are shown. It is seen that the �rst

and partiularly the fourth model seem to give onsiderably better �ts ompared to the

seond and the third models. The original data and the �t for the polynomial-hyperboli

model (9.9) are shown in more detail in Figure 9.2 for the same spot as in Figure 9.1.

Let us now look at a simultaneous omparison of transformations and spot shape

models by use of maximum likelihood estimation. Results are shown as median di�erenes

of log-likelihoods relative to the best model �t in Table 9.1 for 25 spots and four di�erent
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Figure 9.1: One-dimensional intensity pro�les (through spot enter) for observed inten-

sities of one spot, four photometri gains and maximum likelihood �ts for the four spot

shape models (9.6), (9.7), (9.8) and (9.9).

Figure 9.2: Three-dimensional plot (for one photometeri gain) of observed intensities

(left surfae) for the same spot as in Figure 9.1 and the orresponding estimated spot

shape for the polynomial-hyperboli shape model (right surfae).
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photometri gains in the sanning. The 25 spots were seleted to represent both low,

median and high intensity levels. We see that the polynomial-hyperboli model is the

best spot shape model followed in order by the ylindrial, the Gaussian di�erene and

the Gaussian model, whih is also learly indiated in Figure 9.1. The best ombination is

the Box-Cox transformation together with the polynomial-hyperboli spot shape model.

Table 9.1: Median derease in log-likelihood for 25 spots and four gains relative to the

polynomial-hyperboli spot shape model with the Box-Cox transformation

Spot shape model

Transformation Cylindrial Gaussian Gaussian di�erene Polynomial-hyperboli

Logarithm 136.3 329.6 185.4 17.0

Arsinh 127.2 258.7 144.4 13.9

Box-Cox 134.3 320.3 178.2 0.0

As mentioned in the seond paragraph of this hapter one of the aims of (Ekstrøm

et al., 2004) was to reonstrut values in saturated pixels. In Figure 9.3 we show how

arti�ially saturated levels an be reonstruted for one spot.

Figure 9.3: One-dimensional intensity pro�les through the enter of one spot together

with reonstrutions by use of the polynomial-hyperboli spot shape model for di�erent

levels of arti�ial saturation indiated by horizontal lines. Both data (thin urves) and

reonstrutions (heavy urves) are shown for eah saturation level.

9.4 Models with dependent pixel residuals

Up till now we have regarded residuals ǫ(x), x ∈ As, in (9.4) as independent. However,

a loser look at the left part of Figure 9.2 indiates that residuals at least for adjaent

pixels seem positively orrelated.

Following (Ekstrøm et al., 2005) let us assume that the vetor Y with omponents

Y (x), x ∈ As, has a multivariate normal distribution, Y ∼ N(µ, σ2
ǫR), where µ as before

has omponents µ(x) = Bshs(rs(x)) + bs, x ∈ As, but R, instead of being an identity

matrix, orresponds to an isotropi orrelation funtion. Thus we assume that

ov(Y (x), Y (x′)) = σ2
ǫρ(r, c), (9.15)

where r =
√

(x1 − x′1)
2 + (x2 − x′2)

2
is the Eulidean distane between x = (x1, x2) and

x′ = (x′1, x
′
2) and c is a real (positive) parameter. We onsider �ve di�erent orrelation

funtions:
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Let us further hoose the Box-Cox transformation and the polynomial-hyperboli spot

shape model. To estimate parameters inluding the parameter c for the di�erent orre-
lation funtion by maximum likelihood we have to maximize the log-likelihood

logL = −n
2
log(2π)− 1

2
log(detC)− 1

2
(Y − µ)TC−1(Y − µ), (9.16)

where n is the number of pixels, µ ontains parameters for the spot shape and C =
σ2
ǫR ontains the orrelation funtion parameter c for the di�erent orrelation funtions

onsidered. The omputations turn out to be onsiderably more ompliated ompared

to the independent residuals model, see (Ekstrøm et al., 2005) for details.

The resulting log-likelihood improvements ompared to the independent residuals

model are shown in Table 9.2. The �t of the di�erent orrelation funtions are fur-

ther illustrated in Figure 9.4. We see that the two orrelation strutures that give the

best �t in Table 9.2, that is the Gaussian and the spherial orrelation, also give the best

agreement with the empirial orrelation oe�ients in Figure 9.4.

Table 9.2: Median improvement in log-likelihood for 25 spots and four gains relative to

the model with independent residuals for �ve models with residual orrelation

Correlation Exponential Gaussian Linear Rational Spherial

struture quadrati

69 82 73.5 75 78

Figure 9.4: Median estimated orrelation funtions for the �ve studied orrelation stru-

tures. The possible observable distanes between pixel entres are shown by vertial lines

and the rosses on these lines show the median empirial orrelation oe�ients.
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9.5 Exerises

Exerise 9.1. Chek that the spot shape funtions (9.6), (9.7) and (9.8) satisfy

∫∫

h(x) dx1 dx2 =
1, where x = (x1, x2) and the integral is taken over the entire two-dimensional spae. (The

same relation holds for (9.9), but that is a bit more ompliated to show.)

Exerise 9.2. Desribe how the reonstrutions (heavy urves) in Figure 9.3 an be

omputed.

Exerise 9.3. What details in Figure 9.2 should one look at to get an indiation of that

residuals for adjaent pixels are positively orrelated?

Exerise 9.4. In Figure 9.4 there are omputations for the seven smallest inter-pixel

distanes (marked by rosses). Desribe how pairs of pixels are loated to ahieve these

distanes. One distane orresponds to a knight move in hess; whih distane is that?

104



Chapter 10

Two-dimensional eletrophoresis

Two-dimensional eletrophoresis is an experimental tehnique that an be used to measure

the expression of up to several thousands of proteins, ompare Example 1.4 with Figures

1.9 and 1.10. In this hapter we shall desribe tehniques from (Gustafsson et al., 2002)

based on warping and mathing of suh images. The image data in (Gustafsson et al.,

2002) onsist of �ve images similar to Figure 1.9 from 2D gel eletrophoresis of baker's

yeast grown in a standard solution and �ve images similar to Figure 1.10 from 2D gel

eletrophoresis of baker's yeast grown under stress in a solution with salt added.

Figure 10.1: Illustration of warping step I with orretion for urrent leakage sideways

through the left and right boundaries during the seond-dimensional gel eletrophresis.

Part a of the �gure shows the original image and part b shows the warped urrent-leakage

orreted image.

The warping in (Gustafsson et al., 2002) onsists of two steps. As desribed in Example

1.4 images are obtained by �rst letting protein moleules move horizontally along a string
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to a position determined (exept for random noise) by the protein isoeletri point pI.

In the next step, the seond-dimensional gel eletrophoresis, a polyarylamide gel is

ast between two glass plates separated from eah other by thin plasti spaers and

plaed vertially in a bath. The protein string is plaed horizontally on the top of the

polyarylamide gel. A voltage is applied between the upper and the lower boundaries of

the plates and the proteins perform a Brownian motion with downwards vertial drift in

the bath. The vertial distanes traveled by the protein moleules are determined (exept

for random noise) by the protein mass. During this seond step there may be urrent

leakage sideways, and the �rst warping step in (Gustafsson et al., 2002) models this by

solving a partial di�erential equation with suitable boundary onditions taking are of

urrent leakage. The result of the warping is illustrated in Figure 10.1, and we refer to

(Gustafsson et al., 2002) for further details of this warping step. After the �rst warping

step two image transformations are applied. Firstly, to ompensate for large sale trends

in the bakground level, a top-hat transformation is applied, see (Glasbey & Horgan,

1995) for a desription of the top-hat transformation and (Gustafsson et al., 2002) for

parameter values used in the transformation. Seondly, a logarithmi transformation of

pixel values is applied.

Figure 10.2: Illustration of warping step II. The image in a is warped onto the referene

image in  by use of the grid shown in a warped to the grid in b.

In the seond warping step images are transformed by use of a grid of bilinear trans-

formations similar to the warping of handwritten digits shown in Figure 8.2. The result

of suh a warping is shown in Figure 10.2. One of the �ve images for yeast grown under

standard onditions is used as a referene image, and the other nine images are warped

onto this referene image. We use a penalized log-likelihood method and minimize a

riterion funtion suh as (8.8) with D(f) given by (8.9). Thus we minimize with respet

to f the riterion funtion

L(Y ′, Y, f) =
∑

x

(Y ′(x′)− Y (x))2 + λ

2
∑

i=1

2
∑

j=1

2
∑

k=1

∫
(

∂fi
∂xj∂xk

)2

dx1dx2, (10.1)
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with x′ = f(x) and where we sum over pixels x. The partial derivatives in omputations

are approximated by �nite di�erenes, and the integrals are approximated by sums over

pixels.

Figure 10.3: Further illustration of warping step II. In part a the referene image oloured

red and the warped image oloured blue are superimposed. Displaement vetors for spots

are shown in part b, and also in part , here as reloated vetors starting at the origin

and ending at dots. In  we also show a riterion for adjaeny of spot pairs: adjaent

spot pairs have dots within the irle shown.

The seond warping step is further illustrated in Figure 10.3. Here we show in part a

of the �gure a superposition of the referene image oloured red and the warped image

oloured blue. For protein spots that are equally expressed in both images we should

then ideally get blak spots. However if the warping is less perfet we expet adjaent

spots oloured red and blue. (Further even if the warping is perfet we an get spots that

are predominantly blue or predominantly red for a protein that is di�erently expressed

in the two images.) In part b of Figure 10.3 spot displaement vetors are shown, and

for more lear illustration arrow heads are large for large displaements. We see that

large displaements mainly our lose to the boarders. Spot displaement vetors are
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also shown in part  of the �gure, and here all the displaement vetors are reloated so

that they start in the origin and end in positions shown as dots.

Figure 10.4: Illustration of spot pattern similarity in aligned images. The left part a

shows the e�et of hanging grid size for the partiular λ-value 10−3
. The graph shows

the perentage of adjaent spot pairs as a funtion of the number of grid size parameters.

The right part b shows the e�et of hanging the log-likelihood penalizing parameter

λ for the partiular grid q = (8, 12), and the graph shows the perentage of adjaent

spot pairs as a funtion of λ. Cirles show mean values and error bars show standard

deviations for the nine images aligned to the referene image. Vertial dashed lines show

the �nally hosen grid size and likelihood penalty weight.

Two ruial issues are hoie of how �ne the grid in the bilinear transformation net

should be and the size of the non-negative parameter λ in the penalization of the likelihood
in (10.1). If we start with a ourse net and steadily re�ne it we an expet the �t to

improve but to level o� at a ertain degre of �neness. Similarly if we start with a large

λ-value and then derease λ we an expet an improvement in �t but similarly a leveling

of at some point. As a measure of �t we use the perentage of spot pairs with dots inside

the irle in  of Figure 10.3. We speify the net grid by q = (q1, q2), where q1 and q2
are the number of retangles in the horizontal and the vertial diretions. We note that

in Figure 10.2 we have q = (8, 12). It turns out that the number of parameters in a grid

spei�ed by q = (q1, q2) is 2(q1 + 1)(q2 + 1). We use a sequene of grids with q equal

to: (1, 1), (2, 3), (4, 6), (8, 12) and (16, 24). Similarly we use the following sequene of

λ-values: 30λ0, 10λ0, 3λ0, λ0 and 0.3λ0, with λ0 = 10−3
. Results from some omputations

with di�erent grid sizes and di�erent λ parameters are shown in Figure 10.4. The hosen

grid size is q = (8, 12), and the hosen λ-value is λ0 = 10−3
.

The two warping steps are ompared in Figure 10.5, whih shows the length distri-

bution of spot displaement vetors for three sets of images: the original images, the

108



Figure 10.5: Length distribution of spot displaement vetors for the original data (solid

line), after the urrent leakage warping step (dashed line) and after both warping steps

(dash-dot line).

urrent leakage orreted images (only warping step I) and the urrent leakage orreted

and aligned images (warping steps I and II). From the �gure it is lear that warping step

I gives some improvement, but the large improvement is obtained with the ombination

of both warping steps. In (Gustafsson et al., 2002) there is also a omparison of warping

I+II with the use of only warping step II. It turns out that beside a slight improvement

in the perentage of adjaent spot pairs, an e�et of warping step I is a onsiderable

redution of the total omputation time.
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Figure 10.6: E�ieny pro�les in the left part a showing the number of automatially

mathed spots in all ten gels (with gel images two-step warped) by the software PDQuest

as a funtion of an initial manual mathing of a number of spots (in the image alled

landmarks) both for the original set of images (dashed line) and for the set of warped

images (solid line). The right part b of the �gure shows the number of deteted spots

in the ten gels for the warped gel images. The spots deteted in all gels are shown dark

grey, the spots found additionally in ommon with the referene gel 1 is shown for eah

gel in light grey, while deteted spots not in ommon with the referene gel are shown in

white.

Figure 10.6 illustrates the improvement in mathing e�ieny when the warped images

are used together with the PDQuest software (Garrels, 1989). In the method illustrated in

the �gure the referene image is divided into 54 subretangles and in eah subretangle the

most intense spot is hosen. The hosen spots are ordered aording to intensity and an

inreasing number of theses spots are manually mathed. Based on this manual mathing

the software PDQuest then automatially mathes other spots. The left part a of the

�gure shows the global mathing e�ieny as the number of automatially mathed spots

found in all ten gel images as a funtion of the number of manually found spot pairs. The

dashed line shows the e�ieny pro�le for the original images and the solid line shows

the e�eny pro�le with warped images (using two-step warping). A lear improvement

using warping an be seen (ompare Exerise 10.2 below).

In part b of Figure 10.6 we see bars showing the number of spots deteted in the ten

gels. Here gels 1�5 are gels with yeast grown in standard solution (inluding the referene

gel 1) and gels 6�10 are gels grown with salt added. The mean number of gels deteted

in all ten gels is 1194, and the average number of deteted spots in ommon with the

referene gel (for gels 2�9) is 826, while the number of spots deteted in all ten gels is

430.

10.1 Exerises

Exerise 10.1. As mentioned above a top-hat transformation was used after the �rst
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warping step to ompensate for large-sale trends in the bakground level. Desribe

brie�y how alternatively a low pass �ltering tehnique ould be used for that purpose.

Exerise 10.2. Determine approximately (both for the original image set and for the set

of warped images) from Figure 10.6 the number of manually mathed spots needed to

ahieve subsequently in the automati step a 90% spot number mathing in all ten gels.

Exerise 10.3 In part b of Figure 10.6 gels 1�5 orrespond to yeast grown in standard

onditions (inluding the referene gel 1) and gels 6�10 orrespond to yeast grown in a

salt solution. What are the general features of the �utuations of the light grey bars?

Give also an explanation of these general features.
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Chapter 11

Point proesses observed with noise,

two examples with aerial photographs

of forests

11.1 Estimation of tree top and tree base positions

from aerial photos

Here we onsider how we an estimate tree base positions from images suh as the image,

below alled Image 148, shown in the right part of Figure 1.1. A detail of Image 148

is shown Figure 1.2. We follow the exposition (Dralle & Rudemo, 1997) and start by

estimating the tree top positions using a Gaussian �lter as desribed in Chapter 1, see

Figures 1.16 and 1.17. Let X = (x1, . . . , xn) denote the tree base positions, and let

Y = (y1, . . . , ym) denote the positions of maxima after the Gaussian �ltering. The objet

is to estimate X from Y and also to �nd the orrespondene between y- and x-points.
We will start by going the other way and estimate Y from X . If we know the positions

of tree stems at ground level we an estimate the positions of tree tops as indiated in

Figure 11.1. The white linear segments in this �gure show the expeted positions of tree

trunks projeted on ground as seen from the aeroplane with tree ground position at the

segment end point losest to the nadir point (the point vertially below the aeroplane)

and the tree top position at the segment end point furthest away from the nadir point.

The model used here for the tree top positions is based on �eld measurements of the tree

ground positions and the diameter at breast height (1.3 m), and additionally a regression

of tree height from breast height diameter, whih is a well-known method of estimating

tree height in forestry.

In pratie it is tedious to measure tree ground positions and the objet of (Dralle &

Rudemo, 1997) is to use aeroplane photographs to estimate �rst tree top positions and

then tree ground positions. The model used is based on the assumption of three soures

of distortion:

1. some trees are lost (errors of omission),
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Figure 11.1: The Image 148 with tree projetions superimposed, as seen from the am-

era position. The tree projetions were omputed from the tree ground level loation

measurements and the tree heights estimated from height-diameter regression and breast

diameter �eld measurements, see the text for further details.
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2. the remaining trees beome displaed as a onsequene of image geometry and

lighting onditions; the displaement of a point xi = (xi1, xi2) is omposed of a

systemati displaement from xi to x
′
i and a random displaement from x′i to x

′
i+zi,

3. some spurious maxima that do not orrespond to real treas are generated (ghost

treas, errors of ommission).

In the model we will make the simplifying assumption that these three mehanisms are

mutually independent, and further that within eah of these three ategories the trees

behave independently of eah other. More speially, we assume:

1. For eah tree there is a probability θ0, depending on the thinning treatment, that

the tree gives rise to a maximum. Thus the probability of an error of omission is

1−θ0 for eah tree, and the events that di�erent trees are omitted are independent.

2. The systemati displaement to x′i, see Figure 11.2, of the base loation xi of a
tree is obtained by two displaements in the horizontal plane, or, eqivalently, in the

image plane. Move �rst along the projetion of the tree a distane θ1pi, where pi
is the projetion length, and move then orthogonally in the horizontal plane (to

the same side of the tree projetion as the sun) a distane θ2hi sinαi. Here hi is
the height of a tree and αi is the angle between the horizontal projetion of the

tree and a line whih is the intersetion of the horizontal plane and a vertial plane

ontaining both xi and the sun. The subsequent random motion zi = (zi1, zi2) in
the loal oordinate system with one axis parallel to the tree projetion and one

axis orthogonal to it has a two-dimensional normal distribution with means zero,

standard deviations σ1 and σ2 and orrelation oe�ient ρ.

3. Spurious maxima are generated by a Poisson proess with the intensity λ maxima

per hetare.

For the systemati displaement from xi to x
′
i and for a orresponding maximum yj(i)

in the smoothed image we thus assume

x′i = xi + θ1piei1 + θ2hi sinαi ei2 (11.1)

and

yj(i) = x′i + zi = x′i + zi1ei1 + zi2ei2, (11.2)

where zi1 and zi2 are random errors and ei1 and ei2 are unit vetors, see Figure 11.2.

We assume that the parameters θ0, θ1, θ2, σ1, σ2, ρ and λ are onstant within subplots.
In the disussion in the text lose to Table 11.1 below we will see that some of the

parameters vary between subplots in a way that may be interpreted in terms of thinning

treatments and the geometry at image aquisition.

The parameters are estimated iteratively, and for more details inluding hoie of

initial values for parameters see (Dralle & Rudemo, 1997). For trees in a polygonal area

A we ompute a displaed area Ad, ompare Figure 11.3, by moving eah border polygon

orner point aording to the transformation (11.1) as if the border point was the ground

loation of a tree with a height omputed from the height-diameter regression when
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Figure 11.2: Displaement model for the positioning of trees. The full-drawn thik line

represents the ith tree stem projeted, as seen from the amera, onto the image with the

base position xi nearest to the nadir point. The length (in pixel units) of the projetion is
denoted pi, and the height of the tree (also in pixel units) is hi. The systemati displae-

ment takes xi to the expeted position x′i for the grey-level maximum and an additional

random displaement gives the observed loation x′i + zi of a orresponding maximum.

The oordinates of zi are assumed to have a two-dimensional normal distribution with

zero means.
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Figure 11.3: Subplot D in Image 148 with the net subplot borders (lower right quadri-

lateral) and the orresponding displaed area where maxima are expeted (upper left

quadrilateral). The loal maxima after smoothing with the optimal bandwidth are shown

as small blak squares (diamonds), and for eah loal maximum the orresponding �water-

shed� segment above median grey level is shown in light grey olour with borders between

segments in slightly darker grey olour. Tree projetions, as seen from the amera, based

on ground measurements are shown as line segments and expeted positions for loal

maxima, aording to the model indiated in Figure 11.2, as stars. From eah star an

ellipse is grown until it hits a loal maximum. The ellipse is dashed if this maximum has

already been hit by a smaller ellipse from another star. Thus stars with a dashed ellipse

represent errors of omission, while small squares not hit by an ellipse (these squares have

pointers to them) represent errors of ommission. The sun azimuth is marked in the

upper right orner of the image.
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the tree diameter orresponds to mean trea diameter of the subplot. Here the urrent

estimates of θ1 and θ2 are used.

For a tree with base xi we ompute the position x′i aording to (11.1) and around this

point we let an ellipse with onstant probability density aording to the model (11.2)

grow. Here the urrent estimates of σ1 and σ2 are used but with ρ = 0. Ellipses grow

simultanously at the same rate around all points x′i, i = 1, . . . , n, for the trees in the

regarded area, or, atually, in a slightly larger area as shown in Figure 11.3. As soon as

an ellipse starting from x′i athes a maximum in the smoothed image the growth of that

ellipse is stopped. If this maximum has not been athed from another point earlier the

maximum (at yj(i)) is assoiated with the ith tree with base loation xi. (If the maximum

has already been athed from another tree, no maximum is assoiated with the ith tree;

it is onsidered lost.)

Let xi, i ∈ I ′, be the set of base loations in A for trees that ath maxima, and let

n′ ≤ n be the number of elements in this set. As an estimate for the probability θ0 that
a tree gives rise to a maximum (one minus the probability of omission), put

θ̂0 = n′/n. (11.3)

Using (11.1) and (11.2) estimates for θ1 and θ2 are obtained by oordinate-wise linear

regression analyses along the ei1- and ei2-axes, respetively, for i ∈ I ′. Corresponding

estimates for σ2
1 , σ

2
2 and ρ are obtained as the sample varianes and the sample orrelation

for the set of the n′
two-dimensional residuals yj(i) − x′i, i ∈ I ′.

An estimate for the density of spurious maxima (errors of ommission) is

λ̂ = (m−m′)/|A|, (11.4)

where m is the number of maxima in Ad, m
′ = n′

is the number of maxima in Ad that

are aught by trees, and |A| is the area of A.
The estimation proedure is performed for eah of the subplots D, R, DB and B and

also in groups 'all exept B' and 'all', and the results are shown in Table 11.1, where also

the estimate of the root-mean-square random displaement in metres

σ = 0.15(σ2
1 + σ2

2)
1/2

(11.5)

is given.

From Table 11.1 we see that for medium and heavy thinning, around 95% of the trees

are found with a root-mean-square residual error in the displaement model of about 60

m or less, and for light thinning around 85% of trees are found and positioned with

an error of about 75 m. The unthinned ontrol was not investigated here beause

this treatment gives an exeptionally dense population, and a large number of trees are

suppressed whih are not possible to see from above.

One ould try to use a maximum likelihood method orresponding to our statistial

model (11.1) - (11.2) for the present data set with both the image and the ground truth

available. However, a straightforward omputation that takes all possible orrespondenes

between the set of maxima and the set of trees is prohibitive, as the number of suh

orrespondenes is astronomial. One may onentrate on a small number of 'probable'
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Table 11.1: Parameter estimates for subplots in Image 148 with �ve di�erent treatments.

N is the true stem number per hetare; θ0 is the probability that a tree gives rise to a

maximum (and θ̂0 the orresponding parameter estimate) ; θ1 and θ2 speify the system-

ati displaement from the base loation xi to x
′
i at whih the orresponding intensity

peak is expeted (Figure 11.2); σ1 and σ2 (in pixel units orresponding to 15 m at ground

level) and ρ are parameters in a two-dimensional normal distribution for the random dis-

plaement zi from the expeted to the observed loation (Figure 11.2); λ is the expeted

number of spurious maxima per hetare; σ is the root-mean-square random displaement

in metres.

Subplot N θ̂0 θ̂1 θ̂2 σ̂1 σ̂2 ρ̂ λ̂ σ̂
D 367 0.970 0.651 0.028 2.74 2.94 0.370 15 0.60

C 625 0.971 0.731 0.056 2.48 1.69 0.088 37 0.45

R 746 0.980 0.634 0.082 3.20 2.12 -0.313 15 0.58

DB 824 0.956 0.767 0.006 2.69 2.19 -0.219 40 0.52

B 1257 0.843 0.871 0.045 4.29 2.65 -0.035 168 0.76

All exept B 0.969 0.730 0.046 3.23 2.76 -0.096 26 0.64

All 0.925 0.734 0.045 3.61 2.75 -0.071 55 0.68

orrespondenes. In (Dralle & Rudemo, 1997) we have been even more redutionisti,

onsidering only one suh orrespondene. After establishing the orrespondene, the

subsequent parameter estimation is straightforward, partiularly if we assume that the

orrelation between errors along the tree projetion and orthogonal to it is zero. A

likelihood-based analysis with a limited number of 'most probable' orrespondenes is

given in (Lund & Rudemo, 2000).

11.2 Optimal templates for �nding tree tops in aerial

photos from di�erent angles

In the previous setion we analyzed aerial photos aquired essentially vertially above

the area studied. Following (Larsen & Rudemo, 1998) we shall in this setion study

photos obtained from varying angles, in partiular three spei� ases where the trees are

sidelighted, baklighted and frontlighted.

We shall use a tree model from (Larsen, 1997), whih extends a model in (Pollok,

1994). The tree is modelled as a generalised ellipsoid that in (x, y, z) oordinates has the
surfae

(z2)n/2

an
+

(x2 + y2)n/2

bn
= 1, (11.6)

where z is the vertial oordinate, the �entre� of the tree rown is at the origin, a is half
the length of the ellipsoid, b is half the width and n is a shape parameter; here we use

a = 17.7 m, b = 2.84 m and n = 1.6 as in (Larsen, 1997). The tree model is shown in

Figure 11.4, where we also show how light from the sun is sattered by single re�etion

into the amera on board the aeroplane.
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We will study an algorithm for automatially seleting tree tops from images and

ompare them with manually obtained �ground truth� data. Let us �rst onsider manually

estimated �ground truth� tree top positions. As desribed in Dralle & Rudemo (1997),

see Setion 11.1, we an from known tree base positions estimate the tree top positions

aording to (11.1). The tree top positions thus obtained were then manually orreted

by inspetion of the photos to ompensate for errors in tree height estimates, variations

due to wind, and impreision in image reti�ation.

Figure 11.4: Tree rown model from Equation (11.6). The �gure also shows single re�e-

tion of light from the sun into the airborne amera.

In the upper right part of Figure 11.5 we see an ellipse template plaed lose to the

top of the optial model for sidelighted trees. There are three template parameters, size

r, whih is the radius of a irle with the same area as the ellipse, shape s, the width to

length ratio of the ellipse, and t, the translation in r-units of the ellipse entre along the
tree trunk suh that tr is the downwards translation.

The following proedure was used to math the set tree top andidates with �ground

truth� positions. Pairs of positions from the two sets were found in order of inreasing

error distane suh that eah position in eah set was used at most one. The proedure

was stopped when the error distane in the next math exeeded dmax = 1 m, and

trees not mathed at this stage were delared �unmathed�. As penalty measure used

for omparing a set of tree top andidates with �ground truth� the following modi�ed

standard error measure was used

SE⋆ =

√

∑

i∈mathed

|xi − x̄|2 + n
unmathed

d2max

n
mathed

+ n
unmathed

, (11.7)
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where the sum is taken over all mathed tree tops, xi is the error vetor for tree top i,
| · | is the Eulidean distane, x̄ is the average error vetor for all mathed trees, while

n
mathed

and n
unmathed

are the number of mathed and unmathed tree tops.

In the searh for optimal parameters r, s and t with riterion funtion SE⋆
an iterated

grid searh was used, see (Larsen & Rudemo, 1998) for details. The searh was performed

separately for the three image with sidelighted, baklighted and frontlighted trees as seen

in Figures 11.5 � 11.7. Similar parameter values were obtained with averages radius

r = 1.5 m, width/length ration 0.9 and translation fator t = 0.2. The number of found
and missed trees for the three images are shown in Table 11.2.

Table 11.2: Results for the three images with sidelighted trees, image 120, baklighted

trees, image 124, and frontlighted trees 144.

Image

120 124 144

Total number of trees 171 171 171

Number of missed trees 15 6 3

Perent of trees found 91 96 98

Standard error in m (mathed only) 27 24 28

Modi�ed standard error (11.7) in m 39 30 31
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Figure 11.5: The sidelighted image �120� with 171 tree tops manually marked (irles) and

automially estimated (dots), and to the right the orresponding single re�etion optial

model with optimal boundary (upper right) and the empirial average (lower right).
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Figure 11.6: The baklighted image �124� with 171 tree tops manually marked (irles)

and automially estimated (dots), and to the right the orresponding single re�etion

optial model with optimal boundary (upper right) and the empirial average (lower

right).
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Figure 11.7: The frontlighted image �144� with 171 tree tops manually marked (irles)

and automially estimated (dots), and to the right the orresponding single re�etion

optial model with optimal boundary (upper right) and the empirial average (lower

right).
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11.3 Exerises

Exerise 11.1. As a motivation for the model (11.1) for the systemati displaement from

xi to x′i onsider the following rude �tree� model: A tree onsist of thin rod with a

re�eting sphere on top. How is then the base loation xi in the image plane displaed

to a point x′i in the image plane orresponding to the point on the sphere where the sun

is re�eted as seen from the airplane? (This will not give exatly equation (11.1) but

something quite lose to it, at least if the angle αi is small.)

Exerise 11.2. In the lower right parts of Figures 11.5 � 11.7 you an see empirial

average shapes obtained from the use of the templates in the upper right parts in these

�gures. Disuss how these empirial average shapes an be omputed, and disuss also if

it might be possible to �nd improved templates by use of the empirial average shapes.

124



Chapter 12

Di�usion

12.1 Traking a single di�using partile

Let Xi denote the position at time i∆t, i = 0, 1, . . . , K, of a di�using partile in d-
dimensional spae, where d = 1, 2 or 3 in appliations. We assume that

Xi = Xi−1 +∆Gi, (12.1)

where ∆Gi are independent d-dimensional normal vetors with a mean vetor with all

omponents zero and a ovariane matrix

C(∆Gi) = 2D∆tI, (12.2)

where D is the di�usion oe�ient and I is the d-dimensional unit matrix. Thus in eah

dimension the di�using partile has a normally distributed inrement with mean zero and

variane 2D∆t, and the inrements in di�erent dimensions and at di�erent time-points

are all independent.

Let ||x|| denote the Eulidean norm in d-dimensional spae, that is ||x||2 =
∑

j x
2
j if x

has omponents x1, . . . , xd. Then

E(
K
∑

i=1

||∆Gi||2) = 2dD∆tK (12.3)

and it follows that

D̂ =
1

2d∆tK

K
∑

i=1

||∆Gi||2 (12.4)

is an unbiased estimate of the di�usion oe�ient D.

We an also obtain a on�dene interval for D with, say, on�dene degree 95%. The

variable

χ2 =
1

2D∆t

K
∑

i=1

||∆Gi||2 (12.5)
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is hi-square distributed with dK degrees of freedom. Thus

Pr(χ2
.025 < χ2 < χ2

.975) = 0.95. (12.6)

Straightforward omputations give that (12.6) an be rewritten

Pr(
dK

χ2
.975

D̂ < D <
dK

χ2
.025

D̂) = 0.95. (12.7)

and we see that

dK

χ2
.975

D̂ < D <
dK

χ2
.025

D̂ (12.8)

is a on�dene interval for D with on�dene degree 95 %.

12.2 Fluoresene reovery after photobleahing (FRAP)

Fluoresene reovery after photobleahing (FRAP) is a onvenient method for analyzing

di�usion whih an be applied to the study of possibly heterogenous materials with loally

varying di�usion oe�ients. We shall here follow the exposition in (Jonasson et al.,

2008) whih gives a pixel-based likelihood framework for FRAP. In FRAP the di�usion

oe�ient of �uoresent moleules is determined loally in a mirosope. Fluoresent

moleules are bleahed and deativated typially in a vertial ylinder by a high intensity

laser pulse of short duration. This results in a dereased �uoresense in the bleahed

volume, see the upper left image in Figure 12.1 whih shows �uoresene, observed in a

onfoal laser sanning mirosope, shortly after the laser pulse. The sequene of images

in Figure 12.1 shows the evolution of �uoresene in a horizontal 2D area orresponding

to a thin volume extending a short distane in the vertial diretion. From the image

sequene we see how �uoresene is reovering due to the fat that unbleahed moleules

di�use into and bleahed moleules di�use out of the deativated volume. The reovery

is learly seen in Figure 12.1 and even more learly in Figure 12.2.

The observed pixel intensity in the images will be modelled by a ombination of a

solution to the di�usion equation and an assumption of independent normally distributed

errors. The di�usion of �uorohromes is supposed to follow the di�usion equation (similar

to the heat equation)

∂C

∂t
= D

(

∂2C

∂x2
+
∂2C

∂y2
+
∂2C

∂z2

)

, (12.9)

where C is the onentration of unbleahed �uorohromes and D is the di�usion oe�-

ient. Let us regard a rotationally symmetri bleahed region and assume that there is

no net di�usion in the z-diretion and further that the �uorohromes are initially (before

the high intensity laser pulse) uniformly distributed.

With polar oordinates the di�usion equation an be written

∂C

∂t
= D

(

1

r

∂C

∂r
+
∂2C

∂r2

)

, (12.10)
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Figure 12.1: Plots of images from the �rst photobleahing series with 256 x 256 pixels

desribed in Table 12.1. The left top image is the �rst after bleahing, then follows images

about 1 s, 2 s, 4 s, 8 s and 16 s later.
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where r is the distane from the entre of the bleahed region. Let C0(r) denote the

�uorohrome onentration at time zero (immediately after the high intensity pulse),

and let I0(x) = (1/π)
∫ π

0
exp(−x cos t) dt denote the modi�ed Bessel funtion of order

zero. The solution of equation (12.10) an be written on the form

C(r, t) =
1

2Dt
exp

(

− r2

4Dt

)
∫ ∞

0

uC0(u)I0

( ru

2Dt

)

exp

(

− u2

4Dt

)

du. (12.11)

Figure 12.2: Plots of �tted onentration and pixel values, averaged over pixels with equal

distanes to the bleahing entre, as a funtion of distane r to the bleahing entre for

the same series as shown in Figure 12.1. The left top image is the �rst after bleahing,

then follows images about 1 s, 2 s, 4 s, 8 s and 16 s later.

If we would have omplete bleahing the intensity pro�le immediately after bleahing

would be desribed by an inverse top hat funtion. However, the bleahing is not omplete

and di�usion starts diretly to blur this pro�le and in the upper left images in Figures 12.1

and 12.2 we see a pro�le rather di�erent from a top hat. We will assume that the initial

pro�le is an approximately Gaussian pro�le, and suppose that the initial onentration

has the form

C0(r) = a0 −
a1
r20

exp

(

−r
2

r20

)

du. (12.12)
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Then the solution of equation (12.10) with the initial ondition C(0, r) = C0(r) simpli�es

to

C(r, t) = a0 −
a1

4Dt+ r20
exp

(

− r2

4Dt+ r20

)

du. (12.13)

Let p(i, t) denote the observed intensity at time t at pixel i with distane ri to the entre
of the bleahed region. We will assume that exept for additive random noise the pixel

intensity is proportional to the �uorohrome onentration C(ri, t). Let us further assume

that pixel-wise the noise is normal with mean zero and variane σ2
with independene

between di�erent pixels and di�erent times. Let S denote the set of pixels and T the

set of times regarded. Thus we assume that the pixel-values p(i, t), i ∈ S, t ∈ T , are
independent with probability density

f(p(i, t); a0, a1, D, r0, σ
2) =

1√
2πσ2

exp

(

−(p(i, t)− C(ri, t))
2

2σ2

)

. (12.14)

The likelihood funtion is the joint probability density for all pixels and all times, and

due to independene it is

L(θ) =
∏

t∈T

∏

i∈S

1√
2πσ2

exp

(

−(p(i, t)− C(ri, t))
2

2σ2

)

, (12.15)

where θ is the parameter vetor θ = (a0, a1, D, r0, σ
2).

The log-likelihood ℓ(θ) = logL(θ) is then

ℓ(θ) =
|T ||S|
2

log(2πσ2)− 1

2σ2

∑

t∈T

∑

i∈S

(p(i, t)− C(ri, t))
2, (12.16)

and it is maximized with respet to the parameter vetor θ to �nd the ml estimates, the

most likely parameter values given the observed images. Likelihood theory allows om-

putation of parameter estimates together with orresponding standard errors, ompare

Setion 14.12. The parameter estimates are approximately multivariate normally dis-

tributed with a ovariane matrix that is the inverse of the observed information matrix.

The entry in row j and olumn k of the observed information matrix is

− ∂2

∂θj∂θk
ℓ(θ), (12.17)

evaluated at θ = θ̂, where θ̂ is the ml estimate of θ. If the oordinates of the entre of

the bleahed disk are unknown there will be two extra parameters in the likelihood.

In (Jonasson et al., 2008) results from experiments with a Sodium Fluoresein probe

in polyethylene glyol are reported. Two series of experiments with respetively 128×128
pixel images and 256 x 256 pixel images were performed, and in eah series four repliates

with di�erently plaed bleahing entres were used. Results from the experiments are

shown in Table 12.1 and for one of the repliates in more detail in Figures 12.1 and 12.2.

As a hek of the FRAP results given in Table 12.1 a orresponding NMR di�usometry

experiment was performed. It gave an estimated di�usion oe�ient of 62.0 µm2/s with
a standard error of 1.9 µm2/s, whih is well in line with the results in Table 12.1.
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Table 12.1: Results from an experiment with two repliate series. For the �rst four

repliates (with 128×128 pixels) 48 images were used and for the last four repliates (with

256 x 256 pixels) 18 images were used. The olumns D and s show di�usion oe�ients

and standard errors estimated by maximum likelihood, while D̄ and srepl show averages

and standard deviation from the repliate series.

Repliate No of pixels D (µm2/s) s (µm2/s) D̄(µm2/s) srepl (µm
2/s)

1 128×128 64.3 0.8

2 128×128 60.1 0.8

3 128×128 61.1 0.8

4 128×128 59.6 0.8 61.3 2.1

1 256×256 61.0 0.5

2 256×256 61.8 0.5

3 256×256 60.8 0.4

4 256×256 63.8 0.5 61.8 1.4

12.2.1 Exerises

Exerise 12.1. Verify that χ2
in equation (12.5) is hi-square distributed with dK degrees

of freedom.

Exerise 12.2. Verify that C(r, t) given by equation (12.13) satis�es equation (12.10) with
the initial ondition (12.12).

Exerise 12.3. In the omputation of the likelihood in equation (12.15) it is assumed that

noise ontributions in di�erent pixels are independent. Take a lose look at one of the

images in Figure 12.1. Does it seem as the independene assumption is valid. Desribe

how you ould hek the independene assumption with aess to the images in Figure

12.1.
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12.3 Estimation of partile onentration from single-

partile traking

Nano-sized �uoresent partiles observed in a mirosope an typially be deteted in a

rather thin retangular box suh as shown in Figure 12.3. To determine partile on-

entration we need to know the dimensions of the detetion region. The extension in

the horizontal diretions an ususally be determined in a straightforward way from the

mirosope �eld of view. However, the size in the vertial diretion is muh more di�ult

to measure as it depends on a number of fators suh as the partile detetion algorithm

and the brightness of the observed partiles. Suh properties are not �xed but an vary

onsiderably between experiments. In (Röding et al., 2011) this problem is analyzed

and the vertial dimension is estimated from the trajetory length distribution. We will

assume that the detetion region thikness is onsiderably smaller than the horizontal

dimensions whih means that partiles typially enter and leave the detetion region by

moving upwards or downwards. The trajetory length distribution is then essentially

determined by the detetion region thikness. Roughly, short trajetory lengths indiate

a small thikness.

Figure 12.3: A mirosope detetion region modeled as a retangular box entred in the

liquid suspension where partiles move. Partiles outside the detetion region annot be

observed. The traking depth is 2a and the thikness of the suspension is 2A.

Let us assume that we observe a partile at positions Xi at K equidistant time-points

ti = i∆t, i = 1, . . . , K, typially orresponding to K onseutive frames in a video se-

quene. We use the same notations as in Setion 12.1, just that we start here at time

t1 = ∆ rather than time 0. Thus the partile enters the detetion region at time t1 and
leaves it after K observed positions. Although the partile moves in 3D we will simplify

and only onsider the motion in 1D, namely the z-diretion. Thus we assume that the par-

tile enters and leaves the detetion region from above or below, whih should be a good

approximation when the vertile dimension 2a of the detetion region is muh smaller

than the horizontal dimensions. We also assume that the detetion region thikness 2a
is muh smaller than the thikness 2A of the liquid suspension volume.
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Considering only 1D di�usion in the z-diretion we assume that initially the partile

position is uniformly distributed in the interval [−A,A] and a partile outside the deteion
region is assumed to be uniformly distributed over [−A,−a]∪ [a, A]. Let f(z) denote the
probability density of the position of a partile that has just entered the detetion region.

One an then show that f(z) = 0 for |z| > a and

f(z) =
h(z)

∫ a

−a
h(z)dz

, z ∈ [−a, a], (12.18)

where

h(z) =
1

2(A− a)

[

Φ

(

z +A√
2D∆t

)

− Φ

(

z + a√
2D∆t

)

+Φ

(

z − a√
2D∆t

)

− Φ

(

z −A√
2D∆t

)]

(12.19)

and Φ denotes the standard normal umulative distribution funtion. A proof of this is

outlined in Exerise 12.5 below. Let Zk denote the position of a partile and let fk denote
the non-normalized density of the partile position after k steps assuming that K ≥ k,
more preisely fk(z) = d/dz[P (Zk ≤ z and K ≥ k)], for k ≥ 1. By de�nition fk(z) is
zero outside [−a, a]. For the �rst position of the partile in the detetion region we have

f1 = f given by (12.18). To ompute the probability density of the partile after step 2,

f1 is onvolved with the Gaussian propagator

G(z) =
1

2D∆t
φ
( z

2D∆t

)

, (12.20)

where φ is the density of a standardized normal variable. Sine we assume that the

partile stays in the detetion region K steps it annot be outside the interval [−a, a] and
the density has to be trunated. Generally the density fk an be reursively omputed

from fk−1 aording to

fk(z) =

{
∫∞

−∞
fk−1(z0)G(z − z0) dz0, z ∈ [a, a],

0, z 6∈ [−a, a]. (12.21)

Computation of fk for k > 1 annot be performed analytially, but a fast numerial

sheme with probability densities approximated by translates of a Gaussian kernel is

desribed in (Röding et al., 2011). In Figure 12.4 the omputation of the sequene of

densities fk, k ≥ 1 is illustrated.

The probability that a partile stays in the detetion region for at most k onseutive

steps is

Pa(K ≤ k) = 1−
∫ a

−a

fk+1(z) dz, (12.22)

where the dependene on a is emphasized. The probability distribution for the trajetory

length is then obtained from

Pa(K = k) = Pa(K ≤ k)− Pa(K ≤ k − 1). (12.23)

Suppose now that we have observed an ensemble of idential partiles with known dif-

fusion oe�ient. The assumption of known (or well estimated) di�usion oe�ient is

reasonable as it an readily be estimated from the partile trajetories, ompare (12.4).
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Figure 12.4: Illustration of the proedure for omputing the trajetory length distribution.

Here f1(z) is the probability density of a partile that has just entered the detetion

region aording to equation (12.18). Trunation outside of [−a, a] of the onvolution

f1 ⋆G(z) yields the non-normalized density f2(z) whih integrates to the probability that

the partile still remains in the detetion region for a seond sampling point, and so forth.

Let us onsider trajetories with length K ≥ kmin. As disussed in (Röding et al., 2011)

it is typial to impose a lower threshold like K ≥ 3 or K ≥ 4 for the trajetory length

as shorter trajetories are more likely to be false positives. Let Nk denote the number of

observed trajetories of length k. Then the log-likelihood funtion is

ℓ(a) =
∑

k≥kmin

Nk logPa(K = k|K ≥ kmin), (12.24)

where

Pa(K = k|K ≥ kmin) =
Pa(K = k)

Pa(K ≥ kmin)
(12.25)

and Pa(K ≥ kmin) is omputed from (12.22). The maximum likelihood estimate â is the
a-value that maximizes ℓ(a) in (12.24).

After having estimated the traking depth a it is possible to estimate the partile

onentration (also alled the number onentration). Let N̄ denote the mean number of

partiles per video frame. A suitable point estimator of the partile onentration c is

ĉ =
N̄

8âaxay10−12
partiles/ml, (12.26)

where 2ax and 2ay are the lateral sizes in µm of the detetion region. We an estimate N̄
by ounting trajetories as follows. Let n be the number of frames, and let Nk as earlier

be the number of observed trajetories of length k. The number of observed partile

positions is the sum of all trajetory lengths. Dividing by the number of frames we get

an estimate of the mean number of partiles per frame, and we estimate N̄ by

N̄ =
1

p̂obs

1

n

∑

k≥kmin

kNk. (12.27)
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The fator p̂obs orrets for underestimation of the onentration due to disarding tra-

jetories with length k < kmin,

p̂obs =

∑

k≥kmin
kPâ(K = k)

∑

k≥1 kPâ(K = k)
. (12.28)

With this orretion fator the estimate N̄ in (12.27) beomes approximately unbiased.

The standard error of the onentration estimate an be assessed by bootstrapping, om-

pare Setion 14.12. It is here suitable to perform the bootstrapping on video level,

sine videos are (approximately) independent. Thus B bootstrap samples are obtained

by sampling B times with replaement from the set of videos, and from eah sample

the onentration estimates ĉ1, . . . , ĉB are omputed aording to (12.26). This gives an

approximate standard deviation estimate

σĉ =

(

1

B − 1

B
∑

i=1

(ĉi − cmean)
2

)1/2

, (12.29)

where cmean is the mean of the bootstrap estimates. This method relies on that the

videos are approximately equally long and independent. The simulation study brie�y

desribed below, and in more detail in (Röding et al., 2011), leads to the onlusion that

the traking depth and the onentration estimates are approximately unbiased and that

bootstrap errors for B = 50 are quite lose to the atual standard errors.

In the simulation study partiles were moving aording to 3D random walk with

time inrements ∆t and independent zero mean normally distributed inrements with

variane 2D∆t in all three dimensions. Partiles moved in a ube with side length 2A =
40 µm, ompare Figure 12.3, with periodi boundary onditions. Partile trajetories

were reorded when partiles entered the detetion region. In the study three di�erent

di�usion oe�ients, D = 1 µm2/s, D = 2 µm2/s, and D = 5 µm2/s, and a series of

values for the detetion region thikness from 0.1 to 2 µm were used. The onentration

of partiles was c = 109 partiles/ml. For eah ombination of di�usion oe�ient and

detetion region thikness 20 000 simulations were performed and the mean obtained

estimates of a and c are shown in Figure 12.5.

In addition to the results from simulations, results from experiments with 0.19-µm
and 0.52-µm partiles are also reported in (Röding et al., 2011). In Figure 12.6 we

see onentration estimates for 5 dilutions with the 0.19-µm partiles. Estimated 95%

on�dene intervals obtained by bootstrapping for eah dilution are also shown. Ideally

the onentration estimates should fall on the solid straight line shown. However, this

line is not perfetly known as there are some unertainties of the size of the partiles.

Mean partile diameter was estimated by use of light sattering and was found to be

0.207 µm with a standard deviation of 0.008 µm. From this a 95% on�dene interval

for the solid line is obtained and shown in Figure 12.6.

From Figures 12.5 and 12.6 we see that the method suggested in (Röding et al., 2011)

performs well both for simulated and experimental data.
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Figure 12.5: Simulation study of the traking depth parameter a (upper) and the on-

entration c (lower). Mean estimates are shown for D = 1 µm2/s (red irles), for D = 2
µm2/s (magenta squares), and for D = 5 µm2/s (blue diamonds) as funtions of the true

value of a. The true value of a is given by the blak solid line. The true onentration of

partiles was c = 109 partiles/ml. The inreasing bias (negative for a and positive for

c) for inreasing a is due to the 1D approximation in the model for the trajetory length

distribution.

Figure 12.6: Experimental results with estimated onentrations for di�erent dilutions

of 0.19-µm partiles with estimated 95% on�dene intervals. The onentration as es-

timated from the stok-solution onentration (solid line) and estimated 95% on�dene

intervals (dashed lines) are also shown.
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12.3.1 Exerises

Exerise 12.4. In Figure 12.5 we see that there is a negative bias for the estimated thik-

ness a of the detetion region and a positive bias for the estimated partile onentration.

In both ases the size of the bias inreases with inreasing a and also with dereasing

di�usion oe�ient D. Give qualitative explanations of these e�ets.

Exerise 12.5. Try to derive (12.18). You an for instane start by �nding the distribution

of a partile for whih you only know that it is outside the interval [−a, a]. Convolve

then this distribution with the Gaussian propagator, ompare with (12.21).

12.4 Estimation of partile onentration from partile

ount time series

The method for estimation of partile onentration disussed in the previous setion

requires partile traking, that is pairing partiles from one frame to the following frame.

This may be di�ult for fast partiles and high onentrations. In this setion we will

follow (Röding et al., 2013) and desribe a method whih only requires ounting the

number of partiles in eah frame but no traking of the individual partiles.

In Figure 12.7 we see an experimentally observed ount proess with the number of

partiles varying between about 18 and 37 partiles. Suh a proess of partile ounts we

will all a Smoluhowski proess in honour of the Polish physiist M. von Smoluhowski

who in (von Smoluhowski, 1906) developed an alternative to Einstein's desription (Ein-

stein, 1905) of Brownian motion.

Figure 12.7: An example of an experimentally observed Smoluhowski proess obtained

by ounting liposomes in whole blood, superimposed over a sample frame from the raw

image data, ompare (Braekmans et al., 2010).

We will assume that partiles move in and out of a mirosope detetion region of

the type shown in Figure 12.3. In this setion we will all the lateral dimensions of

the detetion region 2ax and 2ay and the vertial dimension 2az. Thus 2a in Figure
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12.3 orresponds here to 2az. The number of partiles in a sequene of frames varies as

illustrated in Figure 12.8.

Figure 12.8: Illustration of a Smoluhowski proess. Di�using partiles reside both inside

(yellow) and outside (grey) the detetion region. Partiles moving in and out of the

detetion region and the number of deteted partiles is �utuating, forming a random

time series.

Let us now desribe an approximate Markov statistial model for the Smoluhowski

proess. We assume that partiles move independently of eah other aording to a

Brownian motion with independent inrements in all three dimensions with mean zero

and variane 2D∆t, where ∆t is the interval between observations (frames). Let Xn, n =
1, . . . , N , denote the number of partiles observed in the nth frame. Then

Xn+1 = Xn −On + In, (12.30)

where On is the number of partiles, out of the Xn partiles initially present, exiting the

detetion region, and In is the number of partiles entering that region, between the two

observations Xn and Xn+1. We shall assume that regardless of observation up to (and

inluding) Xn the random variable In is Poisson distributed with a parameter λ, that is,

Pr(In = k|X1, . . . , Xn) =
λk

k!
e−λ. (12.31)

Another assumption, whih we shall make, is that given observations up to (and inluding)

Xn, the random variable On is binomially distributed with probability-parameter µ, more

preisely, that

Pr(On = j|X1, . . . , Xn) =

(

Xn

j

)

µj(1− µ)Xn−j. (12.32)

Based on these assumptions we approximate the distribution of the proess of partile

ounts (Xn, n ≥ 1) with a Markov model with transition probabilities pij = Pr(Xn+1 =
j|Xn = i) given by

pij(λ, µ) = e−λ

j
∑

k=max(0,j−i)

λk

k!

(

i
i− j + k

)

µi−j+k(1− µ)j−k. (12.33)

One an show that a Markov hain with transition probabilities given by (12.33) has a

stationary distribution whih is a Poisson distribution with parameter λ/µ, that is

Pr(Xn = k) = πk =
(λ/µ)ke−λ/µ

k!
. (12.34)
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Given the Markov assumption the joint distribution of partile ounts X1, . . . , XN an

be written

Pr(X1 = x1, . . . , XN = xN) = Pr(X1 = x1)
N
∏

k=2

Pr(Xk = xk|Xk−1 = xk−1). (12.35)

For a realization x1, . . . , xN we obtain a log-likelihood funtion ℓ(λ, µ) = ℓ(λ, µ|x1, . . . , xN)
given by

ℓ(λ, µ) = log
(λ/µ)x1e−λ/µ

x1!
+
∑

i,j

Nij log pij(λ, µ), (12.36)

where Nij is the number of transitions from state i to state j. We obtain the maximum

likelihood estimates λ̂ and µ̂ by maximizing the log-likelihood ℓ(λ, µ). For estimation

of the lateral dimension parameter az it turns out that the ruial parameter is µ. The
parameter µ may be interpreted as the probability that a partile uniformly distributed

in the detetion region exits this region in a time interval of length ∆t, ompare (12.32).

With this interpretation one an show that

µ = µ(az) = 1− F (ax, D)F (ay, D)F (az, D), (12.37)

with

F (a,D) =

√
2D∆t

2a

{

2a√
2D∆t

[

2Φ

(

2a√
2D∆t

)

− 1

]

+ 2φ

(

2a√
2D∆t

)

− 2φ(0)

}

, (12.38)

where Φ and φ denote the distribution funtion and the probability density of a stan-

dardized normal variable. Note that in (12.37) we write µ = µ(az) beause here az is

the important unknown parameter. The lateral dimension parameters ax and ay an

be measured diretly from the mirosope geometry and D here needs to be estimated

separately, for instane by separate partile traking. Let us also note that in order to

obtain valid standard errors and on�dene intervals it is suitable, as in Setion 12.3, to

use bootstrapping on the 'video level'.

To validate the suggested method both simulations and experiments were used. In

the simulations a predetermined number of partiles were allowed to di�use in three

dimensions in retangular box, as the large box in Figure 12.3, with periodi boundary

onditions. Three di�erent di�usion oe�ients, D = 1, D = 2 and D = 5 µm2
s

−1
, and

20 di�erent az-values ranging between 0.1 and 2 µm were used. The resulting estimates of

the detetion depth parameter az and the onentration are shown in Figure 12.9. From

the �gure we see that the method performs very well exept for some minor bias for small

az-values.

To experimentally verify the method suggested two experiments with �uoresent poly-

mer nanospheres with diameter 0.2µm and 0.5µm were performed. We will here show

the results for the smaller diameter. A water dispersion of the partiles was diluted by a

fator of 1900, 2400, 3400, 5800 and 14800. The theoretial onentration of partiles in

partiles mL

−1
an be estimated from

C
theoretial

=
6×1010×SρL

πρSd3
, (12.39)
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Figure 12.9: Simulation study of estimation of the detetion depth parameter az and the

onentration estimate C. For D = 1 µm2
s

−1
(red irles), D = 2 µm2

s

−1
(magenta

squares) and D = 5 µm2
s

−1
(blue diamonds) the mean estimates of az (divided by the

true value of az) and C are shown as funtions of the true value of az. The mean estimates

were omputed from 106 simulations for eah data point, and the true onentration of

partiles was C = 109 partile mL

−1
.

where S = 1 is the weight perent of solids, with a relativ standard deviation of 5%,

ρL = 1.00 g m−3
is the density of the suspension, ρS = 1.05 g m−3

is the density of the

solid partiles (all values aording to the manufaturer). Further, using dynami light

sattering the diameter of the partiles was found to be d = 0.207µm with a standard

deviation of 0.008µm (in orrespondene with the manufaturer results for the partiular

bath of nanospheres). Using the standard error-propagation equation the theoretial

partile onentration with standard deviations were found for all dilutions and ompared

with the results from the method suggested. The results are shown in Figure 12.10 and

it lear from the �gure that an exellent agreement was found between the theoretially

and experimentally obtained onentration values.

12.4.1 Exerises

Exerise 12.6. The Markov model used in the present setion is based on (12.31) and

(12.32) leading to the transition probabilities (12.33). Motivate why equations (12.31)

and (12.32) are only approximately true.

Exerise 12.7. In Figure 12.9 we see that there is a negative bias for the estimated thik-

ness az of the detetion region and a positive bias for the estimated partile onentration.

In both ases the size of the bias inreases with dereasing az and also with inreasing

di�usion oe�ient D. Give qualitative explanations of these e�ets.

Exerise 12.8. Show that (12.34) gives a stationary distribution for a Markov hain with

transition probabilities (12.33).

Exerise 12.9. Try to derive (12.37) with F (a,D) given by (12.38) by omputing the
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Figure 12.10: Estimated onentrations from an experiment with di�erent dilutions of

0.2 µm partiles with estimated 95% on�dene intervals ('inverse dilution' is a 'relative

onentration'). The onentration as estimated from the stok-solution onentration

(solid line) with estimated 95% on�dene intervals (dashed lines) is shown (upper). Fur-

ther, typial examples of the underlying Smoluhowski proesses are shown with olours

red/green/blue/yan/magenta in order of of dereasing onentration (lower).

probability that a di�using partile stays within the detetion region in all three dimen-

sions.

12.5 Single partile raster image analysis of di�usion

As we have seen in the previous setions of this hapter there are several powerful methods

for estimating di�usion oe�ients from series of images. In this setion we shall study

a method that in priniple allows us to estimate di�usion oe�ients from single images.

The method is based on using a lever raster san pattern desribed in (Digman et al.,

2005). Images of di�using moleules are olleted with a onfoal laser sanning miro-

sope using a raster san pattern with a spei� time struture. During the sanning,

adjaent pixels in the x-diretion are visited within a short time interval whereas the time

between visits to adjaent pixels in the y-diretion is muh longer, see Figure 12.11. The

method RICS, Raster Image Correlation Spetrosopy, is suggested in (Digman et al.,

2005) to analyse raster images by use of orrelation funtion estimation typially om-

puted by the fast Fourier transform method. One an show, ompare equation (24) in

(Long�ls et al., 2018), that the theoretial orrelation funtion G(ξ, ψ) for the sanned
image orresponding to two points (x, y) and (x+ ξ, y + ψ) is

G(ξ, ψ) =
1

〈N〉

(

1 +
4Dτ(ξ, ψ)

ω2
0

)−1(

1 +
4Dτ(ξ, ψ)

ω2
z

)−1/2

exp

[

− (Sξ)2 + (Sψ)2

ω2
0 + 4Dτ(ξ.ψ)

]

,

(12.40)

where 〈N〉 is the average number of partiles in the observation volume, S is the pixel

size, and the funtion τ(ξ, ψ) takes the form
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τ(ξ, ψ) = |τpξ + τlψ| (12.41)

orresponding to the time it takes to move between the points (x, y) and (x+ ξ, y + ψ).
The parameters ω0 and ωz in (12.40), alled lateral and vertial waists, orrespond to the

deay rate of the point spread funtion in the lateral and vertial diretions and an be

estimated as standard deviations of a 2- or 3-dimensional Gaussian funtion �tted to the

laser point spread funtion.

Figure 12.11: Movement of sanning beam aording to the raster san pattern used in

RICS and SPRIA. The sanning time between adjaent pixels in the x- and y-diretions
are τp and τl, respetively, and τp ≪ τl.

In (Long�ls et al., 2017) an alternative analysis method SPRIA, Single Partiel Raster

Image Analysis, is introdued based on properties of the individual di�using partiles.

By analysing eah partile separately possibilities are opened for analysis of systems of

partiles with a mixture of di�erent di�usion oe�ients and for heterogenous materials

where the di�usion properties vary with loation.

The sampling time struture provides information on the dynamis of the partiles

inside eah image. In Figure 12.12 typial raster san images are shown for di�erent time

sales demonstrating the e�et of varying san rates visually on experimental data with

175-nm beads sanned at dereasing speed. In (A) at san rate 8000 Hz almost immobile

round-shaped partiles are observed. In (B) the partiles sanned at 400 Hz move slowly

and the horizontal partile lines look like sequenes of shifted bright lines. In (C) the

san rate is further dereased to 100 Hz and the sequene of bright lines orresponding

to one partile beome even more shifted as the partile is moving signi�antly between

aquisition of onseutive lines.
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Figure 12.12: Raster san images of 175 nm beads at a pixel size of 48.1 nm and varying

san rate: (A) 8000 Hz, (B) 400 Hz and (C) 100 Hz.

To be able to apply the single partile method, individual partiles have to be extrated

from an image as shown in Figure 12.13. The proedure is based on two threshold levels

T1 > T2. First �nd loal photon ount maxima above the level T1. Then �nd around

eah hosen maximum the smallest axis-parallell retangle suh that all observed photon

ount levels just outside the retangle border are below T2, see (Long�ls et al., 2017)

for details. It turns out that the hoie of levels is not ritial, ompare Exerise 12.11,

whih seems quite plausible from a look at Figure 12.13. In Figure 12.14 we �nd an

axis-parallell retangle hosen with T1 = 10 and T2 = 5.

Figure 12.13: Freely di�using �uoresent beads with 175 nm diameter. (A) A 256×256
pixel raster san image. (B) The partile highlighted with a red square in (A) extrated

from the image.

Let a partile P be de�ned by the axis-parallell retangle

P = {(x, y) : a < x < a+ L, b < y < b+K} (12.42)

around a loal maximum of photon ounts. The trajetory of the partile an be estimated

by use of the extrated image and used to estimate the di�usion oe�ient D of the
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Figure 12.14: Magni�ed neighbourhood of a 175-nm bead in a 2048×2048 raster san

image. The numbers orrespond to photon ounts in eah pixel and the loal maximum

is 20. The levels hosen are T1 = 10 and T2 = 5, and the retangle de�ning the partile

is found within the ontour de�ned by the red lines. The orresponding border onsists

of the pixels immediately outside the red ontour.

partile. In (Long�ls et al., 2017) a maximum likelihood method for estimating the

trajetory and the di�usion oe�ient D is desribed, but we will here desribe another

more diret way to estimate the trajetory and D. Let t(y) denote the time at whih we

san the horizontal line at y, and let N(x, y, tk) denote the measured number of photons

for a given partile at the pixel with entre (x, y) at time t(y) = tk, where k = 0, . . . , K.

The x position at time t(y) = tk is estimated by the entroid
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ψk =

∑

{(x,y)∈P :t(y)=tk}
N(x, y, tk) · x

∑

{(x,y)∈P :t(y)=tk}
N(x, y, tk)

. (12.43)

Then

D̂ =
1

2∆tK

K
∑

k=1

(ψk − ψk−1)
2, (12.44)

where ∆t = τl denotes the time between two onseutive line sans, is a suitable estimator

of D, ompare (12.4). From the simulated image shown in Figure 12.15, where we know

the true trajetory, it an be seen that both the maximum likelihood method (green) and

the entroid method (blak) give aurate estimates of the true trajetory (red).

Figure 12.15: A simulated raster san image of a partile with true trajetory (red),

the orresponding estimated trajetory omputed with the maximum likelihood method

(green) from (Long�ls et al., 2017) and with the entroid method (blak) from (Long�ls

et al., 2018), see (12.43).

By use of analyses of images from both simulations and experiments the SPRIA

method is in (Long�ls et al., 2017) evaluated and also ompared with the traditional

RICS method. In the simulation study, Gaussian random walk (disrete time Brownian

motion) of spheres was generated in a box of with periodi boundary onditions. The

sphere diameter ranged from 15 to 1000 nm. A minimum image size of 256×256 was

hosen. The number of images simulated in eah ase varied and was hosen suh that at

least 300 partiles and at least 100 images were olleted. Lateral and axial waists of the

point spread funtion were ω0 = 248 and ωz = 1270 nm orresponding to Gaussian �t to

an average measured z-san of immobile 175-nm �uoresent beads. The pixel dwell time

was τp = 1.71×10−7
s, the line time τl = 1.4×10−3

s and the pixel size S = 0.03µm. The
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results for 10D-values between 0.0625 and 64 µm2
s

−1
are shown in Figure 12.16 inluding

bootstrap standard deviation estimates obtained by B = 40 repetitions, ompare (12.29).

Results from experiments with partiles of four di�erent sizes: 100 nm, 175 nm, 490 nm

and 1000 nm, are shown in Figure 12.17. Both Figure 12.16 and Figure 12.17 show that

the SPRIA method performs well for the settings hosen.
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Figure 12.16: Illustration of simulation results with logarithmi sales on both axes.

Vertial blak lines orrespond to the expeted di�usion oe�ient aording to Stoke-

Einstein's equation, and ideally the estimated D-values should be loated at the rossings
of the blak identity line and the vertial blak lines. Blue markers refer to SPRIA and

magenta to RICS, and both estimates are presented as estimates ± standard errors.

Markers have been moved horizontally relative to eah true value of the di�usion oe�-

ient to make the �gure more legible.

Figure 12.17: Illustration of experimental results for the SPRIA (blue markers) and the

RICS (magenta markers) di�usion-oe�ient estimations methods with �uoresent beads.

A logarithmi sale is uesd on the y-axis. Vertial blak lines orrespond to the expeted

di�usion oe�ient aording to Stoke-Einsteins's equation, and ideally the measured D-
values should be loated at the rossings of the blak logarithmi urve and the vertial

blak lines. Markers have been moved horizontally to make the �gure more legible.
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To indiate that the SPRIA method may be used to analyse di�usion in heterogenous

media a simple simulation example was performed in (Long�ls et al., 2017) with results

shown in Figure 12.18. Here the dynamis of partiles is supposed to vary suh that the

di�usion oe�ient is 0.8 µm2
s

−1
inside a irle and 0.4 µm2

s

−1
outside the irle. In

the simulation 2142 partiles in 300 images were found. The pixel size was 0.03 µm and

the image resolution was 256×256 pixels. The mobility map shown in the right part of

Figure 12.18 was obtained by smoothing with a Gaussian kernel with bandwidth σ = 15
pixels. The mobility map indiates that the SPRIA method allows reovery of medium

heterogeneity to a ertain extent.

Figure 12.18: (A) Image of a heterogenous sample used in a simulation study with pixel

olours orresponding to the expeted di�usion oe�ient in µm2
s

−1
. (B) Mobility map,

smoothed with a Gaussian kernel with bandwidth σ = 15 pixels, based on 2142 partiles

in 300 images with the boundary irle between the two media in blak. The pixel size

is 0.03 µm and the resolution of the images is 256×256 pixels.

What are the onditions for using the SPRIA method? This is disussed in detail in

(Long�ls et al., 2017). Roughly two onditions should be satis�ed. Firstly, the density

of partiles must not be too large if individual partiles should be identi�able. Seondly,

sampling time between lines should be suh that adjaent horizontal partile lines should

di�er to some extent, but not too muh as partiles then beome split into several parts.

This seond ondition is illustrated in Figure 12.18. Partiularly the lower right part

(D) shows a situation where the detetion algorithm will split the bead into several

(presumably �ve) partiles.
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Figure 12.19: Typial partile images with settings: Sx = 0.03µm, τp = 7.5 · 10−7
s,

τl = 2.5 · 10−3
s, and san rate 400 Hz. (A) 1000-nm bead; (B) 490-nm bead; (C) 175-nm

bead; (D) 100-nm bead. The extration step will identify exatly one bead in (A) and in

(B). In (C) the bead may be split into two partiles, as the last four to six lines are not

onneted to the previous. In (D) the algorithm will (depending on the thresholds used)

split the bead into presumably �ve partiles (orresponding to the following maxima: one

in the top left, and four in the middle lower part of the image separated by lines with

low photon ounts).

12.5.1 Exerises

Exerise 12.10. Figure 12.12 shows what happens when we san with di�erent san rates.

If we instead sample at onstant rate but have partiles (of the same kind and size) in

three di�erent media with high, medium and low visosity we would get similar results.

If we have low visosity, whih of the three ases (A), (B) and (C) would that orrespond

to?

Exerise 12.11. In Figure 12.14 we use thresholds T1 = 10 and T2 = 5. Suppose that we
hange thresholds to T1 = 15 and T2 = 10. How muh will that hange the estimated

di�usion oe�ient (in perent) for the partile shown?
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Chapter 13

Image analysis of transmission eletron

mirographs

13.1 Identi�ation of three-dimensional gel mirostru-

tures

Mass transport in gels depends ruially on loal properties of the gel network. In (Nisslert

et al., 2007) a method for identifying the three-dimensional gel mirostruture from sta-

tistial information in transmission eletron mirographs (TEM) is suggested. The gel-

strand network is modelled as a random graph with nodes and edges (branhes). The

distribution of edge length, the number of edges at nodes and the angles between edges

at a node are estimated from transmission eletron mirographs. The 3D gel network

is simulated by Markov hain Monte Carlo (MCMC) methods based on statistial infor-

mation found from the mirographs. The mirographs an be viewn as projetions of

stained gel-strands in slies, and a formula is derived for estimating the thikness of the

stained gel slie based on the total projeted gel-strand length and the number of times

that gel-strands enter or exit the slie.

To �nd relevant features of a gel-strand network we aim at separating the gel-strands

from the bakground, and to reate a skeleton showing the network as thin lines. In

Figure 13.1 we see in the left part a TEM mirograph of a Sepharose gel to be analysed.

The image orresponds to an area of about 1700×1700 nm and shows the mirostruture

of the gel network at a magni�ation of 10 000 times. Images are saved as 8-bit grey-

sale images of size 1024×1024 pixels. One ould hope for diretly �nding the gel-strand

network by thresholding, ompare Figure 1.18, but the histogram in Figure 13.2 shows

that that seems di�ult.
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Figure 13.1: Left: one of the 1024×1024 pixel TEM mirographs showing a Sepharose

gel at 10 000 times magni�ation. Right: magni�ation of the area within the red box in

the upper left part of the left image.

Figure 13.2: Histogram of the grey level intensity of the mirograph in the left part of

Figure 13.1.

To �nd the gel-strand network a series of image operations are performed as shown in

Figure 13.3. We will here give a brief desription of the di�erent steps illustrated in this

�gure, and refer to (Nisslert et al., 2007) for more details and litterature referenes. The

upper left image in Figure 13.3 shows the starting image. To derease the level of noise a

Wiener �lter is used to smooth the image. The Wiener �lter is a low-pass �lter that uses

prior information about the noise in the image to optimize the noise redution. As the

intensities of pixels that represent the gel-strands vary onsiderably, a minimum �lter is

150



then applied. This takes the minimum pixel value from a 3×3 neighbourhood, resulting

in an overall darker image with a more uniform grey-level polymer struture as shown in

the right part in the upper �gure row. The minimum �lter also produes some new dark

spots in the bakground, and to suppress these a 5×5 median �lter is applied.

Figure 13.3: Illustration of the sequene of image analysis steps used to �nd the gel-strand

network. In the three upper images we see (from left to right): a 400×400 pixel part of the
image to left in Figure 13.1, the same image after appliation of a Wiener �lter, and the

result of applying a minimum �lter. In the middle row we see similarly (from left to right):

the result after appliation of a 5×5 median �lter, the binary image after thresholding,

and the result after removal of small blak spots. The lower row shows (from left to

right): the skeleton reated from the binary image, a skeleton with branhes shorter than

10 pixels removed, and �nally to the lower right the resulting skeleton displayed in red

onto the original image.
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The gel-strand network is now somewhat better separated from the bakground. Thresh-

olding is still problemati, but possible. The method of (Otsu, 1979) is used with the

threwsholds determined by minimizing the intralass variane between dark and light

pixel values. In the thresholding the image was further divided in 25 di�erent parts with

individual thresholds to take are of varying intensity in di�erent parts of the image. The

threshold values from Otsu's method are also dereased with 4% to get the gel-strands

thinner. Further blak spots smaller than 80 pixels are removed as shown in the right

image in the middle row of the Figure 13.3.

Having now a binary image whih reasonably well represents the gel struture in the

mirographs, the next step is to reate a skeleton representation of the network. Two

mehods were tried: medial axis transformation and thinning, (Sonka et al., 2015). Both

methods reate skeletons that represent the mirostruture of the gel network rather

well, but a lot of small branhes are reated without orrespondene in the original

mirographs. Comparing skeletons produed by the two methods, thinning was found to

produe less of these artefats and was hosen. Branhes shorter than 10 pixels are also

removed from the skeletons. The resulting network is shown in the middle image of the

lower row in Figure 13.3. Finally in the lower right part of the �gure we see the resulting

skeleton in red overlaid on the original image.

By looking at the loations in the gel-strand network where branhes have been re-

moved we an �nd a speial type of nodes alled bending points, as the removed short

branhes were often reated where the gel strands hange diretion. In the left part of

Figure 13.4 part of a skeleton is shown with nodes (with three branhes) marked in red,

end points in green and bending points in blue. The bending points are in the sequel

treated as nodes having only two onneted branhes.

Figure 13.4: Left: Part of a mirograph skeleton with nodes (with three branhes) marked

in red, end points in green and bending points in blue. Right: Skeleton with branhes be-

tween nodes marked in blue, branhes between end-points in green and branhes between

an end point and a node in red.

152



By using the end points and nodes we an measure branh lengths. This is done by

measuring the straight line distane between two end points, two nodes or one end point

and one node. The branhes are also measured more aurately by looking at the distane

between the pixels in the branhes, where the distane between horizontally or vertially

adjaent pixels is one and between diagonally adjaent pixels is

√
2.

In a skeleton we see, ompare the right part of Figure 13.4, three types of branhes.

Note that we look at projetions of a thin setion and that we assume full onnetivity

in the gel network. Branhes between between two end points orrespond to gel-strands

that enter and exit the setion. Branhes between an end point and a node orrespond

to gel-strands that enter or exit the setion, and branhes between two nodes are fully

ontained in the setion.

We want to �nd the distribution of angles between branhes at nodes. As we have a

disrete pattern of pixels we annot just use angles between adjaent pixels as that would

give only multiples of 45

◦
. Choosing a point too far from a node inreases the probability

of an inorret branh diretion. As a omprise the diretion eight pixels from a node

was used. Further, to �nd the thikness of gel-strands a binary representation of the gel

network and a distane map (Breu et al., 1995) is onstruted. The distane map gives

the shortest distane for eah pixel to the nearest non-gelstrand pixel. Combining this

with the skeleton representation of the gel mirostruture gives the radius distribution of

gel-strands.

Let us now look at slie thikness estimation. To obtain ontrast in the TEM images

a thin slie of gel is put into a uranium and lead bath. Uranium and lead are allowed to

di�use into the gel for about one hour and are adsorbed on the gel-strands. In (Nisslert

et al., 2007) a method is proposed to estimate slie thikness, whih orresponds to how

far uranium and lead has di�used into the gel. The method as desribed below is based

on the total projeted gel-strand length and the number of gel-strand rossings into or

out of the slie.

Assume that the gel-strand network onsists of a olletion of urves suh that es-

sentially all end points in the 2D projetion orrespond to a urve passing into or out

of a slie of thikness D. Gel-strand urves are supposed to have loally a well-de�ned

orientation. Figure 13.5 shows a short approximately linear urve segment ∆C of length

∆L that forms an angle α with a vertial line and has vertial distane y from segment

midpoint to the bottom of the slie. Assuming that the line segment is randomly rotated

in 3D around its enter one �nds that the angle α has probability density

p(α) = sinα, 0 ≤ α ≤ π/2, (13.1)

ompare Exerise 13.1. The length of the horizontal projetion of the orresponding urve

segment ∆C is L
hor

(∆C) = ∆L sinα with expetation

E(L
hor

(∆C)) =

∫ π/2

0

∆L sinαp(α)dα =
π∆L

4
, (13.2)

ompare (Baddeley & Jensen, 2005), p. 172.
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Figure 13.5: Short approximately linear urve segment ∆C of length ∆L with orientation

α relative to a vertial line and with a vertial distane y from midpoint to bottom of

slie. The slie is oriented suh that it has horizontal upper and lower boundaries.

To evaluate the number of rossings we ondition on the angle α. The length of the

vertial projetion of the urve segment is ∆L cosα, and we get a rossing out of the slie

if either y < (∆L/2) cosα or y > D − (∆L/2) cosα. Thus the onditional expetation

of the number of rossings of urves moving out of the slie is (1/D)∆L cosα. Sine we
should have equally many rossings from urves moving into the slie, the onditional

expetation of the total number of rossings is (2/D)∆L cosα. Averaging over α we get

the expeted number of rossings

E(N
ross

(∆C)) =
2

D

∫ π/2

0

∆L cosα sinαdα =
∆L

D
. (13.3)

Summing over all urve segments we �nd from (13.2) that the expeted horizontal urve

length is

E(L
hor

) =
πL

4
, (13.4)

where L is the total 3D urve length, and similarly the expeted number of rossings is

E(N
ross

) =
L

D
. (13.5)

From the last two equations we �nd

E(N
ross

) =
4

πD
E(L

hor

). (13.6)

This means that the slie thikness D an be estimated from the horizontal length L
hor

in the projetion and the number of rossings N
ross

into or out the slie, and we get the

estimate

D̂ =
4L

hor

πN
ross

. (13.7)
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Let us now see how the 3D mirostruture an be modeled as a random graph G =
(V,E) and reonstruted by use of MCMC simulation. A random graph onsists of a set

V = {v1, . . . , vN} of nodes (verties) and a set E of undireted edges between nodes. An

edge between two nodes u and v is denoted 〈u, v〉. In our MCMC modelling of the gel-

strand network we let nodes in the graph be either branhing points or bending points.

An edge 〈u, v〉 ∈ E if and only if there is a diret onnetion (that is a branh) between

the nodes u and v.

De�ne a probability measure for the random graph G = (V,E) by use of a real-valued

energy funtion f(g) suh that the probability density at G = g is

πf (g) =
1

Zf
e

−f(g), (13.8)

where Zf is a normalizing onstant ensuring that the probability density πf (g) integrates
to one. The hosen energy funtion is a sum of three omponents,

f(g) = f1(g) + f2(g) + f3(g), (13.9)

orresponding to lengths of edges, number of edges at nodes and angles between edges at

nodes, respetively.

The �rst energy omponent is

f1(g) = c1
∑

u∼v

(duv − d0)
2, (13.10)

where u and v are nodes of g, duv is the distane between them and u ∼ v means that there

is an edge between u and v. The target distane d0 is essentially the mean branh length

(in pixels) from the mirographs multiplied with a fator 4/π to ompensate for going

from two to three dimensions, ompare (13.2). The onstant c1 weighs the importane

to the energy of the edge length omponent.

The seond energy omponent orresponds to the number edges onneted to nodes.

In the mirographs almost all intersetion points have three onneted edges, but sine

bending points that have only two edges are also inluded, the target number n0 of

onnetions will be somewhat less than three (about 2.7). An energy omponent taking

this into aount is

f2(g) = c2
∑

v

(nv − n0)
2, (13.11)

where we sum over all nodes v of g and nv is the number of edges at v.

The third energy omponent is

f3(g) = c3
∑

v

∑

αv

(αv − α0)
2, (13.12)

where we sum over all nodes v of g and over all angles αv, less than π radians, between

edges onneted to v. With three edges at a node we expet by symmetry angles around

120

◦
degrees, but for nodes with two edges we expet somewhat larger angles.
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In the reonstrution of the gel network a sequene of graphs, Gn = (Vn, En), n =
0, 1, . . . , n

max

, is updated with a Metropolis algorithm, ompare Setion 4.7. The updat-

ing from Gn to Gn+1 is performed with two types of steps. In the �rst type of steps we

add or remove an edge to En (or leave En unhanged). In the seond type we move one

of the nodes of Vn a random distane (or leave Vn unhanged). The number N of nodes

in Vn is kept onstant. The two types of steps are performed as follows.

Type 1 step. Pik a random pair {u, v} of nodes. If 〈u, v〉 ∈ En we �rst remove it.

To obtain En+1 either add 〈u, v〉 or leave the set of edges unhanged aording to the

onditional πf distribution given Vn and all other edges of En.

Type 2 step. Pik a node v ∈ Vn and sample a random movement of the position of

the node v. The random movement ∆R is sampled from a uniform distribution in a 3D

sphere with radius 2 pixels. Consider the onditional πf distribution given all other nodes
of Vn and the set of edges En+1, and hoose aording to this distribution Vn+1 either

equal to Vn or equal to Vn with the hosen node moved by ∆R.

For further details of the MCMC simulation, inluding hoie of the weights (c1, c2, c3)
and the target values (d0, n0, α0) in the energy funtion, the reader is referred to (Nisslert

et al., 2007). As always in this type of simulations a large number of updates is needed.

Let us now show some results obtained from the image analysis. In Figure 13.6 we see

distributions of branh lengths, of angles between branhes and of gel-strand thikness.

Figure 13.6: Left: Distribution of branh lengths (in nm) between nodes, one pixel

orresponds to 1.66 nm. Middle: Distribution of angles (in degrees) between branhes at

nodes. Right: Distribution of gels strand thikness (gel-strand radius in nm).

The slie thikness of the setion, from whih the mirographs are projetions, was

estimated by use of (13.7). The total projeted length was obtained as the sum of all

branh lengths, and the total number of rossings was obtained as the total number of end

points in the skeleton (exluding end points at borders). From six images this resulted

in a thikness estimate of 90.6 nm with a standard error of 3.5 nm. A minor redution of

the thikness estimate was used, for details see (Nisslert et al., 2007), where it was also

onluded that uranium and lead had penetrated most of the slie.

Let us now brie�y look at the results from the MCMC simulations whih were per-

formed in an approximately 800×800×800 nm ubi box with periodi boundary on-

ditions. With a gel slie thikness of 90 nm, the node intensity per volume unit was

found, orresponding to N = 1604 in the ubi box and this N value was used in the

simulations. To ahieve approximate stationarity in the MCMC simulations 200 hundred
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iterations were used. In eah of these iterations �rst 10 000 iterations were performed

with onnetions between nodes reated or removed (see Type 1 step above), and then

10 000 iterations were performed with movement of nodes (see Type 2 step above). For

further details of the MCMC simulations, see (Nisslert et al., 2007). After obtaining the

skeleton, the branhes were thikened to obtain a volume perent of 4%. A result with a

3D rendering of the simulated gel network is shown in Figure 13.7.

Figure 13.7: Sreen shot of a 3D rendering of a simulated gel network with onstant

gel-strand radius of 9.2 nm, in a ube with 500 pixels side orresponding to 830 nm.

To evaluate the image proessing algoritms and the MCMC simulation algorithms we

ompare in Figure 13.8 a mirograph with omputed skeleton (red) to the left with a

simulated �mirograph� also with a omputed skeleton (red) to the right. Visually the

left and right part look rather similar.

Finally, in Figure 13.9 we show (in blak) the projetion of an atual simulated 3D

skeleton and (in red) the orresponding skeleton obtained from image proessing. The

skeletons look quite similar, indiating that the image proessing atually sueeds in

reating a skeleton representation from the mirographs.

13.1.1 Exerise

Exerise 13.1. Consider the approximately linear urve segment ∆C in Figure 13.5. Show

that if the urve segment is randomly rotated in 3D the angle α has probability density

given by (13.1).
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Figure 13.8: Left: Part of a mirograph, 500×500 pixels, with orresponding skeleton

marked in red. Right: Simulated �mirograph�, 500×500 pixels, with orresponding skele-
ton marked in red.

Figure 13.9: Projetion of the atual simulated 3D skeleton (displayed in blak), size

500×500 pixels, ompared with the orresponding skeleton obtained from the image pro-

essing (displayed in red).
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13.2 Strutural haraterization from sanning trans-

mission eletron mirographs

In (Nordin et al., 2014) material haraterization from high angle annular dark �eld

sanning transmission eletron mirograph (HAADF-STEM) images is studied by use of

maximum likelihood methods. The upper left part of Figure 13.10 shows the intensity

response in 2D from a model material onsisting of 20nm silia partiles that have ag-

gregated to form a stable partile gel. The approximately square image is obtained by

sanning a gel slie of thikness about 90 nm. The mass thikness α(x, y) of the silia at
a 2D position (x, y) an be written as fration of the total sample thikness

α(x, y) =
1

z
max

∫ z
max

0

ρS(x, y, z) dz, (13.13)

where ρS(x, y, z) denotes the silia density (depending on whether there is a silia partile
at the point (x, y, z) or not). A simple model for the observed intensity I(x, y) is

I(x, y) = b+ cg(α(x, y)) + ǫ(x, y), (13.14)

where b and c are onstants, g is a power funtion

g(α) = αβ, (13.15)

and the noise ǫ(x, y) is supposed to be N(0, σ2) and independent for di�erent pixels (x, y).

Let us give a maximum likelhood funtion for an image suh as the one shown in the

upper left part of Figure 13.10. Suppose that in the orresponding 3D retangular box,

ompare Figure 12.3, there are N silia partiles with 3D entres x1, . . . ,xN . Then the

following log-likelihood funtion orresponds to the model (13.14)

ℓ(θ) = −|M | log
(√

2πσ
)

− 1

2σ2

∑

(x,y)∈M

[I0(x, y)− b− cg(α(x, y))]2 , (13.16)

whereM is the set of pixels, |M | is the number of elements inM and the parameter vetor

is θ = (b, c, β,N,x1, . . . ,xN). A ompliation in �nding maximum likelihood estimates is

the large number partiles, see Figure 13.10, but it an be done (at least approximately),

for instane by use of simulated annealing, ompare (Nordin et al., 2014).

The maximum likelihood estimate of the power parameter β in (13.15) was β̂ = 0.69,
whih gave a onsiderably better �t ompared to the linear response with β = 1 as shown
in Figure 13.11. The models with β = 1 and a general β are nested and the hypothesis

β = 1 an be tested for instane by use of repeated images. In the present ase there was

only one image available. To obtain approximately independent repetitions the image

was divided into 16 subimages of equal size by three vertial and three horizontal lines.

With the orresponding 16 estimates of β a t-test showed rejetion of the null hypothesis

H0 : β = 1 with a p-value muh less than 0.001.

As a hek of the model (13.14) histograms of the pixel intensity in the observed

and estimated mirograph images are shown in Figure 13.12. In general there is a good

agreement between the observed and the estimated image intensities. However, the his-

tograms indiate that a feature not taken into aount of the model is that the edges of

the observed spheres are somewhat blurry.
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Figure 13.10: Upper left: Mirograph intensity image I0(x, y) of a 90 nm slie of 5

wt% aggregated nano silia obtained with HAADF-STEM. Upper right: Regenerated

mirograph image I(x, y) obtained by maximizing the log-likelihood funtion (13.16).

Lower left: Residual image I(x, y)−I0(x, y) of the original mirograph and the regenerated

mirograph. Lower right: Blow-up of the top left luster in the residual image.
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Figure 13.11: The intensity response I versus mass thikness α of silia as estimated by

maximizing the likelihood funtion (13.16). The mirographs are STEM projetions of

90 nm thik mirotomed sample setions, where the individual silia spheres are 20 nm

in diameter, ompare Figure 13.10. One single sphere orresponds to α = 0.22. The blue
line shows the estimate with the estimated power β = 0.69 in (13.15), while the blak

line orresponds to β = 1. The error bars show the estimated standard deviation of the

bakground noise.

Figure 13.12: Histogram of the pixel intensity for the observed mirograph (blue) and

the estimated mirograph intensity (blak). The estimated bakground noise is also

shown (red). Note that the observed mirograph image is blurry at the edges of the

spheres, ompare the lower right part of Figure 13.10. This is not taken into aount in

the model, whih an explain why the estimated intensity shows an underestimate just

between I = 0.1 and 0.2.
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13.2.1 Exerises

Exerise 13.2. Verify that (13.16) gives the log-likelihood orresponding to the model

(13.14).

Exerise 13.3. How well an the oordinates of the 3D entre positions x1, . . . ,xN be

estimated?

Exerise 13.4. Try to ount approximately the number of partiles in the left and the

right upper parts of Figure 13.10.

Exerise 13.5. Try to ount approximately the number of overlapping partiles in the left

and the right upper parts of Figure 13.10.
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Chapter 14

Appendix. Mathematial,

omputational and statistial

bakground

Below you an �nd ondensed desriptions of onepts and methods used in this book.

If you have a basi knowledge of some area these desriptions an serve as a repetition,

but if some onepts are new to you, you presumably need to go to textbooks for more

omplete information. Nowadays quite useful information an also be obtained from the

internet, for example from the Wikipedia pages.

14.1 Some matrix algebra

A matrix with m rows and n olumns, or brie�y a matrix of type m× n, is a retangular
array







a1,1 · · · a1,n
.

.

.

.

.

.

am,1 · · · am,n






(14.1)

of numbers ai,j , sometimes written aij , alled matrix elements. If the type is understood

we an write A = [ai,j]. Row and olumn vetors are thin matries with m = 1 and n = 1,
respetively. If m = n = 1 the matrix is just a number. A square matrix has m = n.

Let A be an m × n matrix. The transpose AT
of A is an n ×m matrix obtained by

making rows in A into olumns, that is the (i, j) element in AT
is the (j, i) element in A.

A matrix is symmetri if it equal to its transpose.

Matries of the same type an be added by element-wise addition. If A and B are

matries of types m × n and n × k, respetively, the produt C = AB is a matrix type

m × k with elements ci,j =
∑

r ai,rbr,j . A square n × n matrix A is alled invertible (or

non-singular) if there exists an inverse denoted A−1
suh that

AA−1 = A−1A = I (14.2)
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where I is the unit n×n matrix with diagonal elements ij,j = 1 and o�-diagonal elements

ij,k = 0, j 6= k.

Let us now de�ne reursively the determinant detA of a square n×n matrix A = [ai,j].
For n = 1 we de�ne detA = a for the matrix A = [a]. Suppose that we have de�ned

determinants for matries of type (n− 1)× (n− 1) and let A be a matrix of type n× n.
Let the minor Ai,j be the determinant of the matrix obtained from A by deleting row

number i and olumn number j. Then we put

detA =

n
∑

j=1

(−1)1+ja1,jA1,j . (14.3)

One an show that a square matrix A is non-singular if and only if detA 6= 0.

Let A be a square matrix. We say that a real number λ is an eigenvalue of A and that

a olumn vetor x is an eigenvetor of a if

Ax = λx. (14.4)

A symmetri real n × n matrix A is said to be positive-de�nite or positive-semide�nite

if xTAx > 0 or xTAx ≥ 0, respetively, for eah non-zero n-dimensional olumn vetor

x. One an show that a symmetri matrix is positive-de�nite or positive-semide�nite if

all its eigenvalues are positive or nonnegative, respetively. Further, a positive de�nite

matrix is invertible.

Exerises

Exerise 14.1. Let A =

[

a b
c d

]

. Determine detA by use of (14.3).

Exerise 14.2. Let A =

[

a b
c d

]

with ad − bc 6= 0. Determine the inverse of A by solving

a linear equation system with four unknowns.

14.2 Optimization of a real funtion

Let us �rst onsider Newton's method for optimization of a twie ontinuously di�eren-

tiable real-valued funtion f(x) of a real variable x. Suppose that f has a maximum or

minumum at x⋆. Then f ′(x⋆) = 0. Newton's iterative method for loating x⋆ is to put

xk+1 = xk − f ′(xk)

f ′′(xk)
. (14.5)

Assuming that f ′′(x⋆) 6= 0 and that we start lose enough to x⋆ one an show that xk → x⋆

as k → ∞.

Let us now onsider Newton's method for optimization of a twie ontinuously dif-

ferentiable real-valued funtion f(x) of an n-dimensional olumn vetor x. As above we
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suppose that f has a maximum or minumum at x⋆. Let ∇f(x) denote the (olumn)

gradient vetor

∇f(x) = [
∂f

∂x1
. . .

∂f

∂xn
]T (14.6)

and let Hf(x) denote the Hessian matrix

Hf(x) =







∂2f
∂x1∂x1

. . . ∂2f
∂x1∂xn

.

.

.

.

.

.

∂2f
∂xn∂x1

. . . ∂2f
∂xn∂xn






(14.7)

Newton's iterative method for loating x⋆ is to put

xk+1 = xk − (Hf(xk))−1∇f(xk) (14.8)

Assuming that Hf(x⋆) is positive-de�nite and thus invertible, and that we start lose

enough to x⋆ one an show that xk → x⋆ as k → ∞.

Newton's method is quite e�ient but has drawbaks. Computation of derivatives an

require a lot of programming. One may use �nite di�erenes to ompute approximate

derivatives but that then it requires extra programming to �nd suitable step lengths.

Often it is more e�ient to use so alled quasi-Newton methods where the Hessian is

automatially estimated from suessively omputed gradient vetors, see for instane

(Press et al., 2007). In MATLAB the fminun funtion uses a quasi-Newton metod for

minimization.

The Newton and quasi-Newton methods typially work quite well if you start lose

to the optimum. A muh slower but quite robust optimizer, whih does not require

omputation of any derivates, is the simplex method of (Nelder & Mead, 1965) whih is

available in MATLAB as the funtion nelder_mead. A good strategy in appliations

an often be to begin with the simplex metod to get an overview and suitable starting

values and then to use a quasi-Newton method.

14.3 Disrete probability distributions

Disrete distributions for a random variable X are haraterized by the probability fun-

tion Pr(X = x), x ∈ V , where V is the �nite or ountable set of values that X an

take. For a real-valued disrete random variable the expetation µ, standard deviation

σ and variane σ2
are de�ned by µ = E(X) =

∑

x xPr(X = x) and σ2 = var(X) =
∑

x(x− µ)2 Pr(X = x).

A random variable X is said to be Poisson distributed with parameter λ if

Pr(X = n) =
λn

n!
exp(−λ), n = 0, 1, . . . , (14.9)

and for suh a variable both the expetation and the variane are equal to λ.

A random variable X is said to be binomial (n,p) if

Pr(X = k) =

(

n
k

)

pk(1− p)n−k, k = 0, . . . , n, (14.10)

and for suh a variable the expetation is np and the variane is np(1− p).
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14.4 Continuous probability distributions

Continuous distributions for a real-valued random variable X are haraterized by the

probability density

f(x) =
d

dx
Pr(X ≤ x), x ∈ R, (14.11)

where R = (−∞,∞) is the set of real numbers. For a ontinuous random variable

the expetation µ, standard deviation σ and variane σ2
are de�ned by µ = E(X) =

∫

R
xf(x)dx and σ2 = var(X) =

∫

R
(x− µ)2f(x)dx.

A random variable X is said to have a uniform distribution on the interval (a, b) if the
probability density is

f(x) = 1/(b− a), a < x < b, (14.12)

and f(x) = 0 for x < a and x > b, and for suh a variable the expetation is (a + b)/2
and the variane is (b− a)2/12.

A random variable X is said to have an exponential distribution with parameter β if

the probability density is

f(x) = β exp(−βx), x > 0, (14.13)

and f(x) = 0 for x < 0, and for suh a variable the expetation is 1/β and the variane

is 1/β2
.

A random variable X is said to be normal(µ,σ2
), or brie�y X ∼ N(µ,σ2) if the prob-

ability density is

f(x) =
1√
2πσ

exp(−(x− µ)2/σ2), x ∈ R, (14.14)

and for suh a variable the expetation is µ and the variane is σ2
.

14.5 Multivariate probability distributions

LetX1, . . . , Xd be real-valued random variables. ThenX = [X1 . . .Xd]
T
is a d-dimensional

random (olumn) vetor. The expetation of a random vetor (or a random matrix) is de-

�ned omponentwise. Thus the expetation vetor µ = µX = E(X) of a random olumn

vetor X is the olumn vetor with omponents µi = E(Xi), i = 1, . . . , d. The ovariane
matrix C = CX = C(X) of X is the symmetri d× d matrix

C = E(X − µ)(X − µ)T =







E(X1 − µ1)(X1 − µ1) · · · E(X1 − µ1)(Xd − µd)
.

.

.

.

.

.

E(Xd − µd)(X1 − µ1) · · · E(Xd − µd)(Xd − µd)






.

(14.15)

The (i, j)-element of the ovariane matrix of X is the ovariane ov(Xi, Xj) = E(Xi −
µi)(Xj − µj) of the ith and jth omponents of X , whih for i = j is the variane of Xi.

The d-dimensional vetor X has a d-dimensional probability density f = fX if

Pr(X ∈ A) =

∫

A

f(x)dx (14.16)
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for subsets A of d-dimensional spae R
d
for whih the integral in (14.16) is well-de�ned.

Let µ be a d-dimensional olumn vetor and let C be a positive-de�nite d× d matrix.

The d-dimensional random vetor X is said to be normal(µ,C) or brie�y X ∼ N(µ,C) if
X has the d-dimensional density funtion

fX(x) =
1

(2π)d/2(detC)1/2
exp(−1

2
(x− µ)TC−1(x− µ)), (14.17)

where detC denotes the determinant of the matrix C. One an show that then X has

expetation vetor µ and ovariane matrix C.

An important speial ase is the two-dimensional normal distribution. Regard X =
[X1 X2]

T
. Let µi and σ2

i denote the expetation and variane of Xi, i = 1, 2, and let

ρ = ov(X1, X2)/(σ1σ2) denote the orrelation between the two omponents of X . Thus

the ovariane matrix of X is

C =

[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]

. (14.18)

One an then show that the two-dimensional density funion of X is

f(x) =
1

2πσ1σ2
√

1− ρ2
exp{− 1

2(1− ρ2)
Q(x1, x2)} (14.19)

where

Q(x1, x2) =
(x1 − µ1)

2

σ2
1

− 2ρ(
x1 − µ1

σ1
)(
x2 − µ2

σ2
) +

(x2 − µ2)
2

σ2
2

(14.20)

14.6 Prinipal omponents, t-SNE

Suppose that we have a d-dimensional random vetor X with ovariane matrix C. Prin-
ipal omponents an be used to transform the random vetor. De�ne the �rst prinipal

omponent

Y1 = cT1X, (14.21)

where c1 is a d-dimensional olumn vetor, determined by the ondition that var(Y1) =
cT1Cc1 is maximal subjet to the restrition cT1 c1 = 1. Generally we de�ne the ith prinipal
omponent, 1 < i ≤ d as

Yi = cTi X, (14.22)

where ci is a d-dimensional olumn vetor, determined by the ondition that var(Yi) =
cTi Cci is maximal subjet to the restritions cTi ci = 1 and cTj Cci = 0 for 1 ≤ j < i. The
�rst two or three priniple omponents are sometimes useful to visualize the distribution

of X .

Priniple omponents are often attributed to (Hotelling, 1933) although they are losely

related to singular value deomposition whih has a muh older history. A reent quite

e�etive mahine-learning-inspired tehnique due to (van der Maaten & Hinton, 2008)

for visualizing multidimensional distributions in two or sometimes three dimensions is

t-SNE. The method is used in Figure 2.7, and a onise desription of the method is

given in (Long�ls, 2018).
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14.7 Random, Gaussian and Markov proesses on the

real line

A random proess or stohasti proess X on the real line onsists a set of random

variables X = (Xt) indexed by time t ∈ T , where T is a subset of the real line R. We

suppose here that T is either a set of onseutive integers or an interval and then we

talk about a disrete time or ontinuous time random proess, respetively. The set V of

values that Xt an take we all the state spae. A real-valued proess has the real line or

a subset of it as state spae. A real-valued random proess may be haraterized by its

mean value funtion,

mt = EXt (14.23)

and its ovariane funtion

C(s, t) = E(Xs −ms)(Xt −mt). (14.24)

A random proess is said to be normal or Gaussian if (Xt1 , . . . , Xtn) has an n-dimensional

normal distribution for any hoie of time points t1, . . . , tn. One an show that a Gaussian

proess is fully spei�ed by its mean value and ovariane funtions.

A random proess (Xt) is said to be stationary if its distribution is invariant under a

translation τ , more preisely if for eah hoie of n ≥ 1 and (t1, . . . , tn) the distribution
of the n-dimensional random vetor (Xt1+τ , . . . , Xtn+τ ) does not depend on τ . Consider
the mean value and ovariane funtions of a stationary proess. The mean value is a

onstant m = EXt and the ovariane funtion an be written as C(s, t) = σ2ρ(t − s)
where the variane σ2 = C(t, t) and ρ(t) is the orrelation funtion.

We say that (Xt, t ∈ T ) is a Markov proess if the onditional distribution of X at a

future time given the history up to time t only depends on the value of X at the urrent

time t, more preisely if

Pr(Xτ ∈ A|Xs, s ≤ t) = Pr(Xτ ∈ A|Xt), t < τ. (14.25)

A disrete time Markov proess with �nite state spae V , for notational simpliity here

denoted V = {1, . . . v}, is determined by its transition probability matrix P whih is the

(v × v) matrix with elements

pij = Pr(Xt+1 = j|Xt = i), 1 ≤ i, j ≤ v. (14.26)

A zero-mean autoregressive proess (Xt) of order p is reursively generated from

Xt =

p
∑

i=1

aiXt−i + ǫt, (14.27)

where ǫt are independent and identially distributed random variables with zero mean

and �nite variane σ2
. Often ǫt is assumed to be normally distributed. Then Xt is also

normally distributed, provided that starting values have a (multivariate) normal distri-

bution. An autoregressive proess of order p = 1 is a Markov proess. An autogressive
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proess of order one is stationary if |a1| < 1 and the starting value in (14.27) is suitably

hosen.

An example of a ontinuous time Markov proess is the Poisson proess with intensity

λ whih is haraterized by the fat that the inrement Xt − Xs is Poisson distributed

with expeation

E(Xt −Xs) = λ(t− s), s < t, (14.28)

and the inrements over disjoint time intervals are independent.

Suppose that points are randomly plaed on the real line suh that

(i) the number of points in disjoint intervals are independent,

(ii) the probability that two points are plaed in an interval of length h tends to

zero faster than the probability that one point is plaed in the same interval when

h→ 0 ,

(iii) the distribution of the number of points in an interval depends only on the

length of the interval and not on where it is plaed.

One an then show that if Xt denotes the number of points in the interval (0, t), then
(Xt, t > 0) is Poisson proess with intensity λ equal to the expeted number of points in

an interval of unit length. For an arbitrary time t let further W denote the waiting time

for the �rst point after t. One an then show that W has an exponential distribution

with parameter λ.

Another example of a ontinuous time Markov proess is the Brownian motion or

Wiener proess on the interval [0,∞) haraterized by having independent inrements

over disjoint time intervals and that Xt is normal(0, σ2t) for t ≥ 0.

A third example of a ontinuous time Markov proess is the Ornstein-Uhlenbek pro-

ess, whih is Gaussian proess with mean zero and orrelation funtion

ρ(t) = exp(−λt) (14.29)

for some positive onstant λ.

14.8 Estimation of parameters. Likelihood and least

squares

Suppose that we observe a random variable or vetor X with a distribution that depends

on a parameter θ that may be a vetor. Let θ̂ = θ̂(X) be an estimate of θ. We say that

θ̂ is an unbiased estimate of θ if
E(θ̂) = θ. (14.30)

Typially we observe a sample of a random variable whih means that we have a sequene

of independent and identially distributed random variables. We say that θ̂ is a onsistent
estimate of θ if for an arbitrary ǫ > 0

Pr(|θ̂ − θ| > ǫ) → 0 (14.31)
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as the number n of observations goes to in�nity. One an for instane show that θ̂ is a
onsistent estimate of θ if E(|θ̂ − θ|2) → 0 as n→ ∞.

Let X be a disrete or ontinuous random vetor that we observe and that has a

probability distribution depending on θ. If X is disrete we put f(x, θ) = Pr(X = x)
and if X is ontinuous f(x, θ) denotes the probability density of X . The likelihood value

orresponding to an observed value x of X is written

L(θ) = L(θ|x) = f(x, θ). (14.32)

In partiular, if we have a sample X = (X1, . . . , Xn) of a random variable assumed to

be either disrete with probability funtion Pr(Xi = xi) = f(xi, θ) or ontinuous with
probability density f(xi, θ) the orresponding likelihood funtion is

L(θ) = L(θ|x) =
n
∏

i=1

f(xi, θ), (14.33)

where x = (x1, . . . , xn).

A maximum likelihood estimate θ̂ of θ is a value that maximizes the likelihood funtion.

In pratie it is often more onvenient to maximize the log-likelihood funtion

ℓ(θ) = log(L(θ)), (14.34)

where log (as always in this book) denotes the natural logarithm.

As an example, suppose that X = (X1, . . . , Xn) is a sample of a variable that is Poisson

distributed with parameter λ, that is X1, . . . , Xn are independent and identially Poisson

distributed. The log-likelihood funtion is

ℓ(λ) = log(

n
∏

i=1

λXi

Xi!
exp(−λ)) = c− nλ+ log(λ)

n
∑

i=1

Xi, (14.35)

where c does not depend on λ and thus an be disregarded during the maximization. One

�nds that the maximum likelihood estimate of λ is

λ̂ =
1

n

n
∑

i=1

Xi, (14.36)

whih one an show is a both unbiased and onsistent estimate of λ. (In the omputations

in this example we have used the notation Xi rather than xi whih is often onvenient.)

A useful omplement to the maximum likelihood method to estimate parameters is

the least squares method whih, when appliable, is often easier to use. Suppose that

X1 . . . , Xn are independent random variables with the same variane and with an ex-

petion that depends on a parameter θ. The least squares estimate θ̂ is obtained by

minimizing

Q(θ) =
n
∑

i=1

(Xi −E(Xi))
2. (14.37)
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Let us again onsider a sample (X1, . . . , Xn) of a random variable that is Poisson

distributed with parameter λ. The sum of squares (14.37) now beomes

Q(λ) =

n
∑

i=1

(Xi − λ)2, (14.38)

whih is minimized for λ = λ̂ in (14.36). Thus the least squares and the maximum

likelihood estimates oinide in this example.

14.9 Linear and logisti regression

Let us �rst onsider linear regression with one explaining real variable x. Suppose that
we observe

Yi = α+ βxi + ǫi, i = 1, . . . n, (14.39)

with independent zero-mean random errors ǫi, i = 1, . . . , n, with idential varianes. The

least squares estimates α̂ and β̂ are obtained by minimizing

Q(α, β) =
n
∑

i=1

(Yi − α− βxi)
2, (14.40)

whih gives

α̂ = Y − β̂ x, β̂ =

∑n
i=1(Yi − Y )(xi − x)
∑n

i=1(xi − x)2
, (14.41)

where x = (1/n)
∑

i xi and Y = (1/n)
∑

i Yi.

Let us now onsider multiple linear regression with m explaining variables. We assume

that we have observations

Yi = β1xi1 + . . .+ βmxim + ǫi, i = 1, . . . n, (14.42)

with independent zero-mean random errors ǫi, i = 1, . . . , n, with idential varianes. We

an write our observations on vetor-matrix form as

Y = Xβ + ǫ, (14.43)

where

Y =







Y1
.

.

.

Yn






, X =







x11 · · · x1m
.

.

.

.

.

.

xn1 · · · xnm






, β =







β1
.

.

.

βm






, ǫ =







ǫ1
.

.

.

ǫn






. (14.44)

It turns out that the least squares estimate of the parameter vetor β is

β̂ = (XTX)−1XTY, (14.45)

provided that the matrix XTX is invertible.
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Let us now onsider logisti regression where we observe independent variables Y1, . . . , Yn
taking values 0 or 1. We suppose that the probability pi = Pr(Yi = 1) = 1 − Pr(Yi = 0)
depends on m explaining variables suh that

log(
pi

1− pi
) = β1xi1 + . . .+ βmxim, i = 1, . . . n. (14.46)

To estimate the parameters β1, . . . , βm we an maximize the likelihood funtion

L(β1, . . . , βm) =
n
∏

i=1

(pYi

i (1− pi)
1−Yi). (14.47)

There is no analytial expression for the maximum likelihood estimates so to maximize

(14.47) one may use omputational optimization methods suh as those desribe in Se-

tion 14.2 and then it is typially more onvenient to maximize the log-likelihood funtion.

14.10 Con�dene intervals and tests, observations from

a normal distribution, the t- and hi-square dis-

tributions

Let X denote observations from a distribution depending on a real-valued parameter

θ. We say that the interval (L(X), U(X)) is a on�dene interval for θ with on�dene

degree p if
Pr(L(X) < θ < U(X)) = p. (14.48)

Let X = (X1, . . . , Xn) be a sample from a normal(µ, σ2) distribution. Then

X =
1

n

n
∑

i=1

Xi and s2 =
1

n− 1

n
∑

i=1

(Xi −X)2 (14.49)

are unbiased and onsistent estimates of µ and σ2
, respetively. To ompute on�dene

intervals for µ and σ2
we introdue the hi-square and t-distributions.

A random variable is said to be hi-square distributed with r degrees of freedom if it

has the same distribution as

χ2 =

r
∑

i=1

Z2
i , (14.50)

where Z1, . . . , Zr are independent and normal(0, 1). Let us note that a variable that is

hi-square distributed with r degrees of freedom has expetation r. A random variable is

said to be t-distributed with r degrees of freedom if it has the same distribution as

t =
Z

√

χ2/r
(14.51)

where Z and χ2
are independent and distributed normal(0, 1) and hi-squared with r

degrees of freedom, respetively.
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Let us de�ne quantiles for random variables with a ontinuous distribution funtion

F (x) = Pr(X ≤ x). A pth quantile xp orresponding to suh a distribution satis�es

F (xp) = p. Let χ2
p denote the pth quantile of a hi-square distribution with n− 1 degrees

of freedom. For s2 de�ned by (14.49) one an then show that

Pr(χ2
(1−p)/2 < (n− 1)s2/σ2 < χ2

(1+p)/2) = p (14.52)

whih gives a on�dene interval for σ2
with on�dene degree p,

Pr(
(n− 1)s2

χ2
(1+p)/2

< σ2 <
(n− 1)s2

χ2
(1−p)/2

) = p. (14.53)

Similarly we let tp denote the pth quantile of a t-distribution with n−1 degrees of freedom.

Then

Pr(X − t(1−p)/2 s/
√
n < µ < X + t(1−p)/2 s/

√
n) = p, (14.54)

whih gives a on�dene interval for µ with on�dene degree p.

Let us also brie�y desribe one type of test of an hypothesis H0 : θ = θ0. Suppose

that we have a test variable T = T (X) tending to take large values when the hypothesis

H0 is not true and that we for our observations obtain an observed value Tobs of T . The
strategy an then be to rejet the hypothesis H0 if the probability under H0 to obtain a

T -value at least as large as the observed value is small enough. More preisely we rejet

H0 if the p-value
p = Pr0(T ≥ Tobs) (14.55)

is small enough. Here Pr0 denotes a probability evaluated under the probability distri-

bution orresponding to H0.

As an example let us suppose that we have a random sample (X1, . . . , Xn) from a

N(µ, σ2) distribution and that we want to test the hypothesis H0 : µ = µ0 with the

alternative hypothesis that µ is either larger or smaller than µ0. Let X and s2 be de�ned
as in (14.49) and put

tobs =
X − µ0

s/
√
n
. (14.56)

The orresponding p-value is then

p = P (|t| ≥ |tobs|) (14.57)

evaluated with the assumption that t is t-distributed with n− 1 degrees of freedom.

14.11 The F-distribution, analysis of variane

A random variable is F -distributed with (r1, r2) degrees of freedom if it has the same

distribution as

F =
χ2
1/r1
χ2
2/r2

, (14.58)
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where χ2
1 and χ

2
2 are independent hi-square distributed variables with r1 and r2 degrees of

freedom, respetively. The F -distribution an be used to ompare two variane estimates

and in analysis of variane (ANOVA) models. Let us onsider a simple ANOVA model.

Assume that Xij, i = 1, . . . , m, j = 1, . . . , ni are independent normal variables with

idential variane σ2
and expetations

E(Xij) = µi, i = 1, . . . , m, j = 1 . . . , ni. (14.59)

To test the hypothesis H0 : µ1 = . . . = µm we an use the test variable

F =

∑m
i=1 ni(Xi· −X··)

2 / (m− 1)
∑m

i=1

∑ni

j=1(Xij −Xi·)2 / (
∑

i(ni − 1))
(14.60)

where Xi· = (1/ni)
∑

j Xij and X·· = (
∑

i

∑

j Xij)/(
∑

i ni). It turns out that under H0

the test variable F in (14.60) is F -distributed with (m−1,
∑

i(ni−1))degrees of freedom
and we rejet the hypothesis H0 if F is large enough.

14.12 Approximate statistial methods, bootstrap

In the previous setions we have seen how on�dene intervals with exat on�dene

degree and exat p-values for tests an be omputed for simple models with normal

random variables. Otherwise suh exat statistial inferene is typially not possible.

However, for large samples good approximate methods are often available. Let us give

some examples of how suh approximate methods an look.

Suppose that we have a sample X = (X1, . . . , Xn) of a random variables with log-

likelihood ℓ(θ), see (14.34), depending on a parameter vetor θ = (θ1, . . . , θd). Under

suitable regularity onditions, see for instane (Pawitan, 2001), one an then show that

for large n the maximum likelihood estimate θ̂ has an approximate d-dimensional normal

distribution, whih we write

θ̂
d→ N(θ, I(θ̂)−1

). (14.61)

Here I(θ̂) is the Fisher information matrix with matrix elements

Iij(θ̂) = − ∂2

∂θi∂θj
ℓ(θ)|θ=θ̂ (14.62)

and we suppose that I(θ̂) is invertible. From this we an ompute on�dene intervals

with approximate p-values for the omponents of θ and more generally for linear om-

binations of these omponents. Let us note that the Fisher information matrix is the

Hessian (see Setion 14.2) of the log-likelihood funtion and as disussed in Setion 14.2

the Hessian an be obtained by use of quasi-Newton optimization methods.

Let us now onsider two hypotheses H0 and H1, whih are nested in suh a way that

H0 is obtained from H1 by imposing r linear restritions on the parameters, for instane

by putting r parameters equal to zero. Let ℓ(θ̂0) and ℓ(θ̂1) denote the log-likelihoods

orresponding to the maximum likelihood estimates obtained under H0 and H1. Put

χ2 = 2(ℓ(θ̂1)− ℓ(θ̂0)). (14.63)
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We note that as ℓ(θ̂1) is obtained as a maximum under fewer restritions than ℓ(θ̂0) it
follows that ℓ(θ̂1) ≥ ℓ(θ̂0). One an show that under the hypothesis H0 the variable χ

2

in (14.63) is approximately hi-square distributed with r degrees of freedom for large

samples. We an rejet the hypothesis H0 if the observed χ
2
-value is large enough, that

is if the orresponding p-value
p = Pr(χ2 ≥ χ2

obs) (14.64)

evaluated for a hi-square distribution with r degrees of freedom is small enough.

One method for obtaining approximate inferene that has been muh used sine its

introdution 1979 is the bootstrap whih is based on resampling from observed distribu-

tions in suh a way that on�dene intervals and test variables an be omputed, see for

instane (Efron & Tibshirani, 1993).

14.13 Random numbers, simulation

An important method to study random systems is to use simulation and this requires gen-

eration of random numbers, or more preisely pseudo-random numbers, with omputers.

A basi random number generator is the linear ongruential generator

Xn+1 = (aXn + b) mod m (14.65)

with suitable integers a, b and m and a starting value X0 alled seed. This generates a

sequene with approximately independent random number equidistributed on the set of

integers {0, 1, . . . , m− 1}. This type of generators with some variations are used as basi

random generators in omputer languges suh as for MATLAB. Putting Un = Xn/m
gives a sequene of random numbers with an approximate uniform distribution on the

unit interval [0, 1].

Suppose now that we have a random number U with a uniform distribution on the

interval (0, 1) and that we want a random number X with a given distribution funtion

F (x) = Pr(X ≤ x). This an be obtained by putting

X = F−1(U), (14.66)

where F−1
denotes the inverse of F . Putting

X = − 1

β
log(1− U) (14.67)

gives for instane a random variable that is exponentially distributed with parameter β.

Sometimes one wants a random variable X = (X1, X2) with a uniform distribution on

a bounded two-dimensional set A. One an then use rejetion sampling by �rst �nding a

retangle R0 = {(x1, x2) : a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2} ontaining A as a subset. Generate

then two independent random numbers U1 and U2 with uniform distributions on the unit

interval. Put X = (a1 + (b1 − a1)U1, a2 + (b2 − a2)U2). If X ∈ A aept X , otherwise

rejet X and repeat the proedure until we get a point in A.
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14.14 Bayesian inferene, Markov hain Monte Carlo

In Bayesian inferene we have in addition to a model desribing the distribution of ob-

servations X given the parameter θ also a random distribution for θ alled the prior

distribution. After obtaining observations of X the distribution of θ is modi�ed to the

posterior distribution. Let us show how this goes when both θ and X are disrete vari-

ables, the formulas when one or both of these variables have ontinuous distributions

being similar. We let πi denote the prior probability, πi = Pr(θ = θi).

From the de�nition of onditional probabilities for events A and B we have Pr(A|B) =
Pr(A ∩B)/Pr(B). This gives the posterior distribution for θ when we observe X = x as

Pr(θ = θi|X = x) =
Pr(X = x|θi)πi
Pr(X = x)

=
Pr(X = x|θi)πi

∑

j Pr(X = x|θj)πj
. (14.68)

In Bayesian analysis of noisy observations of ompliated high-dimensional objets

suh as images it is not easy to evaluate or sample from the posterior distribution. One

general method that has ben muh used in reent years is Markov hain Monte Carlo,

abbreviated MCMC. Here you onstrut a Markov hain whih has the distribution of

interest as its stationary distribution. Useful algorithms for onstruting and analyzing

suh Markov hains are the Gibbs sampler and the Metropolis algorithm, see Setion 4.7

in this book for a brief summary and (Gilks et al., 1996) for more details.

14.15 Predition, Kalman �ltering

Let us look at predition and �ltering by use of Kalman �lters. We let the d-dimensional

olumn vetor Xt, t = 0, 1, . . . , denote the state of a system at time t. Assume that

X0 ∼ N(µ0, P0) and that

Xt = FtXt−1 +Wt, t = 1, 2, . . . , (14.69)

where Ft is a d × d matrix. Suppose that the dynami d-dimensional noise vetors

Wt ∼ N(0, Qt) are independent mutually and of the initial state X0. Assume further

that we observe the r-dimensional vetors

Yt = HtXt + Vt, t = 1, 2, . . . , (14.70)

where Ht is a r × d matrix and the measurement noise vetors Vt ∼ N(0, Rt) are inde-
pendent mutually and of (Wt) and the initial state X0. Let Y1:t = (Y1, . . . , Yt) denote
the aumulated observations up to time t. We are interested in omputing the optimal

estimate of Xt given observations up to time t. It turns out that given Y1:t the onditional
distribution of Xt is normal with expetation

X̂t|t = E(Xt|Y1:t) (14.71)

and ovariane matrix Pt|t. We will give a reursive algorithm for omputing X̂t|t and Pt|t

whih also gives the onditional expetation and ovariane matrix X̂t|t−1 and Pt|t−1 for
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predition of Xt from observations Y1:t−1 up to time t− 1. The algorithm onsists of the

following six equations in going from X̂t−1|t−1 and Pt−1|t−1 to X̂t|t and Pt|t,

X̂t|t−1 = FtX̂t−1|t−1, (14.72)

Pt|t−1 = FtPt−1|t−1F
T
t +Qt, (14.73)

St = HtPt|t−1H
T
t +Rt, (14.74)

Kt = Pt|t−1H
T
t S

−1
t , (14.75)

X̂t|t = X̂t|t−1 +Kt(Yt −HtX̂t|t−1), (14.76)

Pt|t = (I −KtHt)Pt|t−1, (14.77)

where I denotes the unit d× d-matrix.

Consider as an example motion of an objet with entre at (xt, yt) and veloity (ẋt, ẏt)
with a sampling interval ∆t and observation of the position but not the veloity. We an

then put

Xt =









xt
yt
ẋt
ẏt









, Ft =









1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1









, Ht =

[

1 0 0 0
0 1 0 0

]

. (14.78)
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