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Preface

The object of this book is to provide an introduction to several subjects connected to
statistical inference from images. Image analysis is an extensive research field growing
with considerable speed. Thus only some selected parts can be covered here and the
choice of subjects is, of course, heavily influenced by my experience and interests. The
book has grown from notes on a master level course on statistical image analysis that I
have given at Chalmers technical university and Gothenburg university during a sequence
of years.

Some specific features can be mentioned. The extensive MNIST database on handwrit-
ten integers is used in many examples on pattern recognition in the book. The MNIST
database has been a proving ground for many machine learning methods, such as neural
nets and support vector machines, and the book contains a brief chapter on such meth-
ods. An substantial part of the book, chapters 9-13, consists of material from about 10
research papers written for researchers in applied fields and where image analysis forms
a crucial role. In my masters course mentioned above I asked the students to read these
papers. But as the papers were written mainly with application audiences in mind and
contained much discussion from the specific application areas, the papers turned out to
be difficult for the image analysis students to read. In this book I have therefore written
considerably condensed versions of the problems discussed in the papers but now with
image analysis students and researchers in mind. Hopefully readers of the book that find
some of these applications particularly interesting will go to the original papers for more
details.

The first part “Images” includes a very brief introduction to basic digital image process-
ing, including image acquisition, image filtering and object feature measurements. After
that pattern recognition, typically based on features obtained from objects identified in
images, is treated at some length. Both the case with known classes, called discrimination
or supervised learning and the case with unknown classes, called clustering or unsuper-
vised learning are covered. A chapter on machine learning gives a brief introduction to
neural nets and support vector machines with image analysis and pattern recognition in
mind. The first part is concluded by a chapter on statistical models for images. Markov
models in two dimensions and Markov chain Monte Carlo methods are introduced.

The second part “Spatial Statistics” starts with some basic properties of spatial random
processes: covariance properties and prediction (kriging). Spatial point processes are
treated in some detail including image models constructed from point processes. The
second part is concluded by a brief introduction to shape analysis and the related problems
of image warping and image matching.

The third part “Applications” contains examples of image analysis applied to problems
in biology, bioinformatics, remote sensing and microscopy. The examples cover analysis



of data from microarray (DNA chip) images, two-dimensional electrophoresis, aerial pho-
tographs of forests, analysis of diffusion based on sequences of images, and finally image
analysis of transmission electron micrographs.

The book concludes with a chapter with mixed exercises, a few of them with detailed
solutions, and an appendix with mathematical, computational and statistical beckground.

In preparing this book I have benefited a lot from discussions with current and previous
colleagues and students. [Then follows a long list of names|

In particular I am deeply indebted to Marco Longfils for detailed discussions on the
subjects in the book and many computations, including all computations on the MNIST
data set.



PART 1. IMAGES

[Here should follow about one page preamble|



Chapter 1

Digital images

A digital image may be regarded as a matrix of pixels (picture elements), f = (fi;) =
(fij;i=1,...,m,7=1,...,n). Here f;; € V where V is the set of possible pixel values,
e.g. V. ={0,1} for a binary image, V' = {0, ...,255} for a grey level image with 256 grey
levels, conveniently coded as bytes, and V' = {0,...,255}> for a colour image with 256
levels in each of the three colours Red, Green and Blue. Thus each pixel is specified both
by a location (7, j) and a pixel value f;;. The first location index ¢ specifies the row and
the second index j the column. Rows are counted either from above (most common in
the image processing literature) or from below, while columns are counted from the left.

1.1 Examples of images

Example 1.1. Aerial photographs of a thinning experiment.



Figure 1.1: Aerial photograph of the thinning experiment KU in northern Sealand with
Norway spruce trees. The position of the aeroplane at image acqusition was 560 m above
“Nadir”.

Figure 1.1 shows an aerial photograph of the thinning experiment KU, in northern
Sealand, with six subplots which were subject to different thinning treatments (Dralle &
Rudemo, 1996). The six treatments were

A No thinning

B Light thinning

C Medium-heavy thinning

D Very heavy thinning

D-B In the youth very heavy thinning, later light thinning
R Heavy row thinning

The photograph was acquired from an aeroplane at the altitude 560 m above the point
"Nadir” in Figure 1.1. An enlargement of the subplot D is shown Figure 1.2.



Figure 1.2: Detail of the aerial photograph in Figure 1.1 covering the subplot D with very
heavy thinning.

A further enlargement of the southeast corner of subplot D is shown in Figure 1.3.
Here the individual pixels, each corresponding to a square of about 15 cm x 15 cm at
ground level, are visible.

In Figure 1.4 we see subplot D from a photograph acquired with the aeroplane in a
position to the northwest of the experimental area. The time of acquisition was August
4 at 10:08 AM, which implies that the sun was in the direction southeast, and the trees
were thus backlighted in Figure 1.4.

One object of the image analysis of the photographs obtained in this experiment was
to estimate the number of trees in the different subplots and to estimate the positions of
the tree tops. This application is further discussed in Chapter 11 in Part 3.



Figure 1.3: Detail of the aerial photograph in Figure 1.2 showing part of the southeastern
corner of subplot D.



Figure 1.4: Detail of aerial photograph of subplot D of backlighted Norway spruce trees
acquired from an oblique angle with the aeroplane located to the northwest of the exper-
imental area shown in Figure 1.1.

Example 1.2. Weed seeds.

Figures 5 and 6 show images of 25 seeds of each of two weed species: curly dock, Rumex
crispus, and thyrse sorrel, Rumez thyrsiflorus. The images were obtained in the study
(Petersen, 1992), where seeds from 40 weed species were studied. The object was to find
features from images of the weed seeds which enable recognition of the individual species.
Problems of this type will be discussed in Chapter 2 on pattern recognition.
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Figure 1.5: Images of seeds of Rumez crispus.

In Figures 1.5 and 1.6 we see varying orientations and sizes of the seeds but also some
additional variation in the form of the contours. An important problem for series of
images of this type, in addition to the previously mentioned pattern recognition, is to
estimate some kind of average shape of a seed from a given species, and also to quantify
in terms of statistical distributions the probable deviations from this average shape. In
Chapter 8 on image warping and image matching such problems will be treated.
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Figure 1.6: Images of seeds of Rumex thyrsiflorus.

Example 1.3. Weed plants at an early stage.

Weed and crop classification was studied by (Andersson, 1998) using a dataset with 27
images from each of 8 plant species: carrot, Daucus carota, which was the crop, and 7
weed species. Figure 1.7 shows photographs of two carrot plants and two ladythumb
smartweed plants. Similarly, Figure 1.8 shows photographs of two fumitory plants and
two corn spurry plants.
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Figure 1.7: Above two images of plants of carrot, Daucus carota, L., and below two
images of plants of ladythumb smartweed Polygonum persicaria, L.

11



The images were obtained with a Canon EOS500N still camera with a 80 mm zoom
lens and mounted on a tri-pod pointing directly towards ground. The images obtained
were in colour, although they are shown as grey-level images in Figures 1.7 and 1.8. The
corresponding colour images may be obtained from
http://www.math.chalmers.se/ “rudemo/Images/WeedPlants/WeedPlants.html
The number of pixels of the images was originally 512x768 but was reduced to 512x512
by cutting. The pixel width corresponds to 0.195 mm at ground level.

Figure 1.8: Above two images of plants of fumitory, Fumaria officinalis, L., and below
two images of plants of corn spurry, Spergula arvensis, L.
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Example 1.4. Two-dimensional electrophoresis images.

Yeasts are uni-cellular fungi which reproduce rapidly and thus are highly suitable as
model systems for more complicated eucaryotic species such as mammals. In particular,
the genome of baker’s yeast, Saccharomyces cervisiae, was fully sequenced by (Goffeau
et al., 1996).

Figures 1.9 and 1.10 show four images from an experiment with baker’s yeast and two
treatments corresponding to growth under normal conditions and growth under stress
with salt added to the nutrition solution, see (Gustafsson et al., 2002). In the experiment
there were five repetitions both for the standard treatment, corresponding to growth
in a standard solution, and the treatment with growth under salt stress, which in this
experiment corresponds to growth in a 1 M sodium chloride solution. Figure 1.9 shows
the images obtained from two repetitions with the standard treatment and Figure 1.10
shows images from two repetitions with salt added.

Each spot in a 2D electrophoresis image such as in Figures 1.9 and 1.10 corresponds
to a protein with a specific isoelectric point (pI) determined by isoelectric focusing in the
horizontal direction as a first step and a specific molecular weight determined by vertical
separation in a second step. For instance, under ideal conditions the protein molecules
perform in the second
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Figure 1.9: Images from 2D gel electrophoresis of baker’s yeast grown in a standard
solution.
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step a vertical Brownian motion with drift from a starting position at the top such that
small molecules travel a longer way than large molecules. Typically one can separate
proteins in the pH range, or more precisely the pl range, 4-7 and with molecular weights
in the range 5-200 kDa. Under favourable conditions thousands of proteins may thus be
resolved, and the size of a spot in the electrophoresis image is a measure of the level of
the corresponding protein.

The basic problem in an experiment such as the one described with yeast grown under
standard conditions and under salt stress is to find those proteins that are upregulated
and those that are downregulated under stress. As a first step we need to find those spots
in the four images in Figures 1.9 and 1.10 that correspond to each other, that is, which
measure the same protein. This is called matching of the images and may be performed
by a warping of images onto each other. It is clear from an inspection of the two images in
Figure 1.9, and similarly the two images in Figure 1.10, that also for experimental units
that have received the same treatment the locations of spots corresponding to one protein
can vary considerably due to random variation. And this random variation seems to be
more complicated than the variation corresponding to a Brownian motion as referred to
above.
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Figure 1.10: Images from 2D gel electrophoresis of baker’s yeast grown under stress in a
solution with salt added.

14



Example 1.5. Two-colour spotted microarrays.

In microarray analyses the expression level of thousands of genes can be estimated simulta-
neously. In two-colour spotted microarray analysis DNA fragments corresponding to different
genes are typically arrayed on glass slides in spots with a diameter of the order 100 um.

Gray scale image, 020725cy53x8130g40avg4.tif, log-transformed  Gray scale image, 020725cy3wtI30g40avg4. tif, log-transformed
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Figure 1.11: Tmages from an experiment with two varieties of Arabidopsis, Cyb channel (left)
for a transgenic line and Cy3 channel (right) for the wild-type in a two-colour spotted microarray
experiment with 452 genes. The upper half with 20 rows contains all the 452 genes and the lower
half is a repetition of the upper half. The images are shown inverted (high intensity shown as
black) and a logarithmic scale transformation of intensities is also used.

Complementary DNA (cDNA) is synthesized from two sources of RNA of different origins and
labeled with different fluorescent dyes, for instance, one with the green dye Cy3 and the other
with the red dye Cy5. The pools of labeled cDNA are mixed together and allowed to hybridize
with the DNA fragments in the different spots on the glass slide. The slide is illuminated with
two laser light sources exciting the two fluorescent dyes and the intensity of emitted fluorescent
light is measured at two suitably chosen wavelengths.

Figure 1.11 shows grey-level images for the two channels of one array in an experiment
comparing RNA from two varieties of Arabidopsis plants, transgenic line 3x8 and wild-type wt
(Kristensen et al., 2005). For clarity of display the images are shown inverted, that is black
corresponds to high intensity levels and before inversion a logarithmic transformation is also
used. Data transformations and spot shape models for spotted microarrays are discussed in
(Ekstrgm et al., 2004) and applied to data from this experiment.
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Gray scale image, 020725cy53x8I30g40avg4.tif
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Figure 1.12: Blow-up of rows 6-8 and columns 1—4 in Figure 1.11 with the Cy5 channel for the
transgenic line above and the Cy3 channel for the wild-type below.

g

Figure 1.12 shows a blow-up with 3 rows and 4 columns for both channels. One crucial
question analysed in experiments of this type is to find out which genes that are differentiably
expressed, that is show significantly higher or lower intensities. In this experiment it turned
out that remarkably few genes in the transgenic line were affected in the comparison with the
wild-type. One of the few genes affected was the gene that corresponds to the first spot in the
middle row in Figure 1.12. As indicated in the figure it was upregulated in the transgenic line.
However, random errors are large in this type of experiments and typically one needs to repeat
the experiment for several slides and make a subsequent statistical analysis of the results, cf.
Chapter 9. [
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Example 1.6. Diffusing particles.

Colloidal particles in a suspension perform random motion essentially as a three-dimensional
Brownian motion with the diffusion coefficient as a crucial parameter. However, as the
particles come close they interact and this interaction may be described by an interaction
potential.

A series of images were obtained by video microscopy, see (Kvarnstrom, 2005), in a
joint project with Lennart Lindfors, AstraZeneca, Molndal. The object in this project
was to estimate the diffusion coefficient and, if possible, also the particle interaction
potential.

Figure 1.13: Image obtained by video microscopy showing diffusing particles. Particles
in phocus are shown as small distinct black objects.
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Images of the diffusing particles were obtained with a time interval of 0.02 seconds
between images, and two consecutive images are shown in Figure 1.13 and Figure 1.14.
Particles in focus are shown as small distinct black objects, while particles out of phocus
are extended, the degree of extension depending on the distance to the phocal plane. An
object corresponding to a particle out of phocus is further either white or black in its
central part corresponding to the particle being above or below phocus, respectively.

Figure 1.14: ITmage obtained by video microscopy showing diffusing particles. This image
was obtained 0.2 seconds after the image in Figure 1.13.

Example 1.7. Handwritten digits.

The MNIST database of handwritten images consists of a training set with 60000 digits
and an evaluation set of 10000 digits, see (LeCun et al., 1998) and

http://yann.lecun.com/exdb/mnist/

Examples of images from this set is given in Figure 1.15, actually the first 100 digits
from the training set. The digit images are 28x28 pixel grey level images obtained from
20x20 pixel binary black and white images. The MNIST dataset has been used extensively
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ognition methods and it will also be used substantially
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in this book in Chapters 2, 3 and 8.
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Figure 1.15: Examples of 100 handwritten digits from the MNIST database.
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1.2 Image filtering

Let w = (wgy) = (wki, k= —p,—p+1,...p,l = —p,—p+1,...,p) be a matrix of real
numbers. A new image g may be constructed from a given image f by linear filtering,

p p
gij = Z Z wk,lfz‘+k,j+l- (1-1)

k=—pl=—p
A simple filter example is a 3x3 averaging filter
W-1,-1 W-10 W-11

w = | Wo,-1 Wo,0  Wo,1 ==
Wy,—1 W1,0 W11

(1.2)

NeR s
—_
—_
—_

A more smooth averaging filter is obtained by use of circular 2D Gaussian filter with

a variance parameter o2,

1
Wiy = cexp(—rﬂ(k;2 + lz)), (1.3)

where ¢ is chosen such that b b
Z Z Wiy = 1, (1.4)
k=—pl=—p

and p is chosen so that wy is small outside the region determined by |k| < p and |I| < p.
Chose, for instance, p to be the smallest integer which is at least as large as 3o.

Care has to be taken in (1.1) when the indices in the summation fall outside the original
image. One possibility is to restrict the filtering to those pairs (7, j) for which all indices
i+kand j+1in (1.1) fall inside the image f, another possibility is to extend the original
image in a suitable way, and a third possibility is to modify the filter close to the image
edges.

The averaging filter (1.2) is relatively vulnerable to large errors in individual pixels. A
more robust filter is the nonlinear median filter which for 3x3 neighbourhood is given by

gij = median{ firr 1 2 k] < p,|l| < p} (1.5)

with p = 1. Here median(A) denotes the median for a finite set A of real numbers.

Image filtering can also be used to emphasize edges. Thus a linear filter with

W-1,—1 W-10 W-11 1 -1 0 1
w = Wo,—1 Wo,0 Wo,1 = 6 -1 0 1 . (16)
w1,-1 w10 Wi -1 0 1

will tend to emphasize vertical edges, and similarly the filter

W-1,-1 W-10 W-11 1 -1 -1 -1
w = Wo,—1 Wo,0 Wo,1 = 6 0 0 0 . (17)
w1,-1 Wi Wi 1 1 1

will tend to emphasize horisontal edges.
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Figure 1.16: Upper part: Smoothed version of the image in Figure 1.2 by use of circular
2D Gaussian filter with 0 = 4.5 pixel-widths. Lower part: The same image viewn in
perspective as a 3D surface with light intensity as the vertical coordinate.

Example 1.8. Aerial photographs of a thinning experiment. Continuation.

Let us smooth the image in Figure 1.2 by use of a circular 2D Gaussian filter with a suit-
ably chosen parameter o to see if we can estimate the locations of the trees as 'whiteness’
maxima in the smoothed image. With ¢ = 4.5 we find the image in Figure 1.16.

From Figure 1.16 and Figure 1.2 we see that maxima in the smoothed image seem to
correspond well to the location of the trees. This is also indicated by Figure 1.17 which
shows the locations of the maxima of the smoothed image (Here we have only included
maxima which have a distance from the nearest edge which exceeds 30.)
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Figure 1.17: Location of maxima in Figure 1.16.

1.3 Histograms, thresholding and segmentation

An important characteristic of an image is its histogram. For a grey scale image, f =
(fij) = (fij;t=1,...,m,j =1,...,n), where f;; € V with V" as a set of real numbers,
the histogram is defined as

hk:card({(z’,j) Zfij EIk}), k=1,... K, (18)

where card(A) denotes the number of elements in the set A and {[;,..., I} is a set of
disjoint intervals with V' as there union.

If an image consists of two parts with grey levels that do not overlap too much the
histogram can be used to find a threshold level ¢ which enables us to divide the image into
two segments corresponding to these parts. Thus we can define a binary image b = (b;;)
with two levels, 0 and 1, by putting

_J O iffy <t

Segmentation by use of a threshold level found by inspection of the histogram of an image
is illustrated in the following example.
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Example 1.9. Weed seeds. Continuation.

In the upper part Figure 1.18 we see one of the seeds from Figure 1.5, actually the seed
in the lower left corner rotated 90 degrees. In the lower part of the figure we see the

corresponding histogram.
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Figure 1.18: To the left an image of a Rumez crispus seed and to the right the corre-
sponding histogram.

It seems clear that a threshold level somewhere between ¢ = 0.5 and ¢ = 0.8 would
be suitable. In Figure 1.19 we see segmentations with the levels t = 0.5, upper left,
t = 0.8, upper right, and ¢t = 0.65, lower left. In the lower right part of the image we
see a segmentation obtained from the lower left image by filling out the white “holes”, an
operation that can be performed in several ways.

O
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Figure 1.19: Binary images obtained by thresholding of the image in Figure 1.18 with
the levels ¢t = 0.5 (upper left), t = 0.8 (upper right), and ¢ = 0.65 (lower left). The lower
right image is obtained from the lower left image by filling out holes.
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1.3.1 Segmentation by a normal mixture model

In many cases, as in Example 1.9 with a bimodal histogram it is fairly easy to separate
components in a mixture. We will now describe a normal mixture model which can be
used to get a precise threshold value and which also can be used in cases where there are
not two modes in the histogram but one component only shows up as a prolonged tail.
We suppose that the sets Ij, in (1.8) consist of consecutive intervals with midpoints
and equal lengths A. Let ¢(z) = (1/v/27) exp (—22/2) and put

p L—p
f(z;p1, pa, 01, pi2, 02) = 0_105((35 — m)/on) + (0721)¢<<35 — H2)/032). (1.10)
We note that f(-;pi, p1, 01, l12, 02) integrates to one, and if the interval length A is small
we should have

AZf($k§p17N17017N2702) ~ 1. (1.11)
k
Let n =), hy denote the total number of pixels and assume that

I %nAf(iUk;pb/Jl,Ula/m,Uz)- (1-12)

To estimate the parameters py, 1, 01, ft2, 02 We minimize

Q(p1,,u1,01,,u2702) = Z(hk - nAf@k;pl,Ml,Ul,MQ,UQ))Z- (1-13)
k

Example 1.10. Weed plants at an early stage. Continuation

In the upper left part of Figure 1.20 we see the grey level image of a weed plant. The
original a image is colour a image with three channels, blue, green and red. To separate
plant pixels from soil pixels we first regard the green channel which is shown in the upper
right part of Figure 1.20. To improve the separation of plant and soil pixels we consider
the normalized green colour, which for pixel (7, j) has the pixel value

9ij = ROUHd( 2556’@']' / (Bl'j + Gij + RZ]) + 1), (1.14)

where B;;, G;; and R;; are the blue, green and red channel values for the colour image, and
Round(-) denotes rounding to the nearest integer. The normalized green image is shown
in the lower left part of Figure 1.20. The histogram for the normalized green channel
is shown in the left part of Figure 1.21. Can you suggest why it is useful to normalize
the green channel before computing the histogram? Now we fit the normal mixture
model given by (1.10) and (1.12) for the normalized green channel by minimizing @ in
(1.13) with the restriction gy > . Thus the first component should correspond to plant
pixels. Let py, fi1, 01, fi2, 02 denote the estimated parameters. In Figure 1.21 we show the
histogram and the fitted normal components.

To segment an images we could then choose to consider a pixel (,7) as a plant pixel
if g;; > T, where the threshold 7" is obtained by solving the equation

%¢((T —i)jan) = LB (7 — ) /6) (1.15)

02
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Figure 1.20: Images of a weed plant, lamb’s quarter Chenopodium album, L., (A) grey
scale image, (B) green channel image, (C) normalized green channel image, and (D)
binary black and white image after thresholding.
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Figure 1.21: Left: histogram for the normalized green channel shown in the lower left
part of Figure 1.20 and the two components shown as fully drawn and dashed curves.
Right: the two components shown with a log scale on the vertical axis; here the threshold
where the two curves cross can be seen.

and otherwise as a soil pixel. In the lower right part of Figure 1.20 we show the resulting
binary black and white image obtained by thresholding the normalized green channnel.
For the image shown in Figure 1.20 we find the following parameter estimates for the two
component normal mixture model

pr=0.263, g =126, 61 =7.22, fis =T79.0, 65 =3.02, T = 93.6. (1.16)

O
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1.4 The Hough transform

Often one tries to find curves of specific types in images, for instance circles, ellipses or
lines. A useful method to find such curves is the Hough transform (Hough, 1959; Duda
& Hart, 1972). We shall here only look at the use of the Hough transform to find straight
lines.

=X Cos(v) +y sin(v)

X

Figure 1.22: Representation of line in terms of angle and distance to origo.

Suppose that we have found a set S of points in an image, such as the set of tree tops
in Figure 1.17. We are interested in finding out whether some of these points lie on lines.
It is here convenient to use a representation of a line in terms of the distance r to the
origin and the angle that the normal from the origin to the line forms with the horizontal
axis,

r = xcos(v) + ysin(v), (1.17)

see Figure 1.22. A point (z,y) in the original image corresponds now to a curve in the
(r,v)-plane obtained by regarding r as a function of v in (1.17) for fixed (x,y). In practice
we discretize the (7, v)-plane into pixels regarding it as an image H and start by assigning
zero to all the pixels in H. Then for each point (z,y) € S we add one to all pixels in H
which the curve (1.17) passes through.

For the set S of maxima in Figure 1.17 the corresponding Hough transform for finding
lines is shown in Figure 1.23. In particular one finds in Figure 1.23 three maxima in
the upper left part all corresponding to the angle v equal to 16 degrees (a corresponding
tick mark is placed on the horizontal axis) and three distances r (marked with three tick
marks on the vertical axis close to the maximal distance r,,,,. The corresponding three
lines are shown in Figure 1.24.

The three lines found in Figure 1.24 correspond actually to three lines in plot R in
Figure 1.1 with “Heavy row thinning”, that is from the original planting in rows thinning
is performed by eliminating totally some rows keeping, say, only every third row. See
also Figure 1.2 where the rows are clearly seen in the right part of the image.

28



Figure 1.23: Hough transform for Figure 1.17 with angle v on the horizontal axis extending
from 0 to 180 degrees and distance r on the vertical axis extending from —7,,4,. t0 714z,
where 7,4, is the length of the diagonal in Figure 1.2.

Figure 1.24: Location of maxima in Figure 1.16 together with three lines found by the
Hough transform.
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1.5 Morphological operations

Morphological operations can be used to regularize or clean binary images. Here we will
only describe some of the most basic operations such as erosion, dilation, opening and
closing. These operations are defined by a structure element S consisting of a small
number of pixels with one specific pixel called reference pixel. We can, for instance,
choose S as a 3x3 set of pixels with the centre pixel as reference. Let S;; denote the
structure element moved with reference pixel to (i,7). Let A be a set of pixels such as
the set consisting of black pixels in one of the four images in Figure 1.19.

The erosion of A, denoted A © S, is defined by
Ao S ={(i,j): S, C A} (1.18)
The dilation of A, denoted A @ S, is defined by
Ao S = (A6 95 (1.19)

where A€ is the complement af A, that is the set of pixels outside A.
The operations opening and closing, denoted 15(A) and ¢g(A), are defined by

vs(A) =(AeS) e s, (1.20)
where S’ denotes the structure element rotated 180° around the reference pixel, and
ds(A)= (A S)e s (1.21)

Thus an opening consists of an erosion followed by a dilation.

1.6 Object feature measurements

In connection with pattern recognition as mentioned in examples 1.2 and 1.3 we seek
features of the objects, in the examples seeds and plants, which would enable us to
distinguish between different classes of objects. Examples of such features are areas
and perimeters of objects. Consider a set A of pixels as in the previous section on
morphological operations. The area of A is typically defined as the number of pixels in
A, possibly with some regularization operation first applied to A.

To define the perimeter we need the concept of neighbouring pixels. Typically we con-
sider neighbourhoods consisting of either four or eight neighbours. The 4-neighbourhood
of pixel (7, j) consists of the four pixels (i — 1,7), (¢ +1,7), (¢,5 — 1) and (¢,7 + 1). The
8-neighbourhood of pixel (7, j) consists of the aforementioned pixels and in addition the
pixels (1 — 1,7 —1), (¢ = 1,5+ 1), (i+1,j—1)and (i+ 1,5+ 1).

Edge pixels of a set A may be defined as those pixels of A that have at least one
neighbour from A€, the complement of A. Let N(A) denote the number of edge pixels of
A with at least one 4-neighbour in A¢. Then one can show that

perimeter(A) = N(A)/ky, (1.22)
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where

~ 0.900 1.23
: , (1.23)

/4

k;4:é//0050d9: 4

0 T/V/2
is an approximately unbiased estimate of the perimeter of A provided that all orientations
of the perimeter are approximately equally common. The unit of the perimeter estimate
(1.22) is pixel width. As with the area, it may be useful to regularize A in some way
before evaluating the perimeter. For more accurate perimeter estimates, see (Glasbey &
Horgan, 1995), pp 165-168, and further references given there.

A feature often used is the compactness of an object defined to be

area(A)
(perimeter(A))?

compactness(A) = 4w (1.24)

Sometimes it is useful to compare a set A of pixels with the convex hull of A, that is
the smallest convex set containing A. Some care has to taken in defining convexity for a
set of pixels; one possibility is to define convexity for the point set of pixel centres. The
convex perimeter of a set A is then defined to be the perimeter of the convex hull of A.
One useful feature is the convexity of A defined by

imeter (A
convexity(A) = comver _perie er( ) (1.25)
perimeter(A)

1.6.1 Moment features

Consider a grey level or binary image f = (fi;) = (fi;), andlet A C {1,...,m}x{1,...,n}
be a subset of pixels, typically corresponding to an object but sometimes the whole image.
The moment of order (p,q) in A is defined as

Mpg = Mpg(A) = Y i, p=0,1...., ¢=0,1,..., (1.26)
(i,5)€A
and the centroid is defined as
Mo Mot

centroid = centroid(A) = , . 1.27
(4) = (2L, o (1.2

We also consider central moments (with respect to the centroid)
. Mo . Moy
Ipg = Hpg(A) = Z (i——)"G——)"iy, pta>1 (1.28)
(i7)eA Moo Moo

One could note that central moments are invariant with respect to translation of objects.
It is possible to construct moments that are also invariant with respect to rotations. Two
such second order moments are

p20 + proz and  (pizg — pio2)” + 4pdy. (1.29)

An informative discussion of different types of moments with literature references can be
found in (Glasbey & Horgan, 1995), pages 156-161.
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In Example 1.10 we saw how we could discriminate between plant and soil pixels
quite well by use of a suitable feature, the normalized green colour. To discriminate
between classes of objects we can as will be seen in detail in the next chapter on pattern
recognition use a number of suitable chosen feature variables. In the following example
we will consider two feature variables and a suitable plotting technique.

Example 1.11. Handwritten digits. Continuation

In this example we will consider discrimination between digits “one” and “two” by use
of two second order moments. We use digits “one” and “two” among the first 400 digits in
MNIST. Plotting moment x1; on the vertical axis versus moment ps, on the horizontal
axis we get the plot shown in Figure 1.25. Try to draw by free hand first a straight line
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Figure 1.25: Plot of p1; versus moment po9 for handwritten digits digits 1 and 2 among
the first 400 digits in the MNIST data base.

and then an ellipse that gives as good a discrimination as possible betweens the “one”
and “two” digits. In the next chapter we shall describe systematic methods to draw such
boundaries. O
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1.6.2 Exercises

The images used in the exercises below may be found at
http://www.math.chalmers.se/ rudemo/images.html

Exercise 1.1. Let R, G and B denote the values in the red, green and blue channels for one
of the images from Example 1.3. Get the grey-level image corresponding to normalized
green,

G

I RYG+B

Exercise 1.2. Find the histogram for the image of Exercise 1.1. Try to segment the image
by use of the histogram.

Exercise 1.3. Compute area, perimeter and compactness for the green segment for the
image of the two previous exercises.

Exercise 1.4. Get one of the seed images from Example 1.2. Note that one has to resample
the image to get the correct form of the seed. How can that be done? After resampling,
reduce the number of columns to get a square image.

FEzercise 1.5. Apply the averaging filter (1.2), the median filter (1.5) and the edge em-
phasizing filters (1.6) and (1.7) to the image of the previous exercise.

FExercise 1.6. Consider the image from Exercise 1.4. Compute the histogram and trans-
form to a binary image. Zoom in to see the individual pixels at the object edge. Apply the
operations erosion, dilation, opening and closing. What is the effect of theses operations?
What happens when one iterates these operations?

1.6.3 Literature on image analysis

There is a wealth of books on digital image processing. An excellent treatment from
a statistical point of view focussing on examples from biology is given in (Glasbey &
Horgan, 1995). A mathematically oriented text is (Rosenfeld & Kak, 1982), which is now
a bit old but still quite useful. A comprehensive treatment of image processing, analysis
and machine vision may be found in (Sonka et al., 2015).
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Chapter 2

Pattern recognition

Humans are particularly good at recognizing many patterns such as faces and voices of
other individuals. A possibly harmful behaviour of another person or the appearance
of a possibly dangerous animal may also be quickly identified. Obviously such pattern
recognition abilities have implied a survival advantage during the evolution of humans.

By training humans can also be astonishingly good at tasks such as recognizing the
species of a bird at a long distance, perhaps by using a combination of features such as the
bird’s shape and colours, its vocalization and its mode of flight. The human observer’s
previous knowledge of how common possible bird species are in the current environment
at the given time of the year may also be highly useful in identifying the species.

One important task in pattern recognition based on digital images is to try to mimic
human pattern recognition by choice of suitable features for recognizing and classifying
observed objects. We can divide the field of pattern classification into two disciplines
depending on the our previous knowledge of the possible classes. The most well developed
discipline is discriminant analysis where we assume that we have a given number of classes
and that we have a new object that we want to assign to one of these classes. Typically
we also assume here that we have a set of objects for which we know the classes. Such
a data set, often called a training set, will help us to choose the relevant features of the
objects and to design the algorithm for recognizing the class by use of the chosen features.
Therefore discriminant analysis is often called supervised pattern recognition or learning
with a teacher.

In the second discipline, called cluster analysis we do not assume any prior knowledge
of possible classes. However, we will typically assume that we also here have a given
data set but without any classification. The data set will be used to find clusters, and
the discipline is often referred to as unsupervised pattern recognition or learning without
a teacher.

We will start by discussing discriminant analysis. Several of the sets of images in the
previous chapter, the weed seeds in Example 1.2, the weed plants in Example 1.3 and the
handwritten digits in Example 1.7 describe problems that call for discriminant analysis.
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2.1 Optimal discrimination with two classes and a one
feature variable

Suppose that we have two classes w; and wy and a real-valued feature variable X for
each object to be classified. Assume that we know how common the two classes are, that
is, we know the prior probabilities of the two classes. Assume also that we know the
distributions of the feature variable corresponding to the two classes.

For ¢ = 1,2, let m; denote the prior probability of class w; and let f; be the probability
density of X for an observation from class w;, or the probability function, f;(z) = P(X =
x), if X is a discrete random variable.

The problem of deciding if an object comes from class w; or wy is to be based on
observation of the corresponding feature variable X. Thus we need to specify two disjoint
sets Ay and A, with A; U Ay = R and choose class w; if X € A;. To find optimal sets
we need further specification corresponding to how costly it is to make different kinds of
errors, that is the cost of choosing class w; when wsy is true and vice versa. Let us first
assume that these cost are equal, and more specifically, that we want to minimize the
probability of misclassification.

It turns out that the probability of misclassification is minimized if we use the following
rule:
choose class wy if m1 f1(x) > mo fo(x), (2.1)

choose class ws if m1 f1(x) < mo fo(x). (2.2)

To show that a decision rule satisfying (2.1) and (2.2) is optimal we note that the prob-
ability of misclassification is generally given by

Pr(misclassification) = Pr(w; true and misclassification) + Pr(wy true and misclassification)

= Pr(w;) Pr(misclassification|w; ) + Pr(ws) Pr(misclassification|ws)

=m | filx)de+m [ folz)dz.
As Ay

In Figure 2.1 the set A; extends up to a threshold ¢ while A, is chosen above t. The
probability of misclassification is equal to the area of the coloured region, and it follows
that it is minimized precisely when the threshold is the horisontal location of the crossing
point of the two curves. Thus the misclassification probability is minimized if A; and A,
are chosen as in (2.1) and (2.2). (We note that z-values such that m fi(z) = 7o fo(z) may
be brought to either A; or Ay without affecting the misclassification probability.)

Example 2.12. Two-class discriminant analysis with estimated normal densities.

Suppose that we have a training set with n; objects from class w; and ns objects from
class wy. We assume that we have obtained random samples from both classes and that
the two samples are independent. We assume further that the variable X is normally
distributed with expectation y; and variance o7 in class w;, i = 1,2, where we assume that
expectations are different in the two classes while the variances may either be assumed
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Al t A2 X

Figure 2.1: Probability of misclassification is given by the coloured area. The set A;
where class w; is chosen extends here up to the threshold ¢, while A, is chosen above t.

to be equal or unequal. Let the observations be denoted X;,,, m = 1,...,n;, 1 = 1,2.
Then it is natural to estimate the expectation in class w; by

R
= — > Xim, i=1,2. 23
i ”mzl i (2:3)

If we make no assumption on equality of the variances we use the variance estimates

1

2 P
Si_ni—lz(Xm ;)% i=1,2, (2.4)

m=1

but if we assume variance equality we use the estimate

ny + no — 2

for the common variance. O O

We note that compared to Example 2.12 we have in Example 1.10, where we have
classified pixels into soil or plant pixels, a similar but more complicated situation as we
here do not have training sets for soil and plant pixels but use the model specified by
(1.10) and (1.12) for all pixels. Also the proportions of soil and plant pixels are estimated.

2.2  Optimal discrimination with k£ classes and a d-
dimensional feature vector

Suppose now that we have k classes w;,7 = 1,...,k, and a d-dimensional feature vector
X for each object to be classified. Let m; be the prior probability of class w; and let f; be
the probability density of X for an observation from class w;, ¢ = 1, ..., k. Let us further
assume that the cost of assigning an object to class w; is ¢(¢|j) when the true class is w;.
Rather than minimizing the misclassification probability we now want to minimize the
expected cost.

A decision function for our problem is now specified by a partition of d-dimensional
space R? into k disjoint sets Aj, ..., Ay with U¥_| A; = R%. Tf X € A; we assign our object
to class w;,i =1,..., k.

36



Now it turns out that the expected cost is minimized if the sets A; satisfy the following

condition
k

x € A; = subscript ¢ minimizes Zc(i|j)7rjfj(x). (2.6)
j=1

If the sum is minimized by several i-values for a certain x-value, then this z-value may
be allocated to A; for any of these i-values.

To show that a decision rule which satisfies (2.6) is optimal let us consider an arbitrary
decision function specified by a partition A, ..., A; of R%. The expected cost for this
decision rule may be written

k k
> [ Soclilims s

7 ]:1

from which it follows that a decision rule satisfying the condition (2.6) is optimal.

Let us now assume that all misclassifications have the same cost, and that the cost of a
correct decision is zero. Our criterion then implies that we shall minimize the probability
of misclassification, and it is not difficult to see that we shall prefer class w; to class w; if

mifi(z) > m; fi(z) (2.7)

similar to what we found previously for the case with two classes and one feature variable.

2.3 Normally distributed feature vectors, linear and
quadratic discrimination

A d-dimensional random (column) vector X is said to be N(u,C), that is have a d-
dimensional normal distribution with expectation vector p and covariance matrix C| if
X has the d-dimensional density function

1

F5(0) = gy (5@ = O @ ) 2.8)

where det C denotes the determinant of the matrix C.

An important special case in discrimination is to assume that the d-dimensional fea-
ture vector X has a multivariate normal distribution N(u;,C;) in class w;, i = 1,... k.
Sometimes the covariance matrices are assumed to be equal, that is

Ci=C, i=1,... k (2.9)

Let us first assume that the covariance matrices are all equal to C' and that we want to
minimize the probability of misclassification. A computation from (2.7) and (2.8) shows
that if X = x is observed we shall prefer class w; to w; if

(1 = 1) C e = 2 (s + ) > (2.10)

(2
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We note that (2.10) is linear in x and this case is therefore often called linear discrimi-
nation.

Let us now find a corresponding rule without the assumption (2.9). It follows from
(2.7) and (2.8) that we shall prefer class w; to w; if

1
pH(C = PN+ (i O = i O+ S O g = 1 O )

j i
mj(det C;)/?
m;(det C;)Y/2

1
2

> In (2.11)

We see that the border between the two regions in d-dimensional space where we should or
should not prefer w; to w; is given by a quadratic surface. When we allow the covariance
matrices for the classes to vary we therefore talk about quadratic discrimination compared
to the linear discrimination referred to above.

Example 2.13. k-class discriminant analysis with estimated normal densities.

Suppose that we have a training set with n; objects from class w;, ¢ = 1,..., k. From
all the classes we assume that we have obtained independent random samples of objects.
We assume further that the vector X is normally distributed with expectation vector
1; and covariance matrix C; in class w;. Let the observations vectors be denoted Xj,,,

m=1,...,n;,i=1,..., k. Then it is natural to estimate the expectation vector in class
w; by
1 &
1; = — Xim, 1=1,...,k. 2.12
i ; mz_l im ( )

If we make no assumption on equality of the covariance matrices we use the covariance
matrix estimates

1] &

_ X — ) (X — )T i=1,... k. 2.1
C; ni_lz( im — i) (Xim — 1), i=1,...,k (2.13)

m=1

If we assume equality of the covariance matrices we use instead the estimate

k
~ 1 ~
C=—F—— Z(n - 1)C; (2.14)
k T 3
Zz=1<”i —-1) i=1
for the common covariance matrix C. O O

2.4  FError rate estimation. Resubstitution and cross-
validation

An important issue in discriminant analysis is to estimate the rates of misclassification

errors. One simple type of error estimates, often called resubstitution error-rate estimates,

is obtained by directly computing the observed error rates in the training set for the chosen
allocation rule.
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However, the resubstition error-rates are typically too optimistic as the objects used to
evaluate the error rates are also used in the choice of the discriminator including estima-
tion of parameters in the discriminator. Particularly if the discriminator is complicated,
for instance if it contains many parameters, we can grossly underestimate the error-rate
corresponding to classification of a new object.

One way of avoiding the bias of resubstitution error rates is to divide the available
data into one training set and one evaluation set, for instance, by using half of the data
for estimation and half of it for evaluation. One critisism of this procedure is that it may
seem wasteful if data are scarce.

Nowadays one often uses resampling methods for evaluation of error rates. One such
method is k-fold cross-validation. Then we divide the data set consisting of n objects
into k equal or approximately equal groups, often by random choice of which objects that
should go into group 7,7 = 1,...,k. Then we fix j temporarily and use all objects except
those in group j to estimate parameters and compute error average rates for all objects
in group j. This procedure is repeated for all groups and we finally average error rates
also over groups to get overall error rate estimates. One can show that a small & increases
the bias but decreases the variance of the error rate estimate. Originally one often used
k = n, which is called leave-one-out cross-validation. Currently k =5 or k = 10 is often
recommended.

Example 2.14. Handwritten digits. Digits 1 and 2

We use the same data as in Example 1.11 with one small modification consisting
of standardization of the two moment features by linear transformations so that they
get average zero and varince one. We now use both liner and quadratic discrimination
and get, respectively, the linear and elliptic boundaries shown in Figure 2.2. We also
computed the resubstitution and 5-fold cross-validation errors for the liner and quadratic
discrimination models. It turned out that all four error rate estimates were identical and
equal to 15 %. O

Example 2.15. Handwritten digits. Moment features. Digits 0,1,...,9.

We use the first 8000 digits in the MNIST database, see Example 1.7, and consider
discrimination between the 10 digits 0,1,...,9 by use of all central moment features
fpg in (1.28) with p 4+ ¢ < K. We computed the resubstitution and the 10-fold cross-
validation error estimates for all K < 13, see Figure 2.3. Note that both for the linear
discrimination with full drawn curves and for the quadratic discrimination with dashed
curves the resubstitution errors are smaller than the cross-validation errors. For the
linear discrimination the cross-validation minimum error is 12.3 % for order 12 and for
the quadratic discrimination the cross-validation minimum error is 9.6 % for order 7.

O
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Figure 2.2: Plot of standardized moments ;7 versus pog for handwritten digits 1 and 2
among the first 400 digits in the MNIST data base together with the class boundaries
corresponding to linear and quadratic discrimination.
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Figure 2.3: Plot of error probabilities for linear discrimination, full drawn curves,
and quadratic discrimination, dashed curves, for discrimination between the ten dig-
its 0,1,...,9. Resubstitution error curves are in red and cross-validation error curves are
in black. Order K on the horizontal axis means that all moments j,, with p+¢ < K are
used as features to discriminate between the digits.
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2.5 Nearest neighbour classifaction

Suppose that we have a distance function §(z,z’) between feature vectors x and z’. Ex-
amples of distance functions for d-dimensional feature vectors are the Euclidean distance

d

S, ') = (D (a —2})*)"/? (2.15)

=1

and 0 = 1 — r, where r are is the correlation

Tl ) 210
(0 (s — 2)2)V2 (L, (af — 2/)2)1/2

where 7 and Z’ are the arithmetic means of the vectors z and 2.

r(z,2') =

A useful discrimination method is the m-nearest neighbour rule, which proceeds as
follows. Suppose we have a training set for which we know the correct classification. For
a new observation we find the m nearest neighbours in the training set, and we classify
the new observation by majority voting among these nearest neighbours.

Example 2.16. Handwritten digits. Nearest neighbour discrimination

We use the same data as in Example 2.14. The m-nearest neighbour classications with
m=3 and 5 are shown in Figure 2.4. We also computed the resubstitution and 5-fold

3-Nearest Neighbours ~ 5-Nearest Neighbours

Figure 2.4: Plot of standardized moments p1; versus pso for handwritten digits digits 1
and 2 among the first 400 digits in the MNIST data base together classifications from m-
nearest neighbour classification for m = 3 and m = 5. Digit colours indicate classification:
black digits are classified as 1 and grey digits are classified as 2.

cross-validation errors for m-nearest neighbour methods with m ranging from 1 to 10.
the result is shown in Figure 2.5. The minimum cross-validated error is obtained for
m =5 and equals 12 %. O
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Figure 2.5: Plot of resubstitution and 5-fold cross-validation error estimates for m-nearest
neighbour classications for m =1,...,10.

2.6  Multinomial logistic regression

Logistic regression with two classes is briefly described in Section 14.9. Here we will
generalize to k classes wy,...,w,. Let Y denote the class number of an observation with
associated explaining vector x, which we here will suppose consists of an image. Assume
that

ebiw

1+ 25;11 efiw’

i=1,... k-1, (2.17)

and
1

14 25;11 IR

where 3; denotes a parameter vector of the same dimension as x and (; - x denotes the
scalar product of §; and z, obtained by multiplying componentwise the elements of [;
and x, and adding the corresponding products. For given data with observations of pairs
(z,Y) we can then estimate the parameter vectors (; by maximum likelihood.

Pr(Y = k) i=k, (2.18)

Example 2.17. Handwritten digits. Logistic regression, confusion matriz, display by
t-SNE.

The computations and figures in this example are taken from (Longfils, 2018). In Figure
2.6 we see parameter vectors f3; estimated from a multinomial logistic model by use of
10000 digits from MNIST. In this figure we can rather clearly identify the digit zero to
the left in the upper row, and perhaps also the digit one next to it. A convenient way
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Figure 2.6: Parameter vectors (; for digits 0,...,4 in the upper row and digits 5,...,9
in the lower row estimated from 10000 digits in the MNIST database.

of illustrating the results of a discrimination analysis is to compute a confusion matriz
giving the resulting classifications for each class in the data used. In Table 2.1 we see
the confusion matrix corresponding to the logistic model analysis in Example 2.17 with
estimated error and identification probabilities. From the confusion matrix we see that the
digit zero seems to be most easy to identify with an estimated identification probability of
97.6%. The overall estimated identification probability is (1108 4+ 922+ ...948)/10000 =
92.2%.

In Figure 2.7 we use the method t-SNE, compare Section 14.6 and (Longfils, 2018),
to visualize how the 28x28-dimensional x-vector may be used to discriminate between
hand-written digits.

0

2.7 Selection of features

If we have a large number of possible features it is useful to make a selection of features.
One often used method is forward selection where we start by choosing the single feature
which gives the smallest error rate. Then we add that feature of the remaining ones
which together with the first chosen feature gives the best performance. The procedure
is continued a suitable number of steps. If one uses cross-validation error rate estimates,
we typically find that the error rates first decrease when we add new variables but then
a minimum is obtained and after that the error rate increases due to overfitting.
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Figure 2.7: Visualization by use of t-SNE for the first 400 digits in the test set used
in Example 2.17. The numbers close to points are the labels predicted by the logistic
regression method, and the colours of points correspond to the true labels as given in the

box in the lower right part of the image.
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True Estimated class

class 0 1 2 3 4 5 6 7 8 9 Sum | Percent

0 Number | 1108 8 2 0 2 3 1 11 0 0 1135 11.4
Percent | 976 0.7 0.2 00 0.2 03 0.1 1.0 0.0 0.0 100

1 Number 9 922 19 11 4 12 11 32 4 8 1032 10.3
Percent | 0.9 893 19 10 04 12 1.1 32 04 0.8 100

2 Number 2 18 921 2 22 3 10 21 7 4 1010 10.1
Percent | 0.2 1.8 912 02 22 03 10 21 07 04 100

3 Number 4 6 4 918 1 9 5 6 27 2 982 9.8
Percent | 04 0.6 04 935 0.1 09 05 06 27 0.2 100

4 Number 5 2 35 9 775 14 6 32 4 10 892 8.9
Percent | 06 0.2 39 10 8.9 16 07 36 04 1.1 100

5 Number 3 8 2 6 17 907 1 2 1 11 958 9.6
Percent | 0.3 0.8 02 06 1.8 94.7 0.1 0.2 0.1 1.1 100

6 Number 9 22 8 5 1 0 946 4 31 2 1028 10.3
Percent | 09 2.1 08 05 0.1 00 920 04 3.0 0.2 100

7 Number | 12 7 23 9 24 10 11 857 14 7 974 9.7
Percent | 1.2 0.7 24 09 25 10 11 880 14 0.7 100

8 Number 6 2 9 23 8 0 22 10 922 7 1009 10.1
Percent | 06 0.2 09 23 08 00 22 10 914 0.7 100

9 Number 0 2 4 1 13 5 3 3 1 948 | 980 9.8
Percent | 0.0 0.2 04 01 13 05 03 03 0.1 96.7| 100

Sum Number | 1158 997 1027 984 867 963 1007 978 1011 999 | 10000 100
Percent | 11.6 10.0 10.3 9.8 87 96 10.1 9.8 10.1 10.0| 100

Table 2.1: Confusion matrix for the logistic model analysis of the MNIST data set in
Example 2.17.
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In backward selection we start by including all features. Then we eliminate one feature
so that the resulting error rate is as small as possible. The procedure is iterated a suitable
number of steps.

2.8 Cluster analysis, k-means clustering

Suppose that we have collected a number of colonies of bacteria of a type that has not
been studied before but which we want to order in classes corresponding species or sub-
species. That is, we want to construct a taxonomy for these bacteria. Instead of an
individual bacterial particle the natural unit here is a homogeneous colony of bacteria.

One possible procedure would be to measure a number of variables, say d for each
individual colony and to see if these variables tend produce clusters in d-space. Let X
denote the d-dimensional vector of measurements, and let f(x) denotes the corresponding
probability density (or probability function if X is discrete). Corresponding to k classes
we would then expect that f could be written as a mixture,

k
flz) = Zpifi(x), (2.19)

where f; denotes the probability density in the ith class, and p; the proportion of the ith
class.

Let n denote the number of colonies observed, and let X, j = 1,...,n, denote our
observed d-dimensional vectors. The basic problem in cluster analysis can then be for-
mulated as estimation of the number £ of classes and also the functions f;, i = 1,... k,
on the basis of our observations Xi,...,X,,. Note that this problem is much more com-
plicated than the problems previously discussed in this chapter as we neither know the
number of classes, nor which observations (in a test set) that belong to the different
classes.

One procedure that is often used is k-means clustering. Consider d-dimensional ob-
servations and let us for simplicity regard Euclidean distances between observations. We
assume that there are k£ classes and choose first randomly & cluster centers among the
observations X;, 7 = 1,...,n. Then we alternate between two types of steps. In the
observation allocation step we suppose that we have cluster centers C;,i = 1,...,k, and
allocate each observation to the closest cluster center. In the cluster center recompu-
tation step we compute new cluster centers as averages of all observations allocated to
each cluster. We alternate between the two types of steps until there are no changes.
Typically we will also repeat the procedure a number of times with different (randomly
chosen) starting cluster centres and finally choose the clustering which has the minimal
total sum of within cluster square distances to cluster centres.

Example 2.18. Handwritten digits. Cluster analysis

We use the same data as in Example 2.14 but now we cluster them by k-means clustering
with £ = 2, 3 and 4. The results are shown in Figure 2.8. U
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Figure 2.8: Results from k-means clustering with £ = 2, 3 and 4 of the same data as used
in Example 2.14. Crosses mark estimated cluster centers.
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2.9 Case studies

Weed seed identification

In (Petersen, 1992) weed seed identification was studied with 25 images of seeds for each
of 40 species.

A large number of possible features were investigated and with 25 features an optimal
cross-validation error rate of 2.3% was found.

Weed plant identification

(Andersson, 1998) studied identification of plants at an early stage of carrot and seven
weed species. With 27 images for each of the eight plant species a cross-validation error
rate of about 16% was found with 7 or 8 features.

Comparison of discrimination methods for microarray data

In (Dudoit et al., 2002) different discrimation methods are compared for classification
of tumors based on gene expression data from three datasets available on the Internet.
In particular, the nearest neighbour method is found to perform well in these examples.
The number of neighbours is here determined by cross-validation.
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2.10 Exercises

Images and data sets for the exercises below may be found from the course home pages.

FExercise 2.1. Fisher’s Iris data, a classical data set. One of the famous data sets in
statistics is Fisher’s Iris data, used in (Fisher, 1936), where discriminant analysis was
introduced. Consider the data in Table 2.2 with four variables measured for 50 plants
of each of three Iris species. The data were assembled by E. Anderson, see (Anderson,
1935), and analysed in detail by (Fisher, 1936).

(a). Draw scatter plots for all 150 observations and all six pairs of variables. Alternatively,
if you do not have access to a computer, draw scatter plots for subsets with, say, 5 plants
from each species, and for, say, two pairs of variables.

(b). Find the best linear discriminators using all four variables for discrimination between
all pairs of the three species. Alternatively, without a computer, describe with formulas
how the computations are made. Under what assumptions is this discrimination method
optimal.

(c). Find the best quadratic discriminators using all four variables for discrimination
between all pairs of the three species. Alternatively, without a computer, describe with
formulas how the computations are made. Under what assumptions is this discrimination
method optimal.

(d). Find the optimal combination of two variables for discriminating between the three
species. Alternatively, without a computer, describe with formulas how the computations
are made.
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Exercise 2.2. Weed seeds. Consider the weed seed images of Rumex crispus and Rumez
thyrsiflorus from Figures 1.5 and 1.6 in Example 1.2 or a subset of these 25 plus 25 im-
ages.

(a). Compute the areas of the seeds and the convexity of them for the images considered.
(b). How well can you discriminate between the two species by use of the feature con-
vexity and linear discrimination?

(c). How well can you discriminate between the two species by use of the feature convex-
ity and quadratic discrimination?

(d). How well can you discriminate between the two species by use of the features con-
vexity and area and linear discrimination?

(e). How well can you discriminate between the two species by use of the features con-
vexity and area and quadratic discrimination?

Exercise 2.3. Weed plants. Consider images of carrot and weed plants such as those
described in Example 1.3. Choose two or more species and see well you can discriminate
between them by suitably chosen featuers. Compare with the results found by Andersson
(1998).

Exercise 2.4. Handwritten digits. Resubstitution error. Consider the data in Example
2.14. Show by use of Figure 2.2 that the resubstitution error is equal to 14/93 both for
linear and quadratic discrimination.

2.11 Literature on pattern recognition

A good introductory text on statistical pattern recognition is (Fukunaga, 1990). Many
algorithms are described in (Ripley, 1996) which also contains an extensive list of ref-
erences for the period up to 1996. A highly useful review of clustering methods with
particular emphasis on applications with image data is given in (Jain et al., 1999).
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Sepal
length
5.1
4.9
4.7
4.6

5.4
4.6

4.4
4.9
5.4
4.8
4.8
4.3
5.8
5.7
5.4
5.1
5.7
5.1
5.4
5.1
4.6
5.1
4.8

5.2
5.2
4.7
4.8
5.4
5.2
5.5
4.9

5.5
4.9
4.4
5.1

4.5
4.4

5.1
4.8
5.1
4.6
5.3

Table 2.2: Four flower features (in cm) for 50 plants of three Iris species, from (Fisher, 1936).
Iris versicolor

Iris setosa

Sepal
width
3.5
3
3.2
3.1
3.6
3.9
3.4
3.4
2.9
3.1
3.7
3.4
3

3

4
4.4
3.9
3.5
3.8
3.8
3.4
3.7
3.6
3.3
3.4
3
3.4
3.5
3.4
3.2
3.1
3.4
4.1
4.2
3.1
3.2
3.5
3.1
3
3.4
3.5
2.3
3.2
3.5
3.8
3
3.8
3.2
3.7
3.3

Petal
length
1.4
1.4
1.3
1.5
1.4
1.7
1.4
1.5
1.4
1.5
1.5
1.6
1.4
1.1
1.2
1.5
1.3
1.4
1.7
1.5
1.7
1.5
1
1.7
1.9
1.6
1.6
1.5
1.4
1.6
1.6
1.5
1.5
1.4
1.5
1.2
1.3
1.5
1.3
1.5
1.3
1.3
1.3
1.6
1.9
1.4
1.6
1.4
1.5
1.4

Petal
width
0.2
0.2
0.2
0.2
0.2
0.4
0.3
0.2
0.2
0.1
0.2
0.2
0.1
0.1
0.2
0.4
0.4
0.3
0.3
0.3
0.2
0.4
0.2
0.5
0.2
0.2
0.4
0.2
0.2
0.2
0.2
0.4
0.1
0.2
0.1
0.2
0.2
0.1
0.2
0.2
0.3
0.3
0.2
0.6
0.4
0.3
0.2
0.2
0.2
0.2

Sepal
length
7
6.4
6.9
5.5
6.5
5.7
6.3
4.9
6.6
5.2
5
5.9
6
6.1
5.6
6.7
5.6
5.8
6.2
5.6
5.9
6.1
6.3
6.1
6.4
6.6
6.8
6.7
6
5.7
5.5
5.5
5.8
6
5.4
6
6.7
6.3
5.6
5.5
5.5
6.1
5.8

Sepal
width

3.2
3.2
3.1
2.3
2.8
2.8
3.3
2.4
2.9
2.7
2

3

2.2
2.9
2.9
3.1
3

2.7
2.2
2.5
3.2
2.8
2.5
2.8
2.9
3

2.8
3

2.9
2.6
2.4
2.4
2.7
2.7
3

3.4
3.1
2.3
3

2.5
2.6
3

2.6
2.3
2.7
3

2.9
2.9
2.5
2.8
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Petal
length
4.7
4.5
4.9
4
4.6
4.5
4.7
3.3
4.6
3.9
3.5
4.2
4
4.7
3.6
4.4
4.5
4.1
4.5
3.9
4.8
4
4.9
4.7
4.3
4.4
4.8
5
4.5
3.5
3.8
3.7
3.9
5.1
4.5
4.5
4.7
4.4
4.1
4
4.4
4.6
4
3.3
4.2
4.2
4.2
4.3
3
4.1

Petal
width
1.4
1.5
1.5
1.3
1.5
1.3
1.6
1
1.3
1.4
1
1.5
1
1.4
1.3
1.4
1.5
1
1.5
1.1
1.8
1.3
1.5
1.2
1.3
1.4
1.4
1.7
1.5
1
1.1
1
1.2
1.6
1.5
1.6
1.5
1.3
1.3
1.3
1.2
1.4
1.2
1
1.3
1.2
1.3
1.3
1.1
1.3

Sepal
length
6.3
5.8
7.1
6.3
6.5
7.6
4.9
7.3
6.7
7.2
6.5
6.4
6.8
5.7
5.8
6.4
6.5
7.7
7.7
6
6.9
5.6
7.7
6.3
6.7
7.2
6.2
6.1
6.4
7.2
7.4
7.9
6.4
6.3
6.1
7.7
6.3
6.4
6
6.9
6.7
6.9
5.8
6.8
6.7
6.7
6.3
6.5
6.2
5.9

Iris virginica

Sepal
width
3.3
2.7

3

2.9

3

3

2.5
2.9
2.5
3.6
3.2
2.7

3

2.5
2.8
3.2

Petal
length
6
5.1
5.9
5.6
5.8
6.6
4.5
6.3
5.8
6.1
5.1
5.3
5.5
5
5.1
5.3
5.5
6.7
6.9
5
5.7
4.9
6.7
4.9
5.7
6
4.8
4.9
5.6
5.8
6.1
6.4
5.6
5.1
5.6
6.1
5.6
5.5
4.8
5.4
5.6
5.1
5.1
5.9
5.7
5.2
5
5.2
5.4
5.1

Petal
width
2.5
1.9
2.1
1.8
2.2
2.1
1.7
1.8
1.8
2.5
2
1.9
2.1
2
2.4
2.3
1.8
2.2
2.3
1.5
2.3
2

2
1.8
2.1
1.8
1.8
1.8
2.1
1.6
1.9
2
2.2
1.5
1.4
2.3
2.4
1.8
1.8
2.1
2.4
2.3
1.9
2.3
2.5
2.3
1.9
2
2.3
1.8



Chapter 3

Machine learning, neural nets, support

vector machines

In recent decades a number of machine learning methods for patter recognition have been
launched such as neural nets and support vector machines which will be briefly discussed
in this chapter. To evaluate these methods a number of large datasets have also been

brought forth, compare Table 3.1 and

https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research

for more details.

Table 3.1: Datasets of images and videos for tasks such as classification, object detection

and face recognition

Dataset name Brief description Instances Format Default task Created
MNIST Handwritten digits 60 000 + Images, text Classifcation 1998
10000

CIFAR-10 Images of 10 classes 60000 Images Classification 2009
of objects

CIFAR-100 Images of 100 classes 60 000 Images Classification 2009
of objects

KITTI Images and videos >100GB Images, text Classification, 2012
obtained from cars of data object detection

SVHN Street View 73257 + Images Classification 2011
House Numbers 26 032

FERET Face Recognition 11338 from Images Classification, 2003
Technology 1199 individuals face recognition

3.1 Neural nets

Let us start by considering a neural net consisting of one input layer with n; units
corresponding to input variables x;,7 = 1,...,ny, an intermediate (hidden) layer with ns
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units and an output layer with K units. For unit j in the intermediate layer we compute

the so-called activation value a;,j = 1,...,ng, by
ni
=y wiz + b, (3.1)
i=1
e
= 3.2
YOS 2
for weights w](;) and biases b§1). With some abuse of notation we will write
aj=o0(z), j=1,...,n9, (3.3)

and we call o given by (3.2) and (3.3) the softmaz function. From the hidden layer
we proceed to the output in a similar way and we obtain neural net output variables
fulk),k=1,... K, as

no ni
fr(x) = fe(z,0) =0 (Z w,(é)cr (Z wﬁ)xi + b§1)> + b,@) , k=1,....K, (3.4)
j=1 i=1

where z = (x1,...,x,,) is the vector of input variables, and 6 is the parameter vector of
all weights, wj(.ll-) and wg), and biases bg.l) and bff).

We can add now add one more hidden layer which gives a neural net with two hidden
layers and output

ns no ni
file) = o (Z wio (Z wio (Zwﬁi’wi T b§”> ¥ bé”) + b;i”) k=1 K,
=1 j=1 i=1

(3.5)
and it should be clear how we can extend the neural net with an arbitrary number of
hidden layers.

If we for instance consider a neural net for the MNIST database it is natural to consider
ni = 282 = 784 units in the input layer, each input unit corresponding to one pixel value,
and K = 10 corresponding to the 10 possible digits. We note that the output variables
fr(x) sum to one and we can interpret fi(z,6) as the probability of digit k. To classify
images we can first in some way estimate the parameter # by use of a training set. Let 6
denote the estimate of . To classify an image = we can then put

k() = argmax, fi(z, ). (3.6)

The crucial step here is to obtain the estimate 0. In practice the parameter vector # may
contain several thousand components and the estimation procedure is thus quite delicate.
We will now discuss possible estimation methods.

Parameter estimation for neural nets, regularization

Suppose that we have a training set 7 of | 7| pairs (z,y) and that the neural net output
f(x,0) should approximate y. Then we introduce a suitable loss function. Let us first
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consider a simple case where y and f(x,0) are real-valued. Then we may choose the loss

function .

LO,T) == > (y— f(x,0) (3.7)

| ‘ (z,y)ET

Let us then consider a classification setting with K classes, for instance for MNIST
classification with K = 10. As described above we then get as output from a neural net
a probability distribution f(z,0),k =1,..., K, for the possible class values. For a pair

(x,y) where k. is the correct class we can define y,, k= 1,..., K, as
1 ifk=k
Yk = { 0 otherwise (3.8)

and choose the cross-entropy loss function

L6, T) = Z > yilog fiul(x,6). (3.9)

(zy)eT k

We can minimize L(6,T) and obtain an estimate @ = (7). The result is then that
we often get a good fit to the observations in 7, but if we go to a new data set the fit is
typically not so good. We say then that we get an overfit. To compensate for overfitting
we can introduce a regularization term R(#), for instance

16l

=>_16:”, (3.10)
i=1

where we sum over all components of @ = (61, ...,6)9). Then we estimate f by minimizing
the regularized loss function

L(6:;T,L\R)=L(O,T) + \R(9), (3.11)

where A > 0 is a tuning parameter. Note that A\ = 0 corresponds to no regulariza-
tion which typically gives overfitting, while a very large A\ corresponds to underfitting.
To choose a proper value of the tuning parameter we can evaluate the regularized loss
function for a separate validation set 7" of pairs (z,y) or use cross-validation.

Let us also note that instead of the softmax function given by a = o(z), see (3.2) and
(3.3), as activation function, one often uses a rectified linear unit given by

a = max(0, 2). (3.12)

Convolutional neural nets

Let w = (wge) and g = (g;;) be matrices. The convolution w * ¢ is then defined by

U} * g Z Z Wge Gi—k k,j—05 (313)

compare Section 1.2 on image filtering.
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Convolutional neural nets are particularly useful for analysis of images. Such neural
nets contain layers with layer transitions of the following convolution type

a ) = (Z Zwkz al” ,w £>, (3.14)

k=—pl=—p

where p usually is a small positive number. We note that we use here only (2p + 1)?
different weights and that there is the same filter operation applied in different parts of
a'™) here regarded as an image. The filter operation could for instance consist of finding
edges in an image.

A convolution layer is often followed by a pooling layer reducing the layer size. We
can for instance use a maxpool operation where a layer of pixels is divided into adjacent
and non-overlapping rectangles and each rectangle is replaced in the following layer by
one pixel with pixel value equal to the maximal pixel value in the rectangle.

Example 3.19. Handwritten digits. Analysis with a convolutional neural net. The com-
putations in this example are taken from (Longfils, 2018). In Table 3.2 we see the con-
fusion matrix corresponding to a convolutional neural net trained on 50000 digits and
evaluated on 10000 digits from the MNIST data set. The neural network used consisted
of six layers:

1. An input layer (28x28 pixel images)

2. A convolution layer with 20 filters of size 5x5
3. A rectified linear unit layer

4. A max pooling layer with size 2x2 pixels

5. A fully connected layer

6. A softmax layer (outputting the probability for each of the 10 classes)

From the second item in the list above we see that the convolution layer actually exists
of 20 different filters (working in parallel). The resulting 20 filters are given in Figure
3.1. Tt is easy to visualize that combinations of convolutions with these filters can be
advantageous in identifying digits.

From the confusion matrix we see that the digit zero seems to be most easy to identify
with an estimated identification probability of 99.6%. The overall estimated identification
probability is (1130 + 1016 + ...975)/10000 = 98.5%. OJ

3.2 Support vector machines

The following description is inspired by the more complete description in Chapter 19 of
(Efron & Hastie, 2016). Suppose that we have a training set 7 consisting of pairs (z,y),
where z is an n-dimensional column vector and y € {—1,+1} is a two-class indicator. To
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Figure 3.1: The 20 filters in the convolutional neural net used for identifying MNIST

integers.

True Estimated class

class 0 1 2 3 4 5 6 7 8 9 Sum | Percent

0 Number | 1130 1 1 1 0 1 0 1 0 0 1135 11.4
Percent | 99.6 0.1 01 01 00 01 00 01 0.0 0.0 100

1 Number 1 1016 2 1 0 1 5 4 1 1 1032 10.3
Percent | 0.1 984 0.2 0.1 00 01 05 04 01 0.1 100

2 Number 0 3 999 0 1 0 2 4 1 0 1010 10.1
Percent | 0.0 0.3 989 00 01 00 02 04 01 00 100

3 Number 0 1 0 974 0 1 0 0 5 1 982 9.8
Percent | 0.0 0.1 0.0 992 00 01 00 00 05 0.1 100

4 Number 0 1 9 0 874 3 0 3 0 2 892 8.9
Percent | 0.0 0.1 1.0 00 980 03 00 03 00 0.2 100

5 Number 3 0 0 3 1 942 0 2 0 7 958 9.6
Percent | 0.3 0.0 0.0 03 01 983 00 0.2 0.0 0.7 100

6 Number 3 8 2 0 0 0 1012 2 1 0 1028 10.3
Percent | 0.3 0.8 02 00 00 00 984 02 0.1 0.0 100

7 Number 0 3 2 1 2 0 5 953 2 6 974 9.7
Percent | 0.0 0.3 02 01 02 00 05 978 0.2 0.6 100

8 Number 2 0 3 10 3 0 8 2 977 4 1009 10.1
Percent | 0.2 0.0 03 1.0 03 00 08 0.2 968 04 100

9 Number 0 0 0 0 1 1 2 1 0 975 | 980 9.8
Percent | 0.0 0.0 0.0 00 01 01 02 01 0.0 99.5| 100

Sum Number | 1139 997 1027 984 867 963 1007 978 1011 999 | 10000 100
Percent | 11.4 10.0 103 98 87 9.6 10.1 9.8 10.1 10.0| 100

Table 3.2: Confusion matrix for a convolutional neural net analysis of the MNIST data
set in Example 2.17.
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begin with we will suppose that the two classes are linearly separable in the sense that
there exists a real parameter 5, and an n-dimensional parameter vector § such that with
fx)=pBo+a"B

yf(z) >0 forall (z,y)eT. (3.15)

We can then classify a new x-vector and predict the corresponding y-value as sign(f(x)).
A natural question is then if we can choose 5y and 3 in an optimal way. The suggested
solution here is to maximize the minimal distance (margin) to the separating hyperplane
f(z) = 0 in n-space. The solution to this problem turns out to be to find

1
maxg, g {M : subject to my(ﬁo + 27 B) > M for all (z,y) € 7'} , (3.16)

where ||(|| is the Euclidean (quadratic) norm in n-space. An equivalent somewhat simpler
formulation is to find

ming, 5 {||8|| : subject toy(8y + " B) > 1 for all (z,y) € T} . (3.17)

In general we can not expect to find a hyperplane giving complete separation between
the two classes. Then we can instead find a minimum with a regularized loss function

ming, 53 Y [1—y(Bo+aT By +AIBIP ¢ (3.18)

(z,y)ET

where [a], denotes the positive part of a real number a. For linearly separable classes one
can show that A = 0 gives the previously described solution which is determined by a few
points close to the separating boundary. Increasing A corresponds to taking account of
more and more data points. Similarly as for neural nets one can find an optimal tuning
parameter A by use of a separate validation set or by cross-validation.

For a multiclass classification problem we can for instance for each class make a two-
class classification versus the union of all other classes and then for a new observed
x-vector choose the class giving the largest margin. Another possibility is to consider
voting for all pairwise comparisons and for a new observation to choose the class that
gets that the maximal number of votes.

Support vector machines with kernel functions

One can show that for a new vector x to be classified one can write the classifier on the
form

7]
fl@)=6o+a"8 =05+ Z a'za, (3.19)
i=1
where !, ... ,xm are z-vectors in a training set 7 and o', ... ,Ozm are real parameters.

This representation allows us to use a modified classifier of the form

Tl

fl@)=Bo+2"B =75+ a'k(x,"), (3.20)
=1
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where k(u,v) is a positive-definite kernel function, for instance the Gaussian kernel
k(u, v) = eIl (3.21)
Use of kernel functions implies possibilities of nonlinear transformations of the z-vectors

and adds considerable flexibility to support vector machines.

For an application of support vector machine methods for identifying MNIST integers,
see (Longfils, 2018). Figure 5 there gives a confusion matrix similar to the confusion
matrices in Tables 2.1 and 3.2 in the present text.

3.3 Literature on machine learning, neural nets and
support vector machines

Highly useful texts from a statistical point of view are (Efron & Hastie, 2016) and (Bishop,
2006). Two recent references, both with the title 'Deep Learning’ which is a current term
for advanced neural nets, are (LeCun et al., 2015) giving an overview and (Goodfellow
et al., 2016) giving a thorough and up-to-date coverage of the field.

3.4 Exercises

FEzercise 3.1. Draw a figure illustrating the neural net in (3.5). Choose for instance
ny =6, ny =5, ng=4and K = 2.

FEzxercise 3.2. Think of guessing wrong for handwritten integers, that is guessing integer
y when zx is correct, z = 0,...,9,y = 0,...,9, y # . Which of the possible 90 errors
do you think is the largest one? Look in Table 3.2 and compare with the largest error
probability there.
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Chapter 4

Statistical image modelling

In Figure 4.1 we see two examples of images obtained by simulation from simple models
with independent pixel values. To the left we have a ’pepper-and-salt’ pattern corre-
sponding to equal probababilities for black and white. To the right we have a grey-level
image from a normal distribution (i, 0?) with 4 = 0.5, 0 = 0.2 and truncated to the
interval [0, 1], that is, if a value less than 0 was generated it was replace by 0 and if a
value larger than 1 was generated it was replaced by 1.

Figure 4.1: Images of size 64 x 64 obtained by simulation from models with independent
pixel values: to the left a black-and-white image with equal probabilities for the two
colours, and to the right a grey-level image with values from a normal distribution with
expectation p = 0.5, a standard deviation o = 0.2 and truncated to the interval [0,1] .

In the following sections we will generalize to models with dependence between pixel
values. We will consider Markov random field models defined by a neighbourhood for
each pixel and a corresponding conditional distribution for the pixel value given the pixel
values in the neighbourhood. But first we will take a look at Markov chains in one
dimension.
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4.1 One-dimensional Markov chains

A random sequence X; with values in a finite or countable set V' is a Markov chain if
Pr(Xi =2/ X,,s <t) =Pr(Xy =2|Xy), xzeV. (4.1)

It is not easy to see how this can be generalized to processes in the plain. However, one
can prove that the condition (4.1) is equivalent to the condition

Pr(Xt = IL'|XS, S # t) = Pr(Xt = fL‘|Xt_1, Xt-i—l)a x € ‘/, (42)

that is, if we want to predict X; from all values X,, s # t, it is enough to know X, in
the two neighbouring sites with s = ¢ — 1 and s = ¢t + 1. And the condition (4.2) can
be generalized in a straightforward way to several dimensions as will be seen in the next
section.

4.2 Markov random field models

Let us regard a random image X = (X, s € §), where S denotes the set of sites (pixel
locations). We suppose that to each site s € S there is defined a set Ny C S of neighbour
sites such that the following two conditions are satisfied:

(i) s¢&N;,

(ii) t e N;if and only if s € V,.
Two often used neighbourhood systems are shown in Figure 4.2. To the left we see the
system where the site s = (4, j) has the neighbourhood

Ne={(i =17, (+ 15,5 = 1), @7+ D} (4.3)

In the system shown in the right part of the figure there are four additional neighbours
so that N, then consists of eight sites.

HEN :

Figure 4.2: Two often used neighbourhood systems: to the left the site s has four neigh-
bours and to the right it has eight neighbours.

Suppose that X = (X, s € ) is a set of discrete random variables taking values in the
set V. We say that X is a Markov random field with respect to the system (Ng, s € 5)
of neighbourhoods if

Pr(Xs = o| Xyt #s) = Pr(X; = 2| X, t € Ng), z€V,seb. (4.4)

This means that if we want to predict the pixel value X, at s knowing all other pixel values
we get the same prediction as when we only know the pixel values in the neighbourhood
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N,. This will turn out to be highly useful in an iterative sampling method called Gibbs
sampling, which may be used for simulation of a Markov random field.

Neighbourhoods of border sites have to be considered separately. Suppose that the set
of sites is
S={(,5):i=1,....m,j=1,...,n}. (4.5)

One possibility is to use periodic boundary conditions which means that sites in the
leftmost column are considered as neighbours of sites in the rightmost column, and,
similarly, that sites in the top row are considered as neighbours of the bottom row.
Specifically, if (4.3) gives neighbourhoods for non-border sites, we define for s = (i,n)
with 1 <7< m

Ny={(i—1,n),(i+1,n),(;,n—1),(i,1)}, (4.6)

with similar definitions for other border sites. We can think of periodic boundary condi-
tions as corresponding to a folding of S like a torus (a doughnut).

Ezxample 4.1. The Ising model. Let S be given by (4.5) with periodic boundary
conditions. In physical applications to be discussed below we are interested in large
values of m and n. Suppose that X, can take two possible values, —1 and +1. Let X}
and X denote the number of neighbours of s that take positive and negative values,
respectively. Thus X + X, = 4. In the basic two-dimensional model we assume that

exp(26(X," — X))

Pr(X, = +1|X, 1 € Vo) = 2B T =% (4.7)

We assume that § > 0. Note that if X > X, that is, if the number of neighbours of s
with positive values is larger than the number of neighbours with negative values, then
the probability that s shall also have a positive value is greater than 1/2.

An alternative way of specifying the probability distribution of X is as a Gibbs distri-
bution,

Pr(X =2x) = %exp(ﬁ z; TsTt), (4.8)
5

where Z is a normalizing constant, which is notoriously difficult to compute in models
of this type, and where s ~ t denotes that s and ¢ are neighbours. Thus we sum in the
right member of (4.8) over all pairs (s,t¢) of sites that are neighbours. In physics the
Ising model is used as a model for ferromagnetism and 5 may be interpreted as inverse
temperature. It turns out that for temperature below a critical value, that is for 5 > j.,
there are long range dependencies and possible phase transitions, that is a clear majority
of the X,-values will either be equal to +1 or a clear majority will be equal to —1. But
for < (. there are no phase transitions and the value of X, averaged over large sets of
sites is close to zero. A famous computation by (Onsager, 1944) gives

8. = %log(l +/2) = 0.44069 (4.9)

A review of Gibbs distributions and their use in mathematical physics may be found in
(Georgii et al., 2001). O
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4.3 Autonormal random field models

Let us now also regard Markov random field models, where X, , s € S are continuous
real-valued random variables. The condition (4.4) needs then a modification to

Pr(X, € A|X;,t #s) =Pr(X; € A|X;,t € Ng), ACR,s€ 8, (4.10)

for all considered subsets A of R. We here only consider some simple autonormal models
where we assume that the conditional distribution of X, given its neighbours is normal
with a constant variance o and an expectation that is a linear combination of the neigh-
bour values. Specifically, let us consider the neighbourhood system given by the left
part of Figure 4.2 and denote the neighbours of s in the West, North, East and South
directions W (s), N(s), E(s), and S(s), and assume that

E(X | X¢,t € Ny) = p+ Bw (Xws) — 1) + By (Xngs) — 1) + Be(Xee — 1) + 5S(XS(S)(— M))-
4.11

4.4 Simulation of Markov random fields

There are several ways of simulating images from Markov random field models. We will
describe one of the most used methods, Gibbs sampling.

In Gibbs sampling we visit the sites s € S in a specified way which may be random or
deterministic. An often used random method is to choose successive sites to be visited
independently and in a purely random way from the set of all sites. And an often used
deterministic visiting scheme for a set of sites such as (4.5) is to choose sites to be visited
row-wise from left to right starting with the first row and proceeding until all sites have
been visited. Such a set of visits is called a sweep. The procedure is iterated a given
number of of sweeps.

Example 4.2. The Ising model. Continuation. Consider Gibbs sampling for the Ising
model by use of (4.7). As start configuration we use a purely random configuration as
in the left part of Figure 4.1. For a set of $-values we see in Figure 4.3 binary images
obtained by deterministic row-wise sweeps as described above. The upper two rows
correspond to § values under the critical value (4.9), that is to high temperature, while
the two lower rows correspond to low temperature. In the middle row we have g very
close to the critical value, actually slightly above.

It may be noted that for large S-values (the two lower rows) the number of iterations
used in Figure 4.3 is far too small to arrive at a stationary distribution for the Markov
chain formed by the successive iterations. a
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Figure 4.3: Binary images obtained by simulation for the Ising model with § = 0.11,
0.22, 0.4407, 0.88 and 1.76 in rows 1 to 5, respectively. In the columns we have to the
left a purely random start configuration and then the result after 1 sweep, after 4 sweeps,
after 16 sweeps and after 64 sweeps, respectively.
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Figure 4.4: Grey-scale images obtained by simulation for autonormal models. In the
columns we have to the left a purely random start configuration and then the result
after 1 sweep, after 16 sweeps, after 128 sweeps and after 256 sweeps, respectively. The
parameters in (4.11) are in the upper row By = fr = Oy = s = 0.24, in the second
row Sy = Bg = 0 and By = Bs = 0.48, and in the third row By = B = —0.24 and
By = Bs = 0.24. In all three rows we have p = 0.5 and the residual standard deviation
o=0.3.

Example 4.3. Simulation of an autonormal model. Consider Gibbs sampling for the
autonormal model with conditional expectations (4.11) and constant conditonal variance
given the neighbour values. For three sets of parameters we obtain results shown in
Figure 4.4. a

4.5 Bayesian analysis of images

A common approach in Bayesian image analysis, is to assume that we start with a random
image X given by a Markov random field. Then we observe a distorted image Y and one
basic problem is to reconstruct X from Y. A simple model for the observed image ¥ =
(Y;, s € S) is to assume that given X the Y;-variables are independent and furthermore
that the distribution of Y, only depends on X, that is we assume that

Pr(Y = y|X) = [ [ Pr(Y: = vl X0). (4.12)

seS

The reconstruction of X from Y is a difficult computional problem, and a series of
iterative algorithms have been developed for this type of problems, most of them based
on Markov chain Monte Carlo algorithms.
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The use of Bayesian models for image reconstruction by use of Markov random field
models as priors for the unobserved image X has generally suffered from the problem
that it seems difficult to specify realistic priors for images typically found in applications.
An interesting approach developed in particular by David Mumford and Song Chun Zhu
is based on the following type of models, see for instance (Zhu & Mumford, 1997) for
details and examples of which images that might be generated. Briefly the structure of
the model for the prior is a Gibbs distribution, cf. (4.8) above, with

Pr(X =z) = %exp(—U(:p; A F)), (4.13)

where

U(z; A, F) ZZW F@ s 2)(s)). (4.14)

a=1 sefs

Here FF = {FW ... FE)} is a set of linear filters and A = {\® ... A} is a set of
functions, called potential functions, acting on the features extracted by the filter bank
F.

4.6 Exercises

Exercise 4.1. Simulate images with independent pixel values as in Figure 4.1 but with k
equi-distributed levels. Choose k = 3 and k = 256. (Note that the left image in Figure 4.1
corresponds to k = 2.)

FEzercise 4.2. Regard the Ising model with negative S-values. (In physics this model is
used as a model for anti-ferromagnetism.) Use Gibbs sampling to simulate images as in
Figure 4.3 with 5 = -0.11, -0.22, -0.44, -0.88 and -1.76. Try also to guess what the images
will look like before making the simulations.

Exercise 4.3. Regard an autonormal model with a neighbourhood system as in the right
part of Figure 4.1. Choose suitable notation and write a model corresponding to (4.11).
Use Gibbs sampling to simulate images as in Figure 4.4 and suggest parameter combina-
tions to obtain different types of random textures.

Exercise 4.4. Show that if the distribution of X is given by (4.8), then (4.7) holds. Hint:
one can use that

Pr(Xs =41, X = 24, t € Ny)

Pr(X, = +1|X; = 2,t € N, .
(X = 11X = 2 )= Pr(Xs = +1,X; = 24,1 € Ng) + Pr(Xy = —1,X; = a4, € Ny)

4.7 Markov Chain Monte Carlo methods

Let us briefly describe Markov Chain Monte Carlo methods. We start with the Metropolis-
Hastings algoritm. Suppose that we want to estimate the expectation

E(y(X)) = / g(e)f () dz | (4.15)



where X is a random variable in d-dimensional Euclidean space with probability density
f. Suppose further that we only know the density f except for a multiplicative constant,
that is we know an unnormalized density

f*(x) = cf (x) (4.16)

but not the normalization constant
c= /f*(x) dzx . (4.17)

In the Metropopolis-Hastings algorithm we generate a sequence of random variables
Xq,..., X, forming a Markov chain with a distribution converging to the distribution
of X. To generate X;,; from X, use a proposal distribution ¢(:|X;) and generate a d-
dimensional random variable Y;. An often used proposal distribution is obtained by a

random walk model, that is
Y= X, +e (4.18)

where ¢, has d independent zero mean normal components with variance 2. The proposed
variable Y; is accepted as X;,; with probability

o S (V) (XYY
a(Y;|X;) = min {1, (X)) (Vi X0) } : (4.19)

If Y; is not accepted we put X;;; = X;. To control the acceptance or rejection of Y we
generate an independent random variable U; with a uniform distribution on the interval
(0,1) independent of Y and U for s < t. Then we put

Xis :{ Y, if U, < a(Yi]X,) (4.20)

X; otherwise.

An excellent self-contained introduction to Markov chain Monte-Carlo methods with focus
on the Metropolis-Hastings algorithm is given in (Robert, 2016).

4.8 Literature on statistical image modelling

Bayesian models for images became popular in the eighties following work by (Grenan-
der, 1983) and (Geman & Geman, 1984). Markov chain Monte Carlo methods play an
important role in reconstruction of images observed with noise. Important algorithms are
simulated annealing, the Metropolis algorithm and Gibbs sampling, which all are exam-
ples of randomized algorithms. A simple iterative method, iterated conditional modes,
was introduced by (Besag, 1986). (Winkler, 2003) gives a thorough treatment of these
methods from a mathematical point of view. For an introduction to randomized algo-
rithms viewed as Markov chains, see (Haggstrom, 2002), including a description of ezact
or perfect simulation algorithms.

67



PART 2 SPATIAL STATISTICS
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Chapter 5

Spatial random processes

5.1 Spatial covariance functions

Let X = (X5, s € S) be a spatial random process also called random field, where s is a
spatial coordinate. In this chapter S may either be a discrete set, as when X is a digital
image, or a continuous set, e.g. a rectangle S = {(s1,52) € R? : a; < 51 < by, a9 <
Sy < be}. In this book we limit ourselves to spatial processes in two dimensions, but
generalizations to d dimensions are fairly straightforward.

A spatial random process may be characterized by its mean value function,
ms = EX, (5.1)
and its covariance function
C(s,t) = E(Xs — mg) (X —my). (5.2)

A spatial random process X = (X,,s € S) is Gaussian if the joint distribution of
(Xss-.-,Xs,) is an n-dimensional normal distribution for any choice of coordinates
S1,...,8, in S. A Gaussian random process is completely specified by its mean value
and covariance functions.

It should be noted that not all functions of two variables are possible covariance func-
tions. In fact, a necessary and sufficient condition that C' is a valid covariance functions
is that C' is symmetric, that is C(s,t) = C(t, s), and that it is positive-definite, that is

satisfies
E E a,i(le(Si, Sj) Z 0 (53)
)

for all n, aq,...,a,, and sq,...,s,. Note that the necessity of the condition (5.3) follows
directly from the fact that

n

E(Z a;i(Xs, —my,))* = Z Z a;a;C(s;i,s;). (5.4)

i=1

A spatial random process (X;),s € S is said to be stationary if its distribution is
invariant under a translation ¢ € R2, more precisely if for each choice of n > 1 and
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(s1,...,5,) the distribution of the n-dimensional random vector (X, 14, ..., X5, ;) does
not depend on t, as long as s; +t € S,7 = 1,...,n. The mean value for a stationary
spatial process is a constant m = EX; and the covariance function C(s,t) depends only
on s —t. A stationary spatial process is further called isotropic if its distribution is
invariant under rotation of S. For an isotropic spatial process the covariance function
C'(s,t) only depends on |s — t|, the Euclidean distance between s and ¢. The covariance
function can then be written on the form

C(s,t) = op(ls — 1), (5-5)

where p = p(r),r > 0, is called the correlation function. Examples of correlation functions
p that give valid (positive-definite) covariance functions are:

the exponential correlation function

p(r,0) = exp(—r/0), (5.6)
the Gaussian correlation function
p(r.0) = exp(—(r/0)%), (5.7)
the linear correlation function
p(r,0) =(1—1r/0)1(r <0), (5.8)

the rational quadratic correlation function

1
)= ——— .
p(T’ ) 1+ (T/0)2 (5 9)
and the spherical correlation function
2 1
p(r,0) = (1 — g(r/Q) + 5(7‘/0)3)1(7“ < 0). (5.10)

In Section 9.4, see in particular Figure 9.4, we show an example with comparison of five
fitted correlation functions (5.6) - (5.10).

Suppose that we have a valid covariance function C(s,t), and that o7 > 0. Then we
can construct a new valid covariance function Cy(s,t) by putting

ot +Cl(s,t) ifs=t

The constant ¢ in (5.11) is sometimes called a nugget effect with regard to applications
in mining. Another interpretation of the added quantity o2 in (5.11) is that it just
corresponds to adding independent noise with variance o2 to all our original observations.

In the geostatistics literature one often uses instead of the covariance function the
semivariogram introduced by Matheron, cf. (Matheron, 1971) and defined as

(s 1) = gvar(X(s) — X (1)),
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or the variogram var(X (s) — X (t)). For an isotropic process with variance ¢ and corre-
lation function p(r) one finds

V(s t) = o*(1 = p(r)) (5.12)

when |s —t| = .
Let us now look at how one can simulate a Gaussian spatial random process X,, s € S,
on a rectangular lattice S with given mean and covariance functions. Let us regard the
process on a spatial lattice with n; rows and n, columns, and let X denote the matrix of

random variables that we want to simulate. Let (here) m and C' denote the mean matrix
and covariance matrix of X.

Let us reorder the X-values into a column vector called X. (This can be done in
several ways, for instance by starting with the first column of X, then take the second
column et cetera.) The transformation from X to X we call 7 and it’s inverse we call
71, Thus

X=TX and X=7"'X.

Put n = niny and let C denote the n x n covariance matrix of X. Let R = chol(C)
be the cholesky factor of C, here defined as the unique upper-triangular matrix with
non-negative diagonal elements such that

C =RT'R. (5.13)
Let further Z be a column vector with n independent standard normal random variables

and put .
X=R"Z. (5.14)

It follows that the covariance matrix of X is
E(R'ZZ"R) = R"R=C

and that .
X=m+T'X (5.15)

has mean matrix m and covariance matric C' as desired. In the next section we will see
how such a simulation functions.

5.2 Matérn’s covariance function

A flexible and much used correlation function is Matérn’s correlation function suggested
1960

P AN r
= p(riv.0) = (_> K, (_) , 5.16
plr) = ptriw8) = 50 (5) 1 (5 (516)
where v > 0 and # > 0 are smoothness and scale parameters, and K, is a modified Bessel
function of the second kind, which may be expressed as an integral
2’T'(v +1/2) /°° cos xt
K,(x)= dt , 5.17
(z) N R CEGEE (5.17)
see (Matérn, 1986) and (Gelfand et al., 2010) for further details. Some special cases,

where Matérn’s correlation function can be expressed in terms of elementary functions
are given in Table 5.1.
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Table 5.1: Special cases of Matérn’s correlation function

Smoothness parameter v | Matérn’s correlation function p(r) for scale parameter 6 = 1
=172 p(r) — exp(—7)

v =3/2 p(r) = (1+7) exp(—r)

v=>5/2 p(r)=(1+r+1r?/3)exp(—r)

v=0.5
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Figure 5.1: Four examples of Matérn correlation functions p(r;v, 6) from (5.16), plot-
ted against distance r, with varying smoothness parameters v and with constant scale
parameter 6 = 1.

In Figure 5.1 some Matérn correlation functions, including those in Table 5.1, are
plotted. One can show that for increasing shape parameter v the Matérn correlation
function gets close to the Gaussian correlation function in (5.7), which seems plausible
from Figure 5.1. However, to get a proper limit result one has to normalize with a proper
scale parameter, which also seems plausible from Figure 5.1. More precisely we can put

0=1/2\v). (5.18)
One can show that with p(r;v, 8) given by (5.16) we have

lim p(r;v,1/(2v/v)) = exp (—1%). (5.19)

Related to the scaling (5.18) is the observation that the practical correlation range drange
for Matérn’s correlation function is

drange ~ 0+/(8) . (5.20)

Check in Figure 5.1 if the relation (5.20) seems reasonable.

Let us now see how we can simulate Gaussian processes with Matérn correlation func-
tions. We will use the method described in the previous section, see (5.15), for two
different correlation functions (5.16) with v = 0.5 and v = 1.5. To get essentially the
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same correlation range we also use the scale normalization (5.18), compare Figure 5.3,
and to get covariance functions we multiply the correlation functions with 02 = 1. Re-
sulting realizations (sample surfaces) are shown in Figure 5.2. Let us note that the for
both the left and the right part of Figure 5.2 the practical correlation range drange ~ V2
corresponding to the length of diagonals.

Figure 5.2: Two two-dimensional realizations with Matérn correlation functions p(r; v, )
from (5.16) with v = 0.5 (left) and v = 1.5 (right). The simulation method with real-
izations obtained with (5.15) was used on a square two-dimensional set S = [0, 1] x [0, 1]
with 100 pixels in both the horizontal and vertical directions. In both cases the scale
parameter 6 is given by (5.18) and to get covariance functions we multiply the correlation
functions with 0% = 1.

One can show that realizations from a Matérn process with v > 0 are continuous.
They are m times differentiable if and only if ¥ > m. Thus the left realization in Figure
5.2 is continuous but not differentiable, and the right realization is differentiable once
but not twice. To illustrate continuity and differentiability better we show in Figure
5.4 one-dimensional realizations of Matérn processes with v equal to 1/2, 3/2 and 5/2,
respectively, which thus are zero, one and two times differentiable. With v = 1/2 we get
in one dimension the well-known Ornstein- Uhlenbeck process, see . It is a Markov process
with correlation function

p(t) = exp(—t),

which similar to the Wiener process is continuous but nowhere differentiable.

5.3 FEuclid’s hat covariance function

Matérn’s covariance function p(r;v,6) in (5.16) is positive for all » > 0. Sometimes it
is useful to have a covariance function that is zero from a finite range and onwards. A
family of such covariance functions is Euclid’s hat covariance function

p(r) = p(r;n,0) = 0'2IHT+1’ (1—72/6*)1(r < 0), (5.21)

N[
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Figure 5.3: The two Matérn correlation functions p(r; v, 6) from (5.16) with v = 0.5 and
v = 1.5 used in Figure 5.2, plotted against distance r. In both cases the scale parameter
6 is given by (5.18).
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Figure 5.4: Three one-dimensional realizations with Matérn correlation functions p(r; v, 0)
from (5.16) with v = 0.5 (left), v = 1.5 (center) and v = 2.5 (right). In all three cases
the scale parameter 6 is given by (5.18) and to get covariance functions we multiply the
correlation functions with 2 = 1. The processes are simulated on the interval [0, 1] which
is divided into 500 pixels.
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where

e/t =)t
a Jo VeI =) Ldt

is the regularized incomplete beta function.

Ini (5.22)

Let us note that n = 1 corresponds to the linear correlation function (5.8) and n =3
corresponds to the spherical correlation function (5.10). Some Euclid’s hat correlation
functions are shown in Figure 5.5.
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Figure 5.5: Four examples of Euclid’s hat correlation functions p(r;n, ) from (5.21),
plotted against distance r, with varying parameter n and constant scale parameter 6§ = 1.
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5.4 Statistical models for observations of random fields

Suppose that we have measurements Y;, 7 = 1,...,n, taken at spatial locations sy, ..., s,.
Let Bi,..., Bk be explanatory variables and assume that
K
Y= Bi(si)Be+ X(si) + €, (5.23)
k=1
where X = (X (s),s € 9) is a Gaussian random field and €, . .., €, are zero mean normal

2

€

random variables with variance o7 independent mutually and of X. The questions we

shall look at are:

(i) How can we estimate parameters in the model (5.23)7

(ii) How can we predict an observation at an unobserved location sq 7

As an example we shall look at mean summer time (June — August) temperatures in
continental US recorded at 250 weather stations 1997. The temperatures and a number
of possible explanatory variables can be obtained from
http://www.image.ucar.edu/GSP /Data/US.monthly.met/
and some further information including how missing data were estimated can be found
in (Johns et al., 2003). Figure 5.6 shows the mean summer temperatures.

Mean summer temperatures for 1997

Figure 5.6: Mean summer temperatures for 1997 recorded at 250 weather stations in
contintental US.

Our first approach will be to use ordinary least squares with a number (here five)
covariates but without the random field X, that is to use the model

K
Y, =Y Bu(si)B +ei, (5.24)
k=0

where we also have included an intercept 3y and correspondingly we put By(s;) = 1. The
model can also be written

Y =BB+¢, e~ N(0,06%1). (5.25)
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Table 5.2: OLS (Ordinary Least Squares) analysis of US continental summer tempera-
tures 1997. Residual standard deviation estimate . = 1.10.

Explaining variable | Estimate [, | Corresponding t-value
Intercept 21.63 189.17
Longitude -1.29 -8.15
Latitude -2.70 -22.72
Altitude -2.67 -18.33

East coast -0.10 -0.74

West coast -1.31 -10.24
Longitude Latitude Altitude

East coast West coast

- W

Figure 5.7: Five covariates used in the analysis of summer temperature in contintental
US.

The covariates we use are Longitude, Latitude, Altitude, East coast and West coast,
see Figure 5.7. Table 5.2 shows the parameter estimates

Bors = (B"B)'B"Y (5.26)

of the OLS analysis of the data. The residual degrees of freedom is 250-6— 244. From
the column of ¢-values we see that all the parameter estimates except one in Table 5.2
are higly significantly different from zero. The OLS regression surface estimate

Y/OLS = BBOLS (5.27)
of the temperature surface is shown in Figure 5.8 and the OLS regression residuals
I‘eSOLS - Y - BBOLS (5.28)

are shown in Figure 5.9. From Figure 5.9 we see that residuals close in location seem
highly correlated, which indicates that the model could be improved.
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Regression estimate

Figure 5.8: OLS regression temperature surface estimate

Regression residuals

Figure 5.9: OLS regression temperature residuals

To improve the model (5.25) we will assume that
Y=Bf+e, e~N(0,X), (5.29)
where ¥ is a general positive-definite covariance matrix. One can show that with this

model the least squares estimate of /3 called the GLS (Generalized Least Squares) estimate
is

Bars = (BTST'B) ' BTy (5.30)
with corresponding GLS regression surface estimate
}/}GLS = BBGLS (5.31)
and GLS regression residuals R
I'eSGLS — Y - B/BGLS . (5.32)

One problem with GLS is that typically the covariance matrix 3 in (5.30) is unknown
and has to be estimated. One possible estimation method is to start with OLS residuals
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Table 5.3: OLS (Ordinary Least Squares) and GLS (Generalized Least Square) parameter
estimates US continental summer temperatures 1997. Stars indicate that the correspond-
ing parameter is significantly different from zero

Explaining variable | OLS estimate | GLS estimate
Intercept 21.63* 20.47*
Longitude -1.29* -1.00*
Latitude -2.70% -2.68%*
Altitude -2.67* -4.22%
East coast -0.10 -0.01
West coast -1.31%* -1.01%*

and bin them in a suitable way [NOTE this has to be explained]. For our summer
temperature data this results in the parameter estimates in the third column in Table 5.3

The GLS regression surface estimate and residuals are shown in Figures 5.10 and 5.11.

GLS estimate

Figure 5.10: GLS regression temperature surface estimate
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GLS residuals
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Figure 5.11: GLS regression temperature residuals

5.5  Literature on spatial random processes

A classical, still readable, monograph on spatial statistics is Bertil Matérn’s doctoral
dissertation from 1960, reproduced 1986 as (Matérn, 1986). Two other classical books

are (Ripley, 1981) and (Cressie, 1993). A more modern, highly useful book is (Gelfand
et al., 2010).
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Chapter 6

Point processes. Poisson processes.

Let A be a subset of R? with finite and positive area |A|. We will consider a random
subset X of A consisting of finitely many points, and call X a point process on A. If
B C A we let X(B) denote the number of points in X that belong to B.

The point process X is said to be stationary if the probability distribution of X is
invariant under any translation of the sets B where we regard the point process, and we
say that X is isotropic if the process is stationary and if, additionally, the distribution of
X is invariant under any rotation of such sets B.

Consider a stationary point process X on A such that X(A) has finite expectation.

One can then show that
E(X(B)) = AIB (6.1)

for some constant A\ which we call the intensity of the point process.

Example 6.20. Poisson process with constant intensity.

A point process X is called a Poisson process with constant intensity A > 0 on A if X (B;)
and X (By) are independent for disjoint subsets By and By of A and if X (B) is Poisson
distributed with expectation A|B| for a subset B C A with area |B|, that is

(A[B

QB exp(-A1B)). 62)

Pr(X(B) =n) =

A Poisson process with constant intensity is stationary and isotropic.

A Poisson process on A with intensity A can be generated in the following way. Let first
N be Poisson distributed with expectation A|A|. Given that N = n, generate Xi,..., X,
as independent and identically distributed variables, each with a uniform distribution
over A. (See Section 14.13 for a description of how to generate random numbers with a
uniform distribution on a given bounded set in two dimensions.) Then we let X consist
of the points X1,..., X, that is X = {Xy,..., X,,}.

In Figure 6.1 we see two examples of such generation of a Poisson process in the unit
square with the constant intensity A = 50.

0
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Figure 6.1: Two examples of Poisson point processes generated in the unit square with
A = 50. The generated number of points is to the left NV = 55 and to the right N = 49.

Example 6.21. Poisson process with varying intensity.

A point process X is called a Poisson process with intensity function A(s), s € A, if X (By)
and X (By) are independent for disjoint subsets By and By of A and if X (B) is Poisson
distributed with expectation [, A(s) ds for B C A.

A Poisson process with intensity function \(s), s € A, can be generated in the following
way. Let first NV be Poisson distributed with expectation fA A(s) ds. Given that N = n,
generate Xi,..., X, as independent and identically distributed variables, each with a
distribution specified by

Pr(X; € B) = % for B C A. (6.3)

Then we put X = {Xy,..., X, }. O

6.1 The Neyman-Scott process, a point processes with
clustering

Consider a Poisson process with constant intensity A\, and regard the points of this process
as mother points. From each mother point we generate daughter points such that the
number of daughter points from the mother points are all independent and identically
distributed. Further, the two-dimensional vectors from a mother point to the daughter
points are all independent and identically distributed. This distribution we call the
scattering distribution. The process of daughter points is called a Neyman-Scott process.

Suppose that we want to generate a Neyman-Scott process. If the daughter process
is regarded on a set A we need to start by generating the mother point process on a set
larger than A, in fact so large that (essentially) all points from which daughters can get
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scattered into A are included. With this observation it is straightforward to generate a
Neyman-Scott process from the definition above.

Example 6.22. A Neyman-Scott plant process with 2D normal scattering.

Suppose that we want simulate a Neyman-Scott process of mother and daughter plants
within the unit square [0, 1]x[0, 1] with intensity A = 10 for the Poisson process of mother
points, with a number of daughter points that is binomial (n,p) with n = 8 and p = 0.5
and with a 2D scattering distribution that is N (uy, pto, 0%, 05, p) With iy = ps = 01 = 09 =
0.1 and p = 0.5 corresponding to wind spread of seeds with a main wind direction from
south-west. We start by simulating the Poisson mother plant point process in the axis-
parallell quadrat with south-west and north-east corners in (—0.5, —0.5) and (1.3,1.3),
respectively. The result of the simulation is shown in Figure 6.2.
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Figure 6.2: A simulation of a Neyman-Scott process with mother points as circles and
daughter points as dots. OBS OBS a new figure must be generated.

6.2 A hard-core inhibition point process

In the cluster point process in the previous section the occurrence of a point typically
increases the intensity of points in a neighborhood of this point. We will now describe a
point processes with inhibition, suggested 1960 by Matérn, see (Matérn, 1986), which has
the opposite property: the occurrence of a point inhibits other points within a certain
distance.

Start by generating a Poisson point process with intensity A on a bounded set A. To
each point X;,7 =1,..., N, we associate a random mark consisting of random variable U;,
which is uniformly distributed on the interval (0, 1) and such that the U;’s are indendent,
mutually and of the X;’s. We can think of U; as the birth time of the point X;.
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Then we thin the X-process by deleting each point X; for which there exists an older
point X of the original point process closer than a distance d, that is a point X satisfying
|X; — X;| < dand U; < U;. The distance d is called the hard core distance.

6.3 The K-function, a diagnostic tool for detecting clus-
tering and inhibition

Consider an isotropic point process with intensity A and suppose that x is a point of the
point process X. Let ||y — z|| denote the distance between two points y and z in R?, and
define the K-function of X as follows,

1
K(r)= XE(number of further points of X within distance r from z|x € X)  (6.4)

or more precisely

K(r) = %E(X(Cmm € X), (6.5)

where C,(r) = {y : 0 < |ly — z||) < r} denotes a circular disk with radius r around x
with the point z excluded.

For a stationary Poisson process it follows that
K(r) = mr?. (6.6)

Sometimes one chooses to regard L(r) = (K(r))/? as this function is linear in 7 for a
Poisson process, for which

L(r) = v/7r. (6.7)

If we have a point process with clustering as for example the Neyman-Scott process
we can expect that the K-function will lie above the K-function for a Poisson process
for r-values where we have clustering, while for a point process with inhibition such as
the Matérn hard-core process it should lie below for those r-values for which we have
inhibition.

6.4 Point processes operations such as thinning, dis-
placement and superposition

Consider a point process X on a set A. Suppose that the points of X are deleted
independently with a probability 1 —p, and retained with retention probablity p, 1 < p <
1. The resulting point process of retained points is called a p-thinned point process. If
X is a Poisson process with constant intensity A one can show that the p-thinned point
process is a Poisson process with intensity pA. Note that the hard-core inhibition point
process described in Section 6.2 is obtained from a Poisson process by a more complicated
thinning than independent thinning.
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In Section 6.1 we described a daughter point process obtained by a clustering operation
on a mother Poisson point process. The same clustering operation with independent and
identically distributed daughter points can be obtained starting from an arbitrary mother
point process. A useful special case is that each mother point gives birth to one exactly
daughter point with a given scattering distribution. The resulting daughter point pro-
cess then gives a point process with displacements with the original points independently
displaced according to the scattering distribution.

A third useful point process operation is superposition X U Z of two point processes
X and Z on a given set A. For instance, if X is the basic point process that we consider,
then Z can be an independent Poisson process of “ghost” points. In (Dralle & Rudemo,
1997) and (Lund & Rudemo, 2000) a point process X of tree positions measured on
ground is studied together with positions Y obtained from an aerial photograph such as
in Figure 1.2 or 1.4. The points of Y are modeled as obtained from X by the mechanisms
of thinning, displacement and superposition of independent “ghost” points. The analysis
of these mechanisms as discussed by (Dralle & Rudemo, 1997) is desribed in some detail
Chapter 11 below.

6.5 Estimation of characteristics for point processes

Suppose that we have observed a stationary point process X on a set A C R%. The

intensity of X we estimate by

X(4)
Al

It follows generally that for a stationary point process with finite intensity A the estimator

~

(6.8) is an unbiased estimator of the intensity, that is, E(A) = A.

A= (6.8)

For a Poisson process we can also compute the variance of the estimator (6.8). We
find
=1 (6.9)
var(A) = —. .
|A]

Let us now regard estimation of the K-function of a point process X observed in the
region A. The basic problem in estimating K (r) is that for a point z € X we want to
consider all neighbouring X-points within distance r. But some of these neighbours may
be located outside A.

For our first estimator of K (r) we consider pairs of X-points x and y such that x € A",
where A~ denotes the subset of A of points with a distance at least r to the border of
A. Let 1{P} denote the function which is 1 when P is true and zero else. From the
definition (6.4) it follows

YooY o< ly—af <r} (6.10)

zeXNA, YEX

is an unbiased estimator of A\?|A~|K(r). The procedure of restricting to points within a
certain distance to the border is called minus-sampling, and the corresponding estimator
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of K(r) is therefore called Kypinus(r), and it is obtained from the unbiased estimator (6.10)
of N2|A7|K(r) by replacing X with its estimator (6.8). We get

R minus (1) Z Y Ho<|ly—z| <7} (6.11)

xeXﬁA yeX

Let us now give another estimator of the K-function which utilizes our observations
more effectively. Regard two points x and y in the region A and a circle with centre at
x and radius ||y — z||. Let w(zx,y) denote the proportion of the perimeter of this circle
that lies within A. If, for instance A is the unit square [0, 1]x[0,1], x = (1/2,1/2) and
y = (1/2,—1/2+1/4/(2), then a straightforward compution shows that w(z,y) = 1 and
w(y,z) = 3/4. One can now show that

IPPRLATELEL: 612

rzeX yeX

is an unbiased estimator of )\2|A|K (r). The corresponding estimator of the K-function is

Ly 1{0 < Hy —afl <r} (6.13)

zeX yeX )

There is one minor restriction in the use of (6.13) which means that we cannot consider
r so large that w(x,y) become close to zero. In practice this is not important as we are
usually interested in reasonably small r-values. Thus, for observations in the unit square
an upper limit for r is 1//2.

A2IAI

6.6 Simulation-based envelope tests for point processes

Suppose that we have an estimate f((r) of the K-function of a point process X on the
set A with, say, the estimator (6.13). As indicated in the end of Section 6.3 we should
then be able to detect clustering or inhibition by comparing the estimated K-function
with the K-function (6.6) valid for a stationary Poisson process. But how large deviation
could we expect to find by pure randomness?

Useful simulation-based envelope-techniques have been introduced to tackle this prob-
lem, compare (Diggle, 2013). Let us start with describing a technique which is useful
as an exploratory tool. Put n = X(A) and generate M independent copies X1,..., Xy
of a Poisson process on A conditioned on X,,(A) = n,m = 1,..., M. Thus the points
of each X, can be obtained by independent random sampling of n points in A. Let
Km(r) denote the K-function estimate corresponding to X,,, m = 1,..., M. We are
interested in evaluating the probability that K (r) lies between the envelopes min,, Ky, (r)
and max,, K, ().

Assume for simplicity that M = 39. Then we have provided that X is a Poisson
process, and for fixed r,

Pr <min1§m§MR'm('r) < [A(('r) < maxlSmSMkm(r) =
1—-Pr (minlSmSMf(m(r) > K(r)) —Pr (f((r) > maX1§m§MKm(T> = (6.14)
1—-0.025 - 0.025 = 0.95.
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A tempting strategy is then to plot K (r) together with the envelopes min,, K, (r) and
maxmf(m('r’), and to conclude that the Poisson hypothesis is rejected if K(r) somewhere
falls outside the envelopes. However this procedure does not give a valid test at the level
p = 0.05 as the calculation above is only valid for a fixed r-value. However, it may still
be used as an exploratory technique indicating for which r-values the Poisson hypothesis
may not be valid. There have been developed valid tests with envelope bounds, see for
instance (Myllyméki et al., 2017).

6.7 Exercises

Erercise 6.1. Generate a Poisson process on the unit square [0,1]x[0,1] C R? with
constant intensity 100. Show the result in a figure.

Ezercise 6.2. Generate a Poisson process on the unit square A = [0, 1]x[0, 1] with varying
intensity A(s) = 200s1, s = (s1,$2) € A. Show the result in a figure.

Erercise 6.5. Generate a Neyman-Scott process on the unit square A = [0,1]x[0,1] C R?
in the following way. Assume that (i) the mother process is a Poisson process with
constant intensity 50, (i7) each mother point generates two daughter points, and (i)
the scattering distribution (from mother to daughter) is an isotropic two-dimensional
normal distribution with zero means and standard deviation 0.01 in both horizontal and
vertical directions. (Truncate here the normal distributions at, say, plus and minus three
standard deviations.) Show the result in a figure.

Exercise 6.4. Compute the expected distance from one mother point to its nearest neigh-
bour mother point for the point process of the previous exercise, and also the expected
distance between the two daughter points from one mother point (disregard in these com-
putations edge effects, that is the limited size of the set A). Instead of the two expected
distances you may choose to compute root-mean square distances, that is the square root
of the expected squared distances, which are a bit easier to compute.

Ezercise 6.5. Generate a hard core Matérn point process on the unit square [0, 1]x[0, 1] C
R? with A = 100 and d = 0.1. Show the result in a figure.

Exercise 6.6. Estimate the intensity and the K-function for the point processes considered
in (a) Exercise 6.1, (b) Exercise 6.3, and (¢) Exercise 6.5. Compare the three K-function
estimates.

FExercise 6.7. Generate copies of Poisson processes X7, ..., Xy with M = 39 and corre-
sponding K-function estimates as described in Section 6.6 for the point processes con-
sidered in (a) Exercise 6.1, (b) Exercise 6.3, and (c) Exercise 6.5. For each of these
three examples plot both the K-function estimates (as in Exercise 6.6) and the envelopes
min,, K, (r) and max,, K, (r).

6.8 Extensions and literature on point processes

Highly readable general introductions to spatial point processes are given in (Diggle,
2013) now in its third edition, (Baddeley et al., 2015) which also provides R programmes
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for point process analysis, (Daley & Vere-Jones, 2003),(Daley & Vere-Jones, 2008), and
(Illyan et al., 2008). The important class of Markov point processes, which are related to
the Markov image models discussed in Chapter 4, are treated in (van Lieshout, 2000) and
(Moller & Waagepetersen, 2003). In (Chiu et al., 2013) point processes are discussed in
detail but also more general random spatial objects such as, for instance, random closed
sets generated by placing closed discs with centers at points in a point process and taking
the union these discs. Such objects are also briefly discussed in the following Chapter 7.
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Chapter 7

Marked point processes and patterns of
randomly placed objects

Point processes are natural building blocks for more complicated spatial processes such
as patterns of random objects, for instance disks of random sizes. Let us consider a point
process X and associate with each point X; of X a random mark M;, which could be the
radius of a disk centered at X;. By letting the mark be a vector with several components
we could model more complex objects.

For the 2D gel electrophoresis images in Figures 1.9 and 1.10 we could associate with
a protein at position X; = [Xlngi]T the mark M; = (S;, C;), where S; is the expression
level of the corresponding protein and C; could describe the shape of the spot at X;.
A straightforward model would be to assume that protein molecules are in the first
step transported horisontally to a position with mean X;; depending on the molecules
pl-value (see example 1.4), and in the second step transported vertically (downwards)
by 2D Brownian motion with drift to a position with mean X,; with long transports
for small molecules. A simple model would thus be to assume that the spot shape is
a two-dimensional normal distribution with 2x2 covariance matrix C; with means and
correlation coefficient zero. The observed pixel grey level Y, at a pixel with location z
could then modeled by

Y, = Zsif(ff,Xi,Ci) + €z, (7.1)
where ¢, is the observation noise at pixel z and
[, X0 C) = 5 exp(— 3 (& — X)TC7 (@ — X)) (72)
€T, A, L) = 27T(det Ci)l/Q exXp 9 X 7 i X i))- .

Looking at Figures 1.9 and 1.10 it is evident that the 2D-normal assumption is clearly
not perfect, but anyhow this simple model turns out to be useful s a first step.

For the diffusing particles in Figures 1.13 and 1.14 we could consider a model

Yo=Y fz,Xi,z)+ e, (7.3)

where again ¢, is the observation noise at pixel x, but the mark consists of the scalar z;
representing the vertical position of a particle relative to the focal plain. The function f
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may be estimated from data obtained by a special arrangement where one lets particles
absorb on a glass surface and the glass surface is then moved step-wise vertically with
known distances to the focal plane, see (Kvarnstrom & Glasbey, 2007) for details.

Similar models could be considered for the aerial photographs in Figures 1.2 and 1.4
where we could assume a similar shape for trees in a given view. This shape function could
then be estimated from data combined with a simulation model based on the geometry
and illumination of the trees from the sun (Larsen & Rudemo, 1998).

A specific problem is interaction between objects that overlap partly. In 2D gel elec-
trophoresis it is natural to assume an additive model as in (7.1), but in the aerial pho-
tographs, and particularly for the diffusing particles, objects may occlude each other and
then an additive model may be an untenable approximation. In some applications such
as the one shown in Figure 7.1 objects do (essentially) not overlap.
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Figure 7.1: Binary images of two cuts in cast iron showing approximately disk-shaped
defects. Data from Beretta (2000) and Mansson and Rudemo (2002).

Let us regard models for random placed disks. For disks of constant size we can then
use the inhibition point process of Section 6.2 by placing disks of diameter d centered
at the points of the thinned point process. In the following section we shall regard two
modifications of this model.

7.1 Two processes of varying-sized disks

Let us regard marked point processes constructed in two steps as follows.

In the first step we generate a Poisson point process with constant intensity A in the
plane, and to each point in this point process we generate identically distributed radii
with a proposal distribution function F,,. The radii are independent mutually and of the
point process.

In the second step we thin the generated point process by letting all pairs of points
whose associated disks intersect ’compete’. A point is kept if it has higher weight in all
pairwise comparisons, where the, possibly random, weights are assigned to the points
according to two different approaches:

1) Pairwise assignment of weights: For each comparison, weights are assigned to the
involved pair of points, and assignments are independent both within and between pairs.
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2) Global assignment of weights: Weights are assigned once and for all to all points,
and assignments to different points are independent. These weights are then used in all
comparisons.

In both cases the weight of a point may depend on the associated radius. (When the
weights are constant or deterministic functions of the radii, the two approaches coincide.)

It is possible to compute both the intensity of the point process after thinning and the
radius distribution function after thinning. Details are given in Mansson and Rudemo
(2002). Let us here only show a simulation example of disks before and after thinning
with three different thinning procedure, see Figure 7.2.
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Figure 7.2: Simulation of a disk process before and after three different thinning pro-
cedures. In the first step a Poisson process with intensity 1000 in the unit square is
generated with exponentially distributed disk radii with expectation 0.01.
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Chapter 8

Warping and matching

An important problem in analysis of multiple images is to match objects in different
images. Thus we would like to know which spots in the 2D gel electrophoresis images in
Figures 1.9 and 1.10 that correspond to each other in order to compare the expression
levels of the proteins. Similarly we want to match objects in Figures 1.13 and 1.14
in to order to be able to follow the diffusing particles and to estimate the diffusion
coefficient of their motion. There is, however, a fundamental difference between these
two problems. The diffusing particles move independently of each other except for the
rare occasions when they come very close in all three dimensions. Thus displacements
of particles that are close in the two-dimensional images are essentially independent of
each other. In contrast, displacements of nearby spots in the electrophoresis images are
highly correlated. The matching of objects in these two situations therefore demand
quite different methods. In the present section we shall study warping methods which
are useful for matching of objects in images such as the 2D gel images.

Suppose that we have a reference image Y = Y(z) and another image Y’ that we
want to warp (transform) into Y as closely as possible according to some criterion by
transforming locations such that Y'(z’) is close to Y (x). Here we regard x and 2’ as
2-dimensional column vectors and put

v = f(x) (8.1)
for some warping function f. The general affine warping function is
x’:Aerb:[aH al?H‘”1]+[bl]. (8.2)
o1 A2 Ta by

A special case of the affine transformation is the Procrustes transformation for which

, | ccos@ csinf
| —csinf ccosf

] x +b. (8.3)

A special case of the Procrustes transformation consists of a dilation (scale change with
a fixed factor ¢) and a translation

, | c 0 _
x—{o C}x+b—cx+b, (8.4)

92



and another special case of the Procrustes transformation consists of a rotation and a
translation,
cosf sind

T [ —sinf cosf } z+b (8:5)

A simple nonlinear warping is the bilinear transformation

.Tll = a1 + @129 + 1112 + bl
/
Ty = Q1T + QT2 + Cow1 T + bo.

(8.6)

We note that for fixed x5 the bilinear transformation (8.6) is linear in z; (with slope
and intercept depending on z3) and, similarly, for fixed x; the transformation (8.6) is
linear in x5. This means that an axes-parallell rectangle in the x;x9-plane is transformed
into a polygon with four sides and four corners in the 2} x}-plane (but generally not with
pairwise parallell sides).

Another nonlinear warping function is the perspective transformation

zy = (anz1 + a2 +b1)/(cnwr + cror2 + 1)
zy = (@171 + an®z + b2)/(caxi + 2 + 1).

(8.7)

The perspective transformation may be used for matching the tree tops in Figures 1.2 and
1.4. Note that both the bilinear and the perspective transformations are generalisations
of the affine transformation (8.2).

To choose parameters of a warping transformation 2’ = f(z) = (f1(x1, 22), fo(x1, 22))
we may consider minimization of a distortion-weighted least squares criterion function
such as

LYY, f) =) (Y'(@') = Y(2))> + AD(f), (8.8)

x

where D(f) is a distortion measure of the warping function f, and X is a non-negative
weighting constant determining the balance between closeness of matching and distortion.
Let us also note that with normally distributed variables least squares minimization cor-
responds to log-likelihood maximization, and a method where we use a distortion measure
as in (8.8) is often called a penalized log-likelihood method. The distortion measure could
for instance measure the deviation from linearity of the warping function, and could be
a sum of squared second derivatives of f integrated over the region regarded,

D(f) :Zii/ (8xi§xk)2dxldx2, (8.9)

i=1 j=1 k=1

where the partial derivatives in computations are approximated by finite differences. The
integrals are also approximated by sums over pixels.

A useful type of warping consists af a grid of local bilinear transformations. This
method is used in (Glasbey & Mardia, 2001) to warp images of fish, haddock and whit-
ing, into each other. Similarly it is used in Gustafsson et al. (2002) to match 2D gels
electrophoresis images such as those in Figures 1.9 and 1.10 into each other, see Chapter
10 below for details. Here we will now describe how handwritten digits can be warped
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into each other, which will also be used for averaging of the handwritten digit images.
Note that simple direct averaging of digits such as those shown in Figure 8.3 will not
produce a useful end-result, although such averaging, as we will see, can be used as an
initial step.

Example 8.23. Handwritten digits. Warping and averaging. Classification by minimal
warping effort.

Consider 28x28 images from MNIST and warping of the handwritten digit “2” to the left
in the upper row of Figure 8.1 to the digit to the right of it by use of a grid of bilinear
transformations shown in Figure 8.2. The grid has 7x7 cells and the weighting constant
in (8.8) is A = 1. Computations and figures are from (Longfils, 2018), where more details
are given, including a discussion of the choice of the grid size and the weighting constant.

image to warp target image

warped image residuals

Figure 8.1: Warping of the digit “2” left in upper row to the digit “2” right in the same
row. The lower row shows the warped image and the residuals relative to the target
upper right.

Let us now consider averaging of handwritten digits of the same type by use of data
from MNIST as used earlier in Example 2.17. Thus we have for instance 958 digits “5”,
compare Table 2.1, of which 100 are shown in Figure 8.3. To find the average handwritten
5-digit we first average all the 958 5-digits. Then we warp all 958 digits separately with
the average as target. Then we average the warped 5-digits, warp into the new average
and proceed iteratively until changes are sufficiently small. After a few iterations we
obtain the average shown in Figure 8.4.

Let us describe how we can use warping techniques to classify images. The method was
suggested in (Glasbey & Mardia, 2001) and there used to identify fish species. Consider
as before a set of MNIST images, and let p;,7 = 0,...,9, denote average iteratively
warped image for digits j as described above, and where p5 is shown in Figure 8.4. To
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Figure 8.2: Original and warped handwritten digits also shown in Figure 8.1, upper left
and lower left, here with the 7x7-grid for the bilinear transformations. The target is the
upper right digit in Figure 8.1.

CEOSNNRAUEREA N
DO SNUESARD
NONEONGAER RN

DA NNO0EEN
BB AN
QUSRI DAOR
RO 0D0OARS
DO SERAQR
OO0 MABERRA
ESzZODONESAR

Figure 8.3: First 100 digits “5” in the MNIST database.
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Figure 8.4: Average handwritten digit “5” obtained by sequential warping and averaging.

classify a new image Y, let Y; denote the image Y warped by the transformation f. Put

2 2

. , 2 af, 2
@jzm;n{DYf(x)—uj(:c)) DYy (a§$) dxldwz}, (8.10)

z i=1 j=1 k=1

and classify Y as the digit j for which @); is minimal. In Figure 8.5 classification of 197
digits are shown with two fours and four fives miss-classified.

-20

5 5 °
55 505 5
) 5 5 5
° 40t §5555 5%5§5 3555 .
g 5 § 55 4,
o 5 5 5 4 444
: : s 4
o 60 4 A4
5 % 4 M
2 4 4
s 44 a4ty
5 80t 55 4 ghas |
c 4 44 4 %&
@ 4 4 4 N 4
£ 5 54 Q% 44
8 -100 5 4 4 44
] 4
£ 4 2
> 5 4
= 5 4
©-120 -
8
4 4
140 . . . . .
-140 120 100 -80 -60 -40 -20

log likelihood when warped to average 4

Figure 8.5: Classification of 110 handwritten digits “4” and 87 digits “5” by warping
classification. Penalized log-likelihoods for the two types of digits are shown on the axes.
Six digits are miss-clasified.

For reviews of image warping methods, see (Glasbey & Mardia, 1998, 2001).
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PART 3 APPLICATONS
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Chapter 9

Analysis of two-coloured DNA
microarray images

There are several types of DNA microarrays used to analyze expression levels of genes.
We shall here look at a specific type of two-coloured spotted microarrays briefly described
in Example 1.5, and look at spot shape modelling and data transformation of microarray
data as described in (Ekstrgm et al., 2004). As seen in Figures 1.11 and 1.12 spots are
approximately circular with a diameter of about 18 pixels. Let S denote the set of spots,
and for each spot s € S we associate a set A, of pixels containing the spot approximately
in the centre. We can for instance let A, be a square with side length 24 pixels. The sets
A, and A, should be disjoint for different spots s and s'.

From Figures 1.11 and 1.12 it is seen that the signal intensity of spots varies from
weak to strong. To see details in weakly expressed spots it is useful to increase the
photometric gain in the scanning. However, if we increase the gain we can get some
pixels in the strongly expressed spots to get saturated, also called censored. One aim in
(Ekstrom et al., 2004) was to to see if one can reconstruct the pixel valued in satured
pixels by use of suitable spot shape modelling.

9.1 Data transformations

Let Z = Z(z) denote the intensity of pixel z. For the data in (Ekstrem et al., 2004) the
intensity Z is a 16-bit integer, 0 < Z < 216 — 1 = 65535. Let Y denote a transformation
of Z. We consider three types of transformations. Firstly, a logarithmic transformation

Y = klog(Z + \), (9.1)
where )\; is a positive parameter; secondly, a Box-Cox transformation
CE(Z M) 1) Ay if Ay #£0
Y= { klog(Z 4+ A1) if Ay =0, (9:2)

where \; > 0; and thirdly, an inverse hyperbolic sine transformation

74+
Y:karsinh( ;L 1), Mo > 0, (9.3)

2
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The logarithmic transformation is a special case of the Box-Cox transformation (for
Ay = 0). One can show that arsinh(z) = log(z + v/22 + 1) for z > 0, and thus for large z
we have arsinh ~ log(2z). We see that for large values of z the logarithmic transformation
is thus essentially also a special case of the hyperbolic sine transformation (for Ay = 2).

9.2 Spot shape models

Let us consider a spot s and pixels z € A,. Let ¢s = (cs1, cs2) denote the spot centre of
spot s, and let r4(x) =||  — ¢, || denote the Euclidean distance from the spot centre to
the pixel z. Assume that

Y(x) = Bshs(rs(z)) + bs + €(z), x € A,. (9.4)

Here B, measures the intensity of spot s, and this intensity is typically the most impor-
tant parameter to be estimated for spot s. Further b, is a background intensity, hy(r)
is a spot shape function assumed to be symmetric around the spot centre, and €(x) cor-
responds to zero-mean noise at pixel x. We will assume that noise contributions are
normally distributed with constant variance o2, and to begin with we will also assume

€

that noise from different pixels are independent. Thus we assume that (Y (z),z € Aj)
has a multivariate normal distribution with means

ps(z) = Bshs(rs(x)) + bs, x € Ay, (9.5)
and covariance matrix o?I, where [ is an identity matrix. We consider four different

choices of the spot shape function h4(r):

The cylindrical shape model. Put
1
he(x) = chl(r < 0y), (9.6)
where 1(P) = 1 if P is true and 1(P) = 0 if P is false. The parameter o4 can be
interpreted as the radius of the spot.

The Gaussian shape model. Here
1
V2mo?

where ¢ is the standardized one-dimensional normal density ¢(r) = (1/v/27) exp(—12/2).

The Gaussian difference shape model. Put

hs(x) =

o(r/os), (9.7)

l+a, 1 O T
= Vom0 T (o " Buon

where 0, > 0, ag > 0and 0 < § < 1.

hs(z)

) (9.8)

The polynomial-hyperbolic shape model. Here

K .
[ osexplgs(r/os)) if 0 <7 < .0,
ha(r) = { - s 99)
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with

2

. Qg

gs(r) =Y buir' — L 0< T <7, (9.10)
, Vs — T
=1

where a;, > 0 and v, > 1, o, represents the radius of the spot, K, is a normalizing

constant and ,
bsl - as/’ys

__ as 1 1
be =% { ot — %)

Some spot-shape parameters may be common for all spots and some may be spot-specific.

9.3 Maximum likelihood estimation

To estimate parameters in the spot shapes and the transformations we use the maximum
likelihood method. Let us first assume that there are no saturated pixels, that is all
pixel-values are below the maximum level, which is 2! — 1 before data transformation.
Then the log-likelihood for the Y-values in the neighbourhood A, of spot s is

Ly = ¥ o { o (ML= Bt )} o)

g,
TEAs €

Let us now assume that there are some saturated pixel-values, and let /. denote the
saturation level for the Y-values. Thus if Y (z) < ¢. we know the value Y (z) but otherwise
we only know that Y (z) > (.. Let A, = {2z € Ay : Y(2) < {.} and A) = {z € A, :
Y(xz) > £.} denote the set of pixels that are unsaturated and saturated, respectively.
Then we find that the log-likelihood becomes

Ly = Ly + Lo, (9.12)
where
L= S g {ai ) (m) ~ Bilrle) = b)} 0.3
TCA € ¢
and
L= log {1 _ <£C - Bshsffs(x)) - bs) } (9.14)
zEAY €

where @ denotes the distribution function of the standardized one-dimensional normal
distribution.

In Figure 9.1 original data (one-dimensional profiles through spot middle) and model
fits for one specific spot and the four spot shape models are shown. It is seen that the first
and particularly the fourth model seem to give considerably better fits compared to the
second and the third models. The original data and the fit for the polynomial-hyperbolic
model (9.9) are shown in more detail in Figure 9.2 for the same spot as in Figure 9.1.

Let us now look at a simultaneous comparison of transformations and spot shape
models by use of maximum likelihood estimation. Results are shown as median differences
of log-likelihoods relative to the best model fit in Table 9.1 for 25 spots and four different
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Figure 9.1: One-dimensional intensity profiles (through spot center) for observed inten-
sities of one spot, four photometric gains and maximum likelihood fits for the four spot

shape models (9.6), (9.7), (9.8) and (9.9).
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Figure 9.2: Three-dimensional plot (for one photometeric gain) of observed intensities
(left surface) for the same spot as in Figure 9.1 and the corresponding estimated spot
shape for the polynomial-hyperbolic shape model (right surface).
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photometric gains in the scanning. The 25 spots were selected to represent both low,
median and high intensity levels. We see that the polynomial-hyperbolic model is the
best spot shape model followed in order by the cylindrical, the Gaussian difference and
the Gaussian model, which is also clearly indicated in Figure 9.1. The best combination is
the Box-Cox transformation together with the polynomial-hyperbolic spot shape model.

Table 9.1: Median decrease in log-likelihood for 25 spots and four gains relative to the
polynomial-hyperbolic spot shape model with the Box-Cox transformation

Spot shape model
Transformation | Cylindrical Gaussian Gaussian difference Polynomial-hyperbolic

Logarithm 136.3 329.6 185.4 17.0
Arsinh 127.2 258.7 144.4 13.9
Box-Cox 134.3 320.3 178.2 0.0

As mentioned in the second paragraph of this chapter one of the aims of (Ekstrom
et al., 2004) was to reconstruct values in saturated pixels. In Figure 9.3 we show how
artificially saturated levels can be reconstructed for one spot.

UV

T T T T T T T T T T
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

1

00 02 04 06 08 10
00 02 04 06 08 10
00 02 04 06 08 10
00 02 04 06 08 10
00 02 04 06 08 10

Figure 9.3: One-dimensional intensity profiles through the center of one spot together
with reconstructions by use of the polynomial-hyperbolic spot shape model for different
levels of artificial saturation indicated by horizontal lines. Both data (thin curves) and
reconstructions (heavy curves) are shown for each saturation level.

9.4 Models with dependent pixel residuals

Up till now we have regarded residuals e(x),x € A, in (9.4) as independent. However,
a closer look at the left part of Figure 9.2 indicates that residuals at least for adjacent
pixels seem positively correlated.

Following (Ekstrgm et al., 2005) let us assume that the vector Y with components
Y(z),z € A, has a multivariate normal distribution, Y ~ N(u, 0?R), where u as before

has components u(x) = Bshs(rs(z)) + bs,z € As, but R, instead of being an identity
matrix, corresponds to an isotropic correlation function. Thus we assume that

cov(Y(z),Y (2") = o?p(r, ), (9.15)

where r = /(z; — 27)? + (zo — 24)? is the Euclidean distance between x = (21, ) and
' = (o), x}) and c¢ is a real (positive) parameter. We consider five different correlation
functions:
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Let us further choose the Box-Cox transformation and the polynomial-hyperbolic spot
shape model. To estimate parameters including the parameter ¢ for the different corre-
lation function by maximum likelihood we have to maximize the log-likelihood

1 1
log L = —g log(2) — 5 log(det C) — (¥ — )" C™H(Y = ), (9.16)

where n is the number of pixels, p contains parameters for the spot shape and C' =
o?R contains the correlation function parameter ¢ for the different correlation functions
considered. The computations turn out to be considerably more complicated compared
to the independent residuals model, see (Ekstrom et al., 2005) for details.

The resulting log-likelihood improvements compared to the independent residuals
model are shown in Table 9.2. The fit of the different correlation functions are fur-
ther illustrated in Figure 9.4. We see that the two correlation structures that give the
best fit in Table 9.2, that is the Gaussian and the spherical correlation, also give the best
agreement with the empirical correlation coefficients in Figure 9.4.

Table 9.2: Median improvement in log-likelihood for 25 spots and four gains relative to
the model with independent residuals for five models with residual correlation
Correlation FExponential Gaussian Linear Rational Spherical
structure quadratic

69 82 73.5 75 78

1.0

0.8
1

—— Exponential

----- Gaussian
Linear

--- Rational quadratic

---- Spherical

0.6

Correlation

04

02

0.0

0.0 05 1.0 15 20 25 3.0 35
Distance (in pixels)

Figure 9.4: Median estimated correlation functions for the five studied correlation struc-
tures. The possible observable distances between pixel centres are shown by vertical lines
and the crosses on these lines show the median empirical correlation coefficients.
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9.5 Exercises

Ezercise 9.1. Check that the spot shape functions (9.6), (9.7) and (9.8) satisfy [[ h(z) dzi dzy =
1, where x = (21, 25) and the integral is taken over the entire two-dimensional space. (The
same relation holds for (9.9), but that is a bit more complicated to show.)

Ezercise 9.2. Describe how the reconstructions (heavy curves) in Figure 9.3 can be
computed.

Exercise 9.3. What details in Figure 9.2 should one look at to get an indication of that
residuals for adjacent pixels are positively correlated?

Exercise 9.4. In Figure 9.4 there are computations for the seven smallest inter-pixel
distances (marked by crosses). Describe how pairs of pixels are located to achieve these
distances. One distance corresponds to a knight move in chess; which distance is that?
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Chapter 10

Two-dimensional electrophoresis

Two-dimensional electrophoresis is an experimental technique that can be used to measure
the expression of up to several thousands of proteins, compare Example 1.4 with Figures
1.9 and 1.10. In this chapter we shall describe techniques from (Gustafsson et al., 2002)
based on warping and matching of such images. The image data in (Gustafsson et al.,
2002) consist of five images similar to Figure 1.9 from 2D gel electrophoresis of baker’s
yeast grown in a standard solution and five images similar to Figure 1.10 from 2D gel
electrophoresis of baker’s yeast grown under stress in a solution with salt added.
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Figure 10.1: Ilustration of warping step I with correction for current leakage sideways
through the left and right boundaries during the second-dimensional gel electrophresis.
Part a of the figure shows the original image and part b shows the warped current-leakage
corrected image.

The warping in (Gustafsson et al., 2002) consists of two steps. As described in Example
1.4 images are obtained by first letting protein molecules move horizontally along a string
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to a position determined (except for random noise) by the protein isoelectric point pl.
In the next step, the second-dimensional gel electrophoresis, a polyacrylamide gel is
cast between two glass plates separated from each other by thin plastic spacers and
placed vertically in a bath. The protein string is placed horizontally on the top of the
polyacrylamide gel. A voltage is applied between the upper and the lower boundaries of
the plates and the proteins perform a Brownian motion with downwards vertical drift in
the bath. The vertical distances traveled by the protein molecules are determined (except
for random noise) by the protein mass. During this second step there may be current
leakage sideways, and the first warping step in (Gustafsson et al., 2002) models this by
solving a partial differential equation with suitable boundary conditions taking care of
current leakage. The result of the warping is illustrated in Figure 10.1, and we refer to
(Gustafsson et al., 2002) for further details of this warping step. After the first warping
step two image transformations are applied. Firstly, to compensate for large scale trends
in the background level, a top-hat transformation is applied, see (Glasbey & Horgan,
1995) for a description of the top-hat transformation and (Gustafsson et al., 2002) for
parameter values used in the transformation. Secondly, a logarithmic transformation of
pixel values is applied.
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Figure 10.2: Ilustration of warping step II. The image in a is warped onto the reference
image in ¢ by use of the grid shown in a warped to the grid in b.

In the second warping step images are transformed by use of a grid of bilinear trans-
formations similar to the warping of handwritten digits shown in Figure 8.2. The result
of such a warping is shown in Figure 10.2. One of the five images for yeast grown under
standard conditions is used as a reference image, and the other nine images are warped
onto this reference image. We use a penalized log-likelihood method and minimize a
criterion function such as (8.8) with D(f) given by (8.9). Thus we minimize with respect
to f the criterion function

LYY, ) =S () - v @) eSS Z/ (82‘];) drydzy,  (10.1)

z i=1 j=1 k=1




with 2’ = f(z) and where we sum over pixels z. The partial derivatives in computations
are approximated by finite differences, and the integrals are approximated by sums over
pixels.
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Figure 10.3: Further illustration of warping step II. In part a the reference image coloured
red and the warped image coloured blue are superimposed. Displacement vectors for spots
are shown in part b, and also in part c, here as relocated vectors starting at the origin
and ending at dots. In ¢ we also show a criterion for adjacency of spot pairs: adjacent
spot pairs have dots within the circle shown.

The second warping step is further illustrated in Figure 10.3. Here we show in part a
of the figure a superposition of the reference image coloured red and the warped image
coloured blue. For protein spots that are equally expressed in both images we should
then ideally get black spots. However if the warping is less perfect we expect adjacent
spots coloured red and blue. (Further even if the warping is perfect we can get spots that
are predominantly blue or predominantly red for a protein that is differently expressed
in the two images.) In part b of Figure 10.3 spot displacement vectors are shown, and
for more clear illustration arrow heads are large for large displacements. We see that
large displacements mainly occur close to the boarders. Spot displacement vectors are
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also shown in part c of the figure, and here all the displacement vectors are relocated so
that they start in the origin and end in positions shown as dots.
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Figure 10.4: Illustration of spot pattern similarity in aligned images. The left part a
shows the effect of changing grid size for the particular A-value 1073, The graph shows
the percentage of adjacent spot pairs as a function of the number of grid size parameters.
The right part b shows the effect of changing the log-likelihood penalizing parameter
A for the particular grid ¢ = (8,12), and the graph shows the percentage of adjacent
spot pairs as a function of A\. Circles show mean values and error bars show standard
deviations for the nine images aligned to the reference image. Vertical dashed lines show
the finally chosen grid size and likelihood penalty weight.

Two crucial issues are choice of how fine the grid in the bilinear transformation net
should be and the size of the non-negative parameter A in the penalization of the likelihood
in (10.1). If we start with a course net and steadily refine it we can expect the fit to
improve but to level off at a certain degre of fineness. Similarly if we start with a large
A-value and then decrease \ we can expect an improvement in fit but similarly a leveling
of at some point. As a measure of fit we use the percentage of spot pairs with dots inside
the circle in ¢ of Figure 10.3. We specify the net grid by ¢ = (¢1,¢2), where ¢; and ¢
are the number of rectangles in the horizontal and the vertical directions. We note that
in Figure 10.2 we have ¢ = (8,12). It turns out that the number of parameters in a grid
specified by ¢ = (q1,¢2) is 2(q1 + 1)(g2 + 1). We use a sequence of grids with ¢ equal
to: (1,1), (2,3), (4,6), (8,12) and (16,24). Similarly we use the following sequence of
A-values: 30\, 10M\g, 3\, Ao and 0.3\, with Ay = 1072. Results from some computations
with different grid sizes and different \ parameters are shown in Figure 10.4. The chosen
grid size is ¢ = (8,12), and the chosen A-value is Ay = 1073.

The two warping steps are compared in Figure 10.5, which shows the length distri-
bution of spot displacement vectors for three sets of images: the original images, the
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Figure 10.5: Length distribution of spot displacement vectors for the original data (solid

line), after the current leakage warping step (dashed line) and after both warping steps
(dash-dot line).

current leakage corrected images (only warping step I) and the current leakage corrected
and aligned images (warping steps I and IT). From the figure it is clear that warping step
I gives some improvement, but the large improvement is obtained with the combination
of both warping steps. In (Gustafsson et al., 2002) there is also a comparison of warping
[+1T with the use of only warping step II. It turns out that beside a slight improvement
in the percentage of adjacent spot pairs, an effect of warping step I is a considerable
reduction of the total computation time.
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Figure 10.6: Efficiency profiles in the left part a showing the number of automatically
matched spots in all ten gels (with gel images two-step warped) by the software PDQuest
as a function of an initial manual matching of a number of spots (in the image called
landmarks) both for the original set of images (dashed line) and for the set of warped
images (solid line). The right part b of the figure shows the number of detected spots
in the ten gels for the warped gel images. The spots detected in all gels are shown dark
grey, the spots found additionally in common with the reference gel 1 is shown for each
gel in light grey, while detected spots not in common with the reference gel are shown in
white.

Figure 10.6 illustrates the improvement in matching efficiency when the warped images
are used together with the PDQuest software (Garrels, 1989). In the method illustrated in
the figure the reference image is divided into 54 subrectangles and in each subrectangle the
most intense spot is chosen. The chosen spots are ordered according to intensity and an
increasing number of theses spots are manually matched. Based on this manual matching
the software PDQuest then automatically matches other spots. The left part a of the
figure shows the global matching efficiency as the number of automatically matched spots
found in all ten gel images as a function of the number of manually found spot pairs. The
dashed line shows the efficiency profile for the original images and the solid line shows
the efficency profile with warped images (using two-step warping). A clear improvement
using warping can be seen (compare Exercise 10.2 below).

In part b of Figure 10.6 we see bars showing the number of spots detected in the ten
gels. Here gels 1-5 are gels with yeast grown in standard solution (including the reference
gel 1) and gels 6-10 are gels grown with salt added. The mean number of gels detected
in all ten gels is 1194, and the average number of detected spots in common with the
reference gel (for gels 2-9) is 826, while the number of spots detected in all ten gels is
430.

10.1 Exercises

Exercise 10.1. As mentioned above a top-hat transformation was used after the first
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warping step to compensate for large-scale trends in the background level. Describe
briefly how alternatively a low pass filtering technique could be used for that purpose.

FEzercise 10.2. Determine approximately (both for the original image set and for the set
of warped images) from Figure 10.6 the number of manually matched spots needed to
achieve subsequently in the automatic step a 90% spot number matching in all ten gels.

Exercise 10.3 In part b of Figure 10.6 gels 1-5 correspond to yeast grown in standard
conditions (including the reference gel 1) and gels 6-10 correspond to yeast grown in a
salt solution. What are the general features of the fluctuations of the light grey bars?
Give also an explanation of these general features.
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Chapter 11

Point processes observed with noise,
two examples with aerial photographs
of forests

11.1 Estimation of tree top and tree base positions
from aerial photos

Here we consider how we can estimate tree base positions from images such as the image,
below called ITmage 148, shown in the right part of Figure 1.1. A detail of Image 148
is shown Figure 1.2. We follow the exposition (Dralle & Rudemo, 1997) and start by
estimating the tree top positions using a Gaussian filter as described in Chapter 1, see
Figures 1.16 and 1.17. Let X = (x1,...,x,) denote the tree base positions, and let
Y = (y1,...,ym) denote the positions of maxima after the Gaussian filtering. The object
is to estimate X from Y and also to find the correspondence between y- and z-points.
We will start by going the other way and estimate Y from X. If we know the positions
of tree stems at ground level we can estimate the positions of tree tops as indicated in
Figure 11.1. The white linear segments in this figure show the expected positions of tree
trunks projected on ground as seen from the aeroplane with tree ground position at the
segment end point closest to the nadir point (the point vertically below the aeroplane)
and the tree top position at the segment end point furthest away from the nadir point.
The model used here for the tree top positions is based on field measurements of the tree
ground positions and the diameter at breast height (1.3 m), and additionally a regression
of tree height from breast height diameter, which is a well-known method of estimating
tree height in forestry.

In practice it is tedious to measure tree ground positions and the object of (Dralle &
Rudemo, 1997) is to use aeroplane photographs to estimate first tree top positions and
then tree ground positions. The model used is based on the assumption of three sources
of distortion:

1. some trees are lost (errors of omission),
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Figure 11.1: The Image 148 with tree projections superimposed, as seen from the cam-
era position. The tree projections were computed from the tree ground level location
measurements and the tree heights estimated from height-diameter regression and breast
diameter field measurements, see the text for further details.
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2. the remaining trees become displaced as a consequence of image geometry and
lighting conditions; the displacement of a point x; = (x;1,z;2) is composed of a
systematic displacement from x; to 2, and a random displacement from z} to , + z;,

3. some spurious maxima that do not correspond to real treas are generated (ghost
treas, errors of commission).

In the model we will make the simplifying assumption that these three mechanisms are
mutually independent, and further that within each of these three categories the trees
behave independently of each other. More specically, we assume:

1. For each tree there is a probability 6, depending on the thinning treatment, that
the tree gives rise to a maximum. Thus the probability of an error of omission is
1—46, for each tree, and the events that different trees are omitted are independent.

2. The systematic displacement to z, see Figure 11.2, of the base location z; of a
tree is obtained by two displacements in the horizontal plane, or, eqivalently, in the
image plane. Move first along the projection of the tree a distance 6;p;, where p;
is the projection length, and move then orthogonally in the horizontal plane (to
the same side of the tree projection as the sun) a distance 6h;sin ;. Here h; is
the height of a tree and «; is the angle between the horizontal projection of the
tree and a line which is the intersection of the horizontal plane and a vertical plane
containing both z; and the sun. The subsequent random motion z; = (z;, z;2) in
the local coordinate system with one axis parallel to the tree projection and one
axis orthogonal to it has a two-dimensional normal distribution with means zero,
standard deviations o; and o9 and correlation coefficient p.

3. Spurious maxima are generated by a Poisson process with the intensity A maxima
per hectare.

For the systematic displacement from z; to z} and for a corresponding maximum y;;
in the smoothed image we thus assume

x; =x; + Hlpieil + 92}1,@ sin Q; €42 (111)

and
Yio) = Ti + 2 = i+ znen + 2, (11.2)

where z;; and z;5 are random errors and e;; and e;; are unit vectors, see Figure 11.2.

We assume that the parameters 0y, 61, 65, 01, 02, p and A are constant within subplots.
In the discussion in the text close to Table 11.1 below we will see that some of the
parameters vary between subplots in a way that may be interpreted in terms of thinning
treatments and the geometry at image acquisition.

The parameters are estimated iteratively, and for more details including choice of
initial values for parameters see (Dralle & Rudemo, 1997). For trees in a polygonal area
A we compute a displaced area Ay, compare Figure 11.3, by moving each border polygon
corner point according to the transformation (11.1) as if the border point was the ground
location of a tree with a height computed from the height-diameter regression when
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nadir point

Figure 11.2: Displacement model for the positioning of trees. The full-drawn thick line
represents the ith tree stem projected, as seen from the camera, onto the image with the
base position z; nearest to the nadir point. The length (in pixel units) of the projection is
denoted p;, and the height of the tree (also in pixel units) is h;. The systematic displace-
ment takes x; to the expected position z for the grey-level maximum and an additional
random displacement gives the observed location 2 + z; of a corresponding maximum.
The coordinates of z; are assumed to have a two-dimensional normal distribution with
Zero means.
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Figure 11.3: Subplot D in Image 148 with the net subplot borders (lower right quadri-
lateral) and the corresponding displaced area where maxima are expected (upper left
quadrilateral). The local maxima after smoothing with the optimal bandwidth are shown
as small black squares (diamonds), and for each local maximum the corresponding “water-
shed” segment above median grey level is shown in light grey colour with borders between
segments in slightly darker grey colour. Tree projections, as seen from the camera, based
on ground measurements are shown as line segments and expected positions for local
maxima, according to the model indicated in Figure 11.2, as stars. From each star an
ellipse is grown until it hits a local maximum. The ellipse is dashed if this maximum has
already been hit by a smaller ellipse from another star. Thus stars with a dashed ellipse
represent errors of omission, while small squares not hit by an ellipse (these squares have
pointers to them) represent errors of commission. The sun azimuth is marked in the
upper right corner of the image.
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the tree diameter corresponds to mean trea diameter of the subplot. Here the current
estimates of 0; and 05 are used.

For a tree with base x; we compute the position x} according to (11.1) and around this
point we let an ellipse with constant probability density according to the model (11.2)
grow. Here the current estimates of o; and o, are used but with p = 0. Ellipses grow
simultanously at the same rate around all points z},i = 1,...,n, for the trees in the
regarded area, or, actually, in a slightly larger area as shown in Figure 11.3. As soon as
an ellipse starting from x} catches a maximum in the smoothed image the growth of that
ellipse is stopped. If this maximum has not been catched from another point earlier the
maximum (at y;;)) is associated with the ith tree with base location z;. (If the maximum
has already been catched from another tree, no maximum is associated with the ith tree;
it is considered lost.)

Let x;,7 € I', be the set of base locations in A for trees that catch maxima, and let
n’ < n be the number of elements in this set. As an estimate for the probability 6, that
a tree gives rise to a maximum (one minus the probability of omission), put

0o =n'/n. (11.3)

Using (11.1) and (11.2) estimates for §; and 6, are obtained by coordinate-wise linear
regression analyses along the ¢;;- and ej-axes, respectively, for i € I’. Corresponding
estimates for 07, o2 and p are obtained as the sample variances and the sample correlation
for the set of the n two-dimensional residuals y;;) — 2,7 € I'.

An estimate for the density of spurious maxima (errors of commission) is
A= (m—m')/|A (11.4)

where m is the number of maxima in Az, m’ = n’ is the number of maxima in A, that
are caught by trees, and |A| is the area of A.

The estimation procedure is performed for each of the subplots D, R, DB and B and
also in groups ’all except B” and ’all’, and the results are shown in Table 11.1, where also
the estimate of the root-mean-square random displacement in metres

o =0.15(c? + 02)1/? (11.5)

is given.

From Table 11.1 we see that for medium and heavy thinning, around 95% of the trees
are found with a root-mean-square residual error in the displacement model of about 60
cm or less, and for light thinning around 85% of trees are found and positioned with
an error of about 75 cm. The unthinned control was not investigated here because
this treatment gives an exceptionally dense population, and a large number of trees are
suppressed which are not possible to see from above.

One could try to use a maximum likelihood method corresponding to our statistical
model (11.1) - (11.2) for the present data set with both the image and the ground truth
available. However, a straightforward computation that takes all possible correspondences
between the set of maxima and the set of trees is prohibitive, as the number of such
correspondences is astronomical. One may concentrate on a small number of ’probable’
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Table 11.1: Parameter estimates for subplots in Image 148 with five different treatments.
N is the true stem number per hectare; 6, is the probability that a tree gives rise to a
maximum (and éo the corresponding parameter estimate) ; ¢; and s specify the system-
atic displacement from the base location z; to z at which the corresponding intensity
peak is expected (Figure 11.2); o7 and o5 (in pixel units corresponding to 15 cm at ground
level) and p are parameters in a two-dimensional normal distribution for the random dis-
placement z; from the expected to the observed location (Figure 11.2); X is the expected
number of spurious maxima per hectare; o is the root-mean-square random displacement
in metres.

=

Subplot N 0, 0, 0y 61 Oy b A 0
D 367 0.970 0.651 0.028 2.74 2.94 0370 15 0.60
C 625 0.971 0.731 0.056 2.48 1.69 0.088 37 0.45
R 746 0.980 0.634 0.082 3.20 2.12 -0.313 15 0.58
DB 824 0.956 0.767 0.006 2.69 2.19 -0.219 40 0.52
B 1257 0.843 0.871 0.045 4.29 2.65 -0.035 168 0.76
All except B 0.969 0.730 0.046 3.23 2.76 -0.096 26 0.64
All 0.925 0.734 0.045 3.61 2.75 -0.071 55 0.68

correspondences. In (Dralle & Rudemo, 1997) we have been even more reductionistic,
considering only one such correspondence. After establishing the correspondence, the
subsequent parameter estimation is straightforward, particularly if we assume that the
correlation between errors along the tree projection and orthogonal to it is zero. A
likelihood-based analysis with a limited number of 'most probable’ correspondences is
given in (Lund & Rudemo, 2000).

11.2 Optimal templates for finding tree tops in aerial
photos from different angles

In the previous section we analyzed aerial photos acquired essentially vertically above
the area studied. Following (Larsen & Rudemo, 1998) we shall in this section study
photos obtained from varying angles, in particular three specific cases where the trees are
sidelighted, backlighted and frontlighted.

We shall use a tree model from (Larsen, 1997), which extends a model in (Pollock,
1994). The tree is modelled as a generalised ellipsoid that in (x,y, z) coordinates has the
surface 2\n/2 2 2\n/2

1 @t
an b
where z is the vertical coordinate, the “centre” of the tree crown is at the origin, a is half
the length of the ellipsoid, b is half the width and n is a shape parameter; here we use
a=177m, b =284 mand n = 1.6 as in (Larsen, 1997). The tree model is shown in
Figure 11.4, where we also show how light from the sun is scattered by single reflection
into the camera on board the aeroplane.

(11.6)
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We will study an algorithm for automatically selecting tree tops from images and
compare them with manually obtained “ground truth” data. Let us first consider manually
estimated “ground truth” tree top positions. As described in Dralle & Rudemo (1997),
see Section 11.1, we can from known tree base positions estimate the tree top positions
according to (11.1). The tree top positions thus obtained were then manually corrected
by inspection of the photos to compensate for errors in tree height estimates, variations
due to wind, and imprecision in image rectification.

Light source i 7,7~

i Camera

Tree crown

Figure 11.4: Tree crown model from Equation (11.6). The figure also shows single reflec-
tion of light from the sun into the airborne camera.

In the upper right part of Figure 11.5 we see an ellipse template placed close to the
top of the optical model for sidelighted trees. There are three template parameters, size
r, which is the radius of a circle with the same area as the ellipse, shape s, the width to
length ratio of the ellipse, and ¢, the translation in r-units of the ellipse centre along the
tree trunk such that ¢r is the downwards translation.

The following procedure was used to match the set tree top candidates with “ground
truth” positions. Pairs of positions from the two sets were found in order of increasing
error distance such that each position in each set was used at most once. The procedure
was stopped when the error distance in the next match exceeded d,,,., = 1 m, and
trees not matched at this stage were declared “unmatched”. As penalty measure used
for comparing a set of tree top candidates with “ground truth” the following modified
standard error measure was used

SE* — \/ZiEmatched |Xi - 5(|2 + nUHmatChedd%mz’ (117)

Nmatched + TNunmatched
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where the sum is taken over all matched tree tops, x; is the error vector for tree top 1,
| - | is the Euclidean distance, X is the average error vector for all matched trees, while
Nmatched aNd Munmatched are the number of matched and unmatched tree tops.

In the search for optimal parameters r, s and ¢ with criterion function SE* an iterated
grid search was used, see (Larsen & Rudemo, 1998) for details. The search was performed
separately for the three image with sidelighted, backlighted and frontlighted trees as seen
in Figures 11.5 — 11.7. Similar parameter values were obtained with averages radius
r = 1.5 m, width/length ration 0.9 and translation factor ¢ = 0.2. The number of found
and missed trees for the three images are shown in Table 11.2.

Table 11.2: Results for the three images with sidelighted trees, image 120, backlighted
trees, image 124, and frontlighted trees 144.

Image
120 124 144
Total number of trees 171 171 171
Number of missed trees 15 6 3
Percent of trees found 91 96 98
Standard error in cm (matched only) 27 24 28
Modified standard error (11.7) inecm 39 30 31
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[# Tree top marked by a human interpreter (1m radius)
i’ Tree top candidate

Figure 11.5: The sidelighted image “120” with 171 tree tops manually marked (circles) and
automically estimated (dots), and to the right the corresponding single reflection optical
model with optimal boundary (upper right) and the empirical average (lower right).
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Tree top marked by a human interpreter (1m radius)
B Tree top candidate

Figure 11.6: The backlighted image “124” with 171 tree tops manually marked (circles)
and automically estimated (dots), and to the right the corresponding single reflection
optical model with optimal boundary (upper right) and the empirical average (lower
right).
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™ Tree top marked by a human interpreter (1m radius)
- Tree top candidate

Figure 11.7: The frontlighted image “144” with 171 tree tops manually marked (circles)
and automically estimated (dots), and to the right the corresponding single reflection
optical model with optimal boundary (upper right) and the empirical average (lower

right).
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11.3 Exercises

FEzercise 11.1. As a motivation for the model (11.1) for the systematic displacement from
x; to x; consider the following crude “tree” model: A tree consist of thin rod with a
reflecting sphere on top. How is then the base location x; in the image plane displaced
to a point 2 in the image plane corresponding to the point on the sphere where the sun
is reflected as seen from the airplane? (This will not give exactly equation (11.1) but
something quite close to it, at least if the angle a; is small.)

FExercise 11.2. In the lower right parts of Figures 11.5 — 11.7 you can see empirical
average shapes obtained from the use of the templates in the upper right parts in these
figures. Discuss how these empirical average shapes can be computed, and discuss also if
it might be possible to find improved templates by use of the empirical average shapes.
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Chapter 12

Diffusion

12.1 Tracking a single diffusing particle

Let X; denote the position at time iAt, i = 0,1,..., K, of a diffusing particle in d-
dimensional space, where d = 1, 2 or 3 in applications. We assume that

where AG; are independent d-dimensional normal vectors with a mean vector with all
components zero and a covariance matrix

C(AG;) = 2DAU, (12.2)

where D is the diffusion coefficient and [ is the d-dimensional unit matrix. Thus in each
dimension the diffusing particle has a normally distributed increment with mean zero and
variance 2DAt, and the increments in different dimensions and at different time-points
are all independent.

Let |[z]| denote the Euclidean norm in d-dimensional space, that is |[z[|* = > 27 if x
has components z1,...,z,. Then

K
E() _||AGi|*) = 2dDAtK (12.3)
=1
and it follows that .
R 1 )

is an unbiased estimate of the diffusion coefficient D.

We can also obtain a confidence interval for D with, say, confidence degree 95%. The
variable

K
1
2 __ 112
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is chi-square distributed with dK degrees of freedom. Thus
Pr(xhes < x> < X%zs) = 0.95. (12.6)

Straightforward computations give that (12.6) can be rewritten

dK - dK -
Pr(——D < D < ——D) = 0.95. (12.7)
X975 X025
and we see that IK IK
—D<D<——D (12.8)
X975 X025

is a confidence interval for D with confidence degree 95 %.

12.2 Fluorescence recovery after photobleaching (FRAP)

Fluorescence recovery after photobleaching (FRAP) is a convenient method for analyzing
diffusion which can be applied to the study of possibly heterogenous materials with locally
varying diffusion coefficients. We shall here follow the exposition in (Jonasson et al.,
2008) which gives a pixel-based likelihood framework for FRAP. In FRAP the diffusion
coefficient of fluorescent molecules is determined locally in a microscope. Fluorescent
molecules are bleached and deactivated typically in a vertical cylinder by a high intensity
laser pulse of short duration. This results in a decreased fluorescense in the bleached
volume, see the upper left image in Figure 12.1 which shows fluorescence, observed in a
confocal laser scanning microscope, shortly after the laser pulse. The sequence of images
in Figure 12.1 shows the evolution of fluorescence in a horizontal 2D area corresponding
to a thin volume extending a short distance in the vertical direction. From the image
sequence we see how fluorescence is recovering due to the fact that unbleached molecules
diffuse into and bleached molecules diffuse out of the deactivated volume. The recovery
is clearly seen in Figure 12.1 and even more clearly in Figure 12.2.

The observed pixel intensity in the images will be modelled by a combination of a
solution to the diffusion equation and an assumption of independent normally distributed
errors. The diffusion of fluorochromes is supposed to follow the diffusion equation (similar
to the heat equation)

oC 0*’C  9*C  9*C
— =D + + ;
ot ox?  0y*> 022
where C' is the concentration of unbleached fluorochromes and D is the diffusion coeffi-
cient. Let us regard a rotationally symmetric bleached region and assume that there is
no net diffusion in the z-direction and further that the fluorochromes are initially (before
the high intensity laser pulse) uniformly distributed.

(12.9)

With polar coordinates the diffusion equation can be written

2
aC_D<1@ 80)’

o - Plar tae (12.10)
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Figure 12.1: Plots of images from the first photobleaching series with 256 x 256 pixels
described in Table 12.1. The left top image is the first after bleaching, then follows images
about 1s,2s,4s,8s and 16 s later.
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where 7 is the distance from the centre of the bleached region. Let Cy(r) denote the
fluorochrome concentration at time zero (immediately after the high intensity pulse),
and let Io(z) = (1/m) [, exp(—x cost)dt denote the modified Bessel function of order
zero. The solution of equation (12.10) can be written on the form

1 r? o ru u?
Crit)= —exp | —— uCo(u)ly (—) exp | ——— | du. 12.11
(r,) 2Dt ADt ) J, () 2Dt 4Dt ( )
0.8 0.6
0.7 0.7
0 0.6
05m 0.5
0 50 w00 150 o 50 100 150
r T
o8 0.8
0.7 .p"' D.?jﬂ.’_
08 0.6
05 0.5
o 50 W0 150 0 50 100 50
r r
o8 0.8
D.?-—-f'.-'-“’_ T
0.8 0.6
0.5 0.5
o 50 W00 150 0 50 108 150

Figure 12.2: Plots of fitted concentration and pixel values, averaged over pixels with equal
distances to the bleaching centre, as a function of distance 7 to the bleaching centre for
the same series as shown in Figure 12.1. The left top image is the first after bleaching,
then follows images about 1s,2s, 4 s, 8 s and 16 s later.

If we would have complete bleaching the intensity profile immediately after bleaching
would be described by an inverse top hat function. However, the bleaching is not complete
and diffusion starts directly to blur this profile and in the upper left images in Figures 12.1
and 12.2 we see a profile rather different from a top hat. We will assume that the initial
profile is an approximately Gaussian profile, and suppose that the initial concentration
has the form

a, r?
Co(r) =ag — — exp | —— | du. (12.12)
7o 7o
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Then the solution of equation (12.10) with the initial condition C'(0,r) = Cy(r) simplifies
to

2
aq T
Cr,t) =a9g — —— —— | du. 12.13
(1) = ao 4Dt+rgeXp( 4Dt+rg) ! (12.13)

Let p(i,t) denote the observed intensity at time ¢ at pixel ¢ with distance r; to the centre
of the bleached region. We will assume that except for additive random noise the pixel
intensity is proportional to the fluorochrome concentration C(r;, t). Let us further assume
that pixel-wise the noise is normal with mean zero and variance o2 with independence
between different pixels and different times. Let S denote the set of pixels and T the
set of times regarded. Thus we assume that the pixel-values p(i,t),i € S;t € T, are
independent with probability density

. 1
f(p(i,t); a0, a1, D, 7,0°) = exp (—

2w o2 202

(p(i,t) - C(mt>>2) _ (12.14)

The likelihood function is the joint probability density for all pixels and all times, and
due to independence it is

L) = tllll _2202 exp (—(p(i’t) ;Cg(ri’t)) ) , (12.15)

where 6 is the parameter vector 0 = (ag, a1, D, 7o, 0%).
The log-likelihood ¢(0) = log L(0) is then

= 71151 log(2mo?) — Ti? Z Z(p(z', t) — C(ry,t))?, (12.16)

teT ieS

£(0)

and it is maximized with respect to the parameter vector 6 to find the ml estimates, the
most likely parameter values given the observed images. Likelihood theory allows com-
putation of parameter estimates together with corresponding standard errors, compare
Section 14.12. The parameter estimates are approximately multivariate normally dis-
tributed with a covariance matrix that is the inverse of the observed information matrix.
The entry in row 7 and column k of the observed information matrix is

82

—_ 12.1
55,05, (12.17)

evaluated at 0 = é, where 6 is the ml estimate of 6. If the coordinates of the centre of
the bleached disk are unknown there will be two extra parameters in the likelihood.

In (Jonasson et al., 2008) results from experiments with a Sodium Fluorescein probe
in polyethylene glycol are reported. Two series of experiments with respectively 128x128
pixel images and 256 x 256 pixel images were performed, and in each series four replicates
with differently placed bleaching centres were used. Results from the experiments are
shown in Table 12.1 and for one of the replicates in more detail in Figures 12.1 and 12.2.

As a check of the FRAP results given in Table 12.1 a corresponding NMR diffusometry
experiment was performed. It gave an estimated diffusion coefficient of 62.0 um?/s with
a standard error of 1.9 um?/s, which is well in line with the results in Table 12.1.
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Table 12.1: Results from an experiment with two replicate series. For the first four
replicates (with 128 x 128 pixels) 48 images were used and for the last four replicates (with
256 x 256 pixels) 18 images were used. The columns D and s show diffusion coefficients
and standard errors estimated by maximum likelihood, while D and Srepi ShOow averages
and standard deviation from the replicate series.

Replicate No of pixels D (um?/s) s (um?/s) D(um?/s)  Sep (um?/s)
1 128%x128 64.3 0.8
2 128x128 60.1 0.8
3 128x128 61.1 0.8
4 128x128 59.6 0.8 61.3 2.1
1 256 x256 61.0 0.5
2 256 x256 61.8 0.5
3 256 %256 60.8 0.4
4 256256 63.8 0.5 61.8 1.4

12.2.1 Exercises

Ezercise 12.1. Verify that x? in equation (12.5) is chi-square distributed with dK degrees
of freedom.

Ezxercise 12.2. Verify that C(r, t) given by equation (12.13) satisfies equation (12.10) with
the initial condition (12.12).

Ezercise 12.3. In the computation of the likelihood in equation (12.15) it is assumed that
noise contributions in different pixels are independent. Take a close look at one of the
images in Figure 12.1. Does it seem as the independence assumption is valid. Describe
how you could check the independence assumption with access to the images in Figure
12.1.

130



12.3 Estimation of particle concentration from single-
particle tracking

Nano-sized fluorescent particles observed in a microscope can typically be detected in a
rather thin rectangular box such as shown in Figure 12.3. To determine particle con-
centration we need to know the dimensions of the detection region. The extension in
the horizontal directions can ususally be determined in a straightforward way from the
microscope field of view. However, the size in the vertical direction is much more difficult
to measure as it depends on a number of factors such as the particle detection algorithm
and the brightness of the observed particles. Such properties are not fixed but can vary
considerably between experiments. In (Roding et al., 2011) this problem is analyzed
and the vertical dimension is estimated from the trajectory length distribution. We will
assume that the detection region thickness is considerably smaller than the horizontal
dimensions which means that particles typically enter and leave the detection region by
moving upwards or downwards. The trajectory length distribution is then essentially
determined by the detection region thickness. Roughly, short trajectory lengths indicate
a small thickness.

!
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Figure 12.3: A microscope detection region modeled as a rectangular box centred in the
liquid suspension where particles move. Particles outside the detection region cannot be
observed. The tracking depth is 2a and the thickness of the suspension is 2A.

Let us assume that we observe a particle at positions X; at K equidistant time-points
t; = iAt,i = 1,..., K, typically corresponding to K consecutive frames in a video se-
quence. We use the same notations as in Section 12.1, just that we start here at time
t; = A rather than time 0. Thus the particle enters the detection region at time t¢; and
leaves it after K observed positions. Although the particle moves in 3D we will simplify
and only consider the motion in 1D, namely the z-direction. Thus we assume that the par-
ticle enters and leaves the detection region from above or below, which should be a good
approximation when the verticle dimension 2a of the detection region is much smaller
than the horizontal dimensions. We also assume that the detection region thickness 2a
is much smaller than the thickness 2A of the liquid suspension volume.
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Considering only 1D diffusion in the z-direction we assume that initially the particle
position is uniformly distributed in the interval [— A, A] and a particle outside the detecion
region is assumed to be uniformly distributed over [—A, —a] U [a, A]. Let f(z) denote the
probability density of the position of a particle that has just entered the detection region.
One can then show that f(z) =0 for |z| > a and

h(z)

f(z) = W, z € [—a,al, (12.18)

1 z4+ A z+a z—a z—A

hlz) = 2(A —a) [(I) <\/2DAt> ® <\/2DAt> e <\/2DAt> ® <\/2DAt>} (12.19)
and ® denotes the standard normal cumulative distribution function. A proof of this is
outlined in Exercise 12.5 below. Let Z; denote the position of a particle and let f; denote
the non-normalized density of the particle position after k£ steps assuming that K > k,
more precisely fi(z) = d/dz[P(Z, < z and K > k)|, for k > 1. By definition fj(z) is
zero outside [—a, a]. For the first position of the particle in the detection region we have
fi1 = f given by (12.18). To compute the probability density of the particle after step 2,
f1 is convolved with the Gaussian propagator

1 z
G(z) = ( ) , 12.20

()= 5o \2pas (12.20)
where ¢ is the density of a standardized normal variable. Since we assume that the
particle stays in the detection region K steps it cannot be outside the interval [—a, a] and
the density has to be truncated. Generally the density fi can be recursively computed
from f_; according to

i = s g

Computation of f, for k£ > 1 cannot be performed analytically, but a fast numerical
scheme with probability densities approximated by translates of a Gaussian kernel is
described in (Roding et al., 2011). In Figure 12.4 the computation of the sequence of
densities fi, k > 1 is illustrated.

(12.21)

The probability that a particle stays in the detection region for at most k consecutive
steps is

P(K<k)=1- /_‘l fr41(2) dz, (12.22)

where the dependence on a is emphasized. The probability distribution for the trajectory
length is then obtained from

Po(K =k)=P,(K <k)— Py(K <k—1). (12.23)

Suppose now that we have observed an ensemble of identical particles with known dif-
fusion coefficient. The assumption of known (or well estimated) diffusion coefficient is
reasonable as it can readily be estimated from the particle trajectories, compare (12.4).
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Figure 12.4: Tllustration of the procedure for computing the trajectory length distribution.
Here fi(z) is the probability density of a particle that has just entered the detection
region according to equation (12.18). Truncation outside of [—a,a] of the convolution
f1*G(z) yields the non-normalized density f>(z) which integrates to the probability that
the particle still remains in the detection region for a second sampling point, and so forth.

Let us consider trajectories with length K > k. As discussed in (Roding et al., 2011)
it is typical to impose a lower threshold like K > 3 or K > 4 for the trajectory length
as shorter trajectories are more likely to be false positives. Let Ny denote the number of
observed trajectories of length k. Then the log-likelihood function is

Ua) = Y Nlog Pu(K = k|K > kpin), (12.24)
where
Pu(K = k)
Pa<K Z kmm)
and P,(K > ki) is computed from (12.22). The maximum likelihood estimate a is the
a-value that maximizes £(a) in (12.24).

Pu(K = E|K > kypn) = (12.25)

After having estimated the tracking depth a it is possible to estimate the particle
concentration (also called the number concentration). Let N denote the mean number of
particles per video frame. A suitable point estimator of the particle concentration c is

¢ = # particles/ml, (12.26)
8aa,a,10-12

where 2a, and 2a, are the lateral sizes in yum of the detection region. We can estimate N

by counting trajectories as follows. Let n be the number of frames, and let N, as earlier

be the number of observed trajectories of length k. The number of observed particle

positions is the sum of all trajectory lengths. Dividing by the number of frames we get

an estimate of the mean number of particles per frame, and we estimate N by

11
=—= Y kM. (12.27)

n
Pobs E>Emin
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The factor pys corrects for underestimation of the concentration due to discarding tra-
jectories with length k < k.,

Pope — Zkgkmm kP&<K = k)
o Zkglkpd(K: k’)

(12.28)

With this correction factor the estimate N in (12.27) becomes approximately unbiased.
The standard error of the concentration estimate can be assessed by bootstrapping, com-
pare Section 14.12. It is here suitable to perform the bootstrapping on video level,
since videos are (approximately) independent. Thus B bootstrap samples are obtained
by sampling B times with replacement from the set of videos, and from each sample
the concentration estimates ¢y, ..., ¢p are computed according to (12.26). This gives an
approximate standard deviation estimate

1 B 1/2
op = <_B — P cmean)2> : (12.29)

i=1

where ¢,cqn 18 the mean of the bootstrap estimates. This method relies on that the
videos are approximately equally long and independent. The simulation study briefly
described below, and in more detail in (Roding et al., 2011), leads to the conclusion that
the tracking depth and the concentration estimates are approximately unbiased and that
bootstrap errors for B = 50 are quite close to the actual standard errors.

In the simulation study particles were moving according to 3D random walk with
time increments At and independent zero mean normally distributed increments with
variance 2D At in all three dimensions. Particles moved in a cube with side length 24 =
40 pum, compare Figure 12.3, with periodic boundary conditions. Particle trajectories
were recorded when particles entered the detection region. In the study three different
diffusion coefficients, D = 1 um?/s, D = 2 ym?/s, and D = 5 um?/s, and a series of
values for the detection region thickness from 0.1 to 2 um were used. The concentration
of particles was ¢ = 10° particles/ml. For each combination of diffusion coefficient and
detection region thickness 20000 simulations were performed and the mean obtained
estimates of a and ¢ are shown in Figure 12.5.

In addition to the results from simulations, results from experiments with 0.19-pum
and 0.52-um particles are also reported in (Roding et al., 2011). In Figure 12.6 we
see concentration estimates for 5 dilutions with the 0.19-um particles. Estimated 95%
confidence intervals obtained by bootstrapping for each dilution are also shown. Ideally
the concentration estimates should fall on the solid straight line shown. However, this
line is not perfectly known as there are some uncertainties of the size of the particles.
Mean particle diameter was estimated by use of light scattering and was found to be
0.207 pum with a standard deviation of 0.008 pwm. From this a 95% confidence interval
for the solid line is obtained and shown in Figure 12.6.

From Figures 12.5 and 12.6 we see that the method suggested in (Roding et al., 2011)
performs well both for simulated and experimental data.
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Figure 12.5: Simulation study of the tracking depth parameter a (upper) and the con-
centration ¢ (lower). Mean estimates are shown for D = 1 um?/s (red circles), for D = 2
pum?/s (magenta squares), and for D = 5 ym?/s (blue diamonds) as functions of the true
value of a. The true value of a is given by the black solid line. The true concentration of
particles was ¢ = 10° particles/ml. The increasing bias (negative for a and positive for

¢) for increasing a is due to the 1D approximation in the model for the trajectory length
distribution.
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Figure 12.6: Experimental results with estimated concentrations for different dilutions
of 0.19-um particles with estimated 95% confidence intervals. The concentration as es-
timated from the stock-solution concentration (solid line) and estimated 95% confidence
intervals (dashed lines) are also shown.
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12.3.1 Exercises

FExercise 12.4. In Figure 12.5 we see that there is a negative bias for the estimated thick-
ness a of the detection region and a positive bias for the estimated particle concentration.
In both cases the size of the bias increases with increasing a and also with decreasing
diffusion coefficient D. Give qualitative explanations of these effects.

Ezercise 12.5. Try to derive (12.18). You can for instance start by finding the distribution
of a particle for which you only know that it is outside the interval [—a,a]. Convolve
then this distribution with the Gaussian propagator, compare with (12.21).

12.4 Estimation of particle concentration from particle
count time series

The method for estimation of particle concentration discussed in the previous section
requires particle tracking, that is pairing particles from one frame to the following frame.
This may be difficult for fast particles and high concentrations. In this section we will
follow (Roding et al., 2013) and describe a method which only requires counting the
number of particles in each frame but no tracking of the individual particles.

In Figure 12.7 we see an experimentally observed count process with the number of
particles varying between about 18 and 37 particles. Such a process of particle counts we
will call a Smoluchowski process in honour of the Polish physicist M. von Smoluchowski
who in (von Smoluchowski, 1906) developed an alternative to Einstein’s description (Ein-
stein, 1905) of Brownian motion.

40

20

Particle count per frame

0 20 40 60 80 100
Frame count

Figure 12.7: An example of an experimentally observed Smoluchowski process obtained
by counting liposomes in whole blood, superimposed over a sample frame from the raw
image data, compare (Braeckmans et al., 2010).

We will assume that particles move in and out of a microscope detection region of

the type shown in Figure 12.3. In this section we will call the lateral dimensions of
the detection region 2a, and 2a, and the vertical dimension 2a,. Thus 2a in Figure
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12.3 corresponds here to 2a.. The number of particles in a sequence of frames varies as
illustrated in Figure 12.8.

Figure 12.8: Illustration of a Smoluchowski process. Diffusing particles reside both inside
(vellow) and outside (grey) the detection region. Particles moving in and out of the
detection region and the number of detected particles is fluctuating, forming a random
time series.

Let us now describe an approximate Markov statistical model for the Smoluchowski
process. We assume that particles move independently of each other according to a
Brownian motion with independent increments in all three dimensions with mean zero
and variance 2DAt, where At is the interval between observations (frames). Let X,,,n =
1,..., N, denote the number of particles observed in the nth frame. Then

Xps1 = X — Oy + I, (12.30)

where O,, is the number of particles, out of the X,, particles initially present, exiting the
detection region, and I, is the number of particles entering that region, between the two
observations X,, and X,,,;. We shall assume that regardless of observation up to (and
including) X,, the random variable I,, is Poisson distributed with a parameter A, that is,

X

Pr(ly = HXu,.. Xo) = e

(12.31)

Another assumption, which we shall make, is that given observations up to (and including)
X, the random variable O, is binomially distributed with probability-parameter u, more
precisely, that

Pe(0, = X X) = ()i (12.32)

Based on these assumptions we approximate the distribution of the process of particle
counts (X,,n > 1) with a Markov model with transition probabilities p;; = Pr(X,4; =
j| X, = i) given by

J k .
a2 i - -

k=max(0,j—1)

One can show that a Markov chain with transition probabilities given by (12.33) has a
stationary distribution which is a Poisson distribution with parameter A/p, that is

(12.34)
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Given the Markov assumption the joint distribution of particle counts X;,..., Xy can
be written

N
PI'(Xl = T1,... ,XN = {L‘N) = PI'(X1 = 1‘1) H PI"(Xk = l‘k|Xk_1 = {L‘k_l). (1235)
k=2
For a realization z1, . . ., 2y we obtain a log-likelihood function (A, u) = (A, |z, ..., xyN)
given by
o e
(N p) = log I E— + Zz]: Nijlogpij (A, 1), (12.36)

where NNV;; is the number of transitions from state ¢ to state 7. We obtain the maximum
likelihood estimates A and fi by maximizing the log-likelihood ¢(\, p). For estimation
of the lateral dimension parameter a, it turns out that the crucial parameter is p. The
parameter 1 may be interpreted as the probability that a particle uniformly distributed
in the detection region exits this region in a time interval of length At, compare (12.32).
With this interpretation one can show that

= :u(az) =1- F(axa D)F(ay’ D)F(aza D)> (12'37)
with
_ V2DAt 2a 2a 2a
F(a,D) = 9 {\/m [2@ <\/m> — 1} + 2¢ (\/M) — 2(;5(0)} , (12.38)

where ® and ¢ denote the distribution function and the probability density of a stan-

dardized normal variable. Note that in (12.37) we write u = p(a,) because here a, is
the important unknown parameter. The lateral dimension parameters a, and a, can
be measured directly from the microscope geometry and D here needs to be estimated
separately, for instance by separate particle tracking. Let us also note that in order to
obtain valid standard errors and confidence intervals it is suitable, as in Section 12.3, to
use bootstrapping on the 'video level’.

To validate the suggested method both simulations and experiments were used. In
the simulations a predetermined number of particles were allowed to diffuse in three
dimensions in rectangular box, as the large box in Figure 12.3, with periodic boundary
conditions. Three different diffusion coefficients, D = 1, D = 2 and D = 5 um?s~!, and
20 different a,-values ranging between 0.1 and 2 ym were used. The resulting estimates of
the detection depth parameter a, and the concentration are shown in Figure 12.9. From
the figure we see that the method performs very well except for some minor bias for small
a,-values.

To experimentally verify the method suggested two experiments with fluorescent poly-
mer nanospheres with diameter 0.2 um and 0.5 um were performed. We will here show
the results for the smaller diameter. A water dispersion of the particles was diluted by a
factor of 1900, 2400, 3400, 5800 and 14800. The theoretical concentration of particles in
particles mL~! can be estimated from

6X1010><Sp[,

12.
o (12.39)

CYtheoretica‘l =
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Figure 12.9: Simulation study of estimation of the detection depth parameter a, and the
concentration estimate C. For D = 1 yum?s™! (red circles), D = 2 um?s™! (magenta
squares) and D = 5 yum?s~! (blue diamonds) the mean estimates of a. (divided by the
true value of a,) and C are shown as functions of the true value of a,. The mean estimates
were computed from 10° simulations for each data point, and the true concentration of
particles was C' = 10° particle mL~!.

where S = 1 is the weight percent of solids, with a relativ standard deviation of 5%,
pr, = 1.00gcm™ is the density of the suspension, pg = 1.05gcm™ is the density of the
solid particles (all values according to the manufacturer). Further, using dynamic light
scattering the diameter of the particles was found to be d = 0.207 um with a standard
deviation of 0.008 um (in correspondence with the manufacturer results for the particular
batch of nanospheres). Using the standard error-propagation equation the theoretical
particle concentration with standard deviations were found for all dilutions and compared
with the results from the method suggested. The results are shown in Figure 12.10 and
it clear from the figure that an excellent agreement was found between the theoretically
and experimentally obtained concentration values.

12.4.1 Exercises

Exercise 12.6. The Markov model used in the present section is based on (12.31) and
(12.32) leading to the transition probabilities (12.33). Motivate why equations (12.31)
and (12.32) are only approximately true.

Exercise 12.7. In Figure 12.9 we see that there is a negative bias for the estimated thick-
ness a, of the detection region and a positive bias for the estimated particle concentration.
In both cases the size of the bias increases with decreasing a, and also with increasing
diffusion coefficient D. Give qualitative explanations of these effects.

FEzercise 12.8. Show that (12.34) gives a stationary distribution for a Markov chain with
transition probabilities (12.33).

FEzercise 12.9. Try to derive (12.37) with F'(a, D) given by (12.38) by computing the

139



[3%]

\
I\

(10° x part/mL)

<

Est. conc.

o

2 4 6
Inverse dilution (10_4 x dimensionless)

g 30
]
SR Aipdhy
3% 10 P i TR Bea o e
= o K L T W e
E E‘ 0 M%MW%MAW

0 2 4 6 8 10

Time (s)

Figure 12.10: Estimated concentrations from an experiment with different dilutions of
0.2 um particles with estimated 95% confidence intervals (’inverse dilution’ is a ’relative
concentration’). The concentration as estimated from the stock-solution concentration
(solid line) with estimated 95% confidence intervals (dashed lines) is shown (upper). Fur-
ther, typical examples of the underlying Smoluchowski processes are shown with colours
red/green /blue/cyan/magenta in order of of decreasing concentration (lower).

probability that a diffusing particle stays within the detection region in all three dimen-
sions.

12.5 Single particle raster image analysis of diffusion

As we have seen in the previous sections of this chapter there are several powerful methods
for estimating diffusion coefficients from series of images. In this section we shall study
a method that in principle allows us to estimate diffusion coefficients from single images.
The method is based on using a clever raster scan pattern described in (Digman et al.,
2005). Images of diffusing molecules are collected with a confocal laser scanning micro-
scope using a raster scan pattern with a specific time structure. During the scanning,
adjacent pixels in the x-direction are visited within a short time interval whereas the time
between visits to adjacent pixels in the y-direction is much longer, see Figure 12.11. The
method RICS, Raster Image Correlation Spectroscopy, is suggested in (Digman et al.,
2005) to analyse raster images by use of correlation function estimation typically com-
puted by the fast Fourier transform method. One can show, compare equation (24) in
(Longfils et al., 2018), that the theoretical correlation function G(&, ) for the scanned
image corresponding to two points (z,y) and (x + &,y + 1) is

4DT<5,¢>)1 <1 . 4Df<s,¢>)1/2ex l_ (5€)° + (Sv)?

3 w3 P+ aDrE))
(12.40)

where () is the average number of particles in the observation volume, S is the pixel

size, and the function 7(£, ) takes the form

66 = (14
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(5, ¥) = 7€ + Ty (12.41)

corresponding to the time it takes to move between the points (x,y) and (z + &,y + ).
The parameters wg and w, in (12.40), called lateral and vertical waists, correspond to the
decay rate of the point spread function in the lateral and vertical directions and can be
estimated as standard deviations of a 2- or 3-dimensional Gaussian function fitted to the
laser point spread function.
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Figure 12.11: Movement of scanning beam according to the raster scan pattern used in
RICS and SPRIA. The scanning time between adjacent pixels in the z- and y-directions
are 7, and 7, respectively, and 7, < 7.

In (Longfils et al., 2017) an alternative analysis method SPRIA, Single Particel Raster
Image Analysis, is introduced based on properties of the individual diffusing particles.
By analysing each particle separately possibilities are opened for analysis of systems of
particles with a mixture of different diffusion coefficients and for heterogenous materials
where the diffusion properties vary with location.

The sampling time structure provides information on the dynamics of the particles
inside each image. In Figure 12.12 typical raster scan images are shown for different time
scales demonstrating the effect of varying scan rates visually on experimental data with
175-nm beads scanned at decreasing speed. In (A) at scan rate 8000 Hz almost immobile
round-shaped particles are observed. In (B) the particles scanned at 400 Hz move slowly
and the horizontal particle lines look like sequences of shifted bright lines. In (C) the
scan rate is further decreased to 100 Hz and the sequence of bright lines corresponding
to one particle become even more shifted as the particle is moving significantly between
aquisition of consecutive lines.
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(A) (B) (C)

Figure 12.12: Raster scan images of 175 nm beads at a pixel size of 48.1 nm and varying
scan rate: (A) 8000 Hz, (B) 400 Hz and (C) 100 Hz.

To be able to apply the single particle method, individual particles have to be extracted
from an image as shown in Figure 12.13. The procedure is based on two threshold levels
Ty > T5. First find local photon count maxima above the level T;. Then find around
each chosen maximum the smallest axis-parallell rectangle such that all observed photon
count levels just outside the rectangle border are below Ty, see (Longfils et al., 2017)
for details. It turns out that the choice of levels is not critical, compare Exercise 12.11,
which seems quite plausible from a look at Figure 12.13. In Figure 12.14 we find an
axis-parallell rectangle chosen with 77 = 10 and 75 = 5.

(A) (B)

Figure 12.13: Freely diffusing fluorescent beads with 175 nm diameter. (A) A 256x256
pixel raster scan image. (B) The particle highlighted with a red square in (A) extracted
from the image.

Let a particle P be defined by the axis-parallell rectangle
P={(z,y):a<z<a+Lb<y<b+ K} (12.42)

around a local maximum of photon counts. The trajectory of the particle can be estimated
by use of the extracted image and used to estimate the diffusion coefficient D of the
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Figure 12.14: Magnified neighbourhood of a 175-nm bead in a 2048x2048 raster scan
image. The numbers correspond to photon counts in each pixel and the local maximum
is 20. The levels chosen are T} = 10 and 75 = 5, and the rectangle defining the particle
is found within the contour defined by the red lines. The corresponding border consists
of the pixels immediately outside the red contour.

particle. In (Longfils et al., 2017) a maximum likelihood method for estimating the
trajectory and the diffusion coefficient D is described, but we will here describe another
more direct way to estimate the trajectory and D. Let ¢(y) denote the time at which we
scan the horizontal line at y, and let N(x,y,t;) denote the measured number of photons
for a given particle at the pixel with centre (z,y) at time t(y) = tx, where £k =0,..., K.
The x position at time ¢(y) = t; is estimated by the centroid
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Z{(w,y)eP:t(y):tk} N(x, Y, tk) T
Vi = : (12.43)
Z{(w,y)eP:t(y)ztk} N(z,y,tr)

Then
K

A Do = ), (12.44)

k=1

where At = 7; denotes the time between two consecutive line scans, is a suitable estimator
of D, compare (12.4). From the simulated image shown in Figure 12.15, where we know
the true trajectory, it can be seen that both the maximum likelihood method (green) and
the centroid method (black) give accurate estimates of the true trajectory (red).

—True
e ]|
— Centroid

y (pixels)

& 10 15 20 25 30 35 40
X (pixels)

Figure 12.15: A simulated raster scan image of a particle with true trajectory (red),
the corresponding estimated trajectory computed with the maximum likelihood method
(green) from (Longfils et al., 2017) and with the centroid method (black) from (Longfils
et al., 2018), see (12.43).

By use of analyses of images from both simulations and experiments the SPRIA
method is in (Longfils et al., 2017) evaluated and also compared with the traditional
RICS method. In the simulation study, Gaussian random walk (discrete time Brownian
motion) of spheres was generated in a box of with periodic boundary conditions. The
sphere diameter ranged from 15 to 1000 nm. A minimum image size of 256x256 was
chosen. The number of images simulated in each case varied and was chosen such that at
least 300 particles and at least 100 images were collected. Lateral and axial waists of the
point spread function were wy = 248 and w, = 1270 nm corresponding to Gaussian fit to
an average measured z-scan of immobile 175-nm fluorescent beads. The pixel dwell time
was 7, = 1.71x1077s, the line time 7, = 1.4x107* s and the pixel size S = 0.03pum. The
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results for 10 D-values between 0.0625 and 64 um?s~! are shown in Figure 12.16 including
bootstrap standard deviation estimates obtained by B = 40 repetitions, compare (12.29).
Results from experiments with particles of four different sizes: 100 nm, 175 nm, 490 nm
and 1000 nm, are shown in Figure 12.17. Both Figure 12.16 and Figure 12.17 show that
the SPRIA method performs well for the settings chosen.
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Figure 12.16: Illustration of simulation results with logarithmic scales on both axes.
Vertical black lines correspond to the expected diffusion coefficient according to Stoke-
Einstein’s equation, and ideally the estimated D-values should be located at the crossings
of the black identity line and the vertical black lines. Blue markers refer to SPRIA and
magenta to RICS, and both estimates are presented as estimates + standard errors.
Markers have been moved horizontally relative to each true value of the diffusion coeffi-
cient to make the figure more legible.
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Figure 12.17: Tllustration of experimental results for the SPRIA (blue markers) and the
RICS (magenta markers) diffusion-coefficient estimations methods with fluorescent beads.
A logarithmic scale is uesd on the y-axis. Vertical black lines correspond to the expected
diffusion coefficient according to Stoke-Einsteins’s equation, and ideally the measured D-
values should be located at the crossings of the black logarithmic curve and the vertical
black lines. Markers have been moved horizontally to make the figure more legible.
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To indicate that the SPRIA method may be used to analyse diffusion in heterogenous
media a simple simulation example was performed in (Longfils et al., 2017) with results
shown in Figure 12.18. Here the dynamics of particles is supposed to vary such that the
diffusion coefficient is 0.8 pum?s~! inside a circle and 0.4 pum?s~! outside the circle. In
the simulation 2142 particles in 300 images were found. The pixel size was 0.03 ym and
the image resolution was 256x256 pixels. The mobility map shown in the right part of
Figure 12.18 was obtained by smoothing with a Gaussian kernel with bandwidth o = 15
pixels. The mobility map indicates that the SPRIA method allows recovery of medium
heterogeneity to a certain extent.
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Figure 12.18: (A) Image of a heterogenous sample used in a simulation study with pixel
colours corresponding to the expected diffusion coefficient in um?s~*. (B) Mobility map,
smoothed with a Gaussian kernel with bandwidth o — 15 pixels, based on 2142 particles
in 300 images with the boundary circle between the two media in black. The pixel size
is 0.03 pm and the resolution of the images is 256 x256 pixels.

What are the conditions for using the SPRIA method? This is discussed in detail in
(Longfils et al., 2017). Roughly two conditions should be satisfied. Firstly, the density
of particles must not be too large if individual particles should be identifiable. Secondly,
sampling time between lines should be such that adjacent horizontal particle lines should
differ to some extent, but not too much as particles then become split into several parts.
This second condition is illustrated in Figure 12.18. Particularly the lower right part
(D) shows a situation where the detection algorithm will split the bead into several
(presumably five) particles.
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Figure 12.19: Typical particle images with settings: S, = 0.03um, 7, = 7.5- 107" s,
7 =2.5-107 s, and scan rate 400 Hz. (A) 1000-nm bead; (B) 490-nm bead; (C) 175-nm
bead; (D) 100-nm bead. The extraction step will identify exactly one bead in (A) and in
(B). In (C) the bead may be split into two particles, as the last four to six lines are not
connected to the previous. In (D) the algorithm will (depending on the thresholds used)
split the bead into presumably five particles (corresponding to the following maxima: one
in the top left, and four in the middle lower part of the image separated by lines with
low photon counts).

12.5.1 Exercises

Exercise 12.10. Figure 12.12 shows what happens when we scan with different scan rates.
If we instead sample at constant rate but have particles (of the same kind and size) in
three different media with high, medium and low viscosity we would get similar results.
If we have low viscosity, which of the three cases (A), (B) and (C) would that correspond
to?

Exercise 12.11. In Figure 12.14 we use thresholds 77 = 10 and T, = 5. Suppose that we
change thresholds to 77 = 15 and 75 = 10. How much will that change the estimated
diffusion coefficient (in percent) for the particle shown?
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Chapter 13

Image analysis of transmission electron
micrographs

13.1 Identification of three-dimensional gel microstruc-
tures

Mass transport in gels depends crucially on local properties of the gel network. In (Nisslert
et al., 2007) a method for identifying the three-dimensional gel microstructure from sta-
tistical information in transmission electron micrographs (TEM) is suggested. The gel-
strand network is modelled as a random graph with nodes and edges (branches). The
distribution of edge length, the number of edges at nodes and the angles between edges
at a node are estimated from transmission electron micrographs. The 3D gel network
is simulated by Markov chain Monte Carlo (MCMC) methods based on statistical infor-
mation found from the micrographs. The micrographs can be viewn as projections of
stained gel-strands in slices, and a formula is derived for estimating the thickness of the
stained gel slice based on the total projected gel-strand length and the number of times
that gel-strands enter or exit the slice.

To find relevant features of a gel-strand network we aim at separating the gel-strands
from the background, and to create a skeleton showing the network as thin lines. In
Figure 13.1 we see in the left part a TEM micrograph of a Sepharose gel to be analysed.
The image corresponds to an area of about 1700x1700 nm and shows the microstructure
of the gel network at a magnification of 10000 times. Images are saved as 8-bit grey-
scale images of size 1024x1024 pixels. One could hope for directly finding the gel-strand
network by thresholding, compare Figure 1.18, but the histogram in Figure 13.2 shows
that that seems difficult.
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Figure 13.1: Left: one of the 1024x1024 pixel TEM micrographs showing a Sepharose
gel at 10000 times magnification. Right: magnification of the area within the red box in
the upper left part of the left image.

0 50 100 150 200 250
Gray Intensity

Figure 13.2: Histogram of the grey level intensity of the micrograph in the left part of
Figure 13.1.

To find the gel-strand network a series of image operations are performed as shown in
Figure 13.3. We will here give a brief description of the different steps illustrated in this
figure, and refer to (Nisslert et al., 2007) for more details and litterature references. The
upper left image in Figure 13.3 shows the starting image. To decrease the level of noise a
Wiener filter is used to smooth the image. The Wiener filter is a low-pass filter that uses
prior information about the noise in the image to optimize the noise reduction. As the
intensities of pixels that represent the gel-strands vary considerably, a minimum filter is
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then applied. This takes the minimum pixel value from a 3x3 neighbourhood, resulting
in an overall darker image with a more uniform grey-level polymer structure as shown in
the right part in the upper figure row. The minimum filter also produces some new dark
spots in the background, and to suppress these a 5x5 median filter is applied.

Figure 13.3: Illustration of the sequence of image analysis steps used to find the gel-strand
network. In the three upper images we see (from left to right): a 400x400 pixel part of the
image to left in Figure 13.1, the same image after application of a Wiener filter, and the
result of applying a minimum filter. In the middle row we see similarly (from left to right):
the result after application of a 5x5 median filter, the binary image after thresholding,
and the result after removal of small black spots. The lower row shows (from left to
right): the skeleton created from the binary image, a skeleton with branches shorter than
10 pixels removed, and finally to the lower right the resulting skeleton displayed in red
onto the original image.
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The gel-strand network is now somewhat better separated from the background. Thresh-
olding is still problematic, but possible. The method of (Otsu, 1979) is used with the
threwsholds determined by minimizing the intraclass variance between dark and light
pixel values. In the thresholding the image was further divided in 25 different parts with
individual thresholds to take care of varying intensity in different parts of the image. The
threshold values from Otsu’s method are also decreased with 4% to get the gel-strands
thinner. Further black spots smaller than 80 pixels are removed as shown in the right
image in the middle row of the Figure 13.3.

Having now a binary image which reasonably well represents the gel structure in the
micrographs, the next step is to create a skeleton representation of the network. Two
mehods were tried: medial azis transformation and thinning, (Sonka et al., 2015). Both
methods create skeletons that represent the microstructure of the gel network rather
well, but a lot of small branches are created without correspondence in the original
micrographs. Comparing skeletons produced by the two methods, thinning was found to
produce less of these artefacts and was chosen. Branches shorter than 10 pixels are also
removed from the skeletons. The resulting network is shown in the middle image of the
lower row in Figure 13.3. Finally in the lower right part of the figure we see the resulting
skeleton in red overlaid on the original image.

By looking at the locations in the gel-strand network where branches have been re-
moved we can find a special type of nodes called bending points, as the removed short
branches were often created where the gel strands change direction. In the left part of
Figure 13.4 part of a skeleton is shown with nodes (with three branches) marked in red,
end points in green and bending points in blue. The bending points are in the sequel
treated as nodes having only two connected branches.

q

7

Figure 13.4: Left: Part of a micrograph skeleton with nodes (with three branches) marked
in red, end points in green and bending points in blue. Right: Skeleton with branches be-
tween nodes marked in blue, branches between end-points in green and branches between
an end point and a node in red.
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By using the end points and nodes we can measure branch lengths. This is done by
measuring the straight line distance between two end points, two nodes or one end point
and one node. The branches are also measured more accurately by looking at the distance
between the pixels in the branches, where the distance between horizontally or vertically
adjacent pixels is one and between diagonally adjacent pixels is v/2.

In a skeleton we see, compare the right part of Figure 13.4, three types of branches.
Note that we look at projections of a thin section and that we assume full connectivity
in the gel network. Branches between between two end points correspond to gel-strands
that enter and exit the section. Branches between an end point and a node correspond
to gel-strands that enter or exit the section, and branches between two nodes are fully
contained in the section.

We want to find the distribution of angles between branches at nodes. As we have a
discrete pattern of pixels we cannot just use angles between adjacent pixels as that would
give only multiples of 45°. Choosing a point too far from a node increases the probability
of an incorrect branch direction. As a comprise the direction eight pixels from a node
was used. Further, to find the thickness of gel-strands a binary representation of the gel
network and a distance map (Breu et al., 1995) is constructed. The distance map gives
the shortest distance for each pixel to the nearest non-gelstrand pixel. Combining this
with the skeleton representation of the gel microstructure gives the radius distribution of
gel-strands.

Let us now look at slice thickness estimation. To obtain contrast in the TEM images
a thin slice of gel is put into a uranium and lead bath. Uranium and lead are allowed to
diffuse into the gel for about one hour and are adsorbed on the gel-strands. In (Nisslert
et al., 2007) a method is proposed to estimate slice thickness, which corresponds to how
far uranium and lead has diffused into the gel. The method as described below is based
on the total projected gel-strand length and the number of gel-strand crossings into or
out of the slice.

Assume that the gel-strand network consists of a collection of curves such that es-
sentially all end points in the 2D projection correspond to a curve passing into or out
of a slice of thickness D. Gel-strand curves are supposed to have locally a well-defined
orientation. Figure 13.5 shows a short approximately linear curve segment AC' of length
AL that forms an angle o with a vertical line and has vertical distance y from segment
midpoint to the bottom of the slice. Assuming that the line segment is randomly rotated
in 3D around its center one finds that the angle o has probability density

pla) =sina, 0<a<7/2 (13.1)

compare Exercise 13.1. The length of the horizontal projection of the corresponding curve
segment AC' is Ly (AC) = ALsin « with expectation

/2
E(Lpho(AC)) = /0 ALsinap(a)do = —— (13.2)

compare (Baddeley & Jensen, 2005), p. 172.
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Figure 13.5: Short approximately linear curve segment AC' of length AL with orientation
« relative to a vertical line and with a vertical distance y from midpoint to bottom of
slice. The slice is oriented such that it has horizontal upper and lower boundaries.

To evaluate the number of crossings we condition on the angle . The length of the
vertical projection of the curve segment is AL cos o, and we get a crossing out of the slice
if either y < (AL/2)cosa or y > D — (AL/2)cosa. Thus the conditional expectation
of the number of crossings of curves moving out of the slice is (1/D)AL cosa. Since we
should have equally many crossings from curves moving into the slice, the conditional
expectation of the total number of crossings is (2/D)AL cosa. Averaging over o we get
the expected number of crossings

2 [™/? AL
E(Neross(AC)) = 5/ AL cos asin ada = - (13.3)
0

Summing over all curve segments we find from (13.2) that the expected horizontal curve

length is
L
E<Lh01‘) = I7

where L is the total 3D curve length, and similarly the expected number of crossings is

(13.4)

L
E(Ncross> = 5 (135)
From the last two equations we find
E(Neross) = 4 E(Lyor) (13.6)
Ccross) — D hor/- .

This means that the slice thickness D can be estimated from the horizontal length Ly,
in the projection and the number of crossings Nerogs into or out the slice, and we get the

estimate
4Lhor

D= . 13.7
T Neross ( )
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Let us now see how the 3D microstructure can be modeled as a random graph G =
(V, E') and reconstructed by use of MCMC simulation. A random graph consists of a set
V ={wv1,...,un} of nodes (vertices) and a set E of undirected edges between nodes. An
edge between two nodes u and v is denoted (u,v). In our MCMC modelling of the gel-
strand network we let nodes in the graph be either branching points or bending points.
An edge (u,v) € E if and only if there is a direct connection (that is a branch) between
the nodes v and v.

Define a probability measure for the random graph G = (V, E') by use of a real-valued
energy function f(g) such that the probability density at G = g is

1
w(g) = 7,° J), (13.8)

where Z¢ is a normalizing constant ensuring that the probability density m(g) integrates
to one. The chosen energy function is a sum of three components,

f(g) = filg) + f2(g) + f3(9), (13.9)

corresponding to lengths of edges, number of edges at nodes and angles between edges at
nodes, respectively.

The first energy component is

fl(g) = Z(duv - d0)27 (1310)

u~v

where u and v are nodes of g, d,, is the distance between them and u ~ v means that there
is an edge between v and v. The target distance dj is essentially the mean branch length
(in pixels) from the micrographs multiplied with a factor 4/7 to compensate for going
from two to three dimensions, compare (13.2). The constant ¢; weighs the importance
to the energy of the edge length component.

The second energy component corresponds to the number edges connected to nodes.
In the micrographs almost all intersection points have three connected edges, but since
bending points that have only two edges are also included, the target number ny of
connections will be somewhat less than three (about 2.7). An energy component taking

this into account is
f2(g) = 2> _(ny —mo)?, (13.11)

v

where we sum over all nodes v of g and n, is the number of edges at v.

The third energy component, is
falg) =3 (o — ), (13.12)

where we sum over all nodes v of g and over all angles «,,, less than 7 radians, between
edges connected to v. With three edges at a node we expect by symmetry angles around
120° degrees, but for nodes with two edges we expect somewhat larger angles.
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In the reconstruction of the gel network a sequence of graphs, G, = (V,,, E,),n =
0,1,...,nmax, is updated with a Metropolis algorithm, compare Section 4.7. The updat-
ing from G, to G, 1 is performed with two types of steps. In the first type of steps we
add or remove an edge to E,, (or leave E,, unchanged). In the second type we move one
of the nodes of V,, a random distance (or leave V,, unchanged). The number N of nodes
in V,, is kept constant. The two types of steps are performed as follows.

Type 1 step. Pick a random pair {u,v} of nodes. If (u,v) € E, we first remove it.
To obtain E, i either add (u,v) or leave the set of edges unchanged according to the
conditional 7 distribution given V,, and all other edges of F,,.

Type 2 step. Pick a node v € V,, and sample a random movement of the position of
the node v. The random movement AR is sampled from a uniform distribution in a 3D
sphere with radius 2 pixels. Consider the conditional 7 distribution given all other nodes
of V,, and the set of edges F, .1, and choose according to this distribution V,,; either
equal to V,, or equal to V,, with the chosen node moved by AR.

For further details of the MCMC simulation, including choice of the weights (cy, ¢s, ¢3)
and the target values (dg, ng, ap) in the energy function, the reader is referred to (Nisslert
et al., 2007). As always in this type of simulations a large number of updates is needed.

Let us now show some results obtained from the image analysis. In Figure 13.6 we see
distributions of branch lengths, of angles between branches and of gel-strand thickness.
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Figure 13.6: Left: Distribution of branch lengths (in nm) between nodes, one pixel
corresponds to 1.66 nm. Middle: Distribution of angles (in degrees) between branches at
nodes. Right: Distribution of gels strand thickness (gel-strand radius in nm).

The slice thickness of the section, from which the micrographs are projections, was
estimated by use of (13.7). The total projected length was obtained as the sum of all
branch lengths, and the total number of crossings was obtained as the total number of end
points in the skeleton (excluding end points at borders). From six images this resulted
in a thickness estimate of 90.6 nm with a standard error of 3.5 nm. A minor reduction of
the thickness estimate was used, for details see (Nisslert et al., 2007), where it was also
concluded that uranium and lead had penetrated most of the slice.

Let us now briefly look at the results from the MCMC simulations which were per-
formed in an approximately 800x800x800 nm cubic box with periodic boundary con-
ditions. With a gel slice thickness of 90 nm, the node intensity per volume unit was
found, corresponding to N = 1604 in the cubic box and this N value was used in the
simulations. To achieve approximate stationarity in the MCMC simulations 200 hundred
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iterations were used. In each of these iterations first 10000 iterations were performed
with connections between nodes created or removed (see Type 1 step above), and then
10000 iterations were performed with movement of nodes (see Type 2 step above). For
further details of the MCMC simulations, see (Nisslert et al., 2007). After obtaining the
skeleton, the branches were thickened to obtain a volume percent of 4%. A result with a
3D rendering of the simulated gel network is shown in Figure 13.7.

Figure 13.7: Screen shot of a 3D rendering of a simulated gel network with constant
gel-strand radius of 9.2 nm, in a cube with 500 pixels side corresponding to 830 nm.

To evaluate the image processing algoritms and the MCMC simulation algorithms we
compare in Figure 13.8 a micrograph with computed skeleton (red) to the left with a
simulated "micrograph” also with a computed skeleton (red) to the right. Visually the
left and right part look rather similar.

Finally, in Figure 13.9 we show (in black) the projection of an actual simulated 3D
skeleton and (in red) the corresponding skeleton obtained from image processing. The
skeletons look quite similar, indicating that the image processing actually succeeds in
creating a skeleton representation from the micrographs.

13.1.1 Exercise

Exercise 13.1. Consider the approximately linear curve segment AC' in Figure 13.5. Show
that if the curve segment is randomly rotated in 3D the angle o has probability density
given by (13.1).
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Figure 13.8: Left: Part of a micrograph, 500x500 pixels, with corresponding skeleton
marked in red. Right: Simulated "micrograph”, 500x500 pixels, with corresponding skele-
ton marked in red.

Figure 13.9: Projection of the actual simulated 3D skeleton (displayed in black), size
500x500 pixels, compared with the corresponding skeleton obtained from the image pro-
cessing (displayed in red).
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13.2 Structural characterization from scanning trans-
mission electron micrographs

In (Nordin et al., 2014) material characterization from high angle annular dark field
scanning transmission electron micrograph (HAADF-STEM) images is studied by use of
maximum likelihood methods. The upper left part of Figure 13.10 shows the intensity
response in 2D from a model material consisting of 20nm silica particles that have ag-
gregated to form a stable particle gel. The approximately square image is obtained by
scanning a gel slice of thickness about 90 nm. The mass thickness a(x,y) of the silica at
a 2D position (z,y) can be written as fraction of the total sample thickness

1 Zmax
Oé(.ﬁ(]’y) = / pS('ruyaz) dZ, (1313)
0

Zmax

where pg(z,y, z) denotes the silica density (depending on whether there is a silica particle
at the point (z,y,z) or not). A simple model for the observed intensity I(x,y) is

I(z,y) = b+ cg(a(z,y)) + ez, y), (13.14)
where b and ¢ are constants, g is a power function
g(a) = a”, (13.15)

and the noise €(z,y) is supposed to be N (0, 0?) and independent for different pixels (x,y).

Let us give a maximum likelhood function for an image such as the one shown in the
upper left part of Figure 13.10. Suppose that in the corresponding 3D rectangular box,
compare Figure 12.3, there are N silica particles with 3D centres xy,...,xy. Then the
following log-likelihood function corresponds to the model (13.14)

() = ~1M|tog (V3r0) — oty 3" Unfw.y) ~b—eglale )P, (1316

(z,y)eM

where M is the set of pixels, | M| is the number of elements in M and the parameter vector
is 0 = (b,c, B, N,xq,...,Xy). A complication in finding maximum likelihood estimates is
the large number particles, see Figure 13.10, but it can be done (at least approximately),
for instance by use of simulated annealing, compare (Nordin et al., 2014).

The maximum likelihood estimate of the power parameter § in (13.15) was B = 0.69,
which gave a considerably better fit compared to the linear response with 8 = 1 as shown
in Figure 13.11. The models with 8 = 1 and a general 3 are nested and the hypothesis
£ =1 can be tested for instance by use of repeated images. In the present case there was
only one image available. To obtain approximately independent repetitions the image
was divided into 16 subimages of equal size by three vertical and three horizontal lines.
With the corresponding 16 estimates of 3 a t-test showed rejection of the null hypothesis
Hy : 8 =1 with a p-value much less than 0.001.

As a check of the model (13.14) histograms of the pixel intensity in the observed
and estimated micrograph images are shown in Figure 13.12. In general there is a good
agreement between the observed and the estimated image intensities. However, the his-
tograms indicate that a feature not taken into account of the model is that the edges of
the observed spheres are somewhat blurry.
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Figure 13.10: Upper left: Micrograph intensity image Io(z,y) of a 90 nm slice of 5
wt% aggregated nano silica obtained with HAADF-STEM. Upper right: Regenerated
micrograph image I(x,y) obtained by maximizing the log-likelihood function (13.16).
Lower left: Residual image I(x,y)—Iy(z,y) of the original micrograph and the regenerated
micrograph. Lower right: Blow-up of the top left cluster in the residual image.

160



0.6

0.4 1

I(ex)

0.2 1

Figure 13.11: The intensity response I versus mass thickness « of silica as estimated by
maximizing the likelihood function (13.16). The micrographs are STEM projections of
90 nm thick microtomed sample sections, where the individual silica spheres are 20 nm
in diameter, compare Figure 13.10. One single sphere corresponds to o = 0.22. The blue
line shows the estimate with the estimated power 5 = 0.69 in (13.15), while the black

line corresponds to # = 1. The error bars show the estimated standard deviation of the
background noise.
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Figure 13.12: Histogram of the pixel intensity for the observed micrograph (blue) and
the estimated micrograph intensity (black). The estimated background noise is also
shown (red). Note that the observed micrograph image is blurry at the edges of the
spheres, compare the lower right part of Figure 13.10. This is not taken into account in

the model, which can explain why the estimated intensity shows an underestimate just
between I = 0.1 and 0.2.
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13.2.1 Exercises

FEzercise 13.2. Verify that (13.16) gives the log-likelihood corresponding to the model
(13.14).

FEzxercise 13.3. How well can the coordinates of the 3D centre positions xi,...,Xxy be
estimated?

FExercise 15.4. Try to count approximately the number of particles in the left and the
right upper parts of Figure 13.10.

Exercise 13.5. Try to count approximately the number of overlapping particles in the left
and the right upper parts of Figure 13.10.
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Chapter 14

Appendix. Mathematical,
computational and statistical
background

Below you can find condensed descriptions of concepts and methods used in this book.
If you have a basic knowledge of some area these descriptions can serve as a repetition,
but if some concepts are new to you, you presumably need to go to textbooks for more
complete information. Nowadays quite useful information can also be obtained from the
internet, for example from the Wikipedia pages.

14.1 Some matrix algebra

A matrix with m rows and n columns, or briefly a matrix of type m x n, is a rectangular
array
ayi1 -+ Ainp
(14.1)

Am,1 °° Amn

of numbers a; j, sometimes written a;;, called matrix elements. If the type is understood
we can write A = [a; j]. Row and column vectors are thin matrices with m = 1 and n = 1,
respectively. If m = n = 1 the matrix is just a number. A square matrix has m = n.

Let A be an m x n matrix. The transpose AT of A is an n X m matrix obtained by
making rows in A into columns, that is the (4, j) element in AT is the (j,4) element in A.
A matrix is symmetric if it equal to its transpose.

Matrices of the same type can be added by element-wise addition. If A and B are
matrices of types m x n and n x k, respectively, the product C' = AB is a matrix type
m x k with elements ¢;; = > _a;,b.;. A square n x n matrix A is called invertible (or
non-singular) if there exists an inverse denoted A~! such that

AAT =ATA=1T (14.2)

163



where [ is the unit n x n matrix with diagonal elements 7; ; = 1 and off-diagonal elements
ik =05 # k.

Let us now define recursively the determinant det A of a square n x n matrix A = [a; ;].
For n = 1 we define det A = a for the matrix A = [a]. Suppose that we have defined
determinants for matrices of type (n — 1) x (n — 1) and let A be a matrix of type n x n.
Let the minor A;; be the determinant of the matrix obtained from A by deleting row
number ¢ and column number j. Then we put

det A = Z(_l)lJrja/l,jAl’j. (143)
j=1

One can show that a square matrix A is non-singular if and only if det A # 0.

Let A be a square matrix. We say that a real number ) is an eigenvalue of A and that
a column vector x is an eigenvector of a if

Az = M. (14.4)

A symmetric real n x n matrix A is said to be positive-definite or positive-semidefinite
if 27 Ax > 0 or 27 Az > 0, respectively, for each non-zero n-dimensional column vector
. One can show that a symmetric matrix is positive-definite or positive-semidefinite if
all its eigenvalues are positive or nonnegative, respectively. Further, a positive definite
matrix is invertible.

Exercises

c d

a b
c d

a linear equation system with four unknowns.

Ezercise 14.1. Let A = {a b}. Determine det A by use of (14.3).

FEzxercise 14.2. Let A = with ad — bc # 0. Determine the inverse of A by solving

14.2 Optimization of a real funtion

Let us first consider Newton’s method for optimization of a twice continuously differen-
tiable real-valued function f(z) of a real variable x. Suppose that f has a maximum or
minumum at z*. Then f’(2*) = 0. Newton’s iterative method for locating x* is to put

_ (=)
pRHL — ok e

Assuming that f”(z*) # 0 and that we start close enough to z* one can show that 2% — z*
as k — oo.

(14.5)

Let us now consider Newton’s method for optimization of a twice continuously dif-
ferentiable real-valued function f(x) of an n-dimensional column vector x. As above we
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suppose that f has a maximum or minumum at z*. Let V f(x) denote the (column)
gradient vector

of  Of \r
\Y =|—... 14.6
f@ =12 2L (146)
and let H f(x) denote the Hessian matrix
>’f f
0x10z1 T 0x10xn
Hf(z)=| : (14.7)
>f >f
Orndzr1 " Orndzn

Newton’s iterative method for locating x* is to put
oM =ak — (Hf(2") 'V () (14.8)

Assuming that H f(z*) is positive-definite and thus invertible, and that we start close
enough to z* one can show that 2% — 2* as k — oo.

Newton’s method is quite efficient but has drawbacks. Computation of derivatives can
require a lot of programming. One may use finite differences to compute approximate
derivatives but that then it requires extra programming to find suitable step lengths.
Often it is more efficient to use so called quasi-Newton methods where the Hessian is
automatically estimated from successively computed gradient vectors, see for instance
(Press et al., 2007). In MATLAB the FMINUNC function uses a quasi-Newton metod for
minimization.

The Newton and quasi-Newton methods typically work quite well if you start close
to the optimum. A much slower but quite robust optimizer, which does not require
computation of any derivates, is the simplex method of (Nelder & Mead, 1965) which is
available in MATLAB as the function NELDER__MEAD. A good strategy in applications
can often be to begin with the simplex metod to get an overview and suitable starting
values and then to use a quasi-Newton method.

14.3 Discrete probability distributions

Discrete distributions for a random variable X are characterized by the probability func-
tion Pr(X = z), z € V, where V is the finite or countable set of values that X can
take. For a real-valued discrete random variable the expectation u, standard deviation
o and variance o? are defined by p = E(X) = Y 2Pr(X = z) and ¢* = var(X) =
S, (0 — ) Pr(X = a).

A random variable X is said to be Poisson distributed with parameter \ if

n

A
Pr(X =n) = — exp(—\), n=0,1,..., (14.9)
n!

and for such a variable both the expectation and the variance are equal to .

A random variable X is said to be binomial (n,p) if

Pr(X =k) = ( 'Z ) PPA—p)"F, k=0,....n, (14.10)

and for such a variable the expectation is np and the variance is np(1 — p).
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14.4 Continuous probability distributions

Continuous distributions for a real-valued random variable X are characterized by the
probability density

flz) = %Pr(X <zx), reR, (14.11)

where R = (—o00,00) is the set of real numbers. For a continuous random variable
the expectation p, standard deviation o and variance o? are defined by p = E(X) =
Jezf(z)dz and 02 = var(X) = [p(x — p)?f(z)dz.
A random variable X is said to have a uniform distribution on the interval (a, b) if the
probability density is
flz)=1/(b—a), a<z <D, (14.12)

and f(x) =0 for x < a and = > b, and for such a variable the expectation is (a + b)/2
and the variance is (b — a)?/12.

A random variable X is said to have an exponential distribution with parameter [ if
the probability density is
f(z) = Bexp(—pBz), = >0, (14.13)
and f(z) = 0 for x < 0, and for such a variable the expectation is 1/ and the variance
is 1/32.
A random variable X is said to be normal(u,0?), or briefly X ~ N(u,0?) if the prob-

ability density is
1

2ro

f(z) = exp(—(z — p)?/0?), = €R, (14.14)

and for such a variable the expectation is y and the variance is 0.

14.5 Multivariate probability distributions

Let X1,..., X4 be real-valued random variables. Then X = [X; ... X ] is a d-dimensional
random (column) vector. The expectation of a random vector (or a random matrix) is de-
fined componentwise. Thus the expectation vector y = px = E(X) of a random column
vector X is the column vector with components u; = E(X;),i =1,...,d. The covariance
matrix C' = Cxy = C(X) of X is the symmetric d x d matrix

E(Xy —p)(Xy =) -+ E(Xy — ) (Xa — pa)
C=EX - p)(X —p)' = : :
E(Xq— pa)(Xy —pa) -+ E(Xa— pa)(Xa — pa)
(14.15)

The (7, j)-element of the covariance matrix of X is the covariance cov(X;, X;) = E(X,; —
i) (X; — pj) of the ith and jth components of X, which for ¢ = j is the variance of X;.

The d-dimensional vector X has a d-dimensional probability density f = fx if
Pr(X € A) = / f(z)dz (14.16)
A
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for subsets A of d-dimensional space R? for which the integral in (14.16) is well-defined.

Let p be a d-dimensional column vector and let C be a positive-definite d x d matrix.
The d-dimensional random vector X is said to be normal(u,C) or briefly X ~ N(u,C) if
X has the d-dimensional density function

1

(2m)4/2(det C
where det C' denotes the determinant of the matrix C'. One can show that then X has
expectation vector p and covariance matrix C'.

fx(z) =

173 eXP(—%(fc —w)"C (x — ), (14.17)

An important special case is the two-dimensional normal distribution. Regard X =
[X1 X,]T. Let p; and o2 denote the expectation and variance of X;, i = 1,2, and let
p = cov(Xy, Xs5)/(0109) denote the correlation between the two components of X. Thus
the covariance matrix of X is

0'2 J10
_ [pallaz po—lg 2] . (14.18)

One can then show that the two-dimensional density funcion of X is
1 1

fz) = S —- eXp{—mQ@hm)} (14.19)
where
Qo ) = D)ty 2y (2] (14.20)

14.6 Principal components, t-SNE

Suppose that we have a d-dimensional random vector X with covariance matrix C'. Prin-
cipal components can be used to transform the random vector. Define the first principal
component

Vi =l X, (14.21)

where ¢ is a d-dimensional column vector, determined by the condition that var(Y;) =
cI'Cey is maximal subject to the restriction c¢f'c; = 1. Generally we define the ith principal
component, 1 <1 < d as

Y; =cl' X, (14.22)

where ¢; is a d-dimensional column vector, determined by the condition that var(Y;) =
¢; Cc; is maximal subject to the restrictions ¢/ ¢; = 1 and ¢f C¢; = 0 for 1 < j <i. The
first two or three principle components are sometimes useful to visualize the distribution

of X.

Principle components are often attributed to (Hotelling, 1933) although they are closely
related to singular value decomposition which has a much older history. A recent quite
effective machine-learning-inspired technique due to (van der Maaten & Hinton, 2008)
for visualizing multidimensional distributions in two or sometimes three dimensions is
t-SNE. The method is used in Figure 2.7, and a concise description of the method is
given in (Longfils, 2018).
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14.7 Random, Gaussian and Markov processes on the
real line

A random process or stochastic process X on the real line consists a set of random
variables X = (X}) indexed by time t € T, where T is a subset of the real line R. We
suppose here that T is either a set of consecutive integers or an interval and then we
talk about a discrete time or continuous time random process, respectively. The set V' of
values that X; can take we call the state space. A real-valued process has the real line or
a subset of it as state space. A real-valued random process may be characterized by its
mean value function,

and its covariance function

C(s,t) = E(Xs — mg)(Xy — my). (14.24)
A random process is said to be normal or Gaussian if (X;,, ..., X;, ) has an n-dimensional
normal distribution for any choice of time points ¢, ..., t,. One can show that a Gaussian

process is fully specified by its mean value and covariance functions.

A random process (X;) is said to be stationary if its distribution is invariant under a
translation 7, more precisely if for each choice of n > 1 and (¢4, ...,t,) the distribution
of the n-dimensional random vector (X¢,4,..., Xy, +-) does not depend on 7. Consider
the mean value and covariance functions of a stationary process. The mean value is a
constant m = EX; and the covariance function can be written as C(s,t) = o?p(t — s)
where the variance 02 = C(¢,t) and p(t) is the correlation function.

We say that (X;,t € T') is a Markov process if the conditional distribution of X at a
future time given the history up to time ¢ only depends on the value of X at the current
time ¢, more precisely if

Pr(X, € AlX,,s <t)=Pr(X, € A|Xy), t<T. (14.25)

A discrete time Markov process with finite state space V, for notational simplicity here
denoted V = {1,...v}, is determined by its transition probability matrix P which is the
(v x v) matrix with elements

pij = Pr(Xp1 = j| Xy =14), 1<i,j<w. (14.26)

A zero-mean autoregressive process (X;) of order p is recursively generated from

p
Xi =) a;Xii+e, (14.27)

i=1

where ¢; are independent and identically distributed random variables with zero mean
and finite variance o2. Often ¢, is assumed to be normally distributed. Then X, is also
normally distributed, provided that starting values have a (multivariate) normal distri-
bution. An autoregressive process of order p = 1 is a Markov process. An autogressive
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process of order one is stationary if |a;| < 1 and the starting value in (14.27) is suitably
chosen.

An example of a continuous time Markov process is the Poisson process with intensity

A which is characterized by the fact that the increment X, — X, is Poisson distributed
with expecation

E(X; — X,)=At—ys), s<t, (14.28)

and the increments over disjoint time intervals are independent.

Suppose that points are randomly placed on the real line such that

(i) the number of points in disjoint intervals are independent,

(ii) the probability that two points are placed in an interval of length h tends to
zero faster than the probability that one point is placed in the same interval when
h—0,

(iii) the distribution of the number of points in an interval depends only on the
length of the interval and not on where it is placed.

One can then show that if X; denotes the number of points in the interval (0,¢), then
(X, t > 0) is Poisson process with intensity A equal to the expected number of points in
an interval of unit length. For an arbitrary time ¢ let further W denote the waiting time
for the first point after £. One can then show that W has an exponential distribution
with parameter \.

Another example of a continuous time Markov process is the Brownian motion or
Wiener process on the interval [0,00) characterized by having independent increments
over disjoint time intervals and that X; is normal(0, o%t) for ¢ > 0.

A third example of a continuous time Markov process is the Ornstein-Uhlenbeck pro-
cess, which is Gaussian process with mean zero and correlation function

p(t) = exp(—At) (14.29)

for some positive constant .

14.8 Estimation of parameters. Likelihood and least
squares

Suppose that we observe a random variable or vector X with a distribution that depends
on a parameter § that may be a vector. Let §# = #(X) be an estimate of . We say that
0 is an unbiased estimate of 6 if

~

E(6) = 6. (14.30)

Typically we observe a sample of a random variable which means that we have a sequence
of independent and identically distributed random variables. We say that 6 is a consistent
estimate of 6 if for an arbitrary € > 0

Pr(]0 — 6] > €) — 0 (14.31)
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as the number n of observations goes to infinity. One can for instance show that 6 is a
consistent estimate of 6 if E(]§ — 0|*) — 0 as n — oc.

Let X be a discrete or continuous random vector that we observe and that has a
probability distribution depending on 6. If X is discrete we put f(x,0) = Pr(X = x)
and if X is continuous f(z,6) denotes the probability density of X. The likelihood value
corresponding to an observed value x of X is written

L(6) = L(0]z) = f(x,0). (14.32)

In particular, if we have a sample X = (Xi,...,X,,) of a random variable assumed to
be either discrete with probability function Pr(X; = z;) = f(x;,0) or continuous with
probability density f(z;,#) the corresponding likelihood function is

n

L(0) = L(0]x) = [ | f(x:,0), (14.33)

i=1

where x = (x1,...,z,).

A maximum likelihood estimate 6 of 6 is a value that maximizes the likelihood function.
In practice it is often more convenient to maximize the log-likelihood function

0(6) = log(L(6)). (14.34)

where log (as always in this book) denotes the natural logarithm.

As an example, suppose that X = (X7, ..., X,,) is a sample of a variable that is Poisson
distributed with parameter A, that is X, ..., X,, are independent and identically Poisson
distributed. The log-likelihood function is

() =log(] ] }' exp(—A)) = ¢ — nA + log(\) Z X, (14.35)

=1

where ¢ does not depend on A and thus can be disregarded during the maximization. One
finds that the maximum likelihood estimate of X is

1<
A=-) X, 14.36
- ;1 ( )

which one can show is a both unbiased and consistent estimate of \. (In the computations
in this example we have used the notation X; rather than x; which is often convenient.)

A useful complement to the maximum likelihood method to estimate parameters is
the least squares method which, when applicable, is often easier to use. Suppose that
Xy ..., X, are independent random variables with the same variance and with an ex-
pection that depends on a parameter . The least squares estimate 0 is obtained by
minimizing

n
Q) = > (Xi — E(X;))*. (14.37)

i=1
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Let us again consider a sample (Xi,...,X,) of a random variable that is Poisson
distributed with parameter A. The sum of squares (14.37) now becomes

n

Q) =) (Xi =), (14.38)

i=1

which is minimized for A = X in (14.36). Thus the least squares and the maximum
likelihood estimates coincide in this example.

14.9 Linear and logistic regression

Let us first consider linear regression with one explaining real variable x. Suppose that

we observe
Yi=a+ Bz +e, i=1,...n, (14.39)

with independent zero-mean random errors ¢;, 2 = 1, ..., n, with identical variances. The
least squares estimates & and 3 are obtained by minimizing

n

Qla, B) =Y (Vi — a — By)’, (14.40)
i=1
which gives -
SV _ f= 5 i (Yi—Y) (i — )
a=Y —p7, B = L N ’ (14.41)

where T = (1/n) >, z; and Y = (1/n) .. Y;.

Let us now consider multiple linear regression with m explaining variables. We assume
that we have observations

Y, =Pz + ...+ Bnim + 6, 1=1,...1, (14.42)

with independent zero-mean random errors ¢;, ¢ = 1,...,n, with identical variances. We
can write our observations on vector-matrix form as

Y = X3 +e¢, (14.43)
where
Y, ZT11 0 Tim 51 €1
Y=1:|, X=1|: P, B= |, e=0 . (14.44)
Yn Tn1 ' Tnm Bm €n

It turns out that the least squares estimate of the parameter vector 3 is
B=(XTX)"'xTy, (14.45)
provided that the matrix X7 X is invertible.
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Let us now consider logistic regression where we observe independent variables Y7, ..., Y,
taking values 0 or 1. We suppose that the probability p; = Pr(Y; = 1) =1 — Pr(Y; = 0)
depends on m explaining variables such that

Di

log(;=—) = Bizia + - & Bntim, i =1,...1. (14.46)
— Di
To estimate the parameters 31, ..., 5, we can maximize the likelihood function

L(Brs- - Bm) = [ [0 (1 = p)' 7). (14.47)

i=1

There is no analytical expression for the maximum likelihood estimates so to maximize
(14.47) one may use computational optimization methods such as those describe in Sec-
tion 14.2 and then it is typically more convenient to maximize the log-likelihood function.

14.10 Confidence intervals and tests, observations from
a normal distribution, the t- and chi-square dis-
tributions

Let X denote observations from a distribution depending on a real-valued parameter

6. We say that the interval (L(X),U(X)) is a confidence interval for § with confidence

degree p if
Pr(L(X) <0 <U(X))=np. (14.48)

Let X = (Xi,...,X,) be a sample from a normal(u,o?) distribution. Then

N, 1 —
X==-) X, and s*= X, — X)? 14.49
- 2; — ;( ) (14.49)
are unbiased and consistent estimates of  and o2, respectively. To compute confidence
intervals for 1 and o2 we introduce the chi-square and t-distributions.

A random variable is said to be chi-square distributed with r degrees of freedom if it
has the same distribution as

X=> 7z, (14.50)
i=1
where Z,...,Z, are independent and normal(0, 1). Let us note that a variable that is

chi-square distributed with r degrees of freedom has expectation r. A random variable is
said to be t-distributed with r degrees of freedom if it has the same distribution as

A
VX3

where Z and y? are independent and distributed normal(0, 1) and chi-squared with r
degrees of freedom, respectively.

t =

(14.51)
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Let us define quantiles for random variables with a continuous distribution function
F(z) = Pr(X < z). A pth quantile =, corresponding to such a distribution satisfies
F(x,) = p. Let X?; denote the pth quantile of a chi-square distribution with n — 1 degrees
of freedom. For s* defined by (14.49) one can then show that

Pr(xti_pys < (n—1)s*/0% < Xiipys) =P (14.52)
which gives a confidence interval for 02 with confidence degree p,

(n—1)s? C ot (n—1)s?
2

Pr( 5
X(14p)/2 X(1-p)/2

) =p. (14.53)

Similarly we let ¢, denote the pth quantile of a ¢t-distribution with n—1 degrees of freedom.
Then

Pr(X — ta—py2 $/Vn < pu <X +ta_p s/vV/n)=p, (14.54)
which gives a confidence interval for p with confidence degree p.

Let us also briefly describe one type of test of an hypothesis Hy : 8 = 6,. Suppose
that we have a test variable T' = T'(X) tending to take large values when the hypothesis
Hj is not true and that we for our observations obtain an observed value T, of T'. The
strategy can then be to reject the hypothesis Hj if the probability under H to obtain a
T-value at least as large as the observed value is small enough. More precisely we reject
H, if the p-value

p = Pro(T > Tops) (14.55)

is small enough. Here Pry denotes a probability evaluated under the probability distri-
bution corresponding to H,.

As an example let us suppose that we have a random sample (Xi,...,X,,) from a
N(u,o0?) distribution and that we want to test the hypothesis Hy : yu = o with the
alternative hypothesis that p is either larger or smaller than jio. Let X and s? be defined
as in (14.49) and put

X — 1o
tobs = ——F—- 14.56
b 8/\/5 ( )
The corresponding p-value is then
b= P(|t‘ > ‘tobs‘) (1457)

evaluated with the assumption that ¢ is t-distributed with n — 1 degrees of freedom.

14.11 The F-distribution, analysis of variance

A random variable is F-distributed with (rq,72) degrees of freedom if it has the same
distribution as )
Xi/m1

F = ,
X%/T2

(14.58)
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where x? and 2 are independent chi-square distributed variables with r; and r, degrees of
freedom, respectively. The F-distribution can be used to compare two variance estimates
and in analysis of variance (ANOVA) models. Let us consider a simple ANOVA model.

Assume that X;;,7 = 1,...,m, j = 1,...,n; are independent normal variables with
identical variance o2 and expectations

E(Xy) =i, i=1,....m, j=1...,n. (14.59)
To test the hypothesis Hy: p1 = ... = u,, we can use the test variable

o i =X/ (m—1)
doim 2 (X = Xi )2 ) (2 = 1))
where X; = (1/n;) >; Xij and X. = > Xij)/(32;ni). It turns out that under Hy

the test variable F' in (14.60) is F-distributed with (m —1,),(n; —1))degrees of freedom
and we reject the hypothesis Hy if F is large enough.

(14.60)

14.12 Approximate statistical methods, bootstrap

In the previous sections we have seen how confidence intervals with exact confidence
degree and exact p-values for tests can be computed for simple models with normal
random variables. Otherwise such exact statistical inference is typically not possible.
However, for large samples good approximate methods are often available. Let us give
some examples of how such approximate methods can look.

Suppose that we have a sample X = (Xi,...,X,,) of a random variables with log-
likelihood ¢(0), see (14.34), depending on a parameter vector § = (6q,...,0;). Under
suitable regularity conditions, see for instance (Pawitan, 2001), one can then show that
for large n the maximum likelihood estimate 6 has an approximate d-dimensional normal

distribution, which we write
A1

0% N©6,Z0) ). (14.61)
Here Z(0) is the Fisher information matrix with matrix elements

62

7,;(0) = —W€(9)|e:é
10U

(14.62)

~

and we suppose that Z(6) is invertible. From this we can compute confidence intervals
with approximate p-values for the components of # and more generally for linear com-
binations of these components. Let us note that the Fisher information matrix is the
Hessian (see Section 14.2) of the log-likelihood function and as discussed in Section 14.2
the Hessian can be obtained by use of quasi-Newton optimization methods.

Let us now consider two hypotheses Hy and H;, which are nested in such a way that
H, is obtained from H; by imposing r linear restrictions on the parameters, for instance
by putting r parameters equal to zero. Let ¢(6y) and £(6;) denote the log-likelihoods
corresponding to the maximum likelihood estimates obtained under Hy and H;. Put

~ ~

X2 =2(0(6,) — £(6y)). (14.63)
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We note that as £(6;) is obtained as a maximum under fewer restrictions than ¢(6y) it
follows that £(6;) > £(f). One can show that under the hypothesis Hy the variable y?
in (14.63) is approximately chi-square distributed with r degrees of freedom for large
samples. We can reject the hypothesis Hy if the observed y2-value is large enough, that
is if the corresponding p-value

p=Pr(x* = x3) (14.64)
evaluated for a chi-square distribution with r degrees of freedom is small enough.

One method for obtaining approximate inference that has been much used since its
introduction 1979 is the bootstrap which is based on resampling from observed distribu-
tions in such a way that confidence intervals and test variables can be computed, see for
instance (Efron & Tibshirani, 1993).

14.13 Random numbers, simulation

An important method to study random systems is to use simulation and this requires gen-
eration of random numbers, or more precisely pseudo-random numbers, with computers.
A basic random number generator is the linear congruential generator

Xni1 = (aX, +b) modm (14.65)

with suitable integers a, b and m and a starting value X, called seed. This generates a
sequence with approximately independent random number equidistributed on the set of
integers {0, 1,...,m — 1}. This type of generators with some variations are used as basic
random generators in computer languges such as for MATLAB. Putting U, = X,,/m
gives a sequence of random numbers with an approximate uniform distribution on the
unit interval [0, 1].

Suppose now that we have a random number U with a uniform distribution on the

interval (0,1) and that we want a random number X with a given distribution function
F(z) = Pr(X < z). This can be obtained by putting

X =FYU), (14.66)

where F'~! denotes the inverse of F. Putting

X = _% log(1 — U) (14.67)

gives for instance a random variable that is exponentially distributed with parameter f3.

Sometimes one wants a random variable X = (X3, X3) with a uniform distribution on
a bounded two-dimensional set A. One can then use rejection sampling by first finding a
rectangle Ry = {(x1,x2) : a1 < x1 < by, a9 < x9 < by} containing A as a subset. Generate
then two independent random numbers U; and U, with uniform distributions on the unit
interval. Put X = (a1 + (by — a1)Uy, a9 + (be — ag)Us). If X € A accept X, otherwise
reject X and repeat the procedure until we get a point in A.
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14.14 Bayesian inference, Markov chain Monte Carlo

In Bayesian inference we have in addition to a model describing the distribution of ob-
servations X given the parameter # also a random distribution for 6 called the prior
distribution. After obtaining observations of X the distribution of € is modified to the
posterior distribution. Let us show how this goes when both # and X are discrete vari-
ables, the formulas when one or both of these variables have continuous distributions
being similar. We let m; denote the prior probability, m; = Pr(6 = 6;).

From the definition of conditional probabilities for events A and B we have Pr(A|B) =
Pr(AN B)/Pr(B). This gives the posterior distribution for # when we observe X = z as
Pr(X = z|0;)m; Pr(X = z|0;)m;
Pr(d =6;|X =x) = = :

Pr(X =2) > Pr(X = |0;)m;

(14.68)

In Bayesian analysis of noisy observations of complicated high-dimensional objects
such as images it is not easy to evaluate or sample from the posterior distribution. One
general method that has ben much used in recent years is Markov chain Monte Carlo,
abbreviated MCMC. Here you construct a Markov chain which has the distribution of
interest as its stationary distribution. Useful algorithms for constructing and analyzing
such Markov chains are the Gibbs sampler and the Metropolis algorithm, see Section 4.7
in this book for a brief summary and (Gilks et al., 1996) for more details.

14.15 Prediction, Kalman filtering

Let us look at prediction and filtering by use of Kalman filters. We let the d-dimensional
column vector X;,t = 0,1,..., denote the state of a system at time ¢. Assume that
XQ ~ N(,uo, PQ) and that

Xt :Ftthl +Wt7 t: 172,..., (1469)

where F} is a d x d matrix. Suppose that the dynamic d-dimensional noise vectors
W, ~ N(0,Q;) are independent mutually and of the initial state X,. Assume further
that we observe the r-dimensional vectors

Y, = HX, +V,, t=1,2,..., (14.70)

where H, is a r X d matrix and the measurement noise vectors V; ~ N (0, R;) are inde-
pendent mutually and of (W;) and the initial state Xy. Let Yi;, = (Y1,...,Y;) denote
the accumulated observations up to time t. We are interested in computing the optimal
estimate of X; given observations up to time ¢. It turns out that given Y7., the conditional
distribution of X; is normal with expectation

Xt\t = E(Xt|Y1:t) (14.71)

and covariance matrix P,;. We will give a recursive algorithm for computing Xy, and P,
which also gives the conditional expectation and covariance matrix X;;_; and P;_; for

176



prediction of X; from observations Y., 1 up to time ¢ — 1. The algorithm consists of the
following six equations in going from Xt 1jt—1 and P_q;—1 to Xt‘t and P,

Xt\t—1 = FtXt—Ht—la (14.72)

Pyi-1 = B Py 1 F + Qu, (14.73)

Sy = H Py H + Ry, (14.74)
K= Py H'S ", (14.75)

Xip = Xye1 + Ki(Yy — Hi Xp0), (14.76)
Py = (I — KHy) Py, (14.77)

where I denotes the unit d x d-matrix.

Consider as an example motion of an object with centre at (x¢,y;) and velocity (&, 9;)
with a sampling interval At and observation of the position but not the velocity. We can
then put

e o1 0 At ~[tooo
&_i%’ﬂ_oo 1 0 ’m_o1oo (14.78)
Uy 00 0 1
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