Spatial statistics and image analysis. Lecture 10

Mats Rudemo

May 5, 2020

Todays lecture will cover:

Tracking diffusing particles

FRAP (Fluorescence Recovery After Photobleaching)
Estimation of particle concentration from single particle tracking

Estimation of particle concentration from particle count time
series



Tracking a single diffusing particle

Let X, denote the position at time :At, ¢ = 0,1,..., K, of a
diffusing particle in d-dimensional space, where d = 1, 2 or 3,

X, = X,_1+ AG,, (1)

where AG; are independent d-dimensional normal vectors with
a mean vector with all components zero and a covariance matrix

C(AG,) = 2DALI, 2)

where D is the diffusion coefficient and [ is the d-dimensional
unit matrix.

In each dimension the diffusing particle has a normally distributed
increment with mean zero and variance 2D At

Increments in different dimensions and at different time-points
are independent.

Let ||z|| denote the Euclidean norm, ||z|]* =37, 7
K
E() |AGH|]?) = 2dDALK (3)
i=1

It follows that

K
A 1 9

is an unbiased estimate of the diffusion coefficient D.

We can also obtain a confidence interval for D



Fluorescence recovery after photobleaching (FRAP)

FRAP is a method for analyzing diffusion which can be applied to
the study of possibly heterogenous materials with locally varying
diffusion coefficients.

We give here a pixel-based likelihood framework for FRAP.

In FRAP the diffusion coefficient of fluorescent molecules is de-
termined locally in a confocal microscope.

Fluorescent molecules are bleached and deactivated in a vertical
cylinder by a high intensity laser pulse of short duration. The
result is a decreased fluorescense in the bleached volume, see the
upper left image in Figure 1

The sequence of images in Figure 1 shows the evolution of fluo-
rescence in a horizontal 2D area corresponding to a thin volume
extending a short distance in the vertical direction.

From the image sequence we see how fluorescence is recover-
ing due to the fact that unbleached molecules diffuse into and
bleached molecules diffuse out of the deactivated volume.

The recovery is clearly seen in Figure 1 and even more clearly in
Figure 2.



Figure 1: Plots of images from the first photobleaching series with 256 x 256 pixels
described in Table 1. The left top image is the first after bleaching, then follows images
about 1s,2s,4s,8s and 16 s later.
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Figure 2: Plots of fitted concentration and pixel values, averaged over pixels with equal
distances to the bleaching centre, as a function of distance r to the bleaching centre for
the same series as shown in Figure 1. The left top image is the first after bleaching, then
follows images about 1 s, 25,4 s, 8 s and 16 s later.



The observed pixel intensity in the images will be modelled by
a combination of a solution to the diffusion equation and an
assumption of independent normally distributed errors.

The diffusion of fluorochromes is supposed to follow the diffusion
equation (similar to the heat equation)

oC 0*°C  0°C 0*C
— =D 5
ot (ax2+ay2+az2>’ (5)
where C is the concentration of unbleached fluorochromes and
D is the diffusion coefficient.

Regard a rotationally symmetric bleached region. Assume that
there is no net diffusion in the z-direction and that the fluo-
rochromes are initially uniformly distributed.

With polar coordinates the diffusion equation can be written

oC 10C  9°C
E_D(;ﬁer@rQ)’ (6)

where r is the distance from the centre of the bleached region.

Let Cy(r) denote the fluorochrome concentration at time zero
(immediately after the high intensity pulse)

Let Ip(z) = (1/m) [, exp(—z cost) dt denote the modified Bessel
function of order zero. The solution of equation (6) can be writ-
ten on the form

1 r? e ru u?
C(T, t) = Q—Dt exXp (_4—Dt> /O UC()(U)]() <2—Dt) exXp (_4—Dt>



If we would have complete bleaching the intensity profile imme-
diately after bleaching would be described by an inverse top hat
function. However, the bleaching is not complete and diffusion
starts directly to blur this profile

In Figures 1 and 2 we see a profile rather different from a top hat.
We assume that the initial profile is an approximately Gaussian
profile, and suppose that the initial concentration has the form

Co(r) = ag — = exp (-T—z) du. (8)

Then the solution of equation (6) with the initial condition C'(0, ) =
Co(r) simplifies to

C(r,t) = ag Lexp( T—2> du.  (9)

4Dt + 7 4Dt + 12

Let p(i,t) denote the observed intensity at time t at pixel ¢ with
distance r; to the centre of the bleached region. We assume that
except for additive random noise the pixel intensity is propor-
tional to the fluorochrome concentration C(r;,t).



Assume further that pixel-wise the noise is normal with mean
zero and variance o2 with independence between different pixels
and different times.

Let S denote the set of pixels and T the set of times regarded.
Assume that the pixel-values p(i,t),i € S,t € T, are indepen-
dent with probability density

i t) — Clr 1))
f(p(iat);ao,al,D,To,(JQ) _ 2;0-2 exp (_(p( 7t) 20_?( Zat)) ) .

(10)
The likelihood function is the joint probability density for all
pixels and all times, and due to independence it is

L(9> _ HH \/%GXP (_ (p(i,t) ;O-?(Tiat» ) 7 (11)
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where 0 is the parameter vector 6 = (ag, a1, D, ro, 0%).



The log-likelihood £(6) = log L(#) is then

ae):‘T!S‘bg2wa — 2}5:}: (i,t) — C(r;, )%, (12)

and it 1s maximized with respect to the parameter vector 6 to
find the ml estimates, the most likely parameter values given the
observed images.

Likelihood theory allows computation of parameter estimates to-
gether with corresponding standard errors. The parameter esti-
mates are approximately multivariate normally distributed with
a covariance matrix that is the inverse of the observed informa-
tion matrix.

The entry in row 7 and column k of the observed information
matrix is

82
96,00,
evaluated at 6 = é, where 6 is the ml estimate of 6. If the
coordinates of the centre of the bleached disk are unknown there

(o), (13)

will be two extra parameters in the likelihood.



In Table 1 results from experiments with a Sodium Fluorescein
probe in polyethylene glycol are reported. Two series of experi-
ments with respectively 128128 pixel images and 256 x 256 pixel
images were performed, and in each series four replicates with
differently placed bleaching centres were used. Results from the
experiments are shown in and for one of the replicates in more
detail in Figures 1 and 2.

Table 1: Results from an experiment with two replicate series. For the first four replicates
(with 128x128 pixels) 48 images were used and for the last four replicates (with 256 x
256 pixels) 18 images were used. The columns D and s show diffusion coefficients and
standard errors estimated by maximum likelihood, while D and Srepi Show averages and
standard deviation from the replicate series.

Replicate No of pixels D (um?/s) s (um?/s) D(um?/s)  Sep (um?/s)
1 128%x128 64.3 0.8
2 128%x128 60.1 0.8
3 128 %128 61.1 0.8
4 128x128 59.6 0.8 61.3 2.1
1 256256 61.0 0.5
2 256 x256 61.8 0.5
3 256 x256 60.8 0.4
4 256 %256 63.8 0.5 61.8 1.4

As a check of the FRAP results given in Table 1 a corresponding
NMR diffusometry experiment was performed. It gave an esti-
mated diffusion coefficient of 62.0 um?/s with a standard error
of 1.9 upm?/s, which is well in line with the results in Table 1.
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Estimation of particle concentration from single-particle
tracking

Nano-sized fluorescent particles observed in a microscope can
typically be detected in a rather thin rectangular box such as
shown in Figure 3.

To determine particle concentration we need to know the dimen-
sions of the detection region. The extension in the horizontal
directions can ususally be determined in a straightforward way
from the microscope field of view.

But the size in the vertical direction is much more difficult to
measure as it depends on a number of factors such as the particle
detection algorithm and the brightness of the observed particles.
Such properties are not fixed but can vary considerably between
experiments.

This problem is analyzed in Roding et al. (2008) and the vertical
dimension is estimated from the trajectory length distribution.
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Assume that the detection region thickness is considerably smaller
than the horizontal dimensions which means that particles typi-
cally enter and leave the detection region by moving upwards or
downwards.

The trajectory length distribution is then essentially determined
by the detection region thickness. Roughly, short trajectory
lengths indicate a small thickness.
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Figure 3: A microscope detection region modeled as a rectangular box centred in the
liquid suspension where particles move. Particles outside the detection region cannot be
observed. The tracking depth is 2a and the thickness of the suspension is 2A.
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Assume that we observe a particle at positions X; at K equidis-
tant time-points t; = iAt,2 = 1,..., K, typically corresponding
to K consecutive frames in a video sequence.

The particle enters the detection region at time t; and leaves it
after K observed positions. The particle moves in 3D but we
simplify and consider only the motion in 1D, in the z-direction.

Assume that the particle enters and leaves the detection region
from above or below — a good approximation when the verticle
dimension 2a of the detection region is much smaller than the
horizontal dimensions. Assume also that the detection region
thickness 2a is much smaller than the thickness 2A of the liquid
suspension volume.

Considering only 1D diffusion in the z-direction we assume that
initially the particle position is uniformly distributed in the inter-
val [—A, A] and a particle outside the detecion region is assumed
to be uniformly distributed over [—A, —a] U [a, A].
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Let f(z) denote the probability density of the position of a par-
ticle that has just entered the detection region. One can then
show that f(z) =0 for |z| > a and

h(z)

f(z) = ffa h)de z € [—a,al, (14)

1 z4+ A z4+a zZ—a z— A
M) = s [‘1) (N/—wm) - P (x/wm> e <\/2DAt> —¢ <\/2DAt>] 15)
and ® denotes the standard normal cumulative distribution
function.

Let Z;. denote the position of a particle and let f; denote the non-
normalized density of the particle position after k£ steps assuming
that K > k, more precisely fi(z) = d/dz|P(Z; < z and K >
k)], for k > 1.

By definition fi(2) is zero outside [—a, a]. For the first position
of the particle in the detection region we have f; = f given by
(14). To compute the probability density of the particle after
step 2, f1 is convolved with the Gaussian propagator

Glz) = 2DlAt¢ (2DZAt) ’ (16)

where ¢ is the density of a standardized normal variable. Since

we assume that the particle stays in the detection region K steps
it cannot be outside the interval [—a, a] and the density has to
be truncated.

14



Generally the density fi can be recursively computed from fi._4
according to

fulz) = { g’_oo fian)e —a)da 2 € m;y (17)

Computation of f; for k& > 1 cannot be performed analytically,
but there is a fast numerical scheme with probability densities
approximated by translates of a Gaussian kernel.

In Figure 4 the computation of the sequence of densities fi, k > 1
is illustrated.

Figure 4: Illustration of the procedure for computing the trajectory length distribution.
Here f1(z) is the probability density of a particle that has just entered the detection region
according to equation (14). Truncation outside of [—a, a| of the convolution f;xG(z) yields
the non-normalized density f>(z) which integrates to the probability that the particle still
remains in the detection region for a second sampling point, and so forth.
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The probability that a particle stays in the detection region for
at most k consecutive steps is

P(K <k)=1- /a fri1(2)dz, (18)

where the dependence on a is emphasized. The probability dis-
tribution for the trajectory length is then obtained from

PK =k)=P,(K <k)— P,(K <k—1). (19)

Suppose now that we have observed an ensemble of identical
particles with known diffusion coefficient. The assumption of
known (or well estimated) diffusion coefficient is reasonable as it
can readily be estimated from the particle trajectories, compare

(4).

Let us consider trajectories with length K > k,,,;,. It is typical to
impose a lower threshold like K > 3 or K > 4 for the trajectory
length as shorter trajectories are more likely to be false positives.
Let N, denote the number of observed trajectories of length k.
Then the log-likelihood function is

la)= > Nplog P(K = k|K > ki), (20)

kamin

where

Pa<K — k)
Pa(K Z kmin)
and P,(K > k) is computed from (18). The maximum likeli-
hood estimate a is the a-value that maximizes ¢(a) in (20).

PAK = kK > kpin) = (21)
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After having estimated the tracking depth a it is possible to
estimate the particle concentration. Let N denote the mean
number of particles per video frame. A suitable point estimator
of the particle concentration c is

N
¢ = S o 10T particles/ml, (22)
vy

where 2a, and 2a, are the lateral sizes in pum of the detection
region.

We can estimate N by counting trajectories as follows. Let n
be the number of frames, and let NV, as earlier be the number
of observed trajectories of length k. The number of observed
particle positions is the sum of all trajectory lengths. Dividing
by the number of frames we get an estimate of the mean number
of particles per frame, and we estimate N by

11
N=—= > kN (23)

The factor p,ps corrects for underestimation of the concentration
due to discarding trajectories with length k < k.,

- Zkzkmm kP&(K - k)
Pobs =

ZkZl de(K - k) .

With this correction factor the estimate N in (23) becomes ap-

(24)

proximately unbiased.
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The standard error of the concentration estimate can be assessed
by bootstrapping. It is here suitable to perform the bootstrap-
ping on video level, since videos are (approximately) indepen-
dent.

Thus B bootstrap samples are obtained by sampling B times
with replacement from the set of videos, and from each sample
the concentration estimates ¢;,...,cp are computed according
0 (22). This gives an approximate standard deviation estimate

B

1/2
1 . p
[ 1 — Cmean ) 2
i (7 2 e 2

=1

where ¢,eqn 18 the mean of the bootstrap estimates. This method
relies on that the videos are approximately equally long and in-
dependent.

The simulation study briefly described below, leads to the con-
clusion that the tracking depth and the concentration estimates
are approximately unbiased and that bootstrap errors for B = 50
are quite close to the actual standard errors.

In the simulation study particles were moving according to 3D
random walk with time increments At and independent zero
mean normally distributed increments with variance 2DAt in
all three dimensions. Particles moved in a cube with side length
2A = 40 pum, compare Figure 3, with periodic boundary condi-
tions.

18



Particle trajectories were recorded when particles entered the de-
tection region. In the study three different diffusion coefficients,
D =1um?/s, D=2 pum?/s, and D =5 um?/s, and a series of
values for the detection region thickness from 0.1 to 2 pum were
used. The concentration of particles was ¢ = 10° particles/ml.
For each combination of diffusion coefficient and detection re-
gion thickness 20 000 simulations were performed and the mean
obtained estimates of a and ¢ are shown in Figure 5.
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Figure 5: Simulation study of the tracking depth parameter a (upper) and the concen-
tration ¢ (lower). Mean estimates are shown for D = 1 um?/s (red circles), for D = 2
pm?/s (magenta squares), and for D = 5 ym?/s (blue diamonds) as functions of the true
value of a. The true value of a is given by the black solid line. The true concentration of
particles was ¢ = 10° particles/ml. The increasing bias (negative for a and positive for
¢) for increasing a is due to the 1D approximation in the model for the trajectory length
distribution.
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In addition to the results from simulations, results from experi-
ments with 0.19-ym and 0.52-um particles are also reported in
(7). In Figure 6 we see concentration estimates for 5 dilutions
with the 0.19-um particles. Estimated 95% confidence intervals
obtained by bootstrapping for each dilution are also shown.

Ideally the concentration estimates should fall on the solid straight
line shown. However, this line is not perfectly known as there

are some uncertainties of the size of the particles. Mean particle

diameter was estimated by use of light scattering and was found

to be 0.207 pum with a standard deviation of 0.008 pum. From

this a 95% confidence interval for the solid line is obtained and

shown in Figure 6.

From Figures 5 and 6 we see that the method described performs
well both for simulated and experimental data.
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Figure 6: Experimental results with estimated concentrations for different dilutions of
0.19-um particles with estimated 95% confidence intervals. The concentration as esti-
mated from the stock-solution concentration (solid line) and estimated 95% confidence
intervals (dashed lines) are also shown.
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Estimation of particle concentration from particle count
time series

The method for estimation of particle concentration discussed
in the previous section requires particle tracking, that is pairing
particles from one frame to the following frame. This may be
difficult for fast particles and high concentrations. We will now
describe a method which only requires counting the number of
particles in each frame but no tracking of the individual particles.

In Figure 7 we see an experimentally observed count process with
the number of particles varying between about 18 and 37 parti-
cles. Such a process of particle counts we call a Smoluchowski
process in honour of the Polish physicist M. von Smoluchowski
who 1906 developed an alternative to Einstein’s description from
1905 of Brownian motion.
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Figure 7: An example of an experimentally observed Smoluchowski process obtained by
counting liposomes in whole blood, superimposed over a sample frame from the raw image
data, compare Braeckmans et al. 2010.

We will assume that particles move in and out of a microscope
detection region of the type shown in Figure 3. In this section
we will call the lateral dimensions of the detection region 2a,
and 2a, and the vertical dimension 2a,. Thus 2a in Figure 3
corresponds here to 2a.,.
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The number of particles in a sequence of frames varies as illus-
trated in Figure 8.

Figure 8: Tllustration of a Smoluchowski process. Diffusing particles reside both inside
(vellow) and outside (grey) the detection region. Particles moving in and out of the
detection region and the number of detected particles is fluctuating, forming a random
time series.

Let us now describe an approximate Markov statistical model for
the Smoluchowski process. We assume that particles move in-
dependently of each other according to a Brownian motion with
independent increments in all three dimensions with mean zero
and variance 2DAt, where At is the interval between observa-
tions (frames).

Let X,,,n =1,..., N, denote the number of particles observed
in the nth frame. Then

Xn+1 — Xn - On ‘|’ In, (26)

where O,, is the number of particles, out of the X, particles ini-
tially present, exiting the detection region, and I, is the number

of particles entering that region, between the two observations
Xn a,nd Xn+1.

We shall assume that regardless of observation up to (and in-
cluding) X, the random variable I,, is Poisson distributed with
a parameter A, that is,

Pr(l, = k|X1,...,X,) = =e (27)
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Another assumption, which we shall make, is that given obser-
vations up to (and including) X,, the random variable O, is
binomially distributed with probability-parameter p, more pre-
cisely, that

X ) Wi (28)

Pr(O, = j|X1,.... X)) = ( j

Based on these assumptions we approximate the distribution of
the process of particle counts (X,,,n > 1) with a Markov model
with transition probabilities p;; = Pr(X,4+; = j|X, = i) given
by

J k .
_ A i i -
pih ) =e? > o ( )u P = =",

. 1—71+k
k=max(0,j—1)
(29)
One can show that a Markov chain with transition probabilities
given by (29) has a stationary distribution which is a Poisson
distribution with parameter A/, that is

(N te

Pr(X,=k)=m, = X (30)
Given the Markov assumption the joint distribution of particle
counts Xy, ..., Xy can be written
N
Pr(X;=x1,...., Xy =2y) = Pr(X; = 1) H Pr( Xy = zp| Xp_1 = x1-1).
k=2

(31)
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For a realization x1,...,xxy we obtain a log-likelihood function
0N, ) = L\, play, ..., o) given by

(A m)rre e
5131! *

C(A, p) = log

Z Nij 1ngij()‘v :u)a (32)
iJ

where /V;; is the number of transitions from state ¢ to state 5. We
obtain the maximum likelihood estimates A and {4 by maximizing
the log-likelihood ¢(\, 11). For estimation of the lateral dimension
parameter a, it turns out that the crucial parameter is p.

The parameter p may be interpreted as the probability that a
particle uniformly distributed in the detection region exits this
region in a time interval of length At, compare (28). With this
interpretation one can show that

u=ula.) =1 - Fla,, D)F(ay, D)F(a., D), (33)
with
V2DAt 2a 2a 2a
F(a,D) = g { DAL [2@ <7—2DAt> — 1] + 2¢ (7—2DA75> - 2(;5(0)} , (34)

where ® and ¢ denote the distribution function and the prob-
ability density of a standardized normal variable. Note that in
(33) we write p = p(a,) because here a, is the important un-
known parameter.

The lateral dimension parameters a, and a, can be measured
directly from the microscope geometry and D here needs to be
estimated separately, for instance by separate particle tracking.
Let us also note that in order to obtain valid standard errors
and confidence intervals it is suitable, to use bootstrapping on
the "video level’
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To validate the suggested method both simulations and experi-
ments were used. In the simulations a predetermined number of
particles were allowed to diffuse in three dimensions in rectan-
gular box, as the large box in Figure 3, with periodic boundary
conditions. Three different diffusion coefficients, D =1, D = 2
and D = 5 um?s~ !, and 20 different a.-values ranging between
0.1 and 2 pm were used.

The resulting estimates of the detection depth parameter a, and
the concentration are shown in Figure 9. From the figure we see
that the method performs very well except for some minor bias
for small a,-values.
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Figure 9: Simulation study of estimation of the detection depth parameter a, and the
concentration estimate C. For D = 1 yum?s™! (red circles), D = 2 um?s™! (magenta
squares) and D = 5 um?s™! (blue diamonds) the mean estimates of a, (divided by the
true value of a,) and C are shown as functions of the true value of a,. The mean estimates
were computed from 10° simulations for each data point, and the true concentration of
particles was C' = 10° particle mL L.
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To experimentally verify the method suggested two experiments
with fluorescent polymer nanospheres with diameter 0.2 ym and
0.5 um were performed. We will here show the results for the
smaller diameter. A water dispersion of the particles was diluted
by a factor of 1900, 2400, 3400, 5800 and 14800. The theoretical
concentration of particles in particles mL~! can be estimated

from

6x10%<Spr,
Ctheoretical - p

35
T (35)

where S = 1 is the weight percent of solids, with a relativ stan-
dard deviation of 5%, pr = 1.00gcm™ is the density of the
suspension, pg = 1.05gcm ™2 is the density of the solid particles
(all values according to the manufacturer).
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Further, using dynamic light scattering the diameter of the par-
ticles was found to be d = 0.207 ym with a standard deviation of
0.008 um (in correspondence with the manufacturer results for
the particular batch of nanospheres). Using the standard error-
propagation equation the theoretical particle concentration with
standard deviations were found for all dilutions and compared
with the results from the method suggested.

The results are shown in Figure 10 and it clear from the figure
that an excellent agreement was found between the theoretically
and experimentally obtained concentration values.
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Figure 10: Estimated concentrations from an experiment with different dilutions of 0.2
pm particles with estimated 95% confidence intervals (’inverse dilution’ is a ’relative
concentration’). The concentration as estimated from the stock-solution concentration
(solid line) with estimated 95% confidence intervals (dashed lines) is shown (upper). Fur-
ther, typical examples of the underlying Smoluchowski processes are shown with colours
red/green /blue/cyan/magenta in order of of decreasing concentration (lower).
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