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Tra
king a single di�using parti
le

Let Xi denote the position at time i∆t, i = 0, 1, . . . , K, of a

di�using parti
le in d-dimensional spa
e, where d = 1, 2 or 3,

Xi = Xi−1 +∆Gi, (1)

where ∆Gi are independent d-dimensional normal ve
tors with

a mean ve
tor with all 
omponents zero and a 
ovarian
e matrix

C(∆Gi) = 2D∆tI, (2)

where D is the di�usion 
oe�
ient and I is the d-dimensional

unit matrix.

In ea
h dimension the di�using parti
le has a normally distributed

in
rement with mean zero and varian
e 2D∆t

In
rements in di�erent dimensions and at di�erent time-points

are independent.

Let ||x|| denote the Eu
lidean norm, ||x||2 =∑j x
2
j

E(
K
∑

i=1

||∆Gi||2) = 2dD∆tK (3)

It follows that

D̂ =
1

2d∆tK

K
∑

i=1

||∆Gi||2 (4)

is an unbiased estimate of the di�usion 
oe�
ient D.

We 
an also obtain a 
on�den
e interval for D
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Fluores
en
e re
overy after photoblea
hing (FRAP)

FRAP is a method for analyzing di�usion whi
h 
an be applied to

the study of possibly heterogenous materials with lo
ally varying

di�usion 
oe�
ients.

We give here a pixel-based likelihood framework for FRAP.

In FRAP the di�usion 
oe�
ient of �uores
ent mole
ules is de-

termined lo
ally in a 
onfo
al mi
ros
ope.

Fluores
ent mole
ules are blea
hed and dea
tivated in a verti
al


ylinder by a high intensity laser pulse of short duration. The

result is a de
reased �uores
ense in the blea
hed volume, see the

upper left image in Figure 1

The sequen
e of images in Figure 1 shows the evolution of �uo-

res
en
e in a horizontal 2D area 
orresponding to a thin volume

extending a short distan
e in the verti
al dire
tion.

From the image sequen
e we see how �uores
en
e is re
over-

ing due to the fa
t that unblea
hed mole
ules di�use into and

blea
hed mole
ules di�use out of the dea
tivated volume.

The re
overy is 
learly seen in Figure 1 and even more 
learly in

Figure 2.
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Figure 1: Plots of images from the �rst photoblea
hing series with 256 x 256 pixels

des
ribed in Table 1. The left top image is the �rst after blea
hing, then follows images

about 1 s, 2 s, 4 s, 8 s and 16 s later.
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Figure 2: Plots of �tted 
on
entration and pixel values, averaged over pixels with equal

distan
es to the blea
hing 
entre, as a fun
tion of distan
e r to the blea
hing 
entre for

the same series as shown in Figure 1. The left top image is the �rst after blea
hing, then

follows images about 1 s, 2 s, 4 s, 8 s and 16 s later.
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The observed pixel intensity in the images will be modelled by

a 
ombination of a solution to the di�usion equation and an

assumption of independent normally distributed errors.

The di�usion of �uoro
hromes is supposed to follow the di�usion

equation (similar to the heat equation)

∂C

∂t
= D

(

∂2C

∂x2
+

∂2C

∂y2
+

∂2C

∂z2

)

, (5)

where C is the 
on
entration of unblea
hed �uoro
hromes and

D is the di�usion 
oe�
ient.

Regard a rotationally symmetri
 blea
hed region. Assume that

there is no net di�usion in the z-dire
tion and that the �uo-

ro
hromes are initially uniformly distributed.

With polar 
oordinates the di�usion equation 
an be written

∂C

∂t
= D

(

1

r

∂C

∂r
+

∂2C

∂r2

)

, (6)

where r is the distan
e from the 
entre of the blea
hed region.

Let C0(r) denote the �uoro
hrome 
on
entration at time zero

(immediately after the high intensity pulse)

Let I0(x) = (1/π)
∫ π

0 exp(−x cos t) dt denote the modi�ed Bessel

fun
tion of order zero. The solution of equation (6) 
an be writ-

ten on the form

C(r, t) =
1

2Dt
exp

(

− r2

4Dt

)
∫ ∞

0

uC0(u)I0

( ru

2Dt

)

exp

(

− u2

4Dt

)

du.

(7)
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If we would have 
omplete blea
hing the intensity pro�le imme-

diately after blea
hing would be des
ribed by an inverse top hat

fun
tion. However, the blea
hing is not 
omplete and di�usion

starts dire
tly to blur this pro�le

In Figures 1 and 2 we see a pro�le rather di�erent from a top hat.

We assume that the initial pro�le is an approximately Gaussian

pro�le, and suppose that the initial 
on
entration has the form

C0(r) = a0 −
a1
r20

exp

(

−r2

r20

)

du. (8)

Then the solution of equation (6) with the initial 
ondition C(0, r) =

C0(r) simpli�es to

C(r, t) = a0 −
a1

4Dt + r20
exp

(

− r2

4Dt + r20

)

du. (9)

Let p(i, t) denote the observed intensity at time t at pixel i with

distan
e ri to the 
entre of the blea
hed region. We assume that

ex
ept for additive random noise the pixel intensity is propor-

tional to the �uoro
hrome 
on
entration C(ri, t).
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Assume further that pixel-wise the noise is normal with mean

zero and varian
e σ2
with independen
e between di�erent pixels

and di�erent times.

Let S denote the set of pixels and T the set of times regarded.

Assume that the pixel-values p(i, t), i ∈ S, t ∈ T , are indepen-

dent with probability density

f(p(i, t); a0, a1, D, r0, σ
2) =

1√
2πσ2

exp

(

−(p(i, t)− C(ri, t))
2

2σ2

)

.

(10)

The likelihood fun
tion is the joint probability density for all

pixels and all times, and due to independen
e it is

L(θ) =
∏

t∈T

∏

i∈S

1√
2πσ2

exp

(

−(p(i, t)− C(ri, t))
2

2σ2

)

, (11)

where θ is the parameter ve
tor θ = (a0, a1, D, r0, σ
2).
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The log-likelihood ℓ(θ) = logL(θ) is then

ℓ(θ) =
|T ||S|

2
log(2πσ2)− 1

2σ2

∑

t∈T

∑

i∈S
(p(i, t)− C(ri, t))

2, (12)

and it is maximized with respe
t to the parameter ve
tor θ to

�nd the ml estimates, the most likely parameter values given the

observed images.

Likelihood theory allows 
omputation of parameter estimates to-

gether with 
orresponding standard errors. The parameter esti-

mates are approximately multivariate normally distributed with

a 
ovarian
e matrix that is the inverse of the observed informa-

tion matrix.

The entry in row j and 
olumn k of the observed information

matrix is

− ∂2

∂θj∂θk
ℓ(θ), (13)

evaluated at θ = θ̂, where θ̂ is the ml estimate of θ. If the


oordinates of the 
entre of the blea
hed disk are unknown there

will be two extra parameters in the likelihood.
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In Table 1 results from experiments with a Sodium Fluores
ein

probe in polyethylene gly
ol are reported. Two series of experi-

ments with respe
tively 128×128 pixel images and 256 x 256 pixel

images were performed, and in ea
h series four repli
ates with

di�erently pla
ed blea
hing 
entres were used. Results from the

experiments are shown in and for one of the repli
ates in more

detail in Figures 1 and 2.

Table 1: Results from an experiment with two repli
ate series. For the �rst four repli
ates

(with 128×128 pixels) 48 images were used and for the last four repli
ates (with 256 x

256 pixels) 18 images were used. The 
olumns D and s show di�usion 
oe�
ients and

standard errors estimated by maximum likelihood, while D̄ and srepl show averages and

standard deviation from the repli
ate series.

Repli
ate No of pixels D (µm2/s) s (µm2/s) D̄(µm2/s) srepl (µm
2/s)

1 128×128 64.3 0.8

2 128×128 60.1 0.8

3 128×128 61.1 0.8

4 128×128 59.6 0.8 61.3 2.1

1 256×256 61.0 0.5

2 256×256 61.8 0.5

3 256×256 60.8 0.4

4 256×256 63.8 0.5 61.8 1.4

As a 
he
k of the FRAP results given in Table 1 a 
orresponding

NMR di�usometry experiment was performed. It gave an esti-

mated di�usion 
oe�
ient of 62.0 µm2/s with a standard error

of 1.9 µm2/s, whi
h is well in line with the results in Table 1.
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Estimation of parti
le 
on
entration from single-parti
le

tra
king

Nano-sized �uores
ent parti
les observed in a mi
ros
ope 
an

typi
ally be dete
ted in a rather thin re
tangular box su
h as

shown in Figure 3.

To determine parti
le 
on
entration we need to know the dimen-

sions of the dete
tion region. The extension in the horizontal

dire
tions 
an ususally be determined in a straightforward way

from the mi
ros
ope �eld of view.

But the size in the verti
al dire
tion is mu
h more di�
ult to

measure as it depends on a number of fa
tors su
h as the parti
le

dete
tion algorithm and the brightness of the observed parti
les.

Su
h properties are not �xed but 
an vary 
onsiderably between

experiments.

This problem is analyzed in Röding et al. (2008) and the verti
al

dimension is estimated from the traje
tory length distribution.
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Assume that the dete
tion region thi
kness is 
onsiderably smaller

than the horizontal dimensions whi
h means that parti
les typi-


ally enter and leave the dete
tion region by moving upwards or

downwards.

The traje
tory length distribution is then essentially determined

by the dete
tion region thi
kness. Roughly, short traje
tory

lengths indi
ate a small thi
kness.

Figure 3: A mi
ros
ope dete
tion region modeled as a re
tangular box 
entred in the

liquid suspension where parti
les move. Parti
les outside the dete
tion region 
annot be

observed. The tra
king depth is 2a and the thi
kness of the suspension is 2A.
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Assume that we observe a parti
le at positions Xi at K equidis-

tant time-points ti = i∆t, i = 1, . . . , K, typi
ally 
orresponding

to K 
onse
utive frames in a video sequen
e.

The parti
le enters the dete
tion region at time t1 and leaves it

after K observed positions. The parti
le moves in 3D but we

simplify and 
onsider only the motion in 1D, in the z-dire
tion.

Assume that the parti
le enters and leaves the dete
tion region

from above or below � a good approximation when the verti
le

dimension 2a of the dete
tion region is mu
h smaller than the

horizontal dimensions. Assume also that the dete
tion region

thi
kness 2a is mu
h smaller than the thi
kness 2A of the liquid

suspension volume.

Considering only 1D di�usion in the z-dire
tion we assume that

initially the parti
le position is uniformly distributed in the inter-

val [−A,A] and a parti
le outside the dete
ion region is assumed

to be uniformly distributed over [−A,−a] ∪ [a,A].
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Let f(z) denote the probability density of the position of a par-

ti
le that has just entered the dete
tion region. One 
an then

show that f(z) = 0 for |z| > a and

f(z) =
h(z)

∫ a

−a h(z)dz
, z ∈ [−a, a], (14)

where

h(z) =
1

2(A− a)

[

Φ

(

z +A√
2D∆t

)

− Φ

(

z + a√
2D∆t

)

+Φ

(

z − a√
2D∆t

)

− Φ

(

z −A√
2D∆t

)]

(15)

and Φ denotes the standard normal 
umulative distribution

fun
tion.

Let Zk denote the position of a parti
le and let fk denote the non-

normalized density of the parti
le position after k steps assuming

that K ≥ k, more pre
isely fk(z) = d/dz[P (Zk ≤ z and K ≥
k)], for k ≥ 1.

By de�nition fk(z) is zero outside [−a, a]. For the �rst position

of the parti
le in the dete
tion region we have f1 = f given by

(14). To 
ompute the probability density of the parti
le after

step 2, f1 is 
onvolved with the Gaussian propagator

G(z) =
1

2D∆t
φ
( z

2D∆t

)

, (16)

where φ is the density of a standardized normal variable. Sin
e

we assume that the parti
le stays in the dete
tion region K steps

it 
annot be outside the interval [−a, a] and the density has to

be trun
ated.
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Generally the density fk 
an be re
ursively 
omputed from fk−1

a

ording to

fk(z) =

{ ∫∞
−∞ fk−1(z0)G(z − z0) dz0, z ∈ [a, a],

0, z 6∈ [−a, a].
(17)

Computation of fk for k > 1 
annot be performed analyti
ally,

but there is a fast numeri
al s
heme with probability densities

approximated by translates of a Gaussian kernel.

In Figure 4 the 
omputation of the sequen
e of densities fk, k ≥ 1

is illustrated.

Figure 4: Illustration of the pro
edure for 
omputing the traje
tory length distribution.

Here f1(z) is the probability density of a parti
le that has just entered the dete
tion region

a

ording to equation (14). Trun
ation outside of [−a, a] of the 
onvolution f1⋆G(z) yields
the non-normalized density f2(z) whi
h integrates to the probability that the parti
le still

remains in the dete
tion region for a se
ond sampling point, and so forth.
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The probability that a parti
le stays in the dete
tion region for

at most k 
onse
utive steps is

Pa(K ≤ k) = 1−
∫ a

−a

fk+1(z) dz, (18)

where the dependen
e on a is emphasized. The probability dis-

tribution for the traje
tory length is then obtained from

Pa(K = k) = Pa(K ≤ k)− Pa(K ≤ k − 1). (19)

Suppose now that we have observed an ensemble of identi
al

parti
les with known di�usion 
oe�
ient. The assumption of

known (or well estimated) di�usion 
oe�
ient is reasonable as it


an readily be estimated from the parti
le traje
tories, 
ompare

(4).

Let us 
onsider traje
tories with lengthK ≥ kmin. It is typi
al to

impose a lower threshold like K ≥ 3 or K ≥ 4 for the traje
tory

length as shorter traje
tories are more likely to be false positives.

Let Nk denote the number of observed traje
tories of length k.

Then the log-likelihood fun
tion is

ℓ(a) =
∑

k≥kmin

Nk logPa(K = k|K ≥ kmin), (20)

where

Pa(K = k|K ≥ kmin) =
Pa(K = k)

Pa(K ≥ kmin)
(21)

and Pa(K ≥ kmin) is 
omputed from (18). The maximum likeli-

hood estimate â is the a-value that maximizes ℓ(a) in (20).
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After having estimated the tra
king depth a it is possible to

estimate the parti
le 
on
entration. Let N̄ denote the mean

number of parti
les per video frame. A suitable point estimator

of the parti
le 
on
entration c is

ĉ =
N̄

8âaxay10−12
parti
les/ml, (22)

where 2ax and 2ay are the lateral sizes in µm of the dete
tion

region.

We 
an estimate N̄ by 
ounting traje
tories as follows. Let n

be the number of frames, and let Nk as earlier be the number

of observed traje
tories of length k. The number of observed

parti
le positions is the sum of all traje
tory lengths. Dividing

by the number of frames we get an estimate of the mean number

of parti
les per frame, and we estimate N̄ by

N̄ =
1

p̂obs

1

n

∑

k≥kmin

kNk. (23)

The fa
tor p̂obs 
orre
ts for underestimation of the 
on
entration

due to dis
arding traje
tories with length k < kmin,

p̂obs =

∑

k≥kmin
kPâ(K = k)

∑

k≥1 kPâ(K = k)
. (24)

With this 
orre
tion fa
tor the estimate N̄ in (23) be
omes ap-

proximately unbiased.
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The standard error of the 
on
entration estimate 
an be assessed

by bootstrapping. It is here suitable to perform the bootstrap-

ping on video level, sin
e videos are (approximately) indepen-

dent.

Thus B bootstrap samples are obtained by sampling B times

with repla
ement from the set of videos, and from ea
h sample

the 
on
entration estimates ĉ1, . . . , ĉB are 
omputed a

ording

to (22). This gives an approximate standard deviation estimate

σĉ =

(

1

B − 1

B
∑

i=1

(ĉi − cmean)
2

)1/2

, (25)

where cmean is the mean of the bootstrap estimates. This method

relies on that the videos are approximately equally long and in-

dependent.

The simulation study brie�y des
ribed below, leads to the 
on-


lusion that the tra
king depth and the 
on
entration estimates

are approximately unbiased and that bootstrap errors for B = 50

are quite 
lose to the a
tual standard errors.

In the simulation study parti
les were moving a

ording to 3D

random walk with time in
rements ∆t and independent zero

mean normally distributed in
rements with varian
e 2D∆t in

all three dimensions. Parti
les moved in a 
ube with side length

2A = 40 µm, 
ompare Figure 3, with periodi
 boundary 
ondi-

tions.
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Parti
le traje
tories were re
orded when parti
les entered the de-

te
tion region. In the study three di�erent di�usion 
oe�
ients,

D = 1 µm2/s, D = 2 µm2/s, and D = 5 µm2/s, and a series of

values for the dete
tion region thi
kness from 0.1 to 2 µm were

used. The 
on
entration of parti
les was c = 109 parti
les/ml.

For ea
h 
ombination of di�usion 
oe�
ient and dete
tion re-

gion thi
kness 20 000 simulations were performed and the mean

obtained estimates of a and c are shown in Figure 5.

Figure 5: Simulation study of the tra
king depth parameter a (upper) and the 
on
en-

tration c (lower). Mean estimates are shown for D = 1 µm2/s (red 
ir
les), for D = 2
µm2/s (magenta squares), and for D = 5 µm2/s (blue diamonds) as fun
tions of the true

value of a. The true value of a is given by the bla
k solid line. The true 
on
entration of

parti
les was c = 109 parti
les/ml. The in
reasing bias (negative for a and positive for

c) for in
reasing a is due to the 1D approximation in the model for the traje
tory length

distribution.

19



In addition to the results from simulations, results from experi-

ments with 0.19-µm and 0.52-µm parti
les are also reported in

(?). In Figure 6 we see 
on
entration estimates for 5 dilutions

with the 0.19-µm parti
les. Estimated 95% 
on�den
e intervals

obtained by bootstrapping for ea
h dilution are also shown.

Ideally the 
on
entration estimates should fall on the solid straight

line shown. However, this line is not perfe
tly known as there

are some un
ertainties of the size of the parti
les. Mean parti
le

diameter was estimated by use of light s
attering and was found

to be 0.207 µm with a standard deviation of 0.008 µm. From

this a 95% 
on�den
e interval for the solid line is obtained and

shown in Figure 6.

From Figures 5 and 6 we see that the method des
ribed performs

well both for simulated and experimental data.

Figure 6: Experimental results with estimated 
on
entrations for di�erent dilutions of

0.19-µm parti
les with estimated 95% 
on�den
e intervals. The 
on
entration as esti-

mated from the sto
k-solution 
on
entration (solid line) and estimated 95% 
on�den
e

intervals (dashed lines) are also shown.
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Estimation of parti
le 
on
entration from parti
le 
ount

time series

The method for estimation of parti
le 
on
entration dis
ussed

in the previous se
tion requires parti
le tra
king, that is pairing

parti
les from one frame to the following frame. This may be

di�
ult for fast parti
les and high 
on
entrations. We will now

des
ribe a method whi
h only requires 
ounting the number of

parti
les in ea
h frame but no tra
king of the individual parti
les.

In Figure 7 we see an experimentally observed 
ount pro
ess with

the number of parti
les varying between about 18 and 37 parti-


les. Su
h a pro
ess of parti
le 
ounts we 
all a Smolu
howski

pro
ess in honour of the Polish physi
ist M. von Smolu
howski

who 1906 developed an alternative to Einstein's des
ription from

1905 of Brownian motion.

Figure 7: An example of an experimentally observed Smolu
howski pro
ess obtained by


ounting liposomes in whole blood, superimposed over a sample frame from the raw image

data, 
ompare Brae
kmans et al. 2010.

We will assume that parti
les move in and out of a mi
ros
ope

dete
tion region of the type shown in Figure 3. In this se
tion

we will 
all the lateral dimensions of the dete
tion region 2ax
and 2ay and the verti
al dimension 2az. Thus 2a in Figure 3


orresponds here to 2az.
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The number of parti
les in a sequen
e of frames varies as illus-

trated in Figure 8.

Figure 8: Illustration of a Smolu
howski pro
ess. Di�using parti
les reside both inside

(yellow) and outside (grey) the dete
tion region. Parti
les moving in and out of the

dete
tion region and the number of dete
ted parti
les is �u
tuating, forming a random

time series.

Let us now des
ribe an approximate Markov statisti
al model for

the Smolu
howski pro
ess. We assume that parti
les move in-

dependently of ea
h other a

ording to a Brownian motion with

independent in
rements in all three dimensions with mean zero

and varian
e 2D∆t, where ∆t is the interval between observa-

tions (frames).

Let Xn, n = 1, . . . , N , denote the number of parti
les observed

in the nth frame. Then

Xn+1 = Xn −On + In, (26)

where On is the number of parti
les, out of the Xn parti
les ini-

tially present, exiting the dete
tion region, and In is the number

of parti
les entering that region, between the two observations

Xn and Xn+1.

We shall assume that regardless of observation up to (and in-


luding) Xn the random variable In is Poisson distributed with

a parameter λ, that is,

Pr(In = k|X1, . . . , Xn) =
λk

k!
e−λ. (27)
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Another assumption, whi
h we shall make, is that given obser-

vations up to (and in
luding) Xn, the random variable On is

binomially distributed with probability-parameter µ, more pre-


isely, that

Pr(On = j|X1, . . . , Xn) =

(

Xn

j

)

µj(1− µ)Xn−j. (28)

Based on these assumptions we approximate the distribution of

the pro
ess of parti
le 
ounts (Xn, n ≥ 1) with a Markov model

with transition probabilities pij = Pr(Xn+1 = j|Xn = i) given

by

pij(λ, µ) = e−λ

j
∑

k=max(0,j−i)

λk

k!

(

i

i− j + k

)

µi−j+k(1− µ)j−k.

(29)

One 
an show that a Markov 
hain with transition probabilities

given by (29) has a stationary distribution whi
h is a Poisson

distribution with parameter λ/µ, that is

Pr(Xn = k) = πk =
(λ/µ)ke−λ/µ

k!
. (30)

Given the Markov assumption the joint distribution of parti
le


ounts X1, . . . , XN 
an be written

Pr(X1 = x1, . . . , XN = xN) = Pr(X1 = x1)

N
∏

k=2

Pr(Xk = xk|Xk−1 = xk−1).

(31)
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For a realization x1, . . . , xN we obtain a log-likelihood fun
tion

ℓ(λ, µ) = ℓ(λ, µ|x1, . . . , xN) given by

ℓ(λ, µ) = log
(λ/µ)x1e−λ/µ

x1!
+
∑

i,j

Nij log pij(λ, µ), (32)

where Nij is the number of transitions from state i to state j. We

obtain the maximum likelihood estimates λ̂ and µ̂ by maximizing

the log-likelihood ℓ(λ, µ). For estimation of the lateral dimension

parameter az it turns out that the 
ru
ial parameter is µ.

The parameter µ may be interpreted as the probability that a

parti
le uniformly distributed in the dete
tion region exits this

region in a time interval of length ∆t, 
ompare (28). With this

interpretation one 
an show that

µ = µ(az) = 1− F (ax, D)F (ay, D)F (az, D), (33)

with

F (a,D) =

√
2D∆t

2a

{

2a√
2D∆t

[

2Φ

(

2a√
2D∆t

)

− 1

]

+ 2φ

(

2a√
2D∆t

)

− 2φ(0)

}

, (34)

where Φ and φ denote the distribution fun
tion and the prob-

ability density of a standardized normal variable. Note that in

(33) we write µ = µ(az) be
ause here az is the important un-

known parameter.

The lateral dimension parameters ax and ay 
an be measured

dire
tly from the mi
ros
ope geometry and D here needs to be

estimated separately, for instan
e by separate parti
le tra
king.

Let us also note that in order to obtain valid standard errors

and 
on�den
e intervals it is suitable, to use bootstrapping on

the 'video level'.
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To validate the suggested method both simulations and experi-

ments were used. In the simulations a predetermined number of

parti
les were allowed to di�use in three dimensions in re
tan-

gular box, as the large box in Figure 3, with periodi
 boundary


onditions. Three di�erent di�usion 
oe�
ients, D = 1, D = 2

and D = 5 µm2
s

−1
, and 20 di�erent az-values ranging between

0.1 and 2 µm were used.

The resulting estimates of the dete
tion depth parameter az and

the 
on
entration are shown in Figure 9. From the �gure we see

that the method performs very well ex
ept for some minor bias

for small az-values.

Figure 9: Simulation study of estimation of the dete
tion depth parameter az and the


on
entration estimate C. For D = 1 µm2
s

−1
(red 
ir
les), D = 2 µm2

s

−1
(magenta

squares) and D = 5 µm2
s

−1
(blue diamonds) the mean estimates of az (divided by the

true value of az) and C are shown as fun
tions of the true value of az. The mean estimates

were 
omputed from 106 simulations for ea
h data point, and the true 
on
entration of

parti
les was C = 109 parti
le mL

−1
.
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To experimentally verify the method suggested two experiments

with �uores
ent polymer nanospheres with diameter 0.2µm and

0.5µm were performed. We will here show the results for the

smaller diameter. A water dispersion of the parti
les was diluted

by a fa
tor of 1900, 2400, 3400, 5800 and 14800. The theoreti
al


on
entration of parti
les in parti
les mL

−1

an be estimated

from

C
theoreti
al

=
6×1010×SρL

πρSd3
, (35)

where S = 1 is the weight per
ent of solids, with a relativ stan-

dard deviation of 5%, ρL = 1.00 g 
m−3
is the density of the

suspension, ρS = 1.05 g 
m−3
is the density of the solid parti
les

(all values a

ording to the manufa
turer).
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Further, using dynami
 light s
attering the diameter of the par-

ti
les was found to be d = 0.207µm with a standard deviation of

0.008µm (in 
orresponden
e with the manufa
turer results for

the parti
ular bat
h of nanospheres). Using the standard error-

propagation equation the theoreti
al parti
le 
on
entration with

standard deviations were found for all dilutions and 
ompared

with the results from the method suggested.

The results are shown in Figure 10 and it 
lear from the �gure

that an ex
ellent agreement was found between the theoreti
ally

and experimentally obtained 
on
entration values.

Figure 10: Estimated 
on
entrations from an experiment with di�erent dilutions of 0.2

µm parti
les with estimated 95% 
on�den
e intervals ('inverse dilution' is a 'relative


on
entration'). The 
on
entration as estimated from the sto
k-solution 
on
entration

(solid line) with estimated 95% 
on�den
e intervals (dashed lines) is shown (upper). Fur-

ther, typi
al examples of the underlying Smolu
howski pro
esses are shown with 
olours

red/green/blue/
yan/magenta in order of of de
reasing 
on
entration (lower).
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