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Traking a single di�using partile

Let Xi denote the position at time i∆t, i = 0, 1, . . . , K, of a

di�using partile in d-dimensional spae, where d = 1, 2 or 3,

Xi = Xi−1 +∆Gi, (1)

where ∆Gi are independent d-dimensional normal vetors with

a mean vetor with all omponents zero and a ovariane matrix

C(∆Gi) = 2D∆tI, (2)

where D is the di�usion oe�ient and I is the d-dimensional

unit matrix.

In eah dimension the di�using partile has a normally distributed

inrement with mean zero and variane 2D∆t

Inrements in di�erent dimensions and at di�erent time-points

are independent.

Let ||x|| denote the Eulidean norm, ||x||2 =∑j x
2
j

E(
K
∑

i=1

||∆Gi||2) = 2dD∆tK (3)

It follows that

D̂ =
1

2d∆tK

K
∑

i=1

||∆Gi||2 (4)

is an unbiased estimate of the di�usion oe�ient D.

We an also obtain a on�dene interval for D
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Fluoresene reovery after photobleahing (FRAP)

FRAP is a method for analyzing di�usion whih an be applied to

the study of possibly heterogenous materials with loally varying

di�usion oe�ients.

We give here a pixel-based likelihood framework for FRAP.

In FRAP the di�usion oe�ient of �uoresent moleules is de-

termined loally in a onfoal mirosope.

Fluoresent moleules are bleahed and deativated in a vertial

ylinder by a high intensity laser pulse of short duration. The

result is a dereased �uoresense in the bleahed volume, see the

upper left image in Figure 1

The sequene of images in Figure 1 shows the evolution of �uo-

resene in a horizontal 2D area orresponding to a thin volume

extending a short distane in the vertial diretion.

From the image sequene we see how �uoresene is reover-

ing due to the fat that unbleahed moleules di�use into and

bleahed moleules di�use out of the deativated volume.

The reovery is learly seen in Figure 1 and even more learly in

Figure 2.
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Figure 1: Plots of images from the �rst photobleahing series with 256 x 256 pixels

desribed in Table 1. The left top image is the �rst after bleahing, then follows images

about 1 s, 2 s, 4 s, 8 s and 16 s later.
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Figure 2: Plots of �tted onentration and pixel values, averaged over pixels with equal

distanes to the bleahing entre, as a funtion of distane r to the bleahing entre for

the same series as shown in Figure 1. The left top image is the �rst after bleahing, then

follows images about 1 s, 2 s, 4 s, 8 s and 16 s later.
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The observed pixel intensity in the images will be modelled by

a ombination of a solution to the di�usion equation and an

assumption of independent normally distributed errors.

The di�usion of �uorohromes is supposed to follow the di�usion

equation (similar to the heat equation)

∂C

∂t
= D

(

∂2C

∂x2
+

∂2C

∂y2
+

∂2C

∂z2

)

, (5)

where C is the onentration of unbleahed �uorohromes and

D is the di�usion oe�ient.

Regard a rotationally symmetri bleahed region. Assume that

there is no net di�usion in the z-diretion and that the �uo-

rohromes are initially uniformly distributed.

With polar oordinates the di�usion equation an be written

∂C

∂t
= D

(

1

r

∂C

∂r
+

∂2C

∂r2

)

, (6)

where r is the distane from the entre of the bleahed region.

Let C0(r) denote the �uorohrome onentration at time zero

(immediately after the high intensity pulse)

Let I0(x) = (1/π)
∫ π

0 exp(−x cos t) dt denote the modi�ed Bessel

funtion of order zero. The solution of equation (6) an be writ-

ten on the form

C(r, t) =
1

2Dt
exp

(

− r2

4Dt

)
∫ ∞

0

uC0(u)I0

( ru

2Dt

)

exp

(

− u2

4Dt

)

du.

(7)
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If we would have omplete bleahing the intensity pro�le imme-

diately after bleahing would be desribed by an inverse top hat

funtion. However, the bleahing is not omplete and di�usion

starts diretly to blur this pro�le

In Figures 1 and 2 we see a pro�le rather di�erent from a top hat.

We assume that the initial pro�le is an approximately Gaussian

pro�le, and suppose that the initial onentration has the form

C0(r) = a0 −
a1
r20

exp

(

−r2

r20

)

du. (8)

Then the solution of equation (6) with the initial ondition C(0, r) =

C0(r) simpli�es to

C(r, t) = a0 −
a1

4Dt + r20
exp

(

− r2

4Dt + r20

)

du. (9)

Let p(i, t) denote the observed intensity at time t at pixel i with

distane ri to the entre of the bleahed region. We assume that

exept for additive random noise the pixel intensity is propor-

tional to the �uorohrome onentration C(ri, t).
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Assume further that pixel-wise the noise is normal with mean

zero and variane σ2
with independene between di�erent pixels

and di�erent times.

Let S denote the set of pixels and T the set of times regarded.

Assume that the pixel-values p(i, t), i ∈ S, t ∈ T , are indepen-

dent with probability density

f(p(i, t); a0, a1, D, r0, σ
2) =

1√
2πσ2

exp

(

−(p(i, t)− C(ri, t))
2

2σ2

)

.

(10)

The likelihood funtion is the joint probability density for all

pixels and all times, and due to independene it is

L(θ) =
∏

t∈T

∏

i∈S

1√
2πσ2

exp

(

−(p(i, t)− C(ri, t))
2

2σ2

)

, (11)

where θ is the parameter vetor θ = (a0, a1, D, r0, σ
2).
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The log-likelihood ℓ(θ) = logL(θ) is then

ℓ(θ) =
|T ||S|

2
log(2πσ2)− 1

2σ2

∑

t∈T

∑

i∈S
(p(i, t)− C(ri, t))

2, (12)

and it is maximized with respet to the parameter vetor θ to

�nd the ml estimates, the most likely parameter values given the

observed images.

Likelihood theory allows omputation of parameter estimates to-

gether with orresponding standard errors. The parameter esti-

mates are approximately multivariate normally distributed with

a ovariane matrix that is the inverse of the observed informa-

tion matrix.

The entry in row j and olumn k of the observed information

matrix is

− ∂2

∂θj∂θk
ℓ(θ), (13)

evaluated at θ = θ̂, where θ̂ is the ml estimate of θ. If the

oordinates of the entre of the bleahed disk are unknown there

will be two extra parameters in the likelihood.
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In Table 1 results from experiments with a Sodium Fluoresein

probe in polyethylene glyol are reported. Two series of experi-

ments with respetively 128×128 pixel images and 256 x 256 pixel

images were performed, and in eah series four repliates with

di�erently plaed bleahing entres were used. Results from the

experiments are shown in and for one of the repliates in more

detail in Figures 1 and 2.

Table 1: Results from an experiment with two repliate series. For the �rst four repliates

(with 128×128 pixels) 48 images were used and for the last four repliates (with 256 x

256 pixels) 18 images were used. The olumns D and s show di�usion oe�ients and

standard errors estimated by maximum likelihood, while D̄ and srepl show averages and

standard deviation from the repliate series.

Repliate No of pixels D (µm2/s) s (µm2/s) D̄(µm2/s) srepl (µm
2/s)

1 128×128 64.3 0.8

2 128×128 60.1 0.8

3 128×128 61.1 0.8

4 128×128 59.6 0.8 61.3 2.1

1 256×256 61.0 0.5

2 256×256 61.8 0.5

3 256×256 60.8 0.4

4 256×256 63.8 0.5 61.8 1.4

As a hek of the FRAP results given in Table 1 a orresponding

NMR di�usometry experiment was performed. It gave an esti-

mated di�usion oe�ient of 62.0 µm2/s with a standard error

of 1.9 µm2/s, whih is well in line with the results in Table 1.
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Estimation of partile onentration from single-partile

traking

Nano-sized �uoresent partiles observed in a mirosope an

typially be deteted in a rather thin retangular box suh as

shown in Figure 3.

To determine partile onentration we need to know the dimen-

sions of the detetion region. The extension in the horizontal

diretions an ususally be determined in a straightforward way

from the mirosope �eld of view.

But the size in the vertial diretion is muh more di�ult to

measure as it depends on a number of fators suh as the partile

detetion algorithm and the brightness of the observed partiles.

Suh properties are not �xed but an vary onsiderably between

experiments.

This problem is analyzed in Röding et al. (2008) and the vertial

dimension is estimated from the trajetory length distribution.
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Assume that the detetion region thikness is onsiderably smaller

than the horizontal dimensions whih means that partiles typi-

ally enter and leave the detetion region by moving upwards or

downwards.

The trajetory length distribution is then essentially determined

by the detetion region thikness. Roughly, short trajetory

lengths indiate a small thikness.

Figure 3: A mirosope detetion region modeled as a retangular box entred in the

liquid suspension where partiles move. Partiles outside the detetion region annot be

observed. The traking depth is 2a and the thikness of the suspension is 2A.
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Assume that we observe a partile at positions Xi at K equidis-

tant time-points ti = i∆t, i = 1, . . . , K, typially orresponding

to K onseutive frames in a video sequene.

The partile enters the detetion region at time t1 and leaves it

after K observed positions. The partile moves in 3D but we

simplify and onsider only the motion in 1D, in the z-diretion.

Assume that the partile enters and leaves the detetion region

from above or below � a good approximation when the vertile

dimension 2a of the detetion region is muh smaller than the

horizontal dimensions. Assume also that the detetion region

thikness 2a is muh smaller than the thikness 2A of the liquid

suspension volume.

Considering only 1D di�usion in the z-diretion we assume that

initially the partile position is uniformly distributed in the inter-

val [−A,A] and a partile outside the deteion region is assumed

to be uniformly distributed over [−A,−a] ∪ [a,A].
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Let f(z) denote the probability density of the position of a par-

tile that has just entered the detetion region. One an then

show that f(z) = 0 for |z| > a and

f(z) =
h(z)

∫ a

−a h(z)dz
, z ∈ [−a, a], (14)

where

h(z) =
1

2(A− a)

[

Φ

(

z +A√
2D∆t

)

− Φ

(

z + a√
2D∆t

)

+Φ

(

z − a√
2D∆t

)

− Φ

(

z −A√
2D∆t

)]

(15)

and Φ denotes the standard normal umulative distribution

funtion.

Let Zk denote the position of a partile and let fk denote the non-

normalized density of the partile position after k steps assuming

that K ≥ k, more preisely fk(z) = d/dz[P (Zk ≤ z and K ≥
k)], for k ≥ 1.

By de�nition fk(z) is zero outside [−a, a]. For the �rst position

of the partile in the detetion region we have f1 = f given by

(14). To ompute the probability density of the partile after

step 2, f1 is onvolved with the Gaussian propagator

G(z) =
1

2D∆t
φ
( z

2D∆t

)

, (16)

where φ is the density of a standardized normal variable. Sine

we assume that the partile stays in the detetion region K steps

it annot be outside the interval [−a, a] and the density has to

be trunated.
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Generally the density fk an be reursively omputed from fk−1

aording to

fk(z) =

{ ∫∞
−∞ fk−1(z0)G(z − z0) dz0, z ∈ [a, a],

0, z 6∈ [−a, a].
(17)

Computation of fk for k > 1 annot be performed analytially,

but there is a fast numerial sheme with probability densities

approximated by translates of a Gaussian kernel.

In Figure 4 the omputation of the sequene of densities fk, k ≥ 1

is illustrated.

Figure 4: Illustration of the proedure for omputing the trajetory length distribution.

Here f1(z) is the probability density of a partile that has just entered the detetion region

aording to equation (14). Trunation outside of [−a, a] of the onvolution f1⋆G(z) yields
the non-normalized density f2(z) whih integrates to the probability that the partile still

remains in the detetion region for a seond sampling point, and so forth.
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The probability that a partile stays in the detetion region for

at most k onseutive steps is

Pa(K ≤ k) = 1−
∫ a

−a

fk+1(z) dz, (18)

where the dependene on a is emphasized. The probability dis-

tribution for the trajetory length is then obtained from

Pa(K = k) = Pa(K ≤ k)− Pa(K ≤ k − 1). (19)

Suppose now that we have observed an ensemble of idential

partiles with known di�usion oe�ient. The assumption of

known (or well estimated) di�usion oe�ient is reasonable as it

an readily be estimated from the partile trajetories, ompare

(4).

Let us onsider trajetories with lengthK ≥ kmin. It is typial to

impose a lower threshold like K ≥ 3 or K ≥ 4 for the trajetory

length as shorter trajetories are more likely to be false positives.

Let Nk denote the number of observed trajetories of length k.

Then the log-likelihood funtion is

ℓ(a) =
∑

k≥kmin

Nk logPa(K = k|K ≥ kmin), (20)

where

Pa(K = k|K ≥ kmin) =
Pa(K = k)

Pa(K ≥ kmin)
(21)

and Pa(K ≥ kmin) is omputed from (18). The maximum likeli-

hood estimate â is the a-value that maximizes ℓ(a) in (20).
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After having estimated the traking depth a it is possible to

estimate the partile onentration. Let N̄ denote the mean

number of partiles per video frame. A suitable point estimator

of the partile onentration c is

ĉ =
N̄

8âaxay10−12
partiles/ml, (22)

where 2ax and 2ay are the lateral sizes in µm of the detetion

region.

We an estimate N̄ by ounting trajetories as follows. Let n

be the number of frames, and let Nk as earlier be the number

of observed trajetories of length k. The number of observed

partile positions is the sum of all trajetory lengths. Dividing

by the number of frames we get an estimate of the mean number

of partiles per frame, and we estimate N̄ by

N̄ =
1

p̂obs

1

n

∑

k≥kmin

kNk. (23)

The fator p̂obs orrets for underestimation of the onentration

due to disarding trajetories with length k < kmin,

p̂obs =

∑

k≥kmin
kPâ(K = k)

∑

k≥1 kPâ(K = k)
. (24)

With this orretion fator the estimate N̄ in (23) beomes ap-

proximately unbiased.
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The standard error of the onentration estimate an be assessed

by bootstrapping. It is here suitable to perform the bootstrap-

ping on video level, sine videos are (approximately) indepen-

dent.

Thus B bootstrap samples are obtained by sampling B times

with replaement from the set of videos, and from eah sample

the onentration estimates ĉ1, . . . , ĉB are omputed aording

to (22). This gives an approximate standard deviation estimate

σĉ =

(

1

B − 1

B
∑

i=1

(ĉi − cmean)
2

)1/2

, (25)

where cmean is the mean of the bootstrap estimates. This method

relies on that the videos are approximately equally long and in-

dependent.

The simulation study brie�y desribed below, leads to the on-

lusion that the traking depth and the onentration estimates

are approximately unbiased and that bootstrap errors for B = 50

are quite lose to the atual standard errors.

In the simulation study partiles were moving aording to 3D

random walk with time inrements ∆t and independent zero

mean normally distributed inrements with variane 2D∆t in

all three dimensions. Partiles moved in a ube with side length

2A = 40 µm, ompare Figure 3, with periodi boundary ondi-

tions.
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Partile trajetories were reorded when partiles entered the de-

tetion region. In the study three di�erent di�usion oe�ients,

D = 1 µm2/s, D = 2 µm2/s, and D = 5 µm2/s, and a series of

values for the detetion region thikness from 0.1 to 2 µm were

used. The onentration of partiles was c = 109 partiles/ml.

For eah ombination of di�usion oe�ient and detetion re-

gion thikness 20 000 simulations were performed and the mean

obtained estimates of a and c are shown in Figure 5.

Figure 5: Simulation study of the traking depth parameter a (upper) and the onen-

tration c (lower). Mean estimates are shown for D = 1 µm2/s (red irles), for D = 2
µm2/s (magenta squares), and for D = 5 µm2/s (blue diamonds) as funtions of the true

value of a. The true value of a is given by the blak solid line. The true onentration of

partiles was c = 109 partiles/ml. The inreasing bias (negative for a and positive for

c) for inreasing a is due to the 1D approximation in the model for the trajetory length

distribution.
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In addition to the results from simulations, results from experi-

ments with 0.19-µm and 0.52-µm partiles are also reported in

(?). In Figure 6 we see onentration estimates for 5 dilutions

with the 0.19-µm partiles. Estimated 95% on�dene intervals

obtained by bootstrapping for eah dilution are also shown.

Ideally the onentration estimates should fall on the solid straight

line shown. However, this line is not perfetly known as there

are some unertainties of the size of the partiles. Mean partile

diameter was estimated by use of light sattering and was found

to be 0.207 µm with a standard deviation of 0.008 µm. From

this a 95% on�dene interval for the solid line is obtained and

shown in Figure 6.

From Figures 5 and 6 we see that the method desribed performs

well both for simulated and experimental data.

Figure 6: Experimental results with estimated onentrations for di�erent dilutions of

0.19-µm partiles with estimated 95% on�dene intervals. The onentration as esti-

mated from the stok-solution onentration (solid line) and estimated 95% on�dene

intervals (dashed lines) are also shown.
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Estimation of partile onentration from partile ount

time series

The method for estimation of partile onentration disussed

in the previous setion requires partile traking, that is pairing

partiles from one frame to the following frame. This may be

di�ult for fast partiles and high onentrations. We will now

desribe a method whih only requires ounting the number of

partiles in eah frame but no traking of the individual partiles.

In Figure 7 we see an experimentally observed ount proess with

the number of partiles varying between about 18 and 37 parti-

les. Suh a proess of partile ounts we all a Smoluhowski

proess in honour of the Polish physiist M. von Smoluhowski

who 1906 developed an alternative to Einstein's desription from

1905 of Brownian motion.

Figure 7: An example of an experimentally observed Smoluhowski proess obtained by

ounting liposomes in whole blood, superimposed over a sample frame from the raw image

data, ompare Braekmans et al. 2010.

We will assume that partiles move in and out of a mirosope

detetion region of the type shown in Figure 3. In this setion

we will all the lateral dimensions of the detetion region 2ax
and 2ay and the vertial dimension 2az. Thus 2a in Figure 3

orresponds here to 2az.
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The number of partiles in a sequene of frames varies as illus-

trated in Figure 8.

Figure 8: Illustration of a Smoluhowski proess. Di�using partiles reside both inside

(yellow) and outside (grey) the detetion region. Partiles moving in and out of the

detetion region and the number of deteted partiles is �utuating, forming a random

time series.

Let us now desribe an approximate Markov statistial model for

the Smoluhowski proess. We assume that partiles move in-

dependently of eah other aording to a Brownian motion with

independent inrements in all three dimensions with mean zero

and variane 2D∆t, where ∆t is the interval between observa-

tions (frames).

Let Xn, n = 1, . . . , N , denote the number of partiles observed

in the nth frame. Then

Xn+1 = Xn −On + In, (26)

where On is the number of partiles, out of the Xn partiles ini-

tially present, exiting the detetion region, and In is the number

of partiles entering that region, between the two observations

Xn and Xn+1.

We shall assume that regardless of observation up to (and in-

luding) Xn the random variable In is Poisson distributed with

a parameter λ, that is,

Pr(In = k|X1, . . . , Xn) =
λk

k!
e−λ. (27)
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Another assumption, whih we shall make, is that given obser-

vations up to (and inluding) Xn, the random variable On is

binomially distributed with probability-parameter µ, more pre-

isely, that

Pr(On = j|X1, . . . , Xn) =

(

Xn

j

)

µj(1− µ)Xn−j. (28)

Based on these assumptions we approximate the distribution of

the proess of partile ounts (Xn, n ≥ 1) with a Markov model

with transition probabilities pij = Pr(Xn+1 = j|Xn = i) given

by

pij(λ, µ) = e−λ

j
∑

k=max(0,j−i)

λk

k!

(

i

i− j + k

)

µi−j+k(1− µ)j−k.

(29)

One an show that a Markov hain with transition probabilities

given by (29) has a stationary distribution whih is a Poisson

distribution with parameter λ/µ, that is

Pr(Xn = k) = πk =
(λ/µ)ke−λ/µ

k!
. (30)

Given the Markov assumption the joint distribution of partile

ounts X1, . . . , XN an be written

Pr(X1 = x1, . . . , XN = xN) = Pr(X1 = x1)

N
∏

k=2

Pr(Xk = xk|Xk−1 = xk−1).

(31)
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For a realization x1, . . . , xN we obtain a log-likelihood funtion

ℓ(λ, µ) = ℓ(λ, µ|x1, . . . , xN) given by

ℓ(λ, µ) = log
(λ/µ)x1e−λ/µ

x1!
+
∑

i,j

Nij log pij(λ, µ), (32)

where Nij is the number of transitions from state i to state j. We

obtain the maximum likelihood estimates λ̂ and µ̂ by maximizing

the log-likelihood ℓ(λ, µ). For estimation of the lateral dimension

parameter az it turns out that the ruial parameter is µ.

The parameter µ may be interpreted as the probability that a

partile uniformly distributed in the detetion region exits this

region in a time interval of length ∆t, ompare (28). With this

interpretation one an show that

µ = µ(az) = 1− F (ax, D)F (ay, D)F (az, D), (33)

with

F (a,D) =

√
2D∆t

2a

{

2a√
2D∆t

[

2Φ

(

2a√
2D∆t

)

− 1

]

+ 2φ

(

2a√
2D∆t

)

− 2φ(0)

}

, (34)

where Φ and φ denote the distribution funtion and the prob-

ability density of a standardized normal variable. Note that in

(33) we write µ = µ(az) beause here az is the important un-

known parameter.

The lateral dimension parameters ax and ay an be measured

diretly from the mirosope geometry and D here needs to be

estimated separately, for instane by separate partile traking.

Let us also note that in order to obtain valid standard errors

and on�dene intervals it is suitable, to use bootstrapping on

the 'video level'.
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To validate the suggested method both simulations and experi-

ments were used. In the simulations a predetermined number of

partiles were allowed to di�use in three dimensions in retan-

gular box, as the large box in Figure 3, with periodi boundary

onditions. Three di�erent di�usion oe�ients, D = 1, D = 2

and D = 5 µm2
s

−1
, and 20 di�erent az-values ranging between

0.1 and 2 µm were used.

The resulting estimates of the detetion depth parameter az and

the onentration are shown in Figure 9. From the �gure we see

that the method performs very well exept for some minor bias

for small az-values.

Figure 9: Simulation study of estimation of the detetion depth parameter az and the

onentration estimate C. For D = 1 µm2
s

−1
(red irles), D = 2 µm2

s

−1
(magenta

squares) and D = 5 µm2
s

−1
(blue diamonds) the mean estimates of az (divided by the

true value of az) and C are shown as funtions of the true value of az. The mean estimates

were omputed from 106 simulations for eah data point, and the true onentration of

partiles was C = 109 partile mL

−1
.
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To experimentally verify the method suggested two experiments

with �uoresent polymer nanospheres with diameter 0.2µm and

0.5µm were performed. We will here show the results for the

smaller diameter. A water dispersion of the partiles was diluted

by a fator of 1900, 2400, 3400, 5800 and 14800. The theoretial

onentration of partiles in partiles mL

−1
an be estimated

from

C
theoretial

=
6×1010×SρL

πρSd3
, (35)

where S = 1 is the weight perent of solids, with a relativ stan-

dard deviation of 5%, ρL = 1.00 g m−3
is the density of the

suspension, ρS = 1.05 g m−3
is the density of the solid partiles

(all values aording to the manufaturer).
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Further, using dynami light sattering the diameter of the par-

tiles was found to be d = 0.207µm with a standard deviation of

0.008µm (in orrespondene with the manufaturer results for

the partiular bath of nanospheres). Using the standard error-

propagation equation the theoretial partile onentration with

standard deviations were found for all dilutions and ompared

with the results from the method suggested.

The results are shown in Figure 10 and it lear from the �gure

that an exellent agreement was found between the theoretially

and experimentally obtained onentration values.

Figure 10: Estimated onentrations from an experiment with di�erent dilutions of 0.2

µm partiles with estimated 95% on�dene intervals ('inverse dilution' is a 'relative

onentration'). The onentration as estimated from the stok-solution onentration

(solid line) with estimated 95% on�dene intervals (dashed lines) is shown (upper). Fur-

ther, typial examples of the underlying Smoluhowski proesses are shown with olours

red/green/blue/yan/magenta in order of of dereasing onentration (lower).
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