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Bakground

Read LN Setion 15.8, �Parameter estimation. Likelihood and

least squares�.

Read LN Setion 15.9, �Linear and logisti regression�, in parti-

ular equations (15.42)-(15.45). Thus if

Y = Xβ + ǫ

the ordinary least squares estimate of β is

β̂ = (XTX)−1XTY

and this is what we use to ompute the OLS estimate

β̂
OLS

= (BTB)−1BTY

in LN equ. (5.28), orresponding to equ. (4) below in this leture.
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Statistial models for observations of random �elds

Measurements Yi, i = 1, . . . , n, at spatial loations s1, . . . , sn

B1, . . . , BK explanatory variables

Model

Yi =
K
∑

k=1

Bk(si)βk +X(si) + ǫi (1)

HereX = (X(s), s ∈ S) is a Gaussian random �eld and ǫ1, . . . , ǫn
are N(0, σ2

ǫ ) independent mutually and of X

Example: mean summer temperatures in ontinental US reorded

at 250 weather stations 1997, and �ve explanatory variables, o-

variates.
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Figure 1 shows the mean summer temperatures

Figure 1: Mean summer temperatures for 1997 reorded at 250 weather stations in on-

tinental US.

The ovariates we use are Longitude, Latitude, Altitude, East

oast and West oast, see Figure 2.

Longitude Latitude Altitude

East oast West oast

Figure 2: Five ovariates used in the analysis of summer temperature in ontintental US.
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Ordinary least squares (OLS) analysis

First approah: use ordinary least squares with �ve ovariates

but without the random �eld X , that is, use the model

Yi =
K
∑

k=0

Bk(si)βk + ǫi (2)

Here we also have inluded an interept β0 and orrespondingly

we put B0(si) = 1. The model an also be written

Y = Bβ + ǫ , ǫ ∼ N(0, σ2
ǫ I) . (3)

Look at estimation of the parameters in (3).
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Table 1: OLS (Ordinary Least Squares) analysis of US ontinental summer temperatures

1997 together with t-values (with 244 degrees of freedom) for test of the hypothesis

that the orresponding parameter is zero. The residual standard deviation estimate is

σ̂ǫ = 1.808.
Explaining variable Estimate β̂k Corresponding t-value
Interept 21.63 189.17

Longitude -1.29 -8.15

Latitude -2.70 -22.72

Altitude -2.67 -18.33

East oast -0.10 -0.74

West oast -1.31 -10.24

Table 1 shows the parameter estimates

β̂
OLS

= (BTB)−1BTY (4)

of the OLS analysis. The residual degrees of freedom is 250-

6= 244. The olumn of t-values, orresponds to tests that the

orresponding parameter is zero. The OLS regression surfae

estimate

Ŷ
OLS

= Bβ̂
OLS

(5)

of the temperature surfae is shown in Figure 3 and the OLS

regression residuals

res

OLS

= Y − Bβ̂
OLS

(6)

are shown in Figure 4. From Figure 4 we see that residuals

lose in loation seem highly orrelated, whih indiates that the

model ould be improved.
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Figure 3: OLS regression temperature surfae estimate

Figure 4: OLS regression temperature residuals
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Generalized least squares (GLS) analysis

First improvement of the model (3): Assume that

Y = Bβ + ǫ , ǫ ∼ N(0,Σ) , (7)

where Σ is a general positive-de�nite ovariane matrix. The

least squares estimate of β is the GLS (Generalized Least Squares)

estimate

β̂
GLS

= (BTΣ−1B)−1BTΣ−1Y (8)

with orresponding GLS regression surfae estimate

Ŷ
GLS

= Bβ̂
GLS

(9)

and GLS regression residuals

res

GLS

= Y −Bβ̂
GLS

. (10)

One problem with GLS: Typially the ovariane matrix Σ in (8)

is unknown and has to be estimated.
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Estimation of the ovariane matrix Σ

Look at the OLS residuals

Let si, i = 1, . . . , n, denote the loations for the measurements

Yi, i = 1, . . . , n.

Let ǫ̂i, i = 1, . . . , n, denote the orresponding OLS residuals.

Let rij = ||si − sj|| denote the distane between the loations si
and sj.

To see how OLS error residuals vary with the distane between

the loations, plot half squared residual di�erenes

vij = 0.5(ǫ̂i − ǫ̂j)
2

(11)

against loation distanes rij. With n = 250 loation we get

250 ∗ 249/2 = 31 125 loation pairs and plotting all would give a

�gure di�ult to grasp.

In Figure 5 we have therefore randomly hosen and plotted 1%

of all possible pairs (rij, vij).
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Figure 5: Half squared OLS residual di�erenes vij , see (11), plotted against loation

distane di�erenes rij .

In Figure 5 we see a tendeny that the vij's inrease with rij.

To quantify, use a binning proedure: partition the interval of

loation di�erenes into subintervals Ik, k = 1, . . . , K, of equal

length. Let

Hk = {(i, j) : i < j, rij ∈ Ik}

denote the set of distane pairs in Ik and put

vk =
1

|Hk|

∑

rij∈Hk

vij k = 1, . . . , K . (12)

The averages vk are plotted as irles against subinterval mid-

points hk, k = 1 . . . , K, in Figure 6.
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Figure 6: Average subinterval residual di�erenes vk, k = 1 . . . , K, see (12), after binning

plotted as irles against orresponding loation di�erene subinterval midpoints. The

�gure also shows the �tted semivariogram for a Matérn ovariane funtion.

To estimate the GLS ovariane matrix Σ, �t with the semivar-

iogram

γ(r; Θ) = σ2

[

1−
21−ν

Γ(ν)

(r

θ

)ν

Kν

(r

θ

)

]

+σ2
0, r = ||s− t|| , (13)

of a Matérn ovariane funtion with a nugget e�et σ2
0 added.

Let Θ denoting the vetor of all parameters.

Use weighted least squares and ompute

Θ̂ = argmin
Θ

K
∑

k=1

1

var(vk)
(vk − γ(hk; Θ))2 ≈ argmin

Θ

K
∑

k=1

|Hk|

(γ(hk; Θ))2
(vk − γ(hk; Θ))2 , (14)

Use the approximation in (14).
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Parameter estimates are given in Tables 2 and 3, and the semi-

variogram in Figure 6.

The orresponding GLS regression surfae estimate and residuals

are shown in Figures 7 and 8.

Table 2: GLS Matérn semivariogram parameter estimates

Parameter σ ν θ σ0 σǫ

Estimate 1.839 1.004 9.381 1.087 1.102

Table 3: OLS (Ordinary Least Squares) and GLS (Generalized Least Square) parameter

estimates for US ontinental summer temperatures 1997. Stars indiate that the orre-

sponding parameter is signi�antly di�erent from zero. The last row shows the residual

standard deviation estimate σ̂ǫ.

Explaining variable OLS estimate GLS estimate

Interept 21.63*** 20.47***

Longitude -1.29*** -1.00

Latitude -2.70*** -2.68***

Altitude -2.67*** -4.22***

East oast -0.10 -0.01

West oast -1.31*** -1.01***

σ̂ǫ 1.808 1.102
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Figure 7: GLS regression temperature surfae estimate

Figure 8: GLS regression temperature residuals
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Maximum likelihood (ML) analysis

One step further: use maximum likelihood estimation for the

model (1) assuming that X is a Gaussian spatial proess with

the Matérn ovariane funtion. Let Θ be a parameter vetor

onsisting of all parameters exept the β-parameters. Then

Y ∼ N(Bβ,Σ(Θ)) (15)

and the orresponding log-likelihood is

ℓ(Y ; β,Θ) = −
n

2
log(2π)−

1

2
log |Σ(Θ)|−

1

2
(Y−Bβ)TΣ(Θ)−1(Y−Bβ)

(16)

is optimized by numerial omputations.

The parameter estimates are given in the fourth olumn in Table

4. We see here the suessive improvements in going from OLS to

GLS and then to ML. In Figure 9 we ompare the semivariogram

estimates from GLS and ML.

In the omputation of the maximum likelihood estimates

(β̂, Θ̂) = argmax
(β,Θ)

ℓ(Y ; β,Θ) (17)

we use numerial optimization.
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Pro�ling

Trik: for given Θ the log-likelihood ℓ(β,Θ) is maximized for

β̂(Θ) = (BTΣ(Θ)−1B)−1BTΣ(Θ)−1Y . (18)

Then we ompute by numerial omputation

Θ̂ = argmax
Θ

ℓ(Y ; β̂(Θ),Θ) (19)

with β̂(Θ) given (18). Note that this numerial omputation is

performed with optimization over |Θ| parameters while diret

numerial optimization of (17) needs |β|+ |Θ| parameters. After

having obtained β̂(Θ) we use (18) and �nd β̂ as β̂(Θ̂). This

method of maximum likelihood omputation with redution of

the number of parameters in the numerial optimization is often

alled pro�ling or pro�le likelihood.
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REML

Problem with maximum likelihood estimation: parameter esti-

mates may be biased partiularly if the number p of parameters

in β is large.

Think of the estimation of the error variane σ2
ǫ in the model

(2). Let ei = Yi − (Bβ̂)i, i = 1, . . . , n, denote the residuals.

Then the maximum likelihood estimate of the error variane is

(
∑

i e
2
i )/n whih is biased ompared to the unbiased estimate

(
∑

i e
2
i )/(n− p).

To avoid (or redue) the bias problem one an use a method

alled restrited maximum likelihood (REML).

Basi idea in REML: for a model suh as (15) with p parameters

in β: onsider n−p linearly independent linear ontrasts of type

aTY of the observations that have expetation zero for all β.

From the likelihood of these n− p ontrasts we an estimate the

parameter Θ in a similar way as in pro�le likelihood. Then use

(18) to estimate β.
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Table 4: OLS (Ordinary Least Squares), GLS (Generalized Least Square) and ML pa-

rameter estimates for US ontinental summer temperatures 1997. Stars indiate that the

orresponding parameter is signi�antly di�erent from zero. The rows starting with σ̂,
ν̂, θ̂ and σ̂0 show estimates for the Matérn ovariane funtion parameters. The last row

shows the residual standard deviation estimate σ̂ǫ.

Explaining variable OLS estimate GLS estimate ML estimate

Interept 21.63*** 20.47*** 19.80***

Longitude -1.29*** -1.00 -0.53

Latitude -2.70*** -2.68*** -2.64***

Altitude -2.67*** -4.22*** -4.36***

East oast -0.10 -0.01 0.02

West oast -1.31*** -1.01*** -0.93***

σ̂ 1.839 3.048

ν̂ 1.004 1.188

θ̂ 9.381 10.204

σ̂0 1.087 0.811

σ̂ǫ 1.808 1.102 0.848
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Figure 9: Average subinterval residual di�erenes vk, k = 1 . . . , K after binning plotted

as irles against orresponding loation di�erene subinterval midpoints. The �gure also

shows �tted semivariograms for a Matérn ovariane funtion from GLS and ML analyses.
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