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Background

Read LN Section 15.8, “Parameter estimation. Likelihood and
least squares”.

Read LN Section 15.9, “Linear and logistic regression”, in partic-
ular equations (15.42)-(15.45). Thus if

Y =Xp+e€
the ordinary least squares estimate of 3 is
B=(XTX)"' X"y
and this is what we use to compute the OLS estimate
B..=(B"B)'B"Y

in LN equ. (5.28), corresponding to equ. (4) below in this lecture.



Statistical models for observations of random fields

Measurements Y;,7 = 1, ..., n, at spatial locations si,..., s,
B1, ..., Bg explanatory variables
Model
K
Y = Bilsi)fr+ X(si) + ¢ (1)
k=1

Here X = (X (s), s € §) is a Gaussian random field and €1, . . . , €,
are N(0,0?) independent mutually and of X

Example: mean summer temperatures in continental US recorded
at 250 weather stations 1997, and five explanatory variables, co-
variates.



Figure 1 shows the mean summer temperatures

Mean summer temperatures for 1997

Figure 1: Mean summer temperatures for 1997 recorded at 250 weather stations in con-
tinental US.

The covariates we use are Longitude, Latitude, Altitude, East
coast and West coast, see Figure 2.
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Figure 2: Five covariates used in the analysis of summer temperature in contintental US.




Ordinary least squares (OLS) analysis

First approach: use ordinary least squares with five covariates
but without the random field X, that is, use the model

K
Yi=> Bi(si)B + e (2)
k=0

Here we also have included an intercept £y and correspondingly
we put By(s;) = 1. The model can also be written

Y =BB+e€, e~N(0,0%). (3)

Look at estimation of the parameters in (3).



Table 1: OLS (Ordinary Least Squares) analysis of US continental summer temperatures
1997 together with t-values (with 244 degrees of freedom) for test of the hypothesis
that the corresponding parameter is zero. The residual standard deviation estimate is
g. = 1.808.

Explaining variable | Estimate Bk Corresponding t-value
Intercept 21.63 189.17
Longitude -1.29 -8.15
Latitude -2.70 -22.72
Altitude -2.67 -18.33
East coast -0.10 -0.74
West, coast -1.31 -10.24

Table 1 shows the parameter estimates

B,.= (B"B)"'BTY (4)
of the OLS analysis. The residual degrees of freedom is 250-
6= 244. The column of t-values, corresponds to tests that the
corresponding parameter is zero. The OLS regression surface
estimate

Y,.. = Bf,. (5)

of the temperature surface is shown in Figure 3 and the OLS
regression residuals

res,.. =Y — B BOLS (6)

are shown in Figure 4. From Figure 4 we see that residuals
close in location seem highly correlated, which indicates that the
model could be improved.



Regression estimate

Figure 3: OLS regression temperature surface estimate

Regression residuals

Figure 4: OLS regression temperature residuals



Generalized least squares (GLS) analysis

First improvement of the model (3): Assume that
Y =Bf+e, e~N(0,Y), (7)

where Y is a general positive-definite covariance matrix. The
least squares estimate of 3 is the GLS (Generalized Least Squares)
estimate

Ba. = (BTS'B) ' BTty (8)
with corresponding GLS regression surface estimate
Yo = Bl (9)
and GLS regression residuals

res,. =Y — BBGLS : (10)

One problem with GLS: Typically the covariance matrix ¥ in (8)
1s unknown and has to be estimated.



Estimation of the covariance matrix X
Look at the OLS residuals

Let s;,7 = 1,...,n, denote the locations for the measurements
Yi,i=1,...,n.

Let €;,7 =1,...,n, denote the corresponding OLS residuals.
Let r;; = ||s; — s;|| denote the distance between the locations s;
and s;.

To see how OLS error residuals vary with the distance between
the locations, plot half squared residual differences

Vijj = OE)(éZ — éj)z (11)

against location distances r;;. With n = 250 location we get
250 % 249 /2 = 31 125 location pairs and plotting all would give a
figure difficult to grasp.

In Figure 5 we have therefore randomly chosen and plotted 1%
of all possible pairs (r;;, v;;).
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Figure 5: Half squared OLS residual differences v;;, see (11), plotted against location
distance differences r;;.

In Figure 5 we see a tendency that the v;;’s increase with r;;.

To quantify, use a binning procedure: partition the interval of
location differences into subintervals I,k = 1,..., K, of equal
length. Let

Hy, ={(4,7) -1 < j,ri; € I}
denote the set of distance pairs in [, and put

1
k Tijer

The averages v} are plotted as circles against subinterval mid-
points hy, k =1..., K, in Figure 6.
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Figure 6: Average subinterval residual differences vy, k = 1..., K, see (12), after binning
plotted as circles against corresponding location difference subinterval midpoints. The
figure also shows the fitted semivariogram for a Matérn covariance function.

To estimate the GLS covariance matrix X, fit with the semivar-
jogram

ey —a[1- 2 (5) 5 (5) [+t r=ls—tll, (13)
; — 0 T T/ N\ v\, 0y, — _ )
N NOR g)| 70

of a Matérn covariance function with a nugget effect oF added.

Let © denoting the vector of all parameters.
Use weighted least squares and compute

2 e~ L 2 - - . O))2
CES argémn; var (o) (U —(hy; ©))* ~ argmin ) W(Uk —(h; ©))7, (14)

Use the approximation in (14).
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Parameter estimates are given in Tables 2 and 3, and the semi-
variogram in Figure 6.

The corresponding GLS regression surface estimate and residuals
are shown in Figures 7 and 8.

Table 2: GLS Matérn semivariogram parameter estimates
Parameter o v 0 00 O
Estimate | 1.839 | 1.004 | 9.381 | 1.087 | 1.102

Table 3: OLS (Ordinary Least Squares) and GLS (Generalized Least Square) parameter
estimates for US continental summer temperatures 1997. Stars indicate that the corre-
sponding parameter is significantly different from zero. The last row shows the residual
standard deviation estimate &..

Explaining variable | OLS estimate | GLS estimate
Intercept 21.63%** 20.47%**
Longitude -1.29%** -1.00
Latitude -2.70%** -2.68%**
Altitude -2.67F* -4, 22X
East coast -0.10 -0.01
West coast -1.31%K* -1.071%%*
O 1.808 1.102
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GLS estimate

Figure 7: GLS regression temperature surface estimate

GLS residuals

Figure 8: GLS regression temperature residuals
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Maximum likelihood (ML) analysis

One step further: use maximum likelihood estimation for the
model (1) assuming that X is a Gaussian spatial process with
the Matérn covariance function. Let © be a parameter vector
consisting of all parameters except the S-parameters. Then

Y ~ N(BB,%(0)) (15)

and the corresponding log-likelihood is

n 1 1 _
(Y 8,0) = = log(2m) =5 log [2(6)| =5 (Y = BB)'5(6) (Y = Bp)
(16)
is optimized by numerical computations.
The parameter estimates are given in the fourth column in Table

4. We see here the successive improvements in going from OLS to

GLS and then to ML. In Figure 9 we compare the semivariogram
estimates from GLS and ML.

In the computation of the maximum likelihood estimates

(B,(:)) = argmax ((Y; 3,0) (17)
(8,0)

we use numerical optimization.
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Profiling
Trick: for given © the log-likelihood ¢(3, ©) is maximized for

A

B3O)=(B's@©)'B)'B'LO) Y. (18)
Then we compute by numerical computation
O = argmax ((Y; 3(©), ©) (19)
e

with 3(©) given (18). Note that this numerical computation is
performed with optimization over |©| parameters while direct
numerical optimization of (17) needs |3|+|O| parameters. After
having obtained 4(©) we use (18) and find 8 as 8(©). This
method of maximum likelihood computation with reduction of
the number of parameters in the numerical optimization is often
called profiling or profile likelihood.
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REML

Problem with maximum likelihood estimation: parameter esti-
mates may be biased particularly if the number p of parameters
in [ is large.

Think of the estimation of the error variance ¢ in the model

(2). Let e, =Y, — (BB)i,i = 1,...,n, denote the residuals.
Then the maximum likelihood estimate of the error variance is
(3=, €?)/n which is biased compared to the unbiased estimate
(32ied)/(n—p).

To avoid (or reduce) the bias problem one can use a method
called restricted mazimum likelihood (REML).

Basic idea in REML: for a model such as (15) with p parameters
in (: consider n — p linearly independent linear contrasts of type
a'Y of the observations that have expectation zero for all 3.

From the likelihood of these n — p contrasts we can estimate the
parameter © in a similar way as in profile likelihood. Then use
(18) to estimate .
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Table 4: OLS (Ordinary Least Squares), GLS (Generalized Least Square) and ML pa-
rameter estimates for US continental summer temperatures 1997. Stars indicate that the
corresponding parameter is significantly different from zero. The rows starting with &,
U, 6 and 6, show estimates for the Matérn covariance function parameters. The last row
shows the residual standard deviation estimate &..

Explaining variable | OLS estimate | GLS estimate | ML estimate
Intercept 21.63*** 20.47H%* 19.80%**
Longitude -1.29%** -1.00 -0.53
Latitude S2.T0*H* -2.68%** -2.64%%*
Altitude -2.67FFE -4 QKX -4.36%**
East coast -0.10 -0.01 0.02
West coast -1.31%F* -1.01%** -(.93%**
o 1.839 3.048
v 1.004 1.188
0 9.381 10.204
Jo 1.087 0.811
O, 1.808 1.102 0.848
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< empirical
LS estimate
ML estimate

Figure 9: Average subinterval residual differences v,k = 1..., K after binning plotted
as circles against corresponding location difference subinterval midpoints. The figure also
shows fitted semivariograms for a Matérn covariance function from GLS and ML analyses.
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