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Ba
kground

Read LN Se
tion 15.8, �Parameter estimation. Likelihood and

least squares�.

Read LN Se
tion 15.9, �Linear and logisti
 regression�, in parti
-

ular equations (15.42)-(15.45). Thus if

Y = Xβ + ǫ

the ordinary least squares estimate of β is

β̂ = (XTX)−1XTY

and this is what we use to 
ompute the OLS estimate

β̂
OLS

= (BTB)−1BTY

in LN equ. (5.28), 
orresponding to equ. (4) below in this le
ture.
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Statisti
al models for observations of random �elds

Measurements Yi, i = 1, . . . , n, at spatial lo
ations s1, . . . , sn

B1, . . . , BK explanatory variables

Model

Yi =
K
∑

k=1

Bk(si)βk +X(si) + ǫi (1)

HereX = (X(s), s ∈ S) is a Gaussian random �eld and ǫ1, . . . , ǫn
are N(0, σ2

ǫ ) independent mutually and of X

Example: mean summer temperatures in 
ontinental US re
orded

at 250 weather stations 1997, and �ve explanatory variables, 
o-

variates.
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Figure 1 shows the mean summer temperatures

Figure 1: Mean summer temperatures for 1997 re
orded at 250 weather stations in 
on-

tinental US.

The 
ovariates we use are Longitude, Latitude, Altitude, East


oast and West 
oast, see Figure 2.

Longitude Latitude Altitude

East 
oast West 
oast

Figure 2: Five 
ovariates used in the analysis of summer temperature in 
ontintental US.
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Ordinary least squares (OLS) analysis

First approa
h: use ordinary least squares with �ve 
ovariates

but without the random �eld X , that is, use the model

Yi =
K
∑

k=0

Bk(si)βk + ǫi (2)

Here we also have in
luded an inter
ept β0 and 
orrespondingly

we put B0(si) = 1. The model 
an also be written

Y = Bβ + ǫ , ǫ ∼ N(0, σ2
ǫ I) . (3)

Look at estimation of the parameters in (3).
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Table 1: OLS (Ordinary Least Squares) analysis of US 
ontinental summer temperatures

1997 together with t-values (with 244 degrees of freedom) for test of the hypothesis

that the 
orresponding parameter is zero. The residual standard deviation estimate is

σ̂ǫ = 1.808.
Explaining variable Estimate β̂k Corresponding t-value
Inter
ept 21.63 189.17

Longitude -1.29 -8.15

Latitude -2.70 -22.72

Altitude -2.67 -18.33

East 
oast -0.10 -0.74

West 
oast -1.31 -10.24

Table 1 shows the parameter estimates

β̂
OLS

= (BTB)−1BTY (4)

of the OLS analysis. The residual degrees of freedom is 250-

6= 244. The 
olumn of t-values, 
orresponds to tests that the


orresponding parameter is zero. The OLS regression surfa
e

estimate

Ŷ
OLS

= Bβ̂
OLS

(5)

of the temperature surfa
e is shown in Figure 3 and the OLS

regression residuals

res

OLS

= Y − Bβ̂
OLS

(6)

are shown in Figure 4. From Figure 4 we see that residuals


lose in lo
ation seem highly 
orrelated, whi
h indi
ates that the

model 
ould be improved.
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Figure 3: OLS regression temperature surfa
e estimate

Figure 4: OLS regression temperature residuals
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Generalized least squares (GLS) analysis

First improvement of the model (3): Assume that

Y = Bβ + ǫ , ǫ ∼ N(0,Σ) , (7)

where Σ is a general positive-de�nite 
ovarian
e matrix. The

least squares estimate of β is the GLS (Generalized Least Squares)

estimate

β̂
GLS

= (BTΣ−1B)−1BTΣ−1Y (8)

with 
orresponding GLS regression surfa
e estimate

Ŷ
GLS

= Bβ̂
GLS

(9)

and GLS regression residuals

res

GLS

= Y −Bβ̂
GLS

. (10)

One problem with GLS: Typi
ally the 
ovarian
e matrix Σ in (8)

is unknown and has to be estimated.
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Estimation of the 
ovarian
e matrix Σ

Look at the OLS residuals

Let si, i = 1, . . . , n, denote the lo
ations for the measurements

Yi, i = 1, . . . , n.

Let ǫ̂i, i = 1, . . . , n, denote the 
orresponding OLS residuals.

Let rij = ||si − sj|| denote the distan
e between the lo
ations si
and sj.

To see how OLS error residuals vary with the distan
e between

the lo
ations, plot half squared residual di�eren
es

vij = 0.5(ǫ̂i − ǫ̂j)
2

(11)

against lo
ation distan
es rij. With n = 250 lo
ation we get

250 ∗ 249/2 = 31 125 lo
ation pairs and plotting all would give a

�gure di�
ult to grasp.

In Figure 5 we have therefore randomly 
hosen and plotted 1%

of all possible pairs (rij, vij).
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Figure 5: Half squared OLS residual di�eren
es vij , see (11), plotted against lo
ation

distan
e di�eren
es rij .

In Figure 5 we see a tenden
y that the vij's in
rease with rij.

To quantify, use a binning pro
edure: partition the interval of

lo
ation di�eren
es into subintervals Ik, k = 1, . . . , K, of equal

length. Let

Hk = {(i, j) : i < j, rij ∈ Ik}

denote the set of distan
e pairs in Ik and put

vk =
1

|Hk|

∑

rij∈Hk

vij k = 1, . . . , K . (12)

The averages vk are plotted as 
ir
les against subinterval mid-

points hk, k = 1 . . . , K, in Figure 6.
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Figure 6: Average subinterval residual di�eren
es vk, k = 1 . . . , K, see (12), after binning

plotted as 
ir
les against 
orresponding lo
ation di�eren
e subinterval midpoints. The

�gure also shows the �tted semivariogram for a Matérn 
ovarian
e fun
tion.

To estimate the GLS 
ovarian
e matrix Σ, �t with the semivar-

iogram

γ(r; Θ) = σ2

[

1−
21−ν

Γ(ν)

(r

θ

)ν

Kν

(r

θ

)

]

+σ2
0, r = ||s− t|| , (13)

of a Matérn 
ovarian
e fun
tion with a nugget e�e
t σ2
0 added.

Let Θ denoting the ve
tor of all parameters.

Use weighted least squares and 
ompute

Θ̂ = argmin
Θ

K
∑

k=1

1

var(vk)
(vk − γ(hk; Θ))2 ≈ argmin

Θ

K
∑

k=1

|Hk|

(γ(hk; Θ))2
(vk − γ(hk; Θ))2 , (14)

Use the approximation in (14).
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Parameter estimates are given in Tables 2 and 3, and the semi-

variogram in Figure 6.

The 
orresponding GLS regression surfa
e estimate and residuals

are shown in Figures 7 and 8.

Table 2: GLS Matérn semivariogram parameter estimates

Parameter σ ν θ σ0 σǫ

Estimate 1.839 1.004 9.381 1.087 1.102

Table 3: OLS (Ordinary Least Squares) and GLS (Generalized Least Square) parameter

estimates for US 
ontinental summer temperatures 1997. Stars indi
ate that the 
orre-

sponding parameter is signi�
antly di�erent from zero. The last row shows the residual

standard deviation estimate σ̂ǫ.

Explaining variable OLS estimate GLS estimate

Inter
ept 21.63*** 20.47***

Longitude -1.29*** -1.00

Latitude -2.70*** -2.68***

Altitude -2.67*** -4.22***

East 
oast -0.10 -0.01

West 
oast -1.31*** -1.01***

σ̂ǫ 1.808 1.102
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Figure 7: GLS regression temperature surfa
e estimate

Figure 8: GLS regression temperature residuals
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Maximum likelihood (ML) analysis

One step further: use maximum likelihood estimation for the

model (1) assuming that X is a Gaussian spatial pro
ess with

the Matérn 
ovarian
e fun
tion. Let Θ be a parameter ve
tor


onsisting of all parameters ex
ept the β-parameters. Then

Y ∼ N(Bβ,Σ(Θ)) (15)

and the 
orresponding log-likelihood is

ℓ(Y ; β,Θ) = −
n

2
log(2π)−

1

2
log |Σ(Θ)|−

1

2
(Y−Bβ)TΣ(Θ)−1(Y−Bβ)

(16)

is optimized by numeri
al 
omputations.

The parameter estimates are given in the fourth 
olumn in Table

4. We see here the su

essive improvements in going from OLS to

GLS and then to ML. In Figure 9 we 
ompare the semivariogram

estimates from GLS and ML.

In the 
omputation of the maximum likelihood estimates

(β̂, Θ̂) = argmax
(β,Θ)

ℓ(Y ; β,Θ) (17)

we use numeri
al optimization.
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Pro�ling

Tri
k: for given Θ the log-likelihood ℓ(β,Θ) is maximized for

β̂(Θ) = (BTΣ(Θ)−1B)−1BTΣ(Θ)−1Y . (18)

Then we 
ompute by numeri
al 
omputation

Θ̂ = argmax
Θ

ℓ(Y ; β̂(Θ),Θ) (19)

with β̂(Θ) given (18). Note that this numeri
al 
omputation is

performed with optimization over |Θ| parameters while dire
t

numeri
al optimization of (17) needs |β|+ |Θ| parameters. After

having obtained β̂(Θ) we use (18) and �nd β̂ as β̂(Θ̂). This

method of maximum likelihood 
omputation with redu
tion of

the number of parameters in the numeri
al optimization is often


alled pro�ling or pro�le likelihood.
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REML

Problem with maximum likelihood estimation: parameter esti-

mates may be biased parti
ularly if the number p of parameters

in β is large.

Think of the estimation of the error varian
e σ2
ǫ in the model

(2). Let ei = Yi − (Bβ̂)i, i = 1, . . . , n, denote the residuals.

Then the maximum likelihood estimate of the error varian
e is

(
∑

i e
2
i )/n whi
h is biased 
ompared to the unbiased estimate

(
∑

i e
2
i )/(n− p).

To avoid (or redu
e) the bias problem one 
an use a method


alled restri
ted maximum likelihood (REML).

Basi
 idea in REML: for a model su
h as (15) with p parameters

in β: 
onsider n−p linearly independent linear 
ontrasts of type

aTY of the observations that have expe
tation zero for all β.

From the likelihood of these n− p 
ontrasts we 
an estimate the

parameter Θ in a similar way as in pro�le likelihood. Then use

(18) to estimate β.
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Table 4: OLS (Ordinary Least Squares), GLS (Generalized Least Square) and ML pa-

rameter estimates for US 
ontinental summer temperatures 1997. Stars indi
ate that the


orresponding parameter is signi�
antly di�erent from zero. The rows starting with σ̂,
ν̂, θ̂ and σ̂0 show estimates for the Matérn 
ovarian
e fun
tion parameters. The last row

shows the residual standard deviation estimate σ̂ǫ.

Explaining variable OLS estimate GLS estimate ML estimate

Inter
ept 21.63*** 20.47*** 19.80***

Longitude -1.29*** -1.00 -0.53

Latitude -2.70*** -2.68*** -2.64***

Altitude -2.67*** -4.22*** -4.36***

East 
oast -0.10 -0.01 0.02

West 
oast -1.31*** -1.01*** -0.93***

σ̂ 1.839 3.048

ν̂ 1.004 1.188

θ̂ 9.381 10.204

σ̂0 1.087 0.811

σ̂ǫ 1.808 1.102 0.848
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Figure 9: Average subinterval residual di�eren
es vk, k = 1 . . . , K after binning plotted

as 
ir
les against 
orresponding lo
ation di�eren
e subinterval midpoints. The �gure also

shows �tted semivariograms for a Matérn 
ovarian
e fun
tion from GLS and ML analyses.
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