
Statistics of Imaging

Mats Rudemo

May 11, 2018



STATISTICS OF IMAGING
Copyright Mats Rudemo, Department of Mathematical Statistics, Chalmers University

of Technology, 412 96 Gothenburg, Sweden

E-mail: rudemo@chalmers.se

The current version has been updated by the addition of Chapter 10 (earlier there was
just a sketch of this chapter).

Preface

The object of these notes is to provide an introduction to several subjects connected with
statistical inference from images and spatial data. Image analysis and spatial statistics
are extensive research fields growing with considerable speed. Thus only some selected
parts can be covered here and the choice of subjects is, of course, heavily influenced by
my experience and interests.

The first chapter “Images” includes a very brief introduction to basic digital image
processing, including image acquisition, image filtering and object feature measurements.
After that pattern recognition, typically based on features obtained from objects identified
in images, is treated at some length. Both the case with known classes, called discrim-
ination or supervised learning and the case with unknown classes, called clustering or
unsupervised learning are covered. The first part is concluded by a chapter on statistical
models for images. One class of models discussed consists of Bayesian models with a
Markov random field prior and with observation noise that is pixel-wise independent and
identically distributed.

The chapter on “Spatial Statistics” starts with some basic properties of spatial random
processes: covariance properties and prediction (kriging). Spatial point processes are
treated in some detail including image models constructed from point processes. The
second part is concluded by a brief introduction to shape analysis and the related problems
of image warping and image matching.

The third part “Applications” contains examples of image analysis applied to problems
in biology, bioinformatics and remote sensing. The examples cover analysis of data from
microarray (DNA chip) images, two-dimensional electrophoresis and aerial photographs
of forests.
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PART 1. IMAGES
[Here should follow about one page preamble]
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Chapter 1

Digital images

A digital image may be regarded as a matrix of pixels (picture elements), f = (fij) =
(fij, i = 1, . . . , m, j = 1, . . . , n). Here fij ∈ V where V is the set of possible pixel values,
e.g. V = {0, 1} for a binary image, V = {0, . . . , 255} for a grey level image with 256 grey
levels, conveniently coded as bytes, and V = {0, . . . , 255}3 for a colour image with 256
levels in each of the three colours Red, Green and Blue. Thus each pixel is specified both
by a location (i, j) and a pixel value fij . The first location index i specifies the row and
the second index j the column. Rows are counted either from above (most common in
the image processing literature) or from below, while columns are counted from the left.

1.1 Examples of images

Example 1.1. Aerial photographs of a thinning experiment.
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Figure 1.1: Aerial photograph of the thinning experiment KU in northern Sealand with
Norway spruce trees. The position of the airplane at image acqusition was 560 m above
“Nadir”.

Figure 1.1 shows an aerial photograph of the thinning experiment KU, in northern
Sealand, with six subplots which were subject to different thinning treatments (Dralle &
Rudemo, 1996). The six treatments were

A No thinning
B Light thinning
C Medium-heavy thinning
D Very heavy thinning
D–B In the youth very heavy thinning, later light thinning
R Heavy row thinning

The photograph was acquired from an airplane at the altitude 560 m above the point
”Nadir” in Figure 1.1. An enlargement of the subplot D is shown Figure 1.2.
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Figure 1.2: Detail of the aerial photograph in Figure 1.1 covering the subplot D with very
heavy thinning.

A further enlargement of the southeast corner of subplot D is shown in Figure 1.3.
Here the individual pixels, each corresponding to a square of about 15 cm × 15 cm at
ground level, are visible.

In Figure 1.4 we see subplot D from a photograph acquired with the airplane in a
position to the northwest of the experimental area. The time of acquisition was August
4 at 10:08 AM, which implies that the sun was in the direction southeast, and the trees
were thus backlighted in Figure 1.4.

One object of the image analysis of the photographs obtained in this experiment was
to estimate the number of trees in the different subplots and to estimate the positions of
the tree tops. This application is further discussed in Chapter 10 in Part 3.
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Figure 1.3: Detail of the aerial photograph in Figure 1.2 showing part of the southeastern
corner of subplot D.

�
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Figure 1.4: Detail of aerial photograph of subplot D of backlighted Norway spruce trees
acquired from an oblique angle with the airplane located to the northwest of the experi-
mental area shown in Figure 1.1.

Example 1.2. Weed seeds.

Figures 5 and 6 show images of 25 seeds of each of two weed species: curly dock, Rumex
crispus, and thyrse sorrel, Rumex thyrsiflorus. The images were obtained in the study
(Petersen, 1992), where seeds from 40 weed species were studied. The object was to find
features from images of the weed seeds which enable recognition of the individual species.
Problems of this type will be discussed in Chapter 2 on pattern recognition.
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Figure 1.5: Images of seeds of Rumex crispus.

In Figures 1.5 and 1.6 we see varying orientations and sizes of the seeds but also some
additional variation in the form of the contours. An important problem for series of
images of this type, in addition to the previously mentioned pattern recognition, is to
estimate some kind of average shape of a seed from a given species, and also to quantify
in terms of statistical distributions the probable deviations from this average shape. In
Chapter 7 on image warping and image matching such problems will be treated.

�
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Figure 1.6: Images of seeds of Rumex thyrsiflorus.

Example 1.3. Weed plants at an early stage.

Weed and crop classification was studied by (Andersson, 1998) using a dataset with 27
images from each of 8 plant species: carrot, Daucus carota, which was the crop, and 7
weed species. Figure 1.7 shows photographs of two carrot plants and two ladythumb
smartweed plants. Similarly, Figure 1.8 shows photographs of two fumitory plants and
two corn spurry plants.
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Figure 1.7: Above two images of plants of carrot, Daucus carota, L., and below two
images of plants of ladythumb smartweed Polygonum persicaria, L.
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The images were obtained with a Canon EOS500N still camera with a 80 mm zoom
lens and mounted on a tri-pod pointing directly towards ground. The images obtained
were in colour, although they are shown as grey-level images in Figures 1.7 and 1.8. The
corresponding colour images may be obtained from
http://www.math.chalmers.se/˜rudemo/Images/WeedPlants/WeedPlants.html

The number of pixels of the images was originally 512×768 but was reduced to 512×512
by cutting. The pixel width corresponds to 0.195 mm at ground level.

Figure 1.8: Above two images of plants of fumitory, Fumaria officinalis, L., and below
two images of plants of corn spurry, Spergula arvensis, L.

�
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Example 1.4. Two-dimensional electrophoresis images.

Yeasts are uni-cellular fungi which reproduce rapidly and thus are highly suitable as
model systems for more complicated eucaryotic species such as mammals. In particular,
the genome of baker’s yeast, Saccharomyces cervisiae, was fully sequenced by (Goffeau
et al., 1996).

Figures 1.9 and 1.10 show four images from an experiment with baker’s yeast and two
treatments corresponding to growth under normal conditions and growth under stress
with salt added to the nutrition solution, see (Gustafsson et al., 2002). In the experiment
there were five repetitions both for the standard treatment, corresponding to growth
in a standard solution, and the treatment with growth under salt stress, which in this
experiment corresponds to growth in a 1 M sodium chloride solution. Figure 1.9 shows
the images obtained from two repetitions with the standard treatment and Figure 1.10
shows images from two repetitions with salt added.

Each spot in a 2D electrophoresis image such as in Figures 1.9 and 1.10 corresponds
to a protein with a specific isoelectric point (pI) determined by isoelectric focusing in the
horizontal direction as a first step and a specific molecular weight determined by vertical
separation in a second step. For instance, under ideal conditions the protein molecules
perform in the second

Figure 1.9: Images from 2D gel electrophoresis of baker’s yeast grown in a standard
solution.
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step a vertical Brownian motion with drift from a starting position at the top such that
small molecules travel a longer way than large molecules. Typically one can separate
proteins in the pH range, or more precisely the pI range, 4–7 and with molecular weights
in the range 5–200 kDa. Under favourable conditions thousands of proteins may thus be
resolved, and the size of a spot in the electrophoresis image is a measure of the level of
the corresponding protein.

The basic problem in an experiment such as the one described with yeast grown under
standard conditions and under salt stress is to find those proteins that are upregulated
and those that are downregulated under stress. As a first step we need to find those spots
in the four images in Figures 1.9 and 1.10 that correspond to each other, that is, which
measure the same protein. This is called matching of the images and may be performed
by a warping of images onto each other. It is clear from an inspection of the two images in
Figure 1.9, and similarly the two images in Figure 1.10, that also for experimental units
that have received the same treatment the locations of spots corresponding to one protein
can vary considerably due to random variation. And this random variation seems to be
more complicated than the variation corresponding to a Brownian motion as referred to
above.

Figure 1.10: Images from 2D gel electrophoresis of baker’s yeast grown under stress in a
solution with salt added.

�
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Example 1.5. Two-colour spotted microarrays.

In microarray analyses the expression level of thousands of genes can be estimated simulta-
neously. In two-colour spotted microarray analysis DNA fragments corresponding to different
genes are typically arrayed on glass slides in spots with a diameter of the order 100 µm.

Gray scale image, 020725cy53x8l30g40avg4.tif, log−transformed Gray scale image, 020725cy3wtl30g40avg4.tif, log−transformed

Figure 1.11: Images from an experiment with two varieties of Arabidopsis, Cy5 channel (left)
for a transgenic line and Cy3 channel (right) for the wild-type in a two-colour spotted microarray
experiment with 452 genes. The upper half with 20 rows contains all the 452 genes and the lower
half is a repetition of the upper half. The images are shown inverted (high intensity shown as
black) and a logarithmic scale transformation of intensities is also used.

Complementary DNA (cDNA) is synthesized from two sources of RNA of different origins and
labeled with different fluorescent dyes, for instance, one with the green dye Cy3 and the other
with the red dye Cy5. The pools of labeled cDNA are mixed together and allowed to hybridize
with the DNA fragments in the different spots on the glass slide. The slide is illuminated with
two laser light sources exciting the two fluorescent dyes and the intensity of emitted fluorescent
light is measured at two suitably chosen wavelengths.

Figure 1.11 shows grey-level images for the two channels of one array in an experiment
comparing RNA from two varieties of Arabidopsis plants, transgenic line 3x8 and wild-type wt
(Kristensen et al., 2005). For clarity of display the images are shown inverted, that is black
corresponds to high intensity levels and before inversion a logarithmic transformation is also
used. Data transformations and spot shape models for spotted microarrays are discussed in
(Ekstrøm et al., 2004) and applied to data from this experiment.
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Gray scale image, 020725cy53x8l30g40avg4.tif

Gray scale image, 020725cy3wtl30g40avg4.tif

Figure 1.12: Blow-up of rows 6–8 and columns 1–4 in Figure 1.11 with the Cy5 channel for the
transgenic line above and the Cy3 channel for the wild-type below.

Figure 1.12 shows a blow-up with 3 rows and 4 columns for both channels. One crucial

question analysed in experiments of this type is to find out which genes that are differentiably

expressed, that is show significantly higher or lower intensities. In this experiment it turned

out that remarkably few genes in the transgenic line were affected in the comparison with the

wild-type. One of the few genes affected was the gene that corresponds to the first spot in the

middle row in Figure 1.12. As indicated in the figure it was upregulated in the transgenic line.

However, random errors are large in this type of experiments and typically one needs to repeat

the experiment for several slides and make a subsequent statistical analysis of the results, cf.

Chapter 9. �
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Example 1.6. Diffusing particles.

Colloidal particles in a suspension perform random motion essentially as a three-dimensional
Brownian motion with the diffusion coefficient as a crucial parameter. However, as the
particles come close they interact and this interaction may be described by an interaction
potential.

A series of images were obtained by video microscopy, see (Kvarnström, 2005), in a
joint project with Lennart Lindfors, AstraZeneca, Mölndal. The object in this project
was to estimate the diffusion coefficient and, if possible, also the particle interaction
potential.

Figure 1.13: Image obtained by video microscopy showing diffusing particles. Particles
in phocus are shown as small distinct black objects.
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Images of the diffusing particles were obtained with a time interval of 0.02 seconds
between images, and two consecutive images are shown in Figure 1.13 nd Figure 1.14.
Particles in focus are shown as small distinct black objects, while particles out of phocus
are extended, the degree of extension depending on the distance to the phocal plane. An
object corresponding to a particle out of phocus is further either white or black in its
central part corresponding to the particle being above or below phocus, respectively.

Figure 1.14: Image obtained by video microscopy showing diffusing particles. This image
was obtained 0.2 seconds after the image in Figure 1.13.

�

Example 1.7. Handwritten digits.

The MNIST database of handwritten images consists of a training set with 60000 digits
and an evaluation set of 10000 digits, see (LeCun et al., 1998) and

http://yann.lecun.com/exdb/mnist/

Examples of images from this set is given in Figure 1.15, actually the first 100 digits
from the training set. The digit images are 28x28 pixel grey level images obtained from
20x20 pixel binary black and white images. The MNIST dataset has been used extensively
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as a proving ground for pattern recognition methods and it will also be used in these notes
in Chapter 2.

Figure 1.15: Examples of 100 handwritten digits from the MNIST database.

�
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1.2 Image filtering

Let w = (wk,l) = (wk,l, k = −p,−p + 1, . . . p, l = −p,−p + 1, . . . , p) be a matrix of real
numbers. A new image g may be constructed from a given image f by linear filtering,

gij =

p
∑

k=−p

p
∑

l=−p

wk,lfi+k,j+l. (1.1)

A simple filter example is a 3×3 averaging filter

w =





w−1,−1 w−1,0 w−1,1

w0,−1 w0,0 w0,1

w1,−1 w1,0 w1,1



 =
1

9





1 1 1
1 1 1
1 1 1



 . (1.2)

A more smooth averaging filter is obtained by use of circular 2D Gaussian filter with
a variance parameter σ2,

wk,l = c exp(− 1

2σ2
(k2 + l2)), (1.3)

where c is chosen such that
p
∑

k=−p

p
∑

l=−p

wk,l = 1, (1.4)

and p is chosen so that wk,l is small outside the region determined by |k| ≤ p and |l| ≤ p.
Chose, for instance, p to be the smallest integer which is at least as large as 3σ.

Care has to be taken in (1.1) when the indices in the summation fall outside the original
image. One possibility is to restrict the filtering to those pairs (i, j) for which all indices
i+k and j+ l in (1.1) fall inside the image f , another possibility is to extend the original
image in a suitable way, and a third possibility is to modify the filter close to the image
edges.

The averaging filter (1.2) is relatively vulnerable to large errors in individual pixels. A
more robust filter is the nonlinear median filter which for 3×3 neighbourhood is given by

gij = median{fi+k,j+l : |k| ≤ p, |l| ≤ p} (1.5)

with p = 1. Here median(A) denotes the median for a finite set A of real numbers.

Image filtering can also be used to emphasize edges. Thus a linear filter with

w =





w−1,−1 w−1,0 w−1,1

w0,−1 w0,0 w0,1

w1,−1 w1,0 w1,1



 =
1

6





−1 0 1
−1 0 1
−1 0 1



 . (1.6)

will tend to emphasize vertical edges, and similarly the filter

w =





w−1,−1 w−1,0 w−1,1

w0,−1 w0,0 w0,1

w1,−1 w1,0 w1,1



 =
1

6





−1 −1 −1
0 0 0
1 1 1



 . (1.7)

will tend to emphasize horisontal edges.
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Figure 1.16: Upper part: Smoothed version of the image in Figure 1.2 by use of circular
2D Gaussian filter with σ = 4.5 pixel-widths. Lower part: The same image viewn in
perspective as a 3D surface with light intensity as the vertical coordinate.

Example 1.8. Aerial photographs of a thinning experiment. Continuation.

Let us smooth the image in Figure 1.2 by use of a circular 2D Gaussian filter with a suit-
ably chosen parameter σ to see if we can estimate the locations of the trees as ’whiteness’
maxima in the smoothed image. With σ = 4.5 we find the image in Figure 1.16.

From Figure 1.16 and Figure 1.2 we see that maxima in the smoothed image seem to
correspond well to the location of the trees. This is also indicated by Figure 1.17 which
shows the locations of the maxima of the smoothed image (Here we have only included
maxima which have a distance from the nearest edge which exceeds 3σ.)
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Figure 1.17: Location of maxima in Figure 1.16.

�

1.3 Histograms, thresholding and segmentation

An important characteristic of an image is its histogram. For a grey scale image, f =
(fij) = (fij , i = 1, . . . , m, j = 1, . . . , n), where fij ∈ V with V as a set of real numbers,
the histogram is defined as

hk = card({(i, j) : fij ∈ Ik}), k = 1, . . . , K, (1.8)

where card(A) denotes the number of elements in the set A and {I1, . . . , IK} is a set of
disjoint intervals with V as there union.

If an image consists of two parts with grey levels that do not overlap too much the
histogram can be used to find a threshold level t which enables us to divide the image into
two segments corresponding to these parts. Thus we can define a binary image b = (bij)
with two levels, 0 and 1, by putting

bij =

{

0 if fij ≤ t
1 if fij > t.

(1.9)

Segmentation by use of a threshold level found by inspection of the histogram of an image
is illustrated in the following example.
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Example 1.9. Weed seeds. Continuation.

In the upper part Figure 1.18 we see one of the seeds from Figure 1.5, actually the seed
in the lower left corner rotated 90 degrees. In the lower part of the figure we see the
corresponding histogram.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1000

2000

3000

4000

5000

6000

7000

Figure 1.18: Above an image of a Rumex crispus seed and below the corresponding
histogram.

It seems clear that a threshold level somewhere between t = 0.5 and t = 0.8 would
be suitable. In Figure 1.19 we see segmentations with the levels t = 0.5, upper left,
t = 0.8, upper right, and t = 0.65, lower left. In the lower right part of the image we
see a segmentation obtained from the lower left image by filling out the white “holes”, an
operation that can be performed in several ways.

�
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Figure 1.19: Binary images obtained by thresholding of the image in Figure 1.18 with
the levels t = 0.5 (upper left), t = 0.8 (upper right), and t = 0.65 (lower left). The lower
right image is obtained from the lower left image by filling out holes.
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1.3.1 Segmentation by a normal mixture model

In many cases, as in Example 1.9 with a bimodal histogram it is fairly easy to separate
components in a mixture. We will now describe a normal mixture model which can be
used to get a precise threshold value and which also can be used in cases where there are
not two modes in the histogram but one component only shows up as a prolonged tail.
We suppose that the sets Ik in (1.8) consist of consecutive intervals with midpoints xk
and equal lengths ∆. Let φ(x) = (1/

√
2π) exp (−x2/2) and put

f(x; p1, µ1, σ1, µ2, σ2) =
p1
σ1
φ((x− µ1)/σ1) +

(1− p1)

σ2
φ((x− µ2)/σ2). (1.10)

We note that f(·; p1, µ1, σ1, µ2, σ2) integrates to one, and if the interval length ∆ is small
we should have

∆
∑

k

f(xk; p1, µ1, σ1, µ2, σ2) ≈ 1. (1.11)

Let n =
∑

k hk denote the total number of pixels and assume that

hk ≈ n∆f(xk; p1, µ1, σ1, µ2, σ2). (1.12)

To estimate the parameters p1, µ1, σ1, µ2, σ2 we minimize

Q(p1, µ1, σ1, µ2, σ2) =
∑

k

(hk − n∆f(xk; p1, µ1, σ1, µ2, σ2))
2. (1.13)

Example 1.10. Weed plants at an early stage. Continuation

In the upper left part of Figure 1.20 we see the grey level image of a weed plant. The
original a image is colour a image with three channels, blue, green and red. To separate
plant pixels from soil pixels we first regard the green channel which is shown in the upper
right part of Figure 1.20. To improve the separation of plant and soil pixels we consider
the normalized green colour, which for pixel (i, j) has the pixel value

gij = Round( 255Gij / (Bij +Gij +Rij) + 1), (1.14)

where Bij , Gij and Rij are the blue, green and red channel values for the colour image, and
Round(·) denotes rounding to the nearest integer. The normalized green image is shown
in the lower left part of Figure 1.20. The histogram for the normalized green channel
is shown in the left part of Figure 1.21. Can you suggest why it is useful to normalize
the green channel before computing the histogram? Now we fit the normal mixture
model given by (1.10) and (1.12) for the normalized green channel by minimizing Q in
(1.13) with the restriction µ1 > µ2. Thus the first component should correspond to plant
pixels. Let p̂1, µ̂1, σ̂1, µ̂2, σ̂2 denote the estimated parameters. In Figure 1.21 we show the
histogram and the fitted normal components.

To segment an images we could then choose to consider a pixel (i, j) as a plant pixel
if gij > T , where the threshold T̂ is obtained by solving the equation

p̂1
σ̂1
φ((T̂ − µ̂1)/σ̂1) =

(1− p̂1)

σ̂2
φ((T̂ − µ̂2)/σ̂2) (1.15)
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(A) (B)

(C) (D)

Figure 1.20: Images of a weed plant, lamb’s quarter Chenopodium album, L., (A) grey
scale image, (B) green channel image, (C) normalized green channel image, and (D)
binary black and white image after thresholding.
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Figure 1.21: Left: histogram for the normalized green channel shown in the lower left
part of Figure 1.20 and the two components shown as fully drawn and dashed curves.
Right: the two components shown with a log scale on the vertical axis; here the threshold
where the two curves cross can be seen.

and otherwise as a soil pixel. In the lower right part of Figure 1.20 we show the resulting
binary black and white image obtained by thresholding the normalized green channnel.
For the image shown in Figure 1.20 we find the following parameter estimates for the two
component normal mixture model

p̂1 = 0.263, µ̂1 = 126, σ̂1 = 7.22, µ̂2 = 79.0, σ̂2 = 3.02, T̂ = 93.6. (1.16)

�
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1.4 The Hough transform

Often one tries to find curves of specific types in images, for instance circles, ellipses or
lines. A useful method to find such curves is the Hough transform (Hough, 1959; Duda
& Hart, 1972). We shall here only look at the use of the Hough transform to find straight
lines.

v

r

r = x cos(v) + y sin(v)

x

y

Figure 1.22: Representation of line in terms of angle and distance to origo.

Suppose that we have found a set S of points in an image, such as the set of tree tops
in Figure 1.17. We are interested in finding out whether some of these points lie on lines.
It is here convenient to use a representation of a line in terms of the distance r to the
origin and the angle that the normal from the origin to the line forms with the horizontal
axis,

r = xcos(v) + ysin(v), (1.17)

see Figure 1.22. A point (x, y) in the original image corresponds now to a curve in the
(r, v)-plane obtained by regarding r as a function of v in (1.17) for fixed (x, y). In practice
we discretize the (r, v)-plane into pixels regarding it as an image H and start by assigning
zero to all the pixels in H . Then for each point (x, y) ∈ S we add one to all pixels in H
which the curve (1.17) passes through.

For the set S of maxima in Figure 1.17 the corresponding Hough transform for finding
lines is shown in Figure 1.23. In particular one finds in Figure 1.23 three maxima in
the upper left part all corresponding to the angle v equal to 16 degrees (a corresponding
tick mark is placed on the horizontal axis) and three distances r (marked with three tick
marks on the vertical axis close to the maximal distance rmax. The corresponding three
lines are shown in Figure 1.24.

The three lines found in Figure 1.24 correspond actually to three lines in plot R in
Figure 1.1 with “Heavy row thinning”, that is from the original planting in rows thinning
is performed by eliminating totally some rows keeping, say, only every third row. See
also Figure 1.2 where the rows are clearly seen in the right part of the image.
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Figure 1.23: Hough transform for Figure 1.17 with angle v on the horizontal axis extending
from 0 to 180 degrees and distance r on the vertical axis extending from −rmax to rmax,
where rmax is the length of the diagonal in Figure 1.2.

Figure 1.24: Location of maxima in Figure 1.16 together with three lines found by the
Hough transform.
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1.5 Morphological operations

Morphological operations can be used to regularize or clean binary images. Here we will
only describe some of the most basic operations such as erosion, dilation, opening and
closing. These operations are defined by a structure element S consisting of a small
number of pixels with one specific pixel called reference pixel. We can, for instance,
choose S as a 3×3 set of pixels with the centre pixel as reference. Let Si,j denote the
structure element moved with reference pixel to (i, j). Let A be a set of pixels such as
the set consisting of black pixels in one of the four images in Figure 1.19.

The erosion of A, denoted A⊖ S, is defined by

A⊖ S = {(i, j) : Si,j ⊆ A} (1.18)

The dilation of A, denoted A⊕ S, is defined by

A⊕ S = (Ac ⊖ S)c, (1.19)

where Ac is the complement af A, that is the set of pixels outside A.

The operations opening and closing, denoted ψS(A) and φS(A), are defined by

ψS(A) = (A⊖ S)⊕ S ′, (1.20)

where S ′ denotes the structure element rotated 180o around the reference pixel, and

φS(A) = (A⊕ S)⊖ S ′. (1.21)

Thus an opening consists of an erosion followed by a dilation.

1.6 Object feature measurements

In connection with pattern recognition as mentioned in examples 1.2 and 1.3 we seek
features of the objects, in the examples seeds and plants, which would enable us to
distinguish between different classes of objects. Examples of such features are areas
and perimeters of objects. Consider a set A of pixels as in the previous section on
morphological operations. The area of A is typically defined as the number of pixels in
A, possibly with some regularization operation first applied to A.

To define the perimeter we need the concept of neighbouring pixels. Typically we con-
sider neighbourhoods consisting of either four or eight neighbours. The 4-neighbourhood
of pixel (i, j) consists of the four pixels (i− 1, j), (i+ 1, j), (i, j − 1) and (i, j + 1). The
8-neighbourhood of pixel (i, j) consists of the aforementioned pixels and in addition the
pixels (i− 1, j − 1), (i− 1, j + 1), (i+ 1, j − 1) and (i+ 1, j + 1).

Edge pixels of a set A may be defined as those pixels of A that have at least one
neighbour from Ac, the complement of A. Let N(A) denote the number of edge pixels of
A with at least one 4-neighbour in Ac. Then one can show that

perimeter(A) = N(A)/k4, (1.22)
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where

k4 =
4

π

∫ π/4

0

cos θ dθ =
4

π/
√
2
≈ 0.900, (1.23)

is an approximately unbiased estimate of the perimeter of A provided that all orientations
of the perimeter are approximately equally common. The unit of the perimeter estimate
(1.22) is pixel width. As with the area, it may be useful to regularize A in some way
before evaluating the perimeter. For more accurate perimeter estimates, see (Glasbey &
Horgan, 1995), pp 165–168, and further references given there.

A feature often used is the compactness of an object defined to be

compactness(A) = 4π
area(A)

(perimeter(A))2
. (1.24)

Sometimes it is useful to compare a set A of pixels with the convex hull of A, that is
the smallest convex set containing A. Some care has to taken in defining convexity for a
set of pixels; one possibility is to define convexity for the point set of pixel centres. The
convex perimeter of a set A is then defined to be the perimeter of the convex hull of A.
One useful feature is the convexity of A defined by

convexity(A) =
convex_perimeter(A)

perimeter(A)
. (1.25)

1.6.1 Moment features

Consider a grey level or binary image f = (fij) = (fij), and let A ⊆ {1, . . . , m}×{1, . . . , n}
be a subset of pixels, typically corresponding to an object but sometimes the whole image.
The moment of order (p, q) in A is defined as

mpq = mpq(A) =
∑

(i,j)∈A

ipjqfij, p = 0, 1. . . . , q = 0, 1, . . . , (1.26)

and the centroid is defined as

centroid = centroid(A) = (
m10

m00
,
m01

m00
). (1.27)

We also consider central moments (with respect to the centroid)

µpq = µpq(A) =
∑

(i,j)∈A

(i− m10

m00
)p(j − m01

m00
)qfij , p+ q > 1. (1.28)

One could note that central moments are invariant with respect to translation of objects.
It is possible to construct moments that are also invariant with respect to rotations. Two
such second order moments are

µ20 + µ02 and (µ20 − µ02)
2 + 4µ2

11. (1.29)

An informative discussion of different types of moments with literature references can be
found in (Glasbey & Horgan, 1995), pages 156–161.
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In Example 1.10 we saw how we could discriminate between plant and soil pixels
quite well by yse of a suitable feature, the normalized green colour. To discriminate
between classes of objects we can as will be seen in detail in the next chapter on pattern
recognition use a number of suitable chosen feature variables. In the following example
we will consider two feature variables and a suitable plotting technique.

Example 1.11. Handwritten digits. Continuation

In this example we will consider discrimination between digits “one” and “two” by use
of two second order moments. We use digits “one” and “two” among the first 400 digits in
MNIST. Plotting moment µ11 on the vertical axis versus moment µ20 on the horizontal
axis we get the plot shown in Figure 1.25. Try to draw by free hand first a straight line
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Figure 1.25: Plot of µ11 versus moment µ20 for handwritten digits digits 1 and 2 among
the first 400 digits in the MNIST data base.

and then an ellipse that gives as good a discrimination as possible betweens the “one”
and “two” digits. In the next chapter we shall describe systematic methods to draw such
boundaries. �
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1.6.2 Exercises

The images used in the exercises below may be found at
http://www.math.chalmers.se/˜rudemo/images.html

Exercise 1.1. Let R, G and B denote the values in the red, green and blue channels for one
of the images from Example 1.3. Get the grey-level image corresponding to normalized
green,

g =
G

R +G+B
.

Exercise 1.2. Find the histogram for the image of Exercise 1.1. Try to segment the image
by use of the histogram.

Exercise 1.3. Compute area, perimeter and compactness for the green segment for the
image of the two previous exercises.

Exercise 1.4. Get one of the seed images from Example 1.2. Note that one has to resample
the image to get the correct form of the seed. How can that be done? After resampling,
reduce the number of columns to get a square image.

Exercise 1.5. Apply the averaging filter (1.2), the median filter (1.5) and the edge em-
phasizing filters (1.6) and (1.7) to the image of the previous exercise.

Exercise 1.6. Consider the image from Exercise 1.4. Compute the histogram and trans-
form to a binary image. Zoom in to see the individual pixels at the object edge. Apply the
operations erosion, dilation, opening and closing. What is the effect of theses operations?
What happens when one iterates these operations?

1.6.3 Literature on image analysis

There is a wealth of books on digital image processing. An excellent treatment from
a statistical point of view focussing on examples from biology is given in (Glasbey &
Horgan, 1995). A mathematically oriented text is (Rosenfeld & Kak, 1982), which is now
a bit old but still quite useful. A comprehensive treatment of image processing, analysis
and machine vision may be found in (Sonka et al., 2015).
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Chapter 2

Pattern recognition

Humans are particularly good at recognizing many patterns such as faces and voices of
other individuals. A possibly harmful behaviour of another person or the appearance
of a possibly dangerous animal may also be quickly identified. Obviously such pattern
recognition abilities have implied a survival advantage during the evolution of humans.

By training humans can also be astonishingly good at tasks such as recognizing the
species of a bird at a long distance, perhaps by using a combination of features such as the
bird’s shape and colours, its vocalization and its mode of flight. The human observer’s
previous knowledge of how common possible bird species are in the current environment
at the given time of the year may also be highly useful in identifying the species.

One important task in pattern recognition based on digital images is to try to mimic
human pattern recognition by choice of suitable features for recognizing and classifying
observed objects. We can divide the field of pattern classification into two disciplines
depending on the our previous knowledge of the possible classes. The most well developed
discipline is discriminant analysis where we assume that we have a given number of classes
and that we have a new object that we want to assign to one of these classes. Typically
we also assume here that we have a set of objects for which we know the classes. Such
a data set, often called a training set, will help us to choose the relevant features of the
objects and to design the algorithm for recognizing the class by use of the chosen features.
Therefore discriminant analysis is often called supervised pattern recognition or learning
with a teacher.

In the second discipline, called cluster analysis we do not assume any prior knowledge
of possible classes. However, we will typically assume that we also here have a given
data set but without any classification. The data set will be used to find clusters, and
the discipline is often referred to as unsupervised pattern recognition or learning without
a teacher.

We will start by discussing discriminant analysis. Several of the sets of images in the
previous chapter, the weed seeds in Example 1.2, the weed plants in Example 1.3 and the
handwritten digits in Example 1.7 describe problems that call for discriminant analysis.
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2.1 Optimal discrimination with two classes and a one

feature variable

Suppose that we have two classes ω1 and ω2 and a real-valued feature variable X for
each object to be classified. Assume that we know how common the two classes are, that
is, we know the prior probabilities of the two classes. Assume also that we know the
distributions of the feature variable corresponding to the two classes.

For i = 1, 2, let πi denote the prior probability of class ωi and let fi be the probability
density of X for an observation from class ωi, or the probability function, fi(x) = P (X =
x), if X is a discrete random variable.

The problem of deciding if an object comes from class ω1 or ω2 is to be based on
observation of the corresponding feature variable X. Thus we need to specify two disjoint
sets A1 and A2 with A1 ∪ A2 = R and choose class ωi if X ∈ Ai. To find optimal sets
we need further specification corresponding to how costly it is to make different kinds of
errors, that is the cost of choosing class ω1 when ω2 is true and vice versa. Let us first
assume that these cost are equal, and more specifically, that we want to minimize the
probability of misclassification.

It turns out that the probability of misclassification is minimized if we use the following
rule:

choose class ω1 if π1f1(x) > π2f2(x), (2.1)

choose class ω2 if π1f1(x) < π2f2(x). (2.2)

To show that a decision rule satisfying (2.1) and (2.2) is optimal we note that the prob-
ability of misclassification is generally given by

Pr(misclassification) = Pr(ω1 true and misclassification) + Pr(ω2 true and misclassification)

= Pr(ω1) Pr(misclassification|ω1) + Pr(ω2) Pr(misclassification|ω2)

= π1

∫

A2

f1(x)dx+ π2

∫

A1

f2(x)dx.

In Figure 2.1 the set A1 extends up to a threshold t while A2 is chosen above t. The
probability of misclassification is equal to the area of the coloured region, and it follows
that it is minimized precisely when the threshold is the horisontal location of the crossing
point of the two curves. Thus the misclassification probability is minimized if A1 and A2

are chosen as in (2.1) and (2.2). (We note that x-values such that π1f1(x) = π2f2(x) may
be brought to either A1 or A2 without affecting the misclassification probability.)

Example 2.12. Two-class discriminant analysis with estimated normal densities.

Suppose that we have a training set with n1 objects from class ω1 and n2 objects from
class ω2. We assume that we have obtained random samples from both classes and that
the two samples are independent. We assume further that the variable X is normally
distributed with expectation µi and variance σ2

i in class ωi, i = 1, 2, where we assume that
expectations are different in the two classes while the variances may either be assumed
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Figure 2.1: Probability of misclassification is given by the coloured area. The set A1

where class ω1 is chosen extends here up to the threshold t, while A2 is chosen above t.

to be equal or unequal. Let the observations be denoted Xim, m = 1, . . . , ni, i = 1, 2.
Then it is natural to estimate the expectation in class ωi by

µ̂i =
1

ni

ni
∑

m=1

Xim, i = 1, 2. (2.3)

If we make no assumption on equality of the variances we use the variance estimates

s2i =
1

ni − 1

ni
∑

m=1

(Xim − µ̂i)
2, i = 1, 2, (2.4)

but if we assume variance equality we use the estimate

s2 =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
(2.5)

for the common variance. ✷ �

We note that compared to Example 2.12 we have in Example 1.10, where we have
classified pixels into soil or plant pixels, a similar but more complicated situation as we
here do not have training sets for soil and plant pixels but use the model specified by
(1.10) and (1.12) for all pixels. Also the proportions of soil and plant pixels are estimated.

2.2 Optimal discrimination with k classes and a d-

dimensional feature vector

Suppose now that we have k classes ωi, i = 1, . . . , k, and a d-dimensional feature vector
X for each object to be classified. Let πi be the prior probability of class ωi and let fi be
the probability density of X for an observation from class ωi, i = 1, . . . , k. Let us further
assume that the cost of assigning an object to class ωi is c(i|j) when the true class is ωj.
Rather than minimizing the misclassification probability we now want to minimize the
expected cost.

A decision function for our problem is now specified by a partition of d-dimensional
space Rd into k disjoint sets A1, . . . , Ak with ∪k

i=1Ai = R
d. If X ∈ Ai we assign our object

to class ωi, i = 1, . . . , k.
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Now it turns out that the expected cost is minimized if the sets Ai satisfy the following
condition

x ∈ Ai ⇒ subscript i minimizes

k
∑

j=1

c(i|j)πjfj(x). (2.6)

If the sum is minimized by several i-values for a certain x-value, then this x-value may
be allocated to Ai for any of these i-values.

To show that a decision rule which satisfies (2.6) is optimal let us consider an arbitrary
decision function specified by a a partition A1, . . . , Ak of Rd. The expected cost for this
decision rule may be written

k
∑

i=1

∫

Ai

k
∑

j=1

c(i|j)πjfj(x)dx,

from which it follows that a decision rule satisfying the condition (2.6) is optimal.

Let us now assume that all misclassifications have the same cost, and that the cost of a
correct decision is zero. Our criterion then implies that we shall minimize the probability
of misclassification, and it is not difficult to see that we shall prefer class ωi to class ωj if

πifi(x) > πjfj(x) (2.7)

similar to what we found previously for the case with two classes and one feature variable.

2.3 Normally distributed feature vectors, linear and

quadratic discrimination

A d-dimensional random (column) vector X is said to be N(µ,C), that is have a d-
dimensional normal distribution with expectation vector µ and covariance matrix C, if
X has the d-dimensional density function

fX(x) =
1

(2π)d/2(detC)1/2
exp(−1

2
(x− µ)TC−1(x− µ)), (2.8)

where detC denotes the determinant of the matrix C.

An important special case in discrimination is to assume that the d-dimensional fea-
ture vector X has a multivariate normal distribution N(µi,Ci) in class ωi, i = 1, . . . , k.
Sometimes the covariance matrices are assumed to be equal, that is

Ci = C, i = 1, . . . , k. (2.9)

Let us first assume that the covariance matrices are all equal to C and that we want to
minimize the probability of misclassification. A computation from (2.7) and (2.8) shows
that if X = x is observed we shall prefer class ωi to ωj if

(µi − µj)
TC−1(x− 1

2
(µi + µj)) > ln

πj
πi
. (2.10)
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We note that (2.10) is linear in x and this case is therefore often called linear discrimi-
nation.

Let us now find a corresponding rule without the assumption (2.9). It follows from
(2.7) and (2.8) that we shall prefer class ωi to ωj if

1

2
xT (C−1

j − C−1
i )x+ (µT

i C
−1
i − µT

j C
−1
j )x+

1

2
(µT

j C
−1
j µj − µT

i C
−1
i µi)

> ln
πj(detCi)

1/2

πi(detCj)1/2
. (2.11)

We see that the border between the two regions in d-dimensional space where we should or
should not prefer ωi to ωj is given by a quadratic surface. When we allow the covariance
matrices for the classes to vary we therefore talk about quadratic discrimination compared
to the linear discrimination referred to above.

Example 2.13. k-class discriminant analysis with estimated normal densities.

Suppose that we have a training set with ni objects from class ωi, i = 1, . . . , k. From
all the classes we assume that we have obtained independent random samples of objects.
We assume further that the vector X is normally distributed with expectation vector
µi and covariance matrix Ci in class ωi. Let the observations vectors be denoted Xim,
m = 1, . . . , ni, i = 1, . . . , k. Then it is natural to estimate the expectation vector in class
ωi by

µ̂i =
1

ni

ni
∑

m=1

Xim, i = 1, 2. (2.12)

If we make no assumption on equality of the covariance matrices we use the covariance
matrix estimates

Ĉi =
1

ni − 1

ni
∑

m=1

(Xim − µ̂i)(Xim − µ̂i)
T , i = 1, . . . , k. (2.13)

If we assume equality of the covariance matrices we use instead the estimate

Ĉ =
1

∑k
i=1(ni − 1)

k
∑

i=1

(ni − 1)Ĉi (2.14)

for the common covariance matrix C. ✷ �

2.4 Error rate estimation. Resubstitution and cross-

validation

An important issue in discriminant analysis is to estimate the rates of misclassification
errors. One simple type of error estimates, often called resubstitution error-rate estimates,
is obtained by directly computing the observed error rates in the training set for the chosen
allocation rule.
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However, the resubstition error-rates are typically too optimistic as the objects used to
evaluate the error rates are also used in the choice of the discriminator including estima-
tion of parameters in the discriminator. Particularly if the discriminator is complicated,
for instance if it contains many parameters, we can grossly underestimate the error-rate
corresponding to classification of a new object.

One way of avoiding the bias of resubstitution error rates is to divide the available
data into one training set and one evaluation set, for instance, by using half of the data
for estimation and half of it for evaluation. One critisism of this procedure is that it may
seem wasteful if data are scarce.

Nowadays one often uses resampling methods for evaluation of error rates. One such
method is k-fold cross-validation. Then we divide the data set consisting of n objects
into k equal or approximately equal groups, often by random choice of which objects that
should go into group j, j = 1, . . . , k. Then we fix j temporarily and use all objects except
those in group j to estimate parameters and compute error average rates for all objects
in group j. This procedure is repeated for all groups and we finally average error rates
also over groups to get overall error rate estimates. One can show that a small k increases
the bias but decreases the variance of the error rate estimate. Originally one often used
k = n, which is called leave-one-out cross-validation. Currently k = 5 or k = 10 is often
recommended.

Example 2.14. Handwritten digits. Digits 1 and 2

We use the same data as in Example 1.11 with one small modification consisting
of standardization of the two moment features by linear transformations so that they
get average zero and varince one. We now use both liner and quadratic discrimination
and get, respectively, the linear and elliptic boundaries shown in Figure 2.2. We also
computed the resubstitution and 5-fold cross-validation errors for the liner and quadratic
discrimination models. It turned out that all four error rate estimates were identical and
equal to 15 %. �

Example 2.15. Handwritten digits. Moment features

We use the first 8000 digits in the MNIST database, see Example 1.7, and consider
discrimination between the 10 types of digits by use of all central moment features µpq in
(1.28) with p+ q ≤ K. We computed the resubstitution and the 10-fold cross-validation
error estimates for all K ≤ 13, see Figure 2.3. Note that both for the linear discrimination
full drawn curves and for the quadratic discrimination dashed curves the resubstitution
errors are smaller than the cross-validation errors. For the linear discrimination the cross-
validation minimum error is 12.3 % for order 12 and for the quadratic discrimination the
cross-validation minimum error is 9.6 % for order 7.

�
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Figure 2.2: Plot of standardized moments µ11 versus µ20 for handwritten digits 1 and 2
among the first 400 digits in the MNIST data base together with the class boundaries
corresponding to linear and quadratic discrimination.
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Figure 2.3: Plot of error probabilities for linear discrimination, full drawn curves, and
quadratic discrimination, dashed curves. Resubstitution error curves are in grey and
cross-validation error curves are in black. Order K on the horizontal axis means that all
moments µpq with p+ q ≤ K are used as features to discriminate between the digits.
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2.5 Nearest neighbour classifaction

Suppose that we have a distance function δ(x, x′) between feature vectors x and x′. Ex-
amples of distance functions for d-dimensional feature vectors are the Euclidean distance

δ(x, x′) = (
d
∑

i=1

(xi − x′i)
2)1/2 (2.15)

and δ = 1− r, where r are is the correlation

r(x, x′) =

∑d
i=1(xi − x̄)(x′i − x̄′)

(
∑d

i=1(xi − x̄)2)1/2 (
∑d

i=1(x
′
i − x̄′)2)1/2

(2.16)

where x̄ and x̄′ are the arithmetic means of the vectors x and x′.

A useful discrimination method is the m-nearest neighbour rule, which proceeds as
follows. Suppose we have a training set for which we know the correct classification. For
a new observation we find the m nearest neighbours in the training set, and we classify
the new observation by majority voting among these nearest neighbours.

Example 2.16. Handwritten digits. Nearest neighbour discrimination

We use the same data as in Example 2.14. The m-nearest neighbour classications with
m=3 and 5 are shown in Figure 2.4. We also computed the resubstitution and 5-fold
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Figure 2.4: Plot of standardized moments µ11 versus µ20 for handwritten digits digits 1
and 2 among the first 400 digits in the MNIST data base together classifications from m-
nearest neighbour classification form = 3 andm = 5. Digit colours indicate classification:
black digits are classified as 1 and grey digits are classified as 2.

cross-validation errors for m-nearest neighbour methods with m ranging from 1 to 10.
the result is shown in Figure 2.5. The minimum crossvalidated error is obtained for m = 5
and equals 12 %. �
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2.6 Multinomial logistic regression

Logistic regression with two classes is briefly described in Section 13.9. Here we will
generalize to k classes ω1, . . . , ωk. Let Y denote the class number of an observation with
associated explaining vector x, which we here will suppose consists of an image. Assume
that

Pr(Y = i) =
eβi·x

1 +
∑k−1

j=1 eβj ·x
, i = 1, . . . , k − 1, (2.17)

and

Pr(Y = k) =
1

1 +
∑k−1

j=1 eβj ·x
, i = k, (2.18)

where βi denotes a parameter vector of the same dimension as x and βi · x denotes the
scalar product of βi and x, obtained by multiplying componentwise the elements of βi
and x, and adding the corresponding products. For given data with observations of pairs
(x, Y ) we can then estimate the parameter vectors βi by maximum likelihood.

Example 2.17. Handwritten digits. Logistic regression, confusion matrix, display by
t-SNE.

The computations and figures in this example are taken from (Longfils, 2018). In Figure
2.6 we see parameter vectors βi estimated from a multinomial logistic model by use of
10000 digits from MNIST. In this figure we can rather clearly identify the digit zero to
the left in the upper row, and perhaps also the digit one next to it. A convenient way
of illustrating the results of a discrimination analysis is to compute a confusion matrix
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Figure 2.6: Parameter vectors βi for digits 0, . . . , 4 in the upper row and digits 5, . . . , 9
in the lower row estimated from 10000 digits in the MNIST database.

giving the resulting classifications for each class in the data used. In Table 2.1 we see
the confusion matrix corresponding to the logistic model analysis in Example 2.17. From
the confusion matrix we see that the digit zero seems to be most easy to identify with
an estimated identification probability of 97.6%. The overall estimated identification
probability is (1108 + 922 + . . . 948)/10000 = 92.2%.

In Figure 2.7 we use the method t-SNE, compare Section 13.6 and (Longfils, 2018),
to visualize how the 28×28-dimensional x-vector may be used to discriminate between
hand-written digits.

�

2.7 Selection of features

If we have a large number of possible features it is useful to make a selection of features.
One often used method is forward selection where we start by choosing the single feature
which gives the smallest error rate. Then we add that feature of the remaining ones
which together with the first chosen feature gives the best performance. The procedure
is continued a suitable number of steps. If one uses cross-validation error rate estimates,
we typically find that the error rates first decrease when we add new variables but then
a minimum is obtained and after that the error rate increases due to overfitting.

In backward selection we start by including all features. Then we eliminate one feature
so that the resulting error rate is as small as possible. The procedure is iterated a suitable
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Figure 2.7: Visualization by use of t-SNE for the first 400 digits in the test set used
in Example 2.17. The numbers close to points are the labels predicted by the logistic
regression method, and the colours of points correspond to the true labels as given in the
box in the lower right part of the image.

44



True Estimated class
class 0 1 2 3 4 5 6 7 8 9 Sum Percent
0 Number 1108 8 2 0 2 3 1 11 0 0 1135 11.4

Percent 97.6 0.7 0.2 0.0 0.2 0.3 0.1 1.0 0.0 0.0 100
1 Number 9 922 19 11 4 12 11 32 4 8 1032 10.3

Percent 0.9 89.3 1.9 1.0 0.4 1.2 1.1 3.2 0.4 0.8 100
2 Number 2 18 921 2 22 3 10 21 7 4 1010 10.1

Percent 0.2 1.8 91.2 0.2 2.2 0.3 1.0 2.1 0.7 0.4 100
3 Number 4 6 4 918 1 9 5 6 27 2 982 9.8

Percent 0.4 0.6 0.4 93.5 0.1 0.9 0.5 0.6 2.7 0.2 100
4 Number 5 2 35 9 775 14 6 32 4 10 892 8.9

Percent 0.6 0.2 3.9 1.0 86.9 1.6 0.7 3.6 0.4 1.1 100
5 Number 3 8 2 6 17 907 1 2 1 11 958 9.6

Percent 0.3 0.8 0.2 0.6 1.8 94.7 0.1 0.2 0.1 1.1 100
6 Number 9 22 8 5 1 0 946 4 31 2 1028 10.3

Percent 0.9 2.1 0.8 0.5 0.1 0.0 92.0 0.4 3.0 0.2 100
7 Number 12 7 23 9 24 10 11 857 14 7 974 9.7

Percent 1.2 0.7 2.4 0.9 2.5 1.0 1.1 88.0 1.4 0.7 100
8 Number 6 2 9 23 8 0 22 10 922 7 1009 10.1

Percent 0.6 0.2 0.9 2.3 0.8 0.0 2.2 1.0 91.4 0.7 100
9 Number 0 2 4 1 13 5 3 3 1 948 980 9.8

Percent 0.0 0.2 0.4 0.1 1.3 0.5 0.3 0.3 0.1 96.7 100
Sum Number 1158 997 1027 984 867 963 1007 978 1011 999 10000 100

Percent 11.6 10.0 10.3 9.8 8.7 9.6 10.1 9.8 10.1 10.0 100

Table 2.1: Confusion matrix for the logistic model analysis of MNIST data in Example
2.17.
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number of steps.

2.8 Cluster analysis, k-means clustering

Suppose that we have collected a number of colonies of bacteria of a type that has not
been studied before but which we want to order in classes corresponding species or sub-
species. That is, we want to construct a taxonomy for these bacteria. Instead of an
individual bacterial particle the natural unit here is a homogeneous colony of bacteria.

One possible procedure would be to measure a number of variables, say d for each
individual colony and to see if these variables tend produce clusters in d-space. Let X
denote the d-dimensional vector of measurements, and let f(x) denotes the corresponding
probability density (or probability function if X is discrete). Corresponding to k classes
we would then expect that f could be written as a mixture,

f(x) =

k
∑

i=1

pifi(x), (2.19)

where fi denotes the probability density in the ith class, and pi the proportion of the ith
class.

Let n denote the number of colonies observed, and let Xj , j = 1, . . . , n, denote our
observed d-dimensional vectors. The basic problem in cluster analysis can then be for-
mulated as estimation of the number k of classes and also the functions fi, i = 1, . . . , k,
on the basis of our observations X1, . . . , Xn. Note that this problem is much more com-
plicated than the problems previously discussed in this chapter as we neither know the
number of classes, nor which observations that belong to the different classes.

One procedure that is often used is k-means clustering. Consider d-dimensional ob-
servations and let us for simplicity regard Euclidean distances between observations. We
assume that there are k classes and choose first randomly k cluster centers among the
observations Xj , j = 1, . . . , n. Then we alternate between two types of steps. In the
observation allocation step we suppose that we have cluster centers Ci, i = 1, . . . , k, and
allocate each observation to the closest cluster center. In the cluster center recompu-
tation step we compute new cluster centers as averages of all observations allocated to
each cluster. We alternate between the two types of steps until there are no changes.
Typically we will also repeat the procedure a number of times with different (randomly
chosen) starting cluster centres and finally choose the clustering which has the minimal
total sum of within cluster square distances to cluster centres.

Example 2.18. Handwritten digits. Cluster analysis

We use the same data as in Example 2.14 but now we cluster them by k-means clustering
with k = 2, 3 and 4. The results are shown in Figure 2.8. �
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Figure 2.8: Results from k-means clustering with k = 2, 3 and 4 of the same data as used
in Example 2.14. Crosses mark estimated cluster centers.
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2.9 Case studies

Weed seed identification

In (Petersen, 1992) weed seed identification was studied with 25 images of seeds for each
of 40 species.

A large number of possible features were investigated and with 25 features an optimal
cross-validation error rate of 2.3% was found.

Weed plant identification

(Andersson, 1998) studied identification of plants at an early stage of carrot and seven
weed species. With 27 images for each of the eight plant species a cross-validation error
rate of about 16% was found with 7 or 8 features.

Comparison of discrimination methods for microarray data

In (Dudoit et al., 2002) different discrimation methods are compared for classification
of tumors based on gene expression data from three datasets available on the Internet.
In particular, the nearest neighbour method is found to perform well in these examples.
The number of neighbours is here determined by cross-validation.
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2.10 Exercises

Images and data sets for the exercises below may be found from the course home pages.

Exercise 2.1. Fisher’s Iris data, a classical data set. One of the famous data sets in
statistics is Fisher’s Iris data, used in (Fisher, 1936), where discriminant analysis was
introduced. Consider the data in Table 2.2 with four variables measured for 50 plants
of each of three Iris species. The data were assembled by E. Anderson, see (Anderson,
1935), and analysed in detail by (Fisher, 1936).
(a). Draw scatter plots for all 150 observations and all six pairs of variables. Alternatively,
if you do not have access to a computer, draw scatter plots for subsets with, say, 5 plants
from each species, and for, say, two pairs of variables.
(b). Find the best linear discriminators using all four variables for discrimination between
all pairs of the three species. Alternatively, without a computer, describe with formulas
how the computations are made. Under what assumptions is this discrimination method
optimal.
(c). Find the best quadratic discriminators using all four variables for discrimination
between all pairs of the three species. Alternatively, without a computer, describe with
formulas how the computations are made. Under what assumptions is this discrimination
method optimal.
(d). Find the optimal combination of two variables for discriminating between the three
species. Alternatively, without a computer, describe with formulas how the computations
are made.
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Exercise 2.2. Weed seeds. Consider the weed seed images of Rumex crispus and Rumex
thyrsiflorus from Figures 1.5 and 1.6 in Example 1.2 or a subset of these 25 plus 25 im-
ages.
(a). Compute the areas of the seeds and the convexity of them for the images considered.
(b). How well can you discriminate between the two species by use of the feature con-
vexity and linear discrimination?
(c). How well can you discriminate between the two species by use of the feature convex-
ity and quadratic discrimination?
(d). How well can you discriminate between the two species by use of the features con-
vexity and area and linear discrimination?
(e). How well can you discriminate between the two species by use of the features con-
vexity and area and quadratic discrimination?

Exercise 2.3. Weed plants. Consider images of carrot and weed plants such as those
described in Example 1.3. Choose two or more species and see well you can discriminate
between them by suitably chosen featuers. Compare with the results found by Andersson
(1998).

Exercise 2.4. Handwritten digits. Resubstitution error. Consider the data in Example
2.14. Show by use of Figure 2.2 that the resubstitution error is equal to 14/93 both for
linear and quadratic discrimination.

2.11 Literature on pattern recognition

A good introductory text on statistical pattern recognition is (Fukunaga, 1990). Many
algorithms are described in (Ripley, 1996) which also contains an extensive list of ref-
erences for the period up to 1996. A highly useful review of clustering methods with
particular emphasis on applications with image data is given in (Jain et al., 1999).
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Table 2.2: Four flower features (in cm) for 50 plants of three Iris species, from (Fisher, 1936).
Iris setosa Iris versicolor Iris virginica

Sepal Sepal Petal Petal Sepal Sepal Petal Petal Sepal Sepal Petal Petal
length width length width length width length width length width length width
5.1 3.5 1.4 0.2 7 3.2 4.7 1.4 6.3 3.3 6 2.5
4.9 3 1.4 0.2 6.4 3.2 4.5 1.5 5.8 2.7 5.1 1.9
4.7 3.2 1.3 0.2 6.9 3.1 4.9 1.5 7.1 3 5.9 2.1
4.6 3.1 1.5 0.2 5.5 2.3 4 1.3 6.3 2.9 5.6 1.8
5 3.6 1.4 0.2 6.5 2.8 4.6 1.5 6.5 3 5.8 2.2
5.4 3.9 1.7 0.4 5.7 2.8 4.5 1.3 7.6 3 6.6 2.1
4.6 3.4 1.4 0.3 6.3 3.3 4.7 1.6 4.9 2.5 4.5 1.7
5 3.4 1.5 0.2 4.9 2.4 3.3 1 7.3 2.9 6.3 1.8
4.4 2.9 1.4 0.2 6.6 2.9 4.6 1.3 6.7 2.5 5.8 1.8
4.9 3.1 1.5 0.1 5.2 2.7 3.9 1.4 7.2 3.6 6.1 2.5
5.4 3.7 1.5 0.2 5 2 3.5 1 6.5 3.2 5.1 2
4.8 3.4 1.6 0.2 5.9 3 4.2 1.5 6.4 2.7 5.3 1.9
4.8 3 1.4 0.1 6 2.2 4 1 6.8 3 5.5 2.1
4.3 3 1.1 0.1 6.1 2.9 4.7 1.4 5.7 2.5 5 2
5.8 4 1.2 0.2 5.6 2.9 3.6 1.3 5.8 2.8 5.1 2.4
5.7 4.4 1.5 0.4 6.7 3.1 4.4 1.4 6.4 3.2 5.3 2.3
5.4 3.9 1.3 0.4 5.6 3 4.5 1.5 6.5 3 5.5 1.8
5.1 3.5 1.4 0.3 5.8 2.7 4.1 1 7.7 3.8 6.7 2.2
5.7 3.8 1.7 0.3 6.2 2.2 4.5 1.5 7.7 2.6 6.9 2.3
5.1 3.8 1.5 0.3 5.6 2.5 3.9 1.1 6 2.2 5 1.5
5.4 3.4 1.7 0.2 5.9 3.2 4.8 1.8 6.9 3.2 5.7 2.3
5.1 3.7 1.5 0.4 6.1 2.8 4 1.3 5.6 2.8 4.9 2
4.6 3.6 1 0.2 6.3 2.5 4.9 1.5 7.7 2.8 6.7 2
5.1 3.3 1.7 0.5 6.1 2.8 4.7 1.2 6.3 2.7 4.9 1.8
4.8 3.4 1.9 0.2 6.4 2.9 4.3 1.3 6.7 3.3 5.7 2.1
5 3 1.6 0.2 6.6 3 4.4 1.4 7.2 3.2 6 1.8
5 3.4 1.6 0.4 6.8 2.8 4.8 1.4 6.2 2.8 4.8 1.8
5.2 3.5 1.5 0.2 6.7 3 5 1.7 6.1 3 4.9 1.8
5.2 3.4 1.4 0.2 6 2.9 4.5 1.5 6.4 2.8 5.6 2.1
4.7 3.2 1.6 0.2 5.7 2.6 3.5 1 7.2 3 5.8 1.6
4.8 3.1 1.6 0.2 5.5 2.4 3.8 1.1 7.4 2.8 6.1 1.9
5.4 3.4 1.5 0.4 5.5 2.4 3.7 1 7.9 3.8 6.4 2
5.2 4.1 1.5 0.1 5.8 2.7 3.9 1.2 6.4 2.8 5.6 2.2
5.5 4.2 1.4 0.2 6 2.7 5.1 1.6 6.3 2.8 5.1 1.5
4.9 3.1 1.5 0.1 5.4 3 4.5 1.5 6.1 2.6 5.6 1.4
5 3.2 1.2 0.2 6 3.4 4.5 1.6 7.7 3 6.1 2.3
5.5 3.5 1.3 0.2 6.7 3.1 4.7 1.5 6.3 3.4 5.6 2.4
4.9 3.1 1.5 0.1 6.3 2.3 4.4 1.3 6.4 3.1 5.5 1.8
4.4 3 1.3 0.2 5.6 3 4.1 1.3 6 3 4.8 1.8
5.1 3.4 1.5 0.2 5.5 2.5 4 1.3 6.9 3.1 5.4 2.1
5 3.5 1.3 0.3 5.5 2.6 4.4 1.2 6.7 3.1 5.6 2.4
4.5 2.3 1.3 0.3 6.1 3 4.6 1.4 6.9 3.1 5.1 2.3
4.4 3.2 1.3 0.2 5.8 2.6 4 1.2 5.8 2.7 5.1 1.9
5 3.5 1.6 0.6 5 2.3 3.3 1 6.8 3.2 5.9 2.3
5.1 3.8 1.9 0.4 5.6 2.7 4.2 1.3 6.7 3.3 5.7 2.5
4.8 3 1.4 0.3 5.7 3 4.2 1.2 6.7 3 5.2 2.3
5.1 3.8 1.6 0.2 5.7 2.9 4.2 1.3 6.3 2.5 5 1.9
4.6 3.2 1.4 0.2 6.2 2.9 4.3 1.3 6.5 3 5.2 2
5.3 3.7 1.5 0.2 5.1 2.5 3 1.1 6.2 3.4 5.4 2.3
5 3.3 1.4 0.2 5.7 2.8 4.1 1.3 5.9 3 5.1 1.8
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Chapter 3

Machine learning, neural nets, support

vector machines

In recent decades a number of machine learning methods for patter recognition have been
launched such as neural nets and support vector machines which will be briefly discussed
in this chapter. To evaluate these methods a number of large datasets have also been
brought forth, compare Table 3.1 and
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research

for more details.

Table 3.1: Datasets of images and videos for tasks such as classification, object detection
and face recognition
Dataset name Brief description Instances Format Default task Created
MNIST Handwritten digits 60 000 + Images, text Classifcation 1998

10 000
CIFAR-10 Images of 10 classes 60 000 Images Classification 2009

of objects
CIFAR-100 Images of 100 classes 60 000 Images Classification 2009

of objects
KITTI Images and videos >100GB Images, text Classification, 2012

obtained from cars of data object detection
SVHN Street View 73 257 + Images Classification 2011

House Numbers 26 032
FERET Face Recognition 11 338 from Images Classification, 2003

Technology 1 199 individuals face recognition

3.1 Neural nets

Let us start by considering a neural net consisting of one input layer with n1 units
corresponding to input variables xi, i = 1, . . . , n1, an intermediate (hidden) layer with n2
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units and an output layer with K units. For unit j in the intermediate layer we compute
the so-called activation value aj , j = 1, . . . , n2, by

zj =

n1
∑

i=1

w
(1)
ji xi + b

(1)
j , (3.1)

aj =
ezj

∑n2

j′=1 e
zj′
, (3.2)

for weights w
(1)
ji and biases b

(1)
j . With some abuse of notation we will write

aj = σ(zj), j = 1, . . . , n2, (3.3)

and we call σ given by (3.2) and (3.3) the softmax function. From the hidden layer
we proceed to the output in a similar way and we obtain neural net output variables
fk(k), k = 1, . . . , K, as

fk(x) = fk(x, θ) = σ

(

n2
∑

j=1

w
(2)
kj σ

(

n1
∑

i=1

w
(1)
ji xi + b

(1)
j

)

+ b
(2)
k

)

, k = 1, . . . , K, (3.4)

where x = (x1, . . . , xn1
) is the vector of input variables, and θ is the parameter vector of

all weights, w
(1)
ji and w

(2)
kj , and biases b

(1)
j and b

(2)
k .

We can add now add one more hidden layer which gives a neural net with two hidden
layers and output

fk(x) = σ

(

n3
∑

ℓ=1

w
(3)
kℓ σ

(

n2
∑

j=1

w
(2)
ℓj σ

(

n1
∑

i=1

w
(1)
ji xi + b

(1)
j

)

+ b
(2)
ℓ

)

+ b
(3)
k

)

, k = 1, . . . , K,

(3.5)
and it should be clear how we can extend the neural net with an arbitrary number of
hidden layers.

If we for instance consider a neural net for the MNIST database it is natural to consider
n1 = 282 = 784 units in the input layer, each input unit corresponding to one pixel value,
and K = 10 corresponding to the 10 possible digits. We note that the output variables
fk(x) sum to one and we can interpret fk(x, θ) as the probability of digit k. To classify
images we can first in some way estimate the parameter θ by use of a training set. Let θ̂
denote the estimate of θ. To classify an image x we can then put

k̂(x) = argmaxkfk(x, θ̂). (3.6)

The crucial step here is to obtain the estimate θ̂. In practice the parameter vector θ may
contain several thousand components and the estimation procedure is thus quite delicate.
We will now discuss possible estimation methods.

Parameter estimation for neural nets, regularization

Suppose that we have a training set T of |T | pairs (x, y) and that the neural net output
f(x, θ) should approximate y. Then we introduce a suitable loss function. Let us first
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consider a simple case where y and f(x, θ) are real-valued. Then we may choose the loss
function

L(θ, T ) =
1

|T |
∑

(x,y)∈T

(y − f(x, θ))2. (3.7)

Let us then consider a classification setting with K classes, for instance for MNIST
classification with K = 10. As described above we then get as output from a neural net
a probability distribution fk(x, θ), k = 1, . . . , K, for the possible class values. For a pair
(x, y) where kc is the correct class we can define yk, k = 1, . . . , K, as

yk =

{

1 if k = kc
0 otherwise

(3.8)

and choose the cross-entropy loss function

L(θ, T ) = − 1

|T |
∑

(x,y)∈T

∑

k

yk log fk(x, θ). (3.9)

We can minimize L(θ, T ) and obtain an estimate θ̂ = θ̂(T ). The result is then that
we often get a good fit to the observations in T , but if we go to a new data set the fit is
typically not so good. We say then that we get an overfit. To compensate for overfitting
we can introduce a regularization term R(θ), for instance

R(θ) =

|θ|
∑

i=1

|θi|2, (3.10)

where we sum over all components of θ = (θ1, . . . , θ|θ|). Then we estimate θ by minimizing
the regularized loss function

L(θ;T, L, λ, R) = L(θ, T ) + λR(θ), (3.11)

where λ ≥ 0 is a tuning parameter. Note that λ = 0 corresponds to no regulariza-
tion which typically gives overfitting, while a very large λ corresponds to underfitting.
To choose a proper value of the tuning parameter we can evaluate the regularized loss
function for a separate validation set T ′ of pairs (x, y) or use cross-validation.

Convolutional neural nets

Let w = (wkℓ) and g = (gij) be matrices. The convolution w ∗ g is then defined by

(w ∗ g)ij =
∑

k

∑

ℓ

wkℓ gi−k,j−ℓ, (3.12)

compare Section 1.2 on image filtering.

Convolutional neural nets are particularly useful for analysis of images. Such neural
nets contain layers with layer transitions of the following convolution type

a
(r+1)
ij = σ

(

p
∑

k=−p

p
∑

ℓ=−p

w
(r)
kℓ a

(r)
i−k,j−ℓ

)

, (3.13)
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where p usually is a small positive number. We note that we use here only (2p + 1)2

different weights and that there is the same filter operation applied in different parts of
a(r) here regarded as an image. The filter operation could for instance consist of finding
edges in an image.

A convolution layer is often followed by a pooling layer reducing the layer size. We
can for instance use a maxpool operation where a layer of pixels is divided into adjacent
and non-overlapping rectangles and each rectangle is replaced in the following layer by
one pixel with pixel value equal to the maximal pixel value in the rectangle.

Let us conclude this short introduction to neural nets with mentioning two recent
references, both with the title ’Deep Learning’ which is a current term for advanced
neural nets: (LeCun et al., 2015) giving an overview and (Goodfellow et al., 2016) with
giving a thorough and up-to-date coverage of the field.

3.2 Support vector machines

The following description is inspired by the more complete description in Chapter 19 of
(Efron & Hastie, 2016). Suppose that we have a training set T consisting of pairs (x, y),
where x is an n-dimensional column vector and y ∈ {−1,+1} is a two-class indicator. To
begin with we will suppose that the two classes are linearly separable in the sense that
there exist a real parameter β0 and an n-dimensional parameter vector β such that with
f(x) = β0 + xTβ

yf(x) > 0 for all (x, y) ∈ T. (3.14)

We can then classify a new x-vector and predict the corresponding y-value as sign(f(x)).
A natural question is then if we can choose β0 and β in an optimal way. The suggested
solution here is to maximize the minimal distance (margin) to the separating hyperplane
f(x) = 0 in n-space. The solution to this problem turns out to be to find

maxβ0,β

{

M : subject to
1

||β||y(β0 + xTβ) ≥M for all (x, y) ∈ T

}

, (3.15)

where ||β|| is the Euclidean (quadratic) norm in n-space. An equivalent somewhat simpler
formulation is to find

minβ0,β

{

||β|| : subject to y(β0 + xTβ) ≥ 1 for all (x, y) ∈ T
}

. (3.16)

In general we can not expect to find a hyperplane giving complete separation between
the two classes. Then we can instead find a minimum with a regularized loss function

minβ0,β







∑

(x,y)∈T

[1− y(β0 + xTβ)]+ + λ||β||2






, (3.17)

where [a]+ denotes the positive part of a real number a. For linearly separable classes
one can show that λ = 0 gives the previously described solution which is determined by a
few points close to the separating boundary. Increasing λ corresponds to taking account
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of more and more data points. Similar as for neural nets one can find an optimal tuning
parameter λ by use of a separate validation set or by cross-validation.

For a multiclass classification problem we can for instance for each class make a two-
class classification versus the union of all other classes and then for a new observed
x-vectoer to choose the class giving the largest margin. Another possibility is to consider
voting for all pairwise comparisons and for a new observation to choose the class that
gets that the maximal number of votes.

Support vector machines with kernel functions

One can show that for a new vector x to be classified one can write the classifier on the
form

f(x) = β0 + xTβ = β0 +

|T |
∑

i=1

αixTxi, (3.18)

where x1, . . . , x|T | are the x-vectors in the training set T and α1, . . . , α|T | are real param-
eters. This representation allows us to use a modified classifier of the form

f(x) = β0 + xTβ = β0 +

|T |
∑

i=1

αik(x, xi), (3.19)

where k(u, v) is a positive-definite kernel function, for instance the Gaussian kernel

k(u, v) = e−||u−v[[2. (3.20)

Use of kernel functions implies possibilities of nonlinear transformations of the x-vectors
and adds considerable flexibility to support vector machines.
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Chapter 4

Statistical image modelling

In Figure 4.1 we see two examples of images obtained by simulation from simple models
with independent pixel values. To the left we have a ’pepper-and-salt’ pattern corre-
sponding to equal probababilities for black and white. To the right we have a grey-level
image from a normal distribution (µ, σ2) with µ = 0.5, σ = 0.2 and truncated to the
interval [0, 1], that is, if a value less than 0 was generated it was replace by 0 and if a
value larger than 1 was generated it was replaced by 1.

Figure 4.1: Images of size 64× 64 obtained by simulation from models with independent
pixel values: to the left a black-and-white image with equal probabilities for the two
colours, and to the right a grey-level image with values from a normal distribution with
expectation µ = 0.5, a standard deviation σ = 0.2 and truncated to the interval [0, 1] .

In the following sections we will generalize to models with dependence between pixel
values. We will consider Markov random field models defined by a neighbourhood for
each pixel and a corresponding conditional distribution for the pixel value given the pixel
values in the neighbourhood. But first we will take a look at Markov chains in one
dimension.
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4.1 One-dimensional Markov chains

A random sequence Xt with values in a finite or countable set V is a Markov chain if

Pr(Xt+1 = x|Xs, s ≤ t) = Pr(Xt+1 = x|Xt), x ∈ V. (4.1)

It is not easy to see how this can be generalized to processes in the plain. However, one
can prove that the condition (4.1) is equivalent to the condition

Pr(Xt = x|Xs, s 6= t) = Pr(Xt = x|Xt−1, Xt+1), x ∈ V, (4.2)

that is, if we want to predict Xt from all values Xs, s 6= t, it is enough to know Xs in
the two neighbouring sites with s = t − 1 and s = t + 1. And the condition (4.2) can
be generalized in a straightforward way to several dimensions as will be seen in the next
section.

4.2 Markov random field models

Let us regard a random image X = (Xs, s ∈ S), where S denotes the set of sites (pixel
locations). We suppose that to each site s ∈ S there is defined a set Ns ⊂ S of neighbour
sites such that the following two conditions are satisfied:

(i) s 6∈ Ns,
(ii) t ∈ Ns if and only if s ∈ Nt.

Two often used neighbourhood systems are shown in Figure 4.2. To the left we see the
system where the site s = (i, j) has the neighbourhood

Ns = {(i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1)}. (4.3)

In the system shown in the right part of the figure there are four additional neighbours
so that Ns then consists of eight sites.

s s

Figure 4.2: Two often used neighbourhood systems: to the left the site s has four neigh-
bours and to the right it has eight neighbours.

Suppose that X = (Xs, s ∈ S) is a set of discrete random variables taking values in the
set V . We say that X is a Markov random field with respect to the system (Ns, s ∈ S)
of neighbourhoods if

Pr(Xs = x|Xt, t 6= s) = Pr(Xs = x|Xt, t ∈ Ns), x ∈ V, s ∈ S. (4.4)

This means that if we want to predict the pixel valueXs at s knowing all other pixel values
we get the same prediction as when we only know the pixel values in the neighbourhood

58



Ns. This will turn out to be highly useful in an iterative sampling method called Gibbs
sampling, which may be used for simulation of a Markov random field.

Neighbourhoods of border sites have to be considered separately. Suppose that the set
of sites is

S = {(i, j) : i = 1, . . . , m, j = 1, . . . , n}. (4.5)

One possibility is to use periodic boundary conditions which means that sites in the
leftmost column are considered as neighbours of sites in the rightmost column, and,
similarly, that sites in the top row are considered as neighbours of the bottom row.
Specifically, if (4.3) gives neighbourhoods for non-border sites, we define for s = (i, n)
with 1 < i < m

Ns = {(i− 1, n), (i+ 1, n), (i, n− 1), (i, 1)}, (4.6)

with similar definitions for other border sites. We can think of periodic boundary condi-
tions as corresponding to a folding of S like a torus (a doughnut).

Example 3.1. The Ising model. Let S be given by (4.5) with periodic boundary
conditions. In physical applications to be discussed below we are interested in large
values of m and n. Suppose that Xs can take two possible values, −1 and +1. Let X+

s

and X−
s denote the number of neighbours of s that take positive and negative values,

respectively. Thus X+
s +X−

s = 4. In the basic two-dimensional model we assume that

Pr(Xs = +1|Xt, t ∈ Ns) =
exp(2β(X+

s −X−
s ))

1 + exp(2β(X+
s −X−

s ))
. (4.7)

We assume that β > 0. Note that if X+
s > X−

s , that is, if the number of neighbours of s
with positive values is larger than the number of neighbours with negative values, then
the probability that s shall also have a positive value is greater than 1/2.

An alternative way of specifying the probability distribution of X is as a Gibbs distri-
bution,

Pr(X = x) =
1

Z
exp(β

∑

s∼t

xsxt), (4.8)

where Z is a normalizing constant, which is notoriously difficult to compute in models
of this type, and where s ∼ t denotes that s and t are neighbours. Thus we sum in the
right member of (4.8) over all pairs (s, t) of sites that are neighbours. In physics the
Ising model is used as a model for ferromagnetism and β may be interpreted as inverse
temperature. It turns out that for temperature below a critical value, that is for β > βc,
there are long range dependencies and possible phase transitions, that is a clear majority
of the Xs-values will either be equal to +1 or a clear majority will be equal to −1. But
for β < βc there are no phase transitions and the value of Xs averaged over large sets of
sites is close to zero. A famous computation by (Onsager, 1944) gives

βc =
1

2
log(1 +

√
2) = 0.44069 (4.9)

A review of Gibbs distributions and their use in mathematical physics may be found in
(Georgii et al., 2001). ✷
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4.3 Autonormal random field models

Let us now also regard Markov random field models, where Xs, s ∈ S are continuous
real-valued random variables. The condition (4.4) needs then a modification to

Pr(Xs ∈ A|Xt, t 6= s) = Pr(Xs ∈ A|Xt, t ∈ Ns), A ⊆ R, s ∈ S, (4.10)

for all considered subsets A of R. We here only consider some simple autonormal models
where we assume that the conditional distribution of Xs given its neighbours is normal
with a constant variance σ2 and an expectation that is a linear combination of the neigh-
bour values. Specifically, let us consider the neighbourhood system given by the left
part of Figure 4.2 and denote the neighbours of s in the West, North, East and South
directions W (s), N(s), E(s), and S(s), and assume that

E(Xs|Xt, t ∈ Ns) = µ+βW (XW (s)−µ)+βN (XN(s)−µ)+βE(XE(s)−µ)+βS(XS(s)−µ).
(4.11)

4.4 Simulation of Markov random fields

There are several ways of simulating images from Markov random field models. We will
describe one of the most used methods, Gibbs sampling.

In Gibbs sampling we visit the sites s ∈ S in a specified way which may be random or
deterministic. An often used random method is to choose successive sites to be visited
independently and in a purely random way from the set of all sites. And an often used
deterministic visiting scheme for a set of sites such as (4.5) is to choose sites to be visited
row-wise from left to right starting with the first row and proceeding until all sites have
been visited. Such a set of visits is called a sweep. The procedure is iterated a given
number of of sweeps.

Example 3.2. The Ising model. Continuation. Consider Gibbs sampling for the Ising
model by use of (4.7). As start configuration we use a purely random configuration as
in the left part of Figure 4.1. For a set of β-values we see in Figure 4.3 binary images
obtained by deterministic row-wise sweeps as described above. The upper two rows
correspond to β values under the critical value (4.9), that is to high temperature, while
the two lower rows correspond to low temperature. In the middle row we have β very
close to the critical value, actually slightly above.

It may be noted that for large β-values (the two lower rows) the number of iterations
used in Figure 4.3 is far too small to arrive at a stationary distribution for the Markov
chain formed by the successive iterations. ✷
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Figure 4.3: Binary images obtained by simulation for the Ising model with β = 0.11,
0.22, 0.4407, 0.88 and 1.76 in rows 1 to 5, respectively. In the columns we have to the
left a purely random start configuration and then the result after 1 sweep, after 4 sweeps,
after 16 sweeps and after 64 sweeps, respectively.
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Figure 4.4: Grey-scale images obtained by simulation for autonormal models. In the
columns we have to the left a purely random start configuration and then the result
after 1 sweep, after 16 sweeps, after 128 sweeps and after 256 sweeps, respectively. The
parameters in (4.11) are in the upper row βW = βE = βN = βS = 0.24, in the second
row βW = βE = 0 and βN = βS = 0.48, and in the third row βW = βE = −0.24 and
βN = βS = 0.24. In all three rows we have µ = 0.5 and the residual standard deviation
σ = 0.3.

Example 3.3. Simulation of an autonormal model. Consider Gibbs sampling for the
autonormal model with conditional expectations (4.11) and constant conditonal variance
given the neighbour values. For three sets of parameters we obtain results shown in
Figure 4.4. ✷

4.5 Bayesian analysis of images

A common approach in Bayesian image analysis, is to assume that we start with a random
image X given by a Markov random field. Then we observe a distorted image Y and one
basic problem is to reconstruct X from Y . A simple model for the observed image Y =
(Ys, s ∈ S) is to assume that given X the Ys-variables are independent and furthermore
that the distribution of Ys only depends on Xs, that is we assume that

Pr(Y = y|X) =
∏

s∈S

Pr(Ys = ys|Xs). (4.12)

The reconstruction of X from Y is a difficult computional problem, and a series of
iterative algorithms have been developed for this type of problems, most of them based
on Markov chain Monte Carlo algorithms.
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The use of Bayesian models for image reconstruction by use of Markov random field
models as priors for the unobserved image X has generally suffered from the problem
that it seems difficult to specify realistic priors for images typically found in applications.
A recent interesting approach developed in particular by David Mumford and Song Chun
Zhu is based on the following type of models, see for instance (Zhu & Mumford, 1997)
for details and examples of which images that might be generated. Briefly the structure
of the model for the prior is a Gibbs distribution, cf. (4.8) above, with

Pr(X = x) =
1

Z
exp(−U(x; Λ, F )), (4.13)

where

U(x; Λ, F ) =

K
∑

α=1

∑

s∈S

λ(α)((F (α) ∗ x)(s)). (4.14)

Here F = {F (1), . . . , F (K)} is a set of linear filters and Λ = {λ(1), . . . , λ(K)} is a set of
functions, called potential functions, acting on the features extracted by the filter bank
F .

4.6 Exercises

Exercise 3.1. Simulate images with independent pixel values as in Figure 4.1 but with
k equi-distributed levels. Choose k = 3 and k = 256. (Note that the left image in
Figure 4.1 corresponds to k = 2.)

Exercise 3.2. Regard the Ising model with negative β-values. (In physics this model
is used as a model for anti-ferromagnetism.) Use Gibbs sampling to simulate images as
in Figure 4.3 with β = -0.11, -0.22, -0.44, -0.88 and -1.76. Try also to guess what the
images will look like before making the simulations.

Exercise 3.3. Regard an autonormal model with a neighbourhood system as in the
right part of Figure 4.1. Choose suitable notation and write a model corresponding to
(4.11). Use Gibbs sampling to simulate images as in Figure 4.4 and suggest parameter
combinations to obtain different types of random textures.

Exercise 3.4. Show that if the distribution of X is given by (4.8), then (4.7) holds.
Hint: one can use that

Pr(Xs = +1|Xt = xt, t ∈ Ns) =
Pr(Xs = +1, Xt = xt, t ∈ Ns)

Pr(Xs = +1, Xt = xt, t ∈ Ns) + Pr(Xs = −1, Xt = xt, t ∈ Ns)
.

4.7 Markov Chain Monte Carlo methods

Let us briefly describe Markov Chain Monte Carlo methods. We start with the Metropolis-
Hastings algoritm. Suppose that we want to estimate the expectation

E(g(X)) =

∫

g(x)f(x) dx , (4.15)
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where X is a random variable in d-dimensional Euclidean space with probability density
f . Suppose further that we only know the density f except for a multiplicative constant,
that is we know an unnormalized density

f ⋆(x) = cf(x) (4.16)

but not the normalization constant

c =

∫

f ⋆(x) dx . (4.17)

In the Metropopolis-Hastings algorithm we generate a sequence of random variables
X1, . . . , Xn forming a Markov chain with a distribution converging to the distribution
of X. To generate Xt+1 from Xt use a proposal distribution q(·|Xt) and generate a d-
dimensional random variable Yt. An often used proposal distribution is obtained by a
random walk model, that is

Yt = Xt + ǫt , (4.18)

where ǫt has d independent zero mean normal components with variance σ2. The proposed
variable Yt is accepted as Xt+1 with probability

α(Yt|Xt) = min

{

1,
f ⋆(Yt) q(Xt|Yt)
f ⋆(Xt) q(Yt|Xt)

}

. (4.19)

If Yt is not accepted we put Xt+1 = Xt. To control the acceptance or rejection of Y we
generate an independent random variable Ut with a uniform distribution on the interval
(0, 1) independent of Ys and Us for s < t. Then we put

Xt+1 =

{

Yt if Ut < α(Yt|Xt)
Xt otherwise .

(4.20)

An excellent self-contained introduction to Markov chain Monte-Carlo methods with focus
on the Metropolis-Hastings algorithm is given in (Robert, 2016).

4.8 Literature on statistical image modelling

Bayesian models for images became popular in the eighties following work by (Grenan-
der, 1983) and (Geman & Geman, 1984). Markov chain Monte Carlo methods play an
important role in reconstruction of images observed with noise. Important algorithms are
simulated annealing, the Metropolis algorithm and Gibbs sampling, which all are exam-
ples of randomized algorithms. A simple iterative method, iterated conditional modes,
was introduced by (Besag, 1986). (Winkler, 2003) gives a thorough treatment of these
methods from a mathematical point of view. For an introduction to randomized algo-
rithms viewed as Markov chains, see (Häggström, 2002), including a description of exact
or perfect simulation algorithms.

64



PART 2 SPATIAL STATISTICS
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Chapter 5

Spatial random processes

Let X = (Xs, s ∈ S) be a spatial random process, where s is a spatial coordinate. In this
chapter S may either be a discrete set, as when X is a digital image, or a continuous set,
e.g. a rectangle S = {(s1, s2) ∈ R

2 : a1 ≤ s1 ≤ b1, a2 ≤ s2 ≤ b2}. In these notes we limit
ourselves to spatial processes in two dimensions, but generalizations to d dimensions are
fairly straightforward.

A spatial random process may be characterized by its mean value function,

ms = EXs (5.1)

and its covariance function

C(s, t) = E(Xs −ms)(Xt −mt). (5.2)

A Gaussian random process is completely specified by its mean value and covariance
functions. It should, however, be noted that not all functions of two variables are possible
covariance functions. In fact, a necessary and sufficient condition that C is a valid
covariance functions is that C is symmetric, that is C(s, t) = C(t, s), and that it is
positive-definite, that is satisfies

∑

i

∑

j

aiajC(si, sj) ≥ 0 (5.3)

for all n, a1, . . . , an, and s1, . . . , sn. Note that the necessity of the condition (5.3) follows
directly from the fact that

E(

n
∑

i=1

ai(Xsi −msi))
2 =

∑

i

∑

j

aiajC(si, sj). (5.4)

A covariance function C(s, t) is called stationary if C(s, s+ t) only depends on t, and
it is called isotropic if it can be written on the form

C(s, t) = σ2ρ(|s− t|), (5.5)
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where |s − t| is the Euclidean distance between s and t. Examples of ρ-functions that
give valid (positive-definite) covariance functions are

ρ(r) = exp(−ar), (5.6)

ρ(r) = exp(−ar2) (5.7)

with a positive constant a, and

ρ(r) = (1 + r2/b2)−β (5.8)

with positive constants b and β.

Suppose now that we have a valid covariance function C(s, t), and that σ2
0 > 0. Then

we can construct a new valid covariance function C0(s, t) by putting

C0(s, t) =

{

σ2
0 + C(s, t) if s = t
C(s, t) if s 6= t.

(5.9)

The constant σ2
0 in (5.9) is sometimes called a nugget effect with regard to applications in

mining. Another interpretation of the added quantity σ2
0 in (5.9) is that it just corresponds

to adding independent noise with variance σ2
0 to all our original observations.

Figure 5.1: Aerial photograph of Norway spruce trees.

5.1 Prediction (kriging)

Suppose that
Xs = ms + ǫs, (5.10)

where ms is a slowly varying trend function, known or with a known parametric form,
and that ǫs is a zero-mean random process with a covariance function, also assumed to
be either known or of a known parametric form.
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Suppose that we have observed Xsi, i = 1, . . . , n, and that we want to predict Xt. In
mining this problem is often called kriging after the South African mining engineer D. G.
Krige.

Assume first that the functions m and C are known. By regarding Xs −ms instead of
Xs we can transform the problem into one where ms = 0, which we now assume.

Consider a linear predictor

X̂t =

n
∑

i=1

aiXsi = aTX(n), (5.11)

where a = [a1 . . . an]
T and X(n) = [Xs1 . . .Xsn]

T denotes the observations. We choose a
to minimize the expected squared error

E(X̂t −Xt)
2 = aTGa− 2aTgt + σ2(t), (5.12)

where G is the n×n-matrix with elements Gij = C(si, sj), g
T
t = [C(s1, t) . . . C(sn, t)], and

σ2(t) = C(t, t). It is straightforward to show that (5.12) is minimized for a = G−1gt, and
the optimal predictor thus becomes

X̂t = XT
(n)G

−1gt. (5.13)

The corresponding expected squared error becomes

σ2
opt(t) = σ2(t)− gTt G

−1gt. (5.14)

It should be noted that in practice we often only assume that m and C are of known
parametric forms but with unknown parameters, and our observations X(n) have to be
used to estimate these parameters.

5.2 Exercises

Exercise 4.1. Regard the image in Figure 5.1. The imageXs, s ∈ S with S = {1, . . . , 223}×{1, . . . , 183}
is available as ku94-148Dpart.tif
(a). Assume first that the random function Xs, s ∈ S, has a stationary covariance func-
tion that can be written on the form C(s, s+ t) = R(t1, t2) for t = (t1, t2). Estimate the
covariance function R1(t1) = R(t1, 0) and the covariance function R2(t2) = R(0, t2) in two
orthogonal directions and plot the estimated functions R1 and R2 in the same diagram.
Does it seem as the covariance function C is identical in the two directions studied?
(b). Assume now that the random function Xs, s ∈ S, has an isotropic covariance func-
tion. Try to estimate the corresponding ρ-function in (5.5).
(c). Assume that the random function Xs, s ∈ S, is stationary such that the distribution
of Xs is the same for all s ∈ S. Try to estimate this distribution, often called the marginal
distribution of X.

Exercise 4.2. Delete, say, the three bottom rows in the image in Figure 5.1. See how
well you can reconstruct these three rows by use of prediction according to (5.13). Assume
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that the mean value function is a constant, which you estimate from the data. Use an
isotropic covariance function with one of the three forms (5.6) – (5.8) with parameter(s)
adapted to the result of Exercise 4.1(b). To limit computations in the prediction, use as
Xs1, . . . , Xsn a limited set of observations from, say, the last two remaining rows. Note
that if you want to use (5.13) for several gt it is computationally advantageous to multiply
together XT

(n) and G−1 before starting to vary gt.

Exercise 4.3. Consider the three images in the rightmost column of Figure 4.4. Esti-
mate the covariance function in two orthogonal directions (horisontal and vertical in the
figure) as in Exercise 4.1 above. Can any of the three covariance functions be assumed
to be isotropic?

Exercise 4.4. Show that if C is a valid covariance function, that is satisfies the inequal-
ity (5.3), then C0 in (5.9) is also a valid covariance function.

Exercise 4.5. Verify that X̂t in (5.13) minimizes (5.12) and that (5.14) gives the
corresponding expected squared error.

5.3 Literature on spatial random processes

See (Ripley, 1981) and (Cressie, 1993).

69



Chapter 6

Point processes. Poisson processes.

Let A be a subset of R2 with finite and positive area |A|. We will consider a random
subset X of A consisting of finitely many points, and call X a point process on A. If
B ⊆ A we let X(B) denote the number of points in X that belong to B.

The point process X is said to be stationary if the probability distribution of X is
invariant under any translation of the sets B where we regard the point process, and we
say that X is isotropic if the process is stationary and if, additionally, the distribution of
X is invariant under any rotation of such sets B.

Consider a stationary point process X on A such that X(A) has finite expectation.
One can then show that

E(X(B)) = λ|B| (6.1)

for some constant λ which we call the intensity of the point process.

Example 6.19. Poisson process with constant intensity.

A point process X is called a Poisson process with constant intensity λ ≥ 0 on A if X(B1)
and X(B2) are independent for disjoint subsets B1 and B2 of A and if X(B) is Poisson
distributed with expectation λ|B| for a subset B ⊆ A with area |B|, that is

Pr(X(B) = n) =
(λ|B|)n
n!

exp(−λ|B|). (6.2)

A Poisson process with constant intensity is stationary and isotropic.

A Poisson process on A with intensity λ can be generated in the following way. Let first
N be Poisson distributed with expectation λ|A|. Given that N = n, generate X1, . . . , Xn

as independent and identically distributed variables, each with a uniform distribution
over A. (See Section 13.13 for a description of how to generate random numbers with a
uniform distribution on a given bounded set in two dimensions.) Then we let X consist
of the points X1, . . . , Xn, that is X = {X1, . . . , Xn}.

In Figure 6.1 we see two examples of such generation of a Poisson process in the unit
square with the constant intensity λ = 50.

�
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Figure 6.1: Two examples of Poisson point processes generated in the unit square with
λ = 50. The generated number of points is to the left N = 55 and to the right N = 49.

Example 6.20. Poisson process with varying intensity.

A point process X is called a Poisson process with intensity function λ(s), s ∈ A, if X(B1)
and X(B2) are independent for disjoint subsets B1 and B2 of A and if X(B) is Poisson
distributed with expectation

∫

B
λ(s) ds for B ⊆ A.

A Poisson process with intensity function λ(s), s ∈ A, can be generated in the following
way. Let first N be Poisson distributed with expectation

∫

A
λ(s) ds. Given that N = n,

generate X1, . . . , Xn as independent and identically distributed variables, each with a
distribution specified by

Pr(Xi ∈ B) =

∫

B
λ(s) ds

∫

A
λ(s) ds

for B ⊆ A. (6.3)

Then we put X = {X1, . . . , Xn}. �

6.1 The Neyman-Scott process, a point processes with

clustering

Consider a Poisson process with constant intensity λ, and regard the points of this process
as mother points. From each mother point we generate daughter points such that the
number of daughter points from the mother points are all independent and identically
distributed. Further, the two-dimensional vectors from a mother point to the daughter
points are all independent and identically distributed. This distribution we call the
scattering distribution. The process of daughter points is called a Neyman-Scott process.

Suppose that we want to generate a Neyman-Scott process. If the daughter process
is regarded on a set A we need to start by generating the mother point process on a set
larger than A, in fact so large that (essentially) all points from which daughters can get
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scattered into A are included. With this observation it is straightforward to generate a
Neyman-Scott process from the definition above.

Example 6.21. A Neyman-Scott plant process with 2D normal scattering.

Suppose that we want simulate a Neyman-Scott process of mother and daughter plants
within the unit square [0, 1]×[0, 1] with intensity λ = 10 for the Poisson process of mother
points, with a number of daughter points that is binomial (n, p) with n = 8 and p = 0.5
and with a 2D scattering distribution that isN(µ1, µ2, σ

2
1, σ

2
2 , ρ) with µ1 = µ2 = σ1 = σ2 =

0.1 and ρ = 0.5 corresponding to wind spread of seeds with a main wind direction from
south-west. We start by simulating the Poisson mother plant point process in the axis-
parallell quadrat with south-west and north-east corners in (−0.5,−0.5) and (1.3, 1.3),
respectively. The result of the simulation is shown in Figure 6.2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.2: A simulation of a Neyman-Scott process with mother points as circles and
daughter points as dots. OBS OBS a new figure must be generated.

�

6.2 A hard-core inhibition point process

In the cluster point process in the previous section the occurrence of a point typically
increases the intensity of points in a neighborhood of this point. We will now describe a
point processes with inhibition, suggested 1960 by Matérn, see (Matérn, 1986), which has
the opposite property: the occurrence of a point inhibits other points within a certain
distance.

Start by generating a Poisson point process with intensity λ on a bounded set A. To
each point Xi, i = 1, . . . , N , we associate a random mark consisting of random variable Ui,
which is uniformly distributed on the interval (0, 1) and such that the Ui’s are indendent,
mutually and of the Xi’s. We can think of Ui as the birth time of the point Xi.
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Then we thin the X-process by deleting each point Xi for which there exists an older
point Xj of the original point process closer than a distance d, that is a point Xj satisfying
|Xi −Xj | < d and Uj < Ui. The distance d is called the hard core distance.

6.3 TheK-function, a diagnostic tool for detecting clus-

tering and inhibition

Consider an isotropic point process with intensity λ and suppose that x is a point of the
point process X. Let ‖y− z‖ denote the distance between two points y and z in R

2, and
define the K-function of X as follows,

K(r) =
1

λ
E(number of further points of X within distance r from x|x ∈ X) (6.4)

or more precisely

K(r) =
1

λ
E(X(Cx(r)|x ∈ X), (6.5)

where Cx(r) = {y : 0 < ‖y − x‖) ≤ r} denotes a circular disk with radius r around x
with the point x excluded.

For a stationary Poisson process it follows that

K(r) = πr2. (6.6)

Sometimes one chooses to regard L(r) = (K(r))1/2 as this function is linear in r for a
Poisson process, for which

L(r) =
√
πr. (6.7)

If we have a point process with clustering as for example the Neyman-Scott process
we can expect that the K-function will lie above the K-function for a Poisson process
for r-values where we have clustering, while for a point process with inhibition such as
the Matérn hard-core process it should lie below for those r-values for which we have
inhibition.

6.4 Point processes operations such as thinning, dis-

placement and superposition

Consider a point process X on a set A. Suppose that the points of X are deleted
independently with a probability 1−p, and retained with retention probablity p, 1 ≤ p ≤
1. The resulting point process of retained points is called a p-thinned point process. If
X is a Poisson process with constant intensity λ one can show that the p-thinned point
process is a Poisson process with intensity pλ. Note that the hard-core inhibition point
process described in Section 6.2 is obtained from a Poisson process by a more complicated
thinning than independent thinning.
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In Section 6.1 we described a daughter point process obtained by a clustering operation
on a mother Poisson point process. The same clustering operation with independent and
identically distributed daughter points can be obtained starting from an arbitrary mother
point process. A useful special case is that each mother point gives birth to one exactly
daughter point with a given scattering distribution. The resulting daughter point pro-
cess then gives a point process with displacements with the original points independently
displaced according to the scattering distribution.

A third useful point process operation is superposition X ∪ Z of two point processes
X and Z on a given set A. For instance, if X is the basic point process that we consider,
then Z can be an independent Poisson process of “ghost” points. In (Lund & Rudemo,
2000) a point process X of tree positions measured on ground is studied together with
positions Y obtained from an aerial photograph such as in Figure 1.2 or 1.4. The points
of Y are modeled as obtained from X by the mechanisms of thinning, displacement and
superposition of independent “ghost” points. The parameters of these mechanisms are
studied by consideration of the conditional likelihood L(Y |X) of Y given X.

6.5 Estimation of characteristics for point processes

Suppose that we have observed a stationary point process X on a set A ⊂ R
2. The

intensity of X we estimate by

λ̂ =
X(A)

|A| . (6.8)

It follows generally that for a stationary point process with finite intensity λ the estimator
(6.8) is an unbiased estimator of the intensity, that is, E(λ̂) = λ.

For a Poisson process we can also compute the variance of the estimator (6.8). We
find

var(λ̂) =
λ

|A| . (6.9)

Let us now regard estimation of the K-function of a point process X observed in the
region A. The basic problem in estimating K(r) is that for a point x ∈ X we want to
consider all neighbouring X-points within distance r. But some of these neighbours may
be located outside A.

For our first estimator of K(r) we consider pairs of X-points x and y such that x ∈ A−
r ,

where A−
r denotes the subset of A of points with a distance at least r to the border of

A. Let 1{P} denote the function which is 1 when P is true and zero else. From the
definition (6.4) it follows

∑

x∈X∩A−

r

∑

y∈X

1{0 < ‖y − x‖ < r} (6.10)

is an unbiased estimator of λ2|A−
r |K(r). The procedure of restricting to points within a

certain distance to the border is called minus-sampling, and the corresponding estimator
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of K(r) is therefore called K̂minus(r), and it is obtained from the unbiased estimator (6.10)
of λ2|A−

r |K(r) by replacing λ with its estimator (6.8). We get

K̂minus(r) =
1

λ̂2|A−
r |

∑

x∈X∩A−

r

∑

y∈X

1{0 < ‖y − x‖ < r}. (6.11)

Let us now give another estimator of the K-function which utilizes our observations
more effectively. Regard two points x and y in the region A and a circle with centre at
x and radius ‖y − x‖. Let w(x, y) denote the proportion of the perimeter of this circle
that lies within A. If, for instance A is the unit square [0, 1]×[0, 1], x = (1/2, 1/2) and
y = (1/2,−1/2 + 1/

√

(2), then a straightforward compution shows that w(x, y) = 1 and
w(y, x) = 3/4. One can now show that

∑

x∈X

∑

y∈X

1{0 < ‖y − x‖ < r}
w(x, y)

(6.12)

is an unbiased estimator of λ2|A|K(r). The corresponding estimator of the K-function is

K̂(r) =
1

λ̂2|A|
∑

x∈X

∑

y∈X

1{0 < ‖y − x‖ < r}
w(x, y)

. (6.13)

There is one minor restriction in the use of (6.13) which means that we cannot consider
r so large that w(x, y) become close to zero. In practice this is not important as we are
usually interested in reasonably small r-values. Thus, for observations in the unit square
an upper limit for r is 1/

√
2.

6.6 Simulation-based envelope tests for point processes

Suppose that we have an estimate K̂(r) of the K-function of a point process X on the
set A with, say, the estimator (6.13). As indicated in the end of Section 6.3 we should
then be able to detect clustering or inhibition by comparing the estimated K-function
with the K-function (6.6) valid for a stationary Poisson process. But how large deviation
could we expect to find by pure randomness?

Useful simulation-based envelope-techniques have been introduced to tackle this prob-
lem, compare (Diggle, 2013). Let us start with describing a technique which is useful
as an exploratory tool. Put n = X(A) and generate M independent copies X1, . . . , XM

of a Poisson process on A conditioned on Xm(A) = n,m = 1, . . . ,M . Thus the points
of each Xm can be obtained by independent random sampling of n points in A. Let
K̂m(r) denote the K-function estimate corresponding to Xm, m = 1, . . . ,M . We are
interested in evaluating the probability that K̂(r) lies between the envelopes minmK̂m(r)
and maxmK̂m(r).

Assume for simplicity that M = 39. Then we have provided that X is a Poisson
process, and for fixed r,

Pr
(

min1≤m≤MK̂m(r) ≤ K̂(r) ≤ max1≤m≤MK̂m(r
)

=

1− Pr
(

min1≤m≤MK̂m(r) > K̂(r)
)

− Pr
(

K̂(r) > max1≤m≤MK̂m(r
)

=

1− 0.025− 0.025 = 0.95.

(6.14)
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A tempting strategy is then to plot K̂(r) together with the envelopes minmK̂m(r) and
maxmK̂m(r), and to conclude that the Poisson hypothesis is rejected if K̂(r) somewhere
falls outside the envelopes. However this procedure does not give a valid test at the level
p = 0.05 as the calculation above is only valid for a fixed r-value. However, it may still
be used as an exploratory technique indicating for which r-values the Poisson hypothesis
may not be valid. There have been developed valid tests with envelope bounds, see for
instance (Myllymäki et al., 2017).

6.7 Exercises

Exercise 6.1. Generate a Poisson process on the unit square [0, 1]×[0, 1] ⊂ R
2 with

constant intensity 100. Show the result in a figure.

Exercise 6.2. Generate a Poisson process on the unit square A = [0, 1]×[0, 1] with varying
intensity λ(s) = 200s1, s = (s1, s2) ∈ A. Show the result in a figure.

Exercise 6.3. Generate a Neyman-Scott process on the unit square A = [0, 1]×[0, 1] ⊂ R
2

in the following way. Assume that (i ) the mother process is a Poisson process with
constant intensity 50, (ii ) each mother point generates two daughter points, and (iii )
the scattering distribution (from mother to daughter) is an isotropic two-dimensional
normal distribution with zero means and standard deviation 0.01 in both horizontal and
vertical directions. (Truncate here the normal distributions at, say, plus and minus three
standard deviations.) Show the result in a figure.

Exercise 6.4. Compute the expected distance from one mother point to its nearest neigh-
bour mother point for the point process of the previous exercise, and also the expected
distance between the two daughter points from one mother point (disregard in these com-
putations edge effects, that is the limited size of the set A). Instead of the two expected
distances you may choose to compute root-mean square distances, that is the square root
of the expected squared distances, which are a bit easier to compute.

Exercise 6.5. Generate a hard core Matérn point process on the unit square [0, 1]×[0, 1] ⊂
R

2 with λ = 100 and d = 0.1. Show the result in a figure.

Exercise 6.6. Estimate the intensity and theK-function for the point processes considered
in (a) Exercise 6.1, (b) Exercise 6.3, and (c) Exercise 6.5. Compare the three K-function
estimates.

Exercise 6.7. Generate copies of Poisson processes X1, . . . , XM with M = 39 and corre-
sponding K-function estimates as described in Section 6.6 for the point processes con-
sidered in (a) Exercise 6.1, (b) Exercise 6.3, and (c) Exercise 6.5. For each of these
three examples plot both the K-function estimates (as in Exercise 6.6) and the envelopes
minmK̂m(r) and maxmK̂m(r).

6.8 Extensions and literature on point processes

Highly readable general introductions to spatial point processes are given in (Diggle,
2013) now in its third edition, (Baddeley et al., 2015) which also provides R programmes
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for point process analysis, (Daley & Vere-Jones, 2003),(Daley & Vere-Jones, 2008), and
(Illyan et al., 2008). The important class of Markov point processes, which are related to
the Markov image models discussed in Chapter 4, are treated in (van Lieshout, 2000) and
(Møller & Waagepetersen, 2003). In (Chiu et al., 2013) point processes are discussed in
detail but also more general random spatial objects such as, for instance, random closed
sets generated by placing closed discs with centers at points in a point process and taking
the union these discs. Such objects are also briefly discussed in the following Chapter 7.
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Chapter 7

Marked point processes and patterns of

randomly placed objects

Point processes are natural building blocks for more complicated spatial processes such
as patterns of random objects, for instance disks of random sizes. Let us consider a point
process X and associate with each point Xi of X a random mark Mi, which could be the
radius of a disk centered at Xi. By letting the mark be a vector with several components
we could model more complex objects.

For the 2D gel electrophoresis images in Figures 1.9 and 1.10 we could associate with
a protein at position Xi = [X1iX2i]

T the mark Mi = (Si, Ci), where Si is the expression
level of the corresponding protein and Ci could describe the shape of the spot at Xi.
A straightforward model would be to assume that protein molecules are in the first
step transported horisontally to a position with mean X1i depending on the molecules
pI-value (see example 1.4), and in the second step transported vertically (downwards)
by 2D Brownian motion with drift to a position with mean X2i with long transports
for small molecules. A simple model would thus be to assume that the spot shape is
a two-dimensional normal distribution with 2×2 covariance matrix Ci with means and
correlation coefficient zero. The observed pixel grey level Yx at a pixel with location x
could then modeled by

Yx =
∑

i

Sif(x,Xi, Ci) + ǫx, (7.1)

where ǫx is the observation noise at pixel x and

f(x,Xi, Ci) =
1

2π(detCi)1/2
exp(−1

2
(x−Xi)

TC−1
i (x−Xi)). (7.2)

Looking at Figures 1.9 and 1.10 it is evident that the 2D-normal assumption is clearly
not perfect, but anyhow this simple model turns out to be useful s a first step.

For the diffusing particles in Figures 1.13 and 1.14 we could consider a model

Yx =
∑

i

f(x,Xi, zi) + ǫx, (7.3)

where again ǫx is the observation noise at pixel x, but the mark consists of the scalar zi
representing the vertical position of a particle relative to the focal plain. The function f
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may be estimated from data obtained by a special arrangement where one lets particles
absorb on a glass surface and the glass surface is then moved step-wise vertically with
known distances to the focal plane, see (Kvarnström & Glasbey, 2007) for details.

Similar models could be considered for the aerial photographs in Figures 1.2 and 1.4
where we could assume a similar shape for trees in a given view. This shape function could
then be estimated from data combined with a simulation model based on the geometry
and illumination of the trees from the sun (Larsen & Rudemo, 1998).

A specific problem is interaction between objects that overlap partly. In 2D gel elec-
trophoresis it is natural to assume an additive model as in (7.1), but in the aerial pho-
tographs, and particularly for the diffusing particles, objects may occlude each other and
then an additive model may be an untenable approximation. In some applications such
as the one shown in Figure 7.1 objects do (essentially) not overlap.

Figure 7.1: Binary images of two cuts in cast iron showing approximately disk-shaped
defects. Data from Beretta (2000) and Månsson and Rudemo (2002).

Let us regard models for random placed disks. For disks of constant size we can then
use the inhibition point process of Section 6.2 by placing disks of diameter d centered
at the points of the thinned point process. In the following section we shall regard two
modifications of this model.

7.1 Two processes of varying-sized disks

Let us regard marked point processes constructed in two steps as follows.

In the first step we generate a Poisson point process with constant intensity λ in the
plane, and to each point in this point process we generate identically distributed radii
with a proposal distribution function Fpr. The radii are independent mutually and of the
point process.

In the second step we thin the generated point process by letting all pairs of points
whose associated disks intersect ’compete’. A point is kept if it has higher weight in all
pairwise comparisons, where the, possibly random, weights are assigned to the points
according to two different approaches:
1) Pairwise assignment of weights: For each comparison, weights are assigned to the
involved pair of points, and assignments are independent both within and between pairs.
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2) Global assignment of weights: Weights are assigned once and for all to all points,
and assignments to different points are independent. These weights are then used in all
comparisons.

In both cases the weight of a point may depend on the associated radius. (When the
weights are constant or deterministic functions of the radii, the two approaches coincide.)

It is possible to compute both the intensity of the point process after thinning and the
radius distribution function after thinning. Details are given in Månsson and Rudemo
(2002). Let us here only show a simulation example of disks before and after thinning
with three different thinning procedure, see Figure 7.2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
a) Discs before thinning
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b) All intersecting discs removed
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c) Large discs kept
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d) Global thinning, uniform weights

Figure 7.2: Simulation of a disk process before and after three different thinning pro-
cedures. In the first step a Poisson process with intensity 1000 in the unit square is
generated with exponentially distributed disk radii with expectation 0.01.

80



Chapter 8

Warping and matching

An important problem in analysis of multiple images is to match objects in different
images. Thus we would like to know which spots in the 2D gel electrophoresis images in
Figures 1.9 and 1.10 that correspond to each other in order to compare the expression
levels of the proteins. Similarly we want to match objects in Figures 1.13 and 1.14
in to order to be able to follow the diffusing particles and to estimate the diffusion
coefficient of their motion. There is, however, a fundamental difference between these
two problems. The diffusing particles move independently of each other except for the
rare occasions when they come very close in all three dimensions. Thus displacements
of particles that are close in the two-dimensional images are essentially independent of
each other. In contrast, displacements of nearby spots in the electrophoresis images are
highly correlated. The matching of objects in these two situations therefore demand
quite different methods. In the present section we shall study warping methods which
are useful for matching of objects in images such as the 2D gel images.

Suppose that we have a reference image Y = Y (x) and another image Y ′ that we
want to warp (transform) into Y as closely as possible according to some criterion by
transforming locations such that Y (x′) is close to Y (x). Here we regard x and x′ as
2-dimensional column vectors and put

x′ = f(x) (8.1)

for some warping function f . The general affine warping function is

x′ = Ax+ b =

[

a11 a12
a21 a22

] [

x1
x2

]

+

[

b1
b2

]

. (8.2)

A special case of the affine transformation is the Procrustes transformation for which

x′ =

[

c cos θ c sin θ
−c sin θ c cos θ

]

x+ b. (8.3)

A special case of the Procrustes transformation consists of a dilation (scale change with
a fixed factor c) and a translation

x′ =

[

c 0
0 c

]

x+ b = cx+ b, (8.4)
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and another special case of the Procrustes transformation consists of a rotation and a
translation,

x′ =

[

cos θ sin θ
− sin θ cos θ

]

x+ b. (8.5)

A simple nonlinear warping is the bilinear transformation

x′1 = a11x1 + a12x2 + c1x1x2 + b1
x′2 = a21x1 + a22x2 + c2x1x2 + b2.

(8.6)

We note that for fixed x2 the bilinear transformation (8.6) is linear in x1 (with slope
and intercept depending on x2) and, similarly, for fixed x1 the transformation (8.6) is
linear in x2. This means that an axes-parallell rectangle in the x1x2-plane is transformed
into a polygon with four sides and four corners in the x′1x

′
2-plane (but generally not with

pairwise parallell sides).

Another nonlinear warping function is the perspective transformation

x′1 = (a11x1 + a12x2 + b1)/(c11x1 + c12x2 + 1)
x′2 = (a21x1 + a22x2 + b2)/(c21x1 + c22x2 + 1).

(8.7)

The perspective transformation may be used for matching the tree tops in Figures 1.2 and
1.4. Note that both the bilinear and the perspective transformations are generalisations
of the affine transformation (8.2).

To choose parameters of a warping transformation x′ = f(x) = (f1(x1, x2), f2(x1, x2))
we may consider minimization of a distortion-weighted least squares criterion function
such as

L(Y ′, Y, f) =
∑

x

(Y ′(x′)− Y (x))2 + λD(f), (8.8)

where D(f) is a distortion measure of the warping function f , and λ is a non-negative
weighting constant determining the balance between closeness of matching and distortion.
Let us also note that with normally distributed variables least squares minimization cor-
responds to log-likelihood maximization, and a method where we use a distortion measure
as in (8.8) is often called a penalized log-likelihood method. The distortion measure could
for instance measure the deviation from linearity of the warping function, and could be
a sum of squared second derivatives of f integrated over the region regarded,

D(f) =

2
∑

i=1

2
∑

j=1

2
∑

k=1

∫
(

∂fi
∂xj∂xk

)2

dx1dx2, (8.9)

where the partial derivatives in computations are approximated by finite differences. The
integrals are also approximated by sums over pixels.

A useful type of warping consists af a grid of local bilinear transformations. This
method is used in (Glasbey & Mardia, 2001) to warp images of fish, haddock and whit-
ing, into each other. Similarly it is used in Gustafsson et al. (2002) to match 2D gels
electrophoresis images such as those in Figures 1.9 and 1.10 into each other, see Chapter
10 below for details. Here we will now describe how handwritten digits can be warped
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into each other, which will also be used for averaging of the handwritten digit images.
Note that simple direct averaging of digits such as those shown in Figure 8.3 will not
produce a useful end-result, although such averaging, as we will see, can be used as an
initial step.

Example 8.22. Handwritten digits. Warping and averaging. Classification by minimal
warping effort.

Consider 28×28 images from MNIST and warping of the handwritten digit “2” to the left
in the upper row of Figure 8.1 to the digit to the right of it by use of a grid of bilinear
transformations shown in Figure 8.2. The grid has 7×7 cells and the weighting constant
in (8.8) is λ = 1. Computations and figures are from (Longfils, 2018), where more details
are given, including a discussion of the choice of the grid size and the weighting constant.

image to warp target image

warped image residuals

Figure 8.1: Warping of the digit “2” left in upper row to the digit “2” right in the same
row. The lower row shows the warped image and the residuals relative to the target
upper right.

Let us now consider averaging of handwritten digits of the same type by use of data
from MNIST as used earlier in Example 2.17. Thus we have for instance 958 digits “5”,
compare Table 2.1, of which 100 are shown in Figure 8.3. To find the average handwritten
5-digit we first average all the 958 5-digits. Then we warp all 958 digits separately with
the average as target. Then we average the warped 5-digits, warp into the new average
and proceed iteratively until changes are sufficiently small. After a few iterations we
obtain the average shown in Figure 8.4.

Let us describe how we can use warping techniques to classify images. The method was
suggested in (Glasbey & Mardia, 2001) and there used to identify fish species. Consider
as before a set of MNIST images, and let µj, j = 0, . . . , 9, denote average iteratively
warped image for digits j as described above, and where µ5 is shown in Figure 8.4. To
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Figure 8.2: Original and warped handwritten digits also shown in Figure 8.1, upper left
and lower left, here with the 7×7-grid for the bilinear transformations. The target is the
upper right digit in Figure 8.1.

Figure 8.3: First 100 digits “5” in the MNIST database.
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Figure 8.4: Average handwritten digit “5” obtained by sequential warping and averaging.

classify a new image Y , let Yf denote the image Y warped by the transformation f . Put

Qj = min
f

{

∑

x

(Yf(x)− µj(x))
2 + λ

2
∑

i=1

2
∑

j=1

2
∑

k=1

∫
(

∂fi
∂xj∂xk

)2

dx1dx2

}

, (8.10)

and classify Y as the digit j for which Qj is minimal. In Figure 8.5 classification of 197
digits are shown with two fours and four fives miss-classified.
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Figure 8.5: Classification of 110 handwritten digits “4” and 87 digits “5” by warping
classification. Penalized log-likelihoods for the two types of digits are shown on the axes.
Six digits are miss-clasified.

�

For reviews of image warping methods, see (Glasbey & Mardia, 1998, 2001).
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PART 3 APPLICATONS
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Chapter 9

Analysis of two-coloured DNA

microarray images

There are several types of DNA microarrays used to analyze expression levels of genes.
We shall here look at a specific type of two-coloured spotted microarrays briefly described
in Example 1.5, and look at spot shape modelling and data transformation of microarray
data as described in (Ekstrøm et al., 2004). As seen in Figures 1.11 and 1.12 spots are
approximately circular with a diameter of about 18 pixels. Let S denote the set of spots,
and for each spot s ∈ S we associate a set As of pixels containing the spot approximately
in the centre. We can for instance let As be a square with side length 24 pixels. The sets
As and As′ should be disjoint for different spots s and s′.

From Figures 1.11 and 1.12 it is seen that the signal intensity of spots varies from
weak to strong. To see details in weakly expressed spots it is useful to increase the
photometric gain in the scanning. However, if we increase the gain we can get some
pixels in the strongly expressed spots to get saturated, also called censored. One aim in
(Ekstrøm et al., 2004) was to to see if one can reconstruct the pixel valued in satured
pixels by use of suitable spot shape modelling.

9.1 Data transformations

Let Z = Z(x) denote the intensity of pixel x. For the data in (Ekstrøm et al., 2004) the
intensity Z is a 16-bit integer, 0 ≤ Z ≤ 216 − 1 = 65535. Let Y denote a transformation
of Z. We consider three types of transformations. Firstly, a logarithmic transformation

Y = k log(Z + λ1), (9.1)

where λ1 is a positive parameter; secondly, a Box-Cox transformation

Y =

{

k((Z + λ1)
λ2 − 1)/λ2 if λ2 6= 0

k log(Z + λ1) if λ2 = 0,
(9.2)

where λ1 > 0; and thirdly, an inverse hyperbolic sine transformation

Y = k arsinh

(

Z + λ1
λ2

)

, λ2 > 0. (9.3)
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The logarithmic transformation is a special case of the Box-Cox transformation (for
λ2 = 0). One can show that arsinh(z) = log(z +

√
z2 + 1) for z > 0, and thus for large z

we have arsinh ≈ log(2z). We see that for large values of z the logarithmic transformation
is thus essentially also a special case of the hyperbolic sine transformation (for λ2 = 2).

9.2 Spot shape models

Let us consider a spot s and pixels x ∈ As. Let cs = (cs1, cs2) denote the spot centre of
spot s, and let rs(x) =‖ x − cs ‖ denote the Euclidean distance from the spot centre to
the pixel x. Assume that

Y (x) = Bshs(rs(x)) + bs + ǫ(x), x ∈ As. (9.4)

Here Bs measures the intensity of spot s, and this intensity is typically the most impor-
tant parameter to be estimated for spot s. Further bs is a background intensity, hs(r)
is a spot shape function assumed to be symmetric around the spot centre, and ǫ(x) cor-
responds to zero-mean noise at pixel x. We will assume that noise contributions are
normally distributed with constant variance σ2

ǫ , and to begin with we will also assume
that noise from different pixels are independent. Thus we assume that (Y (x), x ∈ As)
has a multivariate normal distribution with means

µs(x) = Bshs(rs(x)) + bs, x ∈ As, (9.5)

and covariance matrix σ2
ǫ I, where I is an identity matrix. We consider four different

choices of the spot shape function hs(r):

The cylindrical shape model. Put

hs(x) =
1

πσ2
s

1(r ≤ σs), (9.6)

where 1(P ) = 1 if P is true and 1(P ) = 0 if P is false. The parameter σs can be
interpreted as the radius of the spot.

The Gaussian shape model. Here

hs(x) =
1√
2πσ2

s

φ(r/σs), (9.7)

where φ is the standardized one-dimensional normal density φ(r) = (1/
√
2π) exp(−r2/2).

The Gaussian difference shape model. Put

hs(x) =
1 + αs√
2πσ2

s

φ(
r

σs
)− αs√

2π(βsσs)2
φ(

r

βsσs
), (9.8)

where σs > 0, αs ≥ 0 and 0 < β < 1.

The polynomial-hyperbolic shape model. Here

hs(r) =

{ Ks

σ2
s
exp(gs(r/σs)) if 0 ≤ r < γsσs

0 if r ≥ γsσs,
(9.9)
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with

gs(r) =
2
∑

i=1

bsir
i − as

γs − r
, 0 ≤ r < γs, (9.10)

where as > 0 and γs > 1, σs represents the radius of the spot, Ks is a normalizing
constant and

bs1 = as/γ
2
s

bs2 = as
2

{

1
(γs−1)2

− 1
γ2
s

}

.

Some spot-shape parameters may be common for all spots and some may be spot-specific.

9.3 Maximum likelihood estimation

To estimate parameters in the spot shapes and the transformations we use the maximum
likelihood method. Let us first assume that there are no saturated pixels, that is all
pixel-values are below the maximum level, which is 216 − 1 before data transformation.
Then the log-likelihood for the Y -values in the neighbourhood As of spot s is

LY =
∑

x∈As

log

{

1

σǫ
φ

(

Y (x)− Bshs(rs(x))− bs
σǫ

)}

. (9.11)

Let us now assume that there are some saturated pixel-values, and let ℓc denote the
saturation level for the Y -values. Thus if Y (x) < ℓc we know the value Y (x) but otherwise
we only know that Y (x) ≥ ℓc. Let A′

s = {x ∈ As : Y (x) < ℓc} and A′′
s = {x ∈ As :

Y (x) ≥ ℓc} denote the set of pixels that are unsaturated and saturated, respectively.
Then we find that the log-likelihood becomes

LY = L1 + L2, (9.12)

where

L1 =
∑

x∈A′

s

log

{

1

σǫ
φ

(

Y (x)− Bshs(rs(x))− bs
σǫ

)}

(9.13)

and

L2 =
∑

x∈A′′

s

log

{

1− Φ

(

ℓc −Bshs(rs(x))− bs
σǫ

)}

, (9.14)

where Φ denotes the distribution function of the standardized one-dimensional normal
distribution.

In Figure 9.1 original data (one-dimensional profiles through spot middle) and model
fits for one specific spot and the four spot shape models are shown. It is seen that the first
and particularly the fourth model seem to give considerably better fits compared to the
second and the third models. The original data and the fit for the polynomial-hyperbolic
model (9.9) are shown in more detail in Figure 9.2 for the same spot as in Figure 9.1.

Let us now look at a simultaneous comparison of transformations and spot shape
models by use of maximum likelihood estimation. Results are shown as median differences
of log-likelihoods relative to the best model fit in Table 9.1 for 25 spots and four different
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Figure 9.1: One-dimensional intensity profiles (through spot center) for observed inten-
sities of one spot, four photometric gains and maximum likelihood fits for the four spot
shape models (9.6), (9.7), (9.8) and (9.9).

Figure 9.2: Three-dimensional plot (for one photometeric gain) of observed intensities
(left surface) for the same spot as in Figure 9.1 and the corresponding estimated spot
shape for the polynomial-hyperbolic shape model (right surface).
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photometric gains in the scanning. The 25 spots were selected to represent both low,
median and high intensity levels. We see that the polynomial-hyperbolic model is the
best spot shape model followed in order by the cylindrical, the Gaussian difference and
the Gaussian model, which is also clearly indicated in Figure 9.1. The best combination is
the Box-Cox transformation together with the polynomial-hyperbolic spot shape model.

Table 9.1: Median decrease in log-likelihood for 25 spots and four gains relative to the
polynomial-hyperbolic spot shape model with the Box-Cox transformation

Spot shape model
Transformation Cylindrical Gaussian Gaussian difference Polynomial-hyperbolic
Logarithm 136.3 329.6 185.4 17.0
Arsinh 127.2 258.7 144.4 13.9
Box-Cox 134.3 320.3 178.2 0.0

As mentioned in the second paragraph of this chapter one of the aims of (Ekstrøm
et al., 2004) was to reconstruct values in saturated pixels. In Figure 9.3 we show how
artificially saturated levels can be reconstructed for one spot.

Figure 9.3: One-dimensional intensity profiles through the center of one spot together
with reconstructions by use of the polynomial-hyperbolic spot shape model for different
levels of artificial saturation indicated by horizontal lines. Both data (thin curves) and
reconstructions (heavy curves) are shown for each saturation level.

9.4 Models with dependent pixel residuals

Up till now we have regarded residuals ǫ(x), x ∈ As, in (9.4) as independent. However,
a closer look at the left part of Figure 9.2 indicates that residuals at least for adjacent
pixels seem positively correlated.

Following (Ekstrøm et al., 2005) let us assume that the vector Y with components
Y (x), x ∈ As, has a multivariate normal distribution, Y ∼ N(µ, σ2

ǫR), where µ as before
has components µ(x) = Bshs(rs(x)) + bs, x ∈ As, but R, instead of being an identity
matrix, corresponds to an isotropic correlation function. Thus we assume that

cov(Y (x), Y (x′)) = σ2
ǫρ(r, c), (9.15)

where r =
√

(x1 − x′1)
2 + (x2 − x′2)

2 is the Euclidean distance between x = (x1, x2) and
x′ = (x′1, x

′
2) and c is a real (positive) parameter. We consider five different correlation

functions:
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The exponential correlation function

ρ(r, c) = exp(−r/c), (9.16)

the Gaussian correlation function

ρ(r, c) = exp(−(r/c)2), (9.17)

the linear correlation function

ρ(r, c) = (1− r/c)1(r < c), (9.18)

the rational quadratic correlation function

ρ(r, c) =
1

1 + (r/c)2
(9.19)

and the spherical correlation function

ρ(r, c) = (1− 2

3
(r/c) +

1

2
(r/c)3)1(r < c). (9.20)

Let us further choose the Box-Cox transformation and the polynomial-hyperbolic spot
shape model. To estimate parameters including the parameter c for the different corre-
lation function by maximum likelihood we have to maximize the log-likelihood

logL = −n
2
log(2π)− 1

2
log(detC)− 1

2
(Y − µ)TC−1(Y − µ), (9.21)

where n is the number of pixels, µ contains parameters for the spot shape and C =
σ2
ǫR contains the correlation function parameter c for the different correlation functions

considered. The computations turn out to be considerably more complicated compared
to the independent residuals model, see (Ekstrøm et al., 2005) for details.

The resulting log-likelihood improvements compared to the independent residuals
model are shown in Table 9.2. The fit of the different correlation functions are fur-
ther illustrated in Figure 9.4. We see that the two correlation structures that give the
best fit in Table 9.2, that is the Gaussian and the spherical correlation, also give the best
agreement with the empirical correlation coefficients in Figure 9.4.

Table 9.2: Median improvement in log-likelihood for 25 spots and four gains relative to
the model with independent residuals for five models with residual correlation

Correlation Exponential Gaussian Linear Rational Spherical
structure quadratic

69 82 73.5 75 78
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Figure 9.4: Median estimated correlation functions for the five studied correlation struc-
tures. The possible observable distances between pixel centres are shown by vertical lines
and the crosses on these lines show the median empirical correlation coefficients.

9.5 Exercises

Exercise 9.1. Check that the spot shape functions (9.6), (9.7) and (9.8) satisfy
∫∫

h(x) dx1 dx2 =
1, where x = (x1, x2) and the integral is taken over the entire two-dimensional space. (The
same relation holds for (9.9), but that is a bit more complicated to show.)

Exercise 9.2. Describe how the reconstructions (heavy curves) in Figure 9.3 can be
computed.

Exercise 9.3. What details in Figure 9.2 should one look at to get an indication of that
residuals for adjacent pixels are positively correlated?

Exercise 9.4. In Figure 9.4 there are computations for the seven smallest inter-pixel
distances (marked by crosses). Describe how pairs of pixels are located to achieve these
distances. One distance corresponds to a knight move in chess; which distance is that?
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Chapter 10

Two-dimensional electrophoresis

Two-dimensional electrophoresis is an experimental technique that can be used to measure
the expression of up to several thousands of proteins, compare Example 1.4 with Figures
1.9 and 1.10. In this chapter we shall describe techniques from (Gustafsson et al., 2002)
based on warping and matching of such images. The image data in (Gustafsson et al.,
2002) consist of five images similar to Figure 1.9 from 2D gel electrophoresis of baker’s
yeast grown in a standard solution and five images similar to Figure 1.10 from 2D gel
electrophoresis of baker’s yeast grown under stress in a solution with salt added.

Figure 10.1: Illustration of warping step I with correction for current leakage sideways
through the left and right boundaries during the second-dimensional gel electrophresis.
Part a of the figure shows the original image and part b shows the warped current-leakage
corrected image.

The warping in (Gustafsson et al., 2002) consists of two steps. As described in Example
1.4 images are obtained by first letting protein molecules move horizontally along a string
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to a position determined (except for random noise) by the protein isoelectric point pI.
In the next step, the second-dimensional gel electrophoresis, a polyacrylamide gel is
cast between two glass plates separated from each other by thin plastic spacers and
placed vertically in a bath. The protein string is placed horizontally on the top of the
polyacrylamide gel. A voltage is applied between the upper and the lower boundaries of
the plates and the proteins perform a Brownian motion with downwards vertical drift in
the bath. The vertical distances traveled by the protein molecules are determined (except
for random noise) by the protein mass. During this second step there may be current
leakage sideways, and the first warping step in (Gustafsson et al., 2002) models this by
solving a partial differential equation with suitable boundary conditions taking care of
current leakage. The result of the warping is illustrated in Figure 10.1, and we refer to
(Gustafsson et al., 2002) for further details of this warping step. After the first warping
step two image transformations are applied. Firstly, to compensate for large scale trends
in the background level, a top-hat transformation is applied, see (Glasbey & Horgan,
1995) for a description of the top-hat transformation and (Gustafsson et al., 2002) for
parameter values used in the transformation. Secondly, a logarithmic transformation of
pixel values is applied.

Figure 10.2: Illustration of warping step II. The image in a is warped onto the reference
image in c by use of the grid shown in a warped to the grid in b.

In the second warping step images are transformed by use of a grid of bilinear trans-
formations similar to the warping of handwritten digits shown in Figure 8.2. The result
of such a warping is shown in Figure 10.2. One of the five images for yeast grown under
standard conditions is used as a reference image, and the other nine images are warped
onto this reference image. We use a penalized log-likelihood method and minimize a
criterion function such as (8.8) with D(f) given by (8.9). Thus we minimize with respect
to f the criterion function

L(Y ′, Y, f) =
∑

x

(Y ′(x′)− Y (x))2 + λ

2
∑

i=1

2
∑

j=1

2
∑

k=1

∫
(

∂fi
∂xj∂xk

)2

dx1dx2, (10.1)
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with x′ = f(x) and where we sum over pixels x. The partial derivatives in computations
are approximated by finite differences, and the integrals are approximated by sums over
pixels.

Figure 10.3: Further illustration of warping step II. In part a the reference image coloured
red and the warped image coloured blue are superimposed. Displacement vectors for spots
are shown in part b, and also in part c, here as relocated vectors starting at the origin
and ending at dots. In c we also show a criterion for adjacency of spot pairs: adjacent
spot pairs have dots within the circle shown.

The second warping step is further illustrated in Figure 10.3. Here we show in part a

of the figure a superposition of the reference image coloured red and the warped image
coloured blue. For protein spots that are equally expressed in both images we should
then ideally get black spots. However if the warping is less perfect we expect adjacent
spots coloured red and blue. (Further even if the warping is perfect we can get spots that
are predominantly blue or predominantly red for a protein that is differently expressed
in the two images.) In part b of Figure 10.3 spot displacement vectors are shown, and
for more clear illustration arrow heads are large for large displacements. We see that
large displacements mainly occur close to the boarders. Spot displacement vectors are
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also shown in part c of the figure, and here all the displacement vectors are relocated so
that they start in the origin and end in positions shown as dots.

Figure 10.4: Illustration of spot pattern similarity in aligned images. The left part a

shows the effect of changing grid size for the particular λ-value 10−3. The graph shows
the percentage of adjacent spot pairs as a function of the number of grid size parameters.
The right part b shows the effect of changing the log-likelihood penalizing parameter
λ for the particular grid q = (8, 12), and the graph shows the percentage of adjacent
spot pairs as a function of λ. Circles show mean values and error bars show standard
deviations for the nine images aligned to the reference image. Vertical dashed lines show
the finally chosen grid size and likelihood penalty weight.

Two crucial issues are choice of how fine the grid in the bilinear transformation net
should be and the size of the non-negative parameter λ in the penalization of the likelihood
in (10.1). If we start with a course net and steadily refine it we can expect the fit to
improve but to level off at a certain degre of fineness. Similarly if we start with a large
λ-value and then decrease λ we can expect an improvement in fit but similarly a leveling
of at some point. As a measure of fit we use the percentage of spot pairs with dots inside
the circle in c of Figure 10.3. We specify the net grid by q = (q1, q2), where q1 and q2
are the number of rectangles in the horizontal and the vertical directions. We note that
in Figure 10.2 we have q = (8, 12). It turns out that the number of parameters in a grid
specified by q = (q1, q2) is 2(q1 + 1)(q2 + 1). We use a sequence of grids with q equal
to: (1, 1), (2, 3), (4, 6), (8, 12) and (16, 24). Similarly we use the following sequence of
λ-values: 30λ0, 10λ0, 3λ0, λ0 and 0.3λ0, with λ0 = 10−3. Results from some computations
with different grid sizes and different λ parameters are shown in Figure 10.4. The chosen
grid size is q = (8, 12), and the chosen λ-value is λ0 = 10−3.

The two warping steps are compared in Figure 10.5, which shows the length distri-
bution of spot displacement vectors for three sets of images: the original images, the
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Figure 10.5: Length distribution of spot displacement vectors for the original data (solid
line), after the current leakage warping step (dashed line) and after both warping steps
(dash-dot line).

current leakage corrected images (only warping step I) and the current leakage corrected
and aligned images (warping steps I and II). From the figure it is clear that warping step
I gives some improvement, but the large improvement is obtained with the combination
of both warping steps. In (Gustafsson et al., 2002) there is also a comparison of warping
I+II with the use of only warping step II. It turns out that beside a slight improvement
in the percentage of adjacent spot pairs, an effect of warping step I is a considerable
reduction of the total computation time.
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Figure 10.6: Efficiency profiles in the left part a showing the number of automatically
matched spots in all ten gels (with gel images two-step warped) by the software PDQuest
as a function of an initial manual matching of a number of spots (in the image called
landmarks) both for the original set of images (dashed line) and for the set of warped
images (solid line). The right part b of the figure shows the number of detected spots
in the ten gels for the warped gel images. The spots detected in all gels are shown dark
grey, the spots found additionally in common with the reference gel 1 is shown for each
gel in light grey, while detected spots not in common with the reference gel are shown in
white.

Figure 10.6 illustrates the improvement in matching efficiency when the warped images
are used together with the PDQuest software (Garrels, 1989). In the method illustrated in
the figure the reference image is divided into 54 subrectangles and in each subrectangle the
most intense spot is chosen. The chosen spots are ordered according to intensity and an
increasing number of theses spots are manually matched. Based on this manual matching
the software PDQuest then automatically matches other spots. The left part a of the
figure shows the global matching efficiency as the number of automatically matched spots
found in all ten gel images as a function of the number of manually found spot pairs. The
dashed line shows the efficiency profile for the original images and the solid line shows
the efficency profile with warped images (using two-step warping). A clear improvement
using warping can be seen (compare Exercise 10.2 below).

In part b of Figure 10.6 we see bars showing the number of spots detected in the ten
gels. Here gels 1–5 are gels with yeast grown in standard solution (including the reference
gel 1) and gels 6–10 are gels grown with salt added. The mean number of gels detected
in all ten gels is 1194, and the average number of detected spots in common with the
reference gel (for gels 2–9) is 826, while the the number of spots detected in all ten gels
is 430.

10.1 Exercises

Exercise 10.1. As mentioned above a top-hat transformstion was used after the first
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warping step to compensate for large-scale trends in the background level. Describe
briefly how alternatively a low pass filtering technique could be used for that purpose.

Exercise 10.2. Determine approximately (both for the original image set and for the set
of warped images) from Figure 10.6 the number of manually matched spots needed to
achieve subsequently in the automatic step a 90% spot number matching in all ten gels.

Exercise 10.3 In part b of Figure 10.6 gels 1–5 correspond to yeast grown in standard
conditions (including the reference gel 1) and gels 6–10 correspond to yeast grown in a
salt solution. What are the general features of the fluctuations of the light grey bars?
Give also an explanation of these general features.
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Chapter 11

Aerial photographs of forests

Read the following parts of Dralle & Rudemo (1997):
Abstract
Introduction (skim this part)
Data (skim this part)
Problem specification
A model for the grey-level maxima given tree positions and heights
Parameter estimation
Results
Discussion
Conclusions

Read the following parts of Larsen & Rudemo (1998):
Abstract
1. Introduction
2. The opticaL model (skim this part)
3. Local correlation maxima
4. Experiment
5. Discussion
6. Conclusions
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Chapter 12

Diffusion

12.1 Tracking a single diffusing particle

Let Xi denote the position at time i∆t, i = 0, 1, . . . , K, of a diffusing particle in d-
dimensional space, where d = 1, 2 or 3 in applications. We assume that

Xi = Xi−1 +∆Gi, (12.1)

where ∆Gi are independent d-dimensional normal vectors with a mean vector with all
components zero and a covariance matrix

C(∆Gi) = 2D∆tI, (12.2)

where D is the diffusion coefficient and I is the d-dimensional unit matrix. Thus in each
dimension the diffusing particle has a normally distributed increment with mean zero and
variance 2D∆t, and the increments in different dimensions and at different time-points
are all independent.

Let ||x|| denote the Euclidean norm in d-dimensional space, that is ||x||2 =
∑

j x
2
j if x

has components x1, . . . , xd. Then

E(
K
∑

i=1

||∆Gi||2) = 2dD∆tK (12.3)

and it follows that

D̂ =
1

2d∆tK

K
∑

i=1

||∆Gi||2 (12.4)

is an unbiased estimate of the diffusion coefficient D.

We can also obtain a confidence interval for D with, say, confidence degree 95%. The
variable

χ2 =
1

2D∆t

K
∑

i=1

||∆Gi||2 (12.5)
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is chi-square distributed with dK degrees of freedom. Thus

Pr(χ2
.025 < χ2 < χ2

.975) = 0.95. (12.6)

Straightforward computations give that (12.6) can be rewritten

Pr(
dK

χ2
.975

D̂ < D <
dK

χ2
.025

D̂) = 0.95. (12.7)

and we see that
dK

χ2
.975

D̂ < D <
dK

χ2
.025

D̂ (12.8)

is a confidence interval for D with confidence degree 95 %.

12.2 A pixel-based likelihood framework for analysis of

fluorescence recovery after photobleaching

Read the following parts of Jonasson et al. (2008):
Read Summary
Skim Introduction
In Theory:

Read Model
Skip Fluorescence intensity and fluorochrome concentration
Skip The detection point spread function

Skip Materials and methods, but read the last part starting with “To maximize the log-
likelihood” on top of page 265
In Results read only the last part Diffusion in PEG solutions
Read Discussion, conclusions and outlook

12.3 Estimation of particle concentration from fluores-

cent particle counting

Read the following parts of Röding et al. (2011):
Read Abstract
Skim I. Introduction
Read II. Theory till A. Trajectory length distribution
Skim A. Trajectory length distribution
Skim B. Number concentration
Skim III. Simulation study
Skim IV. Experimental results
Read V. Discussion and conclusion
Skip Appendix A, B and C but have a look at Fig. 8
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Read the following parts of Röding et al. (2013):
Read Summary
Skim Introduction
Read Theory and methods, Concentration measurements till equation (3) on p 21, skim
the rest of this section till Bootstrap confidence intervals
Skip Bootstrap confidence intervals
Skim Simulation study
Skim Experimental results
Read Discussion and conclusion
Skip Appendix A-D
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Chapter 13

Appendix. Mathematical,

computational and statistical

background

Below you can find condensed descriptions of concepts and methods used in these notes.
If you have a basic knowledge of some area these descriptions can serve as a repetition,
but if some concepts are new to you, you presumably need to go to textbooks for more
complete information. Nowadays quite useful information can also be obtained from the
internet, for example from the Wikipedia pages.

13.1 Some matrix algebra

A matrix with m rows and n columns, or briefly a matrix of type m× n, is a rectangular
array







a1,1 · · · a1,n
...

...
am,1 · · · am,n






(13.1)

of numbers ai,j , sometimes written aij , called matrix elements. If the type is understood
we can write A = [ai,j]. Row and column vectors are thin matrices with m = 1 and n = 1,
respectively. If m = n = 1 the matrix is just a number. A square matrix has m = n.

Let A be an m × n matrix. The transpose AT of A is an n ×m matrix obtained by
making rows in A into columns, that is the (i, j) element in AT is the (j, i) element in A.
A matrix is symmetric if it equal to its transpose.

Matrices of the same type can be added by element-wise addition. If A and B are
matrices of types m × n and n × k, respectively, the product C = AB is a matrix type
m × k with elements ci,j =

∑

r ai,rbr,j . A square n × n matrix A is called invertible (or
non-singular) if there exists an inverse denoted A−1 such that

AA−1 = A−1A = I (13.2)
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where I is the unit n×n matrix with diagonal elements ij,j = 1 and off-diagonal elements
ij,k = 0, j 6= k.

Let us now define recursively the determinant detA of a square n×n matrix A = [ai,j].
For n = 1 we define detA = a for the matrix A = [a]. Suppose that we have defined
determinants for matrices of type (n− 1)× (n− 1) and let A be a matrix of type n× n.
Let the minor Ai,j be the determinant of the matrix obtained from A by deleting row
number i and column number j. Then we put

detA =

n
∑

j=1

(−1)1+ja1,jA1,j . (13.3)

One can show that a square matrix A is non-singular if and only if detA 6= 0.

Let A be a square matrix. We say that a real number λ is an eigenvalue of A and that
a column vector x is an eigenvector of a if

Ax = λx. (13.4)

A symmetric real n × n matrix A is said to be positive-definite or positive-semidefinite
if xTAx > 0 or xTAx ≥ 0, respectively, for each non-zero n-dimensional column vector
x. One can show that a symmetric matrix is positive-definite or positive-semidefinite if
all its eigenvalues are positive or nonnegative, respectively. Further, a positive definite
matrix is invertible.

Exercises

Exercise 11.1. Let A =

[

a b
c d

]

. Determine detA by use of (13.3).

Exercise 11.2. Let A =

[

a b
c d

]

with ad − bc 6= 0. Determine the inverse of A by solving

a linear equation system with four unknowns.

13.2 Optimization of a real funtion

Let us first consider Newton’s method for optimization of a twice continuously differen-
tiable real-valued function f(x) of a real variable x. Suppose that f has a maximum or
minumum at x⋆. Then f ′(x⋆) = 0. Newton’s iterative method for locating x⋆ is to put

xk+1 = xk − f ′(xk)

f ′′(xk)
. (13.5)

Assuming that f ′′(x⋆) 6= 0 and that we start close enough to x⋆ one can show that xk → x⋆

as k → ∞.

Let us now consider Newton’s method for optimization of a twice continuously dif-
ferentiable real-valued function f(x) of an n-dimensional column vector x. As above we
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suppose that f has a maximum or minumum at x⋆. Let ∇f(x) denote the (column)
gradient vector

∇f(x) = [
∂f

∂x1
. . .

∂f

∂xn
]T (13.6)

and let Hf(x) denote the Hessian matrix

Hf(x) =







∂2f
∂x1∂x1

. . . ∂2f
∂x1∂xn

...
...

∂2f
∂xn∂x1

. . . ∂2f
∂xn∂xn






(13.7)

Newton’s iterative method for locating x⋆ is to put

xk+1 = xk − (Hf(xk))−1∇f(xk) (13.8)

Assuming that Hf(x⋆) is positive-definite and thus invertible, and that we start close
enough to x⋆ one can show that xk → x⋆ as k → ∞.

Newton’s method is quite efficient but has drawbacks. Computation of derivatives can
require a lot of programming. One may use finite differences to compute approximate
derivatives but that then it requires extra programming to find suitable step lengths.
Often it is more efficient to use so called quasi-Newton methods where the Hessian is
automatically estimated from successively computed gradient vectors, see for instance
Press et al. (2007). In MATLAB the fminunc function uses a quasi-Newton metod for
minimization.

The Newton and quasi-Newton methods typically work quite well if you start close
to the optimum. A much slower but quite robust optimizer, which does not require
computation of any derivates, is the simplex method of (Nelder & Mead, 1965) which is
available in MATLAB as the function nelder_mead. A good strategy in applications
can often be to begin with the simplex metod to get an overview and suitable starting
values and then to use a quasi-Newton method.

13.3 Discrete probability distributions

Discrete distributions for a random variable X are characterized by the probability func-
tion Pr(X = x), x ∈ V , where V is the finite or countable set of values that X can
take. For a real-valued discrete random variable the expectation µ, standard deviation
σ and variance σ2 are defined by µ = E(X) =

∑

x xPr(X = x) and σ2 = var(X) =
∑

x(x− µ)2 Pr(X = x).

A random variable X is said to be Poisson distributed with parameter λ if

Pr(X = n) =
λn

n!
exp(−λ), n = 0, 1, . . . , (13.9)

and for such a variable both the expectation and the variance are equal to λ.

A random variable X is said to be binomial (n,p) if

Pr(X = k) =

(

n
k

)

pk(1− p)n−k, k = 0, . . . , n, (13.10)

and for such a variable the expectation is np and the variance is np(1− p).
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13.4 Continuous probability distributions

Continuous distributions for a real-valued random variable X are characterized by the
probability density

f(x) =
d

dx
Pr(X ≤ x), x ∈ R, (13.11)

where R = (−∞,∞) is the set of real numbers. For a continuous random variable
the expextation µ, standard deviation σ and variance σ2 are defined by µ = E(X) =
∫

R
xf(x)dx and σ2 = var(X) =

∫

R
(x− µ)2f(x)dx.

A random variable X is said to have a uniform distribution on the interval (a, b) if the
probability density is

f(x) = 1/(b− a), a < x < b, (13.12)

and f(x) = 0 for x < a and x > b, and for such a variable the expectation is (a + b)/2
and the variance is (b− a)2/12.

A random variable X is said to have an exponential distribution with parameter β if
the probability density is

f(x) = β exp(−βx), x > 0, (13.13)

and f(x) = 0 for x < 0, and for such a variable the expectation is 1/β and the variance
is 1/β2.

A random variable X is said to be normal(µ,σ2), or briefly X ∼ N(µ,σ2) if the prob-
ability density is

f(x) =
1√
2πσ

exp(−(x− µ)2/σ2), x ∈ R, (13.14)

and for such a variable the expectation is µ and the variance is σ2.

13.5 Multivariate probability distributions

LetX1, . . . , Xd be real-valued random variables. ThenX = [X1 . . .Xd]
T is a d-dimensional

random (column) vector. The expectation of a random vector (or a random matrix) is
defined componentwise. Thus the expectation vectorµ = µX = E(X) of a random column
vector X is the column vector with components µi = E(Xi), i = 1, . . . , d. The covariance
matrix C = CX = C(X) of X is the symmetric d× d matrix

C = E(X − µ)(X − µ)T =







E(X1 − µ1)(X1 − µ1) · · · E(X1 − µ1)(Xd − µd)
...

...
E(Xd − µd)(X1 − µ1) · · · E(Xd − µd)(Xd − µd)






.

(13.15)
The (i, j)-element of the covariance matrix of X is the covariance cov(Xi, Xj) = E(Xi −
µi)(Xj − µj) of the ith and jth components of X, which for i = j is the variance of Xi.

The d-dimensional vector X has a d-dimensional probability density f = fX if

Pr(X ∈ A) =

∫

A

f(x)dx (13.16)
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for subsets A of d-dimensional space R
d for which the integral in (13.16) is well-defined.

Let µ be a d-dimensional column vector and let C be a positive-definite d× d matrix.
The d-dimensional random vector X is said to be normal(µ,C) or briefly X ∼ N(µ,C) if
X has the d-dimensional density function

fX(x) =
1

(2π)d/2(detC)1/2
exp(−1

2
(x− µ)TC−1(x− µ)), (13.17)

where detC denotes the determinant of the matrix C. One can show that then X has
expectation vector µ and covariance matrix C.

An important special case is the two-dimensional normal distribution. Regard X =
[X1 X2]

T . Let µi and σ2
i denote the expectation and variance of Xi, i = 1, 2, and let

ρ = cov(X1, X2)/(σ1σ2) denote the correlation between the two components of X. Thus
the covariance matrix of X is

C =

[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]

. (13.18)

One can then show that the two-dimensional density funcion of X is

f(x) =
1

2πσ1σ2
√

1− ρ2
exp{− 1

2(1− ρ2)
Q(x1, x2)} (13.19)

where

Q(x1, x2) =
(x1 − µ1)

2

σ2
1

− 2ρ(
x1 − µ1

σ1
)(
x2 − µ2

σ2
) +

(x2 − µ2)
2

σ2
2

(13.20)

13.6 Principal components, t-SNE

Suppose that we have a d-dimensional random vector X with covariance matrix C. Prin-
cipal components can be used to transform the random vector. Define the first principal
component

Y1 = cT1X, (13.21)

where c1 is a d-dimensional column vector, determined by the condition that var(Y1) =
cT1Cc1 is minimal subject to the restriction cT1 c1 = 1. Generally we define the ith principal
component, 1 < i ≤ d as

Yi = cTi X, (13.22)

where ci is a d-dimensional column vector, determined by the condition that var(Yi) =
cTi Cci is minimal subject to the restrictions cTi ci = 1 and cTj Cci = 0 for 1 ≤ j < i. The
first two or three principle components are sometimes useful to visualize the distribution
of X.

Principle components are often attributed to (Hotelling, 1933) although they are closely
related to singular value decomposition which has a much older history. A recent quite
effective machine-learning-inspired technique due to (van der Maaten & Hinton, 2008)
for visualizing multidimensional distributions in two or sometimes three dimensions is
t-SNE. The method is used in Figure 2.7, and a concise description of the method is
given (Longfils, 2018).
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13.7 Random, Gaussian and Markov processes on the

real line

A random process or stochastic process X on the real line consists a set of random
variables X = (Xt) indexed by time t ∈ T , where T is a subset of the real line R. We
suppose here that T is either a set of consecutive integers or an interval and then we
talk about a discrete time or continuous time random process, respectively. The set V of
values that Xt can take we call the state space. A real-valued process has the real line or
a subset of it as state space. A real-valued random process may be characterized by its
mean value function,

mt = EXt (13.23)

and its covariance function

C(s, t) = E(Xs −ms)(Xt −mt). (13.24)

A random process is said to be normal or Gaussian if (Xt1 , . . . , Xtn) has an n-dimensional
normal distribution for any choice of time points t1, . . . , tn. One can show that a Gaussian
process is fully specified by its mean value and covariance functions.

A random process (Xt) is said to be stationary if its distribution is invariant under a
translation τ , more precisely if for each choice of n ≥ 1 and (t1, . . . , tn) the distribution
of the n-dimensional random vector (Xt1+τ , . . . , Xtn+τ ) does not depend on τ . Consider
the mean value and covariance functions of a stationary process. The mean value is a
constant m = EXt and the covariance function can be written as C(s, t) = σ2ρ(t − s)
where the variance σ2 = C(t, t) and ρ(t) is the correlation function.

We say that (Xt, t ∈ T ) is a Markov process if the conditional distribution of X at a
future time given the history up to time t only depends on the value of X at the current
time t, more precisely if

Pr(Xτ ∈ A|Xs, s ≤ t) = Pr(Xτ ∈ A|Xt), t < τ. (13.25)

A discrete time Markov process with finite state space V , for notational simplicity here
denoted V = {1, . . . v}, is determined by its transition probability matrix P which is the
(v × v) matrix with elements

pij = Pr(Xt+1 = j|Xt = i), 1 ≤ i, j ≤ v. (13.26)

A zero-mean autoregressive process (Xt) of order p is recursively generated from

Xt =

p
∑

i=1

aiXt−i + ǫt (13.27)

where ǫt are independent and identically distributed random variables with zero mean
and finite variance σ2. Often ǫt is assumed to be normally distributed. Then Xt is also
normally distributed. An autoregressive process of order p = 1 is a Markov process. An
autogressive process of order one is stationary if |a1| < 1 and the starting value in (13.27)
is suitably chosen.
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An example of a continuous time Markov process is the Poisson process with intensity
λ which is characterized by the fact that the increment Xt − Xs is Poisson distributed
with expecation

E(Xt −Xs) = λ(t− s), s < t, (13.28)

and the increments over disjoint time intervals are independent.

Suppose that points are randomly placed on the real line such that

(i) the number of points in disjoint intervals are independent,

(ii) the probability that two points are placed in an interval of length h tends to
zero faster than the probability that one point is placed in the same interval when
h→ 0 ,

(iii) the distribution of the number of points in an interval depends only on the
length of the interval and not on where it is placed.

One can then show that if Xt denotes the number of points in the interval (0, t), then
(Xt, t > 0) is Poisson process with intensity λ equal to the expected number of points in
an interval of unit length. For an arbitrary time t let further W denote the waiting time
for the first point after t. One can then show that W has an exponential distribution
with parameter λ.

Another example of a continuous time Markov process is the Brownian motion or
Wiener process on the interval [0,∞) characterized by having independent increments
over disjoint time intervals and that Xt is normal(0, σ2t) for t ≥ 0.

A third example of a continuous time Markov process is the Ornstein-Uhlenbeck pro-
cess, which is Gaussian process with mean zero and correlation function

ρ(t) = exp(−λt) (13.29)

for some positive constant λ.

13.8 Estimation of parameters. Likelihood and least

squares

Suppose that we observe a random variable or vector X with a distribution that depends
on a parameter θ that may be a vector. Let θ̂ = θ̂(X) be an estimate of θ. We say that
θ̂ is an unbiased estimate of θ if

E(θ̂) = θ. (13.30)

Typically we observe a sample of a random variable which means that we have a sequence
of independent and identically distributed random variables. We say that θ̂ is a consistent
estimate of θ if for an arbitrary ǫ > 0

Pr(|θ̂ − θ| > ǫ) → 0 (13.31)
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as the number n of observations goes to infinity. One can for instance show that θ̂ is a
consistent estimate of θ if E(|θ̂ − θ|2) → 0 as n→ ∞.

Let X be a discrete or continuous random vector that we observe and that has a
probability distribution depending on θ. If X is discrete we put f(x, θ) = Pr(X = x)
and if X is continuous f(x, θ) denotes the probability density of X. The likelihood value
corresponding to an observed value x of X is written

L(θ) = L(θ|x) = f(x, θ). (13.32)

In particular, if we have a sample X = (X1, . . . , Xn) of a random variable assumed to
be either discrete with probability function Pr(Xi = xi) = f(xi, θ) or continuous with
probability density f(xi, θ) the corresponding likelihood function is

L(θ) = L(θ|x) =
n
∏

i=1

f(xi, θ), (13.33)

where x = (x1, . . . , xn).

A maximum likelihood estimate θ̂ of θ is a value that maximizes the likelihood function.
In practice it is often more convenient to maximize the log-likelihood function

ℓ(θ) = log(L(θ)), (13.34)

where log (as always in these notes) denotes the natural logarithm.

As an example, suppose that X = (X1, . . . , Xn) is a sample of a variable that is Poisson
distributed with parameter λ, that is X1, . . . , Xn are independent and identically Poisson
distributed. The log-likelihood function is

ℓ(λ) = log(

n
∏

i=1

λXi

Xi!
exp(−λ)) = c− nλ+ log(λ)

n
∑

i=1

Xi, (13.35)

where c does not depend on λ and thus can be disregarded during the maximization. One
finds that the maximum likelihood estimate of λ is

λ̂ =
1

n

n
∑

i=1

Xi, (13.36)

which one can show is a both unbiased and consistent estimate of λ. (In the computations
in this example we have used the notation Xi rather than xi which is often convenient.)

A useful complement to the maximum likelihood method to estimate parameters is
the least squares method which, when applicable, is often easier to use. Suppose that
X1 . . . , Xn are independent random variables with the same variance and with an ex-
pection that depends on a parameter θ. The least squares estimate θ̂ is obtained by
minimizing

Q(θ) =
n
∑

i=1

(Xi −E(Xi))
2. (13.37)
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Let us again consider a sample (X1, . . . , Xn) of a random variable that is Poisson
distributed with parameter λ. The sum of squares (13.37) now becomes

Q(λ) =

n
∑

i=1

(Xi − λ)2, (13.38)

which is minimized for λ = λ̂ in (13.36). Thus the least squares and the maximum
likelihood estimates coincide in this example.

13.9 Linear and logistic regression

Let us first consider linear regression with one explaining real variable x. Suppose that
we observe

Yi = α+ βxi + ǫi, i = 1, . . . n, (13.39)

with independent zero-mean random errors ǫi, i = 1, . . . , n, with identical variances. The
least squares estimates α̂ and β̂ are obtained by minimizing

Q(α, β) =

n
∑

i=1

(Yi − α− βxi)
2, (13.40)

which gives

α̂ = Y − β̂ x, β̂ =

∑n
i=1(Yi − Y )(xi − x)
∑n

i=1(xi − x)2
, (13.41)

where x = (1/n)
∑

i xi and Y = (1/n)
∑

i Yi.

Let us now consider multiple linear regression with m explaining variables. We assume
that we have observations

Yi = β1xi1 + . . .+ βmxim + ǫi, i = 1, . . . n, (13.42)

with independent zero-mean random errors ǫi, i = 1, . . . , n, with identical variances. We
can write our observations on vector-matrix form as

Y = Xβ + ǫ, (13.43)

where

Y =







Y1
...
Yn






, X =







x11 · · · x1m
...

...
xn1 · · · xnm






, β =







β1
...
βm






, ǫ =







ǫ1
...
ǫn






. (13.44)

It turns out that the least squares estimate of the parameter vector β is

β̂ = (XTX)−1XTY. (13.45)
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Let us now consider logistic regression where we observe independent variables Y1, . . . , Yn
taking values 0 or 1. We suppose that the probability pi = Pr(Yi = 1) = 1 − Pr(Yi = 0)
depends on m explaining variables such that

log(
pi

1− pi
) = β1xi1 + . . .+ βmxim, i = 1, . . . n. (13.46)

To estimate the parameters β1, . . . , βm we can maximize the likelihood function

L(β1, . . . , βm) =
n
∏

i=1

(pYi

i (1− pi)
1−Yi). (13.47)

There is no analytical expression for the maximum likelihood estimates so to maximize
(13.47) one may use computational optimization methods such as those describe in Sec-
tion 13.2 and then it is typically more convenient to maximize the log-likelihood function.

13.10 Confidence intervals and tests, observations from

a normal distribution, the t- and chi-square dis-

tributions

Let X denote observations from a distribution depending on a real-valued parameter
θ. We say that the interval (L(X), U(X)) is a confidence interval for θ with confidence
degree p if

Pr(L(X) < θ < U(X)) = p. (13.48)

Let X = (X1, . . . , Xn) be a sample from a normal(µ, σ2) distribution. Then

X =
1

n

n
∑

i=1

Xi and s2 =
1

n− 1

n
∑

i=1

(Xi −X)2 (13.49)

are unbiased and consistent estimates of µ and σ2, respectively. To compute confidence
intervals for µ and σ2 we introduce the chi-square and t-distributions.

A random variable is said to be chi-square distributed with r degrees of freedom if it
has the same distribution as

χ2 =

r
∑

i=1

Z2
i , (13.50)

where Z1, . . . , Zr are independent and normal(0, 1). Let us note that a variable that is
chi-square distributed with r degrees of freedom has expectation r. A random variable is
said to be t-distributed with r degrees of freedom if it has the same distribution as

t =
Z

√

χ2/r
(13.51)

where Z and χ2 are independent and distributed normal(0, 1) and chi-squared with r
degrees of freedom, respectively.
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Let us define quantiles for random variables with a continuous distribution function
F (x) = Pr(X ≤ x). A pth quantile xp corresponding to such a distribution satisfies
F (xp) = p. Let χ2

p denote the pth quantile of a chi-square distribution with n− 1 degrees
of freedom. For s2 defined by (13.49) one can then show that

Pr(χ2
(1−p)/2 < (n− 1)s2/σ2 < χ2

(1+p)/2) = p (13.52)

which gives a confidence interval for σ2 with confidence degree p,

Pr(
(n− 1)s2

χ2
(1+p)/2

< σ2 <
(n− 1)s2

χ2
(1−p)/2

) = p. (13.53)

Similarly we let tp denote the pth quantile of a t-distribution with n−1 degrees of freedom.
Then

Pr(X − t(1−p)/2 s/
√
n < µ < X + t(1−p)/2 s/

√
n) = p, (13.54)

which gives a confidence interval for µ with confidence degree p.

Let us also briefly describe one type of test of an hypothesis H0 : θ = θ0. Suppose
that we have a test variable T = T (X) tending to take large values when the hypothesis
H0 is not true and that we for our observations obtain an observed value Tobs of T . The
strategy can then be to reject the hypothesis H0 if the probability under H0 to obtain a
T -value at least as large as the observed value is small enough. More precisely we reject
H0 if the p-value

p = Pr0(T ≥ Tobs) (13.55)

is small enough. Here Pr0 denotes a probability evaluated under the probability distri-
bution corresponding to H0.

As an example let us suppose that we have a random sample (X1, . . . , Xn) from a
N(µ, σ2) distribution and that we want to test the hypothesis H0 : µ = µ0 with the
alternative hypothesis that µ is either larger or smaller than µ0. Let X and s2 be defined
as in (13.49) and put

tobs =
X − µ0

s/
√
n
. (13.56)

The corresponding p-value is then

p = P (|t| ≥ |tobs|) (13.57)

evaluated with the assumption that t is t-distributed with n− 1 degrees of freedom.

13.11 The F-distribution, analysis of variance

A random variable is F -distributed with (r1, r2) degrees of freedom if it has the same
distribution as

F =
χ2
1/r1
χ2
2/r2

, (13.58)
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where χ2
1 and χ2

2 are independent chi-square distributed variables with r1 and r2 degrees of
freedom, respectively. The F -distribution can be used to compare two variance estimates
and in analysis of variance (ANOVA) models. Let us consider a simple ANOVA model.

Assume that Xij, i = 1, . . . , m, j = 1, . . . , ni are independent normal variables with
identical variance σ2 and expectations

E(Xij) = µi, i = 1, . . . , m, j = 1 . . . , ni. (13.59)

To test the hypothesis H0 : µ1 = . . . = µm we can use the test variable

F =

∑m
i=1 ni(Xi· −X··)

2 / (m− 1)
∑m

i=1

∑ni

j=1(Xij −Xi·)2 / (
∑

i(ni − 1))
(13.60)

where Xi· = (1/ni)
∑

j Xij and X·· = (
∑

i

∑

j Xij)/(
∑

i ni). It turns out that under H0

the test variable F in (13.60) is F -distributed with (m−1,
∑

i(ni−1))degrees of freedom
and we reject the hypothesis H0 if F is large enough.

13.12 Approximate statistical methods, bootstrap

In the previous sections we have seen how confidence intervals with exact confidence
degree and exact p-values for tests can be computed for simple models with normal
random variables. Otherwise such exact statistical inference is typically not possible.
However, for large samples good approximate methods are often available. Let us give
some examples of how such approximate methods can look.

Suppose that we have a sample X = (X1, . . . , Xn) of a random variables with log-
likelihood ℓ(θ), see (13.34), depending on a parameter vector θ = (θ1, . . . , θd). Under
suitable regularity conditions, see for instance Pawitan (2001), one can then show that
for large n the maximum likelihood estimate θ̂ has an approximate d-dimensional normal
distribution, which we write

θ̂
d→ N(θ, I(θ̂)−1

). (13.61)

Here I(θ̂) is the Fisher information matrix with matrix elements

Iij(θ̂) = − ∂2

∂θi∂θj
ℓ(θ)|θ=θ̂ (13.62)

and we suppose that I(θ̂) is invertible. From this we can compute confidence intervals
with approximate p-values for the components of θ and more generally for linear com-
binations of these components. Let us note that the Fisher information matrix is the
Hessian (see Section 13.2) of the log-likelihood function and as discussed in Section 13.2
the Hessian can be obtained by use of quasi-Newton optimization methods.

Let us now consider two hypotheses H0 and H1, which are nested in such a way that
H0 is obtained from H1 by imposing r linear restrictions on the parameters, for instance
by putting r parameters equal to zero. Let ℓ(θ̂0) and ℓ(θ̂1) denote the log-likelihoods
corresponding to the maximum likelihood estimates obtained under H0 and H1. Put

χ2 = 2(ℓ(θ̂1)− ℓ(θ̂0)). (13.63)
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We note that as ℓ(θ̂1) is obtained as a maximum under fewer restrictions than ℓ(θ̂0) it
follows that ℓ(θ̂1) ≥ ℓ(θ̂0). One can show that under the hypothesis H0 the variable χ2

in (13.63) is approximately chi-square distributed with r degrees of freedom for large
samples. We can reject the hypothesis H0 if the observed χ2-value is large enough, that
is if the corresponding p-value

p = Pr(χ2 ≥ χ2
obs) (13.64)

evaluated for a chi-square distribution with r degrees of freedom is small enough.

One method for obtaining approximate inference that has been much used since its
introduction 1979 is the bootstrap which is based on resampling from observed distribu-
tions in such a way that confidence intervals and test variables can be computed, see for
instance Efron & Tibshirani (1993).

13.13 Random numbers, simulation

An important method to study random systems is to use simulation and this requires gen-
eration of random numbers, or more precisely pseudo-random numbers, with computers.
A basic random number generator is the linear congruential generator

Xn+1 = (aXn + b) mod m (13.65)

with suitable integers a, b and m and a starting value X0 called seed. This generates a
sequence with approximately independent random number equidistributed on the set of
integers {0, 1, . . . , m− 1}. This type of generators with some variations are used as basic
random generators in computer languges such as for MATLAB. Putting Un = Xn/m
gives a sequence of random numbers with an approximate uniform distribution on the
unit interval [0, 1].

Suppose now that we have a random number U with a uniform distribution on the
interval (0, 1) and that we want a random number X with a given distribution function
F (x) = Pr(X ≤ x). This can be obtained by putting

X = F−1(U), (13.66)

where F−1 denotes the inverse of F . Putting

X = − 1

β
log(1− U) (13.67)

gives for instance a random variable that is exponentially distributed with parameter β.

Sometimes one wants a random variable X = (X1, X2) with a uniform distribution on
a bounded two-dimensional set A. One can then use rejection sampling by first finding a
rectangle R0 = {(x1, x2) : a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2} containing A as a subset. Generate
then two independent random numbers U1 and U2 with uniform distributions on the unit
interval. Put X = (a1 + (b1 − a1)U1, a2 + (b2 − a2)U2). If X ∈ A accept X, otherwise
reject X and repeat the procedure until we get a point in A.
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13.14 Bayesian inference, Markov chain Monte Carlo

In Bayesian inference we have in addition to a model describing the distribution of ob-
servations X given the parameter θ also a random distribution for θ called the prior
distribution. After obtaining observations of X the distribution of θ is modified to the
posterior distribution. Let us show how this goes when both θ and X are discrete vari-
ables, the formulas when one or both of these variables have continuous distributions
being similar. We let πi denote the prior probability, πi = Pr(θ = θi).

From the definition of conditional probabilities for events A and B we have Pr(A|B) =
Pr(A ∩B)/Pr(B). This gives the posterior distribution for θ when we observe X = x as
follows.

Pr(θ = θi|X = x) =
Pr(X = x|θi)πi

Pr(X = x)
=

Pr(X = x|θi)πi
∑

j Pr(X = x|θj)πj
(13.68)

In Bayesian analysis of noisy observations of complicated high-dimensional objects
such as images it is not easy to evaluate or sample from the posterior distribution. One
general method that has ben much used in recent years is Markov chain Monte Carlo,
abbreviated MCMC. Here you construct a Markov chain which has the distribution of
interest as its stationary distribution. Useful algorithms for constructing and analyzing
such Markov chains are the Gibbs sampler and the Metropolis algorithm, see Section ??

in this book for a brief summary and (Gilks et al., 1996) for more details.

13.15 Prediction, Kalman filtering

Let us look at prediction and filtering by use of Kalman filters. We let the d-dimensional
column vector Xt, t = 0, 1, . . . , denote the state of a system at time t. Assume that
X0 ∼ N(µ0, P0) and that

Xt = FtXt−1 +Wt, t = 1, 2, . . . , (13.69)

where Ft is a d × d matrix. Suppose that the dynamic d-dimensional noise vectors
Wt ∼ N(0, Qt) are independent mutually and of the initial state X0. Assume further
that we observe the r-dimensional vectors

Yt = HtXt + Vt, t = 1, 2, . . . , (13.70)

where Ht is a r × d matrix and the measurement noise vectors Vt ∼ N(0, Rt) are inde-
pendent mutually and of (Wt) and the initial state X0. Let Y1:t = (Y1, . . . , Yt) denote
the accumulated observations up to time t. We are interested in computing the optimal
estimate of Xt given observations up to time t. It turns out that given Y1:t the conditional
distribution of Xt is normal with expectation

X̂t|t = E(Xt|Y1:t) (13.71)

and covariance matrix Pt|t. We will give a recursive algorithm for computing X̂t|t and Pt|t

which also gives the conditional expectation and covariance matrix X̂t|t−1 and Pt|t−1 for
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prediction of Xt from observations Y1:t−1 up to time t− 1. The algorithm consists of the
following six equations in going from X̂t−1|t−1 and Pt−1|t−1 to X̂t|t and Pt|t,

X̂t|t−1 = FtX̂t−1|t−1, (13.72)

Pt|t−1 = FtPt−1|t−1F
T
t +Qt, (13.73)

St = HtPt|t−1H
T
t +Rt, (13.74)

Kt = Pt|t−1H
T
t S

−1
t , (13.75)

X̂t|t = X̂t|t−1 +Kt(Yt −HtX̂t|t−1), (13.76)

Pt|t = (I −KtHt)Pt|t−1, (13.77)

where I denotes the unit d× d-matrix.

Consider as an example motion of an object with centre at (xt, yt) and velocity (ẋt, ẏt)
with a sampling interval ∆t and observation of the position but not the velocity. We can
then put

Xt =









xt
yt
ẋt
ẏt









, Ft =









1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1









, Ht =

[

1 0 0 0
0 1 0 0

]

. (13.78)
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