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A review of image-warping methods

C. A. GLASBEY1 & K. V. MARDIA2 , 1Biomathematics and Statistics Scotland,

King’s Buildings, Edinburgh, UK and 2Department of Statistics, University of Leeds, UK

SUMMARY Image warping is a transformation which maps all positions in one image

plane to positions in a second plane. It arises in many image analysis problems, whether

in order to remove optical distortions introduced by a camera or a particular viewing

perspective, to register an image with a map or template, or to align two or more images.

The choice of warp is a compromise between a smooth distortion and one which achieves

a good match. Smoothness can be ensured by assuming a parametric form for the warp

or by constraining it using diŒerential equations. Matching can be speci® ed by points to

be brought into alignment, by local measures of correlation between images, or by the

coincidence of edges. Parametric and non-parametric approaches to warping, and matching

criteria, are reviewed.

1 Introduction

Warping of images is an important stage in many applications of image analysis. It
may be needed to remove optical distortions introduced by a camera or viewing

perspective (Heikkila & Silven, 1997; Tang & Suen, 1993), to register an image

with a reference grid such as a map, or to align two or more images (Brown, 1992).

For example, matching is important in reconstructing three-dimensional shape

from either a series of two-dimensional sections or stereoscopic pairs of images.
Much eŒort has been expended in developing algorithms for registering satellite

images with both geographic information systems and with other forms of remote

sensing system, such as optical sensors and synthetic aperture radar (see, for

example, Richards, 1986, Chapter 2). Recently, there has been considerable

interest in registering images produced by medical sensing systems with body atlas

information (Colchester & Hawkes, 1991, Section 3). Combined images produced
using diŒerent imaging modalities also have great potential. For example, X-ray
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FIG. 1. Notation for image warping.

images reveal structure, whereas magnetic resonance images reveal functionality,

so their synthesis generates more informative images (for example, see Hurn et al.,
1996; Mardia & Little, 1994).

A related problem is the warping of one-dimensional signals to bring them into

alignment. This is sometimes referred to as dynamic time warping. Dynamic

programming methods have been applied to speech processing (Sakoe & Chiba,

1978), handwriting analysis (Burr, 1983), alignment of boundaries of ice ¯ oes
(McConnell et al., 1991) and of tracks in electrophoresis gels (Skovgaard et al.,

1995). Wang and Gasser (1997) considered theoretical issues. Where features on

two curves are already matched, the problem simpli® es to one of monotone

regression (see, for example, Ramsay, 1988).

A warping is a pair of two-dimensional functions, u(x, y) and v(x, y), which map

a position (x, y) in one image, where x denotes column number and y denotes row
number, to position (u, v) in another image (see Fig. 1). There have been many

approaches to ® nding an appropriate warp, but a common theme is the compromise

between insisting the distortion is smooth and achieving a good match. In some

recently published cases the warp seems unnecessarily rough (Conradsen & Peder-

sen, 1992, Fig. 8(b); Grenander & Miller, 1994, Fig. 7(f )). Smoothness can be

ensured by assuming a parametric form for the warp, such as the a� ne transforma-
tion, or by penalizing roughness, such as by using thin-plate splines. Depending

on the application, matching might be speci® ed by points which must be brought

into alignment, by local measures of correlation between images, or by the

coincidence of edges. Overviews of geometric transformations are given by Wolberg

(1988), Bookstein (1991), Brown (1992) and Tang and Suen (1993).
In Section 2, we will progress through parametric models, from linear to non-

linear ones, elucidating their properties. Then, in Section 3, we will consider a

range of non-parametric models. Matching criteria will be covered as they arise in

diŒerent applications.

2 Parametric transformations

Figure 2 shows a hierarchy of parametric transformations. In many applications, it

is important to use a transformation which is no more general than it need be. We

will consider the properties of each transformation in turn.
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FIG. 2. A hierarchy of transformations. Arrows denote models which generalize others.

2.1 Translation

If the only diŒerence between two images is one of translation, either along rows,

along columns or a combination of both, then

u 5 x + b00 and v 5 y + b00

performs the required mapping. Here, the top-left corner (0, 0) of one image
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matches location (a00 , b00) in the other image. Agreement between images may be

measured by

S 5 R
nx

x 5 0
R
ny

y 5 0

(Ix,y 2 I Âu,v )2

where Ix,y denotes pixel value (x, y) in one image and I Âu,v denotes pixel value (u, v)

in the other image. In general, u and v will not be integers, and I Âu,v is assigned the

value of I Â[u + 1/2],[v + 1/2] , where [.] is used to denote the integer part of a number.
Alternatively, bilinear interpolation could be used, with

I Âu,v 5 ([u]+ 1 2 u)([v]+ 1 2 v)I Â[u],[v] + (u 2 [u])([v]+ 1 2 v)I Â[u+ 1],[v]

+ ([u]+ 1 2 u)(v 2 [v])I Â[u],[v+ 1] + (u 2 [u])(v 2 [v])I Â[u+ 1],[v+ 1]

There are potential problems with S: if the dimensions of the second image (nu , nv)

are such that nu < nx and nv < ny, then some values of (u, v) will lie outside this

range if (a00 , b00) ¹ (0, 0). The simplest way around this di� culty is to restrict the
summations to the area of overlap of the two images after transformation. But then

it is also a good idea to standardize S by dividing by the area of overlap, because

otherwise the measure takes a minimum value of zero when the two images do not

overlap at all. Note that, although the transformation is functionally invertible,

because (x, y) can be expressed as a translation of (u, v), in general a diŒerent

result would be obtained if

S Â 5 R
nu

u 5 0
R
nv

v 5 0

(Ix,y 2 I Âu,v )2

were minimized instead of S. One way to retain equivalence in the two images

would be to minimize S + S Â instead.

There are many other measures of agreement (see, for example, Rosenfeld &

Kak, 1982, Section 9.4), such as the covariance, which is proportional to

R
nx

x 5 0
R
ny

y 5 0

(Ix,y 2 IÅ )(I Âu,v 2 IÅ Â )

where IÅ denotes the average pixel value in the ® rst image. This is a linear

convolution, which can be evaluated very e� ciently for all possible changes in

origin simultaneously using a fast Fourier transform (Glasbey & Horgan, 1995,

Section 3.2). The covariances are given by

& 2 1 { & (I 2 IÅ ) & C(I Â 2 IÅ Â )}

where & denotes the Fourier transform, & C denotes the complex conjugate of the
transform and & 2 1 is the inverse transform. S can be computed in an analogous

way. When shifts of location are all that are involved, this problem is sometimes

referred to as template matching. Attention has been given to e� cient computa-

tions; for example, by searching ® rst for optimal values of a00 and b00 using a coarse

grid, and then on a ® ner grid (Goshtasby et al., 1984).
Phase correlation, de® ned as

& 2 1{ & (I ) & C(I Â )

½ & (I ) & C(I Â ) ½ }
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where ½ ½ denotes modulus, was proposed by Kuglin and Hines (1975). It performs

better than the covariance in cases where the diŒerences between I and I Â (after

the appropriate shift in location) occur only at a subset of frequencies. This would

be the case, for example, if the trend in illumination diŒers between the images,

but not if signi® cant levels of white noise are present. It is also possible to formulate

criteria, intermediate between correlation and phase correlation, which are optimal
when images agree only at a subset of frequencies.

2.2 Procrustes transformation

If there is some change in magni® cation between the images, and a rotation of h

degrees, then

u 5 cx cos h + cy sin h + a00 and v 5 2 cx sin h + cy cos h + b00

where the constant c performs a rescaling. A value of c 5 1 corresponds to no

change in magni® cation, whereas c> 1 is an enlargement and c< 1 is a shrinkage.

In computer vision, location, scale and rotation are known collectively as pose.

Once these diŒerences have been removed, what remains is known as shape. This
is the transformation used in Procrustes analysis (Goodall, 1991) to align labelled

sets of points. It is a four-parameter transformation and can be uniquely de® ned

from two points in the two images, or a least-squares solution can be obtained if

there are more than two points. Extensions to more than two images are relatively

straightforward. The simplest approach is to align all images with the ® rst one.

However, it is usually somewhat arbitrary to single out one image in this way. In
generalized Procrustes analysis, all sets of points are matched to the average

con® guration. In other applications, such an approach could lead to much heavier

computations.

It is possible to restrict the transformation to fewer parameters in speci® c

situations, by omitting either the scaling or the rotation terms (see Fig. 2). For

example, Glasbey and Martin (1996) used translation and scaling to align micro-
scope images of algal cells obtained using diŒerent modalities, namely bright® eld,

phase contrast and diŒerential interference contrast (DIC). This warping was both

necessary and su� cient to compensate for changes in image alignment resulting

from imperfect centration of the diŒerent lens systems and from slight diŒerences

in magni® cation between objective lenses with the same nominal magni® cation.
Matching criteria such as correlation, which is based simply on image intensities,

did not perform well because, in bright® eld microscopy, algal cells appear dark,

whereas in DIC one side of cells is dark and the other side is light. Positions where

intensities change rapidly at the edges of cells do coincide, and were therefore used

in the matching criterion. Edge information has also been used by Bajcsy and

Kovacic (1989) and Moshfeghi (1991) to align medical images. Prewitt’ s edge ® lter
(see, for example, Glasbey & Horgan, 1995, Section 3.4) was applied to all

the microscope images. Then the cross-correlation between gradient images was

computed using Fourier methods for each of a range of diŒerences in magni® cations

between the images. Translation and magni® cation parameters which produced

the highest cross-correlation were selected.

2.3 A� ne transformation

The a� ne transformation is a six-parameter generalization of the Procrustes

transformation. It permits diŒerent stretching along rows and columns of an image,
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and shearing, and is the most general linear transformation:

u 5 a10 x + a01 y+ a00 and v 5 b10 x + b01 y+ b00

Bookstein (1978, Chapter 6) gave a characterization of the a� ne transform: an

orthogonal pair of directions in the x± y image remains orthogonal in the u± v image,
and the transformation either stretches or shrinks in these two directions. Horgan

et al. (1992) used this mapping to superimpose pairs of SDS-PAGE gel electro-

phoretograms, because diŒerential stretching between rows and columns is possible

in gels and some rotation may occur in digitizing the gels. Invariant spots were

identi® ed which were common to the two images. The centres of the spots were

denoted by (x1 , y1 ), . . . , (xm , ym) in the ® rst gel, and by (u1 , v1), . . . , (um , vm) in the
second gel. A regression algorithm was used to estimate the linear parameters

which minimized the sum of squared diŒerences between the spots:

R
m

i 5 1

{u i 2 u(x i , y i)}
2 + R

m

i 5 1

{v i 2 v(xi , y i)}
2

and therefore brought them approximately into alignment. Note that the problem
is considerably harder if the points are unlabelled and need to be assigned (see, for

example, Moss & Hancock, 1996; Stoddart et al., 1996).

2.4 Perspective transformation

The perspective transformation arises if a planar object is viewed from a ® xed point

in space:

u 5
a10 x + a01 y+ a00

c10 x + c01 y + 1
and v 5

b10 x + b01 y+ b00

c10 x + c01 y+ 1

It is a non-linear transformation requiring eight parameters, and has the a� ne

transformation as a limiting case as the viewing point becomes more distant and

foreshortening eŒects diminish. Glasbey (1997) used the a� ne approximation as
a ® rst step in registering an airborne synthetic aperture radar image with a digital

map. The perspective transformation is the most general transformation which

maps straight lines at all orientations to straight lines, as do all the previously

considered transformations. And it preserves conic sections, that is circles, ellipses,

parabolas and hyperpolas, which have the general functional form

Ax2 + By2 + Cxy+ Dx + Ey + F 5 0

Also in common with the earlier transformations, it is functionally invertible: the

inverse transformation (u, v) ® (x, y) has the same functional form. Therefore, the

transformation is guaranteed to be bijective, i.e. it is impossible for folding to occur
where two points in the x± y image map to the same point in the u± v image. Also,

if the measurement of agreement between two images treats them equivalently, it

is arbitrary which image is chosen to be mapped on to the other one. None of the

transformations which follow has this property, except for the linear spline.

Parameters can be chosen to align four landmarks, by solving the four pairs of

linear equations of the following form:

c10 xu + c01 yu + u 5 a10 x + a01 y + a00

c10 xv+ c01 yv+ v 5 b10 x + b01 y+ b00
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However, to ® t to more than four landmarks by least-squares in the image space

requires an iterative approach.

2.5 B ilinear transformation

The bilinear transformation is another eight-parameter transformation generaliza-

tion of the a� ne transformation (see Fig. 2), but with diŒerent properties:

u 5 a10 x + a01 y+ a11 xy + a00 and v 5 b10 x+ b01 y+ b11 xy+ b00

Bookstein (1991, p. 253) gave illustrations of the diŒerence between it and the

perspective transformation. Straight lines in three particular directions are pre-

served, including lines parallel to either x- or y-axes. Therefore, the transformation

is not rotationally invariant: it has the undesirable feature that, if both images are

rotated, then the warping transformation between them would be diŒerent. Also,
this transformation, and most of those to follow, are not guaranteed to be bijective,

i.e. one-to-one. For continuously diŒerentiable transformations, bijectivity is

equivalent to the Jacobian

| ­ u

­ x

­ v

­ y
2

­ u

­ y

­ v

­ x |
being non-zero over the whole image. (Note that all the previously considered

transformations have a constant Jacobian.) Fitzpatrick and Louze (1987) gave

su� cient conditions for this to hold in the case of the bilinear transformation. As

with the perspective transformation, four landmarks (except where collinearities
occur) uniquely specify the bilinear transformation. In particular, if the four corners

of the ® rst image, that is (0, 0), (nx , 0), (0, ny ), and (nx, ny), map to (u00 , v00 ),

(u10 , v10 ), (u01 , v01 ) and (u11 , v11) respectively, then

u 5 u00 + (u10 2 u00 )
x

nx

+ (u01 2 u00 )
y

ny

+ (u11 2 u10 2 u01 + u00 )
xy

nx ny

v 5 v00+ (v10 2 v00 )
x

nx

+ (v01 2 v00 )
y

ny

+ (v11 2 v10 2 v01 + v00 )
xy

nx ny

2.6 Polynomial and other transformations

Polynomial transformations of order p are speci® ed by either

u 5 R
p

i 5 0
R
p 2 i

j 5 0

ai j x
i
y

j and v 5 R
p

i 5 0
R
p 2 i

j 5 0

b i j x
i
y

j

or

u 5 R
p

i 5 0
R
p

j 5 0

a i j x
i
y

j and v 5 R
p

i 5 0
R
p

j 5 0

bi j x
i
y

j

depending on the maximum order of interaction term included. These transforma-
tions include quadratic, biquadratic, cubic and bicubic ones as special cases (Tang

& Suen, 1993). Bookstein (1991, Section 7.4) studied the properties of the

quadratic transformation. In registration of remotely sensed images, polynomials

of third and higher order are used (Richards, 1986). Bernstein (1976) proposed
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evaluation of the transformation on a coarse grid only, followed by bilinear

interpolation, to reduce the computations involved.

There are many alternative parametric transformations to polynomials. Glasbey

et al. (1995) mapped arcs of concentric circles to straight lines in order to

remove the ¯ exion from images of ® sh. Bookstein (1991, Section 7.4.4) reviewed

transformations appropriate for matching landmarks for spiral structures and other
patterns of growth. Amit et al. (1991) used a transformation which maps the unit

square on to itself :

u 5 x + R
m

i 5 0
R
m

j 5 0

a i j sin ( p ix) cos ( p jy) and v 5 y + R
m

i 5 0
R
m

j 5 0

b i j cos ( p ix) sin ( p jy)

obtained as the eigenvectors of a diŒerential operator appropriate to a diŒusion

process, to match X-ray images of hands. Jain et al. (1996) used a similar

transformation to align hand-drawn templates with objects in images. Glasbey and

Wright (1994) removed warping distortions from multi-track electrophoretic gels

by estimating the orientation direction of bands in diŒerent parts of a gel as a
polynomial f(x, y) in x and y, then integrating to obtain

g(u, v) 5 v+ ò
u

0

1

tan f(x, g(x, v))
dx

and transforming (x, g(x, v)) ® (x, v) in order to bring the bands into alignment

with the x-axis. This transformation is guaranteed to be bijective.

Displays other than of the warped image can be used to see more clearly the

eŒect of a transformation. Alternative displays include the result of applying the
transformation to a regular lattice pattern (Grenander & Miller, 1994, Fig. 7(f )),

a vector ® eld of changed positions (Bookstein, 1991, Fig. 7.4.4), a bi-orthogonal

grid of locally perpendicular directions which remain perpendicular after trans-

formation (Bookstein, 1991, Fig. 6.6.1) and stretch marks which show values of

(u, v) to which no points (x, y) map (Glasbey et al., 1995, Fig. 5; Mardia &
Hainsworth, 1993). To produce a display of the transformed image, it is usual to

® ll in these stretch marks by interpolating from adjacent values. Alternatively, the

mapping can be inverted, by mapping {u(x, y), v(x, y)} to {x, y} for all integer

values of x and y, in which case there will be no gaps.

3 Non-parametric transformations

Parametric transformations do not perform well in the presence of local distortions

(Goshtasby, 1986). Piecewise a� ne transformations oŒer an alternative to poly-
nomials in generalizing a� ne transformations. Given a set of matched landmarks

in the two image, their Delaunay triangulation can be obtained, and an a� ne

transformation de® ned by its vertices can be used inside each triangle (Goshtasby,

1986). Continuity of the transformation along the edges of triangles is thereby

ensured. This is a ® rst-order or linear spline. A cubic spline could be used to

produce a smoother transformation (Goshtasby, 1987), although Maeland (1988)
shows the sinc function to be a superior interpolant. If the landmarks in one image

are the lattice points of a rectangular grid, then another option is to use a bilinear

transformation within each rectangle. A related method was used by Conradsen

and Pedersen (1992). They applied linear transformations at a progressively ® ner
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series of scales, to maximize correlations between electrophoresis images. In none

of these cases have we considered any smoothness constraints, and transformations

can therefore be very rough. The matching of stereo pairs of images is a specialized

area, because distortions between images need not be smooth nor continuous, even

(see Weng et al., 1993, for an optimal algorithm). Similarly, in situations where

multiple objects in one image have each separately moved position in a second
image, then a smooth warping between images is inappropriate. X-ray images of

human chests is one such example, where the rib cage and internal organs can move

relative to one another. Modelling of individual organs is then more appropriate. We

will not consider such applications further in this paper.

In the following subsections, we will consider formulations of roughness based

on elastic deformations, pairs of thin-plate splines and Bayesian priors. These lead
to a range of non-parametric transformations.

3.1 Elastic deformations

One way to introduce smoothness constraints is to equate warping with the

distortions of an elastic sheet or membrane. The elastic energy of a deformation is

given by

ò ò
1

2
(wxx r xx + wyy r yy + 2wxy r xy ) dx dy

where (wxx , wyy , wxy) is the strain tensor speci® ed by

wxx 5
­ u

­ x
, wyy 5

­ v

­ y
, wxy 5

1

2 ( ­ u

­ y
+

­ v

­ x
)

and ( r xx , r yy , r xy ) is the stress tensor

r xx 5
E

1 2 r
2 ( ­ u

­ x
+ r

­ v

­ y
)

r yy 5
E

1 2 r
2 ( ­ v

­ y
+ r

­ u

­ x)

r xy 5
E

2(1+ r ) ( ­ u

­ y
+

­ v

­ x
)

Here, E is Young’s modulus and r is Poisson’s ratio (Landau & Lifshitz, 1986). In

particular, if r 5 0, then the energy is proportional to

ò ò ( ­ u

­ x)
2

+ ( ­ v

­ y)
2

+
1

2 ( ­ u

­ y
+

­ v

­ x)
2

dx dy

whereas, as r ® 2 1, the energy approaches

ò ò ( ­ u

­ x
+

­ v

­ y
)2

+ ( ­ u

­ y
+

­ v

­ x
)2

dx dy
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Many variants of such ® rst-order diŒerential equations have been proposed. For

example, Burr (1981) used sums of Gaussian weight functions to interpolate

between matched points, justifying them as an elastic Green’s function in an

appropriate medium. Tang and Suen (1993) found harmonic transformations

which minimized

ò X ò {( ­ u

­ x
)2

+ ( ­ u

­ y
)2

+ ( ­ v

­ x
)2

+ ( ­ v

­ y
)2

} dx dy

subject to matching along a closed contour enclosing X . Amit (1994) proposed a

quadratic form generated by a linear diŒerential operator, and used wavelets to

® nd a solution. Glasbey (1998) used variances of squared ® rst-order derivatives as

a roughness penalty when comparing the shapes of ® sh, the criterion having been
chosen so that it was minimized uniquely by the shape-preserving Procrustes

transformation. The approach can also be extended to three dimensions, for

example to align three-dimensional medical images. Bajcsy and Kovacic (1989)

registered three-dimensional X-ray computed tomography data with a brain atlas.

Barron et al. (1994) considered both ® rst- and second-order derivatives for

optical ¯ ow, to align a series of images in which there was relative motion among
the several objects being imaged. Here, the physical analogy is with ¯ uid ¯ ow. If

deformations between successive images are small, then ¯ ow orthogonal to an edge

can be estimated by combining the output from an edge ® lter with the result of

subtracting one image from another. Smoothness constraints are introduced to

regularize the problem, to estimate ¯ ow along edges. There are similarities with

the use of snakes, linear templates which are distorted smoothly to align with image
features (Kass et al., 1988). First-order derivatives are regarded as `tension’

constraints and second-order derivatives as `rigidity’ constraints.

3.2 Thin-plate splines

Another physical analogue for warping is to regard it as a pair of two-dimensional

surfaces, representing u as a function of x and y, and similarly v as a function of x

and y. Mardia and Little (1994) and Mardia et al. (1996) have proposed kriging

predictors with derivative information for u and v following the thin-plate spline
deformation of Bookstein (1989) and Bookstein and Green (1993). Independently,

Arad et al. (1994) have dealt with particular cases using radial basis function

terminology, namelt the two surfaces are:

u 5 R
m

i 5 1

ci f ( ! (x 2 xi)
2 + ( y 2 y i)

2) + a10 x + a01 y+ a00

and similarly for v, where (x1 , y1), . . . , (xm , ym) are a set of landmarks, and f is a

function such as a multi-quadric

f(t) 5 (t 2 + t 2
0 ) a , 0< a < 1

a shifted log

f(t) 5 log( ! t 2 + t 2
0) , t 2

0> 1
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a Gaussian density

f(t) 5 exp[ 2 t 2 /(2 r
2)]

or a thin-plate spline

f(t) 5 t 2 log t 2

Arad et al. (1994) found that the thin-plate spline could lead to problems if

landmarks were sparse: small changes in landmark positions could produce global

changes in the warping transformation.

Many choices of f correspond to the minimization of some functional. In

particular, the thin-plate spline minimizes

J(u) 5 ò ò
`

2 `
{ ( ­ 2u

­ x2)2

+ 2 ( ­ 2u

­ x ­ y
)2

+ ( ­ 2u

­ y2)2

} dx dy

and similarly for v, subject to the transformations matching the m landmarks in

the ® rst image to (u1 , v1 ), . . . , (um , vm), respectively, in the second image (Bookstein,

1989; Green & Silverman, 1994, Section 7). The solution also satis® es the

biharmonic equations

­ 4u

­ x4
+ 2

­ 4u

­ x2 ­ y2
+

­ 4u

­ y4 5
­ 4v

­ x4
+ 2

­ 4v

­ x2 ­ y2
+

­ 4v

­ y4 5 0

except at the landmarks. (For solutions when other orders of derivative are used,

see Wahba, 1990.) The transformation has been used by Bookstein (1991) to align

medical scan images, and by Horgan et al. (1992) as a generalization of the a� ne

transformation to align electrophoresis gels.
If landmarks are observed subject to noise, then it is possible to use thin-plate

splines for smoothing rather than for interpolation, by seeking functions u and v

which minimize the functional

R
m

i 5 1

{u i 2 u(x i , yi )}
2 + R

m

i 5 1

{v i 2 v(xi , y i)}
2 + k { J(u)+ J(v)}

for some non-negative choice of k . The coe� cients c 1 , . . . , cm , a10 , a01 , a00 , and
similarly those for v, can be obtained as the solution of (m + 3) simultaneous linear

equations, resulting in a thin-plate smoothing spline. Larger values of k produce

smoother results, but with poorer alignment of the labelled points.

Amodei and Benbourhim (1991) generalized the method to give diŒerent weights

to compressional and rotational transformations between images. Kent and Mardia
(1994) showed that the thin-plate spline is equivalent to kriging with a speci® c

spatial covariance structure. Evaluation of thin-plate spline transformations over a

whole image is computationally expensive. Several ideas have been pursued to

speed up these calculations, including the use of an adaptive grid with a� ne or

bilinear interpolation within it (Flusser, 1992), and Fourier transforms (Berman,

1994). A closely related roughness penalty is the Laplacian (O’Sullivan, 1991).
Sampson and Guttorp (1992) used pairs of thin-plate splines to warp the space of

a Gaussian random ® eld to make it stationary and isotropic. This approach is

strongly linked with kriging (see Mardia et al., 1991, 1996). In fact, it can be

shown that these are particular cases either of stationary processes, or intrinsic
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random ® elds, of appropriate order. Another stationary process of importance has

covariance at distance d

1

2 h 2 2 1 C ( h 2 ) (2 ! h 2 d

h 1
) h 2

K h 2(2 ! h 2 d

h 1
) , for h 1 , h 2> 0

where C (.) is the standard gamma function and K h 2
(.) is the modi® ed Bessel

function of the third kind of order h 2 . Arad and Reis® eld (1995) and Little et al.

(1996) showed how to include rigid structure within a non-linear landmark-based

deformation. Glasbey (1997) used a single thin-plate spline to represent ground

height, in combination with an a� ne transformation, to register an airborne
synthetic aperture radar image with a digital map.

3.3 Bayesian approach

A Bayesian approach oŒers further possibilities for specifying smoothness con-

straints. The first image (I ) is regarded as a template, to be warped to align

with the second image (I Â ), using a set of transformation parameters W 5 {w j :

j 5 0, . . . , n}. W is estimated using the posterior density, which can be expressed
in terms of likelihood and prior density:

p(W ½ I Â , I )µ p(I Â ½ W, I ) p(W )

The likelihood of the second image, conditional on the template and deformation,

is speci® ed by, for example

p(I Â ½ W, I ) 5
1

(2 p r
2)(nu + 1)(nv+ 1)/2

exp{ 2
1

2 r
2 R

nu

u 5 0
R
nv

v 5 0

(Ix, y 2 I Âu,v )2}
There are many possible prior distributions, each corresponding to diŒerent prior

beliefs. One possibility is the Gibbs distribution corresponding to the thin-plate

spline

p(W ) 5
1

Z ( k )
exp { 2 k ( J(u)+ J(v))}

where k is a non-negative prior parameter and Z is a normalizing constant. To

produce an automatic procedure, we must have knowledge of the value of k , for

example from training data, or include its estimation in a fully Bayesian analysis

by further introducing a hyper-prior distribution p( k ) for k . The posterior distribu-
tion then becomes

p(W, k ½ I Â , I )µ p(I Â ½ W, I ) p(W ½ k ) p( k )

In image warping in general, but particularly with Bayesian approaches, parameter

estimation is challenging because of a heavy computational load and the presence

of local optima. Good starting values are important and have been obtained in

many ways, such as the matching of low-order moments (Wong & Hall, 1978),

conducting a grid search, and initially using a simpler model. Stochastic optimiza-
tion has been used to escape from local optima. Multi-resolution strategies can

also help, as can smoothing before matching (Kass et al., 1988). A common

approach to Bayesian estimation is to use the Metropolis± Hastings algorithm to

approximate the posterior distribution. This is a Markov chain Monte Carlo
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(MCMC) technique, in which an ergodic Markov chain is constructed which has

the required posterior as its limiting distribution. For a discussion, see Hammersley

and Hanscomb (1964), Hastings (1970), Geman (1991), Green and Han (1992)

and Propp and Wilson (1996).

The Metropolis ± Hastings algorithm is used in the following manner. Let the

current set of warping parameters be W 5 {w j : j 5 0, . . . , n}. A proposed new value
for one of the parameters, w i say, is drawn from a proposal distribution q(w Âi ½ w i).

Although the choice of proposal distribution is (almost) arbitrary, a common choice

is a normal distribution centred on the current parameter value, with spread

parameter chosen to achieve acceptable convergence rates. Let the set of warping

parameters including the proposed parameter be W Â , that is W Â 5 {w 1 , . . . ,

w Âi , . . . , wn }. The proposal is accepted, and the parameter values updated accord-
ingly, with probability

min {1,
p(W Â ½ I Â , I )q(w Âi ½ w i)

p(W ½ I Â , I )q(w i ½ w Âi ) }
Otherwise it is rejected and no change is made. Note that this proposal distribution
is symmetric, that is q(w Âi ½ w i) 5 q(w i ½ w Âi ), hence the ratio of these terms cancels in

the above expression. Also, some simpli® cation of the posterior ratio can usually

be performed, producing a computationally cheap updating step.

Each of the warping parameters is considered in the same way and the whole

iterative process repeated until stability is apparent. The most usual and simplest
approach to detection of convergence is to monitor the value of one-dimensional

functions of the evolving process: once these appear stable the Markov chain is

assumed to have converged. Clearly, this approach is subjective, but usually works

well. A discussion of formal convergence diagnostics can be found in Cowles and

Carlin (1996). Another question is how many sweeps should be performed after

the transient period has ended. One approach is to consider integrated auto-
correlation of the one-dimensional monitoring statistics using a truncated periodo-

gram estimator (Sokal, 1989). Once the pseudo-sample has been generated from

the posterior distribution, a number of possible estimators are available: one choice

is the posterior median, which can be estimated by the sample median of the

pseudo-sample. Among the bene® ts of employing sampling techniques is that the

pseudo-sample can be used to calculate interval estimates using sample percentiles,
or in fact the whole of the posterior distribution can be examined.

Mardia and Hainsworth (1993) used a pair of thin-plate splines in a Bayesian

approach to align images when landmarks are available in only one of the images.

Carstensen (1996) used a Markov random ® eld lattice model to correct for

distortions in a hybridization ® lter. Lee et al. (1997) proposed a novel approach to
warping for sequences of tagged magnetic resonance images of the heart, based on

tracking quadrilaterals through time. The approach of Christensen et al. (1996)

allows for large deformations. For example, their method has the capacity for a

square to be warped to a letter `C’ , and for letters to be regenerated from partial

information. Many approaches to warping using thin-plate splines produce smooth

deformations. Terzopoulos (1986), however, allows discontinuous deformation,
giving, as an example, a broken bone deformed into the original, intact bone. In

such a case, smoothness is inappropriate. Bookstein and Green (1993), Mardia

et al. (1996) and Mardia and Little (1994) describe deformations when higher-

derivative information, such as gradients and curvature, are available at landmarks.
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The use of least-squares techniques with landmark-based warping can be greatly

in¯ uenced by outliers: Dryden (1996) considers robust matching. The use of

wavelet warping is examined by Aykroyd and Mardia (1996a,b) for curve deforma-

tion applied to a study of spinal scoliosis, including longitudinal growth studies.

They use an MCMC approach to estimation which allows estimation of clinically

important quantities such as curvature. The same approach, but using simulated
annealing, was proposed by Downie et al. (1996) for deformation of binary bone

templates. The use of wavelet expansions to describe the warping function in these

approaches permits local deformations. In aligning a template with an image, such

as a map of ® eld boundaries with a SAR image, an alternative approach to having

a rigid template in a ¯ exible space is to allow the template itself to be ¯ exible. See

Grenander et al. (1991), Phillips and Smith (1994) and Cootes et al. (1995) for
examples of this, and McInerney and Terzopoulos (1996) for a review of medical

applications.
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