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Abstract

Statistical models for spot shapes and signal intensities are used in im-
age analysis of laser scans of microarrays. Most models have essentially been
based on the assumption of independent pixel intensity values, but models that
allow for spatial correlation among neighbouring pixels can accommodate er-
rors in the microarray slide and should improve the model fit. Five spatial
correlation structures, exponential, Gaussian, linear, rational quadratic and
spherical, are compared for a dataset with 50-mer two-colour oligonucleotide
microarrays and 452 probes for selected Arabidopsis genes. Substantial im-
provement in model fit is obtained for all five correlation structures compared
to the model with independent pixel values, and the Gaussian and the spher-
ical models seem to be slightly better than the other three models. We also
conclude that for the data set analysed the correlation seems negligible for
non-neighbouring pixels.

Source code for R is available at
http://www.matfys.kvl.dk/ ekstrom/spotshapes/



Introduction

In two-colour microarray experiments, gene expression intensities are extracted for
each spot from the red and green channel image files after it has been determined
which pixels constitute the gene (the foreground) and which pixels that are part of
the background.

Improved models for spot shapes and signal intensities help identify and de-
fine spots more clearly on the image file and will refine the classification of pixels
as foreground or background. Thus, improved spot shape models provide more
precise information on spot intensity level and on local background necessary for
(local) normalization. Statistical models for spot intensities will enable us to ex-
tract (unbiased) gene expression intensities from highly expressed genes, when
some of the pixels values are censored at the upper limit of the scanner, typically at
216 1 = 65535 with 16-bit precision, and will also provide us with more detailed
information about the nature of the gene expression intensities.

Spatial models that allow for correlation between neighbouring pixel intensities
can capture imperfections in the microarray slide, correct for “overspill” caused by
excess DNA and they can compensate for optical point spread functions extended
over more than one pixel. Spatial models can obviously be used to estimate the
correlation structure between pixels and are likely to improve the fit to the image
data. In addition, accurate pixel-level spot intensity models can be used to simu-
late more realistic microarray data in order to validate the efficiency of methods to
extract information from microarray images.

In Ekstrgm et al. (2004) we presented a polynomial-hyperbolic spot shape model
with the following three desirable properties: (i) isotropic, i.e., that the average in-
tensity at a pixel x only depends on the distance from x to the spot centre and not
on the direction from the centre, (ii) should allow for spot-shapes resembling both
“plateaus” and “volcanos/craters/donuts” as spot intensities are often highest near
the edge of the spot and smaller near the spot centre making the resulting spot shape
resemble a volcano, and (iii) allow for spatial correlation, i.e., intensities at pixels
close together should be more correlated than intensities at pixels further apart. Al-
though the polynomial-hyperbolic spot shape model developed in Ekstrgm et al.
(2004) did allow for spatial correlation, we only considered independent pixel in-
tensities. In the present paper we allow for spatial correlation structure in order
to improve the fit of the polynomial-hyperbolic spot shape model and the recon-
struction of the individual spot signals. Different spatial correlation structures for
the polynomial-hyperbolic spot shape model are studied and we estimate the corre-
sponding extension of the correlation. The correlation should result in a substantial
increase in the fit of the model and may provide improved estimates for saturated
pixel values.



The models are applied to a dataset obtained with a specially designed spotted
50-mer oligonucleotide microarray. Here the expression of 452 selected genes in
transgenic Arabidopsis plants are compared to the corresponding genes in wild-type
plants (Kristensen et al., 2005). Data include scans with different photometric gains
ranging from no saturation to heavy saturation.

Materials

The data used for shape modelling and data transformation are based on a tran-
scriptome analysis (Kristensen et al., 2005) of metabolically altered Arabidopsis
thaliana plants (Tattersall et al., 2001; Bak et al., 1999, 2000). The array is a cus-
tom designed 50-mer oligonucleotide array, 9 x 18 mm, 350 um dot spacing, spot-
ted by MWG Biotech using a single pin on epoxy coated glass slides. The array
contains probes for 452 selected A. thaliana genes spotted in duplicate. The 50-
mer oligonucleotides were designed by MWG Biotech, essentially as described by
Kane et al. (2000). mRNA was isolated from 30 days old A. thaliana rosette leaves
using MicroPoly(A)Pure™ small scale mRNA purification kit (Ambion). 3-3.5 ug
mRNA was used for direct incorporation of cy3- and cy5-fluorescent dyes (Amer-
sham Pharmacia Biotech) using Superscript II kit (Invitrogen). Hybridizations and
washings were performed essentially according to the manufacturers instructions
and subsequently scanned using a GMS 418 Array Scanner (Affymetrix) using four
different photomultiplier gains: 30, 40, 50, 60 while keeping the laser power at 30.

The resulting 16 bit gray scale tif-images are available for wildtype (wt) and the
transgenic line 3x.8 (Tattersall et al., 2001), four photomultiplier gains: 30, 40, 50,
60, and two dye swap experiments: cy3, cy5, for a total of 16 images.

Spatial spot shape models

The polynomial-hyperbolic spot shape model

We start this section with an outline of the polynomial-hyperbolic spot shape model.
Let S denote the set of spots and for each spot 5,5 € S, we associate a set Ag of
pixels such that no pixel can belong to more than one such set. ¥ = Y (x) denotes
the suitably transformed intensity at a pixel, x, with pixel coordinates x = (x,x3).
We prefer a Box-Cox transformation (Box and Cox, 1964) of the measured pixel
values from the laser scanner (Ekstrgm et al., 2004).

Consider a spot s and pixels x € A;. Let ¢y = (¢y1,¢42) be the spot centre of
spot s, and let r5(x) = ||x — ¢,|| be the distance from pixel x to the spot centre. The



polynomial-hyperbolic spot shape model is
Y (x) = Bshy(rs(x)) + by +€(x), x €A (1)

where B measures the intensity of spot s, by is a constant representing the back-
ground, £(x) corresponds to zero-mean Gaussian noise at x. The spot shape function
is
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where a; > 0 and y; > 1, o represents the radius of the spot, K is a normalizing
constant and
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Some spot shape parameters may be common for all spots and some may be spot-
specific.

We assume that (Y (x),x € Ay) has a multivariate normal distribution with mean
vector Uy, where py = Bshy(rs(x)) + by and covariance matrix Cs. In Ekstrgm et al.
(2004) we only considered the simplest possible covariance model where C; is pro-
portional to the identity matrix such that all pixel values are independent. Here, we
examine more complex correlation structures.

Spatial correlation structures

We will consider five different one-parameter isotropic spatial correlation structures
such that
Cs = cov(Y,Y) = o7R, (3)

where R is the correlation matrix with elements
rex = W(d(x,x'),p),x € Ay, X' € Ay @)

p is a non-negative parameter, ¥ is a correlation function, and d(x,x’) is a distance
function between pixels x and x’, and for our purpose here, we use the Euclidian
distance between the pixel coordinates d (x,x") = /(x; —x])% + (x2 — x5)2.

The five different correlation functions we consider are




Exponential

v(d,p) =exp(—d/p) (5)
Gaussian
w(d,p) =exp(—(d/p)?) (6)
Linear
v(d,p)=(1-d/p)1(d <p) (7

Rational quadratic
1

y(d,p) = T (d/pR? &)

Spherical ; .
w(d,p) = (1=3(d/p) +3(d/p)y)1(d < p) ©)

All five correlation function depend on a single parameter, p, and Cressie (1993)
and Pinheiro and Bates (2000) provide additional details about these correlation
structures.

Estimation of parameters and saturated pixel values

Spot shape parameters are estimated by maximizing the log likelihood function
related to the above assumed multivariate normal distribution,

n 1 1 _
log = —Z log(2m) — S log(|Cy[) = 5 (v — 1) G5 Ly — ), (10)

where U contains the parameters for the polynomial-hyperbolic spot shape model
and where Cs contains the residual variance and the correlation parameter.

However, some pixels may be censored at an upper limit, /., in which case we
have a missing data problem. We use the expectation-maximization (EM) algorithm
(Dempster et al., 1977) to maximize the likelihood in the presence of saturated
pixels. Let A, = {x € A;: Y(x) < {.} and AY = {x € A : Y(x) > .} denote the
set of pixels in A that are uncensored and censored, respectively, at the level £..
Furthermore, let Yops = (V1,...,Y,,) denote the observed intensities of the m pixels
from Al and Yeens = (Y1, -+, Yn) the n —m censored observations from A”. The
log likelihood function can be written as

logL = logL(Ycens|Yobs) + logL(YObS) (1D



where L(Yops) is the marginal likelihood of the uncensored data and L(Ycens|Yobs)
is the conditional likelihood of the censored data given the observed data. Yy
follows a regular multivariate Gaussian distribution and is easily evaluated. If the
observations in Yeeps had not been censored, the conditional distribution of Yeens|Yobs
would also have been multivariate normal and we could maximize the log likelihood
(11) using standard iterative maximization techniques. However, since Yeps are all
censored at /., we need to evaluate the multiple integral

L(Ycens|Yobs):/€ /é dP()’m+la---;)’n) (12)

where P is the (underlying) multivariate Gaussian distribution of the censored pixels
given the observed pixel intensities. The observations in Y;ens are not independent
because of the spatial correlation structure and evaluation of (12) becomes costly
for more than a few censored observations. Monte Carlo methods can be used to
evaluate (12) resulting in a doubly iterative algorithm to maximize (11).

Instead we propose to use an expectation-maximization-like (EM) approach
where we impute values for the missing (censored) observations and then maxi-
mize the log likelihood (11) by standard iterative maximization techniques as if all
pixels had been observed. Imputation is done by inserting the conditional marginal
expectation, i.e., for iteration k + 1 we replace each Y;,i =m+1,...,n, with

P = E(Yi[Yops, Yi = €c, 6Y) (13)

where 6% is the vector of current estimates of the parameters in the model. We
stop the iterations when there is no change in the complete data log-likelihood and
in the parameters. Once the complete data likelihood and parameter values have
stabilized, we stop the algorithm when the average change in predicted censored
pixels is less than a certain threshold €, i.e. when

n (Yk+l _ Yik)z

i=m+1\"§ <e (14)
n—m

This additional option may be necessary to end the algorithm when a large per-
centage of the pixels are censored, see discussion. Note that the predicted values in
(13) can also be used to predict saturated (censored) pixel values (see below).

Results

Parameter estimation

In this paper we have two major objectives: 1) to compare the model fit of the
polynomial-hyperbolic spot shape model with spatial correlation to the model with



no correlation; and 2) identify realistic correlation structures between pixels. If the
introduction of the spatial correlation structure results in a substantial increase in
model fit we also want to assess how well the polynomial-hyperbolic spot shape
model with spatial correlation predicts saturated (censored) pixel values relative to
the model, where no correlation structure is applied.

We use log likelihoods to compare the relative fit of the polynomial-hyperbolic
spot shape model with one of the five different isotropic correlation structures (5)—
(9) to the spot shape model with independent pixel values. The results are shown in
Table 1 and are based on analysis of 25 spots scanned at four different photometric
gains for a total of 100 datasets. These spots are the same spots that were used
for the analyses in Ekstrgm et al. (2004) and have no saturated pixels such that the
log likelihood values for the different models are indeed comparable. A Box-Cox
transformation Ekstrgm et al. (2004) was applied before analysis.

Table 1 shows that all five different correlation structures result in a substantial
improvement in log likelihood and that there — except for the correlation parameter
p — is virtually no difference in estimated parameter values for the five correlation
structures. There are small variations in the median log likelihood improvements
with the Gaussian correlation structure having the largest overall log likelihood
improvement. Twice the log likelihood difference is approximately x? distributed
with one degree of freedom so a comparison of the spatial correlation models to the
uncorrelated model will generally yield highly significant likelihood ratio tests.

The precise value of the correlation parameter p may not be very important for
the fit of the correlation models as long as the correlation structure is there to capture
some of the correlation between neighbouring pixels. Therefore, we fitted the five
different correlation structures when the correlation parameter p was held fixed at
the (rounded) median value found previously (i.e., p was fixed at 2, 1, 1, 1, or 1.4
for the spherical, exponential, Gaussian, rational and linear model, respectively).
The results from these analyses are also listed in Table 1 and show that apart from
the linear correlation model (7) there is no significant reduction in the median log
likelihood when we compare a model where we maximize the correlation parameter
p to the model where p is fixed.

Figure 1 shows the median estimated correlation as a function of Euclidian dis-
tance for the five different correlation structures. Vertical lines indicate the only
possible observable distances in the data. The five different correlation structures
split into two groups: the exponential and rational quadratic in one group which
shows correlation at longer distances and the remaining three correlations struc-
tures in the other group. The two correlation structures corresponding to the largest
improvement in median log likelihood values (the Gaussian and the spherical, see
Table 1) are almost identical — especially at the distances possible with the spot
data. Interestingly, the correlation function for both the Gaussian and the spheri-



Correlation Parameter estimate log like.

structure by B, O Ys O o, P improv.
Independence 0.226 15.00 5.11 1.75 0.596 0.0408 — —
Spherical 0.226 16.35 5.11 1.75 0.763 0.0401 1.970 78
0.226 17.05 5.11 1.77 0.766 0.0373 2% 77.5
Exponential 0.227 1645 5.19 1.73 0.757 0.0416 0.995 69
0.226 16.15 5.16 1.75 0.771 0.0388 1t 69
Gaussian 0.227 1625 5.11 1.76 0.746 0.0401 0.956 82

0.227 1630 5.11 1.77 0.820 0.0397 1 80.5
Rational quadratic  0.227 1650 5.18 1.74 0.767 0.0439 0.875 75

0.227 1690 5.18 1.74 0.816 0.0432 1 72.5
Linear 0227 1620 5.12 1.76 0.736 0.0391 1.395 73.5

0.227 16.05 5.10 1.77 0.760 0.0387 1.4t 47.5

Table 1: Comparison of correlation structures: Median estimated parameter values from
five correlation structures for 25 spots and four gains. The log likelihood improvement is
the median increase of the log likelihood for a given correlation structure relative to the
log likelihood of the uncorrelated model. The rows where p-values are marked with
correspond to fixed values of p.

cal correlation structure are essentially O from a distance of 2 or greater suggesting
that there is virtually no correlation between non-neighbouring pixels. Figure 1
also shows the median empirical correlation coefficients for the observable dis-
tances. The empirical correlation coefficients coincide nicely with the estimated
Gaussian/spherical correlation function for pixel distance less than 2 and for pixel
distances equal to or above 2 the empirical correlations are somewhat larger than
the estimated Gaussian and spherical correlation functions.

Reconstruction of saturated values

Table 1 shows a substantial increase in log-likelihood so it is clear that the introduc-
tion of a spatial correlation structure increases the fit of the polynomial-hyperbolic
spot shape model. We proceed to investigate if the correlated model provides im-
proved estimates of the saturated (censored) pixel values.

In Figure 2 we show the estimated spot shape profiles when the pixels for spots
242,352 and 787 (scanned with photometric laser gain 60) are artificially censored
at different intensities (/. = 0.9,0.8,0.7 and 0.6). These three spots were chosen
as those with the highest intensity level not exceeding the upper limit. The spots
were artificially censored so we knew the actual intensities of all pixels and there-
fore could compare the reconstructed pixel values with the true pixel values. We
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Figure 1: Median estimated correlation functions for the five examined correlation struc-
tures. Vertical lines indicate the only possible observable distances between pixels and the
x’s show the median empirical correlation coefficients.

estimated the spot shape model (1) both with and without a Gaussian spatial correla-
tion structure (6) since that correlation structure provided the largest log likelihood
improvement in Table 1. The leftmost plots in Figure 2 show the estimated spot pro-
files for each of these spots when there is no censoring, while the other diagrams
show reconstruction for varying degrees of censoring.

With a small degree of censoring corresponding to the second or third column in
Figure 2 the reconstruction is satisfactory and the model with Gaussian correlation
structure provides slightly improved estimates of the saturated pixels relative to
the model with no correlation structure. For higher degrees of censoring (the two
rightmost columns in Figure 2) the Gaussian correlation structure does not appear
to provide better predictions for the saturated pixels than the polynomial hyperbolic
model with independent errors, but both the model with independent and the model
with correlated pixel values are clearly better than just using the censored values.
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Figure 2: Horizontal normalized intensity profiles through the centres of spots 242, 352
and 787 (each spot represented by a row) at photometric gain 60 with different levels of
(artificial) censoring as indicated by the horizontal lines. For each profile both data (thin
lines) and estimated spot profile for non-correlated (thick solid line) and spatially corre-
lated (Gaussian) polynomial-hyperbolic model (thick dashed line) are shown. The average
fraction of pixels that were censored among the 25 x 25 pixels regarded for each spot were
(from the left) in the five columns: 0%, 17%, 29%, 30% and 32%, respectively.

Discussion

The polynomial-hyperbolic spot shape model examined previously (Ekstrgm et al.,
2004) provides a good fit to spot intensities measured on the pixel level, and the
model can capture the volcano/donut shapes caused by surface tension when the
spot dries. Initially, however, the polynomial-hyperbolic spot shape model assumed
independent errors but correlated pixel values may occur for example because of
imperfections in the array, dust, ineffective washing or from the point spread func-
tion in the laser scanning. The correlation structure might also compensate for
minor local systematic deviations between the true spot shape and the spot shape



model, regard for instance the central part of the spot shown in Figure 3 in Ekstrgm
et al. (2004).

In this paper we consider spatial correlation extensions for the polynomial-
hyperbolic spot shape model for spot intensities measured on the pixel scale.

The results seen in Table 1 show that introduction of spatial correlation provides
a substantial increase in log likelihood. This suggests that positive correlation be-
tween neighbouring pixels values are indeed present and should be addressed. If
we fix the correlation parameter at a value close to the estimated median value, we
see that the median increase in log likelihoods is hardly changed relative to the situ-
ation where the correlation parameter can vary freely. The only exception is the lin-
ear correlation structure, where a substantial decrease in log likelihood is observed
when the parameter is fixed. The reason for the decrease with the linear correlation
structure is its inflexibility; the correlation is exactly zero from a certain point and
when the fixed value we used in the analyses is too small we will get a large de-
crease in log likelihood. The computations required for maximizing the model are
significantly reduced (and the computation time significantly decreased) when the
correlation parameters are fixed and the results from Table 1 suggest that we only
get a minor decrease in log likelihood if we maximize the polynomial-hyperbolic
spot shape model with a fixed spatial correlation structure without having to esti-
mate the correlation parameter.

Table 1 also indicates that the Gaussian correlation structure may provide the
best fit but since the difference between some of the correlation structures is small
and we are looking at median increase in log likelihood it is difficult to give conclu-
sive evidence that the Gaussian correlation structure is consistently best. That the
specific choice of correlation structure may have little influence on the actual esti-
mated correlation is also seen in Figure 1. The two best-fitting correlation functions
(the Gaussian and the spherical) are almost identical at the Euclidian distances ob-
servable in the dataset and these two functions have estimated correlation functions
that are essentially O from a distance of 2 pixels or greater. While this suggests that
virtually no correlation exists between non-neighbouring pixels we can see from
the empirical correlation that there is still some correlation remaining at distance 2.
However, the correlation at distance 2 (median empirical correlation coefficient of
0.09) is not particularly large.

As shown in Ekstrgm et al. (2004), the polynomial-hyperbolic spot shape model
provides a considerable improvement in log-likelihood compared to models earlier
described in literature such as the top hat model, the Gaussian model and the Gaus-
sian difference model suggested in Wierling et al. (2002). If we compare the spatial
model fit, we note that the median increase in log-likelihood after a spatial corre-
lation structure is introduced exceeds the median log-likelihood improvement ob-
tained by using a Box-Cox transformation of the pixel values instead of a simple log



transform, see Table 1 in Ekstrgm et al. (2004). Also, the log-likelihood increase of
the spatial model is more than half the increase when going from a cylindrical spot
shape model to the more flexible polynomial-hyperbolic spot shape model. Thus,
the improvements in log-likelihood after of the spatial polynomial-hyperbolic spot
shape model in considerable.

Figure 2 suggests that with minor censoring (less than 30%, say) the polynomial-
hyperbolic model with Gaussian correlation predicts censored pixels satisfactory
and slightly better than the model with independent errors.

The polynomial-hyperbolic model with independent errors had a tendency to
“overshoot” the estimated spot profiles (see three middle graphs in Figure 2) in
some situations. Generally, the predicted profile for models with Gaussian correla-
tion lies slightly lower than the profiles for models with independent errors, so this
overshot is lessened after introducing spatial correlation. However, the introduc-
tion of spatial correlation only goes so far. When censoring is large and only the
edge and the background pixels of the spot is observed (i.e., when /. = 0.6 or 0.7)
the polynomial-hyperbolic model with Gaussian correlation fares no better than to
model with independent errors. In general, observed pixels from the spot centre are
often needed to estimate the parameters in the model well and thereby provide good
predictions of the censored pixel values.

The biggest problem with the proposed spatial extension to the polynomial-
hyperbolic spot shape model is the difficulties in evaluating the multiple integral
(12) required for the incomplete data likelihood. It is possible to evaluate it nu-
merically, but the additional time needed to evaluate the integral would render the
method virtually useless.

Using the approximation (13) can make it difficult to determine when the algo-
rithm has converged since we can only monitor the complete data likelihood and
the data used for the calculations change from iteration to iteration. This normally
poses no problems in the situations where some of pixels in the spot centre are
observed so we can find stable estimates of the parameters. However, if there is
no information about the pixels in the spot centre the likelihood becomes flat and
the parameters change a little from iteration to iteration with virtually no change
in log likelihood. The resulting spot profiles are indistinguishable from iteration
to iteration so this really gives no problems with respect to prediction of saturated
pixels but it does make it more difficult to determine when to stop the algorithm.
We found that the criteria described above work well in our setting.

The results from Figure 1 suggest that a pixel value in essence is only correlated
with the eight neighbouring pixels. Thus, we may avoid the approximation (13) and
use the multiple integral (12) if we assume that each censored pixel is independent
of all non-neighbouring pixels. This approach requires the evaluation of a multiple
Gaussian integral in nine dimensions (if all eight neighbouring pixels are also cen-



sored) and in less dimensions if not all pixels are censored. Numerical evaluation
of multiple integrals with more than a few dimensions is, however, so computa-
tional expensive that this approach is useless in practice (a single iteration for spot
352 when /. = 0.9 takes several days to evaluate using the C/Fortran-routines im-
plemented in R). It may be argued based on Figure 1 that it is only necessary to
condition on the four non-diagonal neighbouring pixels and while that results in
a substantial reduction in computation time it is still too costly to be useful for
any real array with current computational power (a single iteration takes 5 hours to
complete).

In conclusion, the polynomial-hyperbolic spot shape model with spatially cor-
related errors results in a substantially better fit than the model with independent
errors and may prove useful for both extraction of more precise gene expression
intensities and as a model for simulating realistic microarray image data. The re-
sults suggest that the range of the correlation does not extend several pixels but that
the existing local correlations are highly significant. Finally, the spatially corre-
lated polynomial-hyperbolic spot shape model will lessen the information loss for
spots with a low or moderate number of saturated pixels intensities due to censor-
ing. This improves the usefulness of the polynomial-hyperbolic model as a tool to
predict censored pixel values.

Source code for R is available at www.matfys.kvl.dk/ ekstrom/spotshapes
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