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Abstract

Motivation: To study lowly expressed genes in
microarray experiments it is useful to increase
the photometric gain in the scanning. However,
a large gain may cause some pixels for highly
expressed genes to become saturated. Spatial
statistical models that model spot shapes on
the pixel level may be used to infer information
about the saturated pixel intensities. Other pos-
sible applications for spot shape models include
data quality control and accurate determination
of spot centres and spot diameters.

Results: Spatial statistical models for spot-
ted microarrays are studied including pixel level
transformations and spot shape models. The
models are applied to a dataset from 50-mer
oligonucleotide microarrays with 452 selected
Arabidopsis genes. Logarithmic, Box-Cox and
inverse hyperbolic sine transformations are com-
pared and it is found that the Box-Cox trans-
formation performs best. For spot shapes we
compare a cylindric plateau shape, an isotropic
Gaussian distribution and a difference of two
scaled Gaussian distribution suggested in the lit-
erature. A substantial improvement is obtained
for the dataset studied by a new polynomial-
hyperbolic spot shape model. The spatial stat-
istical models are used to correct spot meas-
urements with saturation by extrapolating the
censored data.

Availability: Source code for R are available at
http://www.matfys.kvl.dk/ ekstrom/spotshapes/
Contact: ekstrom@dina.kvl.dk

1 Introduction

In order to study lowly expressed genes in microar-
ray experiments it is useful to increase the photometric
gain in the scanning. However, a large gain may cause
some pixels for highly expressed genes to become sat-
urated, that is the registered pixel values become cen-
sored at the upper limit, which with 16 bit precision is
216 1 = 65535. Techniques for adjustment of highly ex-
pressed signal intensities are given in Wit and McClure
(2003) based on a small set of available spot summaries
such as spot mean, spot median and spot variance. As
mentioned in Wit and McClure (2003) it should be pos-
sible to get more accurate adjustments when all pixel val-
ues are available. In the present paper we study spatial
statistical models for pixel values which should enable
such adjustments.

A convenient type of modelling is to transform data
to become approximately Gaussian distributed with a
mean value function determined by gene intensities and
spot shapes and a corresponding covariance function.
For such models censored pixel values can be optimally
estimated. We investigate several types of transforma-
tions on the pixel level such as the logarithmic trans-

formation, the Box-Cox family (Box and Cox, 1964) and
the inverse hyperbolic sine transformation (Huber et al.,
2002; Durbin et al., 2002), also called the generalized
logarithm (Rocke and Durbin, 2003). The inverse hyper-
bolic sine transformation has proven useful for analyzing
microarray spot intensities, but here we apply it at the
pixel level. The Box-Cox transformation with exponent
0.5, i.e. a square root transformation optimal for Poisson
distributed counts, has been used at pixel level analysis
of microarray data by Glasbey and Ghazal (2003).

The spot shapes studied include three types sugges-
ted by Wierling et al. (2002): (i) a cylindric plateau spot
distribution, (ii) an isotropic 2D Gaussian distribution,
and (iii) a crater spot distribution consisting of a differ-
ence between two scaled isotropic 2D Gaussian distribu-
tions. These models do not seem to give a satisfactory
description for the dataset considered, and we introduce
a new class of models with polynomial-hyperbolic spot
shape. With a second degree polynomial we get a con-
siderably improved performance. This spot shape may
be regarded as a generalization of the cylindric plateau
spot shape (i).

The models are applied to a dataset obtained with
a specially designed spotted 50-mer oligonucleotide mi-
croarray. Here the expression of 452 selected genes in
transgenic Arabidopsis plants are compared to the cor-
responding genes in wild-type plants. Data include scans
with different photometric gains ranging from no satur-
ation to heavy saturation.

[Figure 1 about here.]

2 Data, transformations and ex-
ploratory analysis

2.1 Materials

The data used for shape modelling and data trans-
formation are based on a transcriptome analysis (to be
described in detail in a future publication, Kristensen
and Bak) of metabolically altered Arabidopsis plants
(Tattersall et al., 2000). The array is a custom
designed 50-mer oligonucleotide array, 9 x 18 mm,
350 um dot spacing, spotted by MWG Biotech us-
ing a single pin on epoxy coated glass slides. The
array contains probes for 452 selected Arabidop-
sis genes designed to cover the cytochromes P450
(Paquette et al., 2000; Werck-Reichhart et al., 2002)
(see http://www.biobase.dk/P450/) and glycosyltrans-
ferase (UGT) (Paquette et al., 2003) multigene families
as well as genes that relate to aromatic amino acid bio-
synthesis, secondary metabolism and stress. The 50-mer
oligonucleotides were designed by MWG Biotech, essen-
tially as described by Kane et al. (2000). mRNA was



isolated from 30 days old Arabidopsis rosette leaves us-
ing MicroPoly(A)PureTM small scale mRNA purifica-
tion kit (Ambion). 3-3.5 ug mRNA was used for direct
incorporation of cy3- and cy5-fluorescent dyes (Amer-
sham Pharmacia Biotech) using Superscript II kit (Invit-
rogen). Hybridizations and washings were performed es-
sentially according to the manufacturers instructions and
subsequently scanned using a GMS 418 Array Scanner
(Affymetrix) using four different photomultiplier gains:
30, 40, 50, 60 while keeping the laser power at 30.

The resulting 16 bit gray scale tif-images are avail-
able for two varieties: wildtype wt, transgenic line 3x.8,
four photomultiplier gains: 30, 40, 50, 60, and two dye
swap experiments: cy3, cy), for a total of 16 images.

2.2 Transformations

Let Z = Z(x) denote the intensity of a pixel x. Here Z
is a 16-bit integer, i.e., 0 < Z < 26 — 1 = 65535. Let
Y (z) denote a transformation of Z(z),

Y(m) = f(Z(x)v A)7 (1)

where f(-, A) is a family of transformation depending on
the parameter vector .

In the following, we shall consider three transforma-
tions: A logarithmic transformation

Y =klog(Z + \1), (2)

where \; is a positive offset parameter. A Boz-Cox trans-
formation

L R((ZEA)—1) A i A #£0
Y_{ kl(og(Z+1)\1) ) ’ if );:0 (3)

where A1 > 0, and an inverse hyperbolic sine transform-
ation

Z + M\

Y = k arsinh( \
2

), A2 > 0. (4)

The constant & is used in all three transformations to
scale the transformed pixel intensities such that a sat-
urated pixel (i.e., a pixel with intensity Z = 216 — 1 =
65535) corresponds to a value of Y = 1.

[Figure 2 about here.]

Note that arsinh(z) = log(z + v22+1) for z > 0,
so for large z we have arsinh(z) ~ log(2z). As a result,
the logarithmic transformation is essentially (at least for
large values of z) a special case of both the Box-Cox
transformation (with Ay = 0) and the inverse hyperbolic
sine transformation (with Ay = 2).

Figure 1 shows the inverted grey scale image of the
Y -intensities for the logarithmic transformation (2) with
A1 = 20 and k = 1/1og(2'6 + 20 — 1) for the wildtype

green (cy3) channel with photometric gain 60. Pixels
with Y-values close to 1 are shown in black and pixels
with Y-values close to 0 are light grey. The middle panel
of Figure 1 shows the corresponding saturated pixels
where Y = 1. In the right panel we show the intens-
ities for three spots with photometric gains 30, 40, 50
and 60, respectively, along horisontal lines through the
spot centres. Each of the intensity curves are given for
25 pixels, the centre pixel and 12 pixels on each side.
The spots are the sixth, tenth and twelfth spots in the
9th row in the left panel; these three spots have num-
bers 102, 106, and 108, and show medium, high and low
spot intensity, respectively, and the intensity curves are
overlayed for all four gains. Spots 102, 106 and 108 are
marked with boxes in the left panel of Figure 1.

3 Spot shape models

Based on empirical observations of spot intensity pro-
files as seen in Figure 1, we desire a spatial spot shape
model to have the following three properties: (i) iso-
tropic, i.e., that the average intensity at a pixel x only
depends on the distance from = to the spot centre and
not on the direction from the centre, (ii) should allow for
spot-shapes resembling both “volcanos/craters/donuts”
and “plateaus”. Spot intensities are often highest near
the edge of the spot and smaller near the spot centre
making the resulting spot shape resemble a volcano (see
middle panel of Figure 1), and (iii) allow for spatial cor-
relation, i.e., pixels close together and with the same
distance from the spot centre should be more correlated
than pixels further apart.

Let S denote the set of spots. With each spot s,s € S,
we associate a set Ay of pixels. We assume that no pixel
belongs to more than one such set, and some pixels may
not be associated with any spot. Let ¥ = Y (x) denote
the (possibly transformed) intensity at a pixel, z, with
pixel centre coordinates © = (x1,x2). We assume that
Y (z) and Y (') are independent if 2 and ' are associ-
ated with different spots.

Consider now a spot s and pixels x € A;. Let
¢s = (cs1,¢s2) be the spot centre of spot s, and let
rs(z) = ||z — ¢s|| be the distance from pixel x to the
spot centre. Assume that

Y (z) = Bshs(rs(z)) + bs + €(z), 1z € A (5)

where B measures the intensity of spot s, b is a constant
representing the background, hs(r) is a spot shape func-
tion and e(z) corresponds to zero-mean noise at z. We
assume that (Y (z),z € A;) has a multivariate normal
distribution with mean vector us and covariance matrix
Cs. Thus

ps(z) = Bshs(rs(x)) + bs,

and the spot shape function hs(r) may depend on para-
meters. Some spot shape parameters may be common



for all spots but some may be spot-specific.

In the present paper we only consider the simplest co-
variance model where each pixel intensity is assumed in-
dependent, i.e., e(x) ~ N(0,02I), where I is the identity
matrix. More complicated spatial correlation structures
will be investigated further in a later publication.

We consider the following four spot shape models:

The cylindrical shape model. Let
1

hs(r) = Fl(r<os), (6)

where 1(P) = 1 if P is true and 1(P) = 0 other-
wise. The parameter o; > 0 is the radius of the
spot.

The Gaussian shape model. Put

() = <= 0( ). ¢

where o0, > 0 and ¢ is the standardized one-
dimensional normal density

1 1,
o(r) = mexp(f?" ).

The Gaussian difference shape model. Let

l+a, 7 Qs r

= V5 T Vo o

where o5 >0, as >0 and 0 < G5 < 1.

his(7) ), (8)
A polynomial-hyperbolic spot shape family. Put

as

I
gs(r) = Z bsiri - P
=1

Yo—7 0<r <ns,
S

where I > 2, ag > 0 and s > 1. Put further

0 if r>~s0s,

hs(r)Z{ b eplos(r/on)) i 0Sr<pos o

where o, represents the radius of the spot and o7
is the distance from the spot centre where there are
no more signal from the spot. The constant K is a
function of the parameters by, ..., bss,as, s such

that )
/ / hs(r)rdrdd =1,
o Jo

a condition that is also satisfied by the spot shapes
(6), (7), and (8). The parameters a; and ~, de-
termine the steepness of the spot edge. It may
be noted that the spot function (9) is zero outside
a circle around the centre for r > 05, similar
to the cylindric spot function (6), which is zero

for r > o5. While the cylindric spot shape func-
tion is discontinuous, the function (9) is continuous
and infinitely differentiable. However, the cylindric
spot shape may be obtained as a limiting case of
the polynomial-hyperbolic spot shape, see below.

We require the boundary condition

95(0) =0, (10)

i.e., that the spot intensities are flat near the centre
of the spot. Most often, we would also require that

g.(1) =0, (11)

such that the spot intensity starts to decrease at
value 1 (i.e., when the pixel is at distance o5 away
from the spot centre).

For I = 2 the boundary conditions (10) and (11)
result in the following constraints on the paramet-
ers in the polynomial:

bs1 GS/'Yg
b _as 1 1
T 2 (-2 2

If we here let a5 tend to zero and 7, tend to one we
get the the cylindric spot shape as a limiting case.

We will use the condition (11) in the sequel but
it may be noted that if we specify ¢.(1) as a pos-
itive constant we may obtain spot shapes with a
dome shape, and if we specify ¢.(1) as a negative
constant we may obtain more pronounced crater
shapes.

Data and estimated spot shape for the polynomial-
hyperbolic spot shape model are shown in 3D in Figure 3
for spot 102 at gain 60, corresponding to the upper curve
in the right panel of Figure 1.

[Figure 3 about here.]

Fitted cylindrical, Gaussian, Gaussian difference, and
polynomial-hyperbolic shape functions corresponding to
the spots in the right panel of Figure 1 are shown in Fig-
ure 4. It is clearly seen that the polynomial-hyperbolic
spot shape model fits the data better than the three other
models.

[Figure 4 about here.]



4 Estimation of parameters and
saturated (censored) values

4.1 Parameter estimation

Let AL = {z € A, : Y(x) < .} and A” = {z € A, :
Y (z) > ¢.} denote the set of pixels in A, that are un-
censored and censored, respectively, at the level /.. Spot
shape parameters may be estimated by maximizing the
log likelihood function

Ly = L1+ Lo, (12)

where

Ly = Z log{aiﬂy

T€A/

(1‘) — BshS(TS(x)) —bs

and

Ly = Z log{1 — <I>(€C — Bohs(rs()) — bs)},

TEAY Te
where ¢ and @ are the standardized normal density func-
tion and distribution function, respectively. The log
likelihood (12) can be maximized by standard iterative
maximization techniques, e.g., quasi-Newton or Nelder-
Mead.

We note that if the spot shape parameters are varied
individually for spots we get six parameters for the spot
shape models (6) and (7): Bs, c¢s1, Cs2, bs, 0e and o,
and eight parameters for the models (8) and (9). The
additional parameters are a; and 3, for model (8) and
as and «y, for model (9).

To estimate also parameters in the transformation
(1), we maximize

LZ = Ly + Zlog (a}a/(Zx)> , (13)

4.2 Prediction of saturated (censored)
values

For x € A we denote the transformed estimated (pre-
dicted) intensity by

V() = Bohs(rs(z)) + bs,

where Bs and l;s denote estimated parameters and fzs de-
notes the spot shape function with estimated parameters.
If f is the transformation employed, e.g., (2), (3) or (4),
then the corresponding estimated intensity is

Z(z) = [TV (x)).

Once the predicted values for the saturated pixels are
obtained, we can plug-in these values and analyze the
spot as if all pixels were completely observed.

5 Results

5.1 Choice of transformation

The Box-Cox (3) and the inverse hyperbolic sine trans-
formation (4) both contain the logarithmic transforma-
tion (2) as a special case. Thus we can use log likelihoods
to tests if either of them gives a significant improvement
relative to the logarithmic transformation.

The results shown in Table 1 are based on analysis of
25 spots and for each of them four gains, which gives 100
datasets. The choice of spots was made such that both
low, median and high intensity levels were represented
but with a slight over-representation of high intensities
as one of our main objective was to study reconstruction
of spots with saturated pixels.

As the polynomial-hyperbolic spot shape model
turned out to clearly superior to the other spot shape
models studied here, it was used in the comparison of
the three transformations.

Table 1 shows that the Box-Cox transformation
provides the best fit when we use the log likelihood as cri-
terion, and that even the Box-Cox transformation with
fixed values of A1 and Ay provides a better median fit
than does the logarithmic and inverse hyperbolic trans-
formations with variable X’s. The inverse hyperbolic
transformation gives a small improvement relative to the
logarithmic transformation.

The logarithmic transformation with variable offset
parameter \; turned out to be considerably better than
the logarithmic transformation with fixed A\ = 1. (We
use \; = 1 as fixed value rather than \; = 0 as some
pixel values were zero.)

A priori, we can not formally test the Box-Cox and
the inverse hyperbolic sine transformations against each
other as the statistical models are not nested. However,
it turned out that in most of the 100 datasets the logar-
ithmic and inverse hyperbolic sines were close, while the
Box-Cox transformation gave a considerable improve-
ment relative to the logarithmic transformation. There-
fore, we conclude that the Box-Cox transformation was
also superior to the inverse hyperbolic sine in this study.

[Table 1 about here.]

5.2 Choice of spot shape model

Using the Box-Cox transformation the four spot shape
models are compared in Table 2 for the same spots that
were used in Table 1. As was also indicated in Fig-
ure 4 the polynomial-hyperbolic shape gives a consid-
erably better fit than the other three spot shape models,
and the differences are here much larger than in the com-
parison of the transformations.



Interestingly, the second best fit is provided by the
simple cylindrical model while the two Gaussian models
give the worst fit. This was also suggested by Figure 4
where the Gaussian models — in contrast to the cyl-
indrical and the polynomial hyperbolic shape models —
fit equally bad on the spot boundary and at the spot
centres.

[Table 2 about here.]

5.3 Reconstruction of saturated values

Figure 5 shows the estimated spot profiles for the
polynomial-hyperbolic spot shape model when the pixels
for spots 242, 352 and 787 are artificially censored at dif-
ferent intensities. These three spots were chosen as those
with the highest level not exceeding the upper limit.
Thus the the leftmost diagrams show for each of these
spots the estimate without censoring, while the other
diagrams show reconstruction for varying degrees of cen-
soring. In these diagrams the Box-Cox transformation
was used with fixed A-values, \;y = 3.35 and \y = .13.
The parameters a, and ~y,, were also fixed and chosen em-
pirically to mimic the results shown in Table 1, a; = 0.65
and v, = 1.75.

The conclusion from Figure 5 is that with a small de-
gree of censoring corresponding to the second column in
Figure 5 the reconstruction is satisfactory. For a higher
degree of censoring corresponding to the third column
in Figure 5 we get some overshoot. With increasing de-
gree of censoring an improvement is in fact seen in the
fourth column, while the rightmost column correspond-
ing to censoring at level 0.6 gives a clear undershot. This
undershot is even more pronounced for censoring at level
0.5 (data not shown).

[Figure 5 about here.]

6 Discussion

In this paper we consider models for spot intensities on
the pixel scale and different transformations to approx-
imate normality and variance constance.

An empirical observation is that a logarithmic trans-
formation with no offset is found to result in non-
homogeneous variation: low-range pixel intensities show
larger variation than mid-range or high-range pixels.
The results from Table 1 show that inclusion of an offset
A1 improves the logarithmic transformation and that a
further improvement is obtained with the Box-Cox trans-
formation. The results from Table 1 also indicate, that
a value of Ao near 0.13 (i.e., the 8th root) is optimal for
the Box-Cox transformation.

The proposed polynomial-hyperbolic spot shape
model (9) is more flexible than both the cylindrical,

Gaussian and Gaussian difference models and is found
to provide by far the best fit in (Table 2).

The results seen in Figure 5 indicate that with a small
percentage of censoring (less than 30%, say) it should be
possible to estimate parameters and predict pixel intens-
ities for the censored pixels in a satisfactory way. An ob-
vious consequence of this is, that the photometric laser
gain in some situations may be increased such that a
some pixels are saturated in order to improve the pixel
intensities of the low intensity spots without any seri-
ous loss of information for the spot with highest pixels
intensities.

Figure 5 also suggests that the some pixels from the
spot centre need to be observed in order to estimate cen-
sored pixel values well. When only the edge and the
background pixels of the spot is observed (corresponding
to the last column with artificial censoring at level 0.6
and even more pronounced at level 0.5, not shown), the
polynomial-hyperbolic spot shape models has difficulties
in reconstructing the non-observed saturated pixel val-
ues.

It should also be possible to combine several runs
with varying gains, compare the right panel in Figure 1.
For spots with saturated pixels, pixel values may be re-
constructed as shown in this paper. But if the censoring
is too hard the corresponding estimate should be down-
weighted when combined with signal intensities for runs
with lower gains. To find optimal weights further study
is necessary.

We conclude by listing some additional items that
may be studied by use of a good spot shape model:

e To find accurate estimates of the local background
level. We note that the model (5) contains such a
parameter bs for the local background at spot s.

e To make a quality control by finding spots that de-
viate in some way as may be seen in left panel in
Figure 1 (e.g., the second spot to the right of the
middle circled spot and several spots in the upper
part of the chip).

e To find improved estimates of spot centres and spot
diameters. It is also possible that the estimate of
the parameter Bs in (5) could used to estimate the
total intensity of a spot, but we rather think that
an average within an accurately determined circu-
lar disk would give a more robust intensity estimate
for spots with all pixels uncensored.
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Figure 1: Inverted gray scale image of cy3 wildtype with photometric gain 60 (left panel) and the
corresponding saturated pixels (middle panel). Horizontal intensity profiles through spot centres for
wildtype cy3 images with gains 30, 40, 50 and 60 are shown for three spots (right panel). The three
spots depicted in the right panel are the ones marked with boxes on the left panel. The three spots
marked with circles are used in Figure 5.
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Gaussian, Gaussian difference, polynomial-hyperbolic (corresponding to each column) for gains 30, 40 50
and 60. Estimates are, for each spot, based on pixels in 25 x 25 area, but are here (as well as in Figure 5)
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Figure 5: Horizontal intensity profiles through the centres of spots 242, 352 and 787 (each spot represented
by a row) at photometric gain 60 for the polynomial-hyperbolic spot shape model for different levels of
(artificial) censoring as indicated by a horizontal line. For each profile both data (thin lines) and the
reconstruction are shown. The average fraction of pixels that were censored among the 25 x 25 pixels
regarded for each spot were (from the left) in the five columns: 0%, 17%, 29%, 30% and 32%, respectively.
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Parameter estimate

Transformation Os Qg Vs Als A2s logLikelihood incr.
Logarithmic (fixed A1) 4.83 0.66 1.87 17 47.74
Logarithmic 481 0.64 1.87 10.51 13.82

Inv. hyperbolic sine 490 063 182 743 1.32 11.42
Box-Cox (fixed \’s) 486 0.84 1.86 3.357 0.13f 6.70
Box-Cox 498 063 1.8 3.35 0.13 0

1 Values fixed.
Table 1: Comparison of transformations: Median values for selected estimated parameters from the three

transformations for 25 spots and four gains. The log likelihood increase is the median increase of the log
likelihood (13) for a given transformation relative to the log likelihood for the Box-Cox transformation.
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Parameter estimate

Spot shape model o as s Als A2s  logLikelihood incr.
Cylindrical 7.61 1.98 0.04 178.248
Gaussian 5.34 1.17  -0.05 283.46
Gaussian difference 6.32 1.13 0.04 263.47
Polynomial-hyperbolic 498 063 18 3.35 0.13 0

Table 2: Comparison of spot shapes: Median values for selected estimated parameters from the four spot
shape models for 25 spots and four gains. The log likelihood increase is the median increase of the log
likelihood (13) for a given spot shape model relative to the log likelihood for the polynomial-hyperbolic
spot shape.
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