Measure-branching renewal processes

Serik Sagitov

Department of Mathematics, Chalmers University of Technology, S-412 96 Göteborg, Sweden and Theoretical and Applied Institute of Mathematics, Kazakh Academy of Sciences, NAS of Kazakhstan, 480021 Almaty, Kazakhstan

Received 9 May 1992; revised 13 July 1993

Abstract

Consider a generalized renewal process where elements are replaced by a random number of new elements. The corresponding generalization of the residual lifetime at t is a random measure $\mu'(du)$ on $[0, \infty)$. The measure-valued process $\{\mu'(du), t \geq 0\}$ is a homogeneous Markov process. We obtain a measure-branching approximation for $\{n^{-1} \mu^T(T' du), t \geq 0\}$ as $n \to \infty$ and $T = r(n) \to \infty$.

Keywords: General branching process; Immigration; Residual lifetime; Measure-branching process

1. Introduction

Consider a population of individuals with a common reproduction law. At its death each individual gives birth to a random number of daughters. The reproduction law of such an individual is the joint distribution of the number of its daughters and their lifelengths. Call this a branching renewal model if the branching property holds: all reproduction acts have independent outcomes.

The word renewal emphasizes our intention to treat this reproduction model as a non-linear renewal process when elements are replaced by a random number of new elements. Write $\mathbb{R}_+ = [0, \infty)$.

- $\mu'(\mathbb{R}_+)$ = the population size at time t;
- $\mu'([0,u])$ = the number of individuals at time t who will die by time $t + u$.

This work has been supported by the Royal Swedish Academy of Sciences and by the Swedish Natural Sciences Research Council.

0304-4149/94/$07.00 \copyright$ 1994 Elsevier Science B.V. All rights reserved

SSDI 0304-4149(93)E0079-T
The measure $\mu'(du)$ is a counterpart of the residual lifetime concept of renewal theory. For a branching renewal population the measure-valued process $\{\mu^t, t \geq 0\}$ is a homogeneous Markov process. Call it a measure-branching renewal process.

The aim of this paper is to establish a weak convergence of the form

$$\{n^{-1}\mu^T(tdu), t \geq 0\} \rightarrow \{\pi'(du), t \geq 0\}, \quad n \rightarrow \infty, \quad (1.1)$$

for a suitable time scale $T = T(n)$. A necessary condition for (1.1) is

$$n^{-1}\mu^0(tdu) \rightarrow \pi^0(du), \quad n \rightarrow \infty. \quad (1.2)$$

Throughout we confine ourselves to finite random measures defined on the Borel subsets of \mathbb{R} (Kallenberg (1975)). This facilitates technicalities but causes a nuisance. The initial state μ^0 has to depend on the series number n to ensure

$$P\{|\pi^0(\mathbb{R}+) > 0\} > 0, \quad P\{|\pi^0(\mathbb{R}+) < \infty\} = 1.$$

Our limit theorem is based on the following (Dynkin-Lamperti) renewal theorem (cf. Bingham et al. (1987)). Consider a renewal process with a lifetime distribution function $A(t)$ such that

$$\int_0^\infty u \, dA(u) = t^{1-\beta} L(t), \quad \beta \in (0, 1], \quad (1.3)$$

where $L(t)$ varies slowly as $t \rightarrow \infty$. Denote by $m^t(du)$ the residual lifetime distribution at time t. Then, there is weak convergence of the probability measures

$$m^T(tdu) \rightarrow M^t(du), \quad T \rightarrow \infty, \quad (1.4)$$

$M^t(du)$ being the Dirac measure $\delta_0(du)$ concentrated at zero if $\beta = 1$, and

$$M^t([0,u]) = 1 - \frac{\sin \pi \beta}{\pi \beta} \int_0^u (t + v)^{-\beta} \, dv, \quad u \geq 0,$$

if $\beta \in (0, 1)$.

A comparison with other branching models shows that the branching renewal model is, in a sense, equivalent to the general (Crump-Mode-Jagers) branching model (cf. Jagers (1975)). It suffices to observe that the dead individuals in a branching renewal population form a general branching process with immigration.

The corresponding immigration process is defined by $\mu^0(du)$, so that condition (1.2) is a condition on immigration (cf. e.g. Badalbaev and Zubkov (1983)). The definition of $\mu^t(du)$ in terms of the general branching model reveals a new Markov structure within general branching framework (cf. Jagers (1989)).

A remarkable fact is that a martingale, introduced for the general branching model by Nerman (1981) (cf. also Jagers and Nerman (1984)), in terms of the measure μ^t looks particularly simple:

$$e^{-at} \int_0^\infty e^{-xu} \mu^t(du), \quad t \geq 0.$$
where α is the Malthusian parameter. We will use the martingale property of the process $\{\mu'(\mathbb{R}_+), t \geq 0\}$.

Remark. Consider a system of particles that move on \mathbb{R}_+ towards zero with unit speed. Each particle coming at zero pulls the trigger of a device that casts on $(0, \infty)$ a group of new particles. The measure $\mu'(du)$ could be interpreted as the distribution of the particles on \mathbb{R}_+ at time t.

2. The semigroup $\{V', t \geq 0\}$

Write

$$C_\beta^+ = \{\text{continuous functions } f: \mathbb{R}_+ \to \mathbb{R}_+ \text{ with } \|f\| < \infty\},$$

where $\|\cdot\|$ is the supremum norm. If $\beta \in (0, 1]$ and $f \in C_\beta^+$, then the non-linear integral equation

$$X(t) = \langle f, M' \rangle - \int_0^t X^2(t - u) \, du$$

with

$$\langle f, M' \rangle = \int_0^\infty f(u) M'(du)$$

has no more than one solution $X \in C_\beta^+$. Define the non-linear operator $V': C_\beta^+ \to C_\beta^+$ by

$$V'f(u) = \begin{cases} X(t - u), & 0 \leq u < t, \\ f(u - t), & u \geq t. \end{cases}$$

In this section we verify the correctness of this definition and show that the family $\{V', t \geq 0\}$ forms a semigroup.

For $\beta = 1$ Eq. (2.1) yields

$$V'f(u) = \begin{cases} (t - u + f^{-1}(0))^{-1}, & 0 \leq u < t, \\ f(u - t), & u \geq t. \end{cases}$$

and the semigroup property holds evidently.

Fix $\beta \in (0, 1)$ and $f \in C_\beta^+$. Put $\lambda = (4\|f\|)^{-1}$.

Lemma 2.1. There exists a function $X \in C_\beta^+$ complying with Eq. (2.1) for every $t \in [0, \lambda]$.

Proof. Denote by C_f the set of all continuous functions $g:[0, \lambda] \to \mathbb{R}_+$ satisfying $g(t) \leq \langle f, M' \rangle, \ t \in [0, \lambda]$.

Put $\rho(g_1, g_2) = \|g_1 - g_2\|$. It suffices to prove that the operator K:

$$Kg(t) = \langle f, M^t \rangle - \int_0^t g^2(t - u) \, du$$

is a contraction of the complete metric space (C_f, ρ) into itself. Clearly,

$$Kg(t) \geq 0, \quad t \in [0, \bar{t}], \quad g \in C_f$$

is the only property of the operator K which needs a proof.

Since the measure $M'(du)$ has a density function, the representation

$$\langle f, M^t \rangle = \int_0^t Bf(t - u) \, du$$

is valid with

$$Bf(t) = \gamma \int_0^\infty f(u)(t + u)^{-\beta} \, du;\quad \gamma = \pi^{-1} \sin \pi \beta$$

This representation implies (2.4):

$$\int_0^t g^2(t - u) \, du \leq \|f\| (Bf) \ast G_\beta \ast G_\beta(t) \leq 2 \|f\| t^\beta (Bf) \ast G_\beta(t) \leq \langle f, M^t \rangle,$$

where $G_\beta(t) = t^\beta$. \hfill \Box

The correctness of the definition (2.2) follows from Lemma 2.1 and the next one.

Lemma 2.2. If $X \in C_b^+$ satisfies Eq. (2.1) for all $t \in [0, t_0]$, then so does $X(t)$ for all $t \in [0, 2t_0]$.

Proof. Using the well-defined family $\{V', t \in [0, t_0]\}$ denote for $s \in [0, t_0]$

$$Y_s(t) = \begin{cases} X(t), & 0 \leq t \leq s, \\ V_{t-s} \ast f(0), & s < t \leq s + t_0. \end{cases}$$

It suffices to verify that $Y_s(\cdot)$ complies with (2.1) for $t \in (s, s + t_0]$:

$$V_{t-s} \ast f(0) = \langle f, M^t \rangle - \int_0^{t-s} (V_{t-s-u} \ast f(0))^2 \, du - \int_{t-s}^t X^2(t - u) \, du.$$ \hspace{1cm} (2.6)

According to the definition of $\{V', t \in [0, t_0]\}$ we have

$$V_{t-s} \ast f(0) = \langle V_{s}, M^{t-s} \rangle - \int_0^{t-s} (V_{t-s-u} \ast f(0))^2 \, du.$$
Hence the relation (2.6) could be transformed into

\[\langle V^s f, M^{t-s} \rangle = \langle f, M^t \rangle - \int_{t-s}^t X^2(t-u) \, du. \]

(2.7)

Due to (2.5) the LHS of (2.7) equals

\[\int_0^{t-s} BV^sf(t-s-u) \, du \]

and

\[BV^sf(t-s-u) = \gamma \int_0^s X(s-v)(t-u+v-s)^{-\beta-1} \, dv \]

\[+ \gamma \int_s^{\infty} f(v-s)(t-u+v-s)^{-\beta-1} \, dv \]

\[= \gamma \int_{t-s}^t X(t-v)(v-u)^{-\beta-1} \, dv + Bf(t-u). \]

Therefore relation 2.7 could be further transformed in

\[\gamma \int_{t-s}^t X(t-v) \int_0^{t-s} (v-u)^{-\beta-1} \, du \, dv = \int_{t-s}^t \varphi(t-u) \, du, \]

(2.8)

where

\[\varphi(t) = Bf(t) - X^2(t). \]

Finally, relation (2.8) follows from (cf. (2.1))

\[X(t) = \int_0^t \varphi(t-u) \, du, \quad t \in [0, t_0], \]

and the equality

\[\int_0^{z-t+s} \int_0^{t-s} (z-u-y)^{-\beta-1} \, du \, dy = \frac{\pi \beta}{\sin \pi \beta} z^{\beta-1}, \quad z \in [t-s, t]. \]

Now it follows that

\[V^{t+s} f(0) = X(t+s) = Y_s(t+s) = V^t V^s f(0), \quad s \geq 0, \ t \geq 0. \]

This yields the semigroup property:

\[V^t V^s f(u) = V^{t-s} V^s f(0) I \{ u < t \} + V^s f(u-t) I \{ u \geq t \} \]

\[= V^{t+s} u f(0) I \{ u < t \} + f(u-t-s) I \{ u \geq t+s \} \]

\[= V^{t+s} f(u). \]
3. A limit theorem

Take a group of siblings from a branching renewal population. Denote by N the group size and by $0 < \tau^1 \leq \cdots \leq \tau^N < \infty$ the lifelengths of these siblings. Put

$$N(t) = \max \{j: \tau^j \leq t\}, \quad A(t) = EN(t).$$

Let the branching be critical:

$$EN = 1, \quad \sigma^2 = \text{Var} N \in (0, \infty). \quad (3.1)$$

In the critical case the function $A(\cdot)$ possesses all the properties of a distribution function of a positive random value. In a sense (cf. Nerman (1984)), the function $A(\cdot)$ is the lifelength distribution function for a "typical mother" in the critical branching renewal population.

Theorem. Let conditions (3.1) and (1.3) hold, and $T = T(n)$ comply with

$$T^{-\beta} L(T) \sim \frac{\sigma^2 \sin \pi \beta}{2n \pi (1 - \beta)} n \to \infty.$$

Weak convergence of the random measures (1.2) implies weak convergence of the measure-valued homogeneous Markov processes (1.1). The limit $\{\pi'(du), t \geq 0\}$ is a measure-branching process governed by the semigroup V' via

$$E e^{-\langle f, \pi' \rangle} = E e^{-\langle V' f, \pi' \rangle}, \quad t, s \in \mathbb{R}_+, f \in C^+_b.$$

Corollary. Put $Z(t) = \mu'(\mathbb{R}_+)$. Under the hypotheses of the theorem the weak convergence

$$\{n^{-1} Z(Tn), t \geq 0\} \to \{\xi(t), t \geq 0\}, \quad n \to \infty,$$

not necessarily Markov processes, takes place.

When $\beta = 1$ and $\pi^0 = \delta_0$ the relation

$$E e^{-\langle f, \pi' \rangle} = e^{-\nu f(0)}$$

and formula (2.3) yields that all the measures π' are concentrated at zero:

$$\pi'(du) = \xi(t)\delta_0(du),$$

and the process $\xi(\cdot)$ coincides with a well-known diffusion approximation for branching processes (Athreya and Ney (1972) p. 260).

When $\beta = 1$ and π^0 is not concentrated at zero, we have

$$\pi'((0, \infty)) = \pi^0((0, \infty)), \quad t \geq 0.$$

If, furthermore, $\pi^0(du)$ has stationary, independent increments, then the process $\{\pi'\{0\}, t \geq 0\}$ is a CBI process of Kawazu and Watanabe (1971).
In the case $\beta \in (0, 1)$ generation overlappings totally distort the usual limit picture. In particular, the measure π^t, with $\pi^0 = \delta_0$, has no mass at zero at all:

$$E\pi^t(\{0\}) = M^t(\{0\}) = 0, \quad t > 0.$$

Example. Let τ^1, \ldots, τ^N be the numbers of successful trials in a Bernoulli array. If the probability of success at the ith trial equals

$$i^{-\rho} \left(\frac{1}{\sum_{k=1}^{\infty} k^{-\rho}} \right)^{-1}, \quad \rho > 1, \quad i = 1, 2, \ldots,$$

then conditions (3.1) and (1.3) hold with $\beta = \min\{1, \rho - 1\}$.

Remarks. Measure-branching processes, introduced by Jirina (1962) are known mostly in connection with branching diffusions (cf. Ethier and Kurtz (1986)). The measure-branching process x^t was initially obtained as a limit for the Bellman–Harris branching processes by Sagitov (1991). Bose and Kaj (1991) treated the general branching model in terms of the measure

$$X^t([u_1, u_2]) = \text{the number of individuals in the age interval } [u_1, u_2] \text{ at time } t.$$

We end this section by stating an important intermediate result, concerning the Laplace transform

$$Q(t, f) = 1 - E_0 e^{-\langle f, \mu^t \rangle},$$

where $E_0(\cdot)$ stands for $E(\cdot | \mu^0 = \delta_0)$.

The sign \Rightarrow will indicate that convergence is uniform in $t \in [0, t_0]$ for any finite t_0.

Proposition. Let conditions (3.1) and (1.3) hold. If $g_n \in C_b^+$,

$$\|g_n\| \leq \lambda n^{-1}, \quad \lambda < \infty, \quad n = 1, 2, \ldots,$$

then

$$nQ(T_n, g_n) \Rightarrow V^t g(0), \quad n \to \infty.$$

4. The operator Ψ

Denote $B[0, 1] = \{\text{Borel functions } f: \mathbb{R}_+ \to [0, 1]\}$.

Define the non-linear operator $\Psi: B[0, 1] \to B[0, 1]$ by

$$\Psi[f](t) \equiv \Psi[f(\cdot)](t) = E\left(\prod_{j=1}^{N(\omega)} (1 - f(t - \tau^j)) - 1 + \sum_{j=1}^{N(\omega)} f(t - \tau^j) \right).$$
To verify that \(\Psi[f] \in B[0, 1] \) for any \(f \in B[0, 1] \) observe that
\[
0 \leq \prod_{j=1}^{n} (1 - b_j) - 1 + \sum_{j=1}^{n} b_j \leq \prod_{j=1}^{n} (1 - a_j) - 1 + \sum_{j=1}^{n} a_j
\]
for \(0 \leq b_j \leq a_j \leq 1, j = 1, \ldots, n \). The estimate (4.1) shows also that the operator \(\Psi \) is monotone: if \(f, g \in B[0, 1] \) and \(f(t) \leq g(t) \) for all \(t \in \mathbb{R}_+ \), then
\[
\Psi[f](t) \leq \Psi[g](t), \quad t \in \mathbb{R}_+.
\]

Lemma 4.1. Let condition (3.1) hold and take \(\varepsilon \in (0, 1) \). If
\[
0 < f(u) \leq c \leq 1, \quad 0 \leq u \leq t,
\]
then
\[
\frac{\sigma^2}{2} \inf_{1 - \varepsilon < v < 1} f^2(tv) - c^2 \rho_1(e, t, c) \leq \Psi[f](t) \leq \frac{\sigma^2}{2} \sup_{1 - \varepsilon < v < 1} f^2(tv) + c^2 \rho_2(e, t)
\]
with
\[
\rho_1(e, t, c) \to 0, \quad t \to \infty, \quad c \to 0^+; \quad \rho_2(e, t) \to 0, \quad t \to \infty.
\]

Proof. Use the decomposition
\[
\Psi[f](t) = \Psi[f(t(1 - e) + \cdot)](te) + \Psi^\varepsilon[f](t) + \Psi_\varepsilon[f](t),
\]
where
\[
\Psi^\varepsilon[f](t) = E \left\{ 1 - \prod_{j=1}^{N(te)} (1 - f(t - \tau_j)) \right\} \left\{ 1 - \prod_{j=N(te)+1}^{N(t)} (1 - f(t - \tau_j)) \right\},
\]
\[
\Psi_\varepsilon[f](t) = E \left\{ \prod_{j=N(te)+1}^{N(t)} (1 - f(t - \tau_j)) - 1 + \prod_{j=N(te)+1}^{N(t)} f(t - \tau_j) \right\}.
\]
The monotonicity of \(\Psi \) implies
\[
\Psi[f(t(1 - e) + \cdot)](te) \leq \frac{\sigma^2}{2} \sup_{1 - \varepsilon < v < 1} f^2(tv).
\]
Condition (4.2) yields
\[
\Psi^\varepsilon[f](t) \leq c^2 E N(te)(N(t) - N(te)).
\]
According to (4.1) condition (4.2) yields as well
\[
\Psi_\varepsilon[f](t) \leq E \{ (1 - c)^{N(t) - N(te)} - 1 + c(N(t) - N(te)) \} \leq c^2 F(N(t) - N(te))^2.
\]
These estimates and the decomposition (4.5) show that the asserted upper bound holds with

$$\rho_2(\varepsilon, t) = 2EN(N - N(te)).$$

On the other hand, decomposition (4.5) and the monotonicity of Ψ imply

$$\Psi[f](t) \geq \Psi[f(1 - \varepsilon) + \cdot](te)$$

$$\geq \frac{1}{2} E(N(te)(N(te) - 1)(1 - \varepsilon)^N) \inf_{1 - \varepsilon \leq r \leq 1} f^2(rv).$$

Hence the asserted lower bound is valued with

$$\rho_1(\varepsilon, t, c) = \frac{1}{2} \{\sigma^2 - EN(te)(N(te) - 1)(1 - c)^N\}.$$

Both (4.3) and (4.4) follow from condition (3.1). \qed

5. Proof of the proposition

If $\mu_0 = \delta_0$, then

$$\langle f, \mu' \rangle = \sum_{j=1}^{N(t)} \langle f, \mu_j^{(1)} \rangle + \int_{t}^{\infty} f(u - t) dN(u),$$

where $\mu_j^{(1)}(du)$, $j = 1, \ldots, N$ are the daughter replicas of $\mu'(du)$. This decomposition yields first

$$E_0 \langle f, \mu' \rangle = \int_{0}^{\infty} E_0 \langle f, \mu_{-u}^{(1)} \rangle dA(u) + \int_{t}^{\infty} f(u - t) dA(u),$$

and second (owing to the independency of the daughter processes)

$$1 - Q(t,f) = E \prod_{j=1}^{N(t)} (1 - Q(t - \tau_j, f)) \exp \left(- \int_{t}^{\infty} f(u - t) dN(u) \right).$$

The renewal equation (5.1) reveals that the measure $E_0 \mu'(du)$ is the residual lifetime distribution corresponding to the lifetime distribution function $A(t)$. This fact implies the upper bound

$$Q(t,f) \leq \|f\|$$

and the convergence (cf. (1.4) and (3.3))

$$E_0< g_n, \mu^{(1)} > \to < g, M^{(1)} >, \quad n \to \infty.$$ (5.4)

Relation (5.2) gives the non-linear renewal equation

$$Q(t,f) = \int_{0}^{t} Q(t - u,f) dA(u) + C(t,f) - \Psi[Q(\cdot,f)](t),$$
where
\[C(t, f) = E\left(1 - \exp \left(- \int_t^\infty f(u - t) \, dN(u) \right) \right) \prod_{j=1}^{N(t)} (1 - Q(t - \tau^j, f)). \]

In terms of the renewal function
\[U(t) = \sum_{k=0}^\infty A^*k(t) \]
we have
\[Q(t, f) = \int_0^t (C(t - u, f) - \mathcal{P}[Q(\cdot, f)](t - u)) \, dU(u). \]

In the end of this section we demonstrate that
\[n \int_0^{T_n} C(T_n - u, g_n) \, dU(u) \Rightarrow \langle g, M^t \rangle, \quad n \to \infty, \quad t \geq 0. \] (5.5)
under the hypotheses of the proposition. Thus
\[nQ(T_n, g_n) = \langle g, M^t \rangle - n \int_0^{T_n} \mathcal{P}[Q(\cdot, g_n)](T_n - u) \, dU(u) + \rho_3(t, n) \]
and \(\rho_3(t, n) \to 0 \) as \(n \to \infty. \)

On the other hand, by the definition of the operator \(V^t \)
\[V^t g(0) = \langle g, M^t \rangle - \int_0^t (V^{t-u} g(0))^2 \, du. \]

To deduce the convergence (3.4) from these two non-linear integral equations, we have to overcome the differences between the integrals involved. Condition (1.3) ensures a regular variation of the renewal function:
\[U(t) \sim \frac{\sin \pi \beta}{\pi(1 - \beta)} t^\beta L^{-1}(t), \quad t \to \infty. \]

Hence the distinction between the expression under the differential sign is removed by the choice of the time scale \(T \):
\[n^{-1} U(T_n) \Rightarrow 2 \sigma^2 \, t^\beta, \quad n \to \infty. \] (5.6)

Applying (5.6), we get
\[nQ(T_n, g_n) - V^t g(0) = \rho_4(t, n) + n^{-1} \int_0^t \left[\frac{\sigma^2}{2} (V^{t-y} g(0))^2 \right. \]
\[- n^2 \mathcal{P}[Q(\cdot, g_n)](T(t - y)) \left. \right] dU(T_y) \]
with \(\rho_4(t, n) \to 0 \) as \(n \to \infty. \) (5.7)
Lemma 4.1 together with the upper bounds (5.3) and (3.2) allow us to replace
\(\Psi[Q(\cdot, g_n)] \) by \(\frac{1}{2} \sigma^2 Q^2(\cdot, g_n) \):
\[
\frac{\sigma^2}{2} \sup_{1 - \varepsilon < t < 1} Q^2(Ttv, g_n) - \left(\frac{\lambda}{n} \right)^2 \rho_1 \left(e, Tt, \frac{\lambda}{n} \right) \leq \Psi[Q(\cdot, g_n)](Tt)
\]
\[
\leq \frac{\sigma^2}{2} \sup_{1 - \varepsilon < t < 1} Q^2(Ttv, g_n) + \left(\frac{\lambda}{n} \right)^2 \rho_2(e, Tt).
\]
This double-sided estimate shows that the absolute value of the integral from (5.7) does not exceed
\[
\frac{\sigma^2}{2n} \int_{y-\varepsilon}^{t-\varepsilon} \sup_{1 - \varepsilon < t < 1} |n^2 Q^2(T(t - y)v, g_n) - (V^*(t - y)v g(0))^2| dU(Ty)
\]
plus an expression \(\rho_5(e, t, n) \) complying with
\[
\lim_{\varepsilon \to 0^+} \lim_{n \to \infty} \sup_{0 < t < t_0} \rho_5(e, t, n) = 0.
\]
We conclude that
\[
\sup_{0 < t < t_0} |nQ(Tt, g_n) - V^*g(0)| \leq \rho_6(e, n) + 2\lambda t_0^2 \sup_{0 < t < t_0} |nQ(Tt, g_n) - V^*g(0)|
\]
with \(\rho_6(e, n) \to 0 \) as first \(n \to \infty \) and then \(\varepsilon \to 0^+ \). This inequality leads directly to (3.4) if \(t_0^2 < (2\lambda)^{-1} \). When the interval \([0, t_0]\) is large, it has to be splitted in sufficiently small intervals beforehand.

This completes the proof of the proposition.

Proof of (5.5). The difference
\[
C_1(t, f) = \left| C(t, f) - \int_t^\infty f(u - t) dA(u) \right|
\]
does not exceed
\[
E \left[\exp \left(- \int_t^\infty f(u - t) dN(u) \right) - 1 + \int_t^\infty f(u - t) dN(u) \right] \times E \left(1 - \exp \left(- \int_t^\infty f(u - t) dN(u) \right) \right) \left(1 - \prod_{j=1}^{N(t)} (1 - Q(t - \tau_j,f)) \right).
\]
Using the upper bound (5.3), we get
\[
C_1(t, f) \leq 2 \| f \|^2 EN(N - N(t)).
\]
Hence condition (3.2) yields
\[
nC_1(Tt, g_n) \leq 2\lambda^2 n^{-1} EN(N - N(Tt)).
\]
This and (5.6) imply
\[n \int_0^{T_t} C_1(T_t - u, g_n) \, dU(u) \Rightarrow 0, \quad n \to \infty. \]

It remains to note that
\[\left| n \int_0^{T_t} \left(C(T_t - u, g_n) \, dU(u) - E_0 \langle g_n, \mu^{T_t} \rangle \right) \right| \leq n \int_0^{T_t} C_1(T_t - u, g_n) \, dU(u) \]
and that the convergence (5.4) holds uniformly in \(t \in [0, t_0] \) for any finite \(t_0 \).

6. Convergence of the finite-dimensional distributions

Let
\[t_i \in \mathbb{R}_+, \quad f^i \in C_b^+, \quad f^i_n(u) = n^{-1} f^i(u/T), \quad i = 1, 2, \ldots \]
The log-Laplace transform of \(\mu^i \)
\[W^i f^1(u) = -\log E\{ e^{-\langle f^i, \mu^i \rangle} | \mu_0 = \delta_u \}, \]
where \(\delta_u \) is the Dirac measure concentrated at the point \(u \), because the Proposition complies with
\[nW^{T_t} f^1_n(0) \Rightarrow V^i f^1(0), \quad n \to \infty. \quad (6.1) \]
The convergence (6.1) and the formula
\[W^i f^1(u) = \begin{cases} W^{1-n} f^1(0), & 0 \leq u < t, \\ f^1(u - t), & u \geq t, \end{cases} \quad (6.2) \]
yield
\[nW^{T_t} f^1_n(T_t) \Rightarrow V^i f^1(t), \quad n \to \infty. \]

Using the Proposition once again, we get
\[nW^{T_t} (f^2_n + W^{T_t} f^1_n)(0) \Rightarrow V^i (f^2 + V^i f^1)(0), \quad n \to \infty. \]
This, in turn, implies
\[nW^{T_t} (f^2_n + W^{T_t} f^1_n)(T_t) \Rightarrow V^{i2} (f^2 + V^i f^1)(t), \quad n \to \infty. \]

Acting along this scheme, we obtain for \(p = 1, 2, \ldots \)
\[nW^{T_t} (f^p_n + \cdots + W^{T_t} (f^2_n + W^{T_t} f^1_n) \cdots)(T_t) \Rightarrow V^{i^p} (f^p + \cdots + V^{i2} (f^2 + V^i f^1) \cdots)(t), \quad n \to \infty. \]
This and condition (1.2) yield the asserted convergence of p-dimensional distributions:

\[E \exp \left\{ - \frac{1}{n} \sum_{i=1}^{p} \int_{0}^{\infty} f_i(u) \mu_{T_{i+}} + \ldots + t_i(T \, du) \right\} \]

\[= E \exp \left\{ - \left< W_{t} f_n + \ldots + W_{t} f_n + W_{t} f_n \right>, \mu^{0} \right\} \]

\[\rightarrow E \exp \left\{ - \left< V_{t} f_n + \ldots + V_{t} f_n + V_{t} f_n \right>, \pi^{0} \right\} \]

as \(n \rightarrow \infty \). \(\square \)

7. Tightness

Here we use the approach of Section 7 of Dawson and Fleischmann (1988).

Fix some \(t_0 > 0 \) and \(f \in \mathbb{C}_b^+ \). By a criterion of Roelly-Coppoletta (1986) it suffices to show that the family

\[\left\{ \eta^{n}(t) = \frac{1}{n} \int_{0}^{\infty} f(u) \mu_{T_{i}}(T \, du), \ t \geq 0, \ n = 1, 2, \ldots \right\} \]

is tight in \(\mathcal{D}(\mathbb{R}^+, \mathbb{R}^+) \). This is true if

\[\eta^{n}(\tau_n + b_n) - \eta^{n}(\tau_n) \rightarrow 0, \ n \rightarrow \infty, \]

in distribution, where \(b_n \) are positive constants converging to zero as \(n \rightarrow \infty \) and each \(\tau_n \in [0, t_0] \) is a stopping time of the process \(\eta^{n}(\cdot) \) with respect to the usual filtration (Aldous (1978)).

Lemma 7.1. Denote

\[F_n(b_n) = E \exp \{ - r \eta^{n}(\tau_n) - s \eta^{n}(\tau_n + b_n) \}, \ r, s \geq 0. \]

Conditions (3.1), (1.3) and (1.2) imply

\[F_n(b_n) - F_n(0) \rightarrow 0, \ n \rightarrow \infty. \]

Proof. By the strong Markov property of the process \(\{ \mu^t, t \geq 0 \} \)

\[F_n(b_n) = E \exp \{ - \left< f_n + s W_{T_1} f_n, \mu_{T_1} \right> \}, \] (7.1)

where \(f_n(u) = n^{-1} f(u/T) \). For \(t_1 > 0 \) and a natural \(n \) introduce the probability \(P_n \) by

\[P_n(B) = P(B; \mu^{0}(\mathbb{R}^+) \leq n t_1). \] (7.2)

According to (7.1)

\[|F_n(b_n) - F_n(0)| \leq P \{ \mu^{0}(\mathbb{R}^+) > n t_1 \} + s E_n \left< |W_{T_1} f_n - f_n|, \mu_{T_1} \right>. \]

The last expectation does not exceed

\[n t_1 \sup_{0 \leq u \leq T_{t_1}} |W_{T_1} f_n(u) - f_n(u)| + n^{-1} \| f \| E_n \mu_{T_1}((T_{t_1}, \infty)). \] (7.3)
Owing to (6.1), (6.2) and uniform continuity of the function \(f(\cdot) \), the first summand in (7.3) tends to zero as \(n \to \infty \). Estimate the second summand in (7.3) using the evident inequality

\[
\mu^{T_n}(T(t_2, \infty)) \leq \mu^{T_0}(T(t_2 - t_0, \infty)).
\]

As a result, we get

\[
\lim_{n \to \infty} \sup_i |F_n(b_n) - F_n(0)| \leq P(\pi^0(\mathbb{R}_+) \geq t_1) + s \|f\| E\pi^0(t_2 - t_0, \infty) I(\pi^0(\mathbb{R}_+) \leq t_1).
\]

The RHS converges to zero as first \(t_2 \to \infty \) and then \(t_1 \to \infty \). \(\square \)

Take an arbitrary subsequence of \(\{n\} \). It suffices to find a further subsequence \(\{n_k\} \) ensuring

\[
\eta^n(\tau_{n_k} + b_{n_k}) - \eta^n(\tau_{n_k}) \to 0, \quad k \to \infty,
\]

in distribution (Theorem 2.3 from Billingsley (1968)). Take a subsequence \(\{n_k\} \) guaranteeing the weak convergence

\[
\eta^n(\tau_{n_k}) \to \eta, \quad k \to \infty.
\]

By Lemma 7.1 we have

\[
(\eta^n(\tau_{n_k}), \eta^n(\tau_{n_k} + b_{n_k})) \to (\eta, \eta), \quad k \to \infty,
\]

and (7.4) is valid.

It remains to verify the tightness of the sequence \(\{\eta^n(\tau_n)\} \). According to the definition of the process \(\eta^n(\cdot) \)

\[
P\{\eta^n(\tau_n) > t_1^2\} \leq P\left\{ \sup_{0 \leq t \leq t_0} \mu^{T_t}(\mathbb{R}_+) > nt_1^2 / \|f\| \right\}.
\]

The martingale property of the process \(\mu^t(\mathbb{R}_+) \) implies (cf. (7.2))

\[
P\left(\sup_{0 \leq t \leq t_0} \mu^{T_t}(\mathbb{R}_+) > nt_1^2 / \|f\| \right) \leq \|f\| / t_1.
\]

Thus

\[
P\{\eta^n(\tau_n) > t_1^2\} \leq P(\mu^0(\mathbb{R}_+) > nt_1) + \|f\| t_1^{-1},
\]

and the tightness of \(\{\eta^n(\tau_n)\} \) follows from the tightness of \(\{n^{-1}\mu^0(\mathbb{R}_+)\} \). \(\square \)

Acknowledgements

The author thanks the participants of the population dynamics seminar run by Professor Peter Jagers at the Department of Mathematics of Chalmers University of Technology for stimulating discussions.
References

