
A rewriting of an argument of Benjamini, Kalai and
Schramm: noise sensitivity for critical percolation

and other functions with ‘short’ randomized
algorithms

Jeffrey E. Steif

February 24, 2012

Abstract
This is more or less just a rewriting of a theorem by Benjamini, Kalai and

Schramm. A main point is to emphasize and make explicit that their proof of
noise sensitiviy for crossings in critical percolation applies much more generally.
Sequences of monotone Boolean functions for which there are randomized algo-
rithms which determine the function but reveal the value of most fixed bits with
small probability are noise sensitive. A more minor point is to do some of the ar-
guments in a little more detail in order for this note to be suitable for a graduate
class in probability.

1 Introduction

1.1 Influences and noise sensitivity

In [1], it was proved that crossings of percolation in a square are noise sensitive. The
argument uses very little about percolation (only the Russo Seymour Welsh Theorem)
and applies (with the same proof) to much more general situations. We explain this
more general result here which has close connections to theoretical computer science.

We let [n] := {1, 2, . . . , n}. A Boolean function is a function from {0, 1}[n] into {0, 1}
or {±1}. The influence of the ith bit on such a function f , denoted by Ii(f), is defined
to be the probability (w.r.t. to the other bits) that changing the value of the ith bit
changes the value of f . The total influence, I(f) is defined to be

∑
i Ii(f).

A key result proved in [1] is the following.

Theorem 1.1. If {fn} is a sequence of Boolean functions on {0, 1}[n] such that

Π(fn) :=
∑

i

Ii(fn)
2 → 0 as n →∞,

then {fn} is noise sensitive.

1

It is (pretty) elementary (using the easily verified fact that for monotone functions
the ith influence is |f̂({i})| and some standard descriptions of noise senstivitiy) that for
monotone functions the converse is true. (The parity function shows that the converse
cannot in general be true without the monotonicity assumption.)

The proof of Theorem 1.1 rested on some inequalities of Talagrand but it was also
explained in [1] that under some stronger condition than Π(fn) → 0, one could prove the
above result without these inequalities of Talagrand. I won’t write what this stronger
assumption is but suffice it to say that it is a weaker assumption than assuming that
Π(fn) ≤ C/ log(n)α for some fixed constants C and α. It turns out from this argument
(but this is more implicit than explicit in the paper) that if one assumes even further
that Π(fn) ≤ C/nα for some fixed constants C and α, then the argument becomes even
simpler (although still uses the Bonami-Beckner inequality and Fourier analysis). In
addition, under the last condition Π(fn) ≤ C/nα, they showed that the spectrum up to
c log(n) goes to 0 for some small enough constant c.

This is all we say about the above result and in particular we will not indicate at
all the proof of this result. However, we will crucially use it later (but only under the
assumption that Π(fn) ≤ C/nα for some fixed constants C and α). Other than that,
this note is supposed to be more or less self-contained.

Throughout this note, C will denote a arbitrary constant whose value will change
from line to line.

1.2 A simple remark

It is clear (and an elementary exercise) to check that noise sensitive sequences are
asymptotically uncorrelated with noise stable sequences. (Just look at the picture of
their Fourier spectrums). In fact, one easily can prove the following result (exercise)
which just uses the fact that the majority functions are noise stable.

Proposition 1.2. Given a subset K ⊆ [n], let MK be the Boolean function on {0, 1}[n]

which is just majority on the bits in K. (This function is 1 when there are more 1’s
than 0’s in K, is −1 when there are more 0’s than 1’s in K and is 0 if a tie.) If {fn}
is noise sensitive, then

lim
n→∞

sup
K⊆[n]

E[fnMK] = 0.

One can ask for the converse of the above proposition. The answer is trivially no
since if fn is χ{1,2} for each n, then fn is uncorrelated with every MK since the former is
an even function and the latter is odd. Perhaps if we also assume monotonicity, there
is a converse. This is the result of the next subsection.

1.3 Weakly correlated with majority implies “noise sensitiv-
ity” for monotone functions.

The main result here is the following.

2

Theorem 1.3. Let Λ(f) := max{|E(fMK)| : K ⊆ [n]}. There exists C such that for
all f : {0, 1}[n] → 0, 1 which is monotone,

Π(f) ≤ C(Λ(f))2(1− log(Λ(f)) log n.

Remarks: (1). Since f is monotone, the FKG inequality tells us that E(fMK) ≥ 0.
(2). Theorem 1.3 states that if the maximum correlation of fn with all majority func-
tions goes to 0 slightly faster than 1/(log n)1/2, then the sequence is noise sensitive
provided the functions are monotone.
(3). While we do not discuss it here, if the definition of Λ(f) is modified to be the
maximum correlation of f with all weighted majority functions, then it was proved in
[1] that for monotone functions, (the new) Λ(fn) going to 0 is necessary and sufficient
for being noise sensitive.

1.4 Boolean functions with small revealment are noise sensi-
tive

Theorem 1.3 (and part of its proof) will be key in proving the following result.

Theorem 1.4. Let {fn} be a sequence of Boolean functions on {0, 1}[n] mapping into
{0, 1}. Assume there is an integer B and constants C and δ so that the following holds.
For all n, [n] can be partitioned into at most B set An

1 , A
n
2 , . . . , A

n
kn

(so kn ≤ B) so that
for each i = 1, . . . , kn, there exists a randomized algorithm An,i which queries the bits
in [n], one bit at a time (the bit chosen may depend on the outcome of the values of the
earlier bits) and then stops at some point such that
(i) when An,i stops, fn(ω) is determined and
(ii) for all j ∈ An

i , the probability that An,i queries bit j is at most C/nδ.
Then {fn} is noise sensitive.

1.5 Percolation is noise sensitive

Using Theorem 1.4, we will obtain the following theorem by finding appropriate algo-
rithms.

Theorem 1.5. If An is the event that there exists a crossing of an n× n square in 2-d
critical percolation, then the sequence {An} is noise sensitive.

2 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. The first lemma is a simple bound on tails of
the binomial distribution.

Lemma 2.1. There exist constants C1, C2 so that for all n and λ ≥ 0, we have

1

2n

n∑
k≥n+λ

√
n

2

(
n

k

)
(2k − n) ≤ C1

√
ne−C2λ2

.

3

Remarks: Note that if X is a Binomial random variable with parameters n and 1/2,
then the left hand side above is just

E[(2X − n)I{X≥n+λ
√

n
2

}].

Proof. We give only an outline. One can use the local central limit theorem to do this.
However, we explain ’why’ it is true by easily showing the inequality when X is replaced
by a normal random variable with the same mean and variance as X. (This suggests,
because of the CLT theorem, that the result is true but does not prove it.)

Assuming X is exactly Z
√

n/2 + n/2 where Z is a standard normal, then E[(2X −
n)I{X≥n+λ

√
n

2
}] becomes, after some easy algebra,

√
nE[ZI{Z≥λ}].

The last expectation can be trivially computed exactly and it is (1/
√

2π)e−λ2/2.

We now need to define the influence of a variable on a function f : {0, 1}[n] → [0, 1]
which is monotone. Here Ii(f) is then defined to be

E(f |xi = 1)− E(f |xi = 0).

It is easy to check that if the image is {0, 1} AND the function is monotone, then this
agrees with our earlier definition. As before, the total influence, I(f) is defined to be∑

i Ii(f).

Lemma 2.2. There exists a constant C so that for all n and for all f : {0, 1}[n] → [0, 1]
which is monotone,

I(f) ≤ C
√

nE(fMn)(1 +
√
− log(E(fMn))).

Proof. Let f(k) be the average of f on the set {
∑

xi = k}; this is
(

n
k

)−1 ∑
|x|=k f(x). It

is easy to see that

E(fMn) = 2−n
∑

k>n/2

(
n

k

)
[f(k)− f(n− k)].

On the other hand,

I(f) = 2−n
∑

x

∑
j

|f(x)− f(xj)|

where xj is x flipped at j. If f is now monotone, this is

2−n2
∑

(y,w):y≤w,|w|=|y|+1

(f(w)− f(y)).

This is the same as
2−n+1

∑
x

f(x)|x| − f(x)(n− |x|)

4

since each x comes up as a w in the previous sum |x| times and as a y n − |x| times.
This simplifies to

2−n+1
∑

x

f(x)(2|x| − n)

= 2−n+1

n∑
k=0

(
n

k

)
f(k)(2k − n)

= 2−n+1
∑

k>n/2

(
n

k

)
[f(k)− f(n− k)](2k − n).

Given λ > 0, let k(λ) = n+λ
√

n
2

. We have

I(f)/2 = 2−n

k(λ)∑
k>n/2

(
n

k

)
[f(k)−f(n−k)](2k−n)+2−n

n∑
k>k(λ)

(
n

k

)
[f(k)−f(n−k)](2k−n)

≤ λ
√

nE[fMn] + C1

√
ne−C2λ2

by Lemma 2.1. Setting
λ = (1/C

1/2
2)

√
− log E[fMn],

the claim is obtained.

For K ⊆ [n], we now let IK(f) =:
∑

k∈K Ik(f).

Corollary 2.3. There exists C > 0, such that if f : {0, 1}[n] → [0, 1] is monotone, then
for all K ⊆ [n],

IK(f) ≤ C
√
|K|E(fMK)

(
1 +

√
− log(E(fMK))

)
.

Proof. Assume that K = {1, . . . ,m}. For z ∈ {0, 1}m, let

fK(z) = E[f |ω = z on K] = (1/2n−m)
∑

y∈{0,1}{m+1,...,n}

f(zy).

Here zy means the obvious concatenation of z and y. It is easy to check that fK is
monotone since f is. Next, it is an easy exercise to check that I(fK) = IK(f). Next,
E(fMK) = E(fKMK); to see this, note fK is the conditional expectation of f onto the
bits in K and MK is measurable w.r.t. these bits.

Using the above and Lemma 2.2, we then obtain

IK(f) = I(fK) ≤ C
√
|K|E(fKMK)

(
1 +

√
− log(E(fKMK))

)
= C

√
|K|E(fMK)

(
1 +

√
− log(E(fMK))

)
.

5

Lemma 2.4. If c1 ≥ c2 ≥ · · · ≥ cn > 0, then

max{
∑

a2
i : a1 ≥ a2 ≥ · · · ≥ an ≥ 0 : ∀k,

k∑
i=1

ai ≤
k∑

i=1

ci} =
∑

c2
i .

We first give the idea of the proof. Existence of a maximum follows from compact-
ness. The key point is that the function x2 is convex. This has the easy consequence
that

max{a2 + b2 : 0 ≤ a, b, a + b ≤ c} = c2.

In other words, you should take one term as high as possible. This is “why” the result
is true but the proof takes a number of steps since we have to worry about “boundary
conditions”.

Proof. Compactness implies there exists a maximum a′1 ≥ · · · ≥ a′n. Let G := {k :∑k
i=1 a′i =

∑k
i=1 ci}.

Claim 1: G is nonempty.
subproof: If not, lift all the a′i’s by a small ε.

Claim 2: (i). If k ∈ G and k + 1 6∈ G, then a′k+1 < a′k. (ii). If k 6∈ G and k + 1 ∈ G,
then a′k+1 > a′k+2.
subproof of (i): k ∈ G and the constraint at k−1 implies a′k ≥ ck. k ∈ G and k +1 6∈ G
implies a′k+1 < ck+1. But ck+1 ≤ ck.
subproof of (ii): a′k+1 > ck+1 ≥ ck+2 ≥ a′k+2. k 6∈ G and k + 1 ∈ G implies the first
inequality and k + 1 ∈ G implies the last inequality.

Claim 3: a′n > 0.
subproof: Otherwise, we could take all the 0’s and lift a little maintaining the constraints
(using the ci’s are positive).

Claim 4: If b1 ≥ · · · ≥ bk+m ≥ δ > 0, then

k+m∑
i=1

b2
i <

k∑
i=1

(bi + ε/k)2 +
k+m∑

i=k+1

(bi − ε/m)2

for small ε.
subproof: Consider first order in ε on the right hand side. It is positive unless all the
bi’s are equal and then in that case the second order in ε does the job.

Claim 5: n ∈ G.
subproof: Otherwise, there is k ∈ G with k < n such that k + 1, . . . , n 6∈ G. Claim 2(i)
implies a′k+1 < a′k. Now we can lift a′k+1, . . . , n a little maintaining the constraints.

Finally, we let k be the maximum element not in G. Claim 5 gives that k < n. Let
` be the maximum element (if any) in G which is less than k. Claim 2(i) gives that
a′`+1 < a′`. Claim 2 (ii) gives that a′k+1 > a′k+2 (if k +1 < n). We can lift a′`+1, . . . , a

′
k by

ε/(k−`) and lower a′k+1 by ε. Using Claim 3, for small ε, the constraints are maintained
and Claim 4 implies the sum of the squares increases. If there is no element in G less
than k, modify the above by lifting a′1, . . . , a

′
k instead.

6

Proof of Theorem 1.3. Assume without loss of generality that I1(f) ≥ . . . ≥ In(f).
Corollary 2.3 implies (using that x(1 +

√
log(1/x)) is increasing for small x) that

k∑
i=1

Ii(f) ≤ C
√

k(Λ(f))(1 +
√
− log(Λ(f))).

Choose c1, . . . , cn so that for each k, we have

k∑
i=1

ci = C
√

k(Λ(f))(1 +
√
− log(Λ(f)))

Since
√

x is concave, the ci’s are weakly decreasing. Lemma 2.4 then gives that

Π(f) ≤
n∑

k=1

C2(Λ(f))2(1 +
√
− log(Λ(f)))2(

√
k −

√
k − 1)2

≤
n∑

k=1

C2(Λ(f))2(1 +
√
− log(Λ(f)))2(1/k) ≤ C1(Λ(f))2(1− log(Λ(f))) log n.

3 Proof of Theorem 1.4

Remark:
We will assume for simplicity that the algorithms are deterministic in that no exterior
randomness is used; this is the case in the application of Theorem 1.4 to percolation
crossings. The proof can be easily adapted to randomized algorithms. The main mod-
ifications in the proof is that x in the proof below should then be a function of ω, ω′, z
and the exterior randomness (rather than just a function of ω, ω′ and z) and that when
one conditions on ω, ω′, one should also condition on the information of the exterior
randomness that one has obtained at the completion of the randomized algorithm.

We first give the idea of the proof of the theorem. For K ⊆ An
i , the ith algorithm

does not hit so many points in K and so f should be fairly uncorrelated with MK which
implies by Lemma 2.2 that IK is not so large; this is exactly the key lemma. Then, as
in the proof of Theorem 1.3, we obtain that Π(fn) is small yielding noise sensitivity.

The following lemma is key. We prove it later.

Lemma 3.1. Assume the conditions of Theorem 1.4 (except we don’t need to make
the monotonicity assumption). There exists a constant C1 so that for all n, for all
i = 1, . . . , B and for all K ⊆ An

i , we have

E[fnMK] ≤ C1(log n)/nδ/3.

7

Proof of Theorem 1.4. The above lemma together with Corollary 2.3 (and a tiny
computation) implies there is a constant C so that for all n, for all i = 1, . . . , B and for
all K ⊆ An

i ,

IK(fn) ≤ C
√
|K|(log n)3/2/nδ/3.

Since we partition [n] into at most B sets, we have that there exists a constant C2 so
that for all n and for all K ⊆ [n], we have that

IK(fn) ≤ C2

√
|K|(log n)3/2/nδ/3.

Now we use the proof method of Theorem 1.3. We assume without loss of generality
that Ii(fn) is nonincreasing in i. We have from the last inequality that for each k

k∑
j=1

Ij(fn) ≤ C2

√
k(log n)3/2/nδ/3.

As in the proof of Theorem 1.3,
∑n

j=1 Ij(fn)2 cannot be any larger than when equality
holds in the above for all k. Hence

Π(fn) ≤
n∑

j=1

(C2(log n)3/2/nδ/3)2((
√

k −
√

k − 1))2

≤ C3[(log n)3/n2δ/3] log n = C3(log n)4/n2δ/3 ≤ C4/n
δ/2.

Now apply Theorem 1.1.
Before starting on the proof of Lemma 3.1, we state without proof two elementary

probability facts without proof.

Lemma 3.2. If {Sk} is simple random walk, then for all m and a, we have that

P (Sk ≥ a for some k ∈ {1, . . . ,m}) ≤ 2e−a2/2m

Lemma 3.3. There exists a constant C so that if {Sk} is simple random walk, then for
all r and α, we have that

P (|Sr| ≤ α) ≤ Cα/
√

r

Proof of Lemma 3.1 Fix n, i ∈ {1, . . . , B}, K ⊆ An
i and consider the algorithm An,i.

Let ω, ω′ and z be independent with ω uniform in {0, 1}[|K|], ω′ uniform in {0, 1}[n−|K|]

and z uniform in {0, 1}[n]. Using these, we will choose a uniform configuration x from
{0, 1}[n] as follows. We run An,i. When it chooses a bit in K to query, the value that
we assign to that bit is the first bit of ω not yet used. When it chooses a bit not in K to
query, the value that we assign to it is the first bit of ω′ not yet used. Finally assign all
bits not yet assigned using z. This final assignment is called x and it is clearly uniform.
Since the algorithm determines fn, we have that fn(x) is measurable with respect to ω
and ω′.

Let V (for visited) be the random set of bits queried by An,i. By assumption (ii) in
Theorem 1.4, we easily obtain

E[|V ∩K|] ≤ |K|C/nδ.

8

Letting A1 := {|V ∩K| ≥ |K|/n2δ/3}, Markov’s inequality yields that

P (A1) ≤ C/nδ/3.

Next, let

A2 := {∃j ∈ [1, |K|/n2δ/3] : |
j∑

i=1

ωi − j/2| ≥
√
|K|/n2δ/3 log n}.

Lemma 3.2 and a computation yields that

P (A2) ≤ C/nδ.

Now, let

Q := {|K ∩ V | < |K|/n2δ/3} ∩ {|
|K∩V |∑

i=1

ωj − |K ∩ V |/2| <
√
|K|/n2δ/3 log n}.

Note Q is measurable with respect to ω, ω′ and that Qc ⊆ A1 ∪ A2 and hence

P (Qc) ≤ C/nδ/3.

Now
|E[fnMK]| ≤ |E[fnIQcMK]|+ |E[fnIQMK]|.

The first term is at most P (Qc) ≤ C/nδ/3. The second term is

|E[fnIQMK]| = |E [E[fnIQMK | ω, ω′]] |

= |E [fnE[IQMK | ω, ω′]] | ≤ E [|E[IQMK | ω, ω′]|]
We claim (ω, ω′) ∈ Q implies that

|E[MK | ω, ω′]| ≤ C9 log n/nδ/3. (1)

This would then give us that |E(fnMK)| ≤ C log n/nδ/3, which is the desired result.
Note in the continuation that terms such as |K∩V | are now no longer random since

we have conditioned on (ω, ω′) with respect to which |K∩V | is measurable. Returning to
prove (1), the reason this is true is essentially because MK is only affected by (ω, ω′) ∈ Q
if the sum of the other bits in K is closer to its mean than

√
|K|/n2δ/3 log n but we make

this more precise as follows. Note that |
∑|K∩V |

i=1 ωj − |K ∩ V |/2| <
√
|K|/n2δ/3 log n

implies that the difference (in absolute value) between the number of 1’s and 0’s in
K ∩ V is at most 2

√
|K|/n2δ/3 log n. Let W be the difference between the number of

1’s and 0’s in K\(K ∩ V) and we let

U = {|W | > 2
√
|K|/n2δ/3 log n}.

Note that U is independent of (ω, ω′) and from this, it is easy to see by symmetry that

E[MKIU | ω, ω′] = 0.

9

It follows that
|E[MK | ω, ω′]| = |E[MKIUc | ω, ω′]| ≤ P (U c) (2)

where the independence of U and (ω, ω′) is used again in the last inequality.
Now, using Lemma 3.3 for the first inequality below, we obtain

P (U c) ≤ C
√
|K|/n2δ/3 log n

(
1/

√
|K\(K ∩ V)|

)
≤ C

√
|K|/n2δ/3 log n

(
1/

√
|K|(1− n−2δ/3)

)
≤ C log n/nδ/3

and hence by (2) that |E[MK | ω, ω′]| ≤ C log n/nδ/3 when (ω, ω′) ∈ Q as desired. qed

4 Proof of Theorem 1.5

Proof. We simply apply Theorem 1.4. We take B = 2. We take An
1 to be the right

hand side of the box including the center line and take An
2 to be the left hand side of

the box not including the center line.
We consider the following algorithm An,1. Order all the edges arbitrarily. Let V1 be

the set of vertices on the left side. Choose the first (according to our arbitrary ordering)
edge from V1 to V c

1 and query that edge. If the edge is on, add the vertex of the edge
which was in V c

1 to V1. If not, don’t. Continue looking at edges (in order) from V1 to
V c

1 which have not been checked before. (V1 is then sort of a growing cluster.) Stop
when we hit the right side (in which case, we know there is a crossing) or when there
are no further edges to check (in which case, we know there is no crossing).

This algorithm clearly determines f(x). If j in is An
1 , then if j is queried, there there

is necessarily an open path from j to distance n/2 away. However, RSW (with a little
standard stuff in percolation) tells us that the latter event has probability bounded
above by C/nδ for some C and δ.

Acknowledgment. Thanks to Erik Broman for comments and corrections on an
earlier version of these notes.

References

[1] Benjamini, I., Kalai, G. and Schramm, O. Noise sensitivity of Boolean functions
and applications to percolation. Inst. Hautes Études Sci. Publ. Math. 90, (1999),
5–43.

10

