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Preface

The purpose of this book is to present a self-contained theory of Boolean functions
through the prism of statistical physics. The material presented here was initially
designed as a set of lecture notes for the 2010 Clay summer school and we decided to
maintain the informal style which, we hope, will make this book more reader friendly.

Before going into Chapter I, where precise definitions and statements are given, we
wish to describe in an informal manner what this book is about. Our main companion
through the whole book will be what one calls a Boolean function. This is simply a
function of the following type: 1

f : {0, 1}n → {0, 1} .

Traditionally, the study of Boolean functions arises more naturally in theoretical com-
puter science and combinatorics. In fact, over the last 20 years, mainly thanks to the
computer science community, a very rich structure has emerged concerning the proper-
ties of Boolean functions. The first part of this book (Chapters I to V) is devoted to a
description of some of the main achievements in this field. For example a crucial result
which has inspired much of the work presented here is the so-called KKL theorem (for
Kahn-Kalai-Linial, 1989) which in essence says that any “reasonable” Boolean function
has at least one variable which has a large influence on the outcome (namely at least
Ω(log n/n)). See Theorem I.14.

The second part of this book is devoted to the powerful use of Boolean functions
in the context of statistical physics and in particular in percolation theory. It was
recognized long ago that some of the striking properties which hold in great generality
for Boolean functions have deep implications in statistical physics. For example, a
version of the KKL theorem enables one to recover in an elegant manner the celebrated
theorem of Kesten from 1980 which states that the critical point for percolation on Z2,
pc(Z2), is 1/2. More recently, Beffara and Duminil-Copin used an extension of this KKL

property obtained by Graham and Grimmett to prove the conjecture that pc(q) =
√

q

1+
√

q

for the Fortuin-Kasteleyn percolation model with parameter q ≥ 1 in Z2. It is thus a
remarkable fact that general principles such as the KKL property are powerful enough

1In fact, in this book we view Boolean functions rather as functions from {−1, 1}n → {−1, 1}
since their Fourier decomposition is then simpler to write down; nevertheless this is still the same
combinatorial object.
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to capture some (not all) of the main technical difficulties which arise in understanding
the phase transitions of various statistical physics models.

In the 1990s, Talagrand as well as Benjamini, Kalai and Schramm pushed this
connection between Boolean functions and statistical physics even further. In 1998,
Benjamini, Kalai and Schramm introduced the fruitful concept of noise sensitivity
of Boolean functions. Their main motivation was to study the behavior of critical
percolation, but let us briefly explain what noise sensitivity corresponds to in the more
common situation of voting schemes. Suppose n voters have to decide between two
candidates denoted by 0 and 1. They first have to a agree on a voting procedure or
voting scheme, which may be represented by a Boolean function f : {0, 1}n → {0, 1}.
In France or Sweden, this Boolean function would simply be the majority function on n
bits while in the United States, the Boolean function f would be more complicated: in
fancy words it would correspond to an iterated weighted majority function on n ≈ 108

voters. The collection of all votes is a certain configuration ω in the hypercube {0, 1}n.
If the election is “close”, it is reasonable to consider ω = (x1, . . . , xn) as a uniform
point chosen in {0, 1}n. In other words, we assume that each voter i ∈ [n] tosses a fair
coin in {0, 1} and votes accordingly. As such the true result of the election should be
the output f(ω) = f(x1, . . . , xn) ∈ {0, 1}. In reality the actual result of the election
will rather be the output f(ωε) where ω is an ε-perturbation of the configuration ω.
Roughly speaking we assume that independently for each voter i ∈ [n], an error occurs
(meaning that the value of the bit is flipped) with probability a fixed parameter ε > 0.
See Chapter I for precise definitions. In this language, a noise sensitive Boolean
function is a function for which the outputs f(ω) and f(ωε) are almost independent of
each other even with a very small level of noise ε. As an example, the parity function
defined by f(x1, . . . , xn) = 1P

xi≡1 mod 2 is noise sensitive as n→∞.

As we will see, there is a very useful spectral characterization of noise sensitivity.
Indeed, in the same way as a real function g : R\Z → R can be decomposed into
g(x) =

∑
n∈Z ĝ(n)e2iπnx, one can decompose a Boolean function f : {0, 1}n → {0, 1}

into a Fourier-Walsh series f(ω) =
∑

S⊆[n] f̂(S) χS(ω). (See Chapter IV for details.)
Noise sensitive Boolean functions are precisely the Boolean functions whose spectrum
is concentrated on “high frequencies”; i.e. most of their Fourier coefficients (in a certain
analytic and quantitative manner) correspond to subsets S ⊆ [n] with |S| � 1.

It is thus not surprising that with such a spectral characterization of noise sensitiv-
ity, a significant part of this book is devoted to various techniques which allow us to
detect high-frequency behavior for Boolean functions. The techniques we introduce are
essentially of three different flavors:

1. Analytical techniques based on hypercontractive estimates (Chapter V).

2. A criterion based on randomized algorithms (Chapter VIII).

3. A study of the “fractal” behavior of frequencies S ⊆ [n] (Chapter X).
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A

B

To make the link with statistical physics, consider the following Boolean function,
which is well known in computer science and in game theory since it represents the
solution of the Hex game. In the figure above, we represent a Hex game on a 10× 10
table: player A tries to go from the left boundary to the right using gray hexagon tiles,
while player B tries to go from the top boundary to the bottom using black hexagon
tiles. They either take turns or, as in the the random turn hex game, they toss a coin
at each turn to decide who will move. At the end of the game, we obtain a tiling of the
table as in the figure and the result of the game is then described by a certain Boolean
function f10 : {A, B}100 → {A, B}. Note that in the above figure, player A has won.
As we will see, this Boolean function (or rather the family {fn} defined analogously on
n× n tables) is instrumental in our study of how the model of percolation responds to
small random perturbations.

Boolean functions of this type are notoriously hard to study and this book will
develop tools aimed at understanding such Boolean functions. In particular, we will
eventually see that as n→∞, most of the Fourier transform f̂n of the Hex-function fn

on an n×n table is concentrated on frequencies of size |S| about n3/4. The appearance
of the surprising exponent of 3/4 corresponds to one of the critical exponents which
are aimed at describing the fractal geometry of critical percolation. See Chapter II.

This high-frequency behavior of the Hex-functions {fn} implies readily that critical
planar percolation on the triangular lattice is highly sensitive to noise (in a quantitative
manner given by the above n3/4 asymptotics). This noise sensitivity of percolation has
surprising consequences concerning the model of dynamical percolation (see Chapter
XI). We will see among other things that there exist exceptional times at which an
infinite primal cluster coexists with an infinite dual cluster (Theorem XI.9), which is a
very counterintuitive phenomenon in percolation theory.

In Chapter VII, we will give another application to statistical physics of a very
different flavor: consider the random metric R on the lattice Zd, d ≥ 2, where each
edge is independently declared to be of length a with probability 1/2 and of length b
with probability 1/2 (where 0 < a < b < ∞ are fixed). Fascinating conjectures have
been made about the fluctuations of the random R-ball around its deterministic convex
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limit. In particular, it is conjectured that these fluctuations are of magnitude R1/3 in
dimension d = 2 and that the law describing these fluctuations is intimately related
to the celebrated Tracy-Widom law which describes the fluctuations of the largest
eigenvalue of large random Hermitian matrices. This book will certainly not settle this
stunning conjecture but it will present the best results up to date on the fluctuations
of this metric using a Fourier approach.

This book is structured as follows: in Chapters I, III, IV, V, VIII and IX, we
introduce general tools for Boolean functions which are applicable in various settings
(and are thus not restricted to the context of statistical physics). Several examples in
these chapters illustrate links to other active fields of mathematics. Chapter II is a short
introduction to the model of percolation. Chapters VI, X and XI are more specifically
targeted towards the analysis of the noise sensitivity of critical percolation as well
as its consequences for dynamical percolation. Chapter VII analyzes the fluctuations
of the earlier mentioned random metrics on Zd, d ≥ 2. Chapter XII explores a large
variety of interesting topics tangential to the main contents of this book. Finally the
last Chapter XIII collects some open problems.

Exercises which are somewhat more difficult will be indicated by an ∗. We as-
sume readers have the mathematical maturity of a first-year graduate student and a
reasonable background in probability theory and integration theory. Have seen some
percolation would be helpful but not neccesary.
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Notations

Ωn hypercube {−1, 1}n
Ik(f) influence of the kth variable on f
Ip
k(f) influence of the kth variable on f at level p

I(f) total influence of the function f ; see Definition I.10
Inf(f) influence vector of f
H(f) sum of the squared influences; see Definition V.5

α1(R) probability in critical percolation to have an open path from 0 to ∂B(0, R)
α1(r, R) multi-scale version of the above
α4(R) probability of a four-arm event from 0 to ∂B(0, R)
α4(r, R) multi-scale version of the above

χS character χS(x1, . . . , xn) :=
∏

i∈S xi

f̂(S) Fourier coefficient f̂(S) = 〈f, χS〉 = E
[
f χS

]
Ef (m), 1 ≤ m ≤ n energy spectrum of f ; see Definition IV.1
∇kf discrete derivative along k: ∇kf(ω) := f(ω)− f(σk(ω))

P = P(f) pivotal set of f ; see Definition I.7
S = Sf spectral spample of f ; see Definition IX.1
Q̂f spectral measure of f ; see Definition IX.1
P̂f spectral probability measure of f ; see Definition IX.2

f(n) � g(n) there exists some constant C <∞ such that C−1 ≤ f(n)
g(n) ≤ C , ∀n ≥ 1

f(n) ≤ O(g(n)) there exists some constant C <∞ such that f(n) ≤ Cg(n) , ∀n ≥ 1
f(n) ≥ Ω(g(n)) there exists some constant C > 0 such that f(n) ≥ Cg(n) , ∀n ≥ 1
f(n) = o(g(n)) limn→∞

f(n)
g(n) = 0

11
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Chapter I

Boolean functions and key concepts

In this first chapter, we will set the stage by presenting many of the key concepts of
the book and stating a number of important theorems which we will prove here.

1 Boolean functions

Definition I.1. A Boolean function is a function from the hypercube Ωn := {−1, 1}n
into either {−1, 1} or {0, 1}.

Ωn is endowed with the uniform measure P = Pn = (1
2
δ−1+

1
2
δ1)
⊗n and E denotes the

corresponding expectation. Occasionally, Ωn will be endowed with the general product
measure Pp = Pn

p = ((1 − p)δ−1 + pδ1)
⊗n but in such cases the p is made explicit. Ep

then denotes the corresponding expectation.

An element of Ωn is denoted by either ω or ωn and its n bits by x1, . . . , xn so that
ω = (x1, . . . , xn).

For the range, we choose to work with {−1, 1} in some contexts and {0, 1} in others,
and at some specific places we even relax the Boolean constraint (i.e. that the function
takes only two possible values). In these cases (which are clearly identified), we consider
instead real-valued functions f : Ωn → R.

A Boolean function f is canonically identified with a subset Af of Ωn via Af := {ω :
f(ω) = 1}.

Remark Often, Boolean functions are defined on {0, 1}n rather than Ωn = {−1, 1}n.
This does not make any fundamental difference but, as we see later, the choice of
{−1, 1}n turns out to be more convenient when one wishes to apply Fourier analysis on
the hypercube.

13



14 CHAPTER I. BOOLEAN FUNCTIONS AND KEY CONCEPTS

2 Some examples

We begin with a few examples of Boolean functions. Others appear throughout this
chapter.

Example I.2 (Dictator).
DICTn(x1, . . . , xn) := x1.

The first bit determines what the outcome is.

Example I.3 (Parity).

PARn(x1, . . . , xn) :=
n∏

i=1

xi.

This Boolean function’s output is determined by whether the number of −1s in ω is
even or odd.

These two examples are in some sense trivial, but they are good to keep in mind
since in many cases they turn out to be the “extreme cases” for properties concerning
Boolean functions.

The next rather simple Boolean function is of interest in social choice theory.

Example I.4 (Majority function). Let n be odd and define

MAJn(x1, . . . , xn) := sign(
n∑

i=1

xi) .

Following are two further examples which also arise in our discussions.

Example I.5 (Iterated 3-Majority function). Let n = 3k for some integer k. The bits
are indexed by the leaves of a rooted 3-ary tree (so the root has degree 3, the leaves have
degree 1 and all others have degree 4) with depth k. Apply the previous Example I.4
(with n = 3) iteratively to obtain values at the vertices at level k− 1, then level k− 2,
etc. until the root is assigned a value. The root’s value is then the output of f . For
example when k = 2, f(−1, 1, 1; 1,−1,−1;−1, 1,−1) = −1. The recursive structure of
this Boolean function enables explicit computations for various properties of interest.

Example I.6 (Clique containment). If r =
(

n
2

)
for some integer n, then Ωr can be

identified with the set of labelled graphs on n vertices. (Bit xi is 1 if and only if the
ith edge is present.) Recall that a clique of size k of a graph G = (V, E) is a complete
graph on k vertices embedded in G.

Now for any 1 ≤ k ≤
(

n
2

)
= r, let CLIQk

n be the indicator function of the event that
the random graph Gω defined by ω ∈ Ωr contains a clique of size k. Choosing k = kn so
that this Boolean function is nondegenerate turns out to be a rather delicate issue. The
interesting regime is near kn ≈ 2 log2(n). See Exercise I.9 for this “tuning” of k = kn.
It turns out that for most values of n, the Boolean function CLIQk

n is degenerate (i.e.
has small variance) for all values of k. However, there is a sequence of n for which there
is some k = kn for which CLIQk

n is nondegenerate.
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3 Pivotality and influence

This section contains our first fundamental concepts. We abbreviate {1, . . . , n} as [n].

Definition I.7. Given a Boolean function f from Ωn into either {−1, 1} or {0, 1} and
a variable i ∈ [n], we say that i is pivotal for f for ω if f(ω) 6= f(ωi) where ωi is
ω but flipped in the ith coordinate. Note that this event {f(ω) 6= f(ωi)} is measurable
with respect to {xj}j 6=i.

Definition I.8. The pivotal set, P, for f is the random set of [n] given by

P(ω) = Pf (ω) := {i ∈ [n] : i is pivotal for f for ω}.

In words, the pivotal set is the (random) set of bits with the property that if you
flip the bit, then the function output changes.

Definition I.9. The influence of the ith bit, Ii(f), is defined by

Ii(f) := P( i is pivotal for f ) = P(f(ω) 6= f(ωi)) = P(i ∈ P).

Let also the influence vector, Inf(f), be the collection of all the influences: i.e.
{Ii(f)}i∈[n].

In words, the influence of the ith bit is the probability that, on flipping this bit, the
function output changes. This concept originally arose in political science to measure
the power of different voters and is often called the Banzhaf power index (see [B65])
but in fact the concept arose earlier (see [P46]) in work by L. Penrose.

Definition I.10. The total influence, I(f), is defined by

I(f) :=
∑

i

Ii(f) = ‖Inf(f)‖1 = E(|P|).

It would now be instructive to go and compute these quantities for Examples I.2–I.4.
See Exercise I.1.

Later, we will need the last two concepts in the context when our probability measure
is Pp instead. We give now the corresponding definitions.

Definition I.11. The influence vector at level p, {Ip
i (f)}i∈[n], is defined by

Ip
i (f) := Pp( i is pivotal for f ) = Pp(f(ω) 6= f(ωi)) = Pp(i ∈ P).

Definition I.12. The total influence at level p, Ip(f), is defined by

Ip(f) :=
∑

i

Ip
i (f) = Ep(|P|).
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It turns out that the total influence has a geometric-combinatorial interpretation as
the size of the so-called edge boundary of the corresponding subset of the hypercube.
See Exercise I.4.

Remark Aside from its natural definition as well as its geometric interpretation as
measuring the edge boundary of the corresponding subset of the hypercube, the notion
of total influence arises very naturally when one studies sharp thresholds for mono-
tone functions (to be defined in Chapter III). Roughly speaking, as we will see in detail
in Chapter III, for a monotone event A, dPp

[
A

]
/dp is the total influence at level p (this

is the Margulis-Russo formula). This tells us that the speed at which things change
from the event A “almost surely” not occurring to the case where it “almost surely”
does occur is very sudden if the Boolean function happens to have large total influence.

4 The Kahn-Kalai-Linial theorems

This section addresses the following question. Does there always exist some variable
i with (reasonably) large influence? In other words, for large n, what is the smallest
value (as we vary over Boolean functions) that the largest influence (as we vary over
the different variables) can take on?

Since for the constant function all influences are 0, and the function which is 1 only if
all the bits are 1 has all influences 1/2n−1, clearly we want to deal with functions which
are reasonably balanced (meaning having variances not so close to 0) or, alternatively,
obtain lower bounds on the maximal influence in terms of the variance of the Boolean
function.

The first result in this direction is the following. A sketch of the proof is given in
Exercise I.5.

Theorem I.13 (Discrete Poincaré). If f is a Boolean function mapping Ωn into {−1, 1},
then

Var(f) ≤
∑

i

Ii(f).

It follows that there exists some i such that

Ii(f) ≥ Var(f)/n.

This gives a first answer to our question. For reasonably balanced functions, there is
some variable whose influence is at least of order 1/n. Can we find a better “universal”
lower bound on the maximal influence? Note that for Example I.4 all the influences
are of order 1/

√
n (and the variance is 1). Therefore, in terms of our question, the

universal lower bound we are looking for should lie somewhere between 1/n and 1/
√

n.
The following celebrated result improves by a logarithmic factor on the Ω(1/n) lower
bound.
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Theorem I.14 ([KKL88]). There exists a universal c > 0 such that if f is a Boolean
function mapping Ωn into {0, 1}, then there exists some i such that

Ii(f) ≥ cVar(f)(log n)/n.

What is remarkable about this theorem is that this “logarithmic” lower bound on
the maximal influence turns out to be sharp! This is shown by the following example
by Ben-Or and Linial.

Example I.15 (Tribes). Partition [n] into disjoint blocks of length log2(n)−log2(log2(n))
with perhaps some leftover debris. Define fn to be 1 if there exists at least one block
which contains all 1s, and 0 otherwise.

One can check that the sequence of variances stays bounded away from 0 and that
all the influences (including of course those belonging to the debris which are equal to
0) are smaller than c(log n)/n for some c < ∞. See Exercise I.3. Hence Theorem I.14
is indeed sharp. We mention that in [BOL87], the example of Tribes was given and the
question of whether log n/n was sharp was asked.

Our next result tells us that if all the influences are “small”, then the total influence
is large.

Theorem I.16 ([KKL88]). There exists c > 0 such that if f is a Boolean function
mapping Ωn into {0, 1} and δ := maxi Ii(f), then

I(f) ≥ c Var(f) log(1/δ).

Or equivalently,

‖Inf(f)‖1 ≥ c Var(f) log
1

‖Inf(f)‖∞
.

One can in fact talk about the influence of a set of variables rather than the influence
of a single variable.

Definition I.17. Given S ⊆ [n], the influence of S, IS(f), is defined by

IS(f) := P( f is not determined by the bits in Sc).

It is easy to see that when S is a single bit, this corresponds to our previous def-
inition. The following is also proved in [KKL88]. We will not give the proof in this
book.

Theorem I.18 ([KKL88]). Given a sequence fn of Boolean functions mapping Ωn

into {0, 1} such that 0 < infn En(f) ≤ supn En(f) < 1 and any sequence an going to
∞ arbitrarily slowly, then there exists a sequence of sets Sn ⊆ [n] such that |Sn| ≤
ann/ log n and ISn(fn)→ 1 as n→∞.

Theorems I.14 and I.16 are proved in Chapter V.



18 CHAPTER I. BOOLEAN FUNCTIONS AND KEY CONCEPTS

5 Noise sensitivity and noise stability

This section introduces our second set of fundamental concepts.
Let ω be uniformly chosen from Ωn and let ωε be ω but with each bit independently

“rerandomized” with probability ε. To rerandomize a bit means that, independently
of everything else, the value of the bit is rechosen to be 1 or −1, each with probability
1/2. Note that ωε then has the same distribution as ω.

The following definition is central. Let mn be an increasing sequence of integers and
let fn : Ωmn → {±1} or {0, 1}.

Definition I.19. The sequence {fn} is noise sensitive if for every ε > 0,

lim
n→∞

E[fn(ω)fn(ωε)]− E[fn(ω)]2 = 0. (I.1)

Since fn takes just two values, this definition says that the random variables fn(ω)
and fn(ωε) are asymptotically independent for ε > 0 fixed and n large. We see later
that (I.1) holds for one value of ε ∈ (0, 1) if and only if it holds for all such ε. The
following notion captures the opposite situation where the two events are close to being
the same event if ε is small, uniformly in n.

Definition I.20. The sequence {fn} is noise stable if

lim
ε→0

sup
n

P(fn(ω) 6= fn(ωε)) = 0.

It is an easy exercise to check that a sequence {fn} is both noise sensitive and noise
stable if and only it is degenerate in the sense that the sequence of variances {Var(fn)}
goes to 0. Note also that a sequence of Boolean functions could be neither noise sensitive
nor noise stable (see Exercise I.11).

It is also an easy exercise to check that Example I.2 (Dictator) is noise stable and
Example I.3 (Parity) is noise sensitive. We see later, when Fourier analysis is brought
into the picture, that these examples are the two opposite extreme cases. For the other
examples, it turns out that Example I.4 (Majority) is noise stable, while Examples
I.5,I.6 and I.15 are all noise sensitive. See Exercises I.6–I.9. In fact, there is a deep
theorem (see [MOO10]) which says in some sense that, among all low-influence Boolean
functions, Example I.4 (Majority) is the stablest.

In Figure I.1, we give a slightly impressionistic view of what “noise sensitivity” is.

6 The Benjamini-Kalai-Schramm noise sensitivity

theorem

We now come to the main theorem concerning noise sensitivity.
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(a)

(c) (d)

(b)

A

Figure I.1: Consider the following “experiment”: take a bounded domain in the plane,
say a rectangle, and consider a measurable subset A of this domain. What would be an
analog of the definitions of noise sensitive or noise stable in this case? Start by sampling
a point x uniformly in the domain according to Lebesgue measure. Then apply some
noise to this position x to end up with a new position xε. One can think of many natural
“noising” procedures here. For example, let xε be a uniform point in the ball of radius
ε around x, conditioned to remain in the domain. (This is not quite perfect since this
procedure does not exactly preserve Lebesgue measure, but don’t worry about this.)
The natural analog of Definitions I.19 and I.20 is to ask whether 1A(x) and 1A(xε) are
decorrelated or not.
Question: According to this analogy, what are the sensitivity and stability properties
of the sets A sketched in pictures (a) to (d)? Note that in order to match with Defini-
tions I.19 and I.20, one should consider sequences of subsets {An} instead, since noise
sensitivity is an asymptotic notion.
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Theorem I.21 ([BKS99]). If

lim
n

∑
k

Ik(fn)2 = 0, (I.2)

then {fn} is noise sensitive.

Remark The converse of Theorem I.21 is clearly false as shown by Example I.3. How-
ever, the converse is true for monotone functions (defined in the next chapter) as we
see in Chapter IV.

Theorem I.21 allows us to conclude noise sensitivity of many of the examples in-
troduced in this first chapter. See Exercise I.10. This theorem is proved in Chapter
V.

7 Percolation crossings: our final and most impor-

tant example

We have saved our most important example to the end. This book would not have been
written were it not for this example and for the results that have been proved about it.

Consider percolation on Z2 at the critical point pc(Z2) = 1/2. (See Chapter II for
a brief review of the model.) At this critical point, there is no infinite cluster, but
somehow clusters are “large” and there are clusters at all scales. This can be seen using
duality or with the RSW Theorem II.1. In order to understand the geometry of the
critical picture, the following large-scale observables turn out to be very useful: Let Ω
be a piecewise smooth domain with two disjoint open arcs ∂1 and ∂2 on its boundary
∂Ω. For each n ≥ 1, we consider the scaled domain nΩ. Let An be the event that there
is an open path in ω from n∂1 to n∂2 which stays inside nΩ. Such events are called
crossing events. They are naturally associated with Boolean functions whose entries
are indexed by the set of edges inside nΩ (there are O(n2) such variables).

For simplicity, consider the particular case of rectangle crossings.

Example I.22 (Percolation crossings).

b · n

a · n

Let a, b > 0 and let us consider the rect-
angle [0, a · n] × [0, b · n]. The left-to-
right crossing event corresponds to the
Boolean function fn : {−1, 1}O(1)n2 →
{0, 1} defined as follows:

fn(ω) : =

 1
if there is a left–
right crossing

0 otherwise
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We later prove that this sequence of Boolean functions {fn} is noise sensitive. This
means (see Exercise IV.7) that if a percolation configuration ω ∼ Ppc=1/2 is given, one
typically cannot predict anything about the large-scale clusters of the slightly perturbed
percolation configuration ωε where only an ε-fraction of the edges have been resampled.

Remark The same statement holds for the more general crossing events described
above (i.e. in (nΩ, n∂1, n∂2)).

8 A dynamical consequence of noise sensitivity

One can consider a continuous time random walk {ωt}t≥0 (implicitly depending on
n which we suppress) on Ωn := {−1, 1}n obtained by having each variable indepen-
dently rerandomize at the times of a rate 1 Poisson process (so that the times between
rerandomizations are independent exponential times with parameter 1). The stationary
distribution is of course our usual probability measure which is a product measure with
1 and −1 equally likely. Starting from stationarity, observe that the joint distribution
of ωs and ωs+t is the same as the joint distribution of ω and ωε introduced earlier where
ε = 1− e−t.

Considering next a sequence of Boolean functions {fn}n≥1 mapping Ωn into, say,
{0, 1}, we obtain a sequence of processes {gn(t)} defined by gn(t) := fn(ωt). The fol-
lowing general result was proved in [BKS99] for the specific case of percolation crossings;
however, their proof applies verbatim in this general context.

Theorem I.23 ([BKS99]). Let {fn}n≥1 be a sequence of Boolean functions which is
noise sensitive and satisfies δ0 ≤ P(fn(ω) = 1) ≤ 1 − δ0 for all n for some δ0 > 0.
Let Sn be the set of times in [0, 1] at which gn(t) changes its value. Then |Sn| → ∞ in
probability as n→∞.

Proof. We first claim that for all 0 ≤ a < b ≤ 1,

lim
n→∞

P(Sn ∩ [a, b] = ∅) = 0. (I.3)

Let Wn,ε := {ω : P
[
fn(ωε) = 1|ω

]
∈ [0, δ0/2] ∪ [1 − δ0/2, 1]}. The noise sensitivity

assumption, the (δ0-)nondegenericity assumption and Exercise IV.7 (which gives an
alternative description of noise sensitivity) imply that for each ε > 0,

lim
n→∞

P(Wn,ε) = 0.

Fix γ > 0 arbitrarily. Choose k so that (1−δ0/2)k < γ/2 and then choose ε := (b−a)/k.
Finally choose N so that for all n ≥ N , P(Wn,ε) ≤ γδ0/4. Let a = t0 < t1 < t2 < · · · <
tk = b where each ti − ti−1 equals (b− a)/k. We then have for n ≥ N ,
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P(Sn ∩ [a, b] = ∅) ≤ P(ωtk−1
∈ Wn,ε) + E

[
I{ωtk−1

6∈Wn,ε}P
[
Sn ∩ [a, b] = ∅ | ωtk−1

]]
≤ γδ0

4
+ E

[
I{ωtk−1

6∈Wn,ε}P
[
Sn ∩ [tk−1, b] = ∅ | ωtk−1

]
P
[
Sn ∩ [a, tk−1] = ∅ | ωtk−1

]]
(I.4)

using the Markov property. If ωtk−1
6∈ Wn,ε, then

P
[
Sn ∩ [tk−1, b] = ∅ | ωtk−1

]
≤ P

[
gn(b) = gn(tk−1) | ωtk−1

]
≤ 1− δ0/2.

This yields

P(Sn ∩ [a, b] = ∅) ≤ γδ0

4
+

(
1− δ0

2

)
P(Sn ∩ [a, tk−1] = ∅).

Continuing by induction k − 1 more times yields

P(Sn ∩ [a, b] = ∅) ≤ γ

2
+

(
1− δ0

2

)k

< γ.

As γ is arbitrary, this proves (I.3) which is the main step of the proof.
Now let M ≥ 1 be an arbitrary integer and α > 0. Partition [0, 1] into 2M intervals

of length 1
2M

. By (I.3), we can choose N sufficiently large that for all n ≥ N

P(Sn ∩ [0,
1

2M
] = ∅) ≤ α/2.

Let

Xn :=
∣∣∣{` ∈ {1, . . . , 2M} : Sn ∩

[
`− 1

2M
,

`

2M

]
= ∅}

∣∣∣.
By stationarity and our choice of N , we have E

[
Xn

]
≤ αM for all n ≥ N . By Markov’s

inequality, we have for such n

P(|Sn| ≤M) ≤ P(Xn ≥M) ≤ α.

As M and α are arbitrary, this implies that |Sn| → ∞ in probability.

In Chapter XI, dynamical percolation will be studied where one analyzes the dynamical
model introduced in this section in the context of percolation on the full lattice.

9 Exercises

Exercise I.1. Determine the pivotal set (as a function of ω), the influence vector and
the total influence for Examples I.2–I.4.
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Exercise I.2. Determine the influence vector for Iterated 3-Majority and Tribes.

Exercise I.3. Show that in Example I.15 (Tribes) the variances stay bounded away
from 0. If the blocks are taken to be of size log2 n instead, show that the influences
would all be of order 1/n. Why does this not contradict the KKL theorem?

Exercise I.4. Ωn has a graph structure where two elements are neighbors if they differ
in exactly one location. The edge boundary of a subset A ⊆ Ωn, denoted by ∂E(A),
is the set of edges where exactly one of the endpoints is in A.

Show that for any Boolean function, I(f) = |∂E(Af )|/2n−1.

Exercise I.5. Prove Theorem I.13. This is a type of Poincaré inequality. Hint: use
the fact that Var(f) can be written 2P

[
f(ω) 6= f(ω̃)

]
, where ω, ω̃ are independent and

try to “interpolate” from ω to ω̃.

Exercise I.6. Show that Example I.4 (Majority) is noise stable.

Exercise I.7. Prove that Example I.5 (Iterated 3-Majority) is noise sensitive directly
without relying on Theorem I.21. Hint: use the recursive structure of this example in
order to show that the criterion of noise sensitivity is satisfied.

Exercise I.8. Prove that Example I.15 (Tribes) is noise sensitive directly without using
Theorem I.21. Here there is no recursive structure, so a more “probabilistic” argument
is needed.

Problem I.9. Recall Example I.6 (Clique containment).

(a) Prove that when kn = o(n1/2), CLIQkn
n is asymptotically noise sensitive. Hint:

start by obtaining an upper bound on the influences (which are identical for each
edge) using Exercise I.4. Conclude by using Theorem I.21.

(b) (Challenging exercise). Find a more direct proof of this fact (in the spirit of
Exercise I.8) which would avoid using Theorem I.21.

As pointed out after Example I.6, for most values of k = kn, the Boolean function
CLIQkn

n becomes degenerate. The purpose of the rest of this exercise is to determine
what the interesting regime is where CLIQkn

n has a chance of being nondegenerate (i.e.
the variances are bounded away from 0). The rest of this exercise is somewhat tangential
to this chapter.

(c) If 1 ≤ k ≤
(

n
2

)
= r, what is the expected number of cliques in Gω, ω ∈ Ωr ?

(d) Explain why there should be at most one choice of k = kn such that the variance of
CLIQkn

n remains bounded away from 0 ? (No rigorous proof required.) Describe
this choice of kn. Check that it is indeed in the regime 2 log2(n).
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(e) Note retrospectively that in fact, for any choice of k = kn, CLIQkn
n is noise

sensitive.

Exercise I.10. Deduce from Theorem I.21 that both Example I.5 (Iterated 3-Majority)
and Example I.15 (Tribes) are noise sensitive.

Exercise I.11. Give a sequence of Boolean functions which is neither noise sensitive
nor noise stable.

Exercise I.12. In the sense of Definition I.17, show that for the Majority function and
for fixed ε, any set of size n1/2+ε has influence approaching 1 while any set of size n1/2−ε

has influence approaching 0.

Exercise I.13. Show that there exists c > 0 such that for any Boolean function∑
i

I2
i (f) ≥ cVar2(f)(log2 n)/n,

and show that this is sharp up to a constant. This result is also contained in [KKL88].

Problem I.14. Do you think a “generic” Boolean function would be stable or sensitive?
Justify your intuition. Show that if fn is a “randomly” chosen Boolean function, then
a.s. {fn} is noise sensitive. (It turns out that typical monotone Boolean functions are,
by constrast, noise stable. This follows from the statement immediately after Theorem
1.2 in [Kor03], a large survey article concerning monotone Boolean functions.)



Chapter II

Percolation in a nutshell

In order to make this book as self-contained as possible, we review various aspects
of the percolation model and give a short summary of the main useful results. For
a complete account of percolation, see [Gri99], and for a more detailed study of the
two-dimensional case, on which we concentrate here, see the lecture notes [Wer07].

1 The model

Let us start by introducing the model itself.

We are concerned mainly with two-dimensional percolation and we focus on two
lattices: Z2 and the triangular lattice T. However, all the results stated here for Z2 are
also valid for percolation models on “reasonable” 2-d translation-invariant graphs for
which the RSW theorem (see Section 2) is known to hold at the corresponding critical
point.

Let us describe the model on the graph Z2 which has Z2 as its vertex set and edges
between vertices having Euclidean distance 1. Let E2 denote the set of edges of the graph
Z2. For any p ∈ [0, 1] we define a random subgraph of Z2 as follows: independently for
each edge e ∈ E2, we keep this edge with probability p and remove it with probability
1− p. Equivalently, this corresponds to defining a random configuration ω ∈ {−1, 1}E2

where, independently for each edge e ∈ E2, we declare the edge to be open (ω(e) = 1)
with probability p or closed (ω(e) = −1) with probability 1−p. The law of the random
subgraph (or configuration) defined in this way is denoted by Pp.

Percolation is defined similarly on the triangular grid T, except that on this lattice
we instead consider site percolation (i.e. here we keep each site with probability p). The
sites are the points Z+ eiπ/3Z so that neighboring sites have distance 1 from each other
in the complex plane.

25
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Figure II.1: Pictures (by Oded Schramm) representing two percolation configurations
respectively on T and on Z2 (both at p = 1/2). The sites of the triangular grid are
represented by hexagons.

2 Russo-Seymour-Welsh

We will often rely on the celebrated result known as the RSW theorem.

Theorem II.1 (RSW; see [Gri99]). For percolation on Z2 at p = 1/2, one has the
following property concerning crossing events. Let a, b > 0. There exists a constant
c = c(a, b) > 0, such that for any n ≥ 1, if An denotes the event that there is a
left-to-right crossing in the rectangle ([0, a · n]× [0, b · n]) ∩ Z2, then

c < P1/2

[
An

]
< 1− c .

In other words, this says that the Boolean functions fn defined in Example I.22 of
Chapter I are nondegenerate.

The same result holds in the case of site percolation on T (also at p = 1/2).

The parameter p = 1/2 plays a very special role
in the two models under consideration. Indeed,
there is a natural way to associate to each per-
colation configuration ωp ∼ Pp a dual configura-
tion ωp∗ on the so-called dual graph. In the case
of Z2, its dual graph (Z2)∗ can be realized as
Z2 + (1

2
, 1

2
). In the case of the triangular lattice,

T∗ = T. The figure on the right illustrates this
duality for percolation on Z2. It is easy to see
that in both cases p∗ = 1−p. Hence, at p = 1/2,
our two models happen to be self-dual.

This duality has the following very important consequence. For a domain in T with
two specified boundary arcs, there is a left–right crossing of white hexagons if and only
if there is no top–bottom crossing of black hexagons.



3. PHASE TRANSITION 27

3 Phase transition

Percolation theory concerns large scale connectivity properties of the random configura-
tion ω = ωp. In particular, as the level p rises above a certain critical parameter pc(Z2),
an infinite cluster (almost surely) emerges. This is the well-known phase transition of
percolation. (We will often use the expression “there is percolation” to mean that there
is an infinite connected component.) By a famous theorem of Kesten, it is the case that
pc(Z2) = 1/2. On the triangular grid, one also has pc(T) = 1/2.

Let {0 ω←→ ∞} denote the event that there
exists a self-avoiding path from 0 to ∞ con-
sisting of open edges. This phase transition
can be measured with the density function
θZ2(p) := Pp(0

ω←→∞) which encodes impor-
tant properties of the large-scale connectivi-
ties of the random configuration ω: it corre-
sponds to the density averaged over the space
Z2 of the (almost surely unique) infinite clus-
ter. The shape of the function θZ2 is pictured
on the right; note the infinite derivative at pc.

p

1/2

θZ2(p)

4 Conformal invariance at criticality and SLE pro-

cesses

It has been conjectured for a long time that percolation should be asymptotically con-
formally invariant at the critical point. This should be understood in the same way as
the fact that a Brownian motion (ignoring its time-parametrization) is a conformally
invariant probabilistic object. Letting D denote the unit disk, one way to picture this
conformal invariance is as follows: consider the “largest” cluster Cδ surrounding 0 in
δZ2∩D and such that Cδ∩∂D = ∅. Now consider some other simply connected domain
Ω containing 0. Let Ĉδ be the largest cluster surrounding 0 in a critical configuration
in δZ2 ∩ Ω and such that Ĉδ ∩ ∂Ω = ∅. Now let φ be the conformal map from D to Ω
such that φ(0) = 0 and φ′(0) > 0. Even though the random sets φ(Cδ) and Ĉδ do not
lie on the same lattice, the conformal invariance principle claims that when δ = o(1),
these two random clusters are very close in law.

Over the last fifteen years, two major breakthroughs have enabled researchers to
obtain a much better understanding of the critical regime of percolation:

• the invention of the SLE processes by Oded Schramm([Sch00]),

• the proof of conformal invariance on T by Stanislav Smirnov ([Smi01]).

The simplest precise statement concerning conformal invariance is the following.
Let Ω be a bounded simply connected domain of the plane and let A, B, C and D be
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four points on the boundary of Ω in clockwise order. Scale the hexagonal lattice T
by 1/n and perform critical percolation on this scaled lattice. Let P(Ω, A,B,C, D, n)
denote the probability that in the 1/n scaled hexagonal lattice there is an open path
of hexagons in Ω going from the boundary of Ω between A and B to the boundary of
Ω between C and D.

Theorem II.2. (Smirnov, [Smi01])

(i) For all Ω and A, B, C and D as above,

P(Ω, A,B,C, D,∞) := lim
n→∞

P(Ω, A,B,C, D, n)

exists and is conformally invariant in the sense that if f is a conformal mapping,
then P(Ω, A,B,C, D,∞) = P(f(Ω), f(A), f(B), f(C), f(D),∞).

(ii) If Ω is an equilateral triangle (with side lengths 1), A, B and C the three corner
points and D on the line between C and A having distance x from C, then the
above limiting probability is x. (Observe, by conformal invariance, that this gives
the limiting probability for all domains and four boundary points.)

Part (i) of the theorem was conjectured by M. Aizenman, while J. Cardy conjectured
the limit for the case where Ω is a rectangle using the four corners. In this case, the
formula is quite complicated involving hypergeometric functions but Lennart Carleson
then realized that, assuming conformal invariance, this is equivalent to the simpler
formula given in part (ii) for a triangle.

On Z2 at pc = 1/2, proving conformal invariance is still a challenging open problem.

We will not define the SLE processes in this book. There are many sources, for
example [B12] and the references contained therein. The illustration below explains
how SLE curves arise naturally in the percolation picture.

This celebrated picture (by
Oded Schramm) represents an
exploration path on the tri-
angular lattice. This ex-
ploration path, which turns
right when encountering gray
hexagons and left when en-
countering white ones, asymp-
totically converges towards
SLE6 (as the mesh size goes to
0).
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5 Critical exponents

The proof of conformal invariance combined with the detailed information given by
the SLE6 process provides very precise information about the critical and near-critical
behavior of site percolation on T. For instance, it can be shown that on the triangular
lattice the density function θT(p) exhibits the following behavior near pc = 1/2:

θ(p) = (p− 1/2)
5
36

+o(1) ,

when p→ 1/2+ (see [Wer07]).

In the coming chapters, we often rely on three types of percolation events: namely
one-arm, two-arm and four-arm events. They are defined as follows: for any radius
R > 1, let A1

R be the event that the site 0 is connected to distance R by some open
path (one “arm”). Next, let A2

R be the event that there are two arms of different colors
from the site 0 (which itself can be of either color) to distance R away. Finally, let A4

R

be the event that there are four arms of alternating color from the site 0 (which itself
can be of either color) to distance R away (i.e. there are four connected paths, two
open, two closed from 0 to radius R and they occur in alternating order). See Figure
II.2 for a realization of two of these events.

R

0

R

0

Figure II.2: A realization of the one-arm event is pictured on the left; the four-arm
event is pictured on the right.

It was proved in [LSW02] that the probability of the one-arm event decays as follows:

P
[
A1

R

]
:= α1(R) = R−

5
48

+o(1) .
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For the two-arm and four-arm events (as well as many other similarly defined events), it
was proved by Smirnov and Werner in [SW01] that these probabilities decay as follows:

P
[
A2

R

]
:= α2(R) = R−

1
4
+o(1)

and
P
[
A4

R

]
:= α4(R) = R−

5
4
+o(1) .

The four exponents we encounter concerning θT, α1, α2 and α4 (i.e. 5
36

, 5
48

, 1
4

and 5
4
)

are known as critical exponents. The four-arm event is clearly of particular relevance
to us here. Indeed, if a point x is in the “bulk” of a domain (nΩ, n∂1, n∂2), the event
that this point is pivotal for the left–right crossing event An is intimately related to the
four-arm event. See Chapter VI for more details.

The presence of o(1) terms in the statements above (which of course go to zero as
R→∞), reveals that the critical exponents are known so far only up to “logarithmic”
corrections. It is conjectured that there are no such “logarithmic” corrections, but
at the moment one has to deal with their possible existence. More specifically, it is
believed that for the one-arm event,

α1(R) � R−
5
48 ,

where � means that the ratio of the two sides is bounded away from 0 and∞ uniformly
in R; similarly for the other arm events.

6 Quasi-multiplicativity

Finally, let us end this overview with a type of scale-invariance property of these arm
events. More precisely, it is often convenient to “divide” these arm events into different
scales. For this purpose, we introduce α4(r, R) (with r ≤ R) as the probability that
the four-arm event holds from radius r to radius R (α1(r, R), α2(r, R) and α3(r, R) are
defined analogously). By independence on disjoint sets, it is clear that if r1 ≤ r2 ≤ r3

then we have α4(r1, r3) ≤ α4(r1, r2) α4(r2, r3). A very useful property known as quasi-
multiplicativity claims that up to constants, these two expressions are the same (this
makes the division into several scales practical). This property can be stated as follows.

Proposition II.3 (quasi-multiplicativity, [Kes87]). For any r1 ≤ r2 ≤ r3, one has, for
both Z2 and T,

α4(r1, r3) � α4(r1, r2) α4(r2, r3) .

See [Wer07, Nol09, SS10] for more details. The same property holds for the one-arm
event but this is much easier to prove: it is an easy consequence of the RSW Theorem
II.1 and the so-called FKG inequality, which says that increasing events are positively
correlated. The reader might consider doing this as an exercise.



Chapter III

Sharp thresholds and the critical
point for 2-d percolation

In this chapter, we will concentrate on monotone Boolean functions where the total
influence corresponds to the derivative of the probability of the event in question with
respect to the parameter (this is the Margulis-Russo formula). This together with
general versions of Theorems I.14 and I.16 for general parameters p will allow us to
prove a sharp threshold result due to Friedgut and Kalai as well as to prove Kesten’s
theorem that the critical value for percolation is 1/2.

1 Monotone functions and the Margulis-Russo for-

mula

The class of so-called monotone functions plays a central role in this subject.

Definition III.1. A function f is monotone if x ≤ y (meaning xi ≤ yi for each i)
implies that f(x) ≤ f(y). An event is monotone if its indicator function is monotone.

Recall that when the underlying variables are independent with the value 1 having
probability p, we let Pp and Ep denote probabilities and expectations.

It is fairly obvious that for f monotone, Ep(f) should be increasing in p. The
Margulis-Russo formula gives us an explicit formula for this (nonnegative) derivative.

Theorem III.2. Let A be an increasing event in Ωn. Then

d(Pp(A))/dp =
∑

i

Ip
i (A).

Proof. Allow each variable xi to have its own parameter pi and let Pp1,...,pn and Ep1,...,pn

be the corresponding probability measure and expectation. It suffices to show that

∂(Pp1,...,pn(A))/∂pi = Ip1,...,pn

i (A),

31
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where the definition of this latter term is clear. Without loss of generality, take i = 1.
Now

Pp1,...,pn(A) = Pp1,...,pn(A\{1 ∈ PA}) + Pp1,...,pn(A ∩ {1 ∈ PA}).
The event in the first term on the right-hand side is measurable with respect to the
other variables and hence the first term does not depend on p1 while the second term
is

p1Pp2,...,pn({1 ∈ PA}),
since A ∩ {1 ∈ PA} is the event {x1 = 1} ∩ {1 ∈ PA}.

2 KKL away from the uniform measure case

Recall now Theorem I.14. For sharp threshold results, one needs lower bounds on the
total influence not just at the special parameter 1/2 but at all p.

We want at our disposal two main results concerning the KKL result for general p.
The proofs of these theorems will be outlined in the exercises in Chapter V. We also
refer to [Ros08].

Theorem III.3 ([BKK+92]). There exists a universal c > 0 such that for any Boolean
function f mapping Ωn into {0, 1} and for any p, there exists some i such that

Ip
i (f) ≥ cVarp(f)(log n)/n.

Theorem III.4 ([BKK+92]). There exists a universal c > 0 such that for any Boolean
function f mapping Ωn into {0, 1} and for any p,

Ip(f) ≥ cVarp(f) log(1/δp),

where δp := maxi I
p
i (f).

3 Sharp thresholds in general: the Friedgut-Kalai

theorem

Theorem III.5 ([FK96]). There exists a constant c1 <∞ such that for any monotone
event A on n variables where all the influences are the same, if Pp1(A) > ε, then

P
p1+

c1 log(1/(2ε))
log n

(A) > 1− ε.

Remark This theorem says that for fixed ε, the probability of A moves from below ε
to above 1− ε in an interval of p of length of order at most 1/ log n. The assumption of
equal influences holds for example if the event is invariant under some transitive action,
which is often the case. For example, it holds for Example I.5 (Iterated 3-Majority) as
well as for any (monotone) graph property, such as connectivity, in the context of the
so-called Erdős-Rényi random graph model G(n, p) where a random graph on n vertices
is chosen by independently putting in each potential edge with probability p.
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Proof of TheoremIII.5. Theorem III.3 and all the influences being the same tell us
that

Ip(A) ≥ c min{Pp(A), 1− Pp(A)} log n

for some c > 0. Hence Theorem III.2 yields

d(log(Pp(A)))/dp ≥ c log n

if Pp(A) ≤ 1/2. Letting p∗ := p1+ log(1/2ε)
c log n

, an easy computation (using the fundamental

theorem of calculus) yields

log(Pp∗(A)) ≥ log(1/2).

Next, if Pp(A) ≥ 1/2, then

d(log(1− Pp(A)))/dp ≤ −c log n

from which another application of the fundamental theorem yields

log(1− Pp∗∗(A)) ≤ − log(1/ε)

where p∗∗ := p∗ + log(1/2ε)
c log n

. Letting c1 = 2/c gives the result.

4 The critical point for percolation for Z2 and T is
1
2

Theorem III.6 ([Kes80]).

pc(Z2) = pc(T) = 1/2.

Proof. We first show that θ(1/2) = 0. Let Ann(`) := [−3`, 3`]\[−`, `] and Ck be the
event that there is a circuit in Ann(4k) + 1/2 in the dual lattice around the origin
consisting of closed edges. The Ck are independent and RSW and FKG show that for
some c > 0, P1/2(Ck) ≥ c for all k. This gives that P1/2(Ck infinitely often) = 1 and
hence θ(1/2) = 0.

The next key step is a finite size criterion which implies percolation and which is
interesting in itself. We outline its proof afterwards.

Proposition III.7. (Finite size criterion) Let Jn be the event that there is a crossing
of a 2n× (n− 2) box. For any p, if there exists n such that

Pp(Jn) ≥ .98,

then a.s. there exists an infinite cluster at parameter p.
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Assume now that pc = 1/2 + δ with δ > 0. Let I = [1/2, 1/2 + δ/2]. Since
θ(1/2 + δ/2) = 0, it is easy to see that the maximum influence over all variables
and over all p ∈ I goes to 0 with n since being pivotal implies the existence of an
open path from a neighbor of the given edge to distance n/2 away. Next, by RSW,
infn P1/2(Jn) > 0. If for all n, P1/2+δ/2(Jn) < .98, then Theorems III.2 and III.4 would
allow us to conclude that the derivative of Pp(Jn) goes to∞ uniformly on I as n→∞,
giving a contradiction. Hence P1/2+δ/2(Jn) ≥ .98 for some n implying, by Proposition
III.7, that θ(1/2 + δ/2) > 0, a contradiction.

Outline of proof of Proposition III.7. The first step is to show that for any p and
for any ε ≤ .02, if Pp(Jn) ≥ 1− ε, then Pp(J2n) ≥ 1− ε/2. To see this, we first, by FKG
and “gluing”, observe that we can cross a 4n × (n − 2) box with probability at least
1− 5ε and hence one obtains that Pp(J2n) ≥ 1− ε/2 since, for this event to fail, it must
fail in both the top and bottom halves of the box. It then follows that if we place a
sequence of (possibly rotated and translated) boxes of sizes 2n+1 × 2n anywhere, then,
with probability 1, all but finitely many are crossed. Finally, we can place these boxes
in an intelligent way such that crossing all but finitely many of them necessarily entails
the existence of an infinite cluster (see Figure III.1).

Figure III.1: Creating an infinite cluster using box crossings

5 Further discussion

The Margulis-Russo formula is due independently to Margulis [Mar74] and Russo
[Rus81].
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Bollobás and Riordan had the idea to use results from [KKL88] to show that pc = 1/2
(see [BR06a]); it was understood much earlier that obtaining a sharp threshold was the
key step in proving that pc(Z2) = 1/2. Kesten [Kes80] showed the necessary sharp
threshold by obtaining a lower bound on the expected number of pivotals in a hands-on
fashion. In the proof given here, we used Theorem III.4. However in [BR06a], Theorem
III.5, which only uses Theorem III.3 and not Theorem III.4, was used. In order to
use Theorem III.5, it was necessary to symmetrize things by placing the model on a
torus instead. Russo [Rus82] had developed an earlier qualitative “threshold” result
and demonstrated how this also sufficed to show that pc = 1/2. We state this result.

Theorem III.8 ([Rus82]). For all ε > 0, there exists δ > 0 such that if A is any
increasing event satisfying Ip

i (A) < δ for all p and all i, then there exists p0 such that
(i) Pp(A) ≤ ε for all p ≤ p0 − ε and (ii) Pp(A) ≥ 1− ε for all p ≥ p0 + ε.

Remarks

1. Observe that Theorem III.8 follows immediately from Theorems III.2 and III.4.

2. However, this result of course predates the theorems in [KKL88]. Moreover, the
proof is based purely on (nontrivial) hands-on probabilistic arguments unlike those
in [KKL88].

3. We could have appealed to this theorem instead to derive the critical value for
percolation.

4. We mention finally that (the coming) Theorem V.4 yields a stronger and more
quantitative version of Theorem III.8 but its proof uses more sophisticated meth-
ods.

6 Exercises

Exercise III.1. Develop an alternative proof of the Margulis-Russo formula using
classical couplings.

Exercise III.2. Study, as best as you can, the “threshold windows” are in the following
examples: (i.e. where and how long does it take to go from a probability of order ε to
a probability of order 1− ε)

(a) for DICTn,

(b) for MAJn,

(c) for the Tribes example,

(d) for the Iterated 3-Majority example.
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Do not rely on a [KKL88] type of result, but instead do hands-on computations
specific to each case.

Exercise III.3. Write out the details of the proof of Proposition III.7 as outlined in
the chapter.

Problem III.4. Prove Proposition III.7 using a different approach based on a renor-
malization argument together with the Peierls argument (this is the approach used
for example in [BR06b]).

First renormalize the lattice Z2 by using copies of 3n×n rect-
angles as in the figure. On the renormalized lattice, declare
each edge e = (u, v) to be open if the corresponding rectangle
is crossed along the direction of e. One obtains a correlated
percolation model on Z2 with parameter p̄ = Pp[Jn] ≥ .98.

u v

The goal here is to show that despite the dependence between edges in this perco-
lation model, there is almost surely an infinite cluster in the renormalized percolation
configuration.

(a) Show that the percolation model thus constructed is a model of 1-dependent
percolation in the sense that if F and G are any two sets of edges in Z2, then the
states of edges in F are independent of the states of edges in G if and only if none
of the edges in F have a common vertex with an edge in G. (More generally a
k-independent percolation model has the same independence property for sets of
edges satisfying dgraph(F, G) ≥ k.)

(b) Prove that there is an infinite cluster with positive probability by following the
classical proof that θ(p) > 0 in Z2 when p is sufficiently close to one; i.e. use a
duality argument. The difficulty here is handling the 1-dependence between edges
(and dual edges). To overcome this difficulty, note that if γ2n is a self-avoiding
path of length 2n in the dual lattice, then by removing every other edge, one
obtains a simple enough combinatorial object made of independent edges. (See
[BR06b] for a detailed proof.)

Problem III.5 (What is the “sharpest” monotone event?). Show that among all mono-
tone Boolean functions on Ωn, MAJn is the function with largest total influence (at
p = 1/2).
Hint: use the Margulis-Russo formula.

Exercise III.6. A consequence of Exercise III.5 is that the total influence at p = 1/2
of any monotone function is at most O(

√
n). A similar argument shows that for any p,
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there is a constant Cp so that the total influence at level p of any monotone function
is at most Cp

√
n. Prove nonetheless that there exists c > 0 such that for any n, there

exists a monotone function f = fn and p = pn so that the total influence of f at level
p is at least cn.

Exercise III.7. Find a monotone function f : Ωn → {0, 1} such that d(Ep(f))/dp is
very large at p = 1/2, but nevertheless there is no sharp threshold for f (this means
that a large total influence at some value of p is not in general a sufficient condition for
a sharp threshold).
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Chapter IV

Fourier analysis of Boolean
functions (first facts)

In this chapter, we introduce the key technical tool for our study which is Fourier
analysis on the hypercube; this allows us to define the spectrum of a Boolean function.
From here, we are able to give a spectral characterization of both noise sensitivity as
well as noise stability. We also see two important relationships between the notion of
influence and the spectrum.

1 Discrete Fourier analysis and the energy spec-

trum

In order to understand and analyze the concepts introduced thus far, which are in some
sense purely probabilistic, a critical tool is Fourier analysis on the hypercube.

Recall that our Boolean functions map the hypercube Ωn := {−1, 1}n into {−1, 1}
or {0, 1}, where Ωn is endowed with the uniform measure P = Pn = (1

2
δ−1 + 1

2
δ1)
⊗n.

To apply Fourier analysis, the natural setup is to enlarge our discrete space of
Boolean functions and to consider instead the larger space L2({−1, 1}n) of real-valued
functions on Ωn endowed with the inner product

〈f, g〉 :=
∑

x1,...,xn

2−nf(x1, . . . , xn)g(x1, . . . , xn)

= E
[
fg

]
for all f, g ∈ L2(Ωn) ,

where E denotes expectation with respect to the uniform measure P on Ωn.

For any subset S ⊆ {1, 2 . . . , n}, let χS be the function on {−1, 1}n defined for any
x = (x1, . . . , xn) by

χS(x) :=
∏
i∈S

xi . (IV.1)

39
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Note that χ∅ ≡ 1. It is straightforward (check this!) to see that this family of 2n

functions forms an orthonormal basis for L2({−1, 1}n). Thus, any function f on Ωn

(and a fortiori any Boolean function f) can be decomposed as

f =
∑

S⊆{1,...,n}

f̂(S) χS,

where {f̂(S)}S⊆[n] are the so-called Fourier coefficients of f . They are also sometimes
called the Fourier-Walsh coefficients of f and they satisfy

f̂(S) := 〈f, χS〉 = E
[
fχS

]
.

Note that f̂(∅) is the average E
[
f
]

and we have Parseval’s formula which states that

E(f 2) =
∑

S⊆{1,...,n}

f̂ 2(S).

As in classical Fourier analysis, if f is some Boolean function, its Fourier(-Walsh)
coefficients provide information on the “regularity” of f . We sometimes use the term
spectrum when referring to the set of Fourier coefficients.

Of course many other orthonormal bases exist for L2({−1, 1}n), but the particular
set of functions {χS}S⊆{1,...,n} arises naturally in many situations. First of all there is a
well-known theory of Fourier analysis on groups, a theory which is particularly simple
and elegant on abelian groups (thus including our special case of {−1, 1}n, but also
R/Z, R and so on). For abelian groups, what turns out to be relevant for harmonic
analysis is the set Ĝ of characters of G (i.e. the set of group homomorphisms from
G to C∗). In our case of G = {−1, 1}n, the characters are precisely our functions χS

indexed by S ⊆ {1, . . . , n} since they satisfy χS(x · y) = χS(x)χS(y). This background
is not needed however and we won’t talk in these terms.

The functions {χS}S⊆{1,...,n} also arise naturally if one performs simple random walk
on the hypercube (equipped with the Hamming graph structure), since they are the
eigenfunctions of the corresponding Markov chain (heat kernel) on {−1, 1}n. This is
why we will see later in this chapter that the basis {χS} is particularly well adapted to
our study of noise sensitivity.

We introduce one more concept here without motivation; it will be very well moti-
vated later in the chapter.

Definition IV.1. For any real-valued function f : Ωn → R, the energy spectrum Ef

is defined by

Ef (m) :=
∑
|S|=m

f̂(S)2, m ∈ {1, . . . , n} .
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2 Examples

First note that, from the Fourier point of view, the Dictator and Parity functions
have simple representations since they are χ1 and χ[n] respectively. Each of the two
corresponding energy spectra are trivially concentrated on one point, namely 1 and n.

For Example I.4 (Majority), Bernasconi explicitly computed the Fourier coefficients
and, when n goes to infinity, one obtains the following asymptotic formula for the energy
spectrum:

EMAJn(m) =
∑
|S|=m

M̂AJn(S)2 =

{
4

π m2m

(
m−1
m−1

2

)
+ O(m/n) if m is odd ,

0 if m is even .

(The reader might think about why the “even” coefficients are 0.) See [O’D03b] for a
nice overview and references concerning the spectral behavior of the Majority function.

. . .

∑
|S|=m M̂AJn(S)2

1 5

m

n3

Figure IV.1: Shape of the energy spectrum for the Majority function

Figure IV.1 represents the shape of the energy spectrum of MAJn, which is con-
centrated on low frequencies, as is typical of stable functions.

3 Noise sensitivity and stability in terms of the en-

ergy spectrum

We now describe the concepts of noise sensitivity and noise stability in terms of the
energy spectrum.

The first step is to note that, given any real-valued function f : Ωn → R, the corre-
lation between f(ω) and f(ωε) is nicely expressed in terms of the Fourier coefficients of
f as follows:
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E
[
f(ω)f(ωε)

]
= E

[(∑
S1

f̂(S1)χS1(ω)
)(∑

S2

f̂(S2)χS2(ωε)
)]

=
∑

S

f̂(S)2E
[
χS(ω) χS(ωε)

]
=

∑
S

f̂(S)2(1− ε)|S| . (IV.2)

Moreover, we immediately obtain

Cov(f(ω), f(ωε)) =
n∑

m=1

Ef (m)(1− ε)m. (IV.3)

Note that either of (IV.2) and (IV.3) tells us that Cov(f(ω), f(ωε)) is nonnegative
and decreasing in the randomization probability ε. Also, we see that the “level of noise
sensitivity” of a Boolean function is naturally encoded in its energy spectrum. It is now
an an easy exercise to prove the following proposition.

Proposition IV.2 ([BKS99]). A sequence of Boolean functions fn : {−1, 1}mn → {0, 1}
is noise sensitive if and only if, for any k ≥ 1,

k∑
m=1

∑
|S|=m

f̂n(S)2 =
k∑

m=1

Efn(m) −→
n→∞

0 .

Moreover, (I.1) holding does not depend on the value of ε ∈ (0, 1) chosen.

Deriving the similar spectral description of noise stability given (IV.2) is an easy
exercise.

Proposition IV.3 ([BKS99]). A sequence of Boolean functions fn : {−1, 1}mn → {0, 1}
is noise stable if and only if, for any ε > 0, there exists k such that for all n,

∞∑
m=k

∑
|S|=m

f̂n(S)2 =
∞∑

m=k

Efn(m) < ε.

So, as argued in the preface, a function of “high frequency” will be sensitive to noise
while a function of “low frequency” will be stable.

4 Link between the spectrum and influence

In this section, we relate the notion of influence to that of the spectrum.
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Proposition IV.4. If f : Ωn → {0, 1}, then for all k,

Ik(f) = 4
∑

S:k∈S

f̂(S)2

and
I(f) = 4

∑
S

|S|f̂(S)2.

Proof. For f : Ωn → R, we introduce the functions

∇kf :

{
Ωn → R
ω 7→ f(ω)− f(σk(ω))

for all k ∈ [n] ,

where σk maps Ωn to itself by flipping the kth bit (thus ∇kf corresponds to a discrete
derivative along the kth bit).

Observe that

∇kf(ω) =
∑

S⊆{1,...,n}

f̂(S) [χS(ω)− χS(σk(ω))] =
∑

S⊆{1,...,n},k∈S

2f̂(S) χS(ω),

from which it follows that for any S ⊆ [n],

∇̂kf(S) =

{
2f̂(S) if k ∈ S,
0 otherwise.

(IV.4)

Clearly, if f maps into {0, 1}, then Ik(f) := ‖∇kf‖1 and since ∇kf takes values
in {−1, 0, 1} in this case, we have ‖∇kf‖1 = ‖∇kf‖22. Applying Parseval’s formula to
∇kf and using (IV.4), we obtain the first statement of the proposition. The second is
obtained by summing over k and exchanging the order of summation.

Remark If f maps into {−1, 1} instead, then one can easily check that Ik(f) =∑
S:k∈S f̂(S)2 and I(f) =

∑
S |S|f̂(S)2.

5 Monotone functions and their spectra

Monotone functions enjoy an alternative useful spectral description for their influences.

Proposition IV.5. If f : Ωn → {0, 1} is monotone, then for all k

Ik(f) = 2f̂({k}).

If f maps into {−1, 1} instead, then Ik(f) = f̂({k}). (The Parity example in Chapter
I shows that the assumption of monotonicity is needed here; the proof also shows that
the weaker result with = replaced by ≥ holds in general.)
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Proof. We prove only the first statement; the second is proved in the same way.

f̂({k}) := E
[
fχ{k}

]
= E

[
fχ{k}I{k 6∈P}

]
+ E

[
fχ{k}I{k∈P}

]
.

It is easily seen that the first term on the right-hand side is 0 (whether f is monotone

or not) and the second term is Ik(f)
2

due to monotonicity.

Remarks Proposition IV.5 tells us that, for monotone functions mapping into {−1, 1},
the sum in Theorem I.21 is exactly the total weight of the level-1 Fourier coefficients,
that is, the energy spectrum at 1, Ef (1). (If we map into {0, 1} instead, there is simply
an extra irrelevant factor of 4.) So Theorem I.21 and Propositions IV.2 and IV.5 imply
that for monotone functions, if the energy spectrum at 1 goes to 0, then this is true for
any fixed level. In addition, Propositions IV.2 (with k = 1) and IV.5 easily imply that
for monotone functions the converse of Theorem I.21 holds.

Another application of Proposition IV.5 gives a general upper bound for the total
influence for monotone functions.

Proposition IV.6. If f : Ωn → {−1, 1} or {0, 1} is monotone, then

I(f) ≤
√

n.

Proof. If the image is {−1, 1}, then by Proposition IV.5, we have

I(f) =
n∑

k=1

Ik(f) =
n∑

k=1

f̂({k}).

By the Cauchy-Schwarz inequality, this is at most (
∑n

k=1 f̂ 2({k}))1/2
√

n. By Parseval’s
formula, the first term is at most 1 and we are done. If the image is {0, 1}, this argument
can easily be modified or we can deduce the result from the first case since the total
influence of the corresponding ±1-valued function is the same.

Remark Proposition IV.6 with some universal c on the right-hand side follows (for
odd n) from Exercise III.5 showing that the Majority function has the largest influence
together with the known influences for Majority. However, the argument above yields
a more direct proof of the

√
n upper bound.

6 Exercises

Exercise IV.1. Prove the discrete Poincaré inequality, Theorem I.13, using the spec-
trum.

Exercise IV.2. Compute the Fourier coefficients for the indicator function that there
are all 1’s.
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Exercise IV.3. Show that all even size Fourier coefficients for the Majority function
are 0. Can you extend this result to a broader class of Boolean functions?

Exercise IV.4. For the Majority function MAJn, find the limit (as the number of
voters n goes to infinity) of the following quantity (total weight of the level-3 Fourier
coefficients)

EMAJn(3) :=
∑
|S|=3

M̂AJn(S)2 .

Exercise IV.5. Let {fn} be a sequence of Boolean functions which is noise sensitive
and {gn} be a sequence of Boolean functions which is noise stable. Show that {fn} and
{gn} are asymptotically uncorrelated.

Exercise IV.6. Let {An} be the event that the first bit is 1 and that the number of 1’s
in the last n−1 bits is even. Show directly that this sequence is neither noise stable nor
noise sensitive. Describe the Fourier spectrum as precisely as possible. You should see
both a nontrivial amount of spectrum “near 0” and a nontrivial amount of spectrum
“far from 0”.

Exercise IV.7 (Another equivalent definition of noise sensitivity). Assume that {An}
is a noise sensitive sequence. (This of course means that the indicator functions of these
events is a noise sensitive sequence.)

(a) Show for each ε > 0, we have that P
[
ωε ∈ An

∣∣ ω
]
− P

[
An

]
approaches 0 in

probability. Hint: use the Fourier representation.

(b) Can you show the implication in (a) without using the Fourier representation?

(c) Discuss whether this implication is surprising.

(d) Show that the condition in part (a) implies that the sequence is noise sensitive
directly without using the Fourier representation.

Exercise IV.8. How does the spectrum of a generic Boolean function look? Use this
to give an alternative argument to the answer to the question asked in Exercise I.14.

Exercise IV.9. (Open exercise). For Boolean functions, can the energy spectrum take
ANY (reasonable) shape or are there restrictions?

For the next exercises, we introduce a functional which measures the stability of
Boolean functions. For any Boolean function f : Ωn → {−1, 1}, let

Sf : ε 7→ P
[
f(ω) 6= f(ωε)

]
.

Obviously, the smaller Sf is, the more stable f is.

Exercise IV.10. Express the functional Sf in terms of the Fourier expansion of f .
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A balanced Boolean function takes its two possible values each with probability 1/2.

Exercise IV.11. Among balanced Boolean functions, does there exist some function
f ∗ which is “stablest” in the sense that for any balanced Boolean function f and any
ε > 0,

Sf∗(ε) ≤ Sf (ε) ?

If yes, describe the set of these extremal functions and prove that these are the only
ones.

Exercise IV.12. Show that for any Boolean function S′f (0) = I(f)/2 and S′f (1) =
Ef (1)/2 (recall Definition IV.1). Observe that for monotone functions, the last expres-
sion is

∑
k Ik(f)2/2.

Note that this yields an interesting heuristic why Theorem I.21 is true in the mono-
tone case. If

∑
k Ik(fn)2 goes to 0, then S′f (1) goes to 0. This suggests that Sf (1 − ε)

should be close to Sf (1), which corresponds to the completely uncorrelated case. Using
the concavity of Sf and this picture, one can see in another way why noise sensitivity
implies that

∑
k Ik(fn)2 goes to 0.

Problem IV.13. This problem explores the asymptotic shape of the energy spectrum
for MAJn.

(a) Show that for all ε ≥ 0,

lim
n→∞

SMAJn(ε) =
1

2
− arcsin(1− ε)

π
=

arccos(1− ε)

π
.

Hint: The relevant limit is easily expressed as the probability that a certain two-
dimensional Gaussian variable (with a particular correlation structure) falls in a
certain area of the plane. One can write down the corresponding density func-
tion and therefore this probability as an explicit integral, but this integral does
not seem so easy to evaluate. However, this Gaussian probability can be com-
puted directly by representing the joint distribution in terms of two independent
Gaussians.

Note that the above limit immediately implies that for fn = MAJn,

lim
n→∞

E(fn(ω)fn(ωε)) =
2 arcsin(1− ε)

π
.

(b) Deduce from (a) and the Taylor expansion for arcsin(x) the limiting value, as

n →∞, of EMAJn(k) =
∑
|S|=k M̂AJn(S)2 for all k ≥ 1. Check that the answer

is consistent with the values obtained earlier for k = 1 and k = 3 (see Exercise
IV.4).



Chapter V

Hypercontractivity and its
applications

In this chapter, we prove the main theorems about influences stated in Chapter I.
The proofs rely on techniques imported from harmonic analysis, in particular hyper-
contractivity, and as we will see later in this chapter and in Chapter VII, these types
of argument extend to other contexts which will be of interest to us such as noise
sensitivity and sub-Gaussian fluctuations.

1 Heuristics of proofs

All the following proofs which will be based on hypercontractivity have more or less the
same flavor, so we first sketch in the particular case of Theorem I.14 the overall scheme
of proof.

Recall that we want to prove that there exists a universal constant c > 0 such that
for any function f : Ωn → {0, 1}, one of its variables has influence at least c log n Var(f)

n
.

Let f be a Boolean function. Suppose all its influences Ik(f) are “small” (this needs
to be quantified). This means that ∇kf must have small support. Using intuition from

the Weyl-Heisenberg uncertainty principle, ∇̂kf should then be quite spread out in the
sense that most of its spectral mass is concentrated on high frequencies.

This intuition, which is still vague at this point, suggests that having small influences
pushes the spectrum of ∇kf towards high frequencies. Now, summing up as we did
in Section 4, but restricting ourselves to frequencies S of size smaller than some large
(well-chosen) M with 1�M � n, we easily obtain

47
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∑
0<|S|<M

f̂(S)2 ≤ 4
∑

0<|S|<M

|S|f̂(S)2

=
∑

k

∑
0<|S|<M

∇̂kf(S)2

”� ”
∑

k

‖∇̂kf‖22

= I(f) , (V.1)

where, in the third line, we use the informal statement that ∇̂kf should be supported
on high frequencies if f has small influences. Now recall (or observe) that∑

|S|>0

f̂(S)2 = Var(f) .

Therefore, if we are in the case where a positive fraction of the Fourier mass of f
is concentrated below M , then (V.1) says that I(f) is much larger than Var(f). In
particular, at least one of the influences has to be “large”. If, on the other hand, we
are in the case where most of the spectral mass of f is supported on frequencies of size
higher than M , then we also can conclude that I(f) is large by using the formula

I(f) = 4
∑

S

|S|f̂(S)2 .

Remark These heuristics suggest that there is a subtle balance between
∑

k Ik(f) =
I(f) and supk Ik(f). Namely, if influences are all small (i.e. ‖ · ‖∞ is small), then their
sum on the other hand has to be “large”. The correct balance is exactly quantified by
Theorem I.16.

It now remains to convert this sketch into a proof. The main difficulty in the program
we have outlined is to obtain quantitative spectral information on functions with values
in {−1, 0, 1} knowing that they have small support. This is where hypercontractivity
makes its entrance ([KKL88]).

2 About hypercontractivity

First, let us discuss what we mean by hypercontractivity. Let (Kt)t≥0 be the heat
kernel for the Ornstein-Ulhenbeck process on Rn. Hypercontractivity is a statement
which quantifies how functions are regularized under this (Ornstein-Ulhenbeck) heat
flow. The statement, which can be attributed to a number of authors, is simple:
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Theorem V.1 (Hypercontractivity). Consider Rn with standard Gaussian measure. If
1 < q < 2, there is some t = t(q) > 0 (which does not depend on the dimension n) such
that for any f ∈ Lq(Rn),

‖Kt ∗ f‖2 ≤ ‖f‖q .

The dependence t = t(q) can be made explicit. (See Theorem V.10 later this
chapter.) Hypercontractivity is thus a regularization statement: if we start with some
initial “rough” Lq function f outside of L2 and wait long enough (t(q)) under the
(Ornstein-Ulhenbeck) heat flow, we end up in L2 with good control on the functions’s
L2 norm.

This concept has an interesting history as is nicely explained in O’Donnell’s book
(see [O’D]). It was invented by Nelson in [Nel66] when he needed regularization esti-
mates on free fields (which are the building blocks of quantum field theory) in order
to apply these in “constructive field theory”. It was then generalized by Gross in his
elaboration of logarithmic Sobolev inequalities ([Gro75]), an important tool in analy-
sis. Since then, hypercontractivity has become intimately related to these log-Sobolev
inequalities and thus has many applications in the theory of semigroups, mixing of
Markov chains and other topics. In fact Gross obtained his hypercontractivity theorem
for the Gaussian measure by first proving it in the Boolean setting and then passing
to the limit via the central limit theorem. Gross was not aware of earlier work by
Bonami [B70] which settled the Boolean case. Finally, let us mention that the hyper-
contractivity theorem has also been attributed in the past to Beckner [B75] even though
this seems less convincing to us. For all these reasons, instead of calling this theorem
the Nelson-Bonami-Gross-Beckner theorem, we will simply say the hypercontractivity
theorem.

We now state the result in the case which concerns us, namely the hypercube. For
any ρ ∈ [0, 1], let Tρ be the following noise operator on the set of functions on
the hypercube: recall from Chapter I that if ω ∈ Ωn, we denote by ωε an ε-noised
configuration of ω. For any f : Ωn → R, we define Tρf : ω 7→ E

[
f(ω1−ρ)

∣∣ ω
]
. This

noise operator acts in a very simple way on the Fourier coefficients, as the reader can
check:

Tρ : f =
∑

S

f̂(S) χS 7→
∑

S

ρ|S|f̂(S) χS .

We have the following analog of Theorem V.1.

Theorem V.2 (Hypercontractivity). For any f : Ωn → R and any ρ ∈ [0, 1],

‖Tρf‖2 ≤ ‖f‖1+ρ2 .

The analogy with the classical Theorem V.1 is clear: the (Ornstein-Ulhenbeck) heat
flow is replaced here by random walk on the hypercube. In order not to disrupt our
exposition, the proof of Theorem V.2 can be found in Section 6.

Remark The term hypercontractive refers here to the fact that the operator which
maps Lq into L2 (with q < 2) is a contraction.
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——————–

Before going into the detailed proof of Theorem I.14, let us see why Theorem V.2
provides the type of spectral information we need. In the sketch in Section 1, we
assumed that all influences were small. This assumption can be written as

Ik(f) = ‖∇kf‖1 = ‖∇kf‖22 � 1 ,

for any k ∈ [n]. Now if we apply the hypercontractive estimate to these functions ∇kf
for some fixed 0 < ρ < 1, we obtain

‖Tρ(∇kf)‖2 ≤ ‖∇kf‖1+ρ2 = ‖∇kf‖2/(1+ρ2)
2 � ‖∇kf‖2 (V.2)

where, for the equality, we used once again that ∇kf ∈ {−1, 0, 1}. After squaring, this
gives on the Fourier side ∑

S

ρ2|S|∇̂kf(S)2 �
∑

S

∇̂kf(S)2 ,

showing that (under the assumption that Ik(f) is small) the spectrum of ∇kf is indeed
mostly concentrated on high frequencies.

Remarks Theorem V.2 in fact tells us that any function with small support has its
frequencies concentrated on large sets as follows. It is easy to see that given any p < 2,
if a function h on a probability space has very small support, then its Lp norm is much
smaller than its L2 norm. Using Theorem V.2, we would then have for such a function

‖Tρ(h)‖2 ≤ ‖h‖1+ρ2 � ‖h‖2 ,

yielding ∑
S

ρ2|S|ĥ(S)2 �
∑

S

ĥ(S)2 ,

which can only occur if h has its frequencies concentrated on large sets. From this point
of view, we also see directly that, under the small influence assumption, the first term
in (V.2) is of much smaller order than the last term in (V.2).

3 Proof of the KKL theorems on the influences of

Boolean functions

We will prove first Theorem I.14, and then Theorem I.16. In fact, one can recover
Theorem I.14 directly from Theorem I.16; see Exercise V.1. Nevertheless, since the
proof of Theorem I.14 is slightly simpler, we start with this result.
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3.1 Proof of Theorem I.14

Let f : Ωn → {0, 1}. Recall that we want to show that there is some k ∈ [n] such that

Ik(f) ≥ cVar(f)
log n

n
, (V.3)

for some universal constant c > 0.
We divide the analysis into the following two cases.

Case 1 Suppose that there is some k ∈ [n] such that Ik(f) ≥ n−3/4 Var(f). Then the
bound V.3 is clearly satisfied for a small enough c > 0.

Case 2 Now, if f does not belong to the first case, then for all k ∈ [n],

Ik(f) = ‖∇kf‖22 ≤ Var(f)n−3/4 . (V.4)

Following the heuristics in Section 1, we will show that when (V.4) holds for all k,
most of the Fourier spectrum of f is supported on high frequencies. Let M ≥ 1, with
its value to be chosen later. We wish to bound from above the bottom part (up to M)
of the Fourier spectrum of f :

∑
1≤|S|≤M

f̂(S)2 ≤
∑

1≤|S|≤M

|S|f̂(S)2

≤ 22M
∑
|S|≥1

(1/2)2|S||S|f̂(S)2

=
1

4
22M

∑
k

‖T1/2(∇kf)‖22 ,

(see Section 4.) Now by applying hypercontractivity (Theorem V.2) with ρ = 1/2 to
the above sum, we obtain

∑
1≤|S|≤M

f̂(S)2 ≤ 1

4
22M

∑
k

‖∇kf‖25/4

≤ 22M
∑

k

Ik(f)8/5

≤ 22M n Var(f)8/5n
−3
4
· 8
5

≤ 22M n−1/5 Var(f) ,

where we used assumption (V.4) and the obvious fact that Var(f)8/5 ≤ Var(f) (recall
Var(f) ≤ 1 since f is Boolean). Now with M := b 1

20
log2 nc, this gives∑

1≤|S|≤ 1
20

log2 n

f̂(S)2 ≤ n1/10−1/5 Var(f) = n−1/10 Var(f) .
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This shows that under assumption (V.4), most of the Fourier spectrum is concen-
trated above Ω(log n). We are now ready to conclude

sup
k

Ik(f) ≥
∑

k Ik(f)

n
=

4
∑
|S|≥1 |S|f̂(S)2

n

≥ 1

n

[ ∑
|S|>M

|S|f̂(S)2
]

≥ M

n

[ ∑
|S|>M

f̂(S)2
]

=
M

n

[
Var(f)−

∑
1≤|S|≤M

f̂(S)2
]

≥ M

n
Var(f)

[
1− n−1/10

]
≥ c1 Var(f)

log n

n
,

with c1 = 1
20 log 2

(1 − 2−1/10). By combining with the constant given in case 1, this
completes the proof.

Remark We did not try here to optimize the proof to find the best possible universal
constant c > 0. Note, though, that even without optimizing at all, the constant we
obtain is not that bad.

3.2 Proof of Theorem I.16

We now proceed to the proof of the stronger result, Theorem I.16, which states that
there is a universal constant c > 0 such that for any f : Ωn → {0, 1},

‖I(f)‖ = ‖Inf(f)‖1 ≥ c Var(f) log
1

‖Inf(f)‖∞
.

The strategy is very similar to that for Theorem I.14. Let f : Ωn → {0, 1} and let
δ := ‖Inf(f)‖∞ = supk Ik(f). Assume for the moment that δ ≤ 1/1000. As in the
proof of Theorem I.14, we start by bounding the bottom part of the spectrum up to
some integer M (whose value will be fixed later). Exactly, as before, one has∑

1≤|S|≤M

f̂(S)2 ≤ 22M
∑

k

Ik(f)8/5

≤ 22Mδ3/5
∑

k

Ik(f) = 22Mδ3/5 I(f) .
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Now,

Var(f) =
∑
|S|≥1

f̂(S)2 ≤
∑

1≤|S|≤M

f̂(S)2 +
1

M

∑
|S|>M

|S|f̂(S)2

≤
[
22Mδ3/5 +

1

M

]
I(f) .

Choose M := 3
10

log2(
1
δ
)− 1

2
log2 log2(

1
δ
). Since δ < 1/1000, it is easy to check that

M ≥ 1
10

log2(1/δ) which leads to

Var(f) ≤
[

1

log2(1/δ)
+

10

log2(1/δ)

]
I(f) ,

(V.5)

which gives

I(f) = ‖Inf(f)‖1 ≥
1

11 log 2
Var(f) log

1

‖Inf(f)‖∞
.

This gives the result for δ ≤ 1/1000.
Next the discrete Poincaré inequality, which says that I(f) ≥ Var(f), tells us that

the claim is true for δ ≥ 1/1000 if we take c to be 1/ log 1000. Since this is larger than
1

11 log 2
, we obtain the result with the constant c = 1

11 log 2
.

4 KKL away from the uniform measure

In Chapter III (on sharp thresholds), we needed an extension of the KKL theorems
to the p-biased measures Pp = (pδ1 + (1− p)δ−1)

⊗n. These extensions are respectively
Theorems III.3 and III.4.

To prove these theorems a natural first idea would be to extend the hypercontractive
estimate (Theorem V.2) to these p-biased measures Pp. This extension of the hyper-
contractivity theorem is possible, but it turns out that the control it gives gets worse
near the edges (p close to 0 or 1). This is problematic since in both Theorems III.3 and
III.4, we need bounds which are uniform in p ∈ [0, 1].

Hence, we need a different way to extend the KKL theorems. A nice approach was
provided in [BKK+92], where they prove the following general theorem.

Theorem V.3 ([BKK+92]). There exists a universal c > 0 such that for any measurable
function f : [0, 1]n → {0, 1}, there exists a variable k such that

Ik(f) ≥ c Var(f)
log n

n
.

Here the “continuous” hypercube is endowed with the uniform (Lebesgue) measure and
for any k ∈ [n], Ik(f) denotes the probability that f is not almost surely constant on
the fiber given by (xi)i6=k.
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In other words,

Ik(f) = P
[
Var

(
f(x1, . . . , xn)

∣∣ xi, i 6= k
)

> 0
]
.

It is clear how to obtain Theorem III.3 from Theorem V.3. If p ∈ [0, 1] and f : Ωn →
{0, 1}, consider f̄p : [0, 1]n → {0, 1} defined by

f̄p(x1, . . . , xn) = f((1xi<p − 1xi≥p)i∈[n]) .

Friedgut [Fri04] noticed the converse, that one can recover Theorem V.3 from The-
orem III.3. The first idea is to use a symmetrization argument in such a way that
the problem reduces to the case of monotone functions. Then, the main idea is to
approximate the uniform measure on [0, 1] by the dyadic random variable

XM : (x1, . . . , xM) ∈ {−1, 1}M 7→
M∑

m=1

xm + 1

2
2−m .

One can then approximate f : [0, 1]n → {0, 1} by the Boolean function f̃M defined on
{−1, 1}M×n by

f̃M(x1
1, . . . , x

1
M , . . . , xn

1 , . . . , x
n
M) := f(X1

M , . . . , Xn
M) .

Still this proof requires two technical steps: a monotonization procedure and an
“approximation” step (going from f to f̃M). Since in our applications to sharp thresh-
olds we used Theorems III.3 and III.4 only in the case of monotone functions, for the
sake of simplicity we will not present the monotonization procedure here.

Furthermore, for our specific needs (the applications in Chapter III), we do not need
to deal with the approximation part either. The reason is that for any Boolean function
f , the function p 7→ Ip

k(f) is continuous. Hence it is enough to obtain uniform bounds
on Ip

k(f) for dyadic values of p (i.e. p ∈ {m2−M} ∩ [0, 1]).
See Exercise V.4 for the proof of Theorems III.3 and III.4.

Remark We mentioned above that generalizing hypercontractivity would not allow us
to obtain uniform bounds (with p taking any value in [0, 1]) on the influences. It should
be noted though that Talagrand ([Tal94]) obtained results similar to Theorems III.3 and
III.4 by somehow generalizing hypercontractivity, but along a different line. Finally, let
us point out that both Talagrand (see [Tal94]) and Friedgut and Kalai ([FK96]) obtain
sharper versions of Theorems III.3 and III.4 where the constant c = cp in fact improves
(i.e. blows up) near the edges.

We state the result due to Talagrand. It is this result that also implies Theorem
III.8.

Theorem V.4 ([Tal94]). There exists c > 0 such that for all Boolean functions and all
p, we have

Varp(f) ≤ cp(1− p) log

(
1

p(1− p)

) ∑
i

Ip
i (f)

log(1/(p(1− p)Ip
i (f)))

.
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5 The noise sensitivity theorem

In this section, we prove the milestone Theorem I.21 from [BKS99] under an additional
assumption (which will hold whenever the theorem is applied). Before recalling what
the statement is, let us define the following functional on Boolean functions.

Definition V.5. For any f : Ωn → {0, 1}, let

H(f) :=
∑

k

Ik(f)2 = ‖Inf(f)‖22 .

Recall the Benjamini-Kalai-Schramm theorem, Theorem I.21, states that, for a se-
quence of Boolean functions fn : Ωmn → {0, 1}, if

lim
n→∞

H(fn) =
mn∑
k=1

Ik(f)2 = 0 ,

then {fn}n is noise sensitive.
We will in fact only prove this theorem under a stronger condition, namely that

H(fn) ≤ (mn)−δ for some exponent δ > 0. Without this assumption of “polynomial
decay” on H(fn), the proof is more technical and relies on estimates obtained by Ta-
lagrand. See the discussion immediately following the proof of Proposition V.6. For
our application to the noise sensitivity of percolation (see Chapter VI), this stronger
assumption will be satisfied and hence we stick to this simpler case in this book.

The assumption of polynomial decay in fact enables us to prove the following more
quantitative result.

Proposition V.6 ([BKS99]). For any δ > 0, there exists a constant M = M(δ) > 0
such that if fn : Ωmn → {0, 1} is any sequence of Boolean functions satisfying

H(fn) ≤ (mn)−δ , (V.6)

then ∑
1≤|S|≤M log (mn)

f̂n(S)2 → 0 .

Using Proposition IV.2, this proposition obviously implies Theorem I.21 when H(fn)
decays as assumed. Furthermore, this gives quantitative “logarithmic” control on the
noise sensitivity of such functions.

Proof. The strategy will be very similar to that used for the KKL theorems (even
though the goal is very different). The main difference here is that the regularization
term ρ used in the hypercontractive estimate must be chosen in a more delicate way
than in the proofs of the KKL results (where we simply took ρ = 1/2).

Let M > 0 be a constant whose value will be chosen later:
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∑
1≤|S|≤M log(mn)

f̂n(S)2 ≤ 4
∑

1≤|S|≤M log(mn)

|S|f̂n(S)2 =
∑

k

∑
1≤|S|≤M log(mn)

∇̂kfn(S)2

≤
∑

k

(
1

ρ2
)M log(mn)‖Tρ(∇kfn)‖22

≤
∑

k

(
1

ρ2
)M log(mn)‖∇kfn‖21+ρ2

by Theorem V.2.

Now, since fn is Boolean, one has ‖∇kfn‖1+ρ2 = ‖∇kfn‖2/(1+ρ2)
2 , hence∑

0<|S|<M log(mn)

f̂n(S)2 ≤ ρ−2M log(mn)
∑

k

‖∇kfn‖4/(1+ρ2)
2 = ρ−2M log(mn)

∑
k

Ik(fn)2/(1+ρ2)

≤ ρ−2M log(mn)(mn)ρ2/(1+ρ2)
(∑

k

Ik(fn)2
) 1

1+ρ2

(by Hölder)

= ρ−2M log(mn)(mn)ρ2/(1+ρ2) H(fn)
1

1+ρ2

≤ ρ−2M log(mn)(mn)
ρ2−δ

1+ρ2 .

By choosing ρ ∈ (0, 1) close enough to 0, and then by choosing M = M(δ) small
enough, we obtain the desired logarithmic noise sensitivity.

Recall that Theorem I.21 is true independently of the speed of convergence of
H(fn) =

∑
k Ik(fn)2 to 0. The proof of this general result is a bit more involved

than the argument we gave here for the special case when the convergence of H(fn)
to 0 is “at least inverse polynomial”. We now indicate how the proof of Theorem I.21
works in the general case. The key lemma needed is the following.

Lemma V.7 ([BKS99]). There exist absolute constants Ck such that for any monotone
Boolean function f and for any k ≥ 2, one has∑

|S|=k

f̂(S)2 ≤ CkH(f) (− log H(f))k−1 .

This lemma mimics a result from Talagrand’s [Tal96]. Indeed, Proposition 2.3 in
[Tal96] can be translated into Lemma V.7 with k = 2. Lemma V.7 obviously implies
Theorem I.21 in the monotone case, while the general case can be deduced by a mono-
tonization procedure; this latter procedure is detailed in Lemma 2.7 in [BKS99]. It is
worth pointing out that hypercontractivity is used in the proof of Lemma V.7.

Theorem I.21, as stated, is clearly a qualitative result. One would like to have
a quantitative version; this was obtained in [BKS99] under certain conditions. The
following result from [KK13] yields a general quantitative result.
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Theorem V.8 ([KK13]). There exists c > 0 such that for any Boolean function f
mapping into {0, 1} and any ε > 0, it is the case that

E[f(ω)f(ωε)]− E[f(ω)]2 ≤ 20(H(f))c ε.

We end this section by mentioning that [BKS99] states that there is a version of
Theorem I.21 for biased measures which is proved along the same lines. There is also
an approach for this given in [ABGM13] which involves reduction to the uniform case.
Lastly, there is a quantitative version in the biased case akin to Theorem V.8 above;
see again [KK13].

6 Proof of hypercontractivity

We will prove Theorem V.2 from first principles.

Before starting the proof, observe that for ρ = 0 (where 00 is defined to be 1), this
simply reduces to |

∫
f | ≤

∫
|f |.

6.1 Tensorization

First, we show that it is sufficient, via a tensorization procedure, that the result holds
for n = 1 in order for us to conclude by induction the result for all n.

The key step of the argument is the following lemma.

Lemma V.9. Let q ≥ p ≥ 1, (Ω1, µ1), (Ω2, µ2) be two finite probability spaces, Ki : Ωi×
Ωi → R and assume that for i = 1, 2 and for all f : Ωi → R

‖Ti(f)‖Lq(Ωi,µi) ≤ ‖f‖Lp(Ωi,µi) ,

where Ti(f)(x) :=
∫

Ωi
f(y)Ki(x, y)dµi(y). Then for all f : Ω1 × Ω2 → R

‖T1 ⊗ T2(f)‖Lq((Ω1,µ1)×(Ω2,µ2)) ≤ ‖f‖Lp((Ω1,µ1)×(Ω2,µ2)) ,

where T1 ⊗ T2(f)(x1, x2) :=
∫

Ω1×Ω2
f(y1, y2)K1(x1, y1)K2(x2, y2)dµ1(y1)× dµ2(y2).

Proof. First recall Minkowski’s inequality for integrals, which states that, for g ≥ 0 and
r ∈ [1,∞), we have(∫ (∫

g(x, y)dν(y)

)r

dµ(x)

)1/r

≤
∫ (∫

g(x, y)rdµ(x)

)1/r

dν(y).

(Note that when ν consists of two point masses each of size 1, then this reduces to the
usual Minkowski inequality.)
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Think of T1 acting on functions of both variables by leaving the second variable
untouched and analogously for T2. It is then easy to check that T1 ⊗ T2 = T1 ◦ T2. Fix
now f : Ω1 × Ω2 → R. By thinking of x2 as fixed, our assumption on T1 yields

‖T1 ⊗ T2(f)‖qLq((Ω1,µ1)×(Ω2,µ2)) ≤
∫

Ω2

(∫
Ω1

|T2(f)|pdµ1(x1)

)q/p

dµ2(x2).

(It might be helpful here to think of T2(f)(x1, x2) as a function gx2(x1) where x2 is
fixed, and it is this function of x1 to which we apply our assumption concerning T1.)

Applying Minkowski’s integral inequality to |T2(f)|p with r = q/p, this in turn is at
most [∫

Ω1

(∫
Ω2

|T2(f)|qdµ2(x2)

)p/q

dµ1(x1)

]q/p

.

Fixing now the x1 variable and applying our assumption on T2 to the function f(x1, ·)
shows that this is at most ‖f‖qLp((Ω1,µ1)×(Ω2,µ2)), as desired.

The next key observation, easily obtained by expanding and interchanging of sum-
mation, is that our operator Tρ acting on functions on Ωn corresponds to an operator
of the type dealt with in Lemma V.9 with K(x, y) being∑

S⊆{1,...,n}

ρ|S|χS(x)χS(y).

In addition, it is easy to check that the function K for Ωn is simply an n-fold product
of the function for the n = 1 case.

Assuming the result for the case n = 1, Lemma V.9 and the above observations
allow us to conclude by induction the result for all n.

6.2 The n = 1 case

We now establish the case n = 1. We abbreviate Tρ by T .
Since f(x) = (f(−1) + f(1))/2 + (f(1) − f(−1))/2 x, we have Tf(x) = (f(−1) +

f(1))/2+ ρ(f(1)− f(−1))/2 x. Denoting (f(−1)+ f(1))/2 by a and (f(1)− f(−1))/2
by b, it suffices to show that for all a and b, we have

(a2 + ρ2b2)(1+ρ2)/2 ≤ |a + b|1+ρ2
+ |a− b|1+ρ2

2
.

Using ρ ∈ [0, 1], the case a = 0 is immediate. For the case, a 6= 0, it is clear we can
assume a > 0. Dividing both sides by a1+ρ2

, we need to show that

(1 + ρ2y2)(1+ρ2)/2 ≤ |1 + y|1+ρ2
+ |1− y|1+ρ2

2
(V.7)

for all y and clearly it suffices to assume y ≥ 0.
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We first do the case that y ∈ [0, 1). By the generalized binomial formula, the
right-hand side of (V.7) is

1

2

[
∞∑

k=0

(
1 + ρ2

k

)
yk +

∞∑
k=0

(
1 + ρ2

k

)
(−y)k

]
=
∞∑

k=0

(
1 + ρ2

2k

)
y2k.

For the left-hand side of (V.7), we first note the following. For 0 < λ < 1, a simple
calculation shows that the function g(x) = (1 + x)λ − 1− λx has a negative derivative
on [0,∞) and hence g(x) ≤ 0 on [0,∞).

This yields that the left-hand side of (V.7) is at most

1 +

(
1 + ρ2

2

)
ρ2y2 ,

which is precisely the first two terms of the right-hand side of (V.7). On the other
hand, the binomial coefficients appearing in the other terms are nonnegative, since in
the numerator there are an even number of terms with the first two terms being positive
and all the other terms being negative. This verifies the desired inequality for y ∈ [0, 1).

The case y = 1 for (V.7) follows by continuity.
For y > 1, we let z = 1/y and note, by multiplying both sides of (V.7) by z1+ρ2

,
that we need to show

(z2 + ρ2)(1+ρ2)/2 ≤ |1 + z|1+ρ2
+ |1− z|1+ρ2

2
. (V.8)

Now, expanding (1 − z2)(1 − ρ2), one sees that z2 + ρ2 ≤ 1 + z2ρ2 and hence the
desired inequality follows precisely from (V.7) for the case y ∈ (0, 1) already proved.
This completes the n = 1 case and thereby the proof of Theorem V.2.

7 Gaussian hypercontractivity

We finish this Chapter with a slightly tangential topic. Historically, Gross’s main moti-
vation in [Gro75] was to obtain a hypercontractive inequality for the Gaussian measure
and he proved hypercontractivity on the hypercube {−1, 1}n only as an intermediate
step to obtaining the Gaussian case. In this section, we shall sketch how his argument
goes.

Consider the Ornstein-Ulhenbeck process (Xx
t )t≥0 in Rn starting at x ∈ Rn which

is given by the following stochastic differential equation (SDE):{
Xx

0 = x ,

dXx
t = −1

2
Xt dt + dWt ,

(V.9)
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where (Wt)t≥0 is a standard n-dimensional Brownian motion. It is a classical fact that
this SDE leads to a Feller semigroup whose invariant measure is the n-dimensional
Gaussian measure

γn(dx) =
1

(2π)n/2
e−

|x|2
2 dx .

Gross proved the following result.

Theorem V.10 (Gross, hypercontractivity for the Gaussian variable, [Gro75]). Let
Kt : L2(Rn, γn)→ L2(Rn, γn) be the (Ornstein-Ulhenbeck) heat-kernel operator:

Kt(f)(x) := E
[
f(Xx

t )
]
.

Then, for any t ≥ 0 and any f ∈ L2(Rn, γn), one has

‖Kt(f)‖L2(Rn,γn) ≤ ‖f‖L1+e−t
(Rn,γn) .

Sketch of proof: Fix f ∈ L1+e−t
(Rn, γn) and assume for the moment that it is con-

tinuous and compactly supported, i.e. in Cc(Rn). The idea will be to approximate
the Ornstein-Ulhenbeck process using simple random walks in 1

M
Zn. For any t > 0 if

X0 ∼ γn and Xt = XX0
t , it is easy to check that the stochastic process (Xt)t≥0 is a

Gaussian process with covariance Cov[Xs, Xt] = e−|t−s|/2I. In particular, we can rep-
resent the vector (X0, Xt) as follows: Xt = e−t/2X0 +

√
1− e−tZ, where Z ∼ γn is an

independent Gaussian in Rn. We can then write

‖Kt(f)‖2L2(Rn,γn) =

∫
Rn

(
E

[
f(e−t/2x +

√
1− e−tZ)

])2

γn(dx)

We consider for each N ≥ 1, the following real-valued function gN : ΩN×n :=
{−1, 1}N×n → R:

gN(x1
1, . . . , x

1
N , x2

1, . . . , x
2
N , . . . , xn

1 , . . . , x
n
N) := f

(∑
x1

i√
N

,

∑
x2

i√
N

, . . . ,

∑
xn

i√
N

)
.

Since f is in Cc(Rn), it follows easily from the central limit theorem that

‖gN‖L1+e−t
(ΩN×n) → ‖f‖L1+e−t

(Rn,γn) ,

as N →∞. Furthermore, it is easy to check that for any ρ ∈ [0, 1],

‖Tρ(gN)‖22 →
∫

Rn

(
E

[
f(e−t/2x +

√
1− e−tZ)

])2

γn(dx) ,

as N →∞ with the correspondence e−t/2 = ρ. This follows from the fact that for each
k ∈ {1, . . . , n}

Cov[Xk
0 , Xk

t ] = lim
N→∞

Cov

[∑
i x

k
i√

N
,

∑
i y

k
i√

N

]
= ρ ,
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where {yk
i }i∈[N ] is a noised version of {xk

i }i∈[N ] with E
[
xk

i y
k
i

]
= ρ. Now, using hyper-

contractivity for functions on the hypercube ΩN×n (Theorem V.2), we have

‖Tρ(gN)‖2 ≤ ‖gN‖1+ρ2 .

By passing to the limit N →∞, we thus obtain for any f ∈ Cc(Rn)

‖Kt(f)‖L2(Rn,γn) ≤ ‖f‖L1+e−t
(Rn,γn) .

We conclude the proof by a classical density argument: given f ∈ L1+e−t ∩ L2, choose
fn ∈ Cc(Rn)→ f in L1+e−t

and in L2 and note that Kt(fn)→ Kt(f) in L2, since Kt is
a contraction operator on L2.

Remark A Markov operator is a contraction on every Lp space and the proof
of Theorem V.10 also yields the main inequality even if we only assume that f ∈
L1+e−t

(Rn, γn).
Remark See the book in progress [Ch13b] for a more direct proof in the Gaus-

sian setting based on the logarithmic Sobolev inequality for the Gaussian measure. A
proof of the logarithmic Sobolev inequality for the Gaussian measure can be found in
[Feder69].

8 Exercises

Exercise V.1. Find a direct proof that Theorem I.16 implies Theorem I.14.

Exercise V.2. Is it true that the smaller the influences are, the more noise sensitive
the function is?

Exercise V.3. Prove that Theorem V.3 indeed implies Theorem III.3. Hint: use the
natural projection.

Problem V.4. In this problem, we prove Theorems III.3 and III.4.

(a) Show that Theorem III.4 implies III.3 and hence one needs to prove only Theorem
III.4 (This is the basically the same as Exercise V.1.)

(b) Show that it suffices to prove the result when p = k/2` for integers k and `.

(c) Let Π: {0, 1}` → {0, 1/2`, . . . , (2`−1)/2`} by Π(x1, . . . , x`) =
∑`

i=1 xi/2
i. Observe

that if x is uniform, then Π(x) is uniform on its range and that P(Π(x) ≥ i/2`) =
(2` − i)/2` for i = 0, 1, . . . , 2` − 1.

(d) Define g : {0, 1}` → {0, 1} by g(x1, . . . , x`) := I{Π(x)≥1−p}. Note that P(g(x) =
1) = p.
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(e) Define f̃ : {0, 1}n` → {0, 1} by

f̃(x1
1, . . . , x

1
` , x

2
1, . . . , x

2
` , . . . , x

n
1 , . . . , x

n
` ) = f(g(x1

1, . . . , x
1
`), g(x2

1, . . . , x
2
`), . . . , g(xn

1 , . . . , x
n
` )).

Observe that f̃ (defined on ({0, 1}n`, π1/2)) and f (defined on ({0, 1}n, πp)) have
the same distribution and hence the same variance.

(f) Show (or observe) that I(r,j)(f̃) ≤ Ip
r(f) for each r = 1, . . . , n and j = 1, . . . , `.

Deduce from Theorem I.16 that∑
r,j

I(r,j)(f̃) ≥ cVar(f) log(1/δp) ,

where δp := maxi I
p
i (f) and where c comes from Theorem I.16.

(g) (Key step). Show that for each r = 1, . . . , n and j = 1, . . . , `,

I(r,j)(f̃) ≤ Ip
r(f)/2j−1.

(h) Combine parts (f) and (g) to complete the proof.

The next three exercises are tangential to the book but are interesting nonetheless.

Exercise V.5. Consider a real-valued function f defined on Ωn all of whose nonzero
Fourier coefficients have level at most k. Show, using Theorem V.2, that for all p ∈ (1, 2)

E(f 2)
1
2 ≤ (1/(p− 1))

k
2 E(|f |p)

1
p .

(When k = 1, this gives a version of the so-called Khinchin inequalities.)

Exercise V.6. With f as in Exercise V.5, show that

E(f 2)
1
2 ≤ 2

3k
2 E(|f |).

Hint: First use the Cauchy-Schwarz inequality applied to 3/2-moment of f to show
that the ratio of the second and first moments is at most the third power of the ratio
of the second and 3/2-moments. Then apply Theorem V.2 as in Exercise V.5.

Problem V.7. Let X1, . . . , Xn be i.i.d. ±1 mean 0 random variables and let Z =
|
∑

i biXi|. Show using Fourier analysis, but without Theorem V.2, that E(Z2)
1
2 ≤

2
1
2 E(Z). The steps below give an outline of the argument.

Remarks (1) This result is due to Szarek.
(2) This reduces to the result in Exercise V.6 but with an improvement of the constant.
(3) The result can be seen to be sharp by taking n = 2 and b1 = b2 = 1.
(4) The argument below applies if the bi take values in a Banach space and Z is replaced
by the norm of the sum.
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(a) Thinking of Z as a Boolean function f on the hypercube, show that the odd
Fourier coefficients of f vanish.

(b) Letting f(ω) :=
∑n

i=1 f(σi(ω)), show that

f(ω) =
∑

S⊆{1,...,n}

f̂(S) (n− 2|S|)χS.

(c) Using the previous step, show that

〈f, f〉 ≤ 4E(Z)2 + (n− 4)E(Z2) .

(d) On the other hand, show (without using any of the above) that f ≥ (n − 2)f ,
from which it follows that

〈f, f〉 ≥ (n− 2)E(Z2).

(e) Combine the last two steps to finish the argument.
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Chapter VI

First evidence of noise sensitivity of
percolation

In this chapter, our goal is to collect some of the facts and theorems we have seen so far
in order to conclude that percolation crossings are indeed noise sensitive. Recall from
the “BKS” Theorem (Theorem I.21) that it is enough for this purpose to prove that
influences are “small” in the sense that

∑
k Ik(fn)2 goes to zero. If we only want to use

what we have actually proved in this book, namely Proposition V.6, then we need to
demonstate (V.6) in this proposition.

In the first section, we will deal with a careful study of influences in the case of
percolation crossings on the triangular lattice. Then, we will treat the case of Z2,
where conformal invariance is not known. Finally, we will speculate to what “extent”
percolation is noise sensitive.

This whole chapter should be considered somewhat of a “pause” in our program,
where we take the time to summarize what we have achieved so far in our understanding
of the noise sensitivity of percolation, and what remains to be done if one wishes to
obtain the exact “noise sensitivity exponent” as well as the existence of exceptional
times for dynamical percolation .

1 Bounds on influences for crossing events in criti-

cal percolation on the triangular lattice

1.1 Setup

Fix a, b > 0, let us consider some rectangle [0, a · n] × [0, b · n], and let Rn be the set
of hexagons in T which intersect [0, a · n] × [0, b · n]. Let fn be the event that there
is a left to right crossing event in Rn. (This is the same event as in Example I.22 in
chapter I, but with Z2 replaced by T). By the RSW Theorem II.1, we know that {fn}
is nondegenerate. Conformal invariance tells us that E

[
fn

]
= P

[
fn = 1

]
converges as

65
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n→∞. This limit is given by the so-called Cardy’s formula.

In order to prove that this sequence of Boolean functions {fn} is noise sensitive,
we wish to study its influence vector Inf(fn) and we would like to prove that H(fn) =
‖Inf(fn)‖22 =

∑
Ik(fn)2 decays polynomially fast towards 0. (Recall that we have given

a complete proof of Theorem I.21 only in the case where H(fn) decreases as an inverse
polynomial of the number of variables.)

1.2 Study of the set of influences

Let x be a site (i.e. a hexagon) in the rectangle Rn. One needs to understand

Ix(fn) := P
[
x is pivotal for fn

]

It is easy but crucial to note that if x is
at distance d from the boundary of Rn, in
order for x to be pivotal, the four-arm event
described in Chapter II (see Figure II.2) has
to be satisfied in the ball B(x, d) of radius
d around the hexagon x. See the figure on
the right.

d

x

In particular, this implies (still under the assumption that dist(x, ∂Rn) = d) that

Ix(fn) ≤ α4(d) = d−
5
4
+o(1) ,

where α4(d) denotes the probability of the four-arm event up to distance d. See Chapter
II. The statement

α4(R) = R−5/4+o(1)

implies that for any ε > 0, there exists a constant C = Cε, such that for all R ≥ 1,

α4(R) ≤ C R−5/4+ε .

The above bound gives us very good control on the influences of the points in the
bulk of the domain (i.e. the points far from the boundary). Indeed, for any fixed δ > 0,
let ∆δ

n be the set of hexagons in Rn which are at distance at least δn from ∂Rn. Most
of the points in Rn (except a proportion O(δ) of these) lie in ∆δ

n, and for any such point
x ∈ ∆δ

n, one has by the above argument

Ix(fn) ≤ α4(δn) ≤ C (δn)−5/4+ε ≤ Cδ−5/4n−5/4+ε . (VI.1)
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Therefore, the contribution of these points to H(fn) =
∑

k Ik(fn)2 is bounded by
O(n2)(Cδ−5/4n−5/4+ε)2 = O(δ−5/2n−1/2+2ε). As n→∞, this goes to zero polynomially
fast. Since this estimate concerns “almost” all points in Rn, it seems we are close to
proving the strong form (V.6) of the BKS criterion. Still, in order to complete the
above analysis, one has to estimate what the influences of the points near the boundary
are.

1.3 Influence of the boundary

The main difficulty here is that if x is close to the boundary, the probability for x to be
pivotal is not related anymore to the above four-arm event. Think of the above figure
when d gets very small compared to n. One has to distinguish two cases:

• x is close to a corner. This will correspond to a two-arm event in a quarter-plane.

• x is close to an edge. This involves the three-arm event in the half-plane H.

Before detailing how to estimate the influence of points near the boundary, let us
start by giving the necessary background on the involved critical exponents.

The two-arm and three-arm events in H For these particular events, it turns
out that the critical exponents are known to be universal: they are two of the very few
critical exponents which are known also on the square lattice Z2. The derivations of
these exponents do not rely on SLE technology but are “elementary”. Therefore, in
this discussion, we will consider both lattices T and Z2.

The three-arm event in H corre-
sponds to the event that there are
three arms (two open arms and
one “closed” arm in the dual) go-
ing from 0 to distance R and such
that they remain in the upper half-
plane. See the figure for a self-
explanatory definition. The two-
arm event corresponds to just hav-
ing one open and one closed arm.

RT or Z2

Let α+
2 (R) and α+

3 (R) denote the probabilities of these events. As in chapter II, let
α+

2 (r, R) and α+
3 (r, R) be the natural extensions to the annulus case (i.e. the probability

that these events are satisfied in the annulus between radii r and R in the upper half-
plane).

We will rely on the following result, which goes back as far as we know to M.
Aizenman. See [Wer07] for a proof of this result.
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Proposition VI.1. Both on the triangular lattice T and on Z2, one has that

α+
2 (r, R) � (r/R)

and
α+

3 (r, R) � (r/R)2 .

Note that, in these special cases, there are no o(1) correction terms in the exponent but
rather these probabilities are known up to constants.

The two-arm event in the quarter-plane In this case, the corresponding exponent
is unfortunately not known on Z2, so we will need to do some work here in the next
section, where we will prove noise sensitivity of percolation crossings on Z2.

The two-arm event in a corner corresponds to
the event illustrated on the following picture.
We will use the following proposition:

Proposition VI.2 ([SW01]). If α++
2 (R) de-

notes the probability of this event, then

α++
2 (R) = R−2+o(1) ,

and with the obvious notations

α++
2 (r, R) = (r/R)2+o(1) .

R

T

Now, back to our study of influences, we are in good shape (at least for the triangular
lattice) since the two critical exponents arising from the boundary effects are larger than
the bulk exponent 5/4. This means that it is less likely for a point near the boundary
to be pivotal than for a point in the bulk. Therefore in some sense the boundary helps
us here.

More formally, summarizing the above facts, for any ε > 0, there is a constant
C = C(ε) such that for any 1 ≤ r ≤ R,

max{α4(r, R), α+
3 (r, R), α++

2 (r, R)} ≤ C(r/R)
5
4
−ε . (VI.2)

Now, if x is some hexagon in Rn, let n0 be the distance to the closest edge of ∂Rn

and let x0 be the point on ∂Rn such that dist(x, x0) = n0. Next, let n1 ≥ n0 be the
distance from x0 to the closest corner and let x1 be this closest corner. It is easy to see
that for x to be pivotal for fn, the following events all have to be satisfied:

• The four-arm event in the ball of radius n0 around x.

• The H-three-arm event in the annulus centered at x0 of radii 2n0 and n1.
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• The corner-two-arm event in the annulus centered at x1 of radii 2n1 and n.

By independence on disjoint sets, one thus concludes that

Ix(fn) ≤ α4(n0) α+
3 (2n0, n1) α++

2 (2n1, n)

≤ O(1)n−5/4+ε .

1.4 Noise sensitivity of crossing events

The uniform bound (VI.3) on the influences over the whole domain Rn enables us to
conclude that the strong form (V.6) of the BKS criterion is satisfied. Indeed,

H(fn) =
∑
x∈Rn

Ix(fn)2 ≤ Cn2(n−5/4+ε)2 = Cn−1/2+2ε , (VI.3)

where C = C(a, b, ε) is a universal constant. By taking ε < 1/4, this gives us the desired
polynomial decay on H(fn), which by Proposition V.6 implies

Theorem VI.3 ([BKS99]). The sequence of percolation crossing events {fn} on T is
noise sensitive.

We will give some other consequences (for example, to sharp thresholds) of the
above analysis on the influences of the crossing events in a later section in this chapter.

2 The case of Z2 percolation

Let Rn denote similarly the Z2 rectangle closest to [0, a · n] × [0, b · n] and let fn be
the corresponding left-right crossing event (so here this corresponds exactly to Example
I.22). Here one has to face two main difficulties:

• The main one is that due to the missing ingredient of conformal invariance, one
does not have at our disposal the value of the four-arm critical exponent (which
is of course believed to be 5/4). In fact, even the existence of a critical exponent
is an open problem.

• The second difficulty (also due to the lack of conformal invariance) is that it is
now slightly harder to deal with boundary issues. Indeed, one can still use the
above bounds on α+

3 which are universal, but the exponent 2 for α++
2 is not known

for Z2. So this requires some more analysis.

Let us start by taking care of the boundary effects.
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2.1 Handling the boundary effect

What we need to do in order to carry through the above analysis for Z2 is to ob-
tain a reasonable estimate on α++

2 . Fortunately, the following bound, which follows
immediately from Proposition VI.1, is sufficient:

α++
2 (r, R) ≤ O(1)

r

R
. (VI.4)

Now let e be an edge in Rn. We wish to bound from above Ie(fn). We will use
the same notation as in the case of the triangular lattice: recall the definitions of
n0, x0, n1, x1 there.

We obtain in the same way

Ie(fn) ≤ α4(n0) α+
3 (2n0, n1) α++

2 (2n1, n) . (VI.5)

At this point, we need another universal exponent, which goes back also to M.
Aizenman:

Theorem VI.4 (M. Aizenman, see [Wer07]). Let α5(r, R) denote the probability that
there are 5 arms (with four of them being of “alternate colors”). Then there are uni-
versal constants c, C > 0 such that both for T and Z2, one has for all 1 ≤ r ≤ R,

c
( r

R

)2 ≤ α5(r, R) ≤ C
( r

R

)2
.

This result allows us to get a lower bound on α4(r, R). Indeed, it is clear that

α4(r, R) ≥ α5(r, R) ≥ Ω(1)α+
3 (r, R) . (VI.6)

In fact, one can obtain the following better lower bound on α4(r, R) which we will
need later.

Lemma VI.5. There exists some ε > 0 and some constant c > 0 such that for any
1 ≤ r ≤ R,

α4(r, R) ≥ c(r/R)2−ε .

Proof. There are several ways to see why this holds, none of them being either very
hard or very easy. One of them is to use Reimer’s inequality (see [Re00, Gri99])
which in this case would imply that

α5(r, R) ≤ α1(r, R)α4(r, R) . (VI.7)

The RSW Theorem II.1 can be used to show that

α1(r, R) ≤ (r/R)α

for some positive α. By Theorem VI.4, we are done. [See [[GPS10], Section 2.2 as well
as the appendix] for more on these bounds.]
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Combining (VI.5) with (VI.6), one obtains

Ie(fn) ≤ O(1)α4(n0)α4(2n0, n1)α
++
2 (2n1, n)

≤ O(1)α4(n1)
n1

n
,

where in the last inequality we used quasi-multiplicativity (Proposition II.3) as well as
the bound given by (VI.4).

Recall that we want an upper
bound on H(fn) =

∑
Ie(fn)2. In

this sum over edges e ∈ Rn, let us
divide the set of edges into dyadic
annuli centered around the 4 cor-
ners as in the next picture.

bn

2k 2k+1

Notice that there are O(1)22k edges in an annulus of radius 2k. This enables us to
bound H(fn) as follows:

∑
e∈Rn

Ie(fn)2 ≤ O(1)

log2 n+O(1)∑
k=1

22k
(
α4(2

k)
2k

n

)2

≤ O(1)
1

n2

∑
k≤log2 n+O(1)

24k α4(2
k)2 . (VI.8)

It now remains to obtain a good upper bound on α4(R), for all R ≥ 1.

2.2 An upper bound on the four-arm event in Z2

This turns out to be a rather nontrivial problem. Recall that we obtained an easy
lower bound on α4 using α5 (and Lemma VI.5 strengthens this lower bound). For an
upper bound, completely different ideas are required. On Z2, the following estimate is
available for the 4-arm event.

Proposition VI.6. For critical percolation on Z2, there exist constants ε, C > 0 such
that for any R ≥ 1, one has

α4(1, R) ≤ C
( 1

R

)1+ε

.
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Before discussing where such an estimate comes from, let us see that it indeed
implies a polynomial decay for H(fn).

Recalling Equation (VI.8) and plugging in the above estimate, this gives us∑
e∈Rn

Ie(fn)2 ≤ O(1)
1

n2

∑
k≤log2 n+O(1)

24k (2k)−2−2ε

≤ O(1)
1

n2
n2−2ε = O(1)n−2ε ,

which implies the desired polynomial decay and thus the fact that {fn} is noise sensitive
by Proposition V.6.

Let us now discuss different approaches which allows one to prove Proposition VI.6.

(1) Kesten proved implicitly this estimate in his celebrated paper [Kes87]. His main
motivation for such an estimate was to obtain bounds on the corresponding critical
exponent which governs the so-called critical length.

(2) In [BKS99], in order to prove noise sensitivity of percolation using their criterion
on H(fn), the authors referred to [Kes87], but they also gave a completely different
approach which also yields this estimate.

Their alternative approach is very nice: finding an upper bound for α4(R) is
related to finding an upper bound for the influences for crossings of an R×R box.
For this, they noticed the following nice phenomenon: if a monotone function f
happens to be very little correlated with Majority, then its influences have to be
small (see Sections 12 and 13). The proof of this phenomenon uses for the first
time in this context the concept of “randomized algorithms”.

(3) In [SS10], the concept of randomized algorithms is used in a more powerful way;
see Chapter VIII. In this chapter, a proof of Proposition VI.6 is provided.

Remark It turns out that that a multi-scale version of Proposition VI.6 stating that

α4(r, R) ≤ C
(

r
R

)1+ε

is also true. However, none of the three arguments given above

seem to prove this stronger version. A proof of this stronger version is given in the
appendix of [SS11]. Since this multi-scale version is not needed until Chapter X, we
stated here only the weaker version.

3 Some other consequences of our study of influ-

ences

In the previous sections, we handled the boundary effects in order to check that H(fn)
indeed decays polynomially fast. Let us list some related results implied by this analysis.
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3.1 Energy spectrum of fn

We start by a straightforward observation: since the fn are monotone, we have by
Proposition IV.5 that

f̂n({x}) =
1

2
Ix(fn) ,

for any site x (or edge e) in Rn. Therefore, the bounds we obtained on H(fn) imply the
following control on the first layer of the energy spectrum of the crossing events {fn}.

Corollary VI.7. Let {fn} be the crossing events of the rectangles Rn.

(i) If we are on the triangular lattice T, then we have the bound

Efn(1) =
∑
|S|=1

f̂n(S)2 ≤ n−1/2+o(1) .

(ii) On the square lattice Z2, we end up with the weaker estimate

Efn(1) ≤ C n−ε ,

for some ε, C > 0.

3.2 Sharp threshold of percolation

The above analysis gave an upper bound on
∑

k Ik(fn)2. As we have seen in the first
chapters, the total influence I(fn) =

∑
k Ik(fn) is also a very interesting quantity. Recall

that, by Russo’s formula, this is the quantity which shows “how sharp” the threshold
is for p 7→ Pp[fn = 1].

The above analysis allows us to prove the following.

Proposition VI.8. Both on T and Z2, one has

I(fn) � n2α4(n) .

In particular, this shows that on T that

I(fn) � n3/4+o(1) .

Remark Since fn is defined on {−1, 1}O(n2), note that the Majority function defined
on the same hypercube has a much sharper threshold than the percolation crossings fn.

Proof. We first derive an upper bound on the total influence. In the same vein (i.e.,
using dyadic annuli and quasi-multiplicativity) as we derived (VI.8) and with the same
notation one has

I(fn) =
∑

e

Ie(fn) ≤
∑

e

O(1)α4(n1)
n1

n

≤ O(1)
1

n

∑
k≤log2 n+O(1)

23kα4(2
k) .



74CHAPTER VI. FIRST EVIDENCE OF NOISE SENSITIVITY OF PERCOLATION

Now, and this is the main step here, using quasi-multiplicativity one has α4(2
k) ≤

O(1) α4(n)
α4(2k,n)

, which gives us

I(fn) ≤ O(1)
α4(n)

n

∑
k≤log2 n+O(1)

23k 1

α4(2k, n)

≤ O(1)
α4(n)

n

∑
k≤log2 n+O(1)

23k n2

22k
since α4(r, R) ≥ α5(r, R) � (r/R)−2

≤ O(1)n α4(n)
∑

k≤log2 n+O(1)

2k

≤ O(1)n2α4(n)

as desired.
For the lower bound on the total influence, we proceed as follows. One obtains

a lower bound by just summing over the influences of points whose distance to the
boundary is at least n/4. It would suffice if we knew that for such edges or hexagons,
the influence is at least a constant times α4(n). This is in fact known to be true. It
is not very involved and is part of the folklore results in percolation. However, it still
would lead us too far from our topic. The needed technique is known under the name
of separation of arms and is clearly related to the statement of quasi-multiplicativity.
See [Wer07] for more details.

4 Quantitative noise sensitivity

In this chapter, we have proved that the sequence of crossing events {fn} is noise
sensitive. This can be roughly translated as follows: for any fixed level of noise ε >
0, as n → ∞, the large scale clusters of ω in the window [0, n]2 are asymptotically
independent of the large scale clusters of ωε.

Remark Note that this picture is correct, but in order to make it rigorous, this would
require some work, since so far we only worked with left-right crossing events. The
nontrivial step here is to prove that in some sense, in the scaling limit n → ∞, any
macroscopic property concerning percolation (e.g., diameter of clusters) is measurable
with respect to the σ-algebra generated by the crossing events. This is a rather subtle
problem since we need to make precise what kind of information we keep in what we
call the “scaling limit” of percolation (or subsequential scaling limits in the case of
Z2). An example of something which is not present in the scaling limit is whether one
has more open sites than closed ones since by noise sensitivity we know that this is
asymptotically uncorrelated with crossing events. We will not need to discuss these
notions of scaling limits more here since the focus is mainly on the discrete model itself
including the model of dynamical percolation which is presented in Chapter XI.
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At this stage, a natural question to ask is to what extent the percolation picture is
sensitive to “small” noise. In other words, can we let the noise ε = εn go to zero with
the “size of the system” n, and yet keep this independence of large scale structures
between ω and ωεn ? If yes, can we give quantitative estimates on how fast the noise
ε = εn may go to zero? One can state this question more precisely as follows.

Question VI.9. If {fn} corresponds to our left-right crossing events, for which se-
quences of noise levels {εn} do we have

lim
n→∞

Cov[fn(ω), fn(ωεn)] = 0 ?

The purpose of this section is to briefly discuss this question based on the results
we have obtained so far.

4.1 Link with the energy spectrum of {fn}
It is an exercise to show that Question VI.9 is essentially equivalent to the following
one (see Exercise IX.1 in Chapter IX).

Question VI.10. For which sequences {kn} going to infinity do we have

kn∑
m=1

Efn(m) =
∑

1≤|S|≤kn

f̂n(S)2 −→
n→∞

0 ?

Recall that we have already obtained some relevant information on this question.
Indeed, we have proved in this chapter that H(fn) =

∑
x Ix(fn)2 decays polynomially

fast towards 0 (both on Z2 and T). Therefore Proposition V.6 tells us that for some
constant c > 0, one has for both T and Z2 that∑

1≤|S|≤c log n

f̂n(S)2 → 0 . (VI.9)

Therefore, back to our original question VI.9, this gives us the following quantitative
statement: if the noise εn satisfies εn � 1

log n
, then fn(ω) and fn(ωεn) are asymptotically

independent.

4.2 Noise stability regime

Of course, one cannot be too demanding on the rate of decay of {εn}. For example if
εn � 1

n2 , then in the domain [0, n]2, with high probability, the configurations ω and ωεn

are identical. This brings us to the next natural question concerning the noise stability
regime of crossing events.
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Question VI.11. Let {fn} be our sequence of crossing events. For which sequences
{εn} do we have

P
[
fn(ω) 6= fn(ωεn)

]
−→
n→∞

0 ?

It is again an exercise to show that this question is essentially equivalent to the
following one (see Exercise IX.2 in Chapter IX).

For which sequences {kn} do we have∑
|S|>kn

f̂n(S)2 → 0 ?

Using the estimates of the present chapter, one can give the following nontrivial
bound on the noise stability regime of {fn}.

Proposition VI.12. Both on Z2 and T, if

εn = o
( 1

n2α4(n)

)
,

then

P
[
fn(ω) 6= fn(ωεn)

]
−→
n→∞

0

On the triangular grid, using the critical exponent, this gives us a bound of n−3/4 on
the noise stability regime of percolation.

Proof. Let {εn} be a sequence satisfying the above assumption. There are O(n2) bits
concerned. For simplicity, assume that there are exactly n2 bits.

Let ω = ω0 = (x1, . . . , xn2) be sampled according to the uniform measure. Recall
that the noised configuration ωεn is produced as follows: for each i ∈ [n2], resample the
value xi with probability εn, independently of everything else, obtaining the value yi.
(In particular yi 6= xi with probability εn/2).

Now for each i ∈ [n2] define the intermediate configuration

ωi := (y1, . . . , yi, xi+1, . . . , xn2)

Notice that for each i ∈ [n2], ωi is also sampled according to the uniform measure
and one has for each i ∈ {1, . . . , n2} that

P
[
fn(ωi−1) 6= fn(ωi)

]
= (εn/2) Ii(fn) .
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Summing over all i, one obtains

P
[
fn(ω) 6= fn(ωεn)

]
= P

[
fn(ω0) 6= fn(ωn2)

]
≤

n2∑
i=1

P
[
fn(ωi−1) 6= fn(ωi)

]
= (εn/2)

n2∑
i=1

Ii(fn)

= (εn/2) I(fn)

≤ εnO(1)n2α4(n) by Proposition VI.8,

which concludes the proof.

Remark The proof of Proposition VI.12 immediately yields that given any sequence
of Boolean functions {fn}, if εnI(fn) → 0 as n → ∞, then P

[
fn(ω) 6= fn(ωεn)

]
→ 0 as

n→∞.

It might be of interest to see a different proof of Proposition VI.12 which also holds in
the context of the previous remark.

Alternative Proof of Proposition VI.12:
We assume the functions {fn} map into {±1}. We then have

E
[
fn(ω)fn(ωεn)

]
=

∑
S

f̂(S)2(1− εn)|S|

≥ (1− εn)
P

S |S|f̂(S)2

= (1− εn)I(fn)

(VI.10)

where the inequality follows from Jensen’s inequality and the last equality from Propo-
sition IV.4 (and the remark afterwards). The assumption yields that the last term
approaches 1 as n→∞. This is equivalent to the statement of the result.

4.3 Where does the spectral mass lie?

Proposition VI.12 (together with Exercise IX.2 in Chapter IX) implies that the Fourier
coefficients of {fn} satisfy ∑

|S|�n2α4(n)

f̂n(S)2 −→
n→∞

0 . (VI.11)

From Lemma VI.5, we know that even on Z2, n2α4(n) is larger than nε for some
exponent ε > 0. Combining the estimates on the spectrum that we achieved so far
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k

Efn
(k) :=

∑
|S|=k f̂n(S)2

c log n n3/4+o(1)

Where is

the Spec-

tral mass

of fn ?

. . .

Figure VI.1: This picture summarizes our present knowledge of the energy spectrum
of {fn} on the triangular lattice T. Much remains to be understood to know where, in
the range [Ω(log n), n3/4+o(1)], the spectral mass lies. This question will be analyzed in
the following chapters.

(equations (VI.9) and (VI.11)), we see that in order to localize the spectral mass of
{fn}, there is still a missing gap. See Figure VI.1.

For our later applications to the model of dynamical percolation in Chapter XI,
an understanding of the noise sensitivity of percolation better than the “logarithmic”
control we have achieved so far will be needed.

5 Exercises

Instead of the usual set of exercises, this chapter ends with a single problem whose goal
will be to do hands-on computations of the first layers of the energy spectrum of the
percolation crossing events fn. Recall from Proposition IV.2 that a sequence of Boolean
functions {fn} is noise sensitive if and only if for any fixed k ≥ 1,

k∑
m=1

∑
|S|=m

f̂n(S)2 =
k∑

m=1

Efn(m) −→
n→∞

0 .

In this chapter, we verified (using Proposition IV.5) that this is indeed the case
for k = 1. The purpose here is to check by simple combinatorial arguments (without
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relying on hypercontractivity) that it is still the case for k = 2 and to convince ourselves
that it works for all layers k ≥ 3.

To start with, we will simplify our task by working on the torus Z2/nZ2. This has
the great benefit of eliminating boundary issues.

Energy spectrum of crossing events on the torus (study of the
first layers)

Let Tn be either the square grid torus Z2/nZ2 or the triangular grid torus T/nT. Let
fn be the indicator of the event that there is an open circuit along the first coordinate
of Tn.

(a) Using RSW, prove that there is a constant c > 0 such that for all n ≥ 1,

c ≤ P
[
fn = 1

]
≤ 1− c .

(In other words, {fn} is nondegenerate.)

(b) Show that for all edges e (or sites x) in Tn

Ie(fn) ≤ α4(
n

2
) .

(c) Check that the BKS criterion (about H(fn)) is satisfied. Therefore {fn} is noise
sensitive

From now on, one would like to forget about the BKS Theorem and try to do
some hands-on computations in order to get a feeling why most frequencies should
be large.

(d) Show that if x, y are two sites of Tn (or similarly if e, e′ are two edges of Tn), then

|f̂({x, y})| ≤ 2P
[

x and y are pivotal points
]
.

Does this result hold for general Boolean functions?

(e) Show that if d := |x− y|, then

P
[

x and y are pivotal points
]
≤ O(1)

α4(n/2)2

α4(
d
2
, n

2
)

.

(Hint: use Proposition II.3.)
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(f) On the square lattice Z2, by carefully summing over all edges e, e′ ∈ Tn×Tn, show
that

Efn(2) =
∑
|S|=2

f̂n(S)2 ≤ O(1)n−ε ,

for some exponent ε > 0.

Hint: you might decompose the sum in a dyadic way (as we did many times in
the present section) depending on the mutual distance d(e, e′).

(g) On the triangular grid, what exponent does it give for the decay of Efn(2)? Com-
pare with the decay we found in Corollary VI.7 about the decay of the first layer
Efn(1) (i.e. k = 1). See also Lemma V.7 in this regard. Discuss this.

(h) For T, what do you expect for higher (fixed) values of k? (I.e. for Efn(k), k ≥ 3)?

Observe that one can do similar things for rectangles but then one has to deal with
boundary issues.



Chapter VII

Anomalous fluctuations

In this chapter, our goal is to extend the technology we used to prove the KKL Theorems
on influences and the BKS Theorem on noise sensitivity to a slightly different context:
the study of fluctuations in first passage percolation.

1 The model of first passage percolation

Let us first explain what the model is. Let 0 < a < b be two positive numbers. We
define a random metric on the graph Zd, d ≥ 2 as follows. Independently for each
edge e ∈ Ed, fix its length τe to be a with probability 1/2 and b with probability 1/2.
This is represented by a uniform configuration ω ∈ {−1, 1}Ed

.
This procedure induces a well-defined (random) metric distω on Zd in the usual

fashion. For any vertices x, y ∈ Zd, let

distω(x, y) := inf
paths γ = {e1, . . . , ek}
connecting x→ y

{∑
τei

(ω)
}

.

Remark In greater generality, the lengths of the edges are i.i.d. nonnegative random
variables, but here, following [BKS03], we will restrict ourselves to the above uniform
distribution on {a, b} to simplify the exposition; see [BR08] for an extension to more
general laws.

One of the main goals in first passage percolation is to understand the large-scale
properties of this random metric space. For example, for any T ≥ 1, one may consider
the (random) ball

Bω(x, T ) := {y ∈ Zd : distω(x, y) ≤ T}.
To understand the name first passage percolation, one can think of this model as

follows. Imagine that water is pumped in at vertex x, and that for each edge e, it takes
τe(ω) units of time for the water to travel across the edge e. Then, Bω(x, T ) represents
the region of space that has been wetted by time T .

81
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Figure VII.1: A sample of a wetted region at time T , i.e. Bω(x, T ), in first passage
percolation.

An application of subadditivity shows that the renormalized ball 1
T
Bω(0, T ) con-

verges as T → ∞ towards a deterministic shape which can in certain cases be com-
puted explicitly. This is a kind of “geometric law of large numbers”. Whence the
natural question:

Question VII.1. Describe the fluctuations of Bω(0, T ) around its asymptotic deter-
ministic shape.

This question has received tremendous interest in the last 15 years or so. It is
widely believed that these fluctuations should be in some sense “universal”. More
precisely, the behavior of Bω(0, T ) around its limiting shape should not depend on the
“microscopic” particularities of the model such as the law on the edges lengths but only
on the dimension d of the underlying graph. The shape itself depends on the other hand
of course on the microscopic parameters, in the same way as the critical point depends
on the graph in percolation.

In the two-dimensional case, using very beautiful combinatorial bijections with ran-
dom matrices, certain cases of directed last passage percolation (where the law on the
edges is taken to be geometric or exponential) have been understood very deeply. For
example, it is known (see [Joh00]) that the fluctuations of the ball of radius n (i.e.
the points whose last passage times are below n) around n times its asymptotic deter-
ministic shape are of order n1/3 and the law of these fluctuations properly renormalized
follows the Tracy-Widom distribution. Very interestingly, the fluctuations of the largest
eigenvalue of GUE ensembles also follow this distribution.
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2 State of the art

Returning to our initial model of (nondirected) first passage percolation, it is thus
conjectured that, for dimension d = 2, fluctuations are of order n1/3 following a Tracy-
Widom Law. Still, the current state of understanding of this model is far from this
conjecture.

Kesten first proved that the fluctuations of the ball of radius n are at most
√

n (this
did not yet exclude a possible Gaussian behavior with Gaussian scaling). Benjamini,
Kalai and Schramm then strengthened this result by showing that the fluctuations are
sub-Gaussian. This is still far from the conjectured n1/3-fluctuations, but their approach
has the great advantage of being very general; in particular their result holds in any
dimension d ≥ 2.

Let us now state their main theorem concerning the fluctuations of the metric dist.

Theorem VII.2 ([BKS03]). For all a, b, d, there exists an absolute constant C =
C(a, b, d) such that in Zd,

Var(distω(0, v)) ≤ C
|v|

log |v|

for any v ∈ Zd, |v| ≥ 2.

To keep things simple here, we will only prove the analogous statement on the torus
where one has more symmetries and invariance to play with.

3 The case of the torus

Let Td
m be the d-dimensional torus (Z/mZ)d. As in the above lattice model, indepen-

dently for each edge of Td
m, we choose its length to be either a or b equally likely. We are

interested here in the smallest length among all closed paths γ “winding” around the
torus along the first coordinate Z/mZ (i.e. those paths γ which when projected onto
the first coordinate have winding number one). In [BKS03], this is called the shortest
circumference. For any configuration ω ∈ {a, b}E(Td

m), this shortest circumference is
denoted by Circm(ω).

Theorem VII.3 ([BKS03]). There is a constant C = C(a, b) (which does not depend
on the dimension d), such that

var(Circm(ω)) ≤ C
m

log m
.

Remark A similar analysis as the one carried out below works in greater generality:
if G = (V, E) is some finite connected graph endowed with a random metric dω with
ω ∈ {a, b}⊗E, then one can obtain bounds on the fluctuations of the random diameter
D = Dω of (G, dω). See [BKS03, Theorem 2] for a precise statement in this more
general context.
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(Z/mZ)2

γm

Figure VII.2: The shortest geodesic along the first coordinate for the random metric
distω on (Z/mZ)2.

Proof.

For any edge e, let us consider the gradient along the edge e: ∇eCircm. These
gradient functions have values in [−(b − a), b − a]. By dividing our distances by the
constant factor b− a, we can even assume without loss of generality that our gradient
functions have values in [−1, 1]. Doing so, we end up being in a setup similar to the
one we had in Chapter V. The influence of an edge e corresponds here to Ie(Circm) :=
P
[
∇eCircm(ω) 6= 0

]
. We will prove later on that Circm has very small influences. In

other words, we will show that the above gradient functions have small support, and
hypercontractivity will imply the desired bound.

We have thus reduced the problem to the following general framework. Consider a
real-valued function f : {−1, 1}n → R, such that for any variable k, ∇kf ∈ [−1, 1]. We
are interested in Var(f) and we want to show that if “influences are small” then Var(f)
is small. It is easy to check that the variance can be written

Var(f) =
1

4

∑
k

∑
∅6=S⊆[n]

1

|S|
∇̂kf(S)2 .

If all the variables have very small influence, then, as previously, ∇kf should be of high
frequency. Heuristically, this should then imply that

Var(f) �
∑

k

∑
S 6=∅

∇̂kf(S)2

=
∑

k

Ik(f) .
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This intuition is quantified by the following lemma on the link between the fluctu-
ations of a real-valued function f on Ωn and its influence vector.

Lemma VII.4. Let f : Ωn → R be a (real-valued) function such that each of its discrete
derivatives ∇kf, k ∈ [n] have their values in [−1, 1]. Let Ik(f) := P

[
∇kf 6= 0

]
be the

influence of the kth bit. Assume that the influences of f are small in the sense that
there exists some α > 0 such that for any k ∈ {1, . . . , n}, Ik(f) ≤ n−α. Then there is
some constant C = C(α) such that

Var(f) ≤ C

log n

∑
k

Ik(f) .

Remark If f is Boolean, then this follows from Theorem I.16 with C(α) = c/α with c
universal.

The proof of this lemma is postponed to the next section. In the meantime, let us
show that in our special case of first passage percolation on the torus, the assumption
on small influences is indeed verified. Since the edge lengths are in {a, b}, the smallest
contour Circm(ω) in Td

m around the first coordinate lies somewhere in [am, bm]. Hence,
if γ is a geodesic (a path in the torus with the required winding number) satisfying
length(γ) = Circm(ω), then γ uses at most b

a
m edges. There might be several different

geodesics minimizing the circumference. Let us choose randomly one of these in an
“invariant” way and call it γ̃. For any edge e ∈ E(Td

m), if, by changing the length of
e, the circumference increases, then e has to be contained in any geodesic γ, and in
particular in γ̃. This implies that P

[
∇eCircm(ω) < 0

]
≤ P

[
e ∈ γ̃

]
. By symmetry we

obtain
Ie(Circm) = P

[
∇eCircm(ω) 6= 0

]
≤ 2P

[
e ∈ γ̃

]
.

Now using the symmetries both of the torus Td
m and of our observable Circm, if γ̃

is chosen in an appropriate invariant way (uniformly among all geodesics for instance),
then it is clear that all the “vertical” edges (meaning those edges which, when projected
onto the first coordinate, project onto a single vertex) have the same probability to lie
in γ̃. The same is true for the “horizontal” edges. In particular we have that∑

“vertical” edges e

P
[
e ∈ γ̃

]
≤ E

[
|γ̃|

]
≤ b

a
m .

Since there are at least order md vertical edges, the influence of each of these is bounded
by O(1)m1−d. The same is true for the horizontal edges. All together this gives the
desired assumption needed in Lemma VII.4. Applying this lemma, we indeed obtain

Var(Circm(ω)) ≤ O(1)
m

log m
,

where the constant does not depend on the dimension d; the dimension in fact helps us
here, since it makes the influences smaller.
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Remark At this point, we know that for any edge e, Ie(Circm) = O( m
md ). Hence, at

least in the case of the torus, one easily deduces from Poincaré’s inequality the theorem
by Kesten which says that Var(Circm) = O(m).

4 Upper bounds on fluctuations in the spirit of KKL

In this section, we prove Lemma VII.4.

Proof. Similarly as in the proofs of Chapter V, the proof relies on implementing hyper-
contractivity in the right way. We have that for any c,

var(f) =
1

4

∑
k

∑
S 6=∅

1

|S|
∇̂kf(S)2

≤ 1

4

∑
k

∑
0<|S|<c log n

∇̂kf(S)2 +
O(1)

log n

∑
k

Ik(f)

where the O(1) term depends on the choice of c.
Hence it is enough to bound the contribution of small frequencies, 0 < |S| < c log n,

for some constant c which will be chosen later. As previously we have for any ρ ∈ (0, 1)
and using hypercontractivity,∑

k

∑
0<|S|<c log n

∇̂kf(S)2 ≤ ρ−2c log n
∑

k

‖Tρ∇kf‖22

≤ ρ−2c log n
∑

k

‖∇kf‖21+ρ2

≤ ρ−2c log n
∑

k

Ik(f)2/(1+ρ2)

≤ ρ−2c log n
(
sup

k
Ik(f)

) 1−ρ2

1+ρ2
∑

k

Ik(f)

≤ ρ−2c log nn
−α 1−ρ2

1+ρ2
∑

k

Ik(f) by our assumption .

(VII.1)

Now fixing any ρ ∈ (0, 1), and then choosing the constant c depending on ρ and α,
the lemma follows. By optimizing on the choice of ρ, one could get better constants if
one wants.

5 Further discussion

Some words on the proof of Theorem VII.2
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The main difficulty here is that the quantity of interest, f(ω) := distω(0, v), is no
longer invariant under a large class of graph automorphisms. This lack of symmetry
makes the study of influences more difficult. For example, edges near the endpoints 0
or v have very high influence (of order one). To gain some more symmetry, the authors
in [BKS03] rely on a very nice “averaging” procedure. We refer to this paper for more
details.

Known lower bounds on the fluctuations

We discussed mainly here ways to obtain upper bounds on the fluctuations of the
shapes in first passage percolation. It is worth pointing out that some nontrivial lower
bounds on the fluctuations are known for Z2. See [PP94, NP95].

Remark We end by mentioning that the proof given in [BKS03] was based on an
inequality by Talagrand. The proof given here avoids this inequality.

6 Exercises

Problem VII.1. Let n ≥ 1 and d ≥ 2. Consider the random metric on the torus
Zd/nZd as described in this chapter. For any k ≥ 1, let Ak

n be the event that the
shortest “horizontal” circuit is ≤ k. If d ≥ 3, show that for any choice of kn = k(n),
the family of events Akn

n is noise sensitive. (Note that the situation here is similar
to the Problem I.9 in Chapter I.) Finally, discuss the two-dimensional case, d = 2
(nonrigorously).

Exercise VII.2. Show that Lemma VII.4 is false if Ik(f) is taken to be the square of the
L2 norm of ∇kf rather than the probability of its support (i.e. find a counterexample).
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Chapter VIII

Randomized algorithms and noise
sensitivity

In this chapter, we explain how the notion of revealment for so-called randomized
algorithms can in some cases yield direct information concerning the energy spectrum
which may allow not only noise sensitivity results but even quantitative noise sensitivity
results.

1 BKS and randomized algorithms

In the previous chapter, we explained how Theorem I.21 together with bounds on
the pivotal exponent for percolation yields noise sensitivity for percolation crossings.
However, in [BKS99], a different approach was in fact used for showing noise sensitivity
which, while still using Theorem I.21, did not use these bounds on the critical exponent.
In that approach, one sees the first appearance of randomized algorithms. In a nutshell,
the authors showed that (1) if a monotone function is very uncorrelated with all majority
functions, then it is noise sensitive (in a precise quantitative sense) and (2) percolation
crossings are very uncorrelated with all majority functions. The latter is shown by
constructing a certain algorithm which, due to the RSW Theorem II.1, looks at very
few bits but still looks at enough bits in order to be able to determine the output of
the function. This approach is detailed in Section 13 in Chapter XII.

2 The revealment theorem

An algorithm for a Boolean function f is an algorithm A which queries (asks the values
of) the bits one by one, where the decision of which bit to ask can be based on the
values of the bits previously queried, and stops once f is determined (being determined
means that f takes the same value no matter how the remaining bits are set).

A randomized algorithm for a Boolean function f is the same as above but

89
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auxiliary randomness may also be used to decide the next value queried (including for
the first bit). [In computer science, the term randomized decision tree would be used
for our notion of randomized algorithm, but we will not use this terminology.]

The following definition of revealment will be crucial. Given a randomized algorithm
A for a Boolean function f , we let JA denote the random set of bits queried by A.
(Note that this set depends both on the randomness corresponding to the choice of ω
and the randomness inherent in running the algorithm, which are of course taken to be
independent.)

Definition VIII.1. The revealment of a randomized algorithm A for a Boolean
function f , denoted by δA, is defined by

δA := max
i∈[n]

P(i ∈ JA).

The revealment of a Boolean function f , denoted by δf , is defined by

δf := inf
A

δA

where the infimum is taken over all randomized algorithms A for f .

This section presents a connection between noise sensitivity and randomized al-
gorithms. It will be used later to yield an alternative proof of noise sensitivity for
percolation crossings which is not based upon Theorem I.21 (or Proposition V.6). Two
other advantages of the algorithmic approach of the present section over that mentioned
in the previous section (besides the fact that it does not rest on Theorem I.21) is that
it applies to nonmonotone functions and yields a more “quantitative” version of noise
sensitivity.

We have only defined algorithms, randomized algorithms and revealment for Boolean
functions but the definitions immediately extend to functions f : Ωn → R.

The main theorem of this section is the following.

Theorem VIII.2 ([SS10]). For any function f : Ωn → R and for each k = 1, 2, . . . ,
we have that

Ef (k) =
∑

S⊆[n], |S|=k

f̂(S)2 ≤ δf k ‖f‖2, (VIII.1)

where ‖f‖ denotes the L2 norm of f with respect to the uniform probability measure on
Ω and δf is the revealment of f .

Before giving the proof, we make some comments to help the reader see what is hap-
pening and suggest why a result like this might be true. Our original function is a
sum of monomials with coefficients given by the Fourier coefficients. Each time a bit
is revealed by the algorithm, we obtain a new Boolean function obtained by just sub-
stituting in the value of the bit we obtained into the corresponding variable. On the
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algebraic side, those monomials which contain this bit go down by 1 in degree while the
other monomials are unchanged. There might however be cancellation in the process
which is what we hope for since when the algorithm stops, all the monomials (except the
constant) must have been killed. The way cancellation occurs is illustrated as follows.
The Boolean function at some stage might contain (1/3)x2x4x5 + (1/3)x2x4 and then
the bit x5 might be revealed and take the value −1. When we substitute this value into
the variable, the two terms cancel and disappear, thereby bringing us 1 step closer to
a constant (and hence determined) function.

As far as why the result might be true, the intuition, very roughly speaking, is as
follows. The theorem says that for a Boolean function we cannot, for example, have
δ = 1/1000 and

∑
i f̂({i})2 = 1/2. If the level 1 monomials of the function were

a1ω1 + a2ω2 + · · ·+ anωn,

then it is clear that after the algorithm is over, then with high probability, the sum of the
squares of the coefficients of the terms which have not been reduced to a constant is still
reasonably large. Therefore, since the function at the end of the algorithm is constant,
these remaining terms must necessarily have been cancelled by higher degree monomials
which, after running the algorithm, have been “reduced to” degree 1 monomials. If, for
the sake of this heuristic argument, we assume that each bit is revealed independently,
then the probability that a degree k ≥ 2 monomial is brought down to a degree 1
monomial (which is necessary for it to help to cancel the degree 1 terms described
above) is at most δk−1 and hence the expected sum of the squares of the coefficients
from the degree k ≥ 2 monomials which are brought down to degree 1 is at most δk−1.
The total such sum for levels 2 to n is then at most

n∑
k=2

δk−1 ≤ 2δ

which won’t be enough to cancel the (originally) degree 1 monomials which remained
degree 1 after running the algorithm if δ is much less than

∑
i f̂({i})2. A similar

heuristic works for the other levels.

Proof. In the following, we let Ω̃ denote the probability space that includes the ran-
domness in the input bits of f and the randomness used to run the algorithm (which we
assume to be independent) and we let E denote the corresponding expectation. With-
out loss of generality, elements of Ω̃ can be represented as ω̃ = (ω, τ) where ω are the
random bits and τ represents the randomness necessary to run the algorithm.

Now, fix k ≥ 1. Let

g(ω) :=
∑
|S|=k

f̂(S) χS(ω) , ω ∈ Ω.

The left hand side of (VIII.1) is equal to ‖g‖2.
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Let J ⊆ [n] be the random set of all bits examined by the algorithm. Let A denote
the minimal σ-field for which J is measurable and every ωi, i ∈ J , is measurable; this
can be viewed as the relevant information gathered by the algorithm. For any function
h : Ω → R, let hJ : Ω → R denote the random function obtained by substituting the
values of the bits in J . More precisely, if ω̃ = (ω, τ) and ω′ ∈ Ω, then hJ(ω̃)(ω′) is h(ω′′)
where ω′′ is ω on J(ω̃) and is ω′ on [n]\J(ω̃). In this way, hJ is a random variable on Ω̃
taking values in the set of mappings from Ω to R and it is immediate that this random
variable is A-measurable. When the algorithm terminates, the unexamined bits in Ω
are unbiased and hence E

[
h

∣∣A]
=

∫
hJ(= ĥJ(∅)) where

∫
is defined, as usual, to be

integration with respect to uniform measure on Ω. It follows that E[h] = E[
∫

hJ ].
Similarly, for all h,

‖h‖2 = E
[
h2

]
= E

[∫
h2

J

]
= E

[
‖hJ‖2

]
. (VIII.2)

Since the algorithm determines f , it is A measurable, and we have

‖g‖2 = E[g f ] = E
[
E

[
g f

∣∣A]]
= E

[
f E

[
g
∣∣A]]

.

Since E
[
g
∣∣A]

= ĝJ(∅), Cauchy-Schwarz therefore gives

‖g‖2 ≤
√

E[ĝJ(∅)2] ‖f‖ . (VIII.3)

We now apply Parseval’s formula to the (random) function gJ : this gives (for any
ω̃ = (ω, τ) ∈ Ω̃),

ĝJ(∅)2 = ‖gJ‖22 −
∑
|S|>0

ĝJ(S)2.

Taking the expectation over ω̃ ∈ Ω̃, this leads to

E
[
ĝJ(∅)2

]
= E

[
‖gJ‖22

]
−

∑
|S|>0

E
[
ĝJ(S)2

]
= ‖g‖22 −

∑
|S|>0

E
[
ĝJ(S)2

]
by (VIII.2)

=
∑
|S|=k

ĝ(S)2 −
∑
|S|>0

E
[
ĝJ(S)2

]{
since g is supported
on level-k coefficients

≤
∑
|S|=k

E
[
ĝ(S)2 − ĝJ(S)2

]{
by restricting to
level-k coefficients

Now, since gJ is built randomly from g by fixing the variables in J = J(ω̃), and
since g by definition does not have frequencies larger than k, it is clear that for any S
with |S| = k we have

ĝJ(S) =

{
ĝ(S) = f̂(S), if S ∩ J(ω̃) = ∅
0, otherwise.
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Therefore, we obtain

‖E
[
g
∣∣J]
‖22 = E

[
ĝJ(∅)2

]
≤

∑
|S|=k

ĝ(S)2 P
[
S ∩ J 6= ∅

]
≤ ‖g‖22 k δ .

Combining with (VIII.3) completes the proof.

Proposition IV.2 and Theorem VIII.2 immediately imply the following corollary.

Corollary VIII.3. If the revealments satisfy

lim
n→∞

δfn = 0,

then {fn} is noise sensitive.

In the exercises, one is asked to show that certain sequences of Boolean functions are
noise sensitive by applying the above corollary.

3 An application to noise sensitivity of percolation

In this section, we apply Corollary VIII.3 to prove noise sensitivity of percolation cross-
ings. The following result gives the necessary assumption that the revealments approach
0.

Theorem VIII.4 ([SS10]). Let f = fn be the indicator function for the event that
critical site percolation on the triangular grid contains a left to right crossing of our
n× n box. Then δfn ≤ n−1/4+o(1) as n→∞.

For critical bond percolation on the square grid, this holds with 1/4 replaced by some
positive constant a > 0.

Outline of Proof. We outline the argument only for the triangular lattice; the argument
for the square lattice is similar. We first give a first attempt at a good algorithm.
We consider from Chapter II the exploration path or interface from the bottom right
of the square to the top left used to detect a left right crossing. This (deterministic)
algorithm simply asks the bits that it needs to know in order to continue the interface.
Observe that if a bit is queried, it is necessarily the case that there is both a black and
white path from next to the hexagon to the boundary. It follows, from the exponent of
1/4 for the 2-arm event in Chapter II, that, for hexagons far from the boundary, the
probability that they are revealed is at most R−1/4+o(1) as desired. However, one cannot
conclude that points near the boundary have small revealment and of course the right
bottom point is always revealed.

The way that we modify the above algorithm so that all points have small revealment
is as follows. We first choose a point x at random from the middle third of the right
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side. We then run two algorithms, the first one which checks whether there is a left
right path from the right side above x to the left side and the second one which checks
whether there is a left right path from the right side below x to the left side. The first
part is done by looking at an interface from x to the top left corner as above. The
second part is done by looking at an interface from x to the bottom left corner as above
(but where the colors on the two sides of the interface need to be swapped.)

It can then be shown with a little work (but no new conceptual ideas) that this
modified algorithm has the desired revealment of at most R−1/4+o(1) as desired. One
of the things that one needs to use in this analysis is the so-called one-arm half-plane
exponent, which has a known value of 1/3. See [SS10] for details.

3.1 First quantitative noise sensitivity result

In this subsection, we give our first “polynomial bound” on the noise sensitivity of per-
colation. This is an important step in our understanding of quantitative noise sensitivity
of percolation initiated in Chapter VI.

Recall that in the definition of noise sensitivity, ε is held fixed. However, as we have
seen in Chapter VI, it is of interest to ask if the correlations can still go to 0 when
ε = εn goes to 0 with n but not so fast. The techniques of the present chapter imply
the following result.

Theorem VIII.5 ([SS10]). Let {fn} be as in Theorem VIII.4. Then, for the triangular
lattice, for all γ < 1/8,

lim
n→∞

E[fn(ω)fn(ω1/nγ )]− E[fn(ω)]2 = 0. (VIII.4)

On the square lattice, there exists some γ > 0 with the above property.

Proof. We prove only the first statement; the square lattice case is handled similarly.
First, (IV.3) gives us that every n and γ,

E[fn(ω)fn(ω1/nγ )]− E[fn(ω)]2 =
∑
k=1

Efn(k)(1− 1/nγ)k. (VIII.5)
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Note that there are order n2 terms in the sum. Fix γ < 1/8. Choose ε > 0 so that
γ + ε < 1/8. For large n, we have that δfn ≤ 1/n1/4−ε. The right hand side of (VIII.5)
is at most

nγ+ε/2∑
k=1

k/n1/4−ε + (1− 1/nγ)nγ+ε/2

by breaking up the sum at nγ+ε/2 and applying Theorems VIII.2 and VIII.4 to bound
the Efn(k) terms in the first part. The second term clearly goes to 0 while the first
part also goes to 0 by the way ε was chosen.

Observe that the proof of Theorem VIII.5 immediately yields the following general
result.

Corollary VIII.6. Let {fn} be a sequence of Boolean functions on mn bits with δ(fn) ≤
O(1)/nβ for all n. Then for all γ < β/2, we have that

lim
n→∞

E[fn(ω)fn(ω1/nγ )]− E[fn(ω)]2 = 0. (VIII.6)

4 Lower bounds on revealments

One of the goals of the present section is to show that one cannot hope to reach the
conjectured 3/4-sensitivity exponent with Theorem VIII.2. Theorem VIII.5 told us
that we obtain asymptotic decorrelation if the noise is 1/nγ for γ < 1/8. Note that
this differs from the conjectured “critical exponent” of 3/4 by a factor of 6. In this
section, we investigate the degree to which the 1/8 could potentially be improved and
in the discussion, we will bring up an interesting open problem. We will also derive
an interesting general theorem giving a nontrivial lower bound on the revealment for
monotone functions. We start with the following definition.

Definition VIII.7. Given a randomized algorithm A for a Boolean function f , let
C(A) (the cost of A) be the expected number of queries that the algorithm A makes. Let
C(f) (the cost of f) be the infimum of C(A) over all randomized algorithms A for f .

Remarks (1). It is easy to see that C(f) is unchanged if we take the infimum over
deterministic algorithms.
(2). Clearly nδA ≥ C(A) and hence nδf ≥ C(f).
(3). C(f) is at least the total influence I(f) since for any algorithm A and any i, the
event that i is pivotal necessarily implies that the bit i is queried by A.

The following result due to O’Donnell and Servedio ([OS07])is an essential improve-
ment on the third part of the last remark.

Theorem VIII.8. Let f be a monotone Boolean function mapping Ωn into {−1, 1}.
Then C(f) ≥ I(f)2 and hence δf ≥ I(f)2/n.
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Proof. Fix any randomized algorithm A for f . Let J = JA be the random set of bits
queried by A. We then have

I(f) = E[
∑

i

f(ω)ωi] = E[f(ω)
∑

i

ωiI{i∈J}] ≤
√

E[f(ω)2]

√
E[(

∑
i

ωiI{i∈J})2]

where the first equality uses monotonicity (recall Proposition IV.5) and then the Cauchy-
Schwarz inequality is used. We now bound the first term by 1. For the second moment
inside the second square root, the sum of the diagonal terms yields E[|J |] while the
cross terms are all 0 since for i 6= j, E[ωiI{i∈J}ωjI{j∈J}] = 0 as can be seen by breaking
up the sum depending on whether i or j is queried first. This yields the result.

Returning to our event fn of percolation crossings, since the sum of the influences
is n3/4+o(1), Theorem VIII.8 tells us that δfn ≥ n−1/2+o(1). It follows from the method
of proof in Theorem VIII.5 that Theorem VIII.2 cannot improve the result of Theorem
VIII.5 past γ = 1/4 which is still a factor of 3 from the critical value 3/4. Of course,
one could investigate the degree to which Theorem VIII.2 itself could be improved.

Theorem VIII.4 tells us that there are algorithms An for fn such that C(An) ≤
n7/4+o(1). On the other hand, Theorem VIII.8 tell us that it is necessarily the case that
C(A) ≥ n6/4+o(1).

Open Question: Find the smallest σ such that there are algorithms An for fn with
C(An) ≤ nσ. (We know σ ∈ [6/4, 7/4].)

We mention another inequality relating revealment with influences which is a con-
sequence of the results in [OSSS05]. One of the main results from this paper will be
proved in and is the highlight of Section 10 in Chapter XII. This section will also
describe the concepts of deterministic and randomized complexity.

Theorem VIII.9. Let f be a Boolean function mapping Ωn into {−1, 1}. Then δf ≥
Var(f)/(n maxi Ii(f))

It is interesting to compare Theorems VIII.8 and VIII.9. Assuming Var(f) is of
order 1, and all the influences are of order 1/nα, then it is easy to check that Theorem
VIII.8 gives a better bound when α < 2/3 and Theorem VIII.9 gives a better bound
when α > 2/3. For crossings of percolation, where α should be 5/8, it is better to use
Theorem VIII.8 rather than VIII.9.

Finally, there are a number of interesting results concerning revealment obtained in
the paper [BSW05]. Four results are as follows.
(i) If f is reasonably balanced on n bits, then the revealment is at least of order 1/n1/2.
(ii) There is a reasonably balanced function on n bits whose revealment is at most
O(1)(log n)/n1/2.
(iii) If f is reasonably balanced on n bits and is monotone, then the revealment is at
least of order 1/n1/3.
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(iv) There is a reasonably balanced monotone function on n bits whose revealment is
at most O(1)(log n)/n1/3.

We finally end this section by giving one more reference which gives an interesting
connection between percolation, algorithms and game theory; see [PSSW07].

5 An application to a critical exponent

In this section, we show how Theorem VIII.2 or in fact Theorem VIII.8 can be used to
prove Proposition VI.6 which says that the 4-arm exponent is strictly larger than 1. As
we mentioned earlier, this can be shown for the triangular lattice using SLE technology.
The following proof of Proposition VI.6 works for both T and on Z2.

We will assume the separation of arms result mentioned earlier in Chapter VI which
says that for the event fR, the influence of any variable further than distance R/10
from the boundary is � α4(R).

Proof of Proposition VI.6. Theorems VIII.2 and VIII.4 imply that for some a > 0,∑
i

f̂R({i})2 ≤ 1/Ra.

Next, denote the set of variables further than distance R/10 from the boundary by B
(for bulk). Using the separation of arms as explained above, we have

R2α2
4(R) ≤ O(1)

∑
i∈B

I2
i . (VIII.7)

Proposition IV.5 then yields
R2α2

4(R) ≤ O(1/Ra)

and the result follows.

Observe that Theorem VIII.8 could also be used as follows. Theorem VIII.4 implies
that C(fR) ≤ R2−a for some a > 0 and then Theorem VIII.8 yields I(fR)2 ≤ R2−a.

Exactly as in (VIII.7), one has, again using separation of arms, that

R2α4(R) ≤ O(1)
∑
i∈B

Ii ≤ O(1)I(fR). (VIII.8)

Altogether this gives us
R4α2

4(R) ≤ O(1)R2−a,

again yielding the result.
We finally mention that it is not so strange that either of Theorems VIII.2 or

VIII.8 can be used here since, as the reader can easily verify, for the case of monotone
functions all of whose variables have the same influence, the case k = 1 in Theorem
VIII.2 is equivalent to Theorem VIII.8.



98CHAPTER VIII. RANDOMIZED ALGORITHMS AND NOISE SENSITIVITY

Remark (1) We mention here that the proof for the multi-scale version of Proposition
VI.6 in the appendix of [SS11] is an extension of the approach of O’Donnell and Serve-
dio above.
(2) See Theorem XII.40 at the end of section 10 in the miscellaneous Chapter XII for an-
other example of a nontrivial inequality about arms-events obtained using randomized
algorithms ideas.

6 Does noise sensitivity imply low revealment?

As far as this book is concerned, this subsection will not connect to anything that
follows and hence can be viewed as tangential.

It is natural to ask if the converse of Corollary VIII.3 might be true. A moment’s
thought reveals that Example I.3, Parity, provides a counterexample. However, it is
more interesting perhaps that there is a monotone counterexample to the converse
which is provided by Example I.6, Clique containment.

Proposition VIII.10. Clique containment provides an example showing that the con-
verse of Corollary VIII.3 is false for monotone functions.

Outline of Proof. We first explain more precisely the size of the clique that we are

looking for. Given n and k, let f(n, k) :=
(

n
k

)
2−(

k
2), which is just the expected number

of cliques of size k in a random graph. When k is around 2 log2(n), it is easy to check
that f(n, k + 1)/f(n, k) is o(1) as n → ∞. For such k, clearly if f(n, k) is small, then
with high probability there is no k-clique while it can be shown, via a second moment
type argument, that if f(n, k) is large, then with high probability there is a k-clique.
One now takes kn to be around 2 log2(n) such that f(n, kn) ≥ 1 and f(n, kn + 1) < 1.
Since f(n, k + 1)/f(n, k) is o(1), it follows with some thought from the above that the
clique number is concentrated on at most 2 points. Furthermore, if f(n, kn) is very large
and f(n, kn + 1) very small, then it is concentrated on one point. Again, see [AS00] for
details.

Finally, we denote the event that the random graph on n vertices contains a clique
of size kn by An. We have already seen in one of the exercises that this example is
noise sensitive. We will only consider a sequence of n’s so that An is nondegenerate in
the sense that the probabilities of this sequence stay bounded away from 0 and 1. An
interesting point is that there is such a sequence. Again, see [AS00] for this. To show
that the revealments do not go to 0, it suffices to show that the sequence of costs (see
Definition VIII.7 and the remarks afterwards) is Ω(n2). We prove something stronger
but, to do this, we must first give a few more definitions.

Definition VIII.11. For a given Boolean function f , a witness for ω is any subset
W of the variables such that the elements of ω in W determine f in the sense that for
every ω′ which agrees with ω on W , we have that f(ω) = f(ω′). The witness size
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of ω, denoted w(ω), is the size of the smallest witness for ω. The expected witness
size, denoted by w(f), is E(w(ω)).

Observe that, for any Boolean function f , the bits revealed by any algorithm A for
f and for any ω is always a witness for ω. It easily follows that the cost C(f) satisfies
C(f) ≥ w(f). Therefore, in order to prove the proposition, it suffices to show that

w(fn) = Ω(n2). (VIII.9)

Remark (1) The above also implies that with a fixed uniform probability, w(ω) is
Ω(n2).
(2) Of course when fn is 1, there is always a (small) witness of size

(
kn

2

)
� n and so

the large average witness size comes from when fn is −1.
(3) However, it is not deterministically true that when fn is −1, w(ω) is necessarily of
size Ω(n2). For example, for ω ≡ −1 (corresponding to the empty graph), the witness
size is o(n2) as is easily checked. Clearly the empty graph has the smallest witness size
among ω with fn = −1.

Lemma VIII.12. Let En be the event that all sets of vertices of size at least .97n
contains Ckn−3. Then limn→∞ P(En) = 1.

Proof. This follows, after some work, from the Janson inequalities. See [AS00] for
details concerning these inequalities.

Lemma VIII.13. Let U be any collection of at most n2/1000 edges in Cn. Then there
exist distinct v1, v2, v3 such that no edge in U goes between any vi and vj and

|{e ∈ U : e is an edge between {v1, v2, v3} and {v1, v2, v3}c}| ≤ n/50. (VIII.10)

Proof. We use the probabilistic method where we choose {v1, v2, v3} to be a uniformly
chosen 3-set. It is immediate that the probability that the first condition fails is at most
3|U |/

(
n
2

)
≤ 1/100. Letting Y be the number of edges in the set appearing in (VIII.10)

and Y ′ be the number of U edges touching v1, it is easy to see that

E(Y ) ≤ 3E(Y ′) = 6|U |/n ≤ n/100

where the equality follows from the fact that, for any graph, the number of edges is
half the total degree. By Markov’s inequality, the probability of the event in (VIII.10)
holds with probably at least 1/2. This shows that the random 3-set {v1, v2, v3} satisfies
the two stated conditions with positive probability and hence such a 3-set exists.

By Lemma VIII.12, we have P(Ac
n ∩ En) ≥ c > 0 for all large n. To prove the

theorem, it therefore suffices to show that if Ac
n ∩En occurs, there is no witness of size

smaller than n2/1000. Assume U to be any set of edges of size smaller than n2/1000.
Choose {v1, v2, v3} from Lemma VIII.13. By the second condition in this lemma, there
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exists a set S of size at least .97n which is disjoint from {v1, v2, v3} which has no U -edge
to {v1, v2, v3}. Since En occurs, S contains a Ckn−3, whose vertices we denote by T .
Since there are no U -edges between T and {v1, v2, v3} or within {v1, v2, v3} (by the first
condition in Lemma VIII.13) and T is the complete graph, U cannot be a witness since
Ac

n occured.

The key step in the proof of Proposition VIII.10 is (VIII.9). This is stated without
proof in [FKW02]; however, E. Friedgut provided us with the above proof.

7 Exercises

Exercise VIII.1. Compute the revealment for Majority function on 3 bits.

Exercise VIII.2. Use Corollary VIII.3 to show that Examples I.5 and I.15, Iterated
3-Majority function and Tribes, are noise sensitive.

Exercise VIII.3. For transitive monotone functions, is there a relationship between
revealment and the minimal cost over all algorithms?

Exercise VIII.4. Show that for transitive monotone functions, Theorem VIII.8 yields
the same result as Theorem VIII.2 does for the case k = 1.

Exercise VIII.5. What can you say about the sequence of revealments for the Iterated
3-Majority function? [It can be shown that the sequence of revealments decays like 1/nσ

for some σ but it is an open question what σ is.]

Exercise VIII.6. You are given a sequence of Boolean functions and told that it is
not noise sensitive using noise εn = 1/n1/5. What, if anything, can you conclude about
the sequence of revealments δn?

Exercise VIII.7. Note that a consequence of Corollary VIII.3 and the converse to
Theorem I.21 for monotone functions is that if {fn} is a sequence of monotone functions,
then, if the revealments of {fn} go to 0, then the sums of the squared influences approach
0. Show that this implication is false without the monotonicity assumption.



Chapter IX

The spectral sample

It turns out that it is very useful to view the Fourier coefficients of a Boolean function
as a random subset of the input bits where the “weight” or “probability” of a subset
is its squared Fourier coefficient. It is our understanding that it was Gil Kalai who
suggested that thinking of the spectrum as a random set could shed some light on the
types of questions we are looking at here. The following is the crucial definition in this
chapter.

1 Definition of the spectral sample

Definition IX.1. Given a Boolean function f : Ωn → {±1} or {0, 1}, we let the spec-
tral measure Q̂ = Q̂f of f be the measure on subsets {1, . . . , n} given by

Q̂f (S) := f̂(S)2, S ⊂ {1, . . . , n} .

We let Sf = S denote a subset of {1, . . . , n} chosen according to this measure and

call this the spectral sample. We let Q̂ also denote the corresponding expectation
(even when Q̂ is not a probability measure).

By Parseval’s formula, the total mass of the so-defined spectral measure is∑
S⊂{1,...,n}

f̂(S)2 = E
[
f 2

]
.

This makes the following definition natural.

Definition IX.2. Given a Boolean function f : Ωn → {±1} or {0, 1}, we let the spec-
tral probability measure P̂ = P̂f of f be the probability measure on subsets of
{1, . . . , n} given by

P̂f (S) :=
f̂(S)2

E[f 2]
, S ⊂ {1, . . . , n} .

101



102 CHAPTER IX. THE SPECTRAL SAMPLE

Since P̂f is just Q̂f up to a renormalization factor, the spectral sample Sf = S will

denote as well a random subset of [n] sampled according to P̂f . We let Êf = Ê denote
its corresponding expectation.

Remark (1) Note that if f maps into {±1}, then, by Parseval’s formula, Q̂f = P̂f

while if it maps into {0, 1}, Q̂f will be a subprobability measure.
(2) Observe that if (fn)n is a sequence of nondegenerate Boolean functions into {0, 1},
then P̂fn � Q̂fn .
(3) There is no statistical relationship between ω and Sf as they are defined on different
probability spaces. The spectral sample will just be a convenient point of view in order
to understand the questions we are studying.

Some of the formulas and results we have previously derived in earlier chapters have
very simple formulations in terms of the spectral sample. For example, it is immediate
to check that (IV.2) simply becomes

E[f(ω)f(ωε)] = Q̂f [(1− ε)|S |] (IX.1)

or
E[f(ω)f(ωε)]− E[f(ω)]2 = Q̂f [(1− ε)|S |IS 6=∅]. (IX.2)

Next, in terms of the spectral sample, Propositions IV.2 and IV.3 simply become
the following proposition.

Proposition IX.3. If {fn} is a sequence of Boolean functions mapping into {±1},
then we have the following.
(i) {fn} is noise sensitive if and only if |Sfn| → ∞ in probability on the set {|Sfn| 6= 0}.
(ii) {fn} is noise stable if and only if the random variables {|Sfn|} are tight.

There is also a nice relationship between the pivotal set P and the spectral sample.
The following result, which is simply Proposition IV.4 (see also the remark after this
proposition), tells us that the two random sets P and S have the same 1-dimensional
marginals.

Proposition IX.4. If f is a Boolean function mapping into {±1}, then for all i ∈ [n]
we have that

P(i ∈ P) = Q̂(i ∈ S )

and hence E(|P|) = Q̂(|S |).

(This proposition is stated with Q̂ instead of P̂ since if f maps into {0, 1} instead,
then the reader can check that the above holds with an extra factor of 4 on the right
hand side while if P̂ were used instead, then this would not be true for any constant.)
Even though S and P have the same “1-dimensional” marginals, it is not however
true that these two random sets have the same distribution. For example, it is easily
checked that for MAJ3, these two distributions are different. Interestingly, as we will
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see in the next section, S and P also always have the same “2-dimensional” marginals.
This will prove useful when applying second moment method arguments.

Before ending this section, let us give an alternative proof of Proposition VI.12 using
this point of view of thinking of S as a random set.

Alternative proof of Proposition VI.12 The statement of the proposition when
converted to the spectral sample states (see the exercises in this chapter if this is not
clear) that for any an →∞,

lim
n→∞

P̂(|Sn| ≥ ann
2α4(n)) = 0.

However this immediately follows from Markov’s inequality using Propositions VI.8 and
IX.4.

2 A way to sample the spectral sample in a sub-

domain

In this section, we describe a method of “sampling” the spectral measure restricted to
a subset of the bits. As an application of this, we show that S and P in fact have the
same 2-dimensional marginals, namely that for all i and j, P(i, j ∈ P) = Q̂(i, j ∈ S ).

In order to first get a little intuition about the spectral measure, we start with an
easy proposition.

Proposition IX.5 ([GPS10]). For a Boolean function f and A ⊆ {1, 2, . . . , n}, we
have

Q̂(Sf ⊆ A) = E[|E(f |A)|2]

where conditioning on A means conditioning on the bits in A.

Proof. Noting that E(χS|A) is χS if S ⊆ A and 0 otherwise, we obtain by expanding
that

E(f |A) =
∑
S⊆A

f̂(S) χS.

Now apply Parseval’s formula.

If we have a subset A ⊆ {1, 2, . . . , n}, how do we “sample” from A ∩ S ? A nice
way to proceed is as follows: choose a random configuration outside of A, then look at
the induced function on A and sample from the induced function’s spectral measure.
The following proposition justifies in precise terms this way of sampling. Its proof is
just an extension of the proof of Proposition IX.5.

Proposition IX.6 ([GPS10]). Fix a Boolean function f on Ωn. For A ⊆ {1, 2, . . . , n}
and y ∈ {±1}Ac

, that is a configuration on Ac, let gy be the function defined on {±1}A
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obtained by using f but fixing the configuration to be y outside of A. Then for any
S ⊆ A, we have

Q̂(Sf ∩ A = S) = E[Q̂(Sgy = S)] = E[ĝ2
y(S)].

Proof. Using the first line of the proof of Proposition IX.5, it is easy to check that for
any S ⊆ A, we have that

E
[
f χS

∣∣FAc

]
=

∑
S′⊆Ac

f̂(S ∪ S ′) χS′ .

This gives

E
[
E

[
f χS

∣∣FAc

]2
]

=
∑

S′⊆Ac

f̂(S ∪ S ′)2 = Q̂[S ∩ A = S]

which is precisely the claim.

Remark Observe that Proposition IX.5 is a special case of Proposition IX.6 when S is
taken to be ∅ and A is replaced by Ac.

The following corollary was first observed by Gil Kalai.

Corollary IX.7 ([GPS10]). If f is a Boolean function mapping into {±1}, then for
all i and j,

P(i, j ∈ P) = Q̂(i, j ∈ S ).

(The comment immediately following Proposition IX.4 holds here as well.)

Proof. Although it has already been established that P and S have the same 1-
dimensional marginals, we first show how Proposition IX.6 can be used to establish
this. This latter proposition yields, with A = S = {i}, that

Q̂(i ∈ S ) = Q̂(S ∩ {i} = {i}) = E[ĝ2
y({i})].

Note that gy is ±ωi if i is pivotal and constant if i is not pivotal. Hence the last term
is P(i ∈ P).

For the 2-dimensional marginals, one first checks this by hand when n = 2. For
general n, taking A = S = {i, j} in Proposition IX.6, we have

Q̂(i, j ∈ S ) = P(S ∩ {i, j} = {i, j}) = E[ĝ2
y({i, j})].

For fixed y, the n = 2 case tells us that ĝ2
y({i, j}) = P(i, j ∈ Pgy). Finally, a little

thought shows that E[P(i, j ∈ Pgy)] = P(i, j ∈ P), completing the proof.
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3 Nontrivial spectrum near the upper bound for

percolation

We now return to our central event of percolation crossings of the rectangle Rn where
fn denotes this event. At this point, we know that for Z2, (most of) the spectrum lies
between nε0 (for some ε0 > 0) and n2α4(n) while for T it sits between n1/8+o(1) and
n3/4+o(1). In this section, we show that there is a nontrivial amount of spectrum near
the upper bound n2α4(n). For T, in terms of quantitative noise sensitivity, this tells us
that if our noise sequence εn is equal to 1/n3/4−δ for fixed δ > 0, then in the limit, the
two variables f(ω) and f(ωεn) are not perfectly correlated; i.e., there is some degree
of independence. (See the exercises for understanding such arguments.) However, we
cannot conclude that there is full independence since we don’t know that “all” of the
spectrum is near n3/4+o(1) (yet!).

Theorem IX.8 ([GPS10]). Consider our percolation crossing functions {fn} (with
values into {±1}) of the rectangles Rn for Z2 or T. There exists c > 0 such that for all
n,

P̂
[
|Sn| ≥ cn2α4(n)

]
≥ c.

The key lemma for proving this is the following second moment bound on the number
of pivotals which we prove afterwards. It has a similar flavor to Exercise 6 in Chapter
VI.

Lemma IX.9 ([GPS10]). Consider our percolation crossing functions {fn} above and
let R′n be the box concentric with Rn with half the radius. If Xn = |Pn ∩ R′n| is the
cardinality of the set of pivotal points in R′n, then there exists a constant C such that
for all n we have that

E[|Xn|2] ≤ CE[|Xn|]2.

Proof of Theorem IX.8. Since Pn and Sn have the same 1 and 2-dimensional
marginals, it follows fairly straightforward from Lemma IX.9 that we also have that for
all n

P̂
[
|Sn ∩R′n|2

]
≤ CP̂

[
|Sn ∩R′n|

]2
.

Recall now the Paley-Zygmund inequality which states that if Z ≥ 0, then for all
θ ∈ (0, 1),

P(Z ≥ θ E[Z]) ≥ (1− θ)2 E[Z]2

E[Z2]
. (IX.3)

The two above inequalities (with Z = |Sn ∩R′n| and θ = 1/2) imply that for all n,

P̂
[
|Sn ∩R′n| ≥

Ê
[
|Sn ∩R′n|

]
2

]
≥ 1

4C
.
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Now, by Proposition IX.4, one has that Ê
[
|Sn ∩R′n|

]
= E[Xn]. Furthermore (a

trivial modification of) Proposition VI.8 yields E[Xn] � n2α4(n) which thus completes
the proof.

We are now left with

Proof of Lemma IX.9. As indicated at the end of the proof of Theorem IX.8, we
have that E(Xn) � n2α4(n). Next, for x, y ∈ R′n, a picture shows that

P(x, y ∈ Pn) ≤ α2
4(|x− y|/2)α4(2|x− y|, n/2)

since we need to have the 4-arm event around x to distance |x−y|/2, the same for y, and
the 4-arm event in the annulus centered at (x + y)/2 from distance 2|x− y| to distance
n/2 and finally these three events are independent. This is by quasi-multiplicity at
most

O(1)α2
4(n)/α4(|x− y|, n)

and hence

E[|Xn|2] ≤ O(1)α2
4(n)

∑
x,y

1

α4(|x− y|, n)
.

Since, for a given x, there are at most O(1)22k y’s with |x − y| ∈ [2k, 2k+1], using
quasi-multiplicity, the above sum is at most

O(1)n2α2
4(n)

log2(n)∑
k=0

22k

α4(2k, n)
.

Using
1

α4(r, R)
≤ (R/r)2−ε

(this is the fact that the four-arm exponent is strictly less than 2), the sum becomes at
most

O(1)n4−εα2
4(n)

log2(n)∑
k=0

2kε.

Since the last sum is at most O(1)nε, we are done.

In terms of the consequences for quantitative noise sensitivity, Theorem IX.8 implies
the following corollary; see the exercises for similar implications.

Corollary IX.10. For T or Z2, there exists c > 0 so that if εn = 1/(n2α4(n)), then
for all n,

P(fn(ω) 6= fn(ωεn)) ≥ c.

Note, importantly, this does not say that fn(ω) and fn(ωεn) become asymptotically
uncorrelated, only that they are not asymptotically completely correlated. To ensure
that they are asymptotically uncorrelated is significantly more difficult and requires
showing that “all” of the spectrum is near n3/4. This much more difficult task is the
subject of the next chapter.
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4 Two more facts concerning the spectral sample in

general

The two following propositions were used in [GPS10] for studying percolation crossings;
since these potentially could be used in more general situations, we record the following
results here.

Proposition IX.11 ([GPS10]). Let f be a monotone Boolean function mapping Ωn

into {±1}. Let W be a fixed subset of [n] and let (ω1, ω2) be a coupling of two i.i.d.
percolations on [n] which are such that{

ω1 = ω2 on W c

ω1, ω2 are independent on W

Then for x 6∈ W :

Q̂
[
x ∈ Sf and Sf ∩W = ∅

]
= P

[
x is pivotal for ω1 and ω2

]
.

Proof. This follows fairly easily from Proposition IX.6.

Remark This identity in the special cases where W = ∅ or W = {x}c we have seen
much earlier.

Let f be a Boolean function mapping Ω into {±1}. For B a subset of the bits,
define ΛB = Λf,B as the event that B is pivotal for f . More precisely, ΛB is the set of
ω ∈ Ω such that there is some ω′ ∈ Ω that agrees with ω on Bc while f(ω) 6= f(ω′). Let
W also be a subset of the bits and and let (ω1, ω2) be as in Proposition IX.11. Finally,
assuming W and B are disjoint, let g(B, W ) := P

[
B is pivotal for ω1 and ω2

]
.

Proposition IX.12 ([GPS10]). Let S = Sf be the spectral sample of some f : Ω→ R,
and let W and B be disjoint subsets of the bits. Then

Q̂
[
S ∩B 6= ∅ = S ∩W

]
≤ 4 ‖f‖2∞ g(B, W ).

Proof. Proposition IX.5 first yields

Q̂
[
S ∩B 6= ∅, S ∩W = ∅

]
= Q̂

[
S ⊆ W c

]
− Q̂

[
S ⊆ (W ∪B)c

]
= E

[
E[f | FW c ]2 − E[f | F(W∪B)c ]2

]
= E

[(
E[f | FW c ]− E[f | F(W∪B)c ]

)2]
.

(IX.4)

On the complement of ΛB, we have f = E
[
f

∣∣ FBc

]
. Therefore,

−2 ‖f‖∞ 1ΛB
≤ f − E[f | FBc ] ≤ 2 ‖f‖∞1ΛB

.
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Taking conditional expectations throughout, we get

−2 ‖f‖∞ P
[
ΛB

∣∣ FW c

]
≤ E

[
f

∣∣ FW c

]
− E

[
E[f | FBc ]

∣∣ FW c

]
≤ 2 ‖f‖∞P

[
ΛB

∣∣ FW c

]
.

Note that E
[
E[f | FBc ]

∣∣ FW c

]
= E

[
f

∣∣ F(B∪W )c

]
, since our measure on Ω is i.i.d. Thus,

the above gives ∣∣∣E[
f

∣∣ FW c

]
− E

[
f

∣∣ F(B∪W )c

]∣∣∣ ≤ 2 ‖f‖∞ P
[
ΛB

∣∣ FW c

]
.

An appeal to (IX.4) now completes the proof, by observing that g(B, W ) is precisely
the second moment of P

[
ΛB

∣∣ FW c

]
.

5 Exercises

Exercise IX.1. Let {fn} be an arbitrary sequence of Boolean functions mapping into
{±1} with corresponding spectral samples {Sn}.
(a). Show that P̂

[
0 < |Sn| ≤ An

]
→ 0 implies that Ê

[
(1− εn)|Sn|ISn 6=∅

]
→ 0 if εnAn →

∞.
(b). Show that Ê

[
(1− εn)|Sn|ISn 6=∅

]
→ 0 implies that P̂

[
0 < |Sn| ≤ An

]
→ 0 if εnAn ≤

O(1).

Exercise IX.2. Let {fn} be an arbitrary sequence of Boolean functions mapping into
{±1} with corresponding spectral samples {Sn}.
(a). Show that P

[
f(ω) 6= f(ωεn)

]
→ 0 and Anεn ≥ Ω(1) imply that P̂

[
|Sn| ≥ An

]
→ 0.

(b). Show that P̂
[
|Sn| ≥ An

]
→ 0 and Anεn = o(1) imply that P

[
f(ω) 6= f(ωεn)

]
→ 0.

Exercise IX.3. Prove Corollary IX.10.

Exercise IX.4. For the Iterated 3-Majority sequence, recall that the total influence is
nα where α = 1 − log 2/ log 3. Show that for εn = 1/nα, P(fn(ω) 6= fn(ωεn)) does not
tend to 0.

Exercise IX.5. Assume that {fn} is a sequence of monotone Boolean functions on n
bits with total influence equal to n1/2 up to constants. Show that the sequence cannot
be noise sensitive. Is it necessarily noise stable as the Majority function is?

Exercise IX.6. Assume that {fn} is a sequence of monotone Boolean functions with
mean 0 on n bits. Show that one cannot have noise sensitivity when using noise level
εn = 1/n1/2.

Exercise IX.7. Show that P and S have the same 2-dimensional marginals using only
Proposition IX.5 rather than Proposition IX.6.
Hint: It suffices to show that P({i, j} ∩ P = ∅) = Q̂({i, j} ∩S = ∅).
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Exercise IX.8. Fill in the details on how one obtains Proposition IX.11 from Propo-
sition IX.6.

Exercise IX.9. For the Iterated 3-Majority function with k levels, it turns out that
the pivotal set and the spectrum have a very nice probabilistic description.
a. Show that the distribution of the pivotal set is the same as the distribution of the
kth generation of a Galton-Watson process with offspring distribution 1

4
δ0 + 3

4
δ2.

b. Show that the distribution of the spectral sample is the same as the distribution of
the kth generation of a Galton-Watson process with offspring distribution 3

4
δ1 + 1

4
δ3.

Exercise IX.10. If f is a function with E(f 2) < 1 (for example if f is the indicator
function of a nontrivial event), then we still have the spectral measure but this becomes
a subprobability measure (of total weight E(f 2)) rather than a probability measure.
For this reason, sometimes when dealing with events A, it can be convenient to deal
with the function IA − IAc (which is the function which is 1 on A and -1 on Ac) since
this function is always ±1 and hence its spectrum is a probability measure. Describe
the exact relationship between the spectral (sub)probability measure corresponding to
IA and the spectral probability measure corresponding to IA − IAc .

Exercise IX.11. (Challenging problem) Do you expect that Exercise IX.5 is sharp,
meaning that, if 1/2 is replaced by α < 1/2, then one can find noise sensitive examples?
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Chapter X

Sharp noise sensitivity of
percolation

We will explain in this chapter the main ideas of the proof in [GPS10] that most of
the “spectral mass” lies near n2α4(n) ≈ n3/4+o(1). This proof being rather long and
involved, the content of this chapter will be far from a formal proof. Rather it should
be considered as a (hopefully convincing) heuristic explanation of the main results, and
possibly for the interested readers as a “reading guide” for the paper [GPS10].

Very briefly speaking, the idea behind the proof is to identify properties of the geom-
etry of Sfn which are reminiscent of a self-similar fractal structure. Ideally, Sfn would
behave like a spatial branching tree (or in other words a fractal percolation process),
where distinct branches evolve independently of each other. This is conjecturally the
case, but it turns out that it is very hard to control the dependency structure within
Sfn . In [GPS10], only a tiny hint of spatial independence within Sfn is proved. One
of the main difficulties of the proof is to overcome the fact that one has very little
independence to play with.

A substantial part of this chapter focuses on the much simpler case of fractal per-
colation. Indeed, this process can be seen as the simplest toy model for the spectral
sample Sfn . Explaining the simplified proof adapted to this setting already enables us
to convey some of the main ideas for handling Sfn .

1 State of the art and main statement

See Figure X.1 where we summarize what we have learned so far about the spectral
sample Sfn of a left to right crossing event fn.

From this table, we see that the main question now is to prove that all the spectral
mass indeed diverges at speed n2α4(n) which is n3/4+o(1) for the triangular lattice. This
is the content of the following theorem.

111
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on the square lattice Z2 on the triangular lattice T
The spectral

mass diverges at
polynomial

speed

There is a positive ex-
ponent ε > 0, s.t.
P̂
[
0 < |Sfn| < nε

]
→ 0

The same holds for all ε <
1/8

Lower tail esti-
mates

On both lattices, Theorem VIII.2 enables to obtain
(non-sharp) lower tail estimates

A positive
fraction of the
spectral mass
lies “where it

should”

There is some universal c >
0 s.t.
P̂
[
|Sfn| > c n2α4(n)

]
> c

P̂
[
|Sfn| > c n3/4+o(1)

]
> c

May be summa-
rized by the fol-
lowing picture

k

Efn
(k) :=

∑
|S|=k f̂n(S)2

n1/8 n3/4+o(1)

. . .

A smaller

“bump” of pos-

itive Spectral

mass ??

At least

a postive

fraction of

the spec-

tral mass

lies here

Figure X.1: A summary of some of the results obtained so far for Sfn .
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Theorem X.1 ([GPS10]).

lim sup
n→∞

P̂
[
0 < |Sfn| < λ n2α4(n)

]
−→
λ→0

0 .

On the triangular lattice T, the rate of decay in λ is known explicitly. Namely:

Theorem X.2 ([GPS10]). On the triangular grid T, the lower tail of |Sfn| satisfies

lim sup
n→∞

P̂
[
0 < |Sfn| < λ Ê

[
|Sfn|

]
)
]
�

λ→0
λ2/3 .

This result deals with what one might call the “macroscopic” lower tail, i.e. with
quantities which asymptotically are still of order Ê

[
|Sfn|

]
(since λ remains fixed in

the above lim sup). It turns out that in our later study of dynamical percolation in
Chapter XI, we will need a sharp control on the full lower tail. This is the content of
the following stronger theorem:

Theorem X.3 ([GPS10]). On Z2 and on the triangular grid T, for all 1 ≤ r ≤ n, one
has

P̂
[
0 < |Sfn| < r2α4(r)

]
� n2

r2
α4(r, n)2 .

On the triangular grid, this translates into

P̂
[
0 < |Sfn| < u

]
≈ n−

1
2 u

2
3 ,

where we write ≈ to avoid relying on o(1) terms in the exponents.

2 Overall strategy

In the above theorems, it is clear that we are mostly interested in the cardinality of
Sfn . However, our strategy will consist in understanding as much as we can about the
typical geometry of the random set Sfn sampled according to the spectral probability

measure P̂fn .
As we have seen so far, the random set Sfn shares many properties with the set of

pivotal points Pfn . A first possibility would be that they are asymptotically similar.
After all, noise sensitivity is intimately related with pivotal points, so it is not unrea-
sonable to hope for such a behavior. This scenario would be very convenient for us
since the geometry of Pfn is now well understood (at least on T) thanks to the SLE
processes. In particular, in the case of Pfn , one can “explore” Pfn in a Markovian way
by relying on exploration processes. Unfortunately, based on very convincing heuristics,
it is conjectured that the scaling limits of 1

n
Sfn and 1

n
Pfn are singular random compact

sets of the square. See Figure X.2 for a quick overview of the similarities and differences
between these two random sets.
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Spectral set SfnPivotal set Pfn

E
[
|Pfn|

]
= Ê

[
|Sfn|

]
=E

[
|Pfn|2

]
Ê

[
|Sfn|2

]
In general, they differ !

Second moment

Higher moments

(k ≥ 3)

First moment

Methods for sam-

pling these ran-

dom sets

Easy (and fast) using two explo-
ration paths: The spectral sample Sfn is

much harder to sample.

In fact, the only known way

to proceed is to compute the

weights f̂n(S)2, one at a time

...

Spatial correla-

tion structure

Distant regions in Pfn
behave

more or less independently of
each other.
Furthermore, one can use the
very convenient spatial Markov
property due to the i.i.d struc-
ture of the percolation picture.

Lower Tail be-

havior
P
[
|Pfn| = 1

]
� n−

11
12 P̂

[
|Sfn| = 1

]
� n−

1
2

Much of the picture here re-

mains unclear

?

Figure X.2: Similarities and differences between Sfn and Pfn .

The conclusion of this table is that they indeed share many properties, but one
cannot deduce lower tail estimates on |Sfn| out of lower tail estimates on |Pfn|. Also,
even worse, we will not be allowed to rely on spatial Markov properties for Sfn .

However, even though Pfn and Sfn differ in many ways, they share at least one
essential property: a seemingly self-similar fractal behavior. The main strategy in
[GPS10] to control the lower-tail behavior of |Sfn| is to prove that in some very weak
sense, Sfn behaves like the simplest model among self-similar fractal processes in [0, n]2:
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i.e. a super-critical spatial Galton-Watson tree embedded in [0, n]2, also called a fractal
percolation process. The lower tail of this very simple toy model will be investigated in
detail in the next section with a technique which will be suitable for Sfn . The main
difficulty which arises in this program is the lack of knowledge of the independency
structure within Sfn . In other words, when we try to compare Sfn with a fractal
percolation process, the self-similarity already requires some work, but the hardest
part is to deal with the fact that distinct “branches” (or rather their analogs) are not
known to behave even slightly independently of each other. We will discuss these issues
in Section 4 but will not give a complete proof.

3 Toy model: the case of fractal percolation

As we explained above, our main strategy is to exploit the fact that Sfn has a certain
self-similar fractal structure. Along this section, we will consider the simplest case
of such a self-similar fractal object: namely fractal percolation, and we will detail in
this simple setting what our later strategy will be. Deliberately, this strategy will not
be optimal in this simplified case. In particular, we will not rely on the martingale
techniques that one can use with fractal percolation or Galton-Watson trees, since such
methods would not be available for our spectral sample Sfn . Results of this type can
be found in [FW07] or in [RW10] for the Poisson case.

3.1 Definition of the model and first properties

To make the analogy with Sfn easier let

n := 2h , h ≥ 1 ,

and let’s fix a parameter p ∈ (0, 1).
Now, fractal percolation on [0, n]2 is defined inductively as follows: divide [0, 2h]2

into 4 squares and retain each of them independently with probability p. Let T 1 be the
union of the retained 2h−1-squares. The second-level tree T 2 is obtained by reiterating
the same procedure independently for each 2h−1-square in T 1. Continuing in the same
fashion all the way to the squares of unit size, one obtains Tn = T := T h which is a
random subset of [0, n]2. See [Lyo11] for more on the definition of fractal percolation.
See also Figure X.3 for an example of T 5.

Remark X.1. We thus introduced two different notations for the same random set
(Tn=2h ≡ T h). The reason for this is that on the one hand the notation Tn defined on
[0, n]2 = [0, 2h]2 makes the analogy with Sfn (also defined on [0, n]2) easier, while on
the other hand inductive proofs will be more convenient with the notation T h.

In order to have a supercritical Galton-Watson tree, one has to choose p ∈ (1/4, 1).
Furthermore, one can easily check the following easy proposition.
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Figure X.3: A realization of a fractal percolation T25 = T 5

Proposition X.4. Let p ∈ (1/4, 1). Then

E
[
|Tn|

]
= n2ph = n2+log2 p ,

and

E
[
|Tn|2

]
≤ O(1)E

[
|Tn|

]2
.

In particular, by the second moment method (e.g. the Paley-Zygmund inequality),
with positive probability, Tn is of order n2+log2 p.

Let

α := 2 + log2 p .

This parameter α corresponds to the “fractal dimension” of Tn. To make the analogy
with Sfn even clearer, one could choose p in such a way that α = 2 + log2 p = 3/4, but
we will not need to.

The above proposition implies that on the event Tn 6= ∅, with positive conditional
probability |Tn| is large (of order nα). This is the exact analog of Theorem IX.8 for the
spectral sample Sfn .

Let us first analyze what would be the analog of Theorem X.1 in the case of our toy
model Tn. We have the following.
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Proposition X.5.

lim sup
n→∞

P
[
0 < |Tn| < λ nα)

]
−→
λ→0

0 .

Remark If one could rely on martingale techniques, then this proposition is a corollary
of standard results. Indeed, as is well-known

Mi :=
|T i|
(4p)i

,

is a positive martingale. Therefore it converges, as n → ∞, to a nonnegative random
variable W ≥ 0. Furthermore, the conditions of the Kesten-Stigum Theorem are ful-
filled (see for example Section 5.1 in [Lyo11]) and therefore W is positive on the event
that there is no extinction. This implies the above proposition.

As we claimed above, we will intentionally follow a more hands-on approach in this
section which will be more suitable to the random set Sfn which we have in mind.
Furthermore this approach will have the great advantage to provide the following much
more precise result, which is the analog of Theorem X.3 for Tn.

Proposition X.6. For any 1 ≤ r ≤ n,

P
[
0 < |Tn| < rα

]
� (

r

n
)log2 1/µ ,

where µ is an explicit constant in (0, 1) computed in Exercise X.2.

3.2 Strategy and heuristics

Letting u � nα, we wish to estimate P
[
0 < |Tn| < u

]
. Even though we are only in-

terested in the size of Tn, we will try to estimate this quantity by understanding the
geometry of the conditional set:

T |un := L
(
Tn

∣∣∣ 0 < |Tn| < u
)

.

The first natural question to ask is whether this conditional random set is typically
localized or not. See Figure X.4.

Intuitively, it is quite clear that the set Tn conditioned to be very small will tend to
be localized. So it is the picture on the right in Figure X.4 which is more likely. This
would deserve a proof of course, but we will come back to this later. The fact that it
should look more and more localized tells us that as one shrinks u, this should make
our conditional T |un more and more singular with respect to the unconditional one. But
how much localization should we see? This is again fairly easy to answer, at least on the
intuitive level. Indeed, T |un should tend to localize until it reaches a certain mesoscopic
scale r such that 1� r � n. One can compute how much it costs to maintain a single
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How does
L

(
Tn

∣∣∣ 0 <

|Tn| < u
)

look ?
< u

< u

< u

More Entropy ( in V ol3)
but costs more to maintain

these 3 “islands” alive.

OR?

< u

Less Entropy ( in V ol1) but
only one island to maintain

alive.

Figure X.4: Entropy v.s. Clustering effect

branch (or O(1) branches) alive until scale r, but once this is achieved, one should let
the system evolve in a “natural” way. In particular, once the tree survives all the way
to a mesoscopic square of size r, it will (by the second moment method) produce Ω(rα)
leaves there with positive probability.

To summarize, typically T |un will maintain O(1) many branches alive at scale 1 �
r � n, and then it will let the branching structure evolve in a basically unconditional
way. The intermediate scale r is chosen so that rα � u.

Definition X.7. If 1 ≤ r ≤ n = 2h is such that r = 2l, 0 ≤ l ≤ h, let T(r) denote the
set of branches that were still alive at scale r = 2l in the iterative construction of Tn.
In other words, T(r) ≡ T h−l and Tn ⊂

⋃
T(r). This random set T(r) will be the analog of

the “r-smoothing” S(r) of the spectral sample Sfn defined later in Definition X.12.

Returning to our problem, the above heuristics say that one expects to have for any
1� u� nα.

P
[
0 < |Tn| < u

]
� P

[
0 < |T(r)| ≤ O(1)

]
� P

[
|T(r)| = 1

]
,

where r is a dyadic integer chosen such that rα � u. Or in other words, we expect that

P
[
0 < |Tn| < rα

]
� P

[
|T(r)| = 1

]
. (X.1)

In the next subsection, we briefly explain how this heuristic can be implemented
into a proof in the case of the tree Tn in a way which will be suitable to the study of
Sfn . We will only skim through the main ideas for this tree case.
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3.3 Setup of a proof for Tn

Motivated by the above heuristics, we divide our system into two scales: above and
below the mesoscopic scale r. One can write the lower tail event as follows (let 1 �
r � n):

P
[
0 < |Tn| < rα

]
=

∑
k≥1

P
[
|T(r)| = k

]
P
[
0 < |Tn| < rα

∣∣ |T(r)| = k
]
. (X.2)

It is not hard to estimate the second term P
[
0 < |Tn| < rα

∣∣ |T(r)| = k
]
. Indeed, in

this term we are conditioning on having exactly k branches alive at scale r. Indepen-
dently of where they are, “below” r, these k branches evolve independently of each
other. Furthermore, by the second moment method, there is a universal constant c > 0
such that each of them exceeds the fatal amount of rα leaves with probability at least
c (note that in the opposite direction, each branch could also go extinct with positive
probability). This implies that

P
[
0 < |Tn| < rα

∣∣ |T(r)| = k
]
≤ (1− c)k .

Remark Note that one makes heavy use of the independence structure within Tn here.
This aspect is much more nontrivial for the spectral sample Sfn . Fortunately it turns
out, and this is a key fact, that in [GPS10] one can prove a weak independence statement
which in some sense makes it possible to follow this route.

We are left with the following upper bound:

P
[
0 < |Tn| < rα

]
≤

∑
k≥1

P
[
|T(r)| = k

]
(1− c)k . (X.3)

In order to prove our goal of (X.1), by exploiting the exponential decay given by
(1− c)k (which followed from independence), it is enough to prove the following bound
on the mesoscopic behavior of T :

Lemma X.8. There is a sub-exponential function k 7→ g(k) such that for all 1 ≤
r ≤ n,

P
[
|T(r)| = k

]
≤ g(k) P

[
|T(r)| = 1

]
.

Notice as we did in Definition X.7 that since T(r) has the same law as T h−l, this is
a purely Galton-Watson tree type of question.

The big advantage of our strategy so far is that initially we were looking for a sharp
control on P

[
0 < |Tn| < u

]
and now, using this “two-scales” argument, it only remains

to prove a crude upper bound on the lower tail of |T(r)|. By scale invariance this is
nothing else than obtaining a crude upper bound on the lower tail of |Tn|. Hence this
division into two scales greatly simplified our task.
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3.4 Sub-exponential estimate on the lower-tail (Lemma X.8)

The first step towards proving and understanding Lemma X.8 is to understand the
term P

[
|T(r)| = 1

]
. From now on, it will be easier to work with the “dyadic” notations

instead, i.e. with T i ≡ T2i (see remark X.1). With these notations, the first step is
equivalent to understanding the probabilities pi := P

[
|T i| = 1

]
. This aspect of the

problem is very specific to the case of Galton-Watson trees and gives very little insight
into the later study of the spectrum Sfn . Therefore we postpone the details to Exercise
X.2. The conclusion of this (straightforward) exercise is that pi behaves as i→∞ like

pi ∼ c µi ,

for an explicit exponent µ ∈ (0, 1) (see Exercise X.2). In particular, in order to prove
Proposition X.6, it is now enough to find a sub-exponential function k 7→ g(k) such
that for any i, k ≥ 1,

P
[
|T i| = k

]
≤ g(k)µi . (X.4)

More precisely, we will prove the following lemma.

Lemma X.9. Let g(k) := 2θ log2
2(k+2), where θ is a fixed constant to be chosen later.

Then for all i, k ≥ 1, one has

P
[
|T i| = k

]
≤ g(k) µi . (X.5)

We provide the proof of this lemma here, since it can be seen as a “toy proof” of the
corresponding sub-exponential estimate needed for the r-smoothed spectral samples
S(r), stated in the coming Theorem X.15. The proof of this latter theorem shares
some similarities with the proof below but is much more technical since in the case of
S(r) one has to deal with a more complex structure than the branching structure of a
Galton-Watson tree.

Proof. We proceed by double induction. Let k ≥ 2 be fixed and assume that equa-
tion (X.5) is already satisfied for all pair (i′, k′) such that k′ < k. Based on this
assumption, let us prove by induction on i that all pairs (i, k) satisfy equation (X.5) as
well.

First of all, if i is small enough, this is obvious by the definition of g(k). Let

J = Jk := sup{i ≥ 1 : g(k)µi > 10} .

Then, it is clear that equation (X.5) is satisfied for all (i, k) with i ≤ Jk. Now let
i > Jk.

If T i is such that |T i| = k ≥ 1, let L = L(T i) ≥ 0 be the largest integer such
that T i intersects only one square of size 2i−L. This means that below scale 2i−L, the
tree T i splits into at least 2 live branches in distinct dyadic squares of size 2i−L−1. Let
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d ∈ {2, 3, 4} be the number of such live branches. By decomposing on the value of L,
and using the above assumption, we get

P
[
|T i| = k

]
≤ P

[
L(T i) > i− Jk

]
+

1

1− q

i−Jk∑
l=0

P
[
L(T i) = l

] 4∑
d=2

(
4

d

)
(µi−l−1)d

∑
(kj)1≤j≤d

kj ≥ 1,
∑

kj = k

∏
j

g(kj)

where q is the probability that our Galton-Watson tree goes extinct.
Let us first estimate what P

[
L(T i) ≥ m

]
is for m ≥ 0. If m ≥ 1, this means that

among the 22m dyadic squares of size 2i−m, only one will remain alive all the way to
scale 1. Yet, it might be that some other such squares are still alive at scale 2i−m but
will go extinct by the time they reach scale 1. Let pm,b be the probability that the
process T m+b, which lives in [0, 2m+b]2, is entirely contained in a dyadic square of size
2b. With such notations, one has

P
[
L(T i) ≥ m

]
= pm,i−m .

Furthermore, if i = m, one has pi,0 = pi ∼ cµi. It is not hard to prove (see Exercise
X.2) the following lemma.

Lemma X.10. For any value of m, b ≥ 0, one has

pm,b ≤ µm .

In particular, one has a universal upper bound in b ≥ 0.

It follows from the lemma that P
[
L(T i) = l

]
≤ P

[
L(T i) ≥ l

]
≤ µl and

P
[
L(T i) > i− Jk

]
≤ µi−Jk (X.6)

≤ 1

10
g(k) µi by the definition of Jk . (X.7)

This gives us that for some constant C

P
[
|T i| = k

]
≤ µi

10
g(k) + C

i−Jk∑
l=0

µl

4∑
d=2

(µi−l)d
∑

(kj)1≤j≤d

kj ≥ 1,
∑

kj = k

∏
j

g(kj)

=
µi

10
g(k) + Cµi

4∑
d=2

i−Jk∑
l=0

(µi−l)d−1
∑

(kj)1≤j≤d

kj ≥ 1,
∑

kj = k

∏
j

g(kj) .
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Let us deal with the d = 2 sum (the contributions coming from d > 2 being even
smaller). By concavity of k 7→ θ log2

2(k + 2), one obtains that for any (k1, k2) such that
k1 + k2 = k: g(k1)g(k2) ≤ g(k/2)2. Since there are at most k2 such pairs, this gives us
the following bound on the d = 2 sum.

i−Jk∑
l=0

(µi−l)2−1
∑

(kj)1≤j≤2

kj ≥ 1,
∑

kj = k

∏
j

g(kj) ≤
i−Jk∑
l=0

µi−lk2g(k/2)2

≤ 1

1− µ
µJk k2 g(k/2)2

≤ 10
1

1− µ
k2 g(k/2)2 (µg(k))−1 ,

by definition of Jk.
Now, some easy analysis implies that if one chooses the constant θ > 0 large enough,

then for any k ≥ 2, one has C10 1
1−µ

k2 g(k/2)2 (µg(k))−1 ≤ 1
10

g(k). Altogether (and

taking into consideration the d > 2 contributions), this implies that

P
[
|T i| = k

]
≤ 2

5
g(k)µi ≤ g(k)µi ,

as desired.

Remark Recall the initial question from Figure X.4 which asked whether the clus-
tering effect wins over the entropy effect or not. This question enabled us to motivate
the setup of the proof but in the end, we did not specifically address it. Notice that
the above proof in fact solves the problem (see Exercise X.3).

4 Back to the spectrum: an exposition of the proof

4.1 Heuristic explanation

Let us now apply the strategy we developed for Tn to the case of the spectral sample
Sfn . Our goal is to prove Theorem X.3 (of which Theorems X.1 and X.2 can be shown
to follow). Let Sfn ⊂ [0, n]2 be our spectral sample. We have seen (Theorem IX.8)
that with positive probability |Sfn| � n2α4(n). For all 1 < u < n2α4(n), we wish to

understand the probability P̂
[
0 < |Sfn| < u

]
. Following the notations we used for Tn,

let S |u
fn

be the spectral sample conditioned on the event {0 < |Sfn| < u}.

Question: How does S |u
fn

typically look?

To answer this question, one has to understand whether S |u
fn

tends to be localized
or not. Recall from Figure X.4 the illustration of the competition between entropy and
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clustering effects in the case of Tn. The same figure applies to the spectral sample Sfn .
We will later state a clustering lemma (Lemma X.17) which will strongly support
the localized behavior described in the next proposition.

Therefore we are guessing that our conditional set S |u
fn

will tend to localize into O(1)
many squares of a certain scale r and will have a “normal” size within these r-squares.
It remains to understand what this mesoscopic scale r as a function of u is.

By “scale invariance”, one expects that if Sfn is conditioned to live in a square of
size r, then |Sfn| will be of order r2α4(r) with positive conditional probability. More
precisely, the following lemma will be proved in Problem X.6.

Lemma X.11. There is a universal c ∈ (0, 1) such that for any n and for any r-square
B ⊂ [n/4, 3n/4]2 in the “bulk” of [0, n]2, one has

P̂
[ |Sfn|
r2α4(r)

∈ (c, 1/c)
∣∣ Sfn 6= ∅ and Sfn ⊂ B

]
> c . (X.8)

In fact this lemma holds uniformly in the position of the r-square B inside [0, n]2,
but we will not discuss this here.

What this lemma tells us is that for any 1 < u < n2α4(n), if one chooses r = ru in
such a way that r2α4(r) � u, then we expect to have the following estimate:

P̂
[
0 < |Sfn| < u

]
� P̂

[
Sfn intersects O(1) r-squares in [0, n]2

]
� P̂

[
Sfn intersects a single r-square in [0, n]2

]
At this point, let us introduce a concept which will be very helpful in what follows.

Definition X.12 (“r-smoothing”). Let 1 ≤ r ≤ n. Consider the domain [0, n]2 and
divide it into a grid of squares of edge-length r. (If 1� r � n, one can view this grid
as a mesoscopic grid).

If n is not divisible by r, write n = mr+q and consider the grid of r-squares covering
[0, (m + 1)r]2.

Now, for each subset S ⊂ [0, n]2, define S(r) to be the set of r × r squares in the
above grid which intersect S. In particular |S(r)| will correspond to the number of such
r-squares which intersect S. With a slight abuse of notation, S(r) will sometimes also
denote the actual subset of [0, n]2 consisting of the union of these r-squares.

One can view the application S 7→ S(r) as an r-smoothing since all the details
below the scale r are lost.

Remark Note that in Definition X.7, we relied on a slightly different notion of “r-
smoothing” since in that case, T(r) could also include r-branches which might go extinct
by the time they reached scale one. The advantage of this choice was that there was
an exact scale-invariance from T to T(r) while in the case of Sfn , there is no such exact
scale-invariance from S to S(r).

With these notations, the above discussion leads us to believe that the following
proposition should hold.
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Proposition X.13. For all 1 ≤ r ≤ n, one has

P̂
[
0 < |Sfn| < r2α4(r)

]
� P̂fn

[
|S(r)| = 1

]
.

Before explaining the setup used in [GPS10] to prove such a result, let us check that
it indeed implies Theorem X.3. By neglecting the boundary issues, one has

P̂fn

[
|S(r)| = 1

]
�

∑
r-squares

B ⊂ [n/4, 3n/4]2

P̂
[
Sfn 6= ∅ and Sfn ⊂ B

]
. (X.9)

There are O(n2

r2 ) such B squares, and for each of these, one can check (see Exercise X.5)
that

P̂
[
Sfn 6= ∅ and Sfn ⊂ B

]
� α4(r, n)2 . (X.10)

Therefore, Proposition X.13 indeed implies Theorem X.3.

4.2 Setup and organization of the proof of Proposition X.13

To start with, assume we knew that disjoint regions in the spectral sample Sfn behave
more or less independently of each other in the following (vague) sense. For any k ≥
1 and any mesoscopic scale 1 ≤ r ≤ n, if one conditions on S(r) to be equal to
B1 ∪ · · · ∪ Bk for k disjoint r-squares, then the conditional law of S|S Bi

should be
“similar” to an independent product of L

[
S|Bi

∣∣ S ∩Bi 6= ∅
]
, i ∈ {1, . . . , k}. Similarly

as in the tree case (where the analogous property for Tn was an exact independence
factorization), and assuming that the above comparison with an independent product
could be made quantitative, this would potentially imply the following upper bound for
a certain absolute constant c > 0:

P̂
[
0 < |Sfn| < r2α4(r)

]
≤

∑
k≥1

P̂
[
|S(r)| = k

]
(1− c)k . (X.11)

This means that even if one managed to obtain a good control on the dependency
structure within Sfn (in the above sense), one would still need to have a good estimate

on P̂
[
|S(r)| = k

]
in order to deduce Proposition X.13. This part of the program is

achieved in [GPS10] without requiring any information on the dependency structure of
Sfn . More precisely, the following result is proved:

Theorem X.14 ([GPS10]). There is a sub-exponential function g 7→ g(k), such that
for any 1 ≤ r ≤ n and any k ≥ 1,

P̂
[
|S(r)| = k

]
≤ g(k) P̂

[
|S(r)| = 1

]
.

The proof of this result will be described briefly in the next subsection.

One can now describe how the proof of Theorem X.3 is organized in [GPS10]. It is
divided into three main parts:
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1. The first part deals with proving the multi-scale sub-exponential bound on the
lower-tail of |S(r)| given by Theorem X.14.

2. The second part consists in proving as much as we can on the dependency struc-
ture of Sfn . Unfortunately here, it seems to be very challenging to achieve a good
understanding of all the “independence” that should be present within Sfn . The
only hint of independence which was finally proved in [GPS10] is a very weak one
(see subsection 4.4). In particular, it is too weak to readily imply a bound like
(X.11).

3. Since disjoint regions of the spectral sample Sfn are not known to behave inde-
pendently of each other, the third part of the proof consists in adapting the setup
we used for the tree (where distinct branches evolve exactly independently of each
other) into a setup where the weak hint of independence obtained in the second
part of the program turns out to be enough to imply the bound given by (X.11)
for an appropriate absolute constant c > 0. This final part of the proof will be
discussed in subsection 4.5.

The next three subsections will be devoted to each of these 3 parts of the program.

4.3 Some words about the sub-exponential bound on the lower
tail of S(r)

In this subsection, we turn our attention to the proof of the first part of the program,
i.e. on Theorem X.14. In fact, as in the case of Tn, the following more explicit statement
is proved in [GPS10].

Theorem X.15 ([GPS10]). There exists an absolute constant θ > 0 such that for any
1 ≤ r ≤ n and any k ≥ 1,

P̂
[
|S(r)| = k

]
≤ 2 θ log2

2(k+2) P̂
[
|S(r)| = 1

]
.

Remark Note that the theorems from [BKS99] on the noise sensitivity of percolation
are all particular cases (r = 1) of this intermediate result in [GPS10].

The main idea in the proof of this theorem is in some sense to assign a tree structure
to each possible set S(r). The advantage of working with a tree structure is that it is eas-
ier to work with inductive arguments. In fact, once a mapping S(r) 7→ “tree structure”
has been designed, the proof proceeds similarly as in the case of T(r) by double induction
on the depth of the tree as well as on k ≥ 1. Of course, this mapping is a delicate affair:
it has to be designed in an “efficient” way so that it can compete against entropy effects
caused by the exponential growth of the number of tree structures.

We will not give the details of how to define such a mapping, but let us describe
informally how it works. More specifically than a tree structure, we will in fact assign
an annulus structure to each set S(r).
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Definition X.16. Let A be a finite collection of disjoint (topological) annuli in the
plane. We call this an annulus structure. Furthermore, we will say that a set S ⊂ R2

is compatible with A (or vice versa) if it is contained in R2 \
⋃
A and intersects the

inner disk of each annulus in A. Note that it is allowed that one annulus is “inside” of
another annulus.

A1

A2

A3

Sfn

Figure X.5: An example of an annulus structure A := {A1, A2, A3} compatible with
a spectral sample Sfn .

The mapping procedure in [GPS10] assigns to each S(r) an annulus structure A ⊂
[0, n]2 in such a way that it is compatible with S(r). See Figure X.5 for an example.
Again, we will not describe this procedure nor discuss the obvious boundary issues
which arise here, but let us state a crucial property satisfied by annulus structures.

Lemma X.17 (clustering Lemma). If A is an annulus structure contained in [0, n]2,
then

P̂
[
S(r) is compatible with A

]
≤

∏
A∈A

α4(A)2 ,

where α4(A) denotes the probability of having a four-arm event in the annulus A.

Remark To deal with boundary issues, one would also need to incorporate within
our annulus structures half-annuli centered on the boundary as well as quarter disks
centered at the corners of [0, n]2.
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Let us briefly comment on this lemma.

• First of all, its proof is an elegant combination of linear algebra and percolation.
It is a short and relatively elementary argument. See Lemma 4.3 in [GPS10].

• It is very powerful in dealing with the possible non-injectivity of the mapping
S(r) 7→ A. Indeed, while describing the setup above, one might have objected that
if the mapping were not injective enough, then the cardinality of the “fibers” above
each annulus structure would have to be taken into account as well. Fortunately,
the above lemma reads as follows: for any fixed annulus structure A,∑

S(r): S(r) 7→A

P̂
[
S(r)

]
≤ P̂

[
S(r) is compatible with A

]
≤

∏
A∈A

α4(A)2 .

• Another essential feature of this lemma is that it quantifies very efficiently the fact
that the clustering effect wins over the entropy effect in the sense of Figure X.4.
The mechanism responsible for this is that the probability of the four-arm event
squared has an exponent (equal to 5/2 on T) larger than the volume exponent
equal to 2. To illustrate this, let us analyze the situation when k = 2 (still
neglecting boundary issues). The probability that the spectrum Sfn intersects two
and only two r-squares at macroscopic distance Ω(n) from each other can be easily
estimated using the lemma. Indeed, in such a case, S(r) would be compatible with
an annulus structure consisting of two annuli, each being approximately of the
type A(r, n). There are O(n2

r2 ) × O(n2

r2 ) such possible annulus structures. Using
the lemma each of them costs (on T) ( r

n
)5+o(1). An easy exercise shows that this

is much smaller than P̂
[
|S(r)| = 2

]
. In other words, if |S(r)| is conditioned to be

small, it tends to be localized. Also, the way that the lemma is stated makes it
very convenient to work with higher values of k.

The details of the proof of Theorem X.15 can be found in [GPS10]. The double
induction there is in some sense very close to the one we carried out in detail in sub-
section 3.4 in the case of the tree; this is the reason why we included this latter proof.
For those who might read the proof in [GPS10], there is a notion of overcrowded cluster
defined there; it exactly corresponds in the case of the tree to stopping the analysis
above scale Jk instead of going all the way to scale 1 (note that without stopping at
this scale Jk, the double induction in subsection 3.4 would have failed).

4.4 Some words on the weak independence property proved
in [GPS10]

This part of the program is in some sense the main one. To introduce it, let us start by
a naive but tempting strategy. What the first part of the program (Theorem X.15) tells
us is that for any mesoscopic scale 1 ≤ r ≤ n, if Sfn is nonempty, it is very unlikely
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that it will intersect few squares of size r. In other words, it is very unlikely that |S(r)|
will be small. Let B1, . . . , Bm denote the set of O(n2/r2) r-squares which tile [0, n]2.
One might try the following scanning procedure: explore the spectral sample Sfn inside
the squares Bi one at a time. More precisely, before starting the scanning procedure,
we consider our spectral sample Sfn as a random subset of [0, n]2 about which we do
not know anything yet. Then, at step one, we reveal S|B1 . This gives us some partial
information about Sfn . What we still have to explore is a random set of [0, n]2 \ B1

which follows the law of a spectral sample conditioned on what was seen in B1 and we
keep going in this way. By Theorem X.15, many of these squares will be nonempty.
Now, it is not hard to prove the following lemma (using similar methods as in Problem
X.6).

Lemma X.18. There is a universal constant c > 0 such that for any r-square B in the
bulk [n/4, 3n/4]2, one has

P̂
[
|Sfn ∩B| > c r2α4(r)

∣∣ Sfn ∩B 6= ∅
]

> c .

This lemma in fact holds uniformly in the position of B inside [0, n]2.
If one could prove the following (much) stronger result: there exists a universal

constant c > 0 such that uniformly on the sets S ⊂ [0, n]2 \B one has

P̂
[
|Sfn ∩B| > c r2α4(r)

∣∣ Sfn ∩B 6= ∅ and S|Bc = S
]

> c , (X.12)

then it would not be hard to make the above scanning strategy work together with
Theorem X.15 in order to obtain Theorem X.3. (Note that such a result would indeed
give a strong hint of independence within Sfn .) However, as we discussed before,
the current understanding of the independence within Sfn is far from giving such a
statement. Instead, the following result is proved in [GPS10]. We provide here a
slightly simplified version.

Theorem X.19 ([GPS10]). There exists a uniform constant c > 0 such that for any
set W ⊂ [0, n]2 and any r-square B such that B ∩W = ∅, one has

P̂
[
|Sfn ∩B| > c r2α4(r)

∣∣ Sfn ∩B 6= ∅ and Sfn ∩W = ∅
]

> c .

Note that this theorem in some sense interpolates between part of Lemma X.11 and
Lemma X.18 which correspond respectively to the special cases W = Bc and W = ∅.
Yet it looks very weak compared to the expected (X.12) which is stated uniformly on
the behavior of Sfn outside of B.

A crucial step in the proof of Theorem X.19 is to understand the following “one-point
function” for any x ∈ B at distance at least r/3 from the boundary:

P̂
[
x ∈ Sfn and Sfn ∩W = ∅

]
.
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Note that by Proposition IX.11, this probability has a very nice description in terms of
an explicit coupling of two i.i.d. percolation configurations and the notion of pivotality.
If (ω1, ω2) is a coupling of two i.i.d. percolation realizations on [0, n]2 which are such
that {

ω1 = ω2 on W c

ω1, ω2 are independent on W

then, when x 6∈ W , we have

P̂
[
x ∈ Sfn and Sfn ∩W = ∅

]
= P

[
x is pivotal for ω1 and ω2

]
.

Thanks to this, the proof of Theorem X.19 proceeds by analyzing this W -coupling.
See [GPS10] for the complete details.

4.5 Adapting the setup to the weak hint of independence

Assuming the weak hint of independence given by Theorem X.19, it seems we are in
bad shape if we try to apply the above naive sequential scanning procedure. Indeed,
we face the following two obstacles:

1. The first obstacle is that one would keep a good control only as far as one would
not see any “spectrum”. Namely, while revealing S|Bi

one at a time, the first
time one finds a square Bi such that S|Bi

6= ∅, one would be forced to stop the
scanning procedure there. In particular, if the size of the spectrum in this first
nontrivial square does not exceed r2α4(r), then we cannot conclude anything.

2. The second obstacle is that, besides the conditioning S ∩W = ∅, our estimate
is also conditioned on the event that S ∩ B 6= ∅. In particular, in the above
“naive” scanning strategy where squares are revealed in a sequential way, at each
step one would have to update the probability that S ∩Bi+1 6= ∅ based on what
was discovered so far.

It is the purpose of this third part of the program to adapt the above scanning
strategy to these constraints.

Let us start with the first obstacle. Assume that we scan the domain [0, n]2 in a se-
quential way, i.e., we choose an increasing family of subsets (Wl)l≥1 = ({w1, . . . , wl})l≥1.
At each step, we reveal what S|{wl+1} is, conditioned on what was discovered so far (i.e.,
conditioned on S|Wl

). From the weak independence Theorem X.19, it is clear that if
we want this strategy to have any chance to be successful, we have to choose (Wl)l≥1 in
such a way that (Sfn∩Wl)l≥1 will remain empty for some time (so that we can continue
to rely on our weak independence result); of course this cannot remain empty forever,
so the game is to choose the increasing family (Wl)l≥1 in such a way that the first time
Sfn ∩ {wl} will happen to be nonempty, it should give a strong indication that Sfn is
large in the r-neighborhood of wl.
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As we have seen, revealing the entire mesoscopic boxes Bi one at a time is not a
successful idea. Here is a much better idea (which is not yet the right one due to the
second obstacle, but we are getting close): in each r-square Bi, instead of revealing all
the bits, let us reveal only a very small proportion δr of them. Lemma X.18 tells us
that if S ∩Bi 6= ∅, then each point x ∈ Bi has probability of order α4(r) to be in Sfn .
Therefore if we choose δr � (r2α4(r))

−1, then with high probability, by revealing only
a proportion δr of the points in Bi, we will “miss” the spectral sample Sfn . Hence,
we have to choose δr ≥ (r2α4(r))

−1. In fact choosing δ � (r2α4(r))
−1 is exactly the

right balance. Indeed, we know from Theorem X.15 that many r-squares Bi will be
touched by the spectral sample; now, in this more sophisticated scanning procedure, if
the first such square encountered happens to contain few points (i.e. � r2α4(r)), then
with the previous scanning strategy, we would “lose”, but with the present one, due to
our choice of δr, most likely we will keep Sfn ∩Wl = ∅ so that we can continue further
on until we reach a “good” square (i.e. a square containing of order r2α4(r) points).

Now, Theorems X.15 and X.19 together tell us that with high probability, one will
eventually reach such a good square. Indeed, suppose the m first r-squares touched
by the spectral sample happened to contain few points; then, most likely, if Wlm is the
set of bits revealed so far, by our choice of δr we will still have S ∩Wlm = ∅. This
allows us to still rely on Theorem X.19, which basically tells us that there is a positive
conditional probability for the next one to be a “good” square (we are neglecting the
second obstacle here). This says that the probability to visit m consecutive bad squares
seems to decrease exponentially fast. Since m is typically very large (by Theorem X.15),
we conclude that, with high probability, we will finally reach good squares. In the first
good square encountered, by our choice of δr, there is now a positive probability to
reveal a bit present in Sfn . In this case, the sequential scanning will have to stop, since
we will not be able to use our weak independence result anymore, but this is not a big
issue: indeed, assume that you have some random set S ⊂ B. If by revealing each bit
only with probability δr, you end up finding a point in S, most likely your set S is at
least of size Ω(r2α4(r)). This is exactly the size we are looking for in Theorem X.3.

Now, only the second obstacle remains. It can be rephrased as follows: assume
you applied the above strategy in B1, . . . , Bh (i.e. you revealed each point in Bi, i ∈
{1, . . . , h} only with probability δr) and that you did not find any spectrum yet. In
other words, if Wl denotes the set of points visited so far, then Sfn ∩Wl = ∅. Now if
Bh+1 is the next r-square to be scanned (still in a “dilute” way with intensity δr), we
seem to be in good shape since we know how to control the conditioning Sfn ∩Wl = ∅.
However, if we want to rely on the uniform control given by Theorem X.19, we also
need to further condition on Sfn ∩ Bh+1 6= ∅. In other words, we need to control the
following conditional expectation:

P̂
[
Sfn ∩Bh+1 6= ∅

∣∣ Sfn ∩Wl = ∅
]
.

It is quite involved to estimate such quantities. Fortunately, by changing our sequential
scanning procedure into a slightly more “abstract” procedure, one can avoid dealing
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with such terms. More precisely, within each r-square B, we will still reveal only a δr

proportion of the bits (so that the first obstacle is still taken care of), but instead of
operating in a sequential way (i.e. scanning B1, then B2 and so on), we will gain a lot
by considering the combination of Theorem X.15 and Theorem X.19 in a more abstract
fashion. Namely, the following large deviation lemma from [GPS10] captures exactly
what we need in our present situation.

Lemma X.20 ([GPS10]). Let Xi, Yi ∈ {0, 1}, i ∈ {1, . . . ,m} be random variables such
that for each i Yi ≤ Xi a.s. If ∀J ⊂ [m] and ∀i ∈ [m] \ J , we have

P
[
Yi = 1

∣∣ Yj = 0, ∀j ∈ J
]
≥ c P

[
Xi = 1

∣∣ Yj = 0, ∀j ∈ J
]
, (X.13)

then if X :=
∑

Xi and Y :=
∑

Yi, one has that

P
[
Y = 0

∣∣ X > 0
]
≤ c−1E

[
e−(c/e)X

∣∣ X > 0
]
.

Recall that B1, . . . , Bm denotes the set of r-squares which tile [0, n]2. For each
i ∈ [m], let Xi := 1S∩Bi 6=∅ and Yi := 1S∩Bi∩W6=∅, where W is an independent uniform
random subset of [0, n]2 of intensity δr.

This lemma enables us to combine our two main results, Theorems X.19 and X.15,
in a very nice way: By our choice of the intensity δr, Theorem X.19 exactly states
that the assumption (X.13) is satisfied for a certain constant c > 0. Lemma X.20 then
implies that

P̂
[
Y = 0

∣∣ X > 0
]
≤ c−1E

[
e−(c/e)X

∣∣ X > 0
]
.

Now, notice that X =
∑

Xi exactly corresponds to |S(r)| while the event {X > 0}
corresponds to {Sfn 6= ∅} and the event {Y = 0} corresponds to {Sfn ∩ W = ∅}.
Therefore Theorem X.15 leads us to

P̂
[
Sfn ∩W = ∅ , Sfn 6= ∅

]
≤ c−1E

[
e−(c/e)|S(r)| , Sfn 6= ∅

]
≤ c−1

∑
k≥1

P̂
[
|S(r)| = k

]
e−(c/e)k

≤ c−1
(∑

k≥1

2θ log2
2(k+2)e−(c/e)k)

)
P̂
[
|S(r)| = 1

]
≤ C(θ) P̂

[
|S(r)| = 1

]
� n2

r2
α4(r, n)2 , (X.14)

where (X.10) is used in the last step.
This shows that on the event that Sfn 6= ∅, it is very unlikely that we do not detect

the spectral sample on the δr-dilute set W . This is enough for us to conclude using the
following identity:

P̂
[
Sfn ∩W = ∅

∣∣ Sfn

]
= (1− δr)

|Sfn | = (1− 1

r2α4(r)
)|Sfn | .
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Indeed, by averaging this identity we obtain

P̂
[
Sfn ∩W = ∅ , Sfn 6= ∅

]
= Ê

[
P̂
[
Sfn ∩W = ∅

∣∣ Sfn

]
1Sfn 6=∅

]
= Ê

[
(1− 1

r2α4(r)
)|Sfn | 1Sfn 6=∅

]
≥ Ω(1)P̂

[
0 < |Sfn| < r2α4(r)

]
,

which, combined with (X.14) yields the desired upper bound in Theorem X.3. See
Problem X.7 for the lower bound.

5 The radial case

The next chapter will focus on the existence of exceptional times in the model of dy-
namical percolation. A main tool in the study of these exceptional times is the spectral
measure Q̂gR

where gR is the Boolean function gR : {−1, 1}O(R2) → {0, 1} defined to be
the indicator function of the one-arm event {0←→ ∂B(0, R)}. Note that by definition,
gR is such that ‖gR‖22 = α1(R).

In [GPS10], the following “sharp” theorem on the lower tail of SgR
is proved.

Theorem X.21 ([GPS10]). Let gR be the one-arm event in B(0, R). Then for any
1 ≤ r ≤ R, one has

Q̂gR

[
0 < |SgR

| < r2α4(r)
]
� α1(R)2

α1(r)
. (X.15)

The proof of this theorem is in many ways similar to the chordal case (Theorem
X.3). An essential difference is that the “clustering v.s. entropy” mechanism is very
different in this case. Indeed in the chordal left to right case, when Sfn is conditioned
to be very small, the proof of Theorem X.3 shows that typically Sfn localizes in some
r-square whose location is “uniform” in the domain [0, n]2. In the radial case, the
situation is very different: SgR

conditioned to be very small will in fact tend to localize
in the r-square centered at the origin. This means that the analysis of the mesoscopic
behavior (i.e. the analog of Theorem X.15) has to be adapted to the radial case. In
particular, in the definition of an annulus structure, the annuli containing the origin
play a distinguished role. See [GPS10] for complete details.

6 Exercises

Exercise X.1. Prove Proposition X.4.

Exercise X.2. Consider the fractal percolation process T i, i ≥ 1 introduced in this
chapter. (Recall that T2i ≡ T i). Recall that in Section 3, it was important to estimate
the quantity P

[
|T i| = 1

]
. This is one of the purposes of the present exercise.
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(a) Let pi := P
[
|T i| = 1

]
. By recursion, show that there is a constant c ∈ (0, 1) so

that, as i→∞
pi ∼ cµi ,

where µ := 4p(1− p + pq)3 and q is the probability of extinction for the Galton-
Watson tree correponding to (T i)i≥1.

(b) Using the generating function s 7→ f(s)(= E(s number of offspring) of this Galton-
Watson tree, and by studying the behavior of its i-th iterates f (i), prove the same
result with µ := f ′(q). Check that it gives the same formula.

(c) Recall the definition of pm,b from Section 3. Let pm,∞ be the probability that
exactly 1 person at generation m survives forever. Prove that

pm,∞ = (1− q)µm

for the same exponent µ. Prove Lemma X.10. Finally, prove that limb→∞ pm,b =
pm,∞.

Exercise X.3. Extract from the proof of Lemma X.9 the answer to the question asked
in Figure X.4.

Exercise X.4. Prove that

Theorem X.3⇒ Theorem X.2⇒ Theorem X.1

Exercise X.5. Consider an r-square B ⊂ [n/4, 3n/4]2 in the “bulk” of [0, n]2.

(a) Prove using Proposition IX.5 that

P̂
[
Sfn 6= ∅ and Sfn ⊂ B

]
� α4(r, n)2

(b) Check that the clustering Lemma X.17 is consistent with this estimate.

Problem X.6. The purpose of this exercise is to prove Lemma X.11.

(a) Using Proposition IX.5, prove that for any x ∈ B at distance r/3 from the bound-
ary of B,

P
[
x ∈ Sfn and Sfn ∩Bc = ∅

]
� α4(r)α4(r, n)2 .

(b) Recover the same result using Proposition IX.6 instead.

(c) Conclude using Exercise X.5 that Ê
[
|Sfn ∩ B̄|

∣∣ Sfn 6= ∅ and Sfn ⊂ B
]
� r2α4(r),

where B̄ ⊂ B is the set of points x ∈ B at distance at least r/3 from the boundary.

(d) Study the second-moment Ê
[
|Sfn ∩ B̄|2

∣∣ Sfn 6= ∅ and Sfn ⊂ B
]
.
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(e) Deduce Lemma X.11.

Problem X.7. Most of this chapter was devoted to the explanation of the proof of
Theorem X.3. Note that we in fact only discussed how to prove the upper bound.
This is because the lower bound is much easier to prove and this is the purpose of this
problem.

(a) Deduce from Lemma X.11 and Exercise X.5(a) that the lower bound on
P̂
[
0 < |Sfn| < r2α4(r)

]
given in Theorem X.3 is correct; i.e., show that there

exists a constant c > 0 such that

P̂
[
0 < |Sfn| < r2α4(r)

]
> c

n2

r2
α4(r, n)2 .

(b) (Hard) In the same fashion, prove the lower bound part of Theorem X.21.



Chapter XI

Applications to dynamical
percolation

In this section, we present a very natural model where percolation undergoes a time-
evolution: this is the model of dynamical percolation described below. The study
of the “dynamical” behavior of percolation as opposed to its “static” behavior turns
out to be very rich: interesting phenomena arise especially at the phase transition
point. We will see that in some sense, dynamical planar percolation at criticality is a
very unstable or chaotic process. In order to understand this instability, sensitivity of
percolation (and therefore its Fourier analysis) will play a key role. In fact, the original
motivation for the paper [BKS99] on noise sensitivity was to solve a particular problem
in the subject of dynamical percolation. [Ste09] provides a recent survey on the subject
of dynamical percolation.

We mention that one can read all but the last section of the present chapter without
having read Chapter X.

1 The model of dynamical percolation

This model was introduced by Häggström, Peres and Steif [HPS97] inspired by a ques-
tion that Paul Malliavin asked at a lecture at the Mittag-Leffler Institute in 1995. This
model was invented independently by Itai Benjamini.

In the general version of this model as it was introduced, given an arbitrary graph
G and a parameter p, the edges of G switch back and forth according to independent
2-state continuous time Markov chains where closed switches to open at rate p and
open switches to closed at rate 1 − p. Clearly, the product measure with density p,
denoted by πp in this chapter, is the unique stationary distribution for this Markov
process. The general question studied in dynamical percolation is whether, when we
start with the stationary distribution πp, there exist atypical times at which the perco-
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lation structure looks markedly different than that at a fixed time. In almost all cases,
the term “markedly different” refers to the existence or nonexistence of an infinite con-
nected component. Dynamical percolation on site percolation models, which includes
our most important case of the hexagonal lattice, is defined analogously.

We very briefly summarize a few early results in the area. It was shown in [HPS97]
that below criticality, there are no times at which there is an infinite cluster and above
criticality, there is an infinite cluster at all times. See the exercises. In [HPS97], exam-
ples of graphs which do not percolate at criticality but for which there exist exceptional
times where percolation occurs were given. (Also given were examples of graphs which
do percolate at criticality but for which there exist exceptional times where percolation
does not occur.) A fairly refined analysis of the case of so-called spherically symmetric
trees was given. See the exercises for some of these.

Given the above results, it is natural to ask what happens on the standard graphs
that we work with. Recall that for Z2, we have seen that there is no percolation at
criticality. It turns out that it is also known (see below) that for d ≥ 19, there is no
percolation at criticality for Zd. It is a major open question to prove that this is also
the case for intermediate dimensions; the consensus is that this should be the case.

2 What’s going on in high dimensions: Zd, d ≥ 19?

For the high dimensional case, Zd, d ≥ 19, it was shown in [HPS97] that there are no
exceptional times of percolation at criticality.

Theorem XI.1 ([HPS97]). For the integer lattice Zd with d ≥ 19, dynamical critical
percolation has no exceptional times of percolation.

The key reason for this is a highly nontrivial result due to work of Hara and Slade
([HS94]), using earlier work of Barsky and Aizenman ([BA91]), that says that if θ(p) is
the probability that the origin percolates when the parameter is p, then for p ≥ pc

θ(p) = O(p− pc) . (XI.1)

(This implies in particular that there is no percolation at criticality.) In fact, this
is the only thing which is used in the proof and hence the result holds whenever the
percolation function satisfies this “finite derivative condition” at the critical point.

Outline of Proof. By countable additivity, it suffices to show that there are no times
at which the origin percolates during [0, 1]. We use a first moment argument. We
break the time interval [0, 1] into m intervals each of length 1/m. If we fix one of these
intervals, the set of edges which are open at some time during this interval is i.i.d. with
density about pc + 1/m. Hence the probability that the origin percolates with respect
to these set of edges is by (XI.1) at most O(1/m). It follows that if Nm is the number
of intervals where this occurs, then E[Nm] is at most O(1). It is not hard to check that
N ≤ lim infm Nm, where N is the cardinality of the set of times during [0, 1] at which
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the origin percolates. Fatou’s Lemma now yields that E(N) < ∞ and hence there are
at most finitely many exceptional times during [0, 1] at which the origin percolates. To
go from here to having no exceptional times can either be done by using some rather
abstract Markov process theory or by a more hands on approach as was done in [HPS97]
and which we refer to for details.

Remarks (i). It is known that (XI.1) holds for any homogeneous tree (see [Gri99] for
the binary tree case) and hence there are no exceptional times of percolation in this
case also.
(ii). It is was proved by Kesten and Zhang [KZ87], that (XI.1) fails for Z2 and hence
the proof method above to show that there are no exceptional times fails. This infinite
derivative in this case might suggest that there are in fact exceptional times for critical
dynamical percolation on Z2, an important question left open in [HPS97].

3 d = 2 and BKS

One of the questions posed in [HPS97] and which earlier had been asked by Itai Ben-
jamini was whether there are exceptional times of percolation for Z2. The following
interesting result in [BKS99], although it does not give this, has a similar flavor. Ob-
serve that this is a special case of Theorem I.23, as pointed out earlier.

Theorem XI.2 ([BKS99]). Consider an R×R box on which we run critical dynamical
percolation. Let SR be the number of times during [0, 1] at which the configuration
changes from having a percolation crossing to not having one. Then

SR →∞ in probability as R→∞.

Noise sensitivity of percolation as well as the above theorem tells us that certain large
scale connectivity properties decorrelate very quickly. This suggests that in some vague
sense ωpc

t “changes” very quickly as time goes on and hence there might be some chance
that an infinite cluster appears since we are given many “chances”.

In the next section, we begin our study of exceptional times for Z2 and the hexagonal
lattice.

4 The second moment method and the spectrum

In this section, we reduce the question of exceptional times to a “second moment
method” computation which in turn reduces to questions concerning the spectral be-
havior for specific Boolean functions involving percolation. Since p = 1/2, our dynamics
can be equivalently defined by having each edge or hexagon be rerandomized at rate 1.

The key random variable which one needs to look at is

X = XR :=

∫ 1

0

1
0

ωt←→R
dt
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where 0
ωt←→ R is of course the event that at time t there is an open path from the

origin to distance R away. Note that the above integral is simply the Lebesgue measure
of the set of times in [0, 1] at which this occurs.

We want to apply the second moment method here. We isolate the easy part of the
argument so that the reader who is not familiar with this method understands it in a
more general context. However, the reader should keep in mind that the difficult part is
always to prove the needed bound on the second moments which in this case is (XI.2).

Proposition XI.3. If there exists a constant C such that for all R

E(X2
R) ≤ CE(XR)2, (XI.2)

then a.s. there are exceptional times of percolation.

Proof. For any nonnegative random variable Y , the Cauchy-Schwarz inequality applied
to Y I{Y >0} yields

P(Y > 0) ≥ E(Y )2/E(Y 2).

Hence by (XI.2), we have that for all R,

P(XR > 0) ≥ 1/C

and hence by countable additivity (as we have a decreasing sequence of events)

P(∩R{XR > 0}) ≥ 1/C.

Had the set of times that a fixed edge is on been a closed set, then the above would
have yielded by compactness that there is an exceptional time of percolation with
probability at least 1/C. However, this is not a closed set. On the other hand, this
point is very easily fixed by modifying the process so that the times each edge is on is
a closed set and observing that a.s. no new times of percolation are introduced by this
modification. The details are left to the reader. Once we have an exceptional time with
positive probability, ergodicity immediately implies that this occurs a.s.

The first moment of XR is, due to Fubini’s Theorem, simply the probability of our
one-arm event, namely α1(R). The second moment of XR is easily seen to be

E(X2) = E(

∫ 1

0

∫ 1

0

1
0

ωs←→R
1

0
ωt←→R

ds dt) =

∫ 1

0

∫ 1

0

P(0
ωs←→ R, 0

ωt←→ R) ds dt (XI.3)

which is, by time invariance, at most

2

∫ 1

0

P(0
ωs←→ R, 0

ω0←→ R) ds. (XI.4)

The key observation now, which brings us back to noise sensitivity, is that the
integrand P(0

ωs←→ R, 0
ω0←→ R) is precisely E[fR(ω)fR(ωε)] where fR is the indicator of
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the event that there is an open path from the origin to distance R away and ε = 1−e−s

since looking at our process at two different times is exactly looking at a configuration
and a noisy version.

What we have seen in this subsection is that proving the existence of exceptional
times comes down to proving a second moment estimate and furthermore that the
integrand in this second moment estimate concerns noise sensitivity, something for
which we have already developed a fair number of tools to handle.

5 Proof of existence of exceptional times for the

hexagonal lattice via randomized algorithms

In [SS10], exceptional times were shown to exist for the hexagonal lattice; this was the
first transitive graph for which such a result was obtained. However, the methods in
this paper did not allow the authors to prove that Z2 had exceptional times.

Theorem XI.4 ([SS10]). For dynamical percolation on the hexagonal lattice T at the
critical point pc = 1/2, there exist almost surely exceptional times t ∈ [0,∞) such that
ωt has an infinite cluster.

Proof. As we noted in the previous section, two different times of our model can be
viewed as “noising” where the probability that a hexagon is rerandomized within t units
of time is 1− e−t. Hence, by (IV.2), we have that

P
[
0

ω0←→ R, 0
ωt←→ R

]
= E

[
fR

]2
+

∑
∅6=S⊆B(0,R)

f̂R(S)2 exp(−t|S|) (XI.5)

where B(0, R) are the set of hexagons involved in the event fR. We see in this expression
that, for small times t, the frequencies contributing in the correlation between {0 ω0←→
R} and {0 ωt←→ R} are of “small” size |S| . 1/t. Therefore, in order to detect the
existence of exceptional times, one needs to achieve good control on the lower tail of
the Fourier spectrum of fR.

The approach of this section is to find an algorithm minimizing the revealment as
much as possible and to apply Theorem VIII.2. However there is a difficulty here, since
our algorithm might have to look near the origin, in which case it is difficult to keep the
revealment small. There are other reasons for a potential problem. If R is very large
and t very small, then if one conditions on the event {0 ω0←→ R}, since few sites are
updated, the open path in ω0 from 0 to distance R will still be preserved in ωt at least
up to some distance L(t) (further away, large scale connections start to decorrelate).
In some sense the geometry associated to the event {0 ω←→ R} is “frozen” on a certain
scale between time 0 and time t. Therefore, it is natural to divide our correlation
analysis into two scales: the ball of radius r = r(t) and the annulus from r(t) to R.
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Obviously the “frozen radius” r = r(t) increases as t → 0. We therefore proceed as
follows instead. For any r, we have

P
[
0

ω0←→ R, 0
ωt←→ R

]
≤ P

[
0

ω0←→ r
]
P
[
r

ω0←→ R, r
ωt←→ R

]
≤ α1(r) E

[
fr,R(ω0)fr,R(ωt)

]
, (XI.6)

where fr,R is the indicator function of the event, denoted by r
ω←→ R, that there is an

open path from distance r away to distance R away. Now, as above, we have

E
[
fr,R(ω0)fr,R(ωt)

]
≤ E

[
fr,R

]2
+
∞∑

k=1

exp(−tk)
∑
|S|=k

f̂r,R(S)2. (XI.7)

The Boolean function fr,R somehow avoids the singularity at the origin, and it is
possible to find algorithms for this function with small revealments. In any case, letting
δ = δr,R be the revealment of fr,R, it follows from Theorem VIII.2 and the fact that∑

k k exp(−tk) ≤ O(1)/t2 that

E
[
fr,R(ω0)fr,R(ωt)

]
≤ α1(r, R)2 + O(1)δα1(r, R)/t2. (XI.8)

The following proposition gives a bound on δ. We will sketch why it is true after-
wards.

Proposition XI.5 ([SS10]). Let 2 ≤ r < R. Then

δr,R ≤ O(1)α1(r, R) α2(r) . (XI.9)

Putting together (XI.6), (XI.8), Proposition XI.5 and using quasi-multiplicativity
of α1 yields

P
[
0

ω0←→ R, 0
ωt←→ R

]
≤ O(1)

α1(R)2

α1(r)

(
1 +

α2(r)

t2

)
.

This is true for all r and t. If we choose r = r(t) = (1/t)8 and ignore o(1) terms in
the critical exponents (which can easily be handled rigorously), we obtain, using the
explicit values for the one and two-arm critical exponents, that

P
[
0

ω0←→ R, 0
ωt←→ R

]
≤ O(1)t−5/6α1(R)2 . (XI.10)

Now, since
∫ 1

0
t−5/6dt <∞, by integrating the above correlation bound over the unit

interval, one obtains that E
[
X2

R

]
≤ CE

[
XR

]2
for some constant C as desired.

Outline of proof of Proposition XI.5.
We use an algorithm that mimics the one we used for percolation crossings except the
present setup is “radial”. As in the chordal case, we randomize the starting point of
our exploration process by choosing a site uniformly on the “circle” of radius R. Then,
we explore the picture with an exploration path γ directed towards the origin; this
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means that as in the case of crossings, when the interface encounters an open (resp.
closed) site, it turns say to the left (resp. right), the only difference being that when
the exploration path closes a loop around the origin, it continues its exploration inside
the connected component of the origin. (It is known that this discrete curve converges
towards radial SLE6 on T, when the mesh goes to zero.) It turns out that the so-
defined exploration path gives all the information we need. Indeed, if the exploration
path closes a clockwise loop around the origin, this means that there is a closed circuit
around the origin making fr,R equal to zero. On the other hand, if the exploration
path does not close any clockwise loop until it reaches radius r, it means that fr,R = 1.
Hence, we run the exploration path until either it closes a clockwise loop or it reaches
radius r. This is our algorithm. Neglecting boundary issues (points near radius r or R),
if x is a point at distance u from 0, with 2r < u < R/2, in order for x to be examined
by the algorithm, it is needed that there is an open path from 2u to R and the two-arm
event holds in the ball centered at u with radius u/2. Hence for |x| = u, P

[
x ∈ J

]
is at

most O(1)α2(u)α1(u, R). Due to the explicit values of the one and two-arm exponents,
this expression is decreasing in u. Hence, ignoring the boundary, the revealment is at
most O(1)α2(r)α1(r, R). See [SS10] for more details.

We now assume that the reader is familiar with the notion of Hausdorff dimen-
sion. We let E ⊆ [0,∞] denote the (random) set of these exceptional times at which
percolation occurs. It is an immediate consequence of Fubini’s Theorem that E has
Lebesgue measure zero and hence we should look at its Hausdorff dimension if we want
to measure its “size”. The first result is the following.

Theorem XI.6 ([SS10]). The Hausdorff dimension of E is an almost sure constant in
[1/6, 31/36].

It was conjectured there that the dimension of the set of exceptional times is a.s.
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31/36.

Outline of Proof. The fact that the dimension is an almost sure constant follows from
easy 0-1 Laws. The lower bounds are obtained by placing a random measure on E
with finite so-called α–energies for any α < 1/6 and using a result called Frostman’s
Theorem. (This is a standard technique once one has good control of the correlation
structure.) Basically, the 1/6 comes from the fact that for any α < 1/6, one can

multiply the integrand in
∫ 1

0
t−5/6dt by (1/t)α and still be integrable. It is the amount

of “room to spare” you have. If one could obtain better estimates on the correlations,
one could thereby improve the lower bounds on the dimension. The upper bound is
obtained via a first moment argument similar to the proof of Theorem XI.1 but now
using (II.1).

Before moving on to our final method of dealing with the spectrum, let us consider
what we might have lost in the above argument. Using the above argument, we op-
timized things by taking r(t) = (1/t)8. However, at time t compared to time 0, we
have noise which is about t. Since we now know the exact noise sensitivity exponent,
in order to obtain decorrelation, the noise level should be at least about the negative
3/4th power of the radius of the region we are looking at. So, events in our annu-
lus should decorrelate if r(t) >> (1/t)4/3. This suggests there might be potential for
improvement. Note we used an inner radius which is 6 times larger than potentially
necessary (8 = 6 × 4/3). This 6 is the same 6 by which the result in Theorem VIII.5
differed by the true exponent (3/4 = 6 × 1/8) and the same 6 explaining the gap in
Theorem XI.6 (1−1/6) = 6×(1−31/36). This last difference is also seen by comparing
the exponents in (XI.10) and the last term in (XI.11) below.

6 Proof of existence of exceptional times via the

geometric approach of the spectrum

Recall that our third approach for proving the noise sensitivity of percolation crossings
was based on a geometrical analysis of the spectrum, viewing the spectrum as a random
set. This approach yielded the exact noise sensitivity exponent for percolation crossings
for the hexagonal lattice. This approach can also be used here as we will now explain.
Two big advantages of this approach are that it succeeded in proving the existence of
exceptional times for percolation crossings on Z2, something which [SS10] was not able
to do, as well as obtaining the exact Hausdorff dimension for the set of exceptional
times, namely the upper bound of 31/36 in the previous result.

Theorem XI.7 ([GPS10]). For the triangular lattice, the Hausdorff dimension of E is
almost surely 31/36.

Proof. As explained in the previous section, it suffices to lower the 5/6 in (XI.10) to
5/36. (Note that (XI.10) was really only obtained for numbers strictly larger than 5/6,
with the O(1) depending on this number; the same will be true for the 5/36.)
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Let s(r) be the inverse of the map r → r2α4(r) ∼ r3/4. So more or less, s(r) := r4/3.
Using Theorem X.21, we obtain the following:

E
[
fR(ω0)fR(ωt)

]
=

∑
S

exp(−t|S|)f̂R(S)2

=
∞∑

k=1

∑
S:|S|∈[(k−1)/t,k/t)

exp(−t|S|)f̂R(S)2

≤
∞∑

k=1

exp(−k)Q̂
[
|SfR

| < k/t
]

≤ O(1)
∞∑

k=1

exp(−k)
α1(R)2

α1(s(k/t))

≤ O(1)α1(R)2

∞∑
k=1

exp(−k)(
k

t
)4/3×5/48

≤ O(1)α1(R)2(
1

t
)5/36. (XI.11)

This completes the proof. (Of course, there are o(1) terms in these exponents which we
are ignoring.)

We have done a lot of the work for proving that there are exceptional times also on
Z2.

Theorem XI.8 ([GPS10]). For dynamical percolation on Z2 at the critical point pc =
1/2, there exist almost surely exceptional times t ∈ [0,∞) such that ωt has an infinite
cluster.

Proof. s(r) is defined as it was before but now we cannot say that s(r) is about r4/3.
However, we can say that for some fixed δ > 0, we have that for all r,

s(r) ≥ rδ (XI.12)

From the previous proof, we still have

E
[
fR(ω0)fR(ωt)

]
α1(R)2

≤ O(1)
∞∑

k=1

exp(−k)
1

α1(s(k/t))
. (XI.13)

Exactly as in the proof of Theorem XI.4, we need to show that the right hand side
is integrable near 0 in order to carry out the second moment argument.

Quasi-multiplicativity can be used to show that

α1(s(1/t)) ≤ kO(1)α1(s(k/t)). (XI.14)

(Note that if things behaved exactly as power laws, this would be clear.)
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Therefore the above sum is at most

O(1)
∞∑

k=1

exp(−k)
kO(1)

α1(s(1/t))
≤ O(1)

1

α1(s(1/t))
(XI.15)

V. Beffara has shown (see the appendix in [GPS10] for a proof) that there exists
ε0 > 0 such that for all r,

α1(r)α4(r) ≥ rε0−2. (XI.16)

Note that Theorem VI.4 and (VI.7) tell us that the left hand side is larger than
Ω(1)r−2. The above tells us that we get an (important) extra power of r in (VI.7).

It follows that

1

α1(s(1/t))
≤ α4(s(1/t))s(1/t)

2−ε0 = (1/t)s(1/t)−ε0 . (XI.17)

(XI.12) tells us that the last factor is at most tη for some η > 0 and hence the
relevant integral converges as desired. The rest of the argument is the same.

One can also consider exceptional times for other events, such as for example times
at which there is an infinite cluster in the upper half-plane or times at which there
are two infinite clusters in the whole plane, and consider the corresponding Hausdorff
dimension. A number of results of this type, which are not sharp, are given in [SS10]
while various sharp results are given in [GPS10].

An example of such a result is the following.

Theorem XI.9 ([GPS10]). For dynamical percolation on T, there exist times at which
both an infinite black cluster and an infinite white cluster exist. Moreover, the Hausdorff
dimension of this set of times is at least 1/9 a.s.

We finally mention that at the time that [HPS97] was written, there were discussions
concerning the question of a possible relationship between the so-called incipient infinite
cluster constructed by H. Kesten and exceptional times for 2-d dynamical percolation
should the latter exist. In [HPS13], such a relation is obtained by placing a local time
measure on the set of exceptional times.

7 Exercises

Exercise XI.1. Prove that on any graph below criticality, there are no times at which
there is an infinite cluster while above criticality, there is an infinite cluster at all times.

Exercise XI.2. Consider critical dynamical percolation on a general graph satisfying
θ(pc) = 0. Show that a.s. {t : ωt percolates } has Lebesgue measure 0.
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Exercise XI.3. (Somewhat hard). A spherically symmetric tree is one where all ver-
tices at a given level have the same number of children, although this number may
depend on the given level. Let Tn be the number of vertices at the nth level. Show that
there is percolation at p if ∑

n

1

p−nTn

<∞

Hint: Let Xn be the number of vertices in the nth level which are connected to the
root. Apply the second moment method to the sequence of Xn’s.

The convergence of the sum is also necessary for percolation but this is harder and
you are not asked to show this. This theorem is due to Russell Lyons.

Exercise XI.4. Show that if Tn is n22n up to multiplicative constants, then the critical
value of the graph is 1/2 and we percolate at the critical value. (This yields a graph
which percolates at the critical value.)

Exercise XI.5. (Quite a bit harder). Consider dynamical percolation on a spherically
symmetric tree. Show that there for the parameter p, there are exceptional times at
which percolation occurs if ∑

n

1

np−nTn

<∞.

Hint: Find an appropriate random variable Xn to which the second moment method
can be applied.

Exercise XI.6. Find a spherically symmetric tree which does not percolate at criti-
cality but for which there are exceptional times at which percolation occurs.
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Chapter XII

For the connoisseur

In this chapter, we briefly discuss a number of miscellaneous topics related to this
subject which we find interesting. Most are not directly connected to percolation which
has been the major focus for us up to this point. Most of the sections in this chapter
will be independent of each other.
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1 How noise sensitive can monotone functions be?

Crossing events for percolation on the triangular lattice yield for us monotone events
all of whose spectrum is near n3/8 where n is the number of bits (note that the 3/4 is
now 3/8 since we are indexing by the number of bits rather than the side length of the
box).

On the other hand, Proposition IV.6 (together with PropositionIV.5) tells us that
the expected size of the spectral sample for monotone functions on n bits taking values
in {±1} is at most n1/2. Markov’s inequality then implies that for such monotone
functions on n bits, the probability that the spectral sample lies above n1/2+δ goes to 0
with n for any fixed positive δ.

In [BKS99], a question was asked which, although different than stated below, we
believe was intended to be the following. Does there exist β < 1/2 such that for every
sequence of monotone Boolean functions on n bits taking values in {±1}, the probability
that the spectral sample exceeds nβ goes to 0 with n? If true, Iterated 3-Majority shows
that such a β must be at least 1− log 2/ log 3. If true, this would be equivalent to the
existence of a δ0 > 0 so that for any sequence {fn} of monotone Boolean functions on
n bits taking values in {±1},

lim
n→∞

P
[
fn(ω) 6= fn(ω1/n1/2−δ0 )

]
= 0.

In [MO03], it was shown that the answer is no in a strong sense.

Theorem XII.1 ([MO03]). For each δ > 0, there exists a sequence {fn} of monotone
Boolean functions on mn bits (with mn going to∞) mapping into {−1, 1} whose spectral
samples {Sn} satisfy

lim
n→∞

P̂
[
|Sn| ≤ m1/2−δ

n

]
= 0.

Due to the relationship between spectrum and noise, this is equivalent to saying
that there is a sequence {fn} of monotone Boolean functions on mn bits with

lim
n→∞

E(fn(ω)fn(ω
1/m

1/2−δ
n

)) = 0.

We will not give the proof of this but will present the example. Given δ > 0, one chooses
k = k(δ) odd and sufficiently large and then considers Iterated k-Majority which is the
obvious generalization of Iterated 3-Majority. The proof is based on the analysis of a
certain recursion.

However, here we give a proof of a weaker result which still answers the question
from [BKS99] and is based on more elementary considerations such as those given in
the proof of Theorem IX.8.

Theorem XII.2. For each δ > 0, there exists a sequence {fn} of monotone Boolean
functions {fn} on mn bits (with mn going to ∞) mapping into {−1, 1} whose spectral
samples {Sn} satisfy

lim inf
n→∞

P̂
[
|Sn| ≥ m1/2−δ

n

]
> 0.
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Due to the relationship between spectrum and noise, this is equivalent to saying
that there are monotone Boolean functions with

lim inf
n→∞

P
[
fn(ω) 6= fn(ω

1/m
1/2−δ
n

)
]

> 0,

which is to say that fn(ω) and fn(ω
1/m

1/2−δ
n

) are “at least partially independent”.

Proof. Fix δ > 0. For k odd, letting ak denote the probability that simple random walk
is back at the origin at time k − 1, it is known that ak behaves like c/k1/2 for large k
and hence that kak ≥ 2k1/2−δ for large k. Choose such an odd k. We now consider the
variant of the Iterated 3-Majority function already mentioned where 3 is replaced by k.
We thereby obtain a sequence of Boolean functions {fn} with fn having mn = kn bits
where n represents the number of levels in the tree. Let Sn and Pn denote respectively
the spectral measure and the pivotal set for fn.

It is easy to check that E|Pn| = (kak)
n and hence by Proposition IX.4 that Ê

[
|Sn|

]
=

(kak)
n. This gives Ê

[
|Sn|

]
≥ 2m

1/2−δ
n . for all n.

Next, a relatively easy computation, left to the reader, shows that there is a constant
Ck <∞ so that for all n

E|Pn|2 ≤ CkE|Pn|2. (XII.1)

Corollary IX.7 then yields (as in the proof of Theorem IX.8) that

Ê|Sn|2 ≤ CkÊ|Sn|
2
. (XII.2)

The Paley-Zygmund inequality now yields that for all n

P̂
[
|Sn| ≥ m1/2−δ

n

]
≥ P̂

[
|Sn| ≥ Ê

[
|Sn|

]
/2

]
≥ 1/(4Ck).

We emphasize the difference between Theorems XII.1 and XII.2. The former says
that we can get “all” the mass near n1/2 while the latter says we can get “some non-
trivial portion” of the mass near n1/2. Equivalently, the first says we can “completely
decorrelate” at noise levels slightly higher than (1/n)1/2 while the latter says we can “at
least partially decorrelate” at this noise level. An idea of proving Theorem XII.1 along
the lines of Theorem XII.2 is to use the iterated majority functions with k also growing.
This idea would work if the constants Ck in the proof of Theorem XII.2 could be taken
to go to 1 with k. Unfortunately, they necessarily tend to ∞ and so this method fails.

Interesting, Theorem XII.2 can be strengthened by not only having nontrivial spec-
tral “near” n1/2 but actually at n1/2 itself. The following theorem is proved in [MO03];
the construction is based on a construction of Talagrand and is a random construction.
The proof will not be given.

Theorem XII.3 ([MO03]). There exists a sequence {fn} of monotone Boolean func-
tions on n bits mapping into {−1, 1} such that

inf
n

P
[
fn(ω) 6= fn(ω1/n1/2)

]
> 0. (XII.3)
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Remarks (1) The claim of this theorem is equivalent to that there exists c > 0 so that
for all n,

P̂
[
|Sn| ≥ cn1/2

]
≥ c.

(2) The exponent of 1/2 cannot be improved.
(3) The asympototic “partial independence” of fn(ω) and fn(ω1/n1/2) cannot be im-
proved to full independence in the sense that E(fn(ω)fn(ω1/n1/2)) approaches 0.
(4) In fact, such a sequence cannot even be noise sensitive since (i) and Proposition IX.4
imply that the total influence is Ω(n1/2) and from this, the Cauchy-Schwarz inequality
yields that the sum of the squared influences is Ω(1).

We make a few comments concerning the example in Theorem XII.3. It is con-
structed by using a random CNF formula. One takes the “AND” of 2n1/2

independent
“OR” clauses each of length n1/2 where each element is chosen uniformly and indepen-
dently from [n]. One then shows that with an Ω(1) probability, the function satisfies
the desired properties. Talagrand [Tal96] originally constructed this example in order
to find a sequence of Boolean functions satisfying

P
[
|Pn| ≥ cn1/2

]
≥ c.

Given the relationship between Pn and Sn, this is similar to (i) but of course neither
implies the other.

2 Noise sensitivity and the pivotal set

Recall that for Boolean functions f mapping into {±1}, Pf and Sf have identical first
and second marginals; this yields the fact that the expected size of these two random
sets are equal. In this section, we show nonetheless that these random sets can be very
different and so in particular, knowing certain properties of the pivotal set does not
yield information concerning noise sensitivity questions.

This first example gives a simple example which is noise sensitive but where the
pivotal set is empty with probability going to 1; these two properties are immediate.

Example XII.4. Let f be the Boolean function which is 1 if and only if bN(ω)/ log nc
is even where N(ω) is the number of 1’s.

More interestingly, we have the following proposition giving a monotone such ex-
ample.

Proposition XII.5. There exists a sequence {fn} of monotone Boolean functions which
is noise sensitive but for which

lim
n→∞

P(Pfn = ∅) = 1.
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Proof. Consider percolation on an m ×m box in the triangular lattice. Replace each
bit by an odd number k = km of bits so that overall we have km2 bits. fm is taken to
be a composition of Majority on km bits with percolation; in other words each hexagon
in our grid is open if the majority of the km bits corresponding to it is in state 1 and
then we see if there is a percolation crossing.

It is easy to show that no matter how km is chosen, the sequence {fm} is noise
sensitive; this uses the fact that Dictator is the most stable Boolean function with
mean 0.

Next, with probability going to 1, there are at most m.76 pivotal sites for the crossing
event. But each site has probability only about 1/k1/2 to have a pivotal bit. Therefore,
if m.76/k1/2 → 0 when m → ∞, then we would have what we want. So, simply let
km = m2 and we are done.

While the above shows that noise sensitivity can occur even if Pn is typically empty,
there are still restrictions. Certainly, E(|Pn|) must tend to infinity. However, much
stronger, Talagrand (see [Tal97]) showed that any nondegenerate sequence of mono-
tone functions which is noise sensitive necessarily satisfies E|Pn|1/2 tends to infinity.
Modifications of the example in the proof of Proposition XII.5 show that the exponent
of 1/2 in Talagrand’s result is sharp.

The next two theorems in this section, Theorems XII.6 and XII.8, were the outcome
of conversations with Ryan O’Donnell and Devdatt Dubhashi. The first result shows
that we can have order n pivotal bits always but nonetheless not have noise sensitivity.

Theorem XII.6. There exists a sequence mn going to ∞, a sequence {fn} of mean
1/2 Boolean functions on mn bits mapping into {0, 1} and c > 0 so that the sequence
is not noise sensitive but for all n, P(|Pfn| ≥ cmn) = 1.

We first need the following

Lemma XII.7. For every p ∈ [1/2, 1), there exists c > 0 and a sequence {fn} of
Boolean functions on mn variables with mean at least p such that for all n, P(|Pfn| ≥
cmn) = 1.

Proof. The key step is to show for each such p, there is a Boolean function f with mean
at least p such that there is always at least one pivotal bit. Once we have this, if this
function has k bits, we can define, for any n, a function fn on nk bits by composing f
with the Parity function on n bits. I.e., we replace each bit of f by a Parity function
on n bits. This yields what we want with mn = nk and c being 1/k.

To obtain a function with mean at least p which always has at least one pivotal bit,
we do a random construction. Let p′ = (p+1)/2 and for each k, we construct a random
Boolean function on k bits by assigning to each of the 2k input strings, the value 1
with probability p′ and the value 0 with probabiltiy 1− p′, independently for different
strings. By standard large deviations theory, the probability that the random Boolean
function does not have mean at least p is at most e−c12k

for some constant c1 depending
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on p. We now show using the Lovász local lemma that for large k, the probability that
the random Boolean function always has at least one pivotal is at least e−c2(p′2)k

for
some constant c2 depending on p. Together, this gives us with positive probability a
function of the desired form.

To apply the Lovász local lemma, we let for each ω ∈ Ωk, let Eω be the event that the
(random) function has no pivotals at ω. It is clear that for each ω, P (Eω) ≤ 2(p′)k+1 and
that Eω is jointly independent of all the events Eω′ for ω′ outside of the 2-neighborhood
of ω. Lemma 5.1.1 in [AS00] (which is a general version of the Lovász local lemma with
an explicit lower bound) yields the claimed lower bound e−c2(p′2)k

above as desired; one
can take xi to be 4(p′)k in this lemma.

Proof of Theorem XII.6. Choose a sequence {fn} of Boolean functions as in Lemma
XII.7 with p = .8 and let gn be fn XORed with a single bit. (The number of bits for
gn is mn + 1.) Then gn has mean 1/2 and the number of pivotals bits of gn is 1 plus
the number of pivotals bits for fn (when looking at its domain); hence the proportion
of pivotal bits is always at least c where c comes from Lemma XII.7.

We now show the sequence {gn} is not noise sensitive. Fix ε < .05. Then P(g(ω) =
g(ωε)) is at least the probability that the last bit does not rerandomize and that f
at both ω with the last bit removed and at ωε with the last bit removed is 1. The
probability of this occuring is at least (1− ε)(1− 2(.2)) ≥ .51. Hence noise sensitivity
fails.

The next result shows that we can have that the number of pivotal bits is always
any power of n less than 1 but still have noise stability.

Theorem XII.8. For each ε > 0, there exists a sequence {fn} of mean 1/2 Boolean
functions on mn bits mapping into {0, 1} so that the sequence is noise stable but for all
n, P(|Pfn| ≥ m1−ε

n ) = 1.

Proof. Using Lemma XII.7, for each k, choose a sequence f
(k)
n of Boolean functions all

of whose means are at least 1 − 1/k and such that for each n, the number of pivotals
has density at least ck > 0 with probability 1. Since for any fixed ck > 0, ckn ≥ n1−ε

for all large n, the sequence of Boolean functions constructed by first starting with
f

(1)
n , then at a sufficiently large time switch to the sequence f

(2)
n , then at a sufficiently

large time switch to the sequence f
(3)
n , etc. would yield a sequence satisfying for all n,

P(|Pfn| ≥ m1−ε
n ) = 1. If we XOR these with a single bit as in Theorem XII.8, this would

give us mean 1/2 functions with as many pivotals while the argument in Theorem XII.8
immediate shows that the sequence is noise stable.

We end this section with an example due to Oded Schramm of a nondegenerate
sequence of monotone functions which is noise stable but such that when the event
occurs, there will typically be many pivotals.

Theorem XII.9. (O. Schramm). There exists a sequence {An} of monotone functions
whose variances are Ω(1) which is noise stable but such that for some bn going to ∞,
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we have that
lim

n→∞
P(|PAn| ≥ bn|Ac

n) = 1.

Proof. Choose a sequence of integers ak so that
∑

k(1/2)ak <∞ but
∑

k ak(1/2)ak =∞.
Let Gn be a graph which is a disjoint union of n paths, where the lengths of the paths
are a1, a2, . . . , an. Perform percolation with p = 1/2 on the edges and let An be the
event that at least one of the n paths has all of its edges on. Since

∑
k(1/2)ak < ∞,

the expected number of paths with all its edges open is O(1) from which it is easy to
conclude that the variances are Ω(1). Next, it is an easy exercise to show, using the fact
that the An’s are decreasing in n, that this sequence is noise stable. Finally, the fact
that

∑
k ak(1/2)ak =∞ easily implies that the expected number of paths with exactly

one closed edge goes to ∞ with n. Using independence, we obtain the fact that the
number of such paths goes to ∞ in probability which easily gives the last claim. (On
the other hand, on the event An, the number of pivotals is bounded in probability.)

3 Influences for monotone systems and applications

to phase transitions

The results of KKL can be extended to certain nonproduct measures. See [GG06] for
details and extensions of the result described in this section. Consider a sequence of
{0, 1} random variables X1, . . . , Xn not necessarily independent. We can think of these
as giving us a probability measure µ on {0, 1}n. It turns out to be natural to restrict to
a certain class of measures, called monotone measures and for simplicity, we will also
assume that our measures have full support.

Definition XII.10. X1, . . . , Xn is monotone if for each i and for each pair of real-
izations η and δ for the other bits satisfying η ≤ δ, we have

P(Xi = 1|{Xj}j 6=i = η) ≤ P(Xi = 1|{Xj}j 6=i = δ).

How should one now define the influence of a variable on an increasing event A in
this more general context? If one defines it to be P(i is pivotal for A), then the analog
of Theorem I.14 fails for the Majority event An on n bits even for the reasonably nice
monotone measure which is a convex combination of two product measures, one with
density 1/3 and the other with density 2/3. An has probability 1/2 but it is easy to see
that for each i, P(i is pivotal for A) is exponentially small in n.

The proper definition for monotone variables and an increasing event A is to consider

Ii(A) := E(A|Xi = 1)− E(A|Xi = 0)

which is easily seen to be equivalent to the usual definition of influence in the i.i.d. case
for increasing events. With this definition of influence, we can state the main result in
[GG06] which is an extension of Theorems I.14 and III.3.
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Theorem XII.11 ([GG06]). There exists a universal c > 0 such that if µ is a monotone
measure on {0, 1}n with full support and A is an increasing event, then there exists some
i such that

Ii(A) ≥ c min{µ(A), 1− µ(A)}(log n)/n.

It turns out that one can also prove a version of Theorems I.16 and III.4 in this
monotone context. We do not present this here but rather simply refer to [GG11].

Theorem XII.11 is one of the ingredients needed in the proof of the following result
which proves the conjectured critical values for the random cluster models in 2 dimen-
sions; the most important ingredient is a general version of RSW for these models. The
random cluster model is a dependent percolation model which is a central object in
statistical mechanics. The definition of the model can be found in [BDC10].

Theorem XII.12 ([BDC10]). The critical value for the random cluster model with
parameter q on the square lattice is

√
q/(1 +

√
q).

4 Majority is stablest theorem

In this section, we describe an important result concerning stability of the Majority
functions MAJn; this section demonstrates once again the central role played by these
functions. Despite the fact that the results described here hold in greater generality,
throughout this section, we will stick to Boolean functions mapping into {±1} and
having mean 0.

For mean 0 Boolean functions, we know that E
[
f(ω)f(ωε)

]
is for all ε > 0 uniquely

maximized at the Dictator function DICTn (and its equivalent forms). However, for
such functions, there is a variable with very large influence and hence such functions
are not reasonable to use as a voting scheme. There was a conjecture that if we only
consider functions with small influence, then the majority functions MAJn should be
the most stable. This conjecture turned out to be true and is the following.

Theorem XII.13 ([MOO10]). For all ε, δ > 0 there exists τ > 0 such that for any
mean 0 Boolean function f whose maximum influence is at most τ , we have

E
[
f(ω)f(ωε)

]
≤ 2

π
arcsin(1− ε) + δ.

Remark It is the case (as seen in Problem IV.13) that for each ε,

lim
n→∞

E
[
MAJn(ω)MAJn(ωε)

]
=

2

π
arcsin(1− ε);

as this is the expression on the right-hand side above, this explains why this result is
called Majority is Stablest.



5. K-SAT SATISFIABILITY AND SHARP THRESHOLDS 155

We do not prove this result but indicate some of the ingredients in the proof as well
as give its motivation.

Ingredients in the proof:
The Berry-Esseen central limit theorem stays that if X1, . . . , Xn are i.i.d. mean 0,
variance 1 random variables with a bounded third moment and

∑n
i=1 c2

i = 1 with the
ci’s “small”, then

∑n
i=1 ciXi has approximately a normal distribution (with an explicit

bound between the two distributions). The first key step is to generalize this to obtain
an invariance principle for multilinear polynomials. Here the limit will no longer be
Gaussian but one will obtain a polynomial of independent Gaussians. Here is a first
version of the results obtained in [MOO10].

Theorem XII.14 ([MOO10]). Let X1, . . . , Xn be i.i.d. mean 0, variance 1 random
variables with E(|X1|3) ≤ β. Consider Q(X1, . . . , Xn) =

∑
S⊆{1,...,n} cS

∏
i∈S Xi Assume

that (i)
∑

S 6=∅ c
2
S = 1, (ii) for each i,

∑
S:i∈S c2

S ≤ τ and that (iii) cS = 0 for all S with
|S| > d. Then if G1, . . . , Gn are i.i.d. standard Gaussians, we have that

sup
t
|P(Q(X1, . . . , Xn) ≤ t)− P(Q(G1, . . . , Gn) ≤ t)| ≤ O(dβ1/3τ 1/8d).

Remarks (1) All the terms in Q(X1, . . . , Xn) are orthogonal and so
∑

S 6=∅ c
2
S = 1 is

simply a normalization so that our expression has variance 1.
(2) If the Xi’s were {±1} valued and Q a Boolean function, then

∑
S:i∈S c2

S would just
be the influence of the ith bit and so assumption (ii) then simply says that all the
influences are small.
(3) Assumption (iii) is that Q is a small degree multilinear polynomial.

One of the key steps is to use various strengthenings of Theorem XII.14 in order to
prove Theorem XII.13 by reducing it to the analogous statement for Gaussian random
variables. The case of Gaussian variables was proved by C. Borell; see [Bor85].

Motivation for the theorem:
The motivation for proving the Majority is Stablest Conjecture came in fact from ap-
proximation algorithms in theoretical computer science. It was shown in [KKMO07]
that under a certain strengthening of the P 6= NP hypothesis (technically called the
unique games conjecture), the Majority is Stablest Conjecture implies that it is compu-
tationally hard to approximate the maximum cut in graphs to within a certain factor
better than that which matches the approximation factor achieved by the so-called
Goemans and Williamson algorithm.

5 k-SAT satisfiability and sharp thresholds

The k-SAT problem is a celebrated problem in computer science. It can be briefly
described as follows. Let us fix an integer k ≥ 2. We will consider a certain class
of Boolean functions on the hypercube Ωn := {−1, 1}n called k-CNF functions (CNF
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stands for Conjunctive Normal Form). These Boolean functions are conjunctions (cor-
responding to an AND operator denoted by ∧) of arbitrary many k-clauses where a
k-clause is defined as follows.

Definition XII.15. A k-clause on n Boolean variable (x1, . . . , xn) ∈ {−1, 1}n is a
disjunction (i.e. an OR operate denoted by ∨) on k variables possibly after taking their
negation. For example if n = 8 and k = 3 the Boolean function

x1 ∨ x̄3 ∨ x7 ,

is a 3-clause.

As such, if n = 8, the following Boolean function

(x1 ∨ x̄2 ∨ x7) ∧ (x2 ∨ x̄3 ∨ x7)

is a 3-CNF function.

Definition XII.16 (Satisfiability). We say that a Boolean function f : {−1, 1}n →
{0, 1} is satisfiable if one can find at least one configuration ω ∈ {−1, 1}n such that
f(ω) = 1.

In the k-SAT Problem, one is given a k-CNF Boolean function f on n-variables and
the problem is to determine whether the function f is satisfiable or not. If k = 2, there
are polynomially fast algorithms to answer the problem. But for k ≥ 3, it turns out to
be computationally much harder. In fact, the case k ≥ 3 is one of the first combinatorial
problems which has been proved to be in the NP -class. It is easy to check that the
above example of a 3-CNF function is satisfiable by choosing x1 = x7 = 1. An example
of a non-satisfiable 2-CNF is the following.

(x1 ∨ x2) ∧ (x̄1 ∨ x̄2) ∧ (x1 ∨ x̄2) ∧ (x̄1 ∨ x2) (XII.4)

We will now introduce some probability and consider random k-CNF functions in
the following sense.

Definition XII.17 (Random k-CNF functions). Let 1 ≤ k ≤ n be fixed. Let N = 2k
(

n
k

)
be the number of possible k-clauses. For any fixed parameter 1 ≤ M ≤ N , we sample
a random k-CNF function by choosing M k-clauses uniformly among the N possible
ones and take their conjunction. Similarly as in the study of sharp thresholds (Chapter
III), one can consider the probability that such a random k-CNF function is satisfiable.
As in the Erdős-Renyi random graphs G(n, p), the interesting regime occurs when M is
of order cn for some fixed parameter c ∈ (0,∞). We will denoted by φk(c) = φk,n(c)
the probability that a random k-CNF function made of cn uniformly chosen k-clauses
is satisfiable.
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It is easy to see that the function φk,n is decreasing in c (when c gets larger, there
are more clauses which need to be satisfied). Following the notations from [AP04], let
us introduce for any k ≥ 2, the quantities:

ck := sup{c ≥ 0 : lim
n→∞

φk,n(c) = 1} (XII.5)

c∗k := inf{c > 0 : lim
n→∞

φk,n(c) = 0} (XII.6)

It has been proved (see [AP04] for references) that in the case k = 2, one has
c2 = c∗2 = 1. The proof in this case relies deeply on a connection with the above Erdős-
Renyi graphs. For k ≥ 3, the situation is still widely open. The main conjecture may
be stated as follows.

Conjecture XII.1. For any k ≥ 3, one has 0 < ck = c∗k < ∞. In particular, a very
interesting phase transition occurs around the value of ck.

These types of phase transitions are usually of high interest to computer scientists
since they usually suggest the existence of a threshold between an “approximable phase”
(where one may predict in polynomial time with high probability whether the random k-
CNF is satisfiable or not) and an inapproximability phase, where even approximability
approaches fall in the NP -class. (See the book in preparation [O’D13] for more details
and references).

Let us point out that this phase transition even attracted the attention of theoretical
physicists who studied this phase transition similarly as they studied the so-called spin
glass models, by using the cavity method. See for example [Mez03, MMZ06].

We end this section with the following striking theorem by Ehud Friedgut.

Theorem XII.18 (Friedgut: sharp threshold in the k-SAT problem, [Fri99]). For any
k ≥ 3, there exists a sequence of functions (ck(n))n≥1 bounded away form 0 and ∞ such
that for any ε > 0,

lim
n→∞

φk,n(ck(n)− ε) = 1

lim
n→∞

φk,n(ck(n) + ε) = 0

In particular, this proves a sharp threshold phenomenon.

Let us briefly explain what the strategy of proof in [Fri99] is. By duality, instead
of considering a random k-CNF function f , one can consider its negation f̄ which is
nothing but a disjunction of M uniformly chosen conjunctions of k-variables. These
functions are called k-DNF functions, where DNF stands for Disjunctive Normal Form.
Below is an example of such a function with k = 3:

(x1 ∧ x̄2 ∧ x7) ∨ (x2 ∧ x̄3 ∧ x7) ∨ (x5 ∧ x6 ∧ x̄8)
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In this new setting, it is easy to see that the k-SAT problem is translated into
the following question: what is the probability that a random k-DNF function is such
that it is satisfied for ALL inputs ω ∈ {−1, 1}n. This probability is now an increasing
function of the parameter c such that M = cn. One can code this problem using a very
useful generalization of graphs: hypergraphs as defined below.

Definition XII.19. An hypergraph H is a pair H = (V, E), where V denotes the
set of vertices of H and E is any subset of P(V ) \ {∅}. The elements of E are called
hyperedges. As such, vertices are no longer connected together simply by edges which
in this setting would correspond to pairs of vertices {u, v} ⊂ V but by more general
subsets K ⊂ V .

For any k ≥ 1, a k-uniform hypergraph is a hypergraph for which each hyper-
edge e ∈ E has cardinality k. For example a 2-uniform hypergraph corresponds to a
(standard) graph.

The k-SAT problem is naturally encoded by a slight generalization of hypergraphs,
where V = [n] and each k-clause xi1 ∧ x̄i2 ∧ . . . ∧ xik is represented by a hyperedge
{i1, . . . , ik} ⊂ V = [n]. Furthermore each such hyperedge carries an additional label
which prescribes which variables appear with a negation (there are thus 2k possible
labels).

We are now in the situation where one starts with a (labeled) hypergraph H0 =
([n], ∅), and as the intensity c = M/n gets larger, more and more labeled hyperedges ap-
pear randomly thus forming a random labeled hypergraph Hc. The event we consider is
A = A(H) := {all assignments ω ∈ {−1, 1}n realize the k-DNF function associated to H}.
We clearly have that c 7→ P[Hc ∈ A] is increasing in c. Put in this way, the present
setting is similar to the celebrated sharp threshold Theorem on the connectedness of
Erdős-Renyi graphs G(n, p) around pc ∼ log n

n
. In some sense Friedgut extends in [Fri99]

the study of sharp threshold of graph properties to the case of (labeled) hypergraphs.
Since, even with graphs, it is not correct that all graph properties have a sharp thresh-
old (for example the property “containing a triangle” does not have a sharp threshold
in the generalized sense that the size of the phase transition must be negligible w.r.t.
to the value of critical point), a significant amount of work in [Fri99] is devoted to find-
ing necessary conditions for “graph-like” properties of hypergraphs to exhibit a sharp
threshold. The k-SAT problem is shown to fall into this class. See [Fri99] and [O’D13]
for much more on this topic.

6 Noise sensitivity with respect to other “noises”

In the traditional noise sensitiviy studied in this book, the noise was of a specific type,
namely, each bit is rerandomized independently. One can easily imagine other types of
noises that one could use. In this section, we discuss three such variants.
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6.1 (fixed-size)-noise sensitivity

In [BKS99], the following noise was also introduced. One has an integer parameter
q ∈ [0, n] and given ω ∈ Ωn, one chooses q of the n bits uniformly at random and flips
these bits. We call the resulting configuration ωq.

Definition XII.20. The sequence {fn} defined on Ωn is (fixed-size)-noise sensitive
if for every ε > 0 and any sequence qn ∈ (εn, (1− ε)n)

lim
n→∞

E[fn(ω)fn(ωqn)]− E[fn(ω)]2 = 0. (XII.7)

Observe that Parity is a simple example which is noise sensitive but clearly not
(fixed-size)-noise sensitive. The following result is proved in [BKS99].

Proposition XII.21 ([BKS99]). Consider a sequence of Boolean functions fn.
(i) {fn} is (fixed set)-noise sensitive if and only if, for any k ≥ 1,∑

m∈{1,2,...,k}∪{n−k,n−k+1,...,n}

∑
|S|=m

f̂n(S)2 −→
n→∞

0 .

(ii) limn

∑
k Ik(fn)2 = 0 implies that {fn} is (fixed set)-noise sensitive.

The following corollary is immediate.

Corollary XII.22. 1. (Fixed-size)-noise sensitivity implies noise sensitivity.
2. For monotone functions, noise sensitivity and (fixed-size)-noise sensitivity are equiv-
alent.

6.2 Exclusion sensitivity

In this model, ω is chosen uniformly at random as usual but now the number of
1’s stays constant but the 1’s move around under an exclusion process where the bits
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are considered to be the vertices of a graph. A fairly thorough study of this model is
carried out in [BGS13] to which we direct the interested reader. We do not give precise
definitions here but do mention that as a consequence of the results in [BGS13], we have
that exclusion sensitivity for the complete graph implies (fixed-size)-noise sensitivity.
On the other hand, the Boolean function which is 1 if and only if bN(ω)/ log nc is
even (where N(ω) is the number of 1’s) is easily seen to be (fixed-size)-noise sensitive
but not exclusion sensitive. It is also shown in this paper that for monotone functions
exclusion sensitivity for the complete graph is equivalent to noise sensitivity. For our
main example of percolation crossings, exclusion sensitivity with respect to various
intermediate range exclusion processes is also proved.

6.3 Percolation crossings in the Boolean model

In [ABGM13], one studies noise sensitivity of crossing events in the critical Poisson
Boolean model. In this model, one has a Poisson process in the plane with intensity
λ and one places balls of radius one around each of the Poisson points. One then
looks if the collection of balls has an infinite component. The authors take λ to be the
critical intensity λc and consider the event of a left right crossing in a large box. The
noise which is added to the system is as follows. Given a small number ε, one removes
each point of the original Poisson process independently with probability ε and then
adds to the system an independent Poisson realization with intensity ελc. The final
configuration is of course also a Poisson realization with intensity λc. The authors
show that the system is noise sensitive in that for each fixed ε > 0, the events that the
original realization has a left right crossing and that the perturbed realization has a
left right crossing are asymptotically independent as the box size goes to ∞.

6.4 Noise sensitivity under partial noise

Another noise variant which was suggested in [BKS99] is where a specified subset of
the bits is rerandomized with probability ε independently while the remaining bits are
unchanged. This is discussed in [GPS10]. An interesting example is when we consider
percolation crossings and rerandomize only the vertical edges with probability 1. It is
proved in [GPS10] that noise sensitivity still results answering a question in [BKS99].
Some general results concerning this type of noise are obtained in [GPS10].

7 Juntas and noise resistance

The following definition will be central in this section.

Definition XII.23. A Boolean function f on Ωn is a (ε, k)-junta if there exists a
Boolean function g on Ωn which depends on at most k variables such that P(f 6= g) ≤ ε.
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Juntas are viewed as noise resistant since it is immediate to check that if f is a
(ε, k)-junta, then P

[
f(ω) 6= f(ωδ)

]
≤ 2ε + kδ/2.

It is trivial that if f is a Boolean function which only depends on k bits (i.e., is
a (0, k)-junta), then I(f) is at most k. The converse is false since there is a sequence
of Boolean functions, whose variances are bounded away from 0, which depend on all
the variables (which is equivalent to saying that each variable as positive influence) but
such that the total influence is at most 2. We should therefore ask instead if a function
with small total influence is a junta. The following theorem of Friedgut which we will
not prove tells us that this is the case.

Theorem XII.24 ([Fri98]). Let f be a Boolean function of n variables with I(f) ≤ k.

Then for any ε > 0, we have that f is a (ε, e
3k
ε )-junta.

The crucial point is of course that the size of the junta, e
3k
ε , does not depend on n

but only on the total influence and the desired degree of approximation of the junta.
It is also shown in [Fri98] that the above theorem is sharp up to the constant 3 in the
exponent meaning that if 3 is replaced by a small constant, the result becomes false.

It turns out that Bourgain obtained a far reaching extension of this which we will
also not prove.

Theorem XII.25. [Bou02] For all η, ε > 0, there exists a cη,ε such that if f is a
Boolean function of n variables mapping into {±1} satisfying for some k ≥ 1∑

|S|≥k

f̂(S)2 ≤ cη,ε

k
1
2
+η

,

then f is a (ε, k10k)-junta.

Corollary XII.26. For all C, δ, ε > 0, there exists L = L(C, δ, ε) so that if f is a
Boolean function of n variables mapping into {±1} satisfying for all k∑

|S|≥k

f̂(S)2 ≤ C

k
1
2
+δ

,

then f is a (ε, L)-junta. In particular, by Markov’s inequality, f is a (ε, L)-junta pro-

vided that the 1
2

+ δ-moment of the spectral sample, Q̂(|S | 12+δ), is at most C.

Proof. Let η := δ/2. Choose k so that C/kη ≤ cη,ε. For this specific value of k, we have∑
|S|≥k

f̂(S)2 ≤ cη,ε

k
1
2
+η

and hence by Theorem XII.25 f is a (ε, k10k)-junta. Since k only depends on C, δ and
ε, the theorem is proved.
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Remark (1) By taking δ to be 1/2 in the last statement of Corollary XII.26, you
immediately obtain Theorem XII.24 without the specified dependence of the size of the
junta on the total influence and ε but of course with the independence on n.
(2) Corollary XII.26 can be seen to be essentially sharp in the sense that the positive δ
cannot be removed. To see this, one can consider the majority functions Mn. It is clear
that these are “not juntas” while at the same time, it is known that for some constant
C, one has that for each k and n ∑

|S|≥k

M̂n(S)2 ≤ C

k
1
2

.

(3) An exercise shows that
∑
|Sf |≥1/ε f̂(S)2 ≤ O(1)P

[
f(ω) 6= f(ωε)

]
. It follows that

P
[
f(ω) 6= f(ωε)

]
≤ ε1/2+δ for a fixed δ > 0 and all small ε > 0 implies, by Corollary

XII.26, that f is an appropriate junta. Note again that the majority functions are
such that P

[
f(ω) 6= f(ωε)

]
is of the order of ε1/2. Finally, observe that the assumption

that the total influence is at most k immediately yields P
[
f(ω) 6= f(ωε)

]
≤ kε, a much

stronger assumption than that this is at most ε1/2+δ.
(4) There is no reasonable converse of Corollary XII.26 at all since there exists a se-
quence {fn} of Boolean functions such that Q̂(|Sfn|δ) approaches infinity for each
positive δ but such that for each ε > 0, for all large n, fn is a (ε, 1)-junta. For example,
as the reader can check, one can let fn be defined on 1 + n + 22n

bits which is x1 unless
x2, . . . , xn are all 1, in which case it is the mod 2 sum of all the bits except x2, . . . , xn.

8 Social choice and Arrow’s impossibility theorem

In this section, we will be interested in voting schemes where instead of two candidates,
one has three candidates in an election denoted by A, B and C and one has n voters.
We will assume that each voter i ∈ [n] returns three bits xi, yi, zi ∈ {−1, 1} which
encode his/her own preference respectively, between candidates A/B, B/C and C/A.
This way, if voter i returns for example (1, 1,−1), this means that voter i has the
following ranking in mind A > B > C. In that case, if the outcome of the election
would only depend on voter i (ith Dictator), candidate A would get elected. We will
assume in what follows that all voters are rational voters in the sense that they will
not return the rankings (1, 1, 1) or (−1,−1,−1) which would lead to the situations
A > B > C > A or A < B < C < A. Therefore, the possible votes are in the set
K3 := {−1, 1}3 \ {(1, 1, 1), (−1,−1,−1)} which is of size 23 − 2 = 6. Furthermore the
result of a voting with n voters will be a certain configuration ωn = (xi, yi, zi)i∈[n] ∈
Kn

3 ⊂ Ωn
3 . At this point, one still has to choose a voting scheme, i.e. a way to decide

which candidate is elected. In this setting, one natural way to proceed as suggested
long ago by Condorcet is to fix a certain Boolean function f : {−1, 1}n → {−1, 1} and
to consider the triple

R = (f(x1, . . . , xn), f(y1, . . . , yn), f(z1, . . . , zn)) ∈ {−1, 1}3
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This voting scheme is reasonable if one can make sure that this triple will always lie in
the set of admissible votes K3. Unfortunately, it turns out that unless f only depends
on one voter (i.e. is a Dictator or an anti-Dictator), it can be shown that even though
all voters vote in K3, there will exist configurations which will lead to an irrational
outcome in Kc

3. This is the content of the following celebrated Arrow’s Impossibility
Theorem where we denote (x1, . . . , xn) by x and similarly for y and z.

Theorem XII.27 (Arrow’s impossibility theorem). Let n ≥ 2 and suppose f : Ωn →
{−1, 1} is any Boolean function which does not depend on a single voter i ∈ [n]. Then
there exists a configuration ωn ∈ Kn

3 so that R = (f(x), f(y), f(z)) /∈ K3.

The reason why this theorem which solves Condorcet’s paradox appears in this book
is the fact that there exists a beautiful proof due to Gil Kalai [Kal02] which relies on
Fourier analysis.

Proof (Gil Kalai):
We want to check whether the triple (f(x), f(y), f(z)) always lies in the set of

rational outcomes K3 or not. Note that if (X, Y, Z) is any point in {−1, 1}3 ⊃ K3, then
the Boolean function

g(X, Y, Z) :=
3

4
− 1

4
XY − 1

4
XZ − 1

4
Y Z ,

returns 1 if (X, Y, Z) ∈ K3 while it returns 0 otherwise. Therefore if P denotes here
the uniform measure on configurations (xi, yi, zi)i∈[n] ∈ Kn

3 , one has for any Boolean
function f : {−1, 1}n → {−1, 1}

P
[
(f(x), f(y), f(z)) ∈ K3

]
=

3

4
− 3

4
E

[
f(x)f(y)

]
,

where we used the symmetry between the variables x, y and z.
Notice now that if the configuration (xi, yi, zi)i∈[n] is chosen uniformly in Kn

3 , then
the projected vectors (xi)i, (yi)i, (zi)i are each uniform random configurations in the
hypercube Ωn. Yet, if one is interested in the coupling of two of them, say (xi, yi)i∈[n],
it is not correct that they form independent vectors in {−1, 1}n. Their correlation is
given by E

[
x1y1

]
which is simply seen to be equal to −1/3. In other words, among

rational outcomes in K3, the variables are negatively correlated. We have now enough
information to carry out the above computation:

P
[
(f(x), f(y), f(z)) ∈ K3

]
=

3

4
− 3

4
E

[
f(x)f(y)

]
=

3

4
− 3

4

∑
S,S′

f̂(S)f̂(S ′)E
[ ∏
i∈S,j∈S′

xiyj

]
=

3

4
− 3

4

∑
S

f̂(S)2(−1

3
)|S| .
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In order that the voting always produces a rational outcome, clearly f cannot be a
constant since then f would be identically equal to 1 or −1 and this would always lead
to an irrational outcome. However, in fact, one has the stronger statement that f̂(∅)
must be equal to 0 if the voting always produces a rational outcome. To see this, first
note that if p := P

[
(f(x), f(y), f(z)) ∈ K3

]
, one would have

p = 3/4− 3/4f̂(∅)2 − 3/4
∑
|S|≥1

f̂(S)2(−1

3
)|S|

≤ 3/4− 3/4f̂(∅)2 + 1/4
∑
|S|≥1

f̂(S)2

= 3/4− 3/4f̂(∅)2 + 1/4(1− f̂(∅)2) (by Parseval)

= 1− f̂(∅)2

2
.

Therefore, if one is looking at a Boolean functions f such that p = 1, we must have
f̂(∅) = 0, as claimed.

Let us now characterize the Boolean functions f with f̂(∅) = 0 such that

p = 1 =
3

4
− 3

4

∑
|S|≥1

f̂(S)2(−1

3
)|S| .

Using once again the fact that f ∈ {−1, 1} and thus
∑

S f̂(S)2 = 1 by Parseval, it
is immediate to see that all the nonzero Fourier-coefficients of f must correspond to
singletons. Hence f =

∑
k ak xik with

∑
a2

k = 1. It is an easy exercise to check that
the only such functions which are Boolean (i.e. with values in {−1, 1}) are Dictators
f = xi1 and anti-Dictators f = −xi1 for some i1 ∈ [n], which thus ends the proof of
Theorem XII.27.

Remark The advantage of this Fourier proof by Kalai (besides the fact that it is
a beautiful argument) lies in the fact that it gives sharp quantitative bounds if one
relaxes slightly the problem and asks instead how a Boolean function f : Ωn → {−1, 1}
must be chosen if one wants p = P

[
(f(x), f(y), f(z)) ∈ K3

]
to be not exactly 1 but

very close to it, say 1 − δ for some small parameter δ. It is possible to show that any
Boolean function f satisfying the above property is such that there is always a Dictator
(or an anti-Dictator) g : Ωn → {−1, 1} which approximates f very well in the sense
that P

[
f 6= g

]
≤ O(δ). See [Kal02] for more details.
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9 Non-interactive correlation distillation and Borell’s

reverse hypercontractivity theorem

Letting Tρ be as in Chapter V, an exercise shows that for any function f on the hyper-
cube mapping into {0, 1}, we have that

P[f(ω) = f(ωε)] = E[(T1−(1−
√

1−ε)f)2] + E[(T1−(1−
√

1−ε)(1− f))2].

It turns out to be interesting to consider higher moments of the above functions and
in particular it turns out that the expression

E[(T1−εf)k] + E[(T1−ε(1− f))k]

has an interesting probabilistic interpretation related to a concept called non-interactive
correlation distillation. Imagine a source of n i.i.d. coin flips which are sent to k different
people. Given the realization of the source, each of the nk bits which are transmitted is
rerandomized independently with probability ε. The k people want to “flip a fair coin”
based on what they receive in such a way that the probability that all k players get
the same outcome is maximized. This question is motivated by cryptography consider-
ations. More precisely, let f be a function from sequences of length n into {0, 1} which
takes the value 1 half the time. So the output of the kth player is f applied to the
sequence that the kth player received. The term non-interactive correlation distillation
comes from the fact that the k players want to jointly distill out the correlation between
their bit string and the original bit string but that no interaction is allowed between
the k players. We assume that all players use the same function f . The following
proposition is easy to prove and left to the reader.

Proposition XII.28. The probability that the coins that the k players “toss” by ap-
plying f to their received bit string all have the same outcome is

E[(T1−εf)k] + E[(T1−ε(1− f))k].

It was shown in [MO05] that when k is 2 or 3, then the function f which maximizes
the above probability is a Dictator function. The Fourier argument which shows that
the (±1) Dictator function is the most stable mean 0 function shows that the (0, 1)
Dictator function is the unique optimal function for k = 2 and also that it uniquely
maximizes the expected number of pairs of players which have the same outcome. One
can see that for k = 3, this is equivalent to maximizing the probability that all the
players have the same outcome. However, as shown in this paper, Dictator is not
always the optimal function. They show that for n and ε fixed, for all k sufficiently
large, the optimal f is to use the Majority function. Many other results are obtained
in [MO05].

Let p(n, k, ε) be the probability that all players have the same outcome under the
optimal function f under the parameters n, k and ε. Note that limn p(n, k, ε) trivially
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exists which we denote by p(∞, k, ε). In a followup paper on this model, [MOR+06],
the following theorem was shown. While the theorem might seem obvious, it seems
nontrivial to prove.

Theorem XII.29. For all ε > 0, limk p(∞, k, ε) = 0.

One of the key techniques needed to prove the above result is a reverse hypercon-
tractivity theorem due to C. Borell contained in [Bor82] and whose statement is the
following.

Theorem XII.30. Let f : {±1}n → R≥0 be a nonnegative function and let −∞ < q ≤
p ≤ 1. Then

‖Tρf‖q ≥ ‖f‖p for all 0 ≤ ρ ≤ (1− p)1/2/(1− q)1/2. (XII.8)

The proof of Theorem XII.30 can be found in either [Bor82] or in [MOR+06]. The-
orem XII.29 was the first application of the reverse hypercontractivity theorem to the-
oretical computer science. Since then, other applications have been found.

10 Deterministic and Randomized Complexity for

Boolean functions

In this section, we discuss the important concepts of deterministic and randomized
complexity for general Boolean functions. The main result of this section is proved in
[OSSS05]; this result proves a general lower bound on the randomized complexity for
nontrivial transitive monotone Boolean functions. Such a lower bound was previously
proved for the special case of monotone graph properties. A key step in the proof is to
obtain an inequality which relates influence with the complexity of the function. Then,
we will see a major open question concerning randomized complexity for nontrivial
monotone graph properties. Finally, at the end of this section, we will also give another
application to arms events in critical percolation in the same spirit as the inequality
obtained in Section 5 in Chapter VIII.

Let us now formally introduce the relevant concepts. For background concerning
these topics, in addition to [OSSS05], see also [Haj92]. We consider a Boolean function
f . As in Section 2 of Chapter VIII, an algorithm deterministically queries the bits,
where the bit which is queried may depend on the values of the previous bits seen. It
is assumed that any algorithm stops as soon as the output of the function f can be
determined from the given information. In theoretical computer science, this is referred
to as a decision tree but we won’t use this terminology here. Given an algorithm A
for f and ω ∈ {−1, 1}n, we let c(A, ω) be the number of queries that the algorithm A
performs when the input is ω. Let c(A) := maxω c(A, ω) be the maximum number of
queries that A makes which we view as the cost of A. Finally, we have the following
important definition.
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Definition XII.31. The deterministic complexity of a Boolean function f , denoted
by D(f), is the minimum of c(A) over all algorithms A for f .

Remark It is not so hard to show that for a Boolean function f of n variables, D(f) = n
if and only there is an adversary who can give answers to bit queries which always forces
all the bits to be queried; this later property is called evasiveness.

While we will primilarly be interested in the concept of randomized complexity, to
be given soon, we do mention one theorem concerning deterministic complexity, which,
to our taste, is quite interesting. It is proved in [RV75].

Theorem XII.32. Consider a nontrivial transitive monotone Boolean function f of n
variables. If n is a prime power, then D(f) = n.

This theorem was derived in order to then prove (in the same paper) the Aanderaa-
Rosenberg Conjecture which states that the deterministic complexity for any nontrivial
monotone graph property on n vertices is Ω(n2).

A randomized algorithm is a variant of an algorithm where the next bit chosen
may depend not only on the bit values seen so far but also on exterior randomness.
This is equivalent to choosing a (deterministic) algorithm at random according to some
distribution. We denote a randomized algorithm by Ã. Given a randomized algorithm
Ã for f and ω ∈ {−1, 1}n, we let c(Ã, ω) be the expected number of queries that the
randomized algorithm Ã performs on the input ω. Let c(Ã) := maxω c(Ã, ω) be the
maximum (over the input strings) number of queries that Ã makes on average which
we view as the cost of Ã. Finally, we have the following important definition.

Definition XII.33. The randomized complexity of a Boolean function f , denoted
by R(f), is the minimum of c(Ã) over all randomized algorithms Ã for f .

To see the difference between deterministic complexity and randomized complexity,
consider majority on 3 bits. It is easy to see that D(f) = 3 but R(f) < 3. These
concepts are very related to those in Section 4 in Chapter VIII. However, note that in
that section, the input bits are assumed to be i.i.d. uniform while here we are considering
worst case input which is an essential difference.

Although perhaps less central here, we introduce a third complexity measure which
is defined in terms of a concept we already saw, namely that of a witness.

Definition XII.34. The nondeterministic complexity of a Boolean function f ,
denoted by N(f), is maxω w(ω) where w(ω) is given in Definition VIII.11.

Since at the end of any algorithm, the queried bits must be a witness, we trivially
have D(f) ≥ R(f) ≥ N(f). Clearly N(f) could be n such as in the case of Parity.
Although we do not prove it here, the following result is due to M. Blum and others.

D(f) ≤ (N(f))2. (XII.9)
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Interestingly, this is sharp. If one takes a binary tree of height 2k with the leaves
corresponding to the input bits and lets the even levels correspond to an AND-function
while the odd levels correspond to an OR-function, then it is not so hard to show that
the resulting Boolean function f satisfies D(f) = 22k while N(f) = 2k. Another such
example is if the input is a 0-1 square matrix and the output is a 1 if there is row
consisting of all 1’s.

We now stick only to the first two notions of complexity. Note that an immedi-
ate consequence of (XII.9) is that D(f) ≤ (R(f))2. For general monotone transitive
Boolean functions, R(f) can be much smaller than D(f). For example for Iterated
3-Majority iterated k times, while Theorem XII.32 tells us that D(f) is 3k (this is also
easy to see directly), it is easy to show that R(f) is at most (8/3)k. (What the smallest
number that can replace 8/3 here for all large k is is an open question.)

The following question seems to be one of the major questions in the field. It
concerns a variant of the Aanderaa-Rosenberg Conjecture for randomized complexity.

Conjecture XII.2. (Karp) For Boolean functions f corresponding to a nontrivial
monotone graph property on n vertices, we have that R(f) = Ω(n2).

There have been a number of results proving weaker versions of this; here we simply
mention the result in [Haj91] which states that in this graph property context one has
R(f) ≥ Ω(n4/3). This is the best result in terms of the power of n.

We now move to one of the two main theorems of this section. We include the proof
here since it uses many of the concepts already introduced in the book (and because
we find it very interesting).

Theorem XII.35 ([OSSS05]). If f is a monotone, transitive nontrivial Boolean func-
tion, then

R(f) ≥ n2/3.

This result is much more general than that in [Haj91] mentioned above and the
proof technique completely different. In this regard, it is quite amazing that the exact
same power of n is obtained.

One of the key steps in proving this result is the following interesting result which
can be viewed as a strengthening of Poincaré inequality (Theorem I.13).

Theorem XII.36 ([OSSS05]). Let f be a Boolean function mapping into {±1}, A a
randomized algorithm for f and p ∈ (0, 1). Then

Varπp(f) ≤ 4p(1− p)
∑

i

δp
i I

p
i (f)

where δp
i is the probability that i is queried by the algorithm A when the input distribution

is πp and Ip
i (f) is the level p influence of bit i.
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Proof. It suffices by linearity to prove the result when A is a deterministic algorithm.
In this proof, we will change our previous notation slightly. Given ω and i, we let ωi

be ω except rerandomized in position i (as opposed to flipping the ith coordinate as
we did earlier). It is then trivial to check that P(f(ω) 6= f(ωi)) = 2p(1− p)Ip

i (f) Next,
it is elementary to check that Varπp(f) = 2P(f(x) 6= f(y)) where x and y are chosen
independently from πp. It follows that the inequality to be proved is

P(f(x) 6= f(y)) ≤
∑

i

δp
i P(f(ω) 6= f(ωi))

where x and y are chosen independently from πp. We now do this.
Applying the algorithm A to x, we let i1, . . . , is be the bits queried by A in the order

they are probed. For t = 0, . . . s − 1, let ut be x on it+1, . . . , is and y on the rest. For
t ≥ s, let ut be y. In words, ut is obtained by taking the configuration x and replacing
all the values of the bits which have been probed up to step t or are never probed by
their corresponding y values.

Observe that f(x) = f(u0) and therefore that

{f(x) 6= f(y)} ⊆ ∪n
t=1{f(ut−1) 6= f(ut)} = ∪n

t=1 ∪n
i=1 {f(ut−1) 6= f(ut), it = i}

where it is (arbitrarily) defined to be 0 for t > s.
For each t and i, by first conditioning on all the information obtained after t−1 steps

of A, it is not hard to see that P({f(ut−1) 6= f(ut), it = i}) = P(it = i)P(f(ω) 6= f(ωi)).
By summing up first over t, noting that

∑
t P(it = i) = δp

i and then summing over i,
we obtain the result.

Remark By linearity, Theorem XII.36 holds for randomized algorithms as well.

Before stating the next lemma, we need another definition.

Definition XII.37. The level p complexity of a Boolean function f , denoted by
Dp(f), is the minimum over all (deterministic) algorithms A for f of the expected
number of questions that are asked when the input has distribution πp .

Observe that this definition is unchanged if we allow randomized algorithms and
that D1/2 is the notion that we were dealing with in Section 4 of Chapter VIII. The
following reduces to Theorem VIII.8 when p = 1/2; since the proof is more or less the
same, we skip it.

Lemma XII.38 ([OS07]). For monotone Boolean functions f , Dp(f) ≥ 4p(1−p)(
∑

i I
p
i (f))2.

Proof of Theorem XII.35. Fix a monotone nontrivial transitive Boolean function.
Fix p arbitrarily and choose an algorithm A minimizing the expected number of ques-
tions that are asked when the input has distribution πp. Theorem XII.36 and transitivity
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yield Varπp(f) ≤ 4p(1− p)Dp(
∑

i I
p
i (f))/n. Lemma XII.38 tells us that the right-hand

side is at most 2
√

(1− p)pD
3/2
p /n. This gives

Dp ≥ n2/3(4p(1− p))−1/3Varπp(f)2/3.

Since f is monotone and nontrivial, we can choose p so that Varπp(f) = 1. Since
R(f) ≥ Dp for all p, the result is proved.

We lastly give an interesting corollary of Theorem XII.36 which immediately yields
Theorem VIII.9.

Corollary XII.39. For any Boolean function f and any p ∈ (0, 1), we have

max
i

Ip
i (f) ≥ Varπp(f)/(Dp4p(1− p))(≥ Varπp(f)/(R(f)4p(1− p))).

This yields a lower bound on the maximum influence in terms of the algorithmic
complexity of the function; previous results of this type were much weaker.

Let us end this section with another surprising application to arms exponent in
critical percolation (in the same spirit as in Section 5 of Chapter VIII). Indeed we shall
see that Theorem XII.36 implies the following nontrivial relation:

Theorem XII.40. There is a constant C > 0 such that for critical percolation on Z2,

α2(R) α4(R) ≥ C α5(R) .

Remark (1) Note that the corresponding inequality is of course known for critical
percolation on the triangular lattice since it would corresponds to R−1/4+o(1)R−5/4+o(1) ≥
C R−2, but it is far from being obvious using standard arguments on the square grid
Z2. In fact, we believe that such a relation between arms exponents was not known
earlier.
(2) Note also that the weaker inequality α1(R) α4(R) ≥ α5(R) follows easily from
Reimer’s inequality (see equation (VI.7) or [Re00]).
Sketch of proof.
Let us apply Theorem XII.36 with p = pc(Z2) = 1/2 to the left-right crossing event fR

in a R × R square with the same randomized algorithm A as in Section 3 of Chapter
VIII.

Using similar techniques as in Chapter VI (i.e. dealing with boundary issues), it can
be shown that there is a positive constant B <∞ such that∑

x∈[0,R]2

δx Ix(fR) ≤ B
∑

x∈[R/4,3R/4]2

δx Ix(fR) . (XII.10)

Note that the boundary issues are similar but somewhat different here: the important
observation is to notice that both δx and Ix(fR) get smaller near the boundary (and so
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does their product). It is also clear that for any x ∈ [R/4, 3R/4]2, δx ≤ α2(R/4) and
Ix(fR) ≤ α4(R/4). This, (XII.10) and Theorem XII.36 imply that

Ω(1) ≤ Var(fR) ≤
∑

x

δx Ix(fR)

≤ B
∑

x∈[R/4,3R/4]2

δx Ix(fR)

≤ B (R/2)2α2(R/4)α4(R/4)

≤ O(1)R2α2(R)α4(R) ,

where we used quasi-multiplicativity (Proposition II.3). We conclude the proof using
Theorem VI.4 on the five-arms exponent in Z2.

Some exercises related to Section 10

Exercise XII.1. Determine R(f) for Majority on 3 bits.

Exercise XII.2. Letting max{k : ∃ S such that |S| = k, f̂(S) 6= 0} be the degree of a
Boolean function f , show that D(f) is at least the degree of f .

Exercise XII.3. Show that if f is reasonably balanced on n bits, then the revealment
is at least of order 1/n1/2. Give a version of this for witnesses.

Exercise XII.4. Show that if f is reasonably balanced on n bits and is monotone,
then the revealment is at least of order 1/n1/3.

11 Erdős-Rényi random graphs and strong noise

sensitivity

Throughout most of this book, the parameter p has mostly been taken to be 1/2.
In many important cases, it is natural to let pn vary with n such as in the Erdős-
Rényi random graph model G(n, p). Note that noise sensitivity, when one assumes the
functions are nondegenerate, is equivalent to

lim
n→∞

P
[
fn(ωε) = 1|fn(ω) = 1

]
− P

[
fn(ω) = 1

]
= 0 (XII.11)

where pn is implicit in the expectation. It turns out that Theorem I.21 is no longer
true in this context. For example, if one considers the Erdős-Rényi random graph
G(n, n−2/3) and f is the event of containing a K4, then it is easy to see that (I.2)
holds while noise sensitivity fails. (It turn out that the correct analog of (I.2) in the
small p context is that the left hand size of (I.2) when multiplied by pn should go to
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0; this then holds even for G(n, 1/n) with f being the event of containing a triangle
with noise sensitivity again failing.) For varying p, Keller and Kindler ([KK13]) have
a result which extends Theorem I.21 into the regime pn = 1/no(1). However, in the
interesting regimes for the Erdős-Rényi random graph model G(n, p), for example when
connectivity, containing a Hamiltonian cycle or various events involving the critical
giant component are nondegenerate, pn is much smaller than 1/no(1) and so this is not
covered by the result in [KK13].

In [LS], a strengthening of the notion of noise sensitivity for monotone functions is
studied and from this, various properties for G(n, p) are proved to be noise sensitive.
We assume monotonicity for the rest of this section and for simplicity, we will assume,
only in this section, that our Boolean functions map {0, 1}n into {0, 1}. Recall that a
1-witness is a minimal subset of the variables with the property that if all the bits in
this subset are 1, then the function is guaranteed to be 1. Let W1 =W1(f) denote the
set of 1-witnesses of some monotone Boolean function f and similarly forW0 =W0(f).

Definition XII.41. A sequence of monotone Boolean functions fn : {0, 1}n → {0, 1}
is called 1-strongly noise sensitive (StrSens1) w.r.t. (pn) if for any ε > 0,

lim
n→∞

max
W∈W1

P
[
fn(ωε) = 1 | ωW ≡ 1

]
− P

[
fn(ω) = 1

]
= 0 . (XII.12)

0-strongly noise sensitive (StrSens0) is defined analogously. (XII.11) says that
knowing fn(ω) = 1 gives us, for large n, almost no information about whether fn(ωε) =
1. The event {fn(ω) = 1} is the same as the event that ωW ≡ 1 for some W ∈ W1.
If all the witnesses are similar, it might therefore seem at first that StrSens1 should
be the same as noise sensitive but after further reflection, one sees that this is not the
case.

It is easy to see that StrSens1 implies noise sensitive while the converse is not
true. It is easy to show that Tribes is StrSens1; however it is not StrSens0 showing
that the above converse is false and that StrSens1 and StrSens0 are not equivalent.
Interestingly, unlike noise sensitivity, it is possible that (XII.12) holds for some ε and not
for others. It can also happen (for example for Iterated 5-Majority but not for Iterated
3-Majority) that minW∈W1 P

[
fn(xε) = 1 | xW ≡ 1

]
approaches 1 as n → ∞ for fixed ε,

something which cannot occur with respect to the usual notion of noise sensitivity.
The size of the largest component for G(n, c/n) is of order n if c > 1, of order n2/3

if c = 1 and of order log n if c < 1. It is known that there is a “critical window”
[1/n − c/n4/3, 1/n + c/n4/3] where this transition occurs. The size of the largest cycle
when p = 1/n, when divided by n1/3, has a nontrivial limiting distribution.

Theorem XII.42 ([LS]). The event that there exists a cycle of length contained in
[n1/3, 2n1/3] is StrSens1 and hence is noise sensitive. In addition, one obtains (quan-
titative) StrSens1 when εn � n−1/3 and stability when εn � n−1/3.

It is not hard to see that the “noise sensitivity exponent” here of 1/3 matches
exactly the critical window described above. Other events which one can prove are
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noise sensitivity are “connectivity” and “containing a Hamiltonian cycle”, which are
nondegenerate respectively at log n/n and (log n + log log n)/n.

Theorem XII.43 ([LS]). The events “connectivity” and “containing a Hamiltonian
cycle” are each noise sensitive at the above values of pn. In addition, one obtains
(quantitative) noise sensitivity when εn � 1/ log n and stability when εn � 1/ log n.

The method here is to show that the events “minimum degree at least 1” and
“minimum degree at least 2” are each StrSens0 (for similar reasons to why Tribes are
StrSens1 ) and then to use the fact that these two events approximate very well the
above two events.

We have seen in Problem I.9 that for p = 1/2, clique containment is noise sensitive.
In general, if Hn is a growing sequence of given graphs, the sequence of events “Hn ⊆
G(n, p)” need not be noise sensitive as can be seen by letting Hn be log n disjoint edges.

A graph is called strictly balanced if its edge/vertex ratio is strictly larger than
that of all of its subgraphs. The following provides some cases when noise sensitivity
can be concluded for events of this form.

Theorem XII.44 ([LS]). (i) If Hn is strictly balanced with 1� `n ≤
(

log n
log log n

)1/2
edges,

then (fn) is noise sensitive, and furthermore, it is StrSens1.
(ii) There exists a sequence {Hn} of strictly balanced graphs with `n � log n edges for
which (fn) is not noise sensitive.

12 Noise sensitivity and correlation with majority

functions

The general theme of this section is the relationship between being noise sensitivity and
being somewhat uncorrelated with all majority functions. The starting point of this
section is the following proposition which is not proved as it follows immediately from
the stability of the Majority function.

Proposition XII.45. Given a subset K ⊆ [n], let MK be the Boolean function on
{0, 1}[n] which is just majority on the bits in K. (This function is 1 when there are
more 1’s than 0’s in K, is −1 when there are more 0’s than 1’s in K and is 0 if a tie.)
If {fn} is noise sensitive, then

lim
n→∞

sup
K⊆[n]

E[fnMK ] = 0.

One can ask for the converse of the above proposition. The answer is trivially no
since if fn is χ{1,2} for each n, then fn is uncorrelated with every MK since the former
is an even function and the latter is odd. The goal here is to show that for monotone
functions, there is some type of converse. The first main result is the following.



174 CHAPTER XII. FOR THE CONNOISSEUR

Theorem XII.46 ([BKS99]). Let Λ(f) := max{|E(fMK)| : K ⊆ [n]}. There exists C
such that for all f : {0, 1}[n] → {0, 1} which is monotone,

H(f) ≤ C(Λ(f))2(1− log(Λ(f)) log n.

Remarks (1). Since f is monotone, the FKG inequality tells us that E(fMK) ≥ 0.
(2). Theorem XII.46 states that if the maximum correlation of fn with all majority
functions goes to 0 slightly faster than 1/(log n)1/2, then the sequence is noise sensitive
provided the functions are monotone.

The first lemma needed in the proof of the above result is

Lemma XII.47. There exist constants C1, C2 so that for all n and λ ≥ 0, we have

1

2n

n∑
k≥n+λ

√
n

2

(
n

k

)
(2k − n) ≤ C1

√
ne−C2λ2

.

Remark Note that if X is a Binomial random variable with parameters n and 1/2,
then the left hand side above is just

E[(2X − n)I{X≥n+λ
√

n
2
}].

Proof. We give only an outline. One can use the local central limit theorem to do
this. However, we explain “why” it is true by easily showing the inequality when X is
replaced by a normal random variable with the same mean and variance as X. (This
suggests, because of the CLT theorem, that the result is true but does not prove it.)

Assuming X is exactly Z
√

n/2 + n/2 where Z is a standard normal, then E[(2X −
n)I{X≥n+λ

√
n

2
}] becomes, after some easy algebra,

√
nE[ZI{Z≥λ}].

The last expectation can be trivially computed exactly and it is (1/
√

2π)e−λ2/2.

We now need to define the influence of a variable for a function f : {0, 1}[n] → [0, 1]
which is monotone. We take Ii(f) to be defined to be

E(f |xi = 1)− E(f |xi = 0).

It is easy to check that if the image is {0, 1} and the function is monotone, then this
agrees with our earlier definition. As before, the total influence, I(f), is defined to be∑

i Ii(f).

Lemma XII.48. There exists a constant C so that for all n and for all f : {0, 1}[n] →
[0, 1] which is monotone,

I(f) ≤ C
√

nE(fMn)(1 +
√
− log(E(fMn))).
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Proof. Let f(k) be the average of f on the set {
∑

xi = k}; this is
(

n
k

)−1 ∑
|x|=k f(x).

It is easy to see that

E(fMn) = 2−n
∑

k>n/2

(
n

k

)
[f(k)− f(n− k)].

On the other hand,

I(f) = 2−n
∑

x

∑
j

|f(x)− f(xj)|

where xj is x flipped at j. If f is now monotone, this is

2−n2
∑

(y,w):y≤w,|w|=|y|+1

(f(w)− f(y)).

This is the same as

2−n+1
∑

x

f(x)|x| − f(x)(n− |x|)

since each x comes up as a w in the previous sum |x| times and as a y, n − |x| times.
This simplifies to

2−n+1
∑

x

f(x)(2|x| − n)

= 2−n+1

n∑
k=0

(
n

k

)
f(k)(2k − n)

= 2−n+1
∑

k>n/2

(
n

k

)
[f(k)− f(n− k)](2k − n).

Given λ > 0, let k(λ) = n+λ
√

n
2

. We have

I(f)/2 = 2−n

k(λ)∑
k>n/2

(
n

k

)
[f(k)−f(n−k)](2k−n)+2−n

n∑
k>k(λ)

(
n

k

)
[f(k)−f(n−k)](2k−n)

≤ λ
√

nE[fMn] + C1

√
ne−C2λ2

by Lemma XII.47. Setting

λ = (1/C
1/2
2 )

√
− log E[fMn],

the claim is obtained.

For K ⊆ [n], we now let IK(f) :=
∑

k∈K Ik(f).
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Corollary XII.49. There exists C > 0, such that if f : {0, 1}[n] → [0, 1] is monotone,
then for all K ⊆ [n],

IK(f) ≤ C
√
|K|E(fMK)

(
1 +

√
− log(E(fMK))

)
.

Proof. Assume that K = {1, . . . ,m}. For z ∈ {0, 1}m, let

fK(z) = E[f |ω = z on K] = (1/2n−m)
∑

y∈{0,1}{m+1,...,n}

f(zy).

Here zy means the obvious concatenation of z and y. It is easy to check that fK is
monotone since f is. Next, it is an easy exercise to check that I(fK) = IK(f). Next,
E(fMK) = E(fKMK); to see this, note fK is the conditional expectation of f onto the
bits in K and MK is measurable with respect to these bits.

Using the above and Lemma XII.48, we then obtain

IK(f) = I(fK) ≤ C
√
|K|E(fKMK)

(
1 +

√
− log(E(fKMK))

)
= C

√
|K|E(fMK)

(
1 +

√
− log(E(fMK))

)
.

Lemma XII.50. If c1 ≥ c2 ≥ · · · ≥ cn > 0, then

max{
∑

a2
i : a1 ≥ a2 ≥ · · · ≥ an ≥ 0 : ∀k,

k∑
i=1

ai ≤
k∑

i=1

ci} =
∑

c2
i .

The proof is an exercise which is left to the reader but we make the following
comments. Existence of a maximum follows from compactness. The fact that the
function x2 is convex implies that

max{a2 + b2 : 0 ≤ a, b, a + b ≤ c} = c2.

This says that you should take one term as high as possible. This is “why” the result
is true but the proof takes a few steps since one needs to worry about “boundary
conditions”.
Proof of Theorem XII.46. Assume without loss of generality that I1(f) ≥ . . . ≥ In(f).
Corollary XII.49 implies (using that x(1 +

√
log(1/x)) is increasing for small x) that

k∑
i=1

Ii(f) ≤ C
√

k(Λ(f))(1 +
√
− log(Λ(f))).

Choose c1, . . . , cn so that for each k, we have

k∑
i=1

ci = C
√

k(Λ(f))(1 +
√
− log(Λ(f)))
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Since
√

x is concave, the ci’s are weakly decreasing. Lemma XII.50 then gives that

H(f) ≤
n∑

k=1

C2(Λ(f))2(1 +
√
− log(Λ(f)))2(

√
k −
√

k − 1)2

≤
n∑

k=1

C2(Λ(f))2(1 +
√
− log(Λ(f)))2(1/k) ≤ C1(Λ(f))2(1− log(Λ(f))) log n.

We end this section with the following theorem whose proof we omit. It states
that for monotone functions, being noise sensitive is equivalent to being asymptotically
uncorrelated with all weighted majority functions. Given n ≥ 1, w ∈ [0, 1]n and ω =
(x1, . . . , xn) ∈ {±1}n, let

Mn,w(ω) := sign(
n∑

i=1

wixi).

When the wi’s are in ±1, we (essentially) obtain the majority functions that we had
earlier. For f : {±1}n → R, let Λ̃(f) := max{|E(fMn,w)| : w ∈ [0, 1]n}.

Theorem XII.51. (i) The family of events {Mn,w(ω) > s}n≥1,w∈[0,1]n,s∈R is uniformly
stable (in the obvious sense).
(ii) The sequence of monotone Boolean functions {fn} is noise sensitive if and only if
limn→∞ Λ̃(fn) = 0.

As far as (1) above, in [BKS99], it was shown that

sup
n≥1,w∈[0,1]n,s∈R

P(Mn,w(ω) > s,Mn,w(ωε) ≤ s) ≤ O(1)ε1/4.

In [P04], this upper bound was improved to O(1)ε1/2 which is necessarily the sharp
exponent which one sees by looking at ordinary Majority and taking n→∞.

13 The BKS algorithmic noise sensitivity result

In the original proof of noise sensitivity of percolation crossing events in [BKS99],
Theorem XII.46 was exploited together with an argument which involved an algorithm.
This was only done for percolation but their argument proved the following more general
result which we record and prove here.

Theorem XII.52. Let {fn} be a sequence of monotone Boolean functions on {0, 1}[n]

mapping into {0, 1}. Assume there is an integer B and constants C and δ so that the
following holds. For all n, [n] can be partitioned into at most B sets An

1 , A
n
2 , . . . , A

n
kn

(so
kn ≤ B) so that for each i = 1, . . . , kn, there exists a randomized algorithm An,i which
queries the bits in [n], one bit at a time (the bit chosen may depend on the outcome of
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the values of the earlier bits) and then stops at some point such that
(i) when An,i stops, fn(ω) is determined and
(ii) for all j ∈ An

i , the probability that An,i queries bit j is at most C/nδ.
Then {fn} is noise sensitive.

Before proving this, we note the following corollary.

Corollary XII.53. If An is the event that there exists a crossing of an n × n square
in 2 dimensional critical bond percolation on the square lattice, then the sequence {An}
is noise sensitive.

Proof. We simply apply Theorem XII.52. We take B = 2. We take An
1 to be the right

hand side of the box including the center line and take An
2 to be the left hand side of

the box not including the center line.

We consider the following algorithm An,1. Order all the edges arbitrarily. Let V1

be the set of vertices on the left boundary. Choose the first (according to our arbitrary
ordering) edge from V1 to V c

1 and query that edge. If the edge is on, add the vertex of
the edge which was in V c

1 to V1. If not, don’t. Continue looking at edges (in order) from
V1 to V c

1 which have not been checked before. (V1 is then sort of a growing cluster.)
Stop when we hit the right boundary (in which case, we know that there is a crossing)
or when there are no further edges to check (in which case, we know that there is no
crossing). The algorithm An,2 is analogous but starts on the right boundary.

The algorithm An,1 clearly determines the event in question. If j in is An
1 , then

if j is queried, there there is necessarily an open path from j to distance n/2 away.
However, Theorem II.1 and duality are easily known to imply that this latter event has
probability bounded above by C/nδ for some C and δ > 0. Since the same holds for
the algorithm An,2, Theorem XII.52 allows us to conclude noise sensitivity.

Remark We will assume for simplicity that the algorithms are deterministic in that no
exterior randomness is used; this was the case in the application of Theorem XII.52 to
percolation crossings. The proof can be easily adapted to randomized algorithms. The
main modifications in the proof is that x in the proof below should then be a function
of ω, ω′, z and the exterior randomness (rather than just a function of ω, ω′ and z)
and that when one conditions on ω, ω′, one should also condition on the information
of the exterior randomness that one has obtained at the completion of the randomized
algorithm.

We first give the idea of the proof of the theorem. For K ⊆ An
i , the ith algorithm

does not hit so many points in K and so f should be fairly uncorrelated with MK which
implies by Lemma XII.48 that IK is not so large; this is exactly the key lemma. Then,
as in the proof of Theorem XII.46, we obtain Π(fn) is small yielding noise sensitivity.

The following lemma is key. We prove it later.
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Lemma XII.54. Assume the conditions of Theorem XII.52 (except we don’t need to
make the monotonicity assumption). There exists a constant C1 so that for all n, for
all i = 1, . . . , B and for all K ⊆ An

i , we have

E[fnMK ] ≤ C1(log n)/nδ/3.

Proof of Theorem XII.52. The above lemma together with Corollary XII.49 (and
a tiny computation) implies there is a constant C so that for all n, for all i = 1, . . . , B
and for all K ⊆ An

i ,

IK(fn) ≤ C
√
|K|(log n)3/2/nδ/3.

Since we partition [n] into at most B sets, we have that there exists a constant C2 so
that for all n and for all K ⊆ [n], we have that

IK(fn) ≤ C2

√
|K|(log n)3/2/nδ/3.

Now we use the proof method of Theorem XII.46. We assume without loss of generality
that Ii(fn) is nonincreasing in i. We have from the last inequality that for each k

k∑
j=1

Ij(fn) ≤ C2

√
k(log n)3/2/nδ/3.

As in the proof of Theorem XII.46,
∑n

j=1 Ij(fn)2 cannot be any larger than when
equality holds in the above for all k. Hence

Π(fn) ≤
n∑

j=1

(C2(log n)3/2/nδ/3)2((
√

k −
√

k − 1))2

≤ C3[(log n)3/n2δ/3] log n = C3(log n)4/n2δ/3 ≤ C4/n
δ/2.

Now apply Theorem I.21.

Before starting on the proof of Lemma XII.54, we state without proof two elementary
probability facts without proof.

Lemma XII.55. If {Sk} is simple random walk, then for all m and a, we have that

P (Sk ≥ a for some k ∈ {1, . . . ,m}) ≤ 2e−a2/2m

Lemma XII.56. There exists a constant C so that if {Sk} is simple random walk, then
for all r and α, we have that

P (|Sr| ≤ α) ≤ Cα/
√

r
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Proof of Theorem XII.54. Fix n, i ∈ {1, . . . , B}, K ⊆ An
i and consider the algo-

rithm An,i. Let ω, ω′ and z be independent with ω uniform in {0, 1}[|K|], ω′ uniform in
{0, 1}[n−|K|] and z uniform in {0, 1}[n]. Using these, we will choose a uniform configu-
ration x from {0, 1}[n] as follows. We run An,i. When it chooses a bit in K to query,
the value that we assign to that bit is the first bit of ω not yet used. When it chooses
a bit not in K to query, the value that we assign to it is the first bit of ω′ not yet used.
Finally assign all bits not yet assigned using z. This final assignment is called x and it
is clearly uniform. Since the algorithm determines fn, we have that fn(x) is measurable
with respect to ω and ω′.

Let V (for visited) be the random set of bits queried by An,i. By assumption (ii) in
Theorem XII.52, we easily obtain

E[|V ∩K|] ≤ |K|C/nδ.

Letting A1 := {|V ∩K| ≥ |K|/n2δ/3}, Markov’s inequality yields that

P (A1) ≤ C/nδ/3.

Next, let

A2 := {∃j ∈ [1, |K|/n2δ/3] : |
j∑

i=1

ωi − j/2| ≥
√
|K|/n2δ/3 log n}.

Lemma XII.55 and a computation yields that

P (A2) ≤ C/nδ.

Now, let

Q := {|K ∩ V | < |K|/n2δ/3} ∩ {|
|K∩V |∑

i=1

ωj − |K ∩ V |/2| <
√
|K|/n2δ/3 log n}.

Note Q is measurable with respect to ω, ω′ and that Qc ⊆ A1 ∪ A2 and hence

P (Qc) ≤ C/nδ/3.

Now
|E[fnMK ]| ≤ |E[fnIQcMK ]|+ |E[fnIQMK ]|.

The first term is at most P (Qc) ≤ C/nδ/3. The second term is

|E[fnIQMK ]| = |E [E[fnIQMK | ω, ω′]] |

= |E [fnE[IQMK | ω, ω′]] | ≤ E [|E[IQMK | ω, ω′]|]
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We claim (ω, ω′) ∈ Q implies that

|E[MK | ω, ω′]| ≤ C9 log n/nδ/3. (XII.13)

This would then give us that |E(fnMK)| ≤ C log n/nδ/3, which is the desired result.

Note in the continuation that terms such as |K∩V | are now no longer random since
we have conditioned on (ω, ω′) with respect to which |K ∩V | is measurable. Returning
to prove (XII.13), the reason this is true is essentially because MK is only affected by
(ω, ω′) ∈ Q if the sum of the other bits in K is closer to its mean than

√
|K|/n2δ/3 log n

but we make this more precise as follows. Note that |
∑|K∩V |

i=1 ωj − |K ∩ V |/2| <√
|K|/n2δ/3 log n implies that the difference (in absolute value) between the number of

1’s and 0’s in K ∩ V is at most 2
√
|K|/n2δ/3 log n. Let W be the difference between

the number of 1’s and 0’s in K\(K ∩ V ) and we let

U = {|W | > 2
√
|K|/n2δ/3 log n}.

Note that U is independent of (ω, ω′) and from this, it is easy to see by symmetry that

E[MKIU | ω, ω′] = 0.

It follows that

|E[MK | ω, ω′]| = |E[MKIUc | ω, ω′]| ≤ P (U c) (XII.14)

where the independence of U and (ω, ω′) is used again in the last inequality.

Now, using Lemma XII.56 for the first inequality below, we obtain

P (U c) ≤ C
√
|K|/n2δ/3 log n

(
1/

√
|K\(K ∩ V )|

)

≤ C
√
|K|/n2δ/3 log n

(
1/

√
|K|(1− n−2δ/3)

)
≤ C log n/nδ/3

and hence by (XII.14) that |E[MK | ω, ω′]| ≤ C log n/nδ/3 when (ω, ω′) ∈ Q as desired.

Remarks As mentioned earlier, the disadvantages of the present approach compared
to that of Section 2 of Chapter VIII is that monotonicity of the functions involved is
necessary, the argument ultimately relies on hypercontractivity and it does not, in the
case of percolation crossings, yield the polynomial quantitative noise sensitivity results.
However, we feel that the argument is interesting and worth understanding. It would be
interesting to have an example for which Theorem XII.52 could be applied but Theorem
VIII.2 could not be.
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14 Black noise in the sense of Tsirelson

In the late 90’s, about at the same time as the seminal work on noise sensitivity [BKS99]
of Benjamini, Kalai and Schramm, Boris Tsirelson developed a deep theory of noises
and in particular of black noises. A very good introduction on the topic can be found
in Tsirelson’s Saint-Flour lecture notes [Tsi04]. Still, we wish to explain at a (very)
informal level what this theory is about.

Informal definition of a noise in the one-dimensional setting: Consider a probability
space (Ω,F , P). A one-dimensional noise on this probability space is a two-parameter
filtration (Fs,t)s<t∈R which satisfies the following factorization property: for any s <
u < t,

Fs,t = Fs,u ⊗Fu,t ,

by which we mean that Fs,u is independent of Fu,t and the sub-σ-fields Fs,u and Fu,t

together generate the larger one Fs,t. There are two other technical constraints which
need to be satisfied in order to be a proper noise: a certain translation invariance under
time-shifts as well as a continuity property of the kind Fs,t is generated by

⋃
ε>0Fs+ε,t−ε.

We will not give more details on this and we refer to [Tsi04].

Noises in higher dimension The above informal definition easily extends to the case
of dimensions d ≥ 2, where one considers instead sub-filtrations indexed by hyper-
rectangles F[s1,t1]×...[sd,td].

This abstract setup developed by Tsirelson is fruitful in two respects:

(1) It is a convenient framework in order to consider scaling limits of discrete stochas-
tic processes “ωn”. More precisely, one way to build interesting noises is to obtain
them as limits of stochastic processes ωn ∈ (Ωn,Fn, (Fn

s,t)s<t, Pn), as n→∞. We
will give examples of this below.

(2) The factorization property Fs,t = Fs,u ⊗ Fu,t enables a spectral study of the
noise. More precisely, to each “observable” f ∈ L2(Ω,F , P), one can associate
a spectral measure µf on the space of compact subsets of R, which is obtained
using the conditional expectations E

[
f

∣∣ Fs,t

]
. See the Definition below.

Definition XII.57 (Spectral measure). If one is given a noise (Ω,F , (Fs,t)s<t, P), then
to each observable f ∈ L2(Ω,F , P), one can associate a spectral measure µf on the set
of compact subsets of R characterized as in Proposition IX.5 by

µf (Sf ⊂ A) := E
[
E

[
f

∣∣ FA

]2]
,

for any A ⊂ R made of finitely many intervals.
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Let us now give some examples. We will remain vague on the way filtrations are
obtained as scaling limits of discrete processes. See in particular Sections 2 and 3 in
[Tsi04]. The idea if that if ωn is a certain discrete stochastic process, we choose a
countable family of “observables” fn ∈ L2(Ωn,Fn, Pn) which describe “well” what the
stochastic process ωn is and we pass to the limit n→∞ in order to obtain observables
f ∈ L2(Ω,F , P) on a limiting object ω ∈ Ω. The limiting probability space and its
induced filtration Fs,t depends a lot on the choice of observables fn as we will see in
the example of percolation below.

Example XII.58. Brownian motion (Bt)t∈R with B0 = 0 produces a one-dimensional
noise by taking the filtration

Fs,t := σ{Bu −Bv, s < u < v < t}

Example XII.59 (Coalescing flows or Brownian Web). Consider the plane R2 as
space×time, i.e. (x, t) ∈ R × R. Imagine one starts a Brownian motion at “each”
point (x, t) ∈ R × R, and one lets particles coalesce as in Figure XII.1 representing
a discrete flow. Some work is needed to give a proper meaning to such a continuous
coalescing flow and one possible way is to build a one-dimensional coalescing noise
as a limit of systems of rescaled discrete coalescing random walks. (See [TW98] or
[FN06] for another approach). See [Tsi04]. A possible set of observables is to follow
the trajectories of particles starting on Q2.

s t

Figure XII.1: A discrete coalescing flow of random walks. The filtration Fn
s,t in some

sense contains all the information concerning the coalescing flow between time s and
time t.
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Example XII.60.

A very interesting example is given by the
following 2d “tabular” of black and white
hexagons. There are two very distinct ways
to take a scaling limit as the mesh of the
hexagonal lattice goes to zero:

1
n

• One way is to build the filtration Fn using “linear” observables of the type

fn
A :=

1

n

∑
xi∈ 1

n
T∩A

xi ,

where A is a Borel subset of [0, 1]2 and xi ∈ {−1, 1} depending on the color of the
hexagons. To make this set of observables countable, one can restrict this family
to the set of rectangles A with corners in Q2. With this point of view, by letting
n→∞, one obtains at the limit the so called two-dimensional white-noise.

• On the other hand, if one builds the filtration Fn out of a set of countably many
percolation crossing events fn,Q ranging over a dense set of quads Q ⊂ R2 (where
a quad is a subset homeomorphic to a circle together with four distinguished
points), then the limiting object is of a very different nature. We let FS denote
the σ-algebra generated by all the quads contained in S. It is easy to check that
the independence property survives in the limit, namely that FS is independent
of FS′ if S, S ′ ⊂ R2 are (homeomorphic to) rectangles with disjoint interiors. As
far as we are still on the discrete level, it is clear that Fn

S∪S′ = Fn
S ⊗Fn

S′ but this
factorization property is far from being obvious at the scaling limit n→∞. See
the experimental paper [Tsi05] for an interesting discussion on this difficulty. In
particular, Tsirelson conjectured in [Tsi05] that one still has FS∪S′ = FS ⊗ FS′

and that the scaling limit of planar percolation should then be a noise. This fac-
torization property was proved by Schramm and Smirnov in [SS11] thus showing
that the scaling limit of planar percolation is a noise.

The reason why the noise of percolation is very different from the first point of
view which leads to a 2d-white can be seen for example by showing that this noise of
percolation is a black noise according to the following (informal) definition.

Definition XII.61 (black noise). [We give the definition in the one-dimensional setting
for simplicity.] A noise (Ω,F , (F)s,t, P) is black if and only if all its observables
f ∈ L2(Ω,F , P) are noise sensitive. There are two ways to define noise sensitivity in
this continuous setting.
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• Either, one resamples the “data” in small intervals of time [k/L, (k+1)/L], k ∈ Z
each time with probability some fixed parameter ε > 0 (see section 5 in [Tsi04])
and we ask each functional f ∈ L2(Ω,F , P) to be noise sensitive under this noising
procedure as L→∞. Note that the resampling procedure is possible thanks to the
factorization property Fk/L,(k+2)/L = Fk/L,(k+1)/L ⊗F(k+1)/L,(k+2)/L.

• Another (equivalent) definition is to say that a functional f ∈ L2(Ω,F , P) is noise
sensitive if and only if its spectral measure µf does not give any spectral mass to
the set of finite nonempty subsets of R.

Note the strong analogy with Proposition IV.2. Once the noise property of per-
colation is established ([SS11]), proving that it is a black noise is easier (see [Tsi04]).
Another example of black-noise is given by the above coalescing flow of Brownian mo-
tion (see [Tsi04] and [LJR04] for two different proofs).

15 Chaos, superconcentration, and multiple valleys

In [Ch08, Ch09], Sourav Chatterjee sheds some new light on the study of the fluctuations
of a large variety of “Gaussian disordered models”. He considers in particular the
following models:

1. First passage percolation on Zd for a general class of edge-weights (which is much
larger than the law we considered in Chapter VII, where we had a Bernoulli
(1/2, 1/2) variable on {a, b} with 0 < a < b <∞). See also the paper [BR08] for
a thorough study of which laws on edges lead to the Benjamini, Kalai, Schramm
bound of |v|/ log |v|.

2. The (1 + 1)-dimensional Gaussian random polymer model (i.e. in Z2
+). It was

then generalised by Graham [Gr12] to the (1 + d)-dimensional case.

3. The largest eigenvalue of GUE matrices.

4. The Sherrington-Kirkpatrick model of spin glasses. In particular the fluctuation
of the energy of its ground state.

In [Ch08], Chatterjee proves an equivalence property between three distinct behav-
iors:

1. superconcentration (or anomalous fluctuations in our terms)

2. chaoticity of the “minimizing state” (which would be a geodesic in the first
example, a polymer in the second case, an eigenvector in the third example and
finally a ground state in the last one), by which he means that the minimizing
state is very sensitive to noise.
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3. multiple valleys property, by which he means that there are “almost minimiz-
ing states” that are very different (in fact “orthogonal”) to the unique minimizing
state.

As such, this work of Chatterjee highlights in a quantitative manner the link between
anomalous fluctuations (or superconcentration) and noise sensitivity. Explaining his
deep approach would take us too far and furthermore the book in progress [Ch13b] on
this topic will be a natural companion reading to this book.



Chapter XIII

Further directions and open
problems

We end this book with a concise list of open questions which are grouped by theme.

1 Randomized algorithms

1.1 Best randomized algorithm for Iterated Majority

It may look surprising (due to the simple iterative structure of the Iterated Majority
function introduced in Example I.5), but the following problem is to our knowledge not
settled.

Open Problem XIII.1. Find the randomized algorithm with smallest possible reveal-
ment for the Iterated Majority function fk on n = 3k bits. Even the order of magnitude
of the decay to 0 (i.e. the exponent) is not known although there are some known bounds.

1.2 Best randomized algorithms for critical percolation

Open Problem XIII.2.

(a) Find algorithms for crossing events in percolation on the triangular lattice which
examine on average at most n7/4−ε sites for some ε > 0.

(b) Show that any algorithm examines on average at least n6/4+ε sites for some ε > 0.
(This would strengthen the lower bound obtained in Section 4 in Chapter VIII).

1.3 Randomized algorithm and spectrum

One way to obtain better bounds on the noise sensitivity of a Boolean function through
the randomized algorithm approach (for example the percolation crossing events fn) is

187
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to find the algorithms with smallest possible revealments. Another possible direction
is to address the following problem.

Open Problem XIII.3. Prove a sharper version of Theorem VIII.2 from [SS10].

1.4 Randomized algorithms and pivotal points

In [PSSW07], the authors introduce a seemingly very efficient randomized algorithm:
one starts at some random initial site (using a well-chosen initial distribution) and
then at each step, one picks the site which has the largest probability to be pivotal
conditioned on what has been revealed so far. See [PSSW07]. Their numerical simula-
tions suggest that this randomized algorithm is more efficient than the one we used in
Chapter VIII using an interface. Yet, nothing is rigorously known.

Conjecture XIII.4. Show that the algorithm from [PSSW07] which examines the bit
which is most pivotal at the time examines on average at most n7/4−ε sites for some
ε > 0. (This would then be more efficient than the randomized algorithm obtained in
Theorem VIII.4 from Chapter VIII).

In fact even the following weaker conjecture is unknown.

Conjecture XIII.5. Show that the algorithm from [PSSW07] mentioned above exam-
ines on average at most n2−ε sites for some ε > 0.

Observe that in general, it perhaps is not always an optimal strategy to choose the
most pivotal point when choosing the next variable.

1.5 Proving the existence of exceptional times on Z2 using
randomized algorithms

So far the only proof of Theorem XI.8 which yields the existence of exceptional times
on Z2 is the proof from [GPS10] which relies on the geometric approach highlighted in
Chapter X. It would be very appealing to have a much shorter proof of this fact using
the randomized algorithm approach from [SS10].

Open Problem XIII.6. Prove the existence of exceptional times on the square lattice
Z2 (i.e. Theorem XI.8) using randomized algorithms.

It is easy to see that proving this open problem boils down to proving that there
exists C > 0 and ε > 0 such that the following holds for all r ≥ 1:

α2(r) ≤ C r−εα1(r)
2 . (XIII.1)

Note that this relation is in the same spirit as (XI.16) obtained by Beffara (see the
appendix in [GPS10]). However, to our knowledge, the above one is not proven yet.
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1.6 Do small witnesses imply noise sensitivity?

Consider a random witness W (see Definition VIII.11) for a Boolean function f on Ωn,
where the randomness may depend on external randomness.

Definition XIII.1. The revealment of a witness W for a Boolean function f ,
denoted by δW , is defined to be

δW := max
i∈[n]

P(i ∈ W ).

The witness revealment of a Boolean function f , denoted by δWit
f , is defined by

δWit
f := inf

W
δW

where the infimum is taken over all randomized witnesses W for f .

The following question, if answered positively, would strengthen the phenomenon
highlighted in Corollary VIII.3.

Open Problem XIII.7. If {fn} is a sequence of Boolean functions such that

lim
n→∞

δWit
fn

= 0,

does it follow that {fn} is noise sensitive?

2 Dynamical percolation

We collect here some of the main open problems that remain for dynamical percolation
on T or Z2. The main obstruction to obtain sharp results in the case of the triangular
lattice T comes form the fact that the geometric approach developed in [GPS10] (see
also Chapter X) only works so far for monotone events.

Conjecture XIII.8. For dynamical percolation on the triangular lattice T, prove

(a) that the Hausdorff dimension of the exceptional times for which there is both a
white and a black infinite cluster is a.s. 2/3. (The proof of the lower bound 1/9
was achieved in [GPS10]).

(b) that there exist exceptional times for dynamical percolation for which there are
two infinite arms and 1 infinite dual arm and show that the Hausdorff dimension
of this set of times is a.s. 1/9.

As mentioned above, this conjecture would follow form the following problem.

Open Problem XIII.9. Extend the geometric approach of the Fourier spectral sample
Sfn from [GPS10] to the case of non-monotone functions fn.

Let us end this section with the following problem.

Open Problem XIII.10. Prove that there exist exceptional times for dynamical per-
colation on the square lattice Z2 for which there is both a white and a black infinite
cluster.
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3 The spectral sample v.s. the pivotal set

In what follows, let fn be once again the left-right crossing event of a n by n square
for critical percolation on the triangular lattice T. In [GPS10], it is proved that if one
considers the rescaled spectral sample 1

n
Sfn as a random compact subset of the unit

square [0, 1]2, then this random set has a scaling limit as n→∞ which we shall denote
by S∞ ⊂ [0, 1]2. Similarly, one may consider the rescaled pivotal set 1

n
Pfn which is

known to converge as n→∞ to a random compact subset P∞ of the unit square.
It is not hard to see that P∞ and S∞ do not have the same law (their “three-

point” function differ). It is conjectured in [GPS10] that they look very different in the
following sense.

Conjecture XIII.11. The laws of S∞ and P∞ are mutually singular.

Proving such a conjecture would in some sense highlight the fact that there is no
hope to understand noise sensitivity simply by studying the pivotal set. See also
Section 2 in the miscellaneous Chapter XII.

4 Noise sensitivity and exceptional times away from

the independent case

4.1 Conservative dynamics (exclusion process) on percolation

In [BGS13], noise sensitivity for percolation under a large class of symmetric exclusion
process dynamics was proved. (See Subsection 6.2 in Chapter XII.) However, the proof
in [BGS13] requires the exclusion kernel P to be symmetric and “medium-range” in the
sense that there is an exponent a > 0 such that

[P (x, y)]x,y∈T �
1

|x− y|2+a
.

(The exponent 2 is there to make the kernel integrable.) In particular the techniques
used in [BGS13] are far from being able to handle the most interesting case which is
the nearest neighbor simple exclusion process.

Open Problem XIII.12. Prove that percolation is noise sensitive under the nearest
neighbor simple exclusion process on Z2 or T.

So far nothing has been proved concerning the existence of exceptional times for
dynamical percolation under such exclusion processes:

Open Problem XIII.13.

• Prove that there are exceptional times on T for the above medium-range exclusion
dynamics with exponent a > 0 (even the case where a is very small, corresponding
to the heavy-tailed case, is not settled).
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• Prove the existence of exceptional times on T under the nearest-neighbor exclusion
process (this should be much harder).

Finally the aim of the next open question is to highlight the fact that the property
of having exceptional times under a conservative dynamics should be stronger than the
same phenomenon for ordinary dynamical percolation.

Open Problem XIII.14. Is it the case that if some event has exceptional times for
an exclusion process, then it necessarily has exceptional times for ordinary dynamical
percolation?

4.2 Random-cluster model

The random cluster model is a dependent percolation model (also called FK percolation)
which has been successfully introduced to study the correlation structure of various
ferromagnetic models (including the Ising model discussed below). On a finite graph
G = (V, E), each configuration ω ∈ {0, 1}E has a probability proportional to p|ω|(1 −
p)|E|−|ω|qk(ω), where |ω| is the number of 1’s (or open edges) and k(ω) is the number
of connected components in ω. The dependency structure comes from the factor qk(ω)

(unless of course q = 1 which corresponds to standard i.i.d. bond percolation). See the
book [Gri06]. One can define a natural heat-bath dynamics (ωt)t≥0 on FK configurations
which preserves the random-cluster measure (see also [Gri06]). As opposed to the
Glauber dynamics discussed below, this heat-bath dynamics is not local.

Open Problem XIII.15. Consider (ωt)t≥0 a heat-bath dynamics for the q = 2 random

cluster model on Z2 at the critical temperature pc(2) =
√

2
1+
√

2
. Prove the following:

(a) Large crossing events are noise sensitive under the dynamics (ωt).

(b) There exist exceptional times for which there is an infinite cluster in ωt.

See [DGP11] for a more detailed discussion as well as a precise conjecture. For
example it is conjectured in [DGP11] that the Hausdorff dimension of the set of ex-
ceptional times for q = 2 is a.s. 10/13. It is also conjectured that for all q ∈ (q∗, 4],
with q∗ = 4 cos2(π

4

√
14) ≈ 3.83 there are a.s. no exceptional times for the heat-bath

dynamics for FK percolation with parameter q (at the corresponding critical value pc(q)
for p) even though there are pivotal points at all scales! If true, this would highlight a
rather counter-intuitive phenomenon.

5 Glauber dynamics and Ising model

In this section, we shall consider the Ising model on Z2 at critical inverse temperature
β = βc (see for example [Gri06] for background) on the n× n square Λn with either +
or free boundary conditions. The so-called Glauber dynamics is a very simple and
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celebrated dynamics which preserves the Ising measure Pβc . It induces a dynamics σt ∈
{±}Λn where spins are updated at rate one depending on the values of the spins nearby.
Preserving the measure Pβc means that if one starts at equilibrium (i.e. σ0 ∼ Pβc), then
for any t > 0, σt ∼ Pβc .

Open Problem XIII.16. Prove that crossing events are noise stable under the Glauber
dynamics. More precisely, if fn is the {±1}-event that there is a + cluster crossing
form left to right in Λn (it can be shown using [DHN11] that the variance of fn is
non-degenerate at β = βc) then for any t > 0, one has

Cov(fn(σ0), fn(σt))→ 1 ,

as n → ∞ where σt ∈ {±}Λn is an instance of a Glauber dynamics starting at equi-
librium. If true, this would mean that the spin-clusters of the Ising model evolve very
slowly under the Glauber dynamics.

A consequence of this stability property would enable to address the following prob-
lem

Open Problem XIII.17. Consider Glauber dynamics at criticality for the Ising model
on Z2. Prove that a.s. there are no exceptional times with an infinite + cluster.

6 Deterministic and randomized complexity

Open Problem XIII.18. (The generalized Aanderaa-Rosenberg Conjecture due to
Rivest and Vuillemin) Is Theorem XII.32 true if we drop the assumption that n is a
prime power?

Remark The conjecture is in fact stronger than this in that the assumptions of mono-
tonicity and nontriviality of the property is replaced by the weaker assumption that the
function values at the all 0 configuration and the all 1 configuration differ. Theorem
XII.32 is in fact proved under this weaker assumption (together with the assumptions
of transitivity and n being a prime power).

Open Problem XIII.19. (Karp Conjecture) Does there exist c > 0 so that for all
n and for all nontrivial monotone graph properties on n vertices, the corresponding
randomized complexity (see Definition XII.33) is at least cn2?

7 A phase transition in the k-SAT problem

Recall the following conjecture from section 5 in Chapter XII:
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Conjecture XIII.20. Friedgut proved a sharp threshold property for k-SAT satisfia-
bility in [Fri99] around M = ck(n) n, where ck(n) is bounded away form 0 and ∞ as
n→∞.

Prove that ck(n) converges to some limiting value as n→∞. (In other words, show
that the location of the phase transition stabilizes as n → ∞). This is the same thing
as proving that ck = c∗k as stated in Conjecture XII.1.

As explained in section 5 of Chapter XII, there are some very interesting (nonrig-
orous) works on this problem based on the so-called cavity method. See [MMZ06] and
references therein. Let us also point out the recent paper [BGT13] which, based on sta-
tistical physics ideas, gives strong rigorous indication that the above sharp-threshold
indeed converges.

8 Anomalous fluctuations

Open Problem XIII.21. Let 0 < a < b be fixed and consider the first passage perco-
lation model on Z2 from Chapter VII.

(a) Prove that that there exists ε > 0 such that (using the notations from Chapter
VII)

Var[distω(0, v)] ≤ |v|1−ε, .

Such an upper bound would already greatly improve on the upper bound O(n/ log n)
obtained in [BKS03] and in our Theorem VII.3.

(b) Prove the conjectured fluctuation of order n1/3, i.e. that

Var[distω(0, v)] = O(|v|2/3)

(c) Prove the existence of a limiting law for the fluctuations. Namely prove that

distω(0, v)− λ|v|
|v|1/3

converges in law towards a limiting distribution where λ is an appropriate constant
which depends on the direction of the point v. Finally relate this law with the
celebrated Tracy-Widom distribution.

Remark (1) Even though the techniques from Chapter VII work for all dimensions
d ≥ 2, (b) and (c) above should hold only for d = 2.
(2) Note, as we discussed along Chapter VII, that this open problem has been settled by
K. Johansson in his breakthrough paper [Joh00] for the related model of directed last
passage direction where the weights on the edges are either geometric or exponential.

Another big open problem in the area is the following universality question.
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Open Problem XIII.22. Prove that the law of the fluctuations in first passage per-
colation does not depend on the “microscopic structure” given by the underlying graph
as well as the law of the i.i.d. weights on edges.

Besides Theorem VII.3 from [BKS03] and its generalization to a large variety of
weight distributions in [BR08], it seems one is still very far form answering the above
two open problems in the case of FPP. Let us point out that there has been interesting
progress in this direction recently by Sourav Chatterjee who proved in [Ch13a] a theorem
concerning relations between critical exponents in FPP (assuming they exist).
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