
Notes on Ergodic Theory

by Jeff Steif

1 Introduction

Because of its vast scope, it is difficult to give an overview of ergodic theory.

Nonetheless, one of the original questions in statistical physics is the equality

of so–called phase averages and time averages. Will the amount of time that

some physical system spends in some region in phase space in the long run

(i.e., the time average) be the same as the amount of volume occupied by

this region (the phase average)? For example, if you continually mix your

coffee cup, is it the case that the portion of time in the long run that a given

particle spends in the top half of the cup is equal to 1/2? This is called the

ergodic hypothesis and is one of the origins of ergodic theory.

Ergodic theory impinges on many areas of mathematics- most notably,

probability theory and dynamical systems as well as Fourier analysis, func-

tional analysis and group theory.

At the simplest level, ergodic theory is the study of transformations of a

measure space which preserve the measure. However, with this dry descrip-

tion, both the interest of the subject and the wide range of its applications

are lost.
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The point of these notes is to give the reader some feeling of what er-

godic theory is and how it can be used to shed some light on some classical

problems in mathematics. As I will be concentrating more on how ergodic

theory can be used, I am afraid the reader will end up knowing how ergodic

theory can be used but not knowing what ergodic theory is.

In short, ergodic theory is the following. Certainly, dynamics of any kind

are important. Three main areas of dynamics are differential dynamics (the

study of iterates of a differentiable map on a manifold), topological dynamics

(the study of iterates of a continuous map on a metric or topological space),

and measurable dynamics (the study of iterates of a measure–preserving map

on a measure space). Ergodic theory is the third of these. However, in these

notes, we will be dealing with both topological dynamics and measurable

dynamics.

In the next section, I will give what might be a prejudicial view of the

history of the subject but which is easy to write since I’m just copying it

(and slightly modifying it) from the introduction to my thesis. The reader

is encouraged to just skim (or read as he or she wishes) this section. One

will not lose anything by immediately turning to §3.

2 A Brief Overview of Ergodic Theory

Ergodic Theory began in the last decade of the nineteenth century when

Poincaré studied the solutions of differential equations from a new point

of view. From this perspective, one concentrated on the set of all possible

solution curves instead of the individual solution curves. This naturally

brought about the notion of the phase space and what came to be called the
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qualitative theory of differential equations. Another motivation for ergodic

theory came from statistical mechanics where one of the central questions

was the equality of phase (space) means and time means for certain physical

systems, the so called ergodic hypothesis.

The mathematical beginning of ergodic theory is usually considered to

have taken place in 1931 when G.D. Birkhoff proved the pointwise ergodic

theorem. It was at this point that ergodic theory became a legitimate math-

ematical discipline. Moreover, ergodic theory became, in its most general

form, the study of abstract dynamical systems, where an abstract dynamical

system is a quadruple (Ω,A, µ, πG) where Ω is a set, A is a σ–field of subsets

of Ω, µ is a probability measure on A and πG is a group action of G on Ω

by bijective bimeasurable measure-preserving transformations. G is always

assumed to be locally compact. Moreover, it is also assumed that the map-

ping from G × Ω to Ω induced from the group action is jointly measurable

where the Borel structure of G is generated by its topology. Actually, G

may be only a semigroup in many contexts.

In these notes, G will mostly be Z but it might be Zn or N (in which

case we have a semigroup). If G is N or Z, then G is generated by one

transformation T . In this case, the Birkhoff pointwise ergodic theorem states

that for all f in L1(µ)

lim
n→∞

1
n

n−1∑
i=0

f(T i(x))

exists a.e., and denoting this limit by f∗, f∗ is also in L1(µ) and∫
Ω
fdµ =

∫
Ω
f∗dµ.

Furthermore, if the dynamical system is ergodic, then f∗ is constant a.e.,

where ergodicity means that all invariant sets (sets A such that T−1A = A)
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have measure 0 or 1. This theorem also holds when G is taken to be Zn or

Rn. The proof of the Birkhoff ergodic theorem for a single transformation

can be found in [Wal], while the more general version can be found in [D+S].

Once it was clear that the mathematical objects that should be studied

in ergodic theory are abstract dynamical systems, it was natural to define

the notion of isomorphism between two such systems providing that the two

groups acting are the same. One says that (Ω,A, µ, πG) and (Ω′,B, ν,ΨG)

are isomorphic if there are G–invariant measurable sets A contained in Ω and

B contained in Ω′ each of measure 1 such that for all g, πg and Ψg are bijec-

tive when restricted to these sets and such that there exists a bimeasurable

measure-preserving mapping f from A to B such that f(πg(x)) = Ψg(f(x))

for all g in G and x in A. Since only sets of full measure are relevant, it is

obvious that this is the correct definition. In order to distinguish between dy-

namical systems, a number of ergodic theoretic properties were introduced,

all of which were isomorphism invariants. In addition to ergodicity, other

properties that are often considered are weak-mixing, mixing, k-mixing, and

Bernoulli some of which we will care about and therefore define. Dynamical

systems also yield a canonical unitary representation of the respective group

on the corresponding L2 space of the underlying measure space, and it is

sometimes useful to consider spectral invariants as well. The definitions of

these standard notions can be found in [Wal] in the case where G is Z. For

more general groups, some of these properties are given in certain areas of

the literature although it is not so easy to track down all the definitions

for general groups. We give here the definitions of ergodicity, mixing and

Bernoulli since these are the only concepts that we will need.

Definition 2.1: A dynamical system (Ω,A, µ, πG) is ergodic if whenever
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πgA = A for all g in G where A is measurable, then µ(A) = 0 or 1.

Definition 2.2: A dynamical system (Ω,A, µ, πG) is mixing if G is not

compact and if for all measurable A and B contained in Ω, limg→∞ µ(πg(A)∩

B) = µ(A)µ(B).

In the above, as g →∞ means as g leaves compact subsets of G.

Finally, to introduce the notion of a Bernoulli system, we will always

assume that G is of the form Rm × Zn. We first define this when G is Zn.

Definition 2.3: (Ω,A, µ, πZn) is Bernoulli if it is isomorphic to (WZn
,B, p, πZn)

for some Lebesgue space W where B is the canonical σ–field on the product

space, p is product measure and πZn is the canonical action of Zn on WZn
.

Next, if G is Rm × Zn, then we can restrict this action to the subgroup

Zm+n.

Definition 2.4: (Ω,A, µ, πRm×Zn) is Bernoulli if the corresponding dis-

crete dynamical system (Ω,A, µ, πZm×Zn) is Bernoulli.

If W is a finite set with a certain probability measure defined on it and n is

1, the corresponding system is also referred to as a Bernoulli shift. From a

probabilistic viewpoint, these are nothing but independent and identically

distributed random variables.

In [Wal], it is shown that for Z–actions the above properties (some of

which we have not defined) are in order from strongest to weakest, Bernoulli,

k-mixing, mixing, weak mixing, and ergodic. Moreover, k-mixing is equiv-

alent to the holding of the well-known 0–1 Law in probability theory for

any stationary stochastic process arising from the dynamical system. In

particular, a Bernoulli system satisfies the 0–1 Law.
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We continue with a brief outline of the classical development of ergodic

theory until the important work of Ornstein in 1970.

To motivate this work, we will consider the simplest type of Bernoulli

shifts. If (p1, . . . , pk) are such that each pi is non-negative and
∑

i pi = 1,

we let B(p1, . . . , pk) denote the Bernoulli system ({0, 1, . . . , k−1}Z,A,m,Z)

whereA is the natural σ–field,m is product measure where each {0, 1, . . . , k−

1} has probability measure (p1, . . . , pk), and Z acts canonically on this space.

Here we mean that T ({xn}) = {yn} where yn = xn+1.

One of the first natural questions that arose is whether B(1/2, 1/2) is

isomorphic to B(1/3, 1/3, 1/3). None of the properties listed above could

distinguish these, both of these systems satisfying all of the above proper-

ties. In addition, the induced unitary operators were unitarily equivalent.

Finally, in 1958, Kolmogorov introduced the notion of entropy, which was

already being used in information theory, into ergodic theory. The definition

was slightly modified in 1959 by Sinai. This notion assigns a non-negative

real number to each dynamical system which is an isomorphism invariant

(see [Wal]). This number then allowed one to finally distinguish between

B(1/2, 1/2) and B(1/3, 1/3, 1/3) since it was easy to show that the en-

tropies of the above two systems were log(2) and log(3), respectively. After

this, the next natural question was asked: If two Bernoulli shifts have the

same entropy, are they necessarily isomorphic? In this same year, Meshalkin

([Mesh]) obtained some positive results in this direction when certain alge-

braic relationships held between the two probability vectors. Finally, ten

years later, in 1969, using very powerful methods, Ornstein proved this con-

jecture in general. The techniques developed by Ornstein not only solved

the isomorphism problem but also gave certain criteria which could be more
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readily checked which implied that a dynamical system is isomorphic to a

Bernoulli shift. References for this theory are [Sh] (which covers the case

G = Z), [O] (which covers the case G = Z or R), and [Feld] or [Lind] (each

covering the case G = Rm × Zn.) Recently, the theory has been extended

to general amenable groups ([O+W1]).

Ergodic theory arises in many different contexts in mathematics, in par-

ticular in probability theory in the study of stationary stochastic processes.

In fact, there is a type of correspondence between dynamical systems and

stationary stochastic processes, which was alluded to earlier. This corre-

spondence is, however, by no means one to one. In [Wal], it is shown how

a dynamical system yields many stationary stochastic processes (different

processes being obtained from different partitions of the underlying mea-

sure space). On the other hand, it is clear how a stationary process yields

a dynamical system. If, for example, {Xn} is a stationary process taking

on only the values 0 and 1, then this induces a measure on {0, 1}Z which is

invariant under the natural Z action (this is just the definition of stationar-

ity).

3 Diophantine Approximation and Equidistribu-

tion

This section is quite long. The purpose is to see how methods from topo-

logical dynamics and measurable dynamics can be used in number theory

and analysis. We will therefore recover some theorems in these areas using

these tools. The two objects we want to look at are

1) diophantine approximation and 2) equidistribution.

7



We need to develop the study of continuous mappings on compact met-

ric spaces and their corresponding invariant measures. For the results on

diophantine approximation that we will obtain, we do not need to consider

invariant measures and will therefore be working purely with topological

dynamics. However for the results on equidistribution, we will need to con-

sider invariant measures. We will start off with only topological dynamics.

Our setup in this section will always be a compact metric space X

together with a continuous map T from X to itself.

The first important concept is recurrence, the phenomenon that some

points return arbitrarily close to themselves. This can be viewed as a gen-

eralization of a point being periodic.

Definition 3.1: x ∈ X is recurrent if there is ni →∞ with Tni(x) → x as

i→∞.

Theorem 3.2: There always exist recurrent points.

Proof: Let A be a minimal (with respect to inclusion) closed nonempty T–

invariant set (invariance means once we are in A, we stay in A or T (A) ⊆ A.)

It is an easy consequence of Zorn’s lemma that such an A exists. Now each

x ∈ A is recurrent since by minimality, for each x ∈ A, we must have that

the closure of {Tn(x), n ≥ 1} is A. This gives us that x is recurrent. 2

As in any mathematical object, there is a notion of equivalence and of factor.

Definition 3.3: (X,T ) and (Y, S) are equivalent (or isomorphic or conju-

gate) if there is a homeomorphism h from X to Y such that hT = Sh.

The orbit structure (from the topological point of view) of two such equiv-

alent systems must be the same.
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Definition 3.4: (Y, S) is a factor of (X,T ) if there is a surjective continuous

h from X to Y such that hT = Sh.

As usual, a factor inherits properties of the first system. For example,

Theorem 3.5: If (Y, S) is a factor of (X,T ) with factor map h and x ∈ X

is recurrent, then h(x) is recurrent.

Proof: Trivial. 2

The above discussion all of which was soft allows us to easily prove Kro-

necker’s Theorem.

Theorem 3.6 (Kronecker’s Theorem): Let T be a rotation of the unit

circle. Then every point is recurrent.

In fact, we prove the following stronger result.

Theorem 3.7: Let G be a compact (not necessarily abelian) group. Let w ∈

G and consider the mapping Tw from G to itself given by left multiplication

by w, so Tw(g) = wg. Then every point is recurrent.

Proof: We know by Theorem 3.2 that some x ∈ G is recurrent. Let g be

arbitrary and consider the map from G to itself given by right multiplication

by x−1g. This is a homeomorphism from G to G which conjugates Tw with

itself. (The fact that this conjugates is simply the associative law of the

group. This is why we used right multiplication. If we had used left multi-

plication and the group were not abelian, it would not have conjugated.) It

follows from Theorem 3.5 that xx−1g = g is recurrent. 2

With some more work, we will be able to prove the following less trivial

result which is due to Hardy and Littlewood (see [HL]).

9



Theorem 3.8: Let α be any real number. Then for all ε > 0, the diophan-

tine inequality

|αn2 −m| < ε

is solvable for n,m ∈ Z, n ≥ 1.

Since so far all of our theorems have been soft, we obviously will need to do

something a little harder to obtain this result but this extension is not so

hard. Before proving Theorem 3.8 and an extension of this result, we will

need to do further development. (Theorem 3.8 is of course trivial if α is

rational.)

Before this further development, let’s first relate this result to Kro-

necker’s Theorem. Consider the map T which rotates the unit circle by

θ. Then the orbit of 0 is

θ, 2θ, 3θ, . . . .

By Kronecker’s Theorem, for any ε, there is an n such that nθ is within ε of

0 on the circle, i.e.,

|nθ −m| < ε

is solvable for integers n and m, n ≥ 1. Theorem 3.8 says that the forward

orbit of 0 gets close to itself even when we look only at times which are

squares, i.e., 0 ∈ {Tn2(0)}n≥1. It turns out that such a theorem is true

in general, namely, given a topological system, there always exists some x

and ni → ∞ with Tn2
i (x) → x (i.e., recurrence along squares) which by

the previous discussion clearly gives Theorem 3.8. This general result is

however more difficult and seems to require invariant measures and unitary

operators which we will come back to later. As we want to stay in the

context of topological dynamics, we use another approach.
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Continuing with our development, we know images of recurrent points

under factor maps are also recurrent (Theorem 3.5). We will need to show

that in a particular case, all inverse images of a recurrent point of a factor

are also recurrent (which obviously is not true in general).

The setting for this is

Group extensions or skew products

Let (Y,T) be a topological system and let ψ : Y → G be continuous

where G is a compact group. (If you don’t know what a compact group is,

assume G is the unit circle in the complex plane with a multiplication given

by usual complex multiplication. You won’t lose much by doing this.) The

“group extension of Y by ψ” is the topological system given by Y ×G and

(y, g) → (T (y), ψ(y)g)

where the multiplication in the second piece is in the group G. How does

one think of such a skew product? Picture Y ×G as a square. We move the

base Y by T so that each fiber y×G goes to T (y)×G. Moreover, this fiber

is “rotated” by simply multiplying (on the left) by ψ(y) (i.e., g → ψ(y)g).

(The analogy with a skew product in group theory is fairly clear.)

Theorem 3.9: Consider a group extension of (Y, T ) by (G,ψ). If y is

T–recurrent, then (y, g) is recurrent for the group extension for all g.

While the proof is not hard (but not as trivial as our previous results),

we do it later and do the applications first. The applications will be the

Hardy–Littlewood result and an extension of this result.

Proof of Theorem 3.8 (Hardy–Littlewood): Let T 2 denote the 2-

dimensional torus (which is a nice group) and let f be the mapping from T 2
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to itself given by

f(θ, φ) = (θ + α, φ+ 2θ + α).

It is easy to see that this is a group extension of T : T → T, θ → θ+ α with

(G,ψ) being (T, ψ(θ) = 2θ + α).

Since all points of T are recurrent (Kronecker’s Theorem), Theorem 3.9

tells us that all points of the extension are also recurrent, in particular,

(0, 0). The orbit of (0, 0) in the group extension is

(0, 0) → (α, α) → (2α, 4α) → (3α, 9α)

and it’s easy to see by induction that

Tn(0, 0) = (nα, n2α).

By recurrence, this gets very close to (0, 0) (mod 1) and hence the second

coordinate gets close to 0 (mod 1). This means that |αn2−m| < ε is solvable

for n ≥ 1 and m ∈ Z. 2

We now go on and use this same method to prove the stronger

Theorem 3.10: Let p(x) be a real polynomial with p(0) = 0. Then we can

solve the diophantine inequality |p(n)−m| < ε with n ≥ 1 and m ∈ Z.

[p(x) = αx2 gives Hardy-Littlewood]

Proof: Assume that d is the degree of the polynomial. Let pd(x) = p(x).

Let pd−1(x) = pd(x+1)−pd(x). Let pd−2(x) = pd−1(x+1)−pd−1(x). Keep

going until p0(x) = p1(x+ 1)− p1(x). Note that the degree of pi is i and we

let α = p0.

Consider the mapping from T d (the d–dimensional torus) to itself given

by

(θ1, θ2, . . . , θd) → (θ1 + α, θ2 + θ1, θ3 + θ2, . . . , θd + θd−1).
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It is easily seen that this is a group entension of a map of the d − 1–torus

which is a group extension of a map on the d − 2–torus, etc. As all points

of the base θ1 → θ1 + α are recurrent, induction plus Theorem 3.9 tells us

all points of the mapping on T d are recurrent. Consider now the orbit of

(p1(0), p2(0), . . . , pd(0)).

As pi(n) + pi−1(n) = pi(n+ 1), we see that

T (p1(n), p2(n), . . . , pd(n)) = (p1(n+ 1), p2(n+ 1), . . . , pd(n+ 1))

and hence

Tn(p1(0), p2(0), . . . , pd(0)) = (p1(n), p2(n), . . . , pd(n)).

Using the recurrence of (p1(0), p2(0), . . . , pd(0)) and the fact that pd(0) = 0,

by looking at the dth coordinate, the result is proved. 2.

Proof of Theorem 3.9: First, if T is any topological dynamical system,

we let Q(x) = {Tn(x), n ≥ 1} be the closure of the forward orbit of x. It is

clear that x ∈ Q(x) is equivalent to x being recurrent.

Next note that for any h ∈ G, the map which multiplies the second

coordinate on the right by h conjugates the group extension with itself and

hence if we can show that (y, e) is recurrent, it will follow (from Theorem

3.5) that all (y, g) are recurrent. Let Rh denote this continuous map (which

was also used in proving the generalization of Kronecker’s Theorem).

Using compactness and the fact that y is T–recurrent, there clearly ex-

ists some (y, k1) ∈ Q(y, e). Applying Rk1 to this inclusion and noticing

QRk1(x) = Rk1Q(x) gives us (y, k2
1) ∈ Q(y, k1). Noticing that the relation-

ship is x′ ∈ Q(x) is a transitive relationship (check this), we get

(y, k2
1) ∈ Q(y, e).
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By induction we get that for all m

(y, km
1 ) ∈ Q(y, e).

Using the generalization of Kronecker’s Theorem to G together with the fact

that Q(y, e) is closed, we get

(y, e) ∈ Q(y, e)

as desired. 2

THIS ENDS THE FIRST PART OF THIS SECTION.

We now move into equidistribution and this will require that we move

into the subject of the set of invariant measures of a topological dynamical

system.

Definition 3.11: A measure µ is T–invariant if µT−1(A) = µ(A) for all A.

Theorem 3.12: There exists a T–invariant measure.

We give 2 proofs, the first of which uses functional analysis and the second

of which is more hands on. I prefer the second. The first proof uses a result

which might not be so familiar, the Markov–Kakutani Fixed Point Theorem

which can be read about in Rudin’s functional analysis book. (The first

edition of this book contains something called the Kakutani Fixed Point

Theorem but this is not it. It is only contained in the second edition on

page 140). The second proof uses much less. Note that Theorem 3.12 is

trivial if there exists a periodic point (Why?).

Proof 1: Let C(X) be the Banach space of continuous functions on X in

the sup norm. T then induces a bounded operator on C(X) to itself (by

f → fT ) which induces a map T ∗ on the dual space of C(X) which is just
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(by the Riesz Representation Theorem) signed Borel measures (which are

necessarily regular) on X, which we denote by M(X). One checks that

the probability measures P (X) on X are T ∗–invariant, convex and compact

in the weak∗ topology. Then the Markov–Kakutani fixed point theorem

guarantees that P (X) has a fixed point for T ∗. Unravelling definitions gives

that this fixed point is an invariant measure for T .

Proof 2: Let x ∈ X. Let µn be uniform distribution on the first n points

of the orbit of x, ie,

µn =
1
n

n−1∑
i=0

δT i(x).

(Notice that µn is more or less invariant if n is large.) P (X) is a nice

compact metric space in the weak∗ topology and so there is a limit µ for

some subsequence of the µn’s.

EXERCISE. Check that any such limit µ is T–invariant. 2

The reader should note that Proof 2 essentially is proving the Markov–

Kakutani Fixed Point Theorem in a special case. The method of the second

proof gives another theorem which seems uninteresting but will be useful

later for proving a uniformity in the ergodic theorem in certain cases.

Theorem 3.13: Let νn be any sequence in P (X). Let

µn =
1
n

n−1∑
i=0

T iνn.

Then any weak limit of the µn’s is T–invariant. (Tν(A) = ν(T−1(A)) here).

Note: νn = δx for all n gives Proof 2 above.

Proof: EXERCISE. 2
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...................

ASIDE (which you will lose nothing from skipping but which is interesting.)

One might wonder if one can generalize Theorem 3.12 in a different direction.

For example, if T and S are two mappings acting on a compact metric space,

is there a probability measure which is both T and S invariant? The answer

turns out to be always if S and T commute and not necessarily otherwise.

More generally, one may ask if given a group G, is it the case that whenever

it acts on a compact metric space, there is then a probability measure which

is invariant under all elements of G. It turns out it depends on certain

“geometrical” properties of the group. Groups for which there always exist

such a probability measure are called amenable. It turns out that all abelian

groups are amenable. This is not obvious at all and is “essentially” the

Markov–Kakutani Fixed Point Theorem. An example of a group that is not

amenable is F2, the free nonabelian group on two letters. To see why this

is the case, let S be an irrational rotation of the circle and let T be any

homeomorphism of the circle which does not preserve Lebesgue measure.

Since there are no relations in the group F2, S and T generate an action of

F2 on the circle. Since the only invariant measure for an irrational rotation

is Lebesgue measure (a fact which we will prove later), there is no invariant

measure for the group action.

How can one “see” if a group is amenable? One constructs its so-called

Cayley graph as follows. Choose a finite generating set for the group (I guess

we will assume the group is finitely generated). Let the vertices of the graph

be the elements of the group and put an edge between x and y if x=gy for

some g in the generating set. For example, if G is Z2 with generating set

{(1, 0), (0, 1)}, then the Cayley graph is the usual 2–dimensional lattice. The
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group is amenable if and only if there exist finite sets in the graph whose

“surface” to “volume” ratio goes to 0. (It turns out that this is independent

of the generating set and hence a property of the group itself.) Notice that

this is true for Z2. For F2 (using the obvious generating set), the Cayley

graph is a tree (this means that there are no loops) and it is well known that

for homogeneous trees, the “surface” to “volume” ratio over all sets stays

bounded away from 0.

END OF ASIDE

.............................

We now know (by Theorem 3.12) that there are invariant measures. But

why are there any ergodic ones?

Let I denote the set of invariant measures which you should easily check

to be compact (weakly) and convex. Since I is contained in the dual space of

C(X), the Krein-Milman theorem tells us that Ext(I) (the set of extremal

elements of I) is nonempty. The existence of ergodic measures now follows

from the following result.

Theorem 3.14: Let µ ∈ I. Then µ ∈ Ext(I) if and only if µ is ergodic.

Proof: If µ is not ergodic, let A be an invariant set which has measure in

(0, 1). Let µ1(B) = µ(B∩A)
µ(A) . (This is µ restricted to A and renormalized).

Let µ2(B) = µ(B∩Ac)
µ(Ac) .

EXERCISE. Check that µ1 and µ2 are distinct elements of I and that µ

is a nontrivial convex combination of these guys proving µ is not extremal.

For the other way, there is more than one proof, one which uses the

pointwise ergodic theorem and one which does not. We use the pointwise

ergodic theorem since this argument is very illustrative. For the statement
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of the ergodic theorem, see either §2 or §4.

We now assume that µ is ergodic and that it is a nontrivial convex

combination of µ1 and µ2 with the latter two measures in I. We need to

show µ = µ1. If not there exists B with µ(B) 6= µ1(B). The ergodic theorem

(together with the ergodicity of µ) applied to µ tells us that

1
n

n−1∑
i=0

IT i(x)∈B → µ(B)

for µ a.e. x. As µ1 ≤ µ (absolutely continuous wrt), we also have

1
n

n−1∑
i=0

IT i(x)∈B → µ(B)

for µ1 a.e. x.

On the other hand, the ergodic theorem applied to µ1 tells us that

1
n

n−1∑
i=0

IT i(x)∈B → h(x)

for µ1 a.e. x for some function h(x) which has integral with respect to µ1

equal to µ1(B). As µ(B) 6= µ1(B), the above gives us a contradiction. 2

EXERCISE: Using a method similar to the proof that µ ergodic implies µ is

extremal above, show that any two distinct ergodic measures are mutually

singular.

The next concept has to do with the orbit of a point being uniformly dis-

tributed.

Definition 3.15: If µ ∈ I, then x ∈ X is generic for µ if

1
n

n−1∑
i=0

δT i(x) → µ.
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In words, uniform distribution on the first n points of the orbit of x ap-

proaches µ as n→∞.

The following tells us that for ergodic measures, there are many generic

points.

Theorem 3.16: If µ is ergodic, then µ a.e. x is generic for µ.

Proof: The definition of x being µ–generic is equivalent (check this) to

1
n

n−1∑
i=0

f(T i(x)) →
∫
fdµ

for all continuous f . For a fixed f , this certainly holds for µ a.e. x by the

ergodic theorem. One cannot simply put together all these sets of measure

0 (for various f) since there are uncountable many f . But you do the next

most obvious thing. Choose a countable set of f which are dense in C(X).

Certainly there is a set of full measure such that the above holds for this

countable set.

EXERCISE: Finish the proof with a simple approximation argument. 2

EXERCISE: Show that for nonergodic µ’s, it is possible that there are no

generic points for µ.

We now want to obtain Weyl’s theorem (and other stuff also). One of the

key concepts in topological dynamics was recurrence. Here a key idea will

be unique ergodicity (THIS IS A CONDITION OF THE TOPOLOGICAL

DYNAMICAL SYSTEM.)

Definition 3.17: Let (X, d) be a compact metric space and T map X to

itself continuously. We say (X,T ) is uniquely ergodic (u.e.) if |I| = 1,

i.e., if there is only one T–invariant measure.
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Note that by Theorem 3.14, it is necessarily ergodic. Before discussing the

implications of this important notion, we give an example which will also be

used later in the proof of Weyl’s Theorem.

Theorem 3.18: An irrational rotation of the circle is u.e..

Proof: We assume from Fourier analysis that a measure is determined by

its Fourier coefficients. First let µ be any measure, not necessarily invariant

and let Tµ be defined by Tµ(A) = µ(T−1(A)). A trivial computation gives

us that the nth Fourier coefficient of Tµ is e−2πinθ times the nth Fourier

coefficient of µ where θ is the rotation angle.

EXERCISE: Show this fact.

Now, if µ ∈ I, then all the nonzero coefficients must be 0 since e−2πinθ

is never 1 for n 6= 0 as θ is irrational. It follows that µ must be Lebesgue

measure. 2

In the u.e. case, Theorem 3.16 can be strengthened very much.

Theorem 3.19: If (X,T ) is uniquely ergodic with unique invariant measure

µ, then every x is generic for µ and the ergodic theorem holds uniformly in

x in the sense that for every continous f ,

1
n

n−1∑
i=0

f(T i(x)) →
∫
fdµ

uniformly in x.

Proof: We could first prove every point is generic for µ and then the uni-

formity in the ergodic theorem but clearly the latter implies the former.

If this uniformity failed for some f , then for this f , there would exist

ε > 0 such that for all n, there would exist x(n) such that

| 1
n

n−1∑
i=0

f(T i(x(n)))−
∫
fdµ| ≥ ε.
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Let νn be 1
n

∑n−1
i=0 δT i(x(n)). Clearly |

∫
fdνn−

∫
fdµ| ≥ ε. Let ν be a weak

limit of some subsequence of the νn. By Theorem 3.13, ν is invariant but

clearly we also have |
∫
fdν −

∫
fdµ| ≥ ε. Hence there is another invariant

measure contradicting unique ergodicity. 2

(We mention that the above method of proof can be used in other contexts

as well, for example, in showing a uniform (in the initial configuration) of

convergence of Feller Markov chains with compact state space when there is

a unique stationary distribution and for similar results in Markov Random

Fields).

The main theorem we are after is the following result due to Weyl.

Theorem 3.20: If p(x) is a polynomial with at least one coefficient other

than the constant term irrational, then the sequence p(n) is equidistributed

(mod 1).

Equidistributed means what you think it should, namely that

1
n

n−1∑
i=0

δp(n) → dx

where dx denotes Lebesgue measure.

This result will take a fair amount of development. We first need a

general theorem which is an analogue of Theorem 3.9 in our measure setting.

Before this, we need a lemma. But even before this, we need to quickly

discuss the important concept of Haar measure. (If you prefer, you can skip

Haar measure discussed below and assume all groups are either the circle

or a torus where Haar measure is Lebesgue measure (e.g. arc length on the

circle)).

.............................................

HAAR MEASURE
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It is a fact that every locally compact second countable group has a σ–

finite (possibly infinite) measure which is invariant under left translations.

It is called a Left Haar Measure. Here are some facts, none of which we will

prove.

1. There always exists a Left Haar Measure.

2. There always exists a Right Haar Measure.

3. These measures are (EACH) unique up to scaling.

4. These measures are finite if and only if the group is compact.

5. The Right and Left Haar Measures may be distinct (eg. SL(2, R) which

is the set of 2× 2 real matrices with determinant 1).

6. If the group is compact, the Right and Left Haar Measures are the same.

(If the group is abelian, they are obviously the same).

If the group is compact (as will always be the case for us), we will always

assume that the Haar measure is normalized to be a probability measure.

.............................................

Lemma 3.21: Let T be a continuous map from the compact metric space

X to itself and let µ be T–invariant. Let ψ take X to G continuously where

G is a compact group with Haar measure dg. Then µ × dg is an invariant

measure for the group extension by ψ.

Proof: This is left to the reader. Since each fiber is rotated and Haar

measure is rotation invariant, this is reasonable- use Fubini’s Theorem. 2

Our main result is

Theorem 3.22: Let T be a continuous map from the compact metric space

X to itself which is uniquely ergodic with unique invariant measure µ. Let

ψ take X to G continuously where G is a compact group with Haar measure
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dg. If µ× dg is ergodic for the group extension by ψ (it is invariant by the

previous lemma), then the group extension is uniquely ergodic.

.............................................................

At this point, I use an insert from Furstenberg’s book. This will be 8 (but

4 for you) xeroxed pages.
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HARD EXERCISE: Using what we have seen, show that if A ⊆ N has

positive upper density which means that

lim sup
n→∞

|A ∩ [1, n]|
n

> 0,

then there is a and b in A such that a− b = n2 for some integer n.

4 The mean and pointwise ergodic theorems

In this section, by a dynamical system, we will mean a probabilty space with

a measure preserving transformation to itself (µ(T−1(A)) = µ(A)).

We first give the proof of von Neumann of the so-called mean ergodic

theorem. This actually has nothing to do with ergodic theory but rather is

a theorem about unitary (and in fact normal) operators.

Theorem 4.1: Let T be a contraction on a complex Hilbert space H which

is normal (this means T commutes with its adjoint, e.g., unitary and self–

adjoint operators are normal. Normality is what one needs for the spectral

theorem to hold although we won’t need that now). Let P be the orthogonal

projection onto the space of T–invariant functions (i.e., the kernel of T − I).

Then for all v ∈ H,

1
n

n−1∑
i=0

T i(v) → P (v)

as n→∞.

Lemma 4.2: Let T be a bounded operator on a complex Hilbert space.

Then N(T ∗)⊥ = R(T ) where N denotes the kernel of an operator and R

denotes the image.

Proof: This is left to the reader. There is no idea involved, just trivial

manipulation. 2
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Lemma 4.3: Let T be a bounded normal operator on a complex Hilbert

space. Then N(T ) = N(T ∗).

Proof: ‖Tx‖2 =< Tx, Tx >=< x, T ∗Tx >=< x, TT ∗x >=< T ∗x, T ∗x >=

‖T ∗x‖2. The result follows. 2

Corollary 4.4: Let T be a bounded normal operator on a complex Hilbert

space H. Then N(T ) = R(T )⊥ (or equivalently N(T )⊥ = R(T )).

Proof of 4.1: Applying Corollary to the normal operator T − I, we have

that H = N(T − I)⊕ R(T ). It suffices to prove the result on each of these

direct summands. This is an easy exercise left to the reader. 2

What does this result have to do with ergodic theory? It is fairly obvious.

Given a dynamical system, one obtains an induced operator on all the Lp

spaces which are norm–preserving, ‖T (f)‖ = ‖f‖ for all f where ‖‖ denotes

any Lp space you want. T is defined by T (f) = f(T ) of course. If the

dynamical system is invertible, the above operators are also bijective and

hence are isometries.

EXERCISE: Show these facts.

Ergodic theory is concerned with the asymptotic behavior of the averages

An(f) ≡ 1
n

n−1∑
i=0

T i(f)

in various senses. This is just the average of f along orbits.

EXERCISE: Show that the mean-ergodic theorem implies that given a dy-

namical system and an f ∈ L2, An(f) converges in L2 to the projection

of f onto the subspace of T–invariant L2 functions. (This is really just an

observation.)
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Ideally, one would want to obtain some type of pointwise convergence in

the above. This is of course a much more delicate question just as is the

case with L2 convergence and pointwise convergence of Fourier series for L2

functions.

This question of pointwise convergence was open for a while until Birkhoff

finally solved it. One might wonder why the publication of this proof ac-

tually preceded slightly the publication of von Neumann’s simpler mean

ergodic theorem. It is also interesting to note that Birkhoff was the editor

of the journal where von Neumann published his result. But I’m sure the

above had nothing to do with each other.

Most of the standard proofs of the pointwise ergodic theorem require

the development of certain maximal inequalities. Fortunately, in the last

few years, a MUCH SIMPLER proof of this result has developed, which

is quite surprising. Some feel that the original idea of this proof comes

from nonstandard analysis in work by Kamae. Others however feel that

this idea was already visible in some earlier work of Ornstein. Since the

pointwise ergodic theorem implies the strong law of large numbers (SLLN)

in probability theory, one might even argue that this proof is presently the

simplest proof of the SLLN. The only things one needs to know is that

f ≤ g and
∫
f ≥

∫
g imply that f = g a.e. (which of course is trivial) and

the monotone convergence theorem (MCT). If one deals exclusively with

bounded functions, one doesn’t even need the MCT. The proof below really

could be given in a page–the only reason it’s longer it that I like to talk my

way through a proof to give the ideas.

Theorem 4.5: Let (X,B, µ, T ) be a dynamical system and let f ∈ L1.

Then An(f)(x) converges to a limit f ′(x) (do NOT think derivative) for
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a.e. x. Moreover, f ∈ L1 and
∫
f =

∫
f ′. If the system is ergodic, then

f ′ =
∫
fa.e..

Proof: For warm–up purposes, We first prove this in the case where f = IA

is the indicator of some set A, (f ≡ 1 on A and≡ 0 off A). In many instances,

one can then pass to linear combinations and then use denseness arguments

to then pass to all functions. One must be careful since while the above

philosophy tends to work in functions spaces and with norm convergence,

we want a pointwise result here. (Of course, one could never be able to do

such a thing generally since one would then have a simple proof of pointwise

convergence of Fourier Series for L2 functions since this result is easy for

differentiable functions.)

We want to show that

An(f) ≡ 1
n

n−1∑
i=0

IA(T i(x))

converges a.e.. Let

IA = lim sup
1
n

n−1∑
i=0

IA(T i(x))

and

IA = lim inf
1
n

n−1∑
i=0

IA(T i(x)).

Obviously, we want to show that IA = IA a.e.. We will show that∫
IA ≤

∫
IA.

The reader should easily check for herself that applying the above to IAc

gives ∫
IA ≥

∫
IA.
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This would then give ∫
IA ≥

∫
IA

which together with IA ≤ IA gives the desired result and also the fact that∫
I ′A =

∫
IA where I ′A is the common limsup and liminf above.

We now show that ∫
IA ≤

∫
IA.

First note that IA is a T–invariant function, i.e. T (IA) = IA (this is

obvious and easy but important). Let ε > 0. Clearly, for every x, there

exists N(x) such that

AN(x)(IA)(x) ≥ IA(x)− ε.

Choose M such that

µ(x : N(x) ≤M) ≥ 1− ε.

So M is such that for all but ε portion of the points x in X, the average

along the orbit of x gets within ε of its lim sup by timeM (but not necessarily

at time M). Let B = {x : N(x) > M} be the bad set where this fails. The

key step is to prove that for all n ≥M ,

1
n

n−1∑
i=0

IA∪B(T i(x)) ≥ n−M

n
(IA(x)− ε).

There is no measure here. This is simply a combinatorial fact which is

true FOR ALL x. We first finish the proof and then come back to this.

Integrating both sides and using the fact that T is measure preserving (so

that
∫
f(T ) =

∫
f), we get

µ(A ∪B) ≥ n−M

n

∫
(IA(x)− ε).
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Letting n→∞, gives

µ(A ∪B) ≥
∫

(IA(x)− ε).

Then we get ∫
IA ≤ µ(A ∪B) + ε ≤ µ(A) + 2ε =

∫
IA + 2ε.

As ε is arbitrary, we are done. The key inequality above is a picture proof

which is very simple if you draw a picture and think about it.

To see this combinatorial fact, we break the orbit {x, T (x), . . . , Tn−1(x)}

into segments as follows. First for any w, we let N ′(w) be N(w) if w 6∈ B and

1 if w ∈ B. We then take the first segment to be {x, T (x), . . . , TN ′(x)−1(x)}.

It is trivial to see that whether x is in B or not, the average of IA∪B along

this segment is larger than (IA(x) − ε). The second segment starts from

y = TN ′(x)(x) and is just {y, T (y), . . . , TN ′(y)−1(y)}. The average of IA∪B

along this second segment is ≥ (IA(y)−ε) and by noting that IA(x) = IA(y),

it is ≥ (IA(x) − ε). As long as the segments begin below n −M , we’re ok.

However, when we enter {n−M, . . . , n}, our point z might not be in B but

the sequence {z, T (z), . . . , TN(z)−1(z)} might bring us past n. This problem

is taken care of however by the term n−M
n . This proves the result when

f = IA.

We now want to do general f . You can’t really do any approximation

but rather must repeat the above argument and modify it.

EXERCISE: The reader should now modify the above proof and prove

the theorem in the case of BOUNDED f . This is a good exercise in making

sure you understand the above proof. If you can go to all f , great, but I’ll

do that now. The basic problem that arises in the general case which does
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not arise in the case of bounded f is that when you enter the bad set B,

you have no a priori bounds on how bad your average can get messed up.

GENERAL f

By breaking f into its positive and negative parts, it suffices to show the

a.e. convergence for the case f ≥ 0. Let

f = lim sup
1
n

n−1∑
i=0

f(T i(x))

and

f = lim inf
1
n

n−1∑
i=0

f(T i(x)).

We first show that ∫
f ≤

∫
f.

We do this by showing that for all K (a ∧ b = min(a, b) here),∫
f ∧K ≤

∫
f

and then simply applying the Monotone Convergence Theorem with K →

∞. Letting ε > 0, it suffices to show that∫
f ∧K ≤

∫
f + ε+Kε

as K is fixed. Let N(x) be such that

AN(x)(f)(x) ≥ f(x)− ε.

Choose M such that

µ(x : N(x) ≤M) ≥ 1− ε.
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Let B = {x : N(x) > M} be the bad set where this fails. The key combina-

torial fact this time is is to prove that for all n ≥M ,

1
n

n−1∑
i=0

max{f(T i(x)),KIT i(x)∈B} ≥
n−M

n
((f(x) ∧K)− ε).

This fact is proved like the previous one and is therefore omitted. Similar

to the above, replacing the max by a sum, integrating, and using µ(B) < ε,

gives ∫
f +Kε ≥ (

n−M

n
)(

∫
(f ∧K)− ε).

Letting n→∞ gives us the desired inequality.

We have now shown that ∫
f ≤

∫
f.

We might now say that similarly∫
f ≥

∫
f

but the careful reader should object to this. If f (which we are assuming

to be positive) were bounded by say L, then there is no problem since we

could apply what we did to L− f to obtain∫
L− f ≤

∫
(L− f)

which gives with a little thought

L−
∫
f ≤ L−

∫
f

which implies ∫
f ≥

∫
f
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as we wanted. However, for general f , one needs to say the following. First

for any M (this is a different M than before),∫
f ≥

∫
f ∧M.

BE CAREFUL!! f ∧M 6= f ∧M so you need to think what everything

means. By what we proved above for bounded functions,∫
f ≥

∫
f ∧M ≥

∫
f ∧M.

Now let M →∞ using MCT and conclude that
∫
f ≥

∫
f as desired.

Note that letting f ′ denote the limit we now proved exists, obviously∫
f ′ =

∫
f . This shows that f ′ is in L1 if f is positive. For general f , writing

f = f+ − f− with the latter two functions positive, clearly f ′ = f ′+ − f ′−.

This shows that f ′ is in L1 and that
∫
f =

∫
f ′.

Clearly, if the dynamical system is ergodic, then f ′ being an invariant

function must be constant a.e. and therefore must be ≡
∫
f a.e.. 2

We now prove that the convergence in the ergodic theorem holds in L1 in

addition to a.e.. The proof is very soft and quite easy.

Theorem 4.6: An(f) → f ′ in L1.

Proof: Letting A be the set of L1 functions for which we have L1 con-

vergence in the ergodic theorem, it suffices to show that A is closed in L1

since L∞ is trivially contained in A (by bounded convergence) and L∞ is of

course dense in L1.

Letting F denote the map which takes f to f ′ (which is obviously linear),

we first show that F is a contraction (also called a nonexpansive map) of L1

(this means that ‖F (f)‖ ≤ ‖f‖ for all f). For any f ∈ L1,∫
|F (f)| ≤

∫
F (|f |) =

∫
|f |,
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the equality following from part of the ergodic theorem.

Now let g be in L1 and f in A close to g (in the L1 sense of course).

Then∫
|An(g)−F (g)| ≤

∫
|An(g)−An(f)|+

∫
|An(f)−F (f)|+

∫
|F (f)−F (g)|.

The first term is small for all n (this is just the triangle inequality together

with the measure preserving property), the second term is small for large

n by assumption, and the third term is small as F is a contraction. Hence

g ∈ A and we’re done. 2

Note the while F is a contraction, it is VERY FAR from being norm–

preserving. For example, if the dynamical system is ergodic, then the kernel

of T has codimension 1. As an aside, we mention that f ′ is also the condi-

tional expectation given the invariant σ–field. If you don’t know what this

means, it doesn’t matter.

EXERCISE: Show that F is a contraction on each Lp space for 1 ≤ p ≤ ∞

and that An(f) → F (f) in Lp for all 1 ≤ p < ∞. Why does the latter fail

for L∞? (Remember, our measure space is finite and so all the Lp spaces

are contained in L1.)

EXERCISE: Give an alternative proof of the L1 convergence in the ergodic

theorem by demonstating uniform integrability (u.i.). (You know in fact

that we must have u.i. since it is equivalent to L1 convergence.) Hint: Show

that all the fT i have the same distribution (the distribution of a function

is the measure induced on the real line by pushing forward the measure on

the measure space via fT i).

The rest of this section is a digression which you should feel free to skip
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but does allow one to see how one puts (some of) probability theory into

the context of ergodic theory.

STRONG LAW OF LARGE NUMBERS (SLLN)

How does one prove the SLLN which has to do with chance from a

theorem concerning the evolution of a deterministic transformation? It is

all fairly simple and soft, the only real content is proving the ergodicity

assumption when we construct our dynamical system.

Theorem 4.7 (STRONG LAW OF LARGE NUMBERS): Let {Xi}∞i=0

be independent and identically distributed random variables with common

finite mean m. Then 1
n

∑n
i=1Xi → m as n→∞ a.s..

[Here is what this means to people who don’t know probability theory:

We have a probability space (a measure space with total measure 1) and

a family of integrable functions Xi defined on it. Clearly such a function

(which we (the probabilists) call a random variable) can be used to push

the measure from the probability space to the real line (the measure of the

Borel set A in the real line is simply the measure in the probability space of

the inverse image under the function in question of the set A). We call this

probability measure the “distribution of the random variable”. “Identically

distributed” means all the measures obtained from different Xi’s are the

same. Independence means for any finite set of n of these Xi’s, the measure

on Rn obtained by this n–vector (again by pushing forward the measure)

is a product of the 1–dimensional measures. The above is all mathematics

and doesn’t say what this has to do with chance but we leave it here.]

Let N be the positive integers and let ν be the measure on RN corre-

sponding to the distribution of the Xi’s. (The Xi’s map our probability

space to RN in the obvious way (ω → (X1(ω), X2(ω), . . .)) and ν is just the
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measure on the probability space pushed forward to RN . By assumption,

ν is a product measure all of whose 1-dimensional marginals are the same.

Let T be the transformation on RN given by

T (w1, w2, . . .) = (w2, w3, . . .)

which is clearly noninvertible. Then (RN , ν, T ) (the σ–algebra here is obvi-

ous) is a dynamical system.

EXERCISE: Show T preserves ν.

Now let g be the map from RN to R given by

g(w1, w2, . . . , ) = w1.

EXERCISE:
∫
gdν = m.

The ergodic theorem tells us

1
n

n−1∑
0

g(T i(w1, w2, . . .)) → g′

for ν a.e. w with
∫
g′dν = m. This means that

1
n

n∑
1

wi → g′

for ν a.e. w. If T were ergodic, this would give us

1
n

n∑
1

wi → m

for ν a.e. w.

EXERCISE: Show that this then gives us that 1
n

∑n
i=1Xi → m as n→∞

a.s. as desired.

The above was somewhat formal but the meat (although it’s not hard) is

to prove the ergodicity assumption. The proof is a wonderful picture proof.
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Let B be invariant but have ν measure different from 0 and 1. Find A

such that ν(A4B) is small and A depends only on finitely many coordinates.

(This can be done from general measure theory and does not need a product

measure to be true. One shows that the set of such B which can be so

approximated is a σ–algebra. Since it clearly contains the sets which only

depend on finitely many coordinates, it’s everything.)

Now choose n so large that A and T−n(A) depend on different coor-

dinates. As T preserves measure, ν(T−n(A) 4 T−n(B)) is small and so

ν(T−n(A) 4 B) is small as B is invariant. This gives ν(T−n(A) 4 A) is

also small. But (now we use the fact that the measure is product mea-

sure) A and T−n(A) are independent sets and independent sets don’t have

ν(T−n(A)4A) being small.

EXERCISE: Draw pictures to convince yourself of the above and if un-

convinced, fill in the ε’s and δ’s yourself. 2

5 Continued Fraction Expansions and Gauss mea-

sure

The ergodic theorem (or the strong law of large numbers) tells us that a.e.

number in [0, 1] (wrt Lebesgue measure) has a binary expansion where the

portion of 1’s is 1/2 in the sense that the portion of 1’s in the first n bits

tends to 1/2 as n→∞. (Check this.)

This might seem nice but one could criticize this by saying that it is

unnatural to look at binary expansions in the first place since they are not

intrinsic as they completely depend on the base of expansion you happen to

be looking at.
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The continued fraction expansion on the other hand is completely natural

as it is algebraically defined and does not depend on some arbitrary base of

expansion. Every number has its so–called continued fraction expansion.

.................................

A QUICK ASIDE.

The following has nothing to do with what we’ll be doing but it’s an inter-

esting fact that someone pointed out to me a few years ago.

First, it’s a general fact from point set topology that if you have a com-

plete metric space and take a subset which is a countable intersection of

open sets (such a set is called a Gδ set), then this set is what is called

topologically complete. This means that although it might not be complete

in the initial metric, there is another metric WHICH GENERATES THE

SAME TOPOLOGY in which the subset is complete (i.e., it means that you

are homeomorphic to a complete metric space). This is a useful thing to

know since one can then apply Baire category arguments since clearly such

arguments are topological statements and hence only require the space in

question to be topologically complete.

As a special case, this tells us that the irrationals in [0, 1] are topolo-

gially complete (how about the rationals?). What does this have to do with

continued fractions? The point is that the continued fraction expansion al-

lows us to CONCRETELY find this wierd metric on the irrationals which

is complete. How do we do this?

The continued fraction expansion gives us a bijection from the irrationals

to sequences of POSITIVE integers. It is easy to see that when one places

the product topology on this sequence space (with the discrete topology on

N of course), this bijection becomes a homeomorphism. But there is an
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easy way to put a complete metric on the product space (How?) and now

one just pulls back this metric via the bijection to the irrationals, giving the

desired complete metric.

...........................................

What we want to investigate is the following type of question. How many

7’s are there in the continued fraction expansion of a “typical” number in

[0, 1]? We will answer this question using ergodic theory and also discuss

a result that Gauss wrote in a letter to Laplace with no proof–it is unclear

what proof he had in mind.

We will use the notation

w = [a1(w), a2(w), . . .]

to mean the usual continued fraction expansion (see later xeroxed pages to

see what this means). This means in particular that a1(w) = b 1
wc. Now

letting,

w′ = [a2(w), a3(w), . . .]

we have w = 1
a1+w′ or w′ = 1/w − a1 which we denote by { 1

w} which is the

fractional part of 1/w. This implies that

T (w) = { 1
w
}

brings the shift map back to the unit interval. This is expressed in the

following lemma which follows by induction. For w = 0, we take T (w) = 0.

Lemma 5.1: If a(w) = b 1
wc (with a(0) = ∞), then an(w) = a(Tn−1(w))

for n = 1, 2, . . ..

We now introduce integer valued functions pn(w) and qn(w) as follows.

p−1(w) = 1, p0(w) = 0, pn(w) = an(w)pn−1(w) + pn−2(w)
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q−1(w) = 0, q0(w) = 1, qn(w) = an(w)qn−1(w) + qn−2(w).

Lemma 5.2:

1. w = [a1(w), a2(w), . . . , an−1(w), an(w) + Tn(w), 0, 0, . . .].

2. pn−1(w)qn(w)− pn(w)qn−1(w) = (−1)n, n ≥ 0.

3. [a1(w), a2(w), . . . , an−1(w), an(w) + t, 0, 0, . . .] = pn(w)+tpn−1(w)
qn(w)+tqn−1(w) ,

n ≥ 1, 0 ≤ t ≤ 1.

Proof: Easy induction which is left to the reader. 2

Corollary 5.3: [a1, a2, . . . , an−1, an, 0, 0, . . .] = pn(w)
qn(w) , n ≥ 1, 0 ≤ t ≤ 1.

Corollary 5.4: w = pn(w)+T n(w)pn−1(w)
qn(w)+T n(w)qn−1(w) , n ≥ 1.

Proposition 5.5:

1
qn(w)(qn(w) + qn+1(w))

≤ |w − pn(w)
qn(w)

| ≤ 1
qn(w)qn+1(w)

.

Proof:

|w − pn(w)
qn(w)

| = |pn(w) + Tn(w)pn−1(w)
qn(w) + Tn(w)qn−1(w)

− pn(w)
qn(w)

| =

(by 2 above and algebra)
1

qn(w)((Tn(w))−1qn(w) + qn−1(w))
.

Now, as an+1(w) = b 1
T n(w)c, we have that an+1(w) ≤ 1

T n(w) ≤ an+1(w) + 1.

Using the recurrence of qn(w) gives the result. 2

Given positive integers a1, a2, . . . , an, let ∆a1,...,an =

{w : a1(w) = a1, . . . , an(w) = an}. This is called a fundamental interval of

rank n (think of the analogy with binary expansions).
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Letting ψa1,...,an(t) be [a1, a2, . . . , an−1, an + t, 0, 0, . . .], this function is

increasing in t for even n and decreasing in t for odd n. This is nothing but
pn+tpn−1

qn+tqn−1
where pn and qn are given by the an’s using the same recursion

formulas that defined the pn(w)’s and qn(w)’s.

Note that ∆a1,...,an is just the image of ψa1,...,an(t) which is

[pn

qn
, pn+pn−1

qn+qn−1
] (if n is even) and [pn+pn−1

qn+qn−1
, pn

qn
] (if n is odd).

The Lebesgue measure of such an interval is (doing the exact same com-

putation as in the previous proof) 1
qn(qn+qn−1) .

Clearly the qn’s increase and so these intervals have small length and so

every Borel set can be approximated (in the sense of Lebesgue measure) by

finite unions of fundamental intervals.

Now, to do ergodic theory, we want an invariant measure for T . More-

over, if we want to make statements about (Lebesgue or dx) typical points,

we would need to have an invariant measure which is equivalent to dx. dx

is not invariant but the Gauss measure dG is T–invariant where the Gauss

measure has Radon–Nikodym derivative (wrt dx)

1
ln 2

1
1 + x

.

Note that this derivative is uniformly bounded away from 0 and ∞.

Our goal is to show that ([0, 1], T, dG) has strong mixing properties.

Ergodicity (which we will prove) yields interesting facts (see the xeroxed

notes) but the stronger property called “mixing” which is defined by

dG(A ∩ T−n(B)) → dG(A)dG(B) as n→∞

for all sets A and B will prove the result that Gauss mentioned without

proof in a letter to Laplace.
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EXERCISE: Show that mixing always implies ergodic.

We need to do some general things first. If a general dynamical system

(X,µ, T ) is ergodic, we know that

1
n

n−1∑
i=0

δT i(x) → µ

for µ a.e. point. (Here we are assuming that T is a continuous mapping on

the compact metric space X which is of course not the situation we actually

are in with our continued fraction expansions). This gives easily (check this)

that for all ν ≤ µ,
1
n

n−1∑
i=0

Tnν → µ

where Tnν(A) = ν(T−n(A)).

Can one conclude the stronger fact that Tnν → µ as n→∞ for ν which

are absolutely continuous with respect to µ?

EXERCISE: Not necessarily (irrational rotation of the circle).

The next proposition tells us that if rather than just having ergodicity

we have the stronger property of mixing, then we can obtain this stronger

result.

Proposition 5.6: If (X,µ, T ) is mixing and ν ≤ µ with 0 < c1 <
dν
dµ <

c2, then

Tn(ν) → µ

as n→∞ in the sense that for all bounded functions f∫
fdTn(ν) →

∫
fdµ.
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[There is a stronger version of this result with a weaker assumption and

a stronger conclusion. For simplicity however, we do the above instead.]

Proof: First check (via approximation) that mixing is equivalent to∫
(Tnf)gdµ→

∫
fdµ

∫
gdµ

for all bounded f and g. Then for all bounded f∫
fdTn(ν) =

∫
Tn(f)dν =

∫
(Tn(f))(

dν

dµ
)dµ

which by above

→
∫
fdµ

∫
(
dν

dµ
)dµ =

∫
fdµ.

2

We shall later show that our c.f.e. system is mixing. Letting µ = dG, ν = dx

and f = I[0,x] in Proposition 5.6 gives us the following result which was in

Gauss’s letter to Laplace.

Corollary 5.7: limn→∞ dx({w : Tn(w) ≤ x}) → dG([0, x]) = 1
ln 2

∫ x
0

1
1+tdt.

It suffices to demonstrate the desired mixing conditions. Before doing this,

we introduce a mixing condition which is even stronger than mixing. Let

Gn be the σ–algebra generated by the functions an(w), an+1(w), . . . and let

G∞ = ∩∞n=1Gn. It turns out (as we will show later) however that G∞ is trivial

in the sense that any set in this σ–algebra has measure 0 or 1. [Things with

this property are called Kolmogorov automorphisms. Looking at so–called

“tail σ–fields” is very common in probability theory.] While it is not obvious

that this condition of G∞ being trivial implies mixing, we will later say a
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word explaining why it does (and it is in fact strictly stronger although it

takes some work to get an example to show this).

EXERCISE: Show that G∞ being trivial implies ergodicity.

Theorem 5.8: ([0, 1], dG, T ) is ergodic and G∞ is trivial (and hence

the system is mixing).

The key lemma for this theorem is the following.

Lemma 5.9: For all Borel sets A and for all integers a1, a2, . . . , an,

1
2
dx(A) ≤ dx(T−n(A)|∆a1,...,an) ≤ 2dx(A).

Proof of Theorem 5.8: As c1 ≤ dG
dx ≤ c2, Lemma 5.9 gives us that

1
c
dG(A) ≤ dG(T−n(A)|∆a1,...,an) ≤ cdG(A)

for some universal constant c.

Ergodicity: Assume that T−1(A) = A and 0 < dG(A) < 1. Then

1
c
dG(A) ≤ dG(A|∆a1,...,an)

which implies
1
c
dG(∆a1,...,an) ≤ dG(∆a1,...,an |A)

which implies by approximation

1
c
dG(B) ≤ dG(B|A)

for all sets B. Taking B = Ac gives a contradiction.
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G∞ is trivial: Let A ∈ G∞ with 0 < dG(A) < 1. For all n, there exists

C such that A = T−n(C). Then

1
c
dG(A) =

1
c
dG(C) ≤ dG(A|∆a1,...,an).

Now follow the proof of ergodicity. 2

Proof of Theorem 5.9: It suffices to prove this for A = [x, y) So fix

A = [x, y) and a1, a2, . . . , an and let ψ = ψa1,...,an(t). We know that ∆a1,...,an

has length ±ψ(1)−ψ(0). Similarly, using the first statement of Lemma 5.2,

the interval {w : x ≤ Tn(w) ≤ y} ∩∆a1,...,an has length ±ψ(y)− ψ(x). This

implies

dx(T−n([x, y))|∆a1,...,an) =
ψ(y)− ψ(x)
ψ(1)− ψ(0)

=

pn+ypn−1

qn+yqn−1
− pn+xpn−1

qn+xqn−1

pn+pn−1

qn+qn−1
− pn

qn

= (y − x)
qn(qn + qn−1)

(qn + xqn−1)(qn + yqn−1)
.

This last step is obtained by easy algebra similar to what we have done

before. Since the qn’s are increasing, the right hand side is always between

1/2 and 2 which proves the lemma. 2

The fact that G∞ trivial implies mixing is a standard fact in probability

theory and ergodic theory. The usual proof of this uses something called

the Backwards Martingale Convergence Theorem. I won’t do this but there

are many references.

.............................................................

At this point, we again use another insert, this time from Billingsley’s book
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“Ergodic Theory and Information”. This insert is only given to provide

further reading to someone who is interested.
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6 Halmos-von Neumann Theorem

The isomorphism problem in general is very difficult. There are two cases

in which it has been solved. The first case is when the induced unitary

operators have pure point spectrum which means that the set of eigenvectors

(necessarily an orthonormal set) span the entire L2 space. This is the subject

of the present section. The second case which we will not do and is much

more difficult will be briefly described in the next section.

There are two results in this section. First, we show that for dynamical

systems with pure point spectrum, having equivalent unitary operators im-

plies that the dynamical systems are isomorphic. (The converse is always

true. Why?) Secondly, we show that any such system is isomorphic to a

rotation on some compact abelian group (the group actually being the dual

group of the set of eigenvalues). One sometimes calls the latter quasiperi-

odic or almost periodic motion. This latter result gives us a representation

theorem for dynamical systems with pure point spectrum.

At this point, we only deal with ergodic dynamical systems. Perhaps,

here is a good place to look more closely at the operators induced on the

different Lp spaces by our transformation.

EXERCISE: Check that the induced operator is always norm preserving.

Unfortunately, for infinite dimensional spaces, one can have norm pre-

serving maps which are not surjective (although they are trivially injective).

EXERCISE: Consider the set of all (1–sided) sequences of 1’s and 0’s

where each bit is independent 0 or 1 with probability 1/2. Consider the so-

called shift map which moves the sequence to the left and cuts off the first

bit. Check the measure is preserved and that the induced operator on L2 is
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not surjective. You should recognize this dynamical system in a completely

different way. This is the same as the unit interval with Lebesgue measure

and the transformation being multiplication by 2 (mod 1). (To see this, just

think binary expansion.)

Theorem 6.1: A dynamical system is invertible if and only if the induced

unitary operator (or any of the isometries on the different Lp spaces) is

surjective.

This proof will be left to the student. It really is not hard but one has

to be careful with what one means. Certainly, we all know what it means

for the operator to be surjective. But invertibility of the dynamical system

is a more delicate matter and one can quickly run into measure–theoretic

difficulties. Since sets of measure 0 are of no importance, one should not

require that T as a map be invertible. The right thing to do is technical but

not hard. T induces a mapping on the σ–algebra by A → T−1(A). We say

T is surjective if this induced map is surjective in that for all sets B there

is an A such that B and T−1(A) are the same set up to measure 0. You

can read all about this and more in [Wal] OR YOU CAN SKIP THIS LAST

PARAGRAPH AND GO ON WITH NO PROBLEM.

We want to understand the discrete spectrum of the induced unitary

operator. In simpler terms, what can we say about the eigenvalues of our

operator?

EXERCISE. Check that ergodicity of a dynamical system is equivalent to

the eigenspace of 1 being 1-dimensional (in which case this space is obviously

the constants).

Lemma 6.2: Consider an ergodic dynamical system.
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1. If U(f) = λf (i.e., λ is an eigenvalue with eigenvector f), then |λ| = 1

and |f | is constant.

2. The eigenspace for any eigenvalue λ is 1-dimensional.

3. The set of eigenvalues form a subgroup of the circle group.

Proof: 1. Eigenvalues (in fact the entire spectrum if you know what that is)

for any unitary operator always sit on the unit circle in the complex plane.

The proof is easy and is as follows. ‖f‖ = ‖U(f)‖ = ‖λf‖ = |λ|‖f‖ which

implies |λ| = 1 as f is not 0. (This of course needs no ergodicity). Next,

U(|f |) = |U(f)| = |λf | = |f | and so |f | is constant by ergodicity since it is

an invariant function.

2. Note by definition of U , it preserves products (real products, not the

inner product). If f and g are in the same eigenspace, then U(f/g) = f/g

and so by ergodicity f/g is constant and so the eigenspace is 1-dimensional.

(Note that by Part 1, |g| is constant and so we can divide by it).

3. Let a and b be eigenvalues with eigenfunctions f and g. Then it is trivial

to check that fg′ (g′ is the complex conjugate of g) is an eigenfunction for

ab−1 and so they are a group. 2

The next result is from group theory but I would guess has not been

seen by most people. It has the flavor of topology and if anyone knows an

analogous result in topology and knows what plays the role of divisibility

below, please tell me.

The ? is given a subgoup H of G, when does there exist a mapping from

G to H which is the identity on H. This is called a retract which is the

right word from topology to describe this situation.

Note that for the finite groups Z2 and Z4, this is not possible. There is

a nice class however where this is possible.
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Definition 6.3: A group H is divisible if every element as an nth root for

every n.

For instance, the rationals are but remember an nth root here means dividing

by n.

Theorem 6.4: Let G be abelian and H a subgroup of G which is divisible.

Then there is a retract from G to H as above.

It is easy to see that the existence of a retract is equivalent to saying that H

is a direct summand, i.e., there is another subgroup K of G such that G is

the internal direct sum of H and K. If you remember your algebra, Theorem

6.4 says that a divisible group is an injective Z–module. The converse is also

true.

.............................................................

At this point, we again use an insert, this time from Walter’s book “An

Introduction to Ergodic Theory”.
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7 Entropy and Bernoulli Shifts

The following will be a quick description of another class of systems in which

the isomorphism problem has been solved. In 1959, Kolmogorov introduced

an important invariant, this invariant being a specific number assigned to a

dynamical system which one calls the entropy. It measures the amount of

“randomness” or “chaos” and is related to Lyaponov exponents if you have

heard of these. This notion of entropy also plays a large role in information

theory and data compression. In fact, Kolmogorov took the idea of entropy

from information theory and introduced it into ergodic theory.

It turns out there is an important large class of systems for which entropy

is a complete invariant–these are the so–called Bernoulli shifts which were

discussed in §2. They are from the point of view of probability simply

independent and identically distributed random processes. This result is

very deep and due to Donald Ornstein.

There are a number of “concrete” or “physical” systems which have been

proven to be in this class- for example, the geodesic flow on a manifold of

constant negative curvature. Here the space is the set of points on the man-

ifold together with a direction tangential to the manifold (the unit tangent

bundle in fancier language). The group action is R and the transformation

is to “follow a given direction along the geodesic”.

This section would be a course in itself and so I will say no more.
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