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Exercise 1 (Functions of Markov chains are not necessarily Markov chains).
Let (Xt)t∈N0 be a 3-state Markov chain with transition probability matrix P and
state space {1,2,3}. Find a mapping

f : {1,2,3} → {1,2}

and a matrix P such that (f(Xt))t∈N0 is not a Markov chain.

Exercise 2. Consider a Markov chain (Xt)t∈N0 with finite state space S = {1, . . . ,n}.
Recall that two states i and j are said to communicate – written as i ∼ j – if there
exist s,t > 0 such that

p
(t)
ij = P[Xt = j |X0 = i] > 0 and likewise p

(s)
ji > 0.

(i) Show that the relation ∼ is symmetric and transitive. Give an example to
justify that it is not an equivalence relation in general.

(ii) If we extend it by adding i ∼ i for all states i to the relation, ∼ becomes
an equivalence relation which then partitions S into classes of communicating
states. Show that the states of any such communicating class are either all
essential or all inessential and have the same period.

(iii) Explain why at least one state must be essential. How many classes of com-
municating states does an irreducible Markov chain have?

Exercise 3. Consider a 2-state Markov chain with transition probabilities as sket-
ched on the right.
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(i) For p,q ∈ [0,1], calculate a sta-
tionary distribution π for this
Markov chain.

(ii) Calculate the two eigenvalues λ1 ≥ λ2 of the transition matrix P .

(iii) Assume now that p,q ∈ (0,1), which makes the chain irreducible and aperiodic.
Calculate P t, the t-step transition matrix, and use it to verify that λ2 controls

the speed of convergence of P t towards stationarity, i.e. Π =

(
π(1) π(2)
π(1) π(2)

)
.



Exercise 4. In this exercise you are asked to give another direct proof of the uni-
queness of the stationary distribution corresponding to a finite irreducible Markov
chain – this time without using the eigenspace argument you saw in class.

Instead, consider two stationary distributions π1,π2 and a state i that maximizes
the fraction π1(i)

π2(i)
(why is this always well-defined?). Verify that states j, from which

i is accessible, must satisfy π1(j)
π2(j)

= π1(i)
π2(i)

in order to establish the claim.

Exercise 5. Show that the set of stationary distributions for an n-state Markov
chain (considered as a set of vectors) forms a polyhedron in Rn

≥0 with one vertex
for each essential communicating class.

To shorten the argument, you may use Proposition 1.25 without proving it.

Exercise 6 (Dynamic urn).
Assume that we have an urn with four differently colored balls. In one step, we draw
one ball – which has color α say – draw a second ball, color this second ball with
color α and throw both back into the urn. In each drawing all the balls currently
contained in the urn are equally likely to be drawn.

Let (Xt)t∈N0 denote the color composition in the urn, only accounting for the num-
ber of balls having the same color. Then (Xt)t∈N0 is a Markov chain with starting
state (1,1,1,1). The other states are (2,1,1), (2,2), (3,1) and (4), the last one being
absorbing. Sketch the Markov chain graph including the corresponding transiti-
on probabilities and compute the expected number of steps until the urn contains
nothing but balls of the same color.

Turn in your solutions during the lecture on February 5, 2014.


