
Noise sensitivity of Boolean
functions and percolation

Christophe Garban1 Jeffrey E. Steif2

1ENS Lyon, CNRS
2Chalmers University





Contents

Overview 5

I Boolean functions and key concepts 9

1 Boolean functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Some Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Pivotality and Influence . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 The Kahn, Kalai, Linial theorem . . . . . . . . . . . . . . . . . . . . . 12

5 Noise sensitivity and noise stability . . . . . . . . . . . . . . . . . . . . 14

6 The Benjamini, Kalai and Schramm noise sensitivity theorem . . . . . 14

7 Percolation crossings: our final and most important example . . . . . . 16

II Percolation in a nutshell 21

1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Russo-Seymour-Welsh . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Phase transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Conformal invariance at criticality and SLE processes . . . . . . . . . . 23

5 Critical exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Quasi-multiplicativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

III Sharp thresholds and the critical point 27

1 Monotone functions and the Margulis-Russo formula . . . . . . . . . . 27

2 KKL away from the uniform measure case . . . . . . . . . . . . . . . . 28

3 Sharp thresholds in general : the Friedgut-Kalai Theorem . . . . . . . . 28

4 The critical point for percolation for Z2 and T is 1
2

. . . . . . . . . . . . 29

5 Further discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

IV Fourier analysis of Boolean functions 33

1 Discrete Fourier analysis and the energy spectrum . . . . . . . . . . . . 33

2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Noise sensitivity and stability in terms of the energy spectrum . . . . . 35

4 Link between the spectrum and influence . . . . . . . . . . . . . . . . . 36

5 Monotone functions and their spectrum . . . . . . . . . . . . . . . . . . 37

1



2 CONTENTS

V Hypercontractivity and its applications 41

1 Heuristics of proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2 About hypercontractivity . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Proof of the KKL theorems . . . . . . . . . . . . . . . . . . . . . . . . 44

4 KKL away from the uniform measure . . . . . . . . . . . . . . . . . . . 47

5 The noise sensitivity theorem . . . . . . . . . . . . . . . . . . . . . . . 49

Appendix on Bonami-Gross-Beckner 51

VI First evidence of noise sensitivity of percolation 57

1 Influences of crossing events . . . . . . . . . . . . . . . . . . . . . . . . 57

2 The case of Z2 percolation . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Some other consequences of our study of influences . . . . . . . . . . . 64

4 Quantitative noise sensitivity . . . . . . . . . . . . . . . . . . . . . . . 66

VII Anomalous fluctuations 73

1 The model of first passage percolation . . . . . . . . . . . . . . . . . . 73

2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3 The case of the torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Upper bounds on fluctuations in the spirit of KKL . . . . . . . . . . . . 78

5 Further discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

VIII Randomized algorithms and noise sensitivity 83

1 BKS and randomized algorithms . . . . . . . . . . . . . . . . . . . . . . 83

2 The revealment theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3 An application to noise sensitivity of percolation . . . . . . . . . . . . . 87

4 Lower bounds on revealments . . . . . . . . . . . . . . . . . . . . . . . 89

5 An application to a critical exponent . . . . . . . . . . . . . . . . . . . 91

6 Does noise sensitivity imply low revealment? . . . . . . . . . . . . . . . 92

IX The spectral sample 97

1 Definition of the spectral sample . . . . . . . . . . . . . . . . . . . . . . 97

2 A way to sample the spectral sample in a sub-domain . . . . . . . . . . 99

3 Nontrivial spectrum near the upper bound for percolation . . . . . . . 101

X Sharp noise sensitivity of percolation 107

1 State of the art and main statement . . . . . . . . . . . . . . . . . . . . 107

2 Overall strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3 Toy model: the case of fractal percolation . . . . . . . . . . . . . . . . 111

4 Back to the spectrum: an exposition of the proof . . . . . . . . . . . . 118

5 The radial case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



CONTENTS 3

XI Applications to dynamical percolation 133
1 The model of dynamical percolation . . . . . . . . . . . . . . . . . . . . 133
2 What’s going on in high dimensions: Zd, d ≥ 19? . . . . . . . . . . . . . 134
3 d = 2 and BKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4 The second moment method and the spectrum . . . . . . . . . . . . . . 135
5 Proof of existence of exceptional times on T . . . . . . . . . . . . . . . 137
6 Exceptional times via the geometric approach . . . . . . . . . . . . . . 140





Overview

The goal of this set of lectures is to combine two seemingly unrelated topics:

• The study of Boolean functions, a field particularly active in computer science

• Some models in statistical physics, mostly percolation

The link between these two fields can be loosely explained as follows: a percolation
configuration is built out of a collection of i.i.d. “bits” which determines whether the
corresponding edges, sites, or blocks are present or absent. In that respect, any event
concerning percolation can be seen as a Boolean function whose input is precisely these
“bits”.

Over the last 20 years, mainly thanks to the computer science community, a very
rich structure has emerged concerning the properties of Boolean functions. The first
part of this course will be devoted to a description of some of the main achievements
in this field.

In some sense one can say, although this is an exaggeration, that computer scientists
are mostly interested in the stability or robustness of Boolean functions. As we will see
later in this course, the Boolean functions which “encode” large scale properties of
critical percolation will turn out to be very sensitive to small perturbations. This
phenomenon corresponds to what we will call noise sensitivity. Hence, the Boolean
functions one wishes to describe here are in some sense orthogonal to the Boolean
functions one encounters, ideally, in computer science. Remarkably, it turns out that
the tools developed by the computer science community to capture the properties and
stability of Boolean functions are also suitable for the study of noise sensitive functions.
This is why it is worth us first spending some time on the general properties of Boolean
functions.

One of the main tools needed to understand properties of Boolean functions is
Fourier analysis on the hypercube. Noise sensitivity will correspond to our Boolean
function being of “high frequency” while stability will correspond to our Boolean func-
tion being of “low frequency”. We will apply these ideas to some other models from
statistical mechanics as well; namely, first passage percolation and dynamical percola-
tion.

Some of the different topics here can be found (in a more condensed form) in [Gar10].
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Some standard notations

In the following table, f(n) and g(n) are any sequences of positive real numbers.

f(n) ≍ g(n)

there exists some constant C > 0 such that

C−1 ≤ f(n)

g(n)
≤ C , ∀n ≥ 1

f(n) ≤ O(g(n))

there exists some constant C > 0 such that

f(n) ≤ Cg(n) , ∀n ≥ 1

f(n) ≥ Ω(g(n))

there exists some constant C > 0 such that

f(n) ≥ Cg(n) , ∀n ≥ 1

f(n) = o(g(n)) lim
n→∞

f(n)

g(n)
= 0
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Chapter I

Boolean functions and key concepts

1 Boolean functions

Definition I.1. A Boolean function is a function from the hypercube Ωn := {−1, 1}n
into either {−1, 1} or {0, 1}.

Ωn will be endowed with the uniform measure P = Pn = (1
2
δ−1 + 1

2
δ1)
⊗n and E will

denote the corresponding expectation. At various times, Ωn will be endowed with the
general product measure Pp = Pn

p = ((1 − p)δ−1 + pδ1)
⊗n but in such cases the p will

be explicit. Ep will then denote the corresponding expectations.
An element of Ωn will be denoted by either ω or ωn and its n bits by x1, . . . , xn so

that ω = (x1, . . . , xn).
Depending on the context, concerning the range, it might be more pleasant to work

with one of {−1, 1} or {0, 1} rather than the other and at some specific places in these
lectures, we will even relax the Boolean constraint (i.e. taking only two possible values).
In these cases (which will be clearly mentioned), we will consider instead real-valued
functions f : Ωn → R.

A Boolean function f is canonically identified with a subset Af of Ωn via Af := {ω :
f(ω) = 1}.
Remark I.1. Often, Boolean functions are defined on {0, 1}n rather than Ωn = {−1, 1}n.
This does not make any fundamental difference at all but, as we will see later, the choice
of {−1, 1}n turns out to be more convenient when one wishes to apply Fourier analysis
on the hypercube.

2 Some Examples

We begin with a few examples of Boolean functions. Others will appear throughout
this chapter.
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Example 1 (Dictatorship).

DICTn(x1, . . . , xn) := x1

The first bit determines what the outcome is.

Example 2 (Parity).

PARn(x1, . . . , xn) :=

n∏

i=1

xi

This Boolean function tells whether the number of −1’s is even or odd.

These two examples are in some sense trivial, but they are good to keep in mind
since in many cases they turn out to be the “extreme cases” for properties concerning
Boolean functions.

The next rather simple Boolean function is of interest in social choice theory.

Example 3 (Majority function). Let n be odd and define

MAJn(x1, . . . , xn) := sign(

n∑

i=1

xi) .

Following are two further examples which will also arise in our discussions.

Example 4 (Iterated 3-Majority function). Let n = 3k for some integer k. The bits are
indexed by the leaves of a rooted 3-ary tree (so the root has degree 3, the leaves have
degree 1 and all others have degree 4) with depth k. One iteratively applies the previous
example (with n = 3) to obtain values at the vertices at level k−1, then level k−2, etc.
until the root is assigned a value. The root’s value is then the output of f . For example
when k = 2, f(−1, 1, 1; 1,−1,−1;−1, 1,−1) = −1. The recursive structure of this
Boolean function will enable explicit computations for various properties of interest.

Example 5 (Clique containment). If r =
(

n
2

)
for some integer n, then Ωr can be

identified with the set of labelled graphs on n vertices. (xi is 1 iff the ith edge is
present.) Recall that a clique of size k of a graph G = (V, E) is a complete graph on
k vertices embedded in G.

Now for any 1 ≤ k ≤
(

n
2

)
= r, let CLIQk

n be the indicator function of the event
that the random graph Gω defined by ω ∈ Ωr contains a clique of size k. Choosing
k = kn so that this Boolean function is non-degenerate turns out to be a rather delicate
issue. The interesting regime is near kn ≈ 2 log2(n). See the exercises for this “tuning”
of k = kn. It turns out that for most values of n, the Boolean function CLIQk

n is
degenerate (i.e. has small variance) for all values of k. However, there is a sequence of
n for which there is some k = kn for which CLIQk

n is nondegerate.
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3 Pivotality and Influence

This section contains our first fundamental concepts. We will abbreviate {1, . . . , n} by
[n].

Definition I.2. Given a Boolean function f from Ωn into either {−1, 1} or {0, 1} and
a variable i ∈ [n], we say that i is pivotal for f for ω if {f(ω) 6= f(ωi)} where ωi is
ω but flipped in the ith coordinate. Note that this event is measurable with respect to
{xj}j 6=i.

Definition I.3. The pivotal set, P, for f is the random set of [n] given by

P(ω) = Pf (ω) := {i ∈ [n] : i is pivotal for f for ω}.

In words, it is the (random) set of bits with the property that if you flip the bit,
then the function output changes.

Definition I.4. The influence of the ith bit, Ii(f), is defined by

Ii(f) := P( i is pivotal for f ) = P(i ∈ P).

Let also the influence vector, Inf(f), be the collection of all the influences: i.e.
{Ii(f)}i∈[n].

In words, the influence of the ith bit, Ii(f), is the probability that, on flipping this
bit, the function output changes.

Definition I.5. The total influence, I(f), is defined by

I(f) :=
∑

i

Ii(f) = ‖Inf(f)‖1 (= E(|P|)).

It would now be instructive to go and compute these quantities for examples 1–3.
See the exercises.

Later, we will need the last two concepts in the context when our probability measure
is Pp instead. We give the corresponding definitions.

Definition I.6. The influence vector at level p, {Ip
i (f)}i∈[n], is defined by

Ip
i (f) := Pp( i is pivotal for f ) = Pp(i ∈ P).

Definition I.7. The total influence at level p, Ip(f), is defined by

Ip(f) :=
∑

i

Ip
i (f) (= Ep(|P|)).
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It turns out that the total influence has a geometric-combinatorial interpretation as
the size of the so-called edge-boundary of the corresponding subset of the hypercube.
See the exercises.

Remark I.2. Aside from its natural definition as well as its geometric interpretation as
measuring the edge-boundary of the corresponding subset of the hypercube (see the
exercises), the notion of total influence arises very naturally when one studies sharp
thresholds for monotone functions (to be defined in Chapter III). Roughly speaking,
as we will see in detail in Chapter III, for a monotone event A, one has that dPp

[
A

]
/dp

is the total influence at level p (this is the Margulis-Russo formula). This tells us that
the speed at which one changes from the event A “almost surely” not occurring to the
case where it “almost surely” does occur is very sudden if the Boolean function happens
to have a large total influence.

4 The Kahn, Kalai, Linial theorem

This section addresses the following question. Does there always exist some variable
i with (reasonably) large influence? In other words, for large n, what is the smallest
value (as we vary over Boolean functions) that the largest influence (as we vary over
the different variables) can take on?

Since for the constant function all influences are 0, and the function which is 1 only if
all the bits are 1 has all influences 1/2n−1, clearly one wants to deal with functions which
are reasonably balanced (meaning having variances not so close to 0) or alternatively,
obtain lower bounds on the maximal influence in terms of the variance of the Boolean
function.

The first result in this direction is the following result. A sketch of the proof is given
in the exercises.

Theorem I.1 (Discrete Poincaré). If f is a Boolean function mapping Ωn into {−1, 1},
then

Var(f) ≤
∑

i

Ii(f).

It follows that there exists some i such that

Ii(f) ≥ Var(f)/n.

This gives a first answer to our question. For reasonably balanced functions, there is
some variable whose influence is at least of order 1/n. Can we find a better “universal”
lower bound on the maximal influence? Note that for Example 3 all the influences are
of order 1/

√
n (and the variance is 1). In terms of our question, this universal lower

bound one is looking for should lie somewhere between 1/n and 1/
√

n. The following
celebrated result improves by a logarithmic factor on the above Ω(1/n) bound.
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Theorem I.2 ([KKL88]). There exists a universal c > 0 such that if f is a Boolean
function mapping Ωn into {0, 1}, then there exists some i such that

Ii(f) ≥ cVar(f)(log n)/n.

What is remarkable about this theorem is that this “logarithmic” lower bound on
the maximal influence turns out to be sharp! This is shown by the following example
by Ben-Or and Linial.

Example 6 (Tribes). Partition [n] into subsequent blocks of length log2(n)−log2(log2(n))
with perhaps some leftover debris. Define f = fn to be 1 if there exists at least one
block which contains all 1’s, and 0 otherwise.

It turns out that one can check that the sequence of variances stays bounded away
from 0 and that all the influences (including of course those belonging to the debris
which are equal to 0) are smaller than c(log n)/n for some c <∞. See the exercises for
this. Hence the above theorem is indeed sharp.

Our next result tells us that if all the influences are “small”, then the total influence
is large.

Theorem I.3 ([KKL88]). There exists a c > 0 such that if f is a Boolean function
mapping Ωn into {0, 1} and δ := maxi Ii(f) then

I(f) ≥ c Var(f) log(1/δ).

Or equivalently,

‖Inf(f)‖1 ≥ c Var(f) log
1

‖Inf(f)‖∞
.

One can in fact talk about the influence of a set of variables rather than the influence
of a single variable.

Definition I.8. Given S ⊆ [n], the influence of S, IS(f), is defined by

IS(f) := P( f is not determined by the bits in Sc).

It is easy to see that when S is a single bit, this corresponds to our previous defi-
nition. The following is also proved in [KKL88]. We will not indicate the proof of this
result in these lecture notes.

Theorem I.4 ([KKL88]). Given a sequence fn of Boolean functions mapping Ωn into
{0, 1} such that 0 < infn En(f) ≤ supn En(f) < 1 and any sequence an going to ∞ arbi-
trarily slowly, then there exists a sequence of sets Sn ⊆ [n] such that |Sn| ≤ ann/ log n
and ISn(fn)→ 1 as n→∞.

Theorems I.2 and I.3 will be proved in Chapter V.
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5 Noise sensitivity and noise stability

This section introduces our second set of fundamental concepts.
Let ω be uniformly chosen from Ωn and let ωǫ be ω but with each bit independently

“rerandomized” with probability ǫ. This means that each bit, independently of every-
thing else, rechooses whether it is 1 or −1, each with probability 1/2. Note that ωǫ

then has the same distribution as ω.
The following definition is central for these lecture notes. Let mn be an increasing

sequence of integers and let fn : Ωmn → {±1} or {0, 1}.

Definition I.9. The sequence {fn} is noise sensitive if for every ǫ > 0,

lim
n→∞

E[fn(ω)fn(ωǫ)]− E[fn(ω)]2 = 0. (I.1)

Since fn just takes 2 values, this says that the random variables fn(ω) and fn(ωǫ)
are asymptotically independent for ǫ > 0 fixed and n large. We will see later that (I.1)
holds for one value of ǫ ∈ (0, 1) if and only if it holds for all such ǫ. The following
notion captures the opposite situation where the two events above are close to being
the same event if ǫ is small, uniformly in n.

Definition I.10. The sequence {fn} is noise stable if

lim
ǫ→0

sup
n

P(fn(ω) 6= fn(ωǫ)) = 0.

It is an easy exercise to check that a sequence {fn} is both noise sensitive and noise
stable if and only it is degenerate in the sense that the sequence of variances {Var(fn)}
goes to 0. Note also that a sequence of Boolean functions could be neither noise sensitive
nor noise stable (see the exercises).

It is also an easy exercise to check that Example 1 (dictator) is noise stable and
Example 2 (parity) is noise sensitive. We will see later, when Fourier analysis is brought
into the picture, that these examples are the two opposite extreme cases. For the other
examples, it turns out that Example 3 (Majority) is noise stable, while Examples 4–6
are all noise sensitive. See the exercises. In fact, there is a deep theorem (see [MOO10])
which says in some sense that, among all low influence Boolean functions, Example 3
(Majority) is the stablest.

In Figure I.1, we give a slightly impressionistic view of what “noise sensitivity” is.

6 The Benjamini, Kalai and Schramm noise sensi-

tivity theorem

The following is the main theorem concerning noise sensitivity.
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Figure I.1: Let us consider the following “experiment”: take a bounded domain in the
plane, say a rectangle, and consider a measurable subset A of this domain. What would
be an analogue of the above definitions of being noise sensitive or noise stable in this
case? Start by sampling a point x uniformly in the domain according to Lebesgue
measure. Then let us apply some noise to this position x so that we end up with a new
position xǫ. One can think of many natural “noising” procedures here. For example,
let xǫ be a uniform point in the ball of radius ǫ around x, conditioned to remain in the
domain. (This is not quite perfect yet since this procedure does not exactly preserve
Lebesgue measure, but let’s not worry about this.) The natural analogue of the above
definitions is to ask whether 1A(x) and 1A(xǫ) are decorrelated or not.
Question: According to this analogy, discuss the stability versus sensitivity of the sets
A sketched in pictures (a) to (d) ? Note that in order to match with definitions I.9 and
I.10, one should consider sequences of subsets {An} instead, since noise sensitivity is
an asymptotic notion.
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Theorem I.5 ([BKS99]). If

lim
n

∑

k

Ik(fn)2 = 0,

then {fn} is noise sensitive.

Remark I.3. The converse is clearly false as shown by Example 2. However, it turns
out that the converse is true for so-called monotone functions (see the next chapter
for the definition of this) as we will see in Chapter IV.

This theorem will allow us to conclude noise sensitivity of many of the examples
we have introduced in this first chapter. See the exercises. This theorem will also be
proved in Chapter V.

7 Percolation crossings: our final and most impor-

tant example

We have saved our most important example to the end. This set of notes would not be
being written if it were not for this example and for the results that have been proved
for it.

Let us consider percolation on Z2 at the critical point pc(Z2) = 1/2. (See Chapter
II for a fast review on the model.) At this critical point, there is no infinite cluster, but
somehow clusters are ‘large’ (there are clusters at all scales). This can be seen using
duality or with the RSW Theorem II.1. In order to understand the geometry of the
critical picture, the following large-scale observables turn out to be very useful: Let Ω
be a piecewise smooth domain with two disjoint open arcs ∂1 and ∂2 on its boundary
∂Ω. For each n ≥ 1, we consider the scaled domain nΩ. Let An be the event that there
is an open path in ω from n∂1 to n∂2 which stays inside nΩ. Such events are called
crossing events. They are naturally associated with Boolean functions whose entries
are indexed by the set of edges inside nΩ (there are O(n2) such variables).

For simplicity, let us consider the particular case of rectangle crossings:

Example 7 (Percolation crossings).

Let a, b > 0 and let us consider the rect-
angle [0, a · n] × [0, b · n]. The left to
right crossing event corresponds to the
Boolean function fn : {−1, 1}O(1)n2 →
{0, 1} defined as follows:

fn(ω) :=





1
if there is a left-
right crossing

0 otherwise
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We will later prove that this sequence of Boolean functions {fn} is noise sensitive.
This means that if a percolation configuration ω ∼ Ppc=1/2 is given to us, one cannot
predict anything about the large scale clusters of the slightly perturbed percolation
configuration ωǫ (where only an ǫ-fraction of the edges have been resampled).

Remark I.4. The same statement holds for the above more general crossing events (i.e.
in (nΩ, n∂1, n∂2)).
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Exercise sheet of Chapter I

Exercise I.1. Determine the pivotal set, the influence vector and the total influence
for Examples 1–3.

Exercise I.2. Determine the influence vector for iterated 3-majority and tribes.

Exercise I.3. Show that in Example 6 (tribes) the variances stay bounded away from
0. If the blocks are taken to be of size log2 n instead, show that the influences would
all be of order 1/n. Why does this not contradict the KKL Theorem?

Exercise I.4. Ωn has a graph structure where two elements are neighbors if they differ
in exactly one location. The edge boundary of a subset A ⊆ Ωn, denoted by ∂E(A),
is the set of edges where exactly one of the endpoints is in A.

Show that for any Boolean function, I(f) = |∂E(Af)|/2n−1.

Exercise I.5. Prove Theorem I.1. This is a type of Poincaré inequality. Hint: use the
fact that Var(f) can be written 2P

[
f(ω) 6= f(ω̃)

]
, where ω, ω̃ are independent and try

to “interpolate” from ω to ω̃.

Exercise I.6. Show that Example 3 (Majority) is noise stable.

Exercise I.7. Prove that Example 4 (iterated 3-majority) is noise sensitive directly
without relying on Theorem I.5. Hint: use the recursive structure of this example in
order to show that the criterion of noise sensitivity is satisfied.

Exercise I.8. Prove that Example 6 (tribes) is noise sensitive directly without using
Theorem I.5. Here there is no recursive structure, so a more “probabilistic” argument
is needed.

Problem I.9. Recall Example 5 (clique containment).

(a) Prove that when kn = o(n1/2), CLIQkn
n is asymptotically noise sensitive. Hint:

start by obtaining an upper bound on the influences (which are identical for each
edge) using Exercise I.4. Conclude by using Theorem I.5.

(b) Open exercise: Find a more direct proof of this fact (in the spirit of exercise I.8)
which would avoid using Theorem I.5.

19
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As pointed out after Example 5, for most values of k = kn, the Boolean function
CLIQkn

n becomes degenerate. The purpose of the rest of this problem is to determine
what the interesting regime is where CLIQkn

n has a chance of being non-degenerate (i.e.
variance bounded away from 0). The rest of this exercise is somewhat tangential to the
course.

(c) If 1 ≤ k ≤
(

n
2

)
= r, what is the expected number of cliques in Gω, ω ∈ Ωr ?

(d) Explain why there should be at most one choice of k = kn such that the variance of
CLIQkn

n remains bounded away from 0 ? (No rigorous proof required.) Describe
this choice of kn. Check that it is indeed in the regime 2 log2(n).

(e) Note retrospectively that in fact, for any choice of k = kn, CLIQkn
n is noise

sensitive.

Exercise I.10. Deduce from Theorem I.5 that both Example 4 (iterated 3-majority)
and Example 6 (tribes) are noise sensitive.

Exercise I.11. Give a sequence of Boolean functions which is neither noise sensitive
nor noise stable.

Exercise I.12. In the sense of Definition I.8, show that for the majority function and
for fixed ǫ, any set of size n1/2+ǫ has influence approaching 1 while any set of size n1/2−ǫ

has influence approaching 0.

Exercise I.13. Show that there exists c > 0 such that for any Boolean function

I2
i (f) ≥ cVar2(f)(log2 n)/n

and show that this is sharp up to a constant. This result is also contained in [KKL88].

Problem I.14. Do you think a “generic” Boolean function would be stable or sensitive?
Justify your intuition. Show that if fn was a “randomly” chosen function, then a.s. {fn}
is noise sensitive.



Chapter II

Percolation in a nutshell

In order to make these lecture notes as self-contained as possible, we review various
aspects of the percolation model and give a short summary of the main useful results.

For a complete account of percolation, see [Gri99] and for a study of the 2-dimensional
case, which we are concentrating on here, see the lecture notes [Wer07].

1 The model

Let us briefly start by introducing the model itself.

We will be concerned mainly with two-dimensional percolation and we will focus
on two lattices: Z2 and the triangular lattice T. (All the results stated for Z2 in these
lecture notes are also valid for percolations on “reasonable” 2-d translation invariant
graphs for which the RSW Theorem (see the next section) is known to hold at the
corresponding critical point.)

Let us describe the model on the graph Z2 which has Z2 as its vertex set and
edges between vertices having Euclidean distance 1. Let E2 denote the set of edges
of the graph Z2. For any p ∈ [0, 1] we define a random subgraph of Z2 as follows:
independently for each edge e ∈ E2, we keep this edge with probability p and remove it
with probability 1−p. Equivalently, this corresponds to defining a random configuration
ω ∈ {−1, 1}E

2
where, independently for each edge e ∈ E2, we declare the edge to be

open (ω(e) = 1) with probability p or closed (ω(e) = −1) with probability 1− p. The
law of the so-defined random subgraph (or configuration) is denoted by Pp.

Percolation is defined similarly on the triangular grid T, except that on this lattice
we will instead consider site percolation (i.e. here we keep each site with probability
p). The sites are the points Z+ eiπ/3Z so that neighboring sites have distance one from
each other in the complex plane.
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22 CHAPTER II. PERCOLATION IN A NUTSHELL

Figure II.1: Pictures (by Oded Schramm) representing two percolation configurations
respectively on T and on Z2 (both at p = 1/2). The sites of the triangular grid are
represented by hexagons.

2 Russo-Seymour-Welsh

We will often rely on the following celebrated result known as the RSW Theorem.

Theorem II.1 (RSW). (see [Gri99]) For percolation on Z2 at p = 1/2, one has the
following property concerning the crossing events. Let a, b > 0. There exists a constant
c = c(a, b) > 0, such that for any n ≥ 1, if An denotes the event that there is a left to
right crossing in the rectangle ([0, a · n]× [0, b · n]) ∩ Z2, then

c < P1/2

[
An

]
< 1− c .

In other words, this says that the Boolean functions fn defined in Example 7 of Chapter
I are non-degenerate.

The same result holds also in the case of site-percolation on T (also at p = 1/2).

The parameter p = 1/2 plays a very special role
for the two models under consideration. Indeed,
there is a natural way to associate to each per-
colation configuration ωp ∼ Pp a dual configu-
ration ωp∗ on the so-called dual graph. In the
case of Z2, its dual graph can be realized as
Z2 + (1

2
, 1

2
). In the case of the triangular lat-

tice, T∗ = T. The figure on the right illustrates
this duality for percolation on Z2. It is easy to
see that in both cases p∗ = 1 − p. Hence, at
p = 1/2, our two models happen to be self-dual.

This duality has the following very important consequence. For a domain in T with
two specified boundary arcs, there is a ’left-right’ crossing of white hexagons if and only
if there is no ’top-bottom’ crossing of black hexagons.
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3 Phase transition

In percolation theory, one is interested in large scale connectivity properties of the
random configuration ω = ωp. In particular, as one raises the level p above a certain
critical parameter pc(Z2), an infinite cluster (almost surely) emerges. This corresponds
to the well-known phase transition of percolation. By a famous theorem of Kesten this
transition takes place at pc(Z2) = 1

2
. On the triangular grid, one also has pc(T) = 1/2.

The event {0 ω←→ ∞} denotes the event that there exists a self-avoiding path from 0
to ∞ consisting of open edges.

This phase transition can be measured with
the density function θZ2(p) := Pp(0

ω←→ ∞)
which encodes important properties of the
large scale connectivities of the random con-
figuration ω: it corresponds to the density av-
eraged over the space Z2 of the (almost surely
unique) infinite cluster. The shape of the
function θZ2 is pictured on the right (notice
the infinite derivative at pc).

4 Conformal invariance at criticality and SLE pro-

cesses

It has been conjectured for a long time that percolation should be asymptotically con-
formally invariant at the critical point. This should be understood in the same way
as the fact that a Brownian motion (ignoring its time-parametrization) is a confor-
mally invariant probabilistic object. One way to picture this conformal invariance is
as follows: consider the ‘largest’ cluster Cδ surrounding 0 in δZ2 ∩ D and such that
Cδ ∩ ∂D = ∅. Now consider some other simply connected domain Ω containing 0. Let
Ĉδ be the largest cluster surrounding 0 in a critical configuration in δZ2 ∩ Ω and such
that Ĉδ∩∂Ω = ∅. Now let φ be the conformal map from D to Ω such that φ(0) = 0 and
φ′(0) > 0. Even though the random sets φ(Cδ) and Ĉδ do not lie on the same lattice, the
conformal invariance principle claims that when δ = o(1), these two random clusters
are very close in law.

Over the last decade, two major breakthroughs have enabled a much better under-
standing of the critical regime of percolation:

• The invention of the SLE processes by Oded Schramm([Sch00]).

• The proof of conformal invariance on T by Stanislav Smirnov ([Smi01]).
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The simplest precise statement concerning conformal invariance is the following.
Let Ω be a bounded simply connected domain of the plane and let A, B, C and D
be 4 points on the boundary of Ω in clockwise order. Scale the hexagonal lattice T
by 1/n and perform critical percolation on this scaled lattice. Let P(Ω, A, B, C, D, n)
denote the probability that in the 1/n scaled hexagonal lattice there is an open path
of hexagons in Ω going from the boundary of Ω between A and B to the boundary of
Ω between C and D.

Theorem II.2. (Smirnov, [Smi01])

(i) For all Ω and A, B, C and D as above,

P(Ω, A, B, C, D,∞) := lim
n→∞

P(Ω, A, B, C, D, n)

exists and is conformally invariant in the sense that if f is a conformal mapping, then
P(Ω, A, B, C, D,∞) = P(f(Ω), f(A), f(B), f(C), f(D),∞).
(ii) If Ω is an equilateral triangle (with side lengths 1), A, B and C the three corner
points and D on the line between C and A having distance x from C, then the above
limiting probability is x. (Observe, by conformal invariance, that this gives the limiting
probability for all domains and 4 points.)

The first half was conjectured by M. Aizenman while J. Cardy conjectured the
limit for the case of rectangles using the four corners. In this case, the formula is quite
complicated involving hypergeometric functions but Lennart Carleson realized that this
is then equivalent to the simpler formula given above in the case of triangles.

Note that, on Z2 at pc = 1/2, proving the conformal invariance is still a challenging
open problem.

We will not define the SLE processes in these notes. See the lecture notes by Vincent
Beffara and references therein. The illustration below explains how SLE curves arise
naturally in the percolation picture.

This celebrated picture (by
Oded Schramm) represents an
exploration path on the tri-
angular lattice. This ex-
ploration path, which turns
right when encountering black
hexagons and left when en-
countering white ones, asymp-
totically converges towards
SLE6 (as the mesh size goes to
0).



5. CRITICAL EXPONENTS 25

5 Critical exponents

The proof of conformal invariance combined with the detailed information given by
the SLE6 process enables one to obtain very precise information on the critical and
near-critical behavior of site percolation on T. For instance, it is known that on the
triangular lattice the density function θT(p) has the following behavior near pc = 1/2:

θ(p) = (p− 1/2)5/36+o(1) ,

when p→ 1/2+ (see [Wer07]).

In the rest of these lectures, we will often rely on three types of percolation events:
namely the one-arm, two-arm and four-arm events. They are defined as follows: for
any radius R > 1, let A1

R be the event that the site 0 is connected to distance R by
some open path (one-arm). Next, let A2

R be the event that there are two “arms” of
different colors from the site 0 (which itself can be of either color) to distance R away.
Finally, let A4

R be the event that there are four “arms” of alternating color from the site
0 (which itself can be of either color) to distance R away (i.e. there are four connected
paths, two open, two closed from 0 to radius R and the closed paths lie between the
open paths). See Figure II.2 for a realization of two of these events.

Figure II.2: A realization of the one-arm event is pictured on the left; the four-arm
event is pictured on the right.

It was proved in [LSW02] that the probability of the one-arm event decays as follows:

P
[
A1

R

]
:= α1(R) = R−

5
48

+o(1) .
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For the two-arms and four-arms events, it was proved by Smirnov and Werner in [SW01]
that these probabilities decay as follows:

P
[
A2

R

]
:= α2(R) = R−

1
4
+o(1)

and
P
[
A4

R

]
:= α4(R) = R−

5
4
+o(1) .

Remark II.1. Note the o(1) terms in the above statements (which means of course
goes to zero as R → ∞). Its presence reveals that the above critical exponents are
known so far only up to ‘logarithmic’ corrections. It is conjectured that there are no
such ‘logarithmic’ corrections, but at the moment one has to deal with their possible
existence. More specifically, it is believed that for the one-arm event,

α1(R) ≍ R−
5
48

where ≍ means that the ratio of the two sides is bounded away from 0 and∞ uniformly
in R; similarly for the other arm events.

The four exponents we encountered concerning θT, α1, α2 and α4 (i.e. 5
36

, 5
48

, 1
4

and
5
4
) are known as critical exponents.

The four-arm event is clearly of particular relevance to us in these lectures. Indeed,
if a point x is in the ‘bulk’ of a domain (nΩ, n∂1, n∂2), the event that this point is
pivotal for the Left-Right crossing event An is intimately related to the four-arm event.
See Chapter VI for more details.

6 Quasi-multiplicativity

Finally, let us end this overview by a type of scale invariance property of these arm
events. More precisely, it is often convenient to “divide” these arm events into different
scales. For this purpose, we introduce α4(r, R) (with r ≤ R) to be the probability that
the four-arm event holds from radius r to radius R (α1(r, R), α2(r, R) and α3(r, R) are
defined analogously). By independence on disjoint sets, it is clear that if r1 ≤ r2 ≤ r3

then one has α4(r1, r3) ≤ α4(r1, r2) α4(r2, r3). A very useful property known as quasi-
multiplicativity claims that up to constants, these two expressions are the same (this
makes the division into several scales practical). This property can be stated as follows.

Proposition II.3 (quasi-multiplicativity, [Kes87]). For any r1 ≤ r2 ≤ r3, one has
(both for Z2 and T percolations)

α4(r1, r3) ≍ α4(r1, r2) α4(r2, r3) .

See [Wer07, Nol09, SS10b] for more details. Note also that the same property holds
for the one-arm event. However, this is much easier to prove: it is an easy consequence
of the RSW Theorem II.1 and the so-called FKG inequality which says that increasing
events are positively correlated. The reader might consider doing this as an exercise.



Chapter III

Sharp thresholds and the critical
point for 2-d percolation

1 Monotone functions and the Margulis-Russo for-

mula

The class of so-called monotone functions plays a very central role in this subject.

Definition III.1. A function f is monotone if x ≤ y (meaning xi ≤ yi for each i)
implies that f(x) ≤ f(y). An event is monotone if its indicator function is monotone.

Recall that when the underlying variables are independent with 1 having probability
p, we let Pp and Ep denote probabilities and expectations.

It is fairly obvious that for f monotone, Ep(f) should be increasing in p. The
Margulis-Russo formula gives us an explicit formula for this (nonnegative) derivative.

Theorem III.1. Let A be an increasing event in Ωn. Then

d(Pp(A))/dp =
∑

i

Ip
i (A).

Proof. Let us allow each variable xi to have its own parameter pi and let Pp1,...,pn and
Ep1,...,pn be the corresponding probability measure and expectation. It suffices to show
that

∂(P(p1,...,pn)(A))/∂pi = I
(p1,...,pn)
i (A)

where the definition of this latter term is clear. WLOG, take i = 1. Now

Pp1,...,pn(A) = Pp1,...,pn(A\{1 ∈ PA}) + Pp1,...,pn(A ∩ {1 ∈ PA}).
The event in the first term is measurable with respect to the other variables and hence
the first term does not depend on p1 while the second term is

p1Pp2,...,pn({1 ∈ PA})
since A ∩ {1 ∈ PA} is the event {x1 = 1} ∩ {1 ∈ PA}.
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2 KKL away from the uniform measure case

Recall now Theorem I.2. For sharp threshold results, one needs lower bounds on the
total influence not just at the special parameter 1/2 but at all p.

The following are the two main results concerning the KKL result for general p that
we will want to have at our disposal. The proofs of these theorems will be outlined in
the exercises in Chapter V.

Theorem III.2 ([BKK+92]). There exists a universal c > 0 such that for any Boolean
function f mapping Ωn into {0, 1} and, for any p, there exists some i such that

Ip
i (f) ≥ cVarp(f)(log n)/n

Theorem III.3 ([BKK+92]). There exists a universal c > 0 such that for any Boolean
function f mapping Ωn into {0, 1} and for any p,

Ip(f) ≥ cVarp(f) log(1/δp)

where δp := maxi I
p
i (f).

3 Sharp thresholds in general : the Friedgut-Kalai

Theorem

Theorem III.4 ([FK96]). There exists a c1 <∞ such that for any monotone event A
on n variables where all the influences are the same, if Pp1(A) > ǫ, then

P
p1+

c1 log(1/(2ǫ))
log n

(A) > 1− ǫ.

Remark III.1. This says that for fixed ǫ, the probability of A moves from below ǫ to
above 1− ǫ in an interval of p of length of order at most 1/ log(n). The assumption of
equal influences holds for example if the event is invariant under some transitive action,
which is often the case. For example, it holds for Example 4 (iterated 3-majority) as
well as for any graph property in the context of the random graphs G(n, p).

Proof. Theorem III.2 and all the influences being the same tell us that

Ip(A) ≥ c min{Pp(A), 1− Pp(A)} log n

for some c > 0. Hence Theorem III.1 yields

d(log(Pp(A)))/dp ≥ c log n

if Pp(A) ≤ 1/2. Letting p∗ := p1+ log(1/2ǫ)
c log n

, an easy computation (using the fundamental

theorem of calculus) yields
log(Pp∗(A)) ≥ log(1/2).
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Next, if Pp(A) ≥ 1/2, then

d(log(1− Pp(A)))/dp ≤ −c log n

from which another application of the fundamental theorem yields

log(1− Pp∗∗(A)) ≤ − log(1/ǫ)

where p∗∗ := p∗ + log(1/2ǫ)
c log n

. Letting c1 = 2/c gives the result.

4 The critical point for percolation for Z2 and T is
1
2

Theorem III.5 ([Kes80]).

pc(Z
2) = pc(T) =

1

2
.

Proof. We first show that θ(1/2) = 0. Let Ann(ℓ) := [−3ℓ, 3ℓ]\[−ℓ, ℓ] and Ck be
the event that there is a circuit in Ann(4k) + 1/2 in the dual lattice around the origin
consisting of closed edges. The Ck’s are independent and RSW and FKG show that for
some c > 0, P1/2(Ck) ≥ c for all k. This gives that P1/2(Ck infinitely often) = 1 and
hence θ(1/2) = 0.

The next key step is a finite size criterion which implies percolation and which is
interesting in itself. We outline its proof afterwards.

Proposition III.6. (Finite size criterion) Let Jn be the event that there is a crossing
of a 2n× (n− 2) box. For any p, if there exists an n such that

Pp(Jn) ≥ .98,

then a.s. there exists an infinite cluster.

Assume now that pc = 1/2 + δ with δ > 0. Let I = [1/2, 1/2 + δ/2]. Since
θ(1/2 + δ/2) = 0, it is easy to see that the maximum influence over all variables
and over all p ∈ I goes to 0 with n since being pivotal implies the existence of an
open path from a neighbor of the given edge to distance n/2 away. Next, by RSW,
infn P1/2(Jn) > 0. If for all n, P1/2+δ/2(Jn) < .98, then Theorems III.1 and III.3 would
allow us to conclude that the derivative of Pp(Jn) goes to∞ uniformly on I as n→∞,
giving a contradiction. Hence P1/2+δ/2(Jn) ≥ .98 for some n implying, by Proposition
III.6, that θ(1/2 + δ/2) > 0, a contradiction.
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Outline of proof of Proposition III.6.
The first step is to show that for any p and for any ǫ ≤ .02, if Pp(Jn) ≥ 1− ǫ, then

Pp(J2n) ≥ 1− ǫ/2. The idea is that by FKG and “glueing” one can show that one can
cross a 4n × (n − 2) box with probability at least 1 − 5ǫ and hence one obtains that
Pp(J2n) ≥ 1− ǫ/2 since, for this event to fail, it must fail in both the top and bottom
halves of the box. It follows that if we place down a sequence of (possibly rotated and
translated) boxes of sizes 2n+1 × 2n anywhere, then with probability 1, all but finitely
many are crossed. Finally, one can place these boxes down in an intelligent way such
that crossing all but finitely many of them necessarily entails the existence of an infinite
cluster (see Figure III.1).

Figure III.1:

5 Further discussion

The Margulis-Russo formula is due independently to Margulis [Mar74] and Russo
[Rus81].

The idea to use the results from KKL to show that pc = 1/2 is due to Bollobás
and Riordan (see [BR06]). It was understood much earlier that obtaining a sharp
threshold was the key step. Kesten (see [Kes80]) showed the necessary sharp threshold
by obtaining a lower bound on the expected number of pivotals in a hands on fashion.
Russo (see [Rus82]) had developed an earlier weaker, more qualitative, version of KKL
and showed how it also sufficed to show that pc = 1/2.



Exercise sheet of Chapter III

Exercise III.1. Develop an alternative proof of the Margulis-Russo formula using
classical couplings.

Exercise III.2. Study, as best as you can, what the “threshold windows” are (i.e.
where and how long does it take to go from a probability of order ǫ to a probability of
order 1− ǫ) in the following examples:

(a) for DICTn

(b) for MAJn

(c) for the tribes example

(d) for the iterated majority example.

Do not rely on [KKL88] type of results, but instead do hands-on computations
specific to each case.

Exercise III.3. Write out the details of the proof of Proposition III.6.

Problem III.4 (What is the “sharpest” monotone event ?). Show that among all
monotone Boolean functions on Ωn, MAJn is the one with largest total influence (at
p = 1/2).
Hint: Use the Margulis-Russo formula.

Exercise III.5. A consequence of Problem III.4 is that the total influence at p = 1/2
of any monotone function is at most O(

√
n). A similar argument shows that for any p,

there is a constant Cp so that the total influence at level p of any monotone function
is at most Cp

√
n. Prove nonetheless that there exists c > 0 such for for any n, there

exists a monotone function f = fn and a p = pn so that the total influence of f at level
p is at least cn.

Exercise III.6. Find a monotone function f : Ωn → {0, 1} such that d(Ep(f))/dp is
very large at p = 1/2, but nevertheless there is no sharp threshold for f (this means
that a large total influence at some value of p is not in general a sufficient condition for
sharp threshold).
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Chapter IV

Fourier analysis of Boolean
functions (first facts)

1 Discrete Fourier analysis and the energy spec-

trum

It turns out that in order to understand and analyze the concepts previously introduced,
which are in some sense purely probabilistic, a critical tool is Fourier analysis on the
hypercube.

Recall that we consider our Boolean functions as functions from the hypercube
Ωn := {−1, 1}n into {−1, 1} or {0, 1} where Ωn is endowed with the uniform measure
P = Pn = (1

2
δ−1 + 1

2
δ1)
⊗n.

In order to apply Fourier analysis, the natural setup is to enlarge our discrete space
of Boolean functions and to consider instead the larger space L2({−1, 1}n) of real-valued
functions on Ωn endowed with the inner product:

〈f, g〉 :=
∑

x1,...,xn

2−nf(x1, . . . , xn)g(x1, . . . , xn)

= E
[
fg

]
for all f, g ∈ L2(Ωn) ,

where E denotes expectation with respect to the uniform measure P on Ωn.
For any subset S ⊆ {1, 2 . . . , n}, let χS be the function on {−1, 1}n defined for any

x = (x1, . . . , xn) by

χS(x) :=
∏

i∈S

xi . (IV.1)

(So χ∅ ≡ 1.) It is straightforward (check this!) to see that this family of 2n functions
forms an orthonormal basis of L2({−1, 1}n). Thus, any function f on Ωn (and a fortiori
any Boolean function f) can be decomposed as

f =
∑

S⊆{1,...,n}

f̂(S) χS,
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where {f̂(S)}S⊆[n] are the so-called Fourier coefficients of f . They are also sometimes
called the Fourier-Walsh coefficients of f and they satisfy

f̂(S) := 〈f, χS〉 = E
[
fχS

]
.

Note that f̂(∅) is the average E
[
f
]

and that we have Parseval’s formula which states
that

E(f 2) =
∑

S⊆{1,...,n}

f̂ 2(S).

As in classical Fourier analysis, if f is some Boolean function, its Fourier(-Walsh)
coefficients provide information on the “regularity” of f . We will sometimes use the
term spectrum when referring to the set of Fourier coefficients.

Of course one may find many other orthonormal bases for L2({−1, 1}n), but there are
many situations for which this particular set of functions {χS}S⊆{1,...,n} arises naturally.
First of all there is a well-known theory of Fourier analysis on groups, a theory which
is particularly simple and elegant on Abelian groups (thus including our special case
of {−1, 1}n, but also R/Z, R and so on). For Abelian groups, what turns out to be
relevant for doing harmonic analysis is the set Ĝ of characters of G (i.e. the group
homomorphisms from G to C∗). In our case of G = {−1, 1}n, the characters are precisely
our functions χS indexed by S ⊆ {1, . . . , n} since they satisfy χS(x · y) = χS(x)χS(y).
This background is not however needed and we won’t talk in these terms.

These functions also arise naturally if one performs simple random walk on the
hypercube (equipped with the Hamming graph structure), since they are the eigen-
functions of the corresponding Markov chain (heat kernel) on {−1, 1}n. Last but not
least, we will see later in this chapter that the basis {χS} turns out to be particularly
well adapted to our study of noise sensitivity.

We introduce one more concept here without motivation; it will be very well moti-
vated later on in the chapter.

Definition IV.1. For any real-valued function f : Ωn → R, the energy spectrum Ef

is defined by

Ef (m) :=
∑

|S|=m

f̂(S)2, ∀m ∈ {1, . . . , n} .

2 Examples

First note that, from the Fourier point of view, Dictator and Parity have simple repre-
sentations since they are χ1 and χ[n] respectively. Each of the two corresponding energy
spectra are trivially concentrated on 1 point, namely 1 and n.

For Example 3, the Majority function, Bernasconi explicitly computed the Fourier
coefficients and when n goes to infinity, one ends up with the following asymptotic
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formula for the energy spectrum:

EMAJn(m) =
∑

|S|=m

M̂AJn(S)2 =

{
4

π m2m

(
m−1
m−1

2

)
+ O(m/n) if m is odd ,

0 if m is even .

(The reader may think about why the “even” coefficients are 0.) See [O’D03] for a
nice overview and references therein concerning the spectral behavior of the majority
function.

Figure IV.1: Shape of the energy spectrum for the Majority function

Picture IV.1 represents the shape of the energy spectrum of MAJn: its spectrum
is concentrated on low frequencies, which is typical of stable functions.

3 Noise sensitivity and stability in terms of the en-

ergy spectrum

In this section, we describe the concepts of noise sensitivity and noise stability in terms
of the energy spectrum.

The first step is to note that, given any real-valued function f : Ωn → R, the
correlation between f(ω) and f(ωǫ) is nicely expressed in terms of the Fourier coefficients
of f as follows:

E
[
f(ω)f(ωǫ)

]
= E

[(∑

S1

f̂(S1)χS1(ω)
)(∑

S2

f̂(S2)χS2(ωǫ)
)]

=
∑

S

f̂(S)2E
[
χS(ω) χS(ωǫ)

]

=
∑

S

f̂(S)2(1− ǫ)|S| . (IV.2)
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Moreover, we immediately obtain

Cov(f(ω), f(ωǫ)) =
n∑

m=1

Ef (m)(1− ǫ)m. (IV.3)

Note that either of the last two expressions tell us that Cov(f(ω), f(ωǫ)) is nonneg-
ative and decreasing in ǫ. Also, we see that the “level of noise sensitivity” of a Boolean
function is naturally encoded in its energy spectrum. It is now an an easy exercise to
prove the following proposition.

Proposition IV.1 ([BKS99]). A sequence of Boolean functions fn : {−1, 1}mn → {0, 1}
is noise sensitive if and only if, for any k ≥ 1,

k∑

m=1

∑

|S|=m

f̂n(S)2 =

k∑

m=1

Efn(m) −→
n→∞

0 .

Moreover, (I.1) holding does not depend on the value of ǫ ∈ (0, 1) chosen.

There is a similar spectral description of noise stability which, given (IV.2), is an
easy exercise.

Proposition IV.2 ([BKS99]). A sequence of Boolean functions fn : {−1, 1}mn → {0, 1}
is noise stable if and only if, for any ǫ > 0, there exists k such that for all n,

∞∑

m=k

∑

|S|=m

f̂n(S)2 =

∞∑

m=k

Efn(m) < ǫ.

So, as argued in the introduction, a function of “high frequency” will be sensitive
to noise while a function of “low frequency” will be stable.

4 Link between the spectrum and influence

In this section, we relate the notion of influence with that of the spectrum.

Proposition IV.3. If f : Ωn → {0, 1}, then for all k,

Ik(f) = 4
∑

S:k∈S

f̂(S)2

and

I(f) = 4
∑

S

|S|f̂(S)2.
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Proof. If f : Ωn → R, we introduce the functions

∇kf :

{
Ωn → R
ω 7→ f(ω)− f(σk(ω))

for all k ∈ [n] ,

where σk acts on Ωn by flipping the kth bit (thus∇kf corresponds to a discrete derivative
along the kth bit).

Observe that

∇kf(ω) =
∑

S⊆{1,...,n}

f̂(S) [χS(ω)− χS(σk(ω))] =
∑

S⊆{1,...,n},k∈S

2f̂(S) χS(ω),

from which it follows that for any S ⊆ [n],

∇̂kf(S) =

{
2f̂(S) if k ∈ S
0 otherwise

(IV.4)

Clearly, if f maps into {0, 1}, then Ik(f) := ‖∇kf‖1 and since ∇kf takes values
in {−1, 0, 1} in this case, we have ‖∇kf‖1 = ‖∇kf‖22. Applying Parseval’s formula to
∇kf and using (IV.4), one obtains the first statement of the proposition. The second
is obtained by summing over k and exchanging the order of summation.

Remark IV.1. If f maps into {−1, 1} instead, then one can easily check that Ik(f) =∑
S:k∈S f̂(S)2 and I(f) =

∑
S |S|f̂(S)2.

5 Monotone functions and their spectrum

It turns out that for monotone functions, there is an alternative useful spectral descrip-
tion of the influences.

Proposition IV.4. If f : Ωn → {0, 1} is monotone, then for all k

Ik(f) = 2f̂({k})

If f maps into {−1, 1} instead, then one has that Ik(f) = f̂({k}). (Observe that Parity
shows that the assumption of monotonicity is needed here; note also that the proof shows
that the weaker result with = replaced by ≥ holds in general.)

Proof. We prove only the first statement; the second is proved in the same way.

f̂({k}) := E
[
fχ{k}

]
= E

[
fχ{k}I{k 6∈P}

]
+ E

[
fχ{k}I{k∈P}

]

It is easily seen that the first term is 0 (independent of whether f is monotone or not)

and the second term is Ik(f)
2

due to monotonicity.
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Remark IV.2. This tells us that, for monotone functions mapping into {−1, 1}, the sum
in Theorem I.5 is exactly the total weight of the level 1 Fourier coefficients, that is, the
energy spectrum at 1, Ef (1). (If we map into {0, 1} instead, there is simply an extra
irrelevant factor of 4.) So Theorem I.5 and Propositions IV.1 and IV.4 imply that for
monotone functions, if the energy spectrum at 1 goes to 0, then this is true for any
fixed level. In addition, Propositions IV.1 (with k = 1) and IV.4 easily imply that for
monotone functions the converse of Theorem I.5 holds.

Another application of Proposition IV.4 gives a general upper bound for the total
influence for monotone functions.

Proposition IV.5. If f : Ωn → {−1, 1} or {0, 1} is monotone, then

I(f) ≤ √n.

Proof. If the image is {−1, 1}, then by Proposition IV.4, we have

I(f) =
n∑

k=1

Ik(f) =
n∑

k=1

f̂({k}).

By the Cauchy-Schwarz inequality, this is at most (
∑n

k=1 f̂ 2({k}))1/2
√

n. By Parseval’s
formula, the first term is at most 1 and we are done. If the image is {0, 1}, the above
proof can easily be modified or one can deduce it from the first case since the total
influence of the corresponding ±1-valued function is the same.

Remark IV.3. The above result with some universal c on the right hand side follows
(for odd n) from an earlier exercise showing that Majority has the largest influence
together with the known influences for Majority. However, the above argument yields
a more direct proof of the

√
n bound.



Exercise sheet of chapter IV

Exercise IV.1. Prove the discrete Poincaré inequality, Theorem I.1, using the spec-
trum.

Exercise IV.2. Compute the Fourier coefficients for the indicator function that there
are all 1’s.

Exercise IV.3. Show that all even size Fourier coefficients for the Majority function
are 0. Can you extend this result to a broader class of Boolean functions?

Exercise IV.4. For the Majority function MAJn, find the limit (as the number of
voters n goes to infinity) of the following quantity (total weight of the level-3 Fourier
coefficients)

EMAJn(3) :=
∑

|S|=3

M̂AJn(S)2 .

Exercise IV.5. Let {fn} be a sequence of Boolean functions which is noise sensitive
and {gn} be a sequence of Boolean functions which is noise stable. Show that {fn} and
{gn} are asymptotically uncorrelated.

Exercise IV.6 (Another equivalent definition of noise sensitivity). Assume that {An}
is a noise sensitive sequence. (This of course means that the indicator functions of these
events is a noise sensitive sequence.)

(a) Show for each ǫ > 0, we have that P
[
ωǫ ∈ An

∣∣ ω
]
− P

[
An

]
approaches 0 in

probability.
Hint: use the Fourier representation.

(b) Can you show the above implication without using the Fourier representation?

(c) Discuss if this implication is surprising.

(d) Show that the condition in part (a) implies that the sequence is noise sensitive
directly without the Fourier representation.

Exercise IV.7. How does the spectrum of a generic Boolean function look? Use this
to give an alternative answer to the question asked in problem I.14 of Chapter I.
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Exercise IV.8. (Open exercise). For Boolean functions, can one have ANY (reason-
able) shape of the energy spectrum or are there restrictions?

For the next exercises, we introduce the following functional which measures the
stability of Boolean functions. For any Boolean function f : Ωn → {−1, 1}, let

Sf : ǫ 7→ P
[
f(ω) 6= f(ωǫ)

]
.

Obviously, the smaller Sf is, the more stable f is.

Exercise IV.9. Express the functional Sf in terms of the Fourier expansion of f .

By a balanced Boolean function, we mean one which takes its two possible values
each with probability 1/2.

Exercise IV.10. Among balanced Boolean functions, does there exist some function
f ∗ which is “stablest” in the sense that for any balanced Boolean function f and any
ǫ > 0,

Sf∗(ǫ) ≤ Sf (ǫ) ?

If yes, describe the set of these extremal functions and prove that these are the only
ones.

Problem IV.11. In this problem, we wish to understand the asymptotic shape of the
energy spectrum for MAJn.

(a) Show that for all ǫ ≥ 0,

lim
n→∞

SMAJn(ǫ) =
1

2
− arcsin(1− ǫ)

π
=

arccos(1− ǫ)

π
.

Hint: The relevant limit is easily expressed as the probability that a certain 2-
dimensional Gaussian variable (with a particular correlation structure) falls in a
certain area of the plane. One can write down the corresponding density function
and this probability as an explicit integral but this integral does not seem so easy
to evaluate. However, this Gaussian probability can be computed directly by
representing the joint distribution in terms of two independent Gaussians.

Note that the above limit immediately implies that for fn = MAJn,

lim
n→∞

E(fn(ω)fn(ωǫ)) =
2 arcsin(1− ǫ)

π
.

(b) Deduce from (a) and the Taylor expansion for arcsin(x) the limiting value, as

n → ∞ of EMAJn(k) =
∑
|S|=k M̂AJn(S)2 for all k ≥ 1. Check that the answer

is consistent with the values obtained earlier for k = 1 and k = 3 (Exercise IV.4).



Chapter V

Hypercontractivity and its
applications

In this lecture, we will prove the main theorems about influences stated in Chapter I.
As we will see, these proofs rely on techniques imported from harmonic analysis, in
particular hypercontractivity. As we will see later in this chapter and in Chapter VII,
these types of proofs extend to other contexts which will be of interest to us: noise
sensitivity and sub-Gaussian fluctuations.

1 Heuristics of proofs

All the subsequent proofs which will be based on hypercontractivity will have more or
less the same flavor. Let us now explain in the particular case of Theorem I.2 what the
overall scheme of the proof is.

Recall that we want to prove that there exists a universal constant c > 0 such that
for any function f : Ωn → {0, 1}, one of its variables has influence at least c log n Var(f)

n
.

Let f be a Boolean function. Suppose all its influences Ik(f) are “small” (this would
need to be made quantitative). This means that ∇kf must have small support. Using

the intuition coming from the Weyl-Heisenberg uncertainty, ∇̂kf should then be quite
spread out in the sense that most of its spectral mass should be concentrated on high
frequencies.

This intuition, which is still vague at this point, says that having small influences
pushes the spectrum of ∇kf towards high frequencies. Now, summing up as we did in
Section 4 of Chapter IV, but restricting ourselves only to frequencies S of size smaller
than some large (well-chosen) 1≪ M ≪ n, one easily obtains
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∑

0<|S|<M

f̂(S)2 ≤ 4
∑

0<|S|<M

|S|f̂(S)2

=
∑

k

∑

0<|S|<M

∇̂kf(S)2

”≪ ”
∑

k

‖∇̂kf‖22

= I(f) , (V.1)

where, in the third line, we used the informal statement that ∇̂kf should be supported
on high frequencies if f has small influences. Now recall (or observe) that

∑

|S|>0

f̂(S)2 = Var(f) .

Therefore, in the above equation (V.1), if we are in the case where a positive fraction
of the Fourier mass of f is concentrated below M , then (V.1) says that I(f) is much
larger than Var(f). In particular, at least one of the influences has to be “large”. If, on
the other hand, we are in the case where most of the spectral mass of f is supported
on frequencies of size higher than M , then we also obtain that I(f) is large by using
the formula:

I(f) = 4
∑

S

|S|f̂(S)2 .

Remark V.1. Note that these heuristics suggest that there is a subtle balance between∑
k Ik(f) = I(f) and supk Ik(f). Namely, if influences are all small (i.e. ‖ · ‖∞ is small),

then their sum on the other hand has to be “large”. The right balance is exactly
quantified by Theorem I.3.

Of course it now remains to convert the above sketch into a proof. The main diffi-
culty in the above program is to obtain quantitative spectral information on functions
with values in {−1, 0, 1} knowing that they have small support. This is done ([KKL88])
using techniques imported from harmonic analysis, namely hypercontractivity.

2 About hypercontractivity

First, let us state what hypercontractivity corresponds to. Let (Kt)t≥0 be the heat kernel
on Rn. Hypercontractivity is a statement which quantifies how functions are regularized
under the heat flow. The statement, which goes back to a number of authors, can be
simply stated as follows:

Theorem V.1 (Hypercontractivity). Consider Rn with standard Gaussian measure. If
1 < q < 2, there is some t = t(q) > 0 (which does not depend on the dimension n) such
that for any f ∈ Lq(Rn),

‖Kt ∗ f‖2 ≤ ‖f‖q .
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The dependence t = t(q) is explicit but will not concern us in the Gaussian case.
Hypercontractivity is thus a regularization statement: if one starts with some initial
“rough” Lq function f outside of L2 and waits long enough (t(q)) under the heat flow,
then we end up being in L2 with a good control on its L2 norm. We will not prove nor
use Theorem V.1.

This concept has an interesting history as is nicely explained in O’Donnell’s lecture
notes (see [O’D]). It was originally invented by Nelson in [Nel66] where he needed
regularization estimates on Free fields (which are the building blocks of quantum field
theory) in order to apply these in “constructive field theory”. It was then generalized by
Gross in his elaboration of logarithmic Sobolev inequalities ([Gro75]), which is an im-
portant tool in analysis. Hypercontractivity is intimately related to these Log-Sobolev
inequalities and thus has many applications in the theory of Semigroups, mixing of
Markov chains and other topics.

We now state the result in the case which concerns us, namely the hypercube. For
any ρ ∈ [0, 1], let Tρ be the following noise operator on the set of functions on
the hypercube: recall from Chapter I that if ω ∈ Ωn, we denote by ωǫ an ǫ-noised
configuration of ω. For any f : Ωn → R, we define Tρf : ω 7→ E

[
f(ω1−ρ)

∣∣ ω
]
. This

noise operator acts in a very simple way on the Fourier coefficients, as the reader can
check:

Tρ : f =
∑

S

f̂(S) χS 7→
∑

S

ρ|S|f̂(S) χS .

We have the following analogue of Theorem V.1

Theorem V.2 (Bonami-Gross-Beckner). For any f : Ωn → R and any ρ ∈ [0, 1],

‖Tρf‖2 ≤ ‖f‖1+ρ2 .

The analogy with the classical result V.1 is clear: the heat flow is replaced here
by the random walk on the hypercube. You can find the proof of Theorem V.2 in the
appendix attached to the present chapter.

Remark V.2. The term hypercontractive refers here to the fact that one has an operator
which maps Lq into L2 (q < 2), which is a contraction.

——————–

Before going into the detailed proof of Theorem I.2, let us see why Theorem V.2
provides us with the type of spectral information we need. In the above sketch, we
assumed that all influences were small. This can be written as

Ik(f) = ‖∇kf‖1 = ‖∇kf‖22 ≪ 1 ,

for any k ∈ [n]. Now if one applies the hypercontractive estimate to these functions
∇kf for some fixed 0 < ρ < 1, we obtain that

‖Tρ(∇kf)‖2 ≤ ‖∇kf‖1+ρ2 = ‖∇kf‖2/(1+ρ2)
2 ≪ ‖∇kf‖2 (V.2)



44 CHAPTER V. HYPERCONTRACTIVITY AND ITS APPLICATIONS

where, for the equality, we used once again that ∇kf ∈ {−1, 0, 1}. After squaring, this
gives on the Fourier side,

∑

S

ρ2|S|∇̂kf(S)2 ≪
∑

S

∇̂kf(S)2 .

This shows (under the assumption that Ik(f) is small) that the spectrum of ∇kf is
indeed mostly concentrated on high frequencies.

Remark V.3. We point out that Theorem V.2 in fact tells us that any function with
small support has its frequencies concentrated on large sets as follows. It is easy to see
that given any p < 2, if a function h on a probability space has very small support,
then its Lp norm is much smaller than its L2 norm. Using Theorem V.2, we would then
have for such a function that

‖Tρ(h)‖2 ≤ ‖h‖1+ρ2 ≪ ‖h‖2 ,

yielding that ∑

S

ρ2|S|ĥ(S)2 ≪
∑

S

ĥ(S)2

which can only occur if h has its frequencies concentrated on large sets. From this point
of view, one also sees that under the small influence assumption, one did not actually
need the third term in (V.2) in the above outline.

3 Proof of the KKL Theorems on the influences of

Boolean functions

We will start by proving Theorem I.2, and then Theorem I.3. In fact, it turns out that
one can recover Theorem I.2 directly from Theorem I.3; see the exercises. Nevertheless,
since the proof of Theorem I.2 is slightly simpler, we start with this one.

3.1 Proof of Theorem I.2

Let f : Ωn → {0, 1}. Recall that we want to show that there is some k ∈ [n] such that

Ik(f) ≥ cVar(f)
log n

n
, (V.3)

for some universal constant c > 0.
We divide the analysis into the following two cases.

Case 1:
Suppose that there is some k ∈ [n] such that Ik(f) ≥ n−3/4 Var(f). Then the bound

V.3 is clearly satisfied for a small enough c > 0.
Case 2:
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Now, if f does not belong to the first case, this means that for all k ∈ [n],

Ik(f) = ‖∇kf‖22 ≤ Var(f)n−3/4 . (V.4)

Following the above heuristics, we will show that under this assumption, most of
the Fourier spectrum of f is supported on high frequencies. Let M ≥ 1, whose value
will be chosen later. We wish to bound from above the bottom part (up to M) of the
Fourier spectrum of f .

∑

1≤|S|≤M

f̂(S)2 ≤
∑

1≤|S|≤M

|S|f̂(S)2

≤ 22M
∑

|S|≥1

(1/2)2|S||S|f̂(S)2

=
1

4
22M

∑

k

‖T1/2(∇kf)‖22 ,

(see Section 4 of Chapter IV). Now by applying hypercontractivity (Theorem V.2) with
ρ = 1/2 to the above sum, we obtain

∑

1≤|S|≤M

f̂(S)2 ≤ 1

4
22M

∑

k

‖∇kf‖25/4

≤ 22M
∑

k

Ik(f)8/5

≤ 22M n Var(f)8/5n
−3
4
· 8
5

≤ 22M n−1/5 Var(f) ,

where we used the assumption V.4 and the obvious fact that Var(f)8/5 ≤ Var(f) (recall
Var(f) ≤ 1 since f is Boolean). Now with M := ⌊ 1

20
log2 n⌋, this gives

∑

1≤|S|≤ 1
20

log2 n

f̂(S)2 ≤ n1/10−1/5 Var(f) = n−1/10 Var(f) .

This shows that under our above assumption, most of the Fourier spectrum is con-
centrated above Ω(log n). We are now ready to conclude:
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sup
k

Ik(f) ≥
∑

k Ik(f)

n
=

4
∑
|S|≥1 |S|f̂(S)2

n

≥ 1

n

[ ∑

|S|>M

|S|f̂(S)2
]

≥ M

n

[ ∑

|S|>M

f̂(S)2
]

=
M

n

[
Var(f)−

∑

1≤|S|≤M

f̂(S)2
]

≥ M

n
Var(f)

[
1− n−1/10

]

≥ c1 Var(f)
log n

n
,

with c1 = 1
20 log 2

(1 − 2−1/10). By combining with the constant given in case 1, this
completes the proof.

Remark V.4. We did not try here to optimize the proof in order to find the best possible
universal constant c > 0. Note though, that even without optimizing at all, the constant
we obtain is not that bad.

3.2 Proof of Theorem I.3

We now proceed to the proof of the stronger result, Theorem I.3, which states that
there is a universal constant c > 0 such that for any f : Ωn → {0, 1},

‖I(f)‖ = ‖Inf(f)‖1 ≥ c Var(f) log
1

‖Inf(f)‖∞
.

The strategy is very similar. Let f : Ωn → {0, 1} and let δ := ‖Inf(f)‖∞ =
supk Ik(f). Assume for the moment that δ ≤ 1/1000. As in the above proof, we start
by bounding the bottom part of the spectrum up to some integer M (whose value will
be fixed later). Exactly in the same way as above, one has

∑

1≤|S|≤M

f̂(S)2 ≤ 22M
∑

k

Ik(f)8/5

≤ 22Mδ3/5
∑

k

Ik(f) = 22Mδ3/5 I(f) .
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Now,

Var(f) =
∑

|S|≥1

f̂(S)2 ≤
∑

1≤|S|≤M

f̂(S)2 +
1

M

∑

|S|>M

|S|f̂(S)2

≤
[
22Mδ3/5 +

1

M

]
I(f) .

Choose M := 3
10

log2(
1
δ
)− 1

2
log2 log2(

1
δ
). Since δ < 1/1000, it is easy to check that

M ≥ 1
10

log2(1/δ) which leads us to

Var(f) ≤
[

1

log2(1/δ)
+

10

log2(1/δ)

]
I(f)

(V.5)

which gives

I(f) = ‖Inf(f)‖1 ≥
1

11 log 2
Var(f) log

1

‖Inf(f)‖∞
.

This gives us the result for δ ≤ 1/1000.
Next the discrete Poincaré inequality, which says that I(f) ≥ Var(f), tells us that

the claim is true for δ ≥ 1/1000 if we take c to be 1/ log 1000. Since this is larger than
1

11 log 2
, we obtain the result with the constant c = 1

11 log 2
.

4 KKL away from the uniform measure

In Chapter III (on sharp thresholds), we needed an extension of the above KKL Theo-
rems to the p-biased measures Pp = (pδ1 + (1− p)δ−1)

⊗n. These extensions are respec-
tively Theorems III.2 and III.3.

A first natural idea in order to extend the above proofs would be to extend the
hypercontractive estimate (Theorem V.2) to these p-biased measures Pp. This extension
of Bonami-Gross-Beckner is possible, but it turns out that the control it gives gets worse
near the edges (p close to 0 or 1). This is problematic since both in Theorems III.2 and
III.3, we need bounds which are uniform in p ∈ [0, 1].

Hence, one needs a different approach to extend the KKL Theorems. A nice ap-
proach was provided in [BKK+92], where they prove the following general theorem.

Theorem V.3 ([BKK+92]). There exists a universal c > 0 such that for any measurable
function f : [0, 1]n → {0, 1}, there exists a variable k such that

Ik(f) ≥ c Var(f)
log n

n
.

Here the ‘continuous’ hypercube is endowed with the uniform (Lebesgue) measure and
for any k ∈ [n], Ik(f) denotes the probability that f is not almost-surely constant on
the fiber given by (xi)i6=k.
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In other words,

Ik(f) = P
[
Var

(
f(x1, . . . , xn)

∣∣ xi, i 6= k
)

> 0
]
.

It is clear how to obtain Theorem III.2 from the above theorem. If p ∈ [0, 1] and
f : Ωn → {0, 1}, consider f̄p : [0, 1]n → {0, 1} defined by

f̄p(x1, . . . , xn) = f((1xi<p − 1xi≥p)i∈[n]) .

Friedgut noticed in [Fri04] that one can recover Theorem V.3 from Theorem III.2.
The first idea is to use a symmetrization argument in such a way that the problem
reduces to the case of monotone functions. Then, the main idea is the approximate the
uniform measure on [0, 1] by the dyadic random variable

XM : (x1, . . . , xM) ∈ {−1, 1}M 7→
M∑

m=1

xm + 1

2
2−m .

One can then approximate f : [0, 1]n → {0, 1} by the Boolean function f̂M defined on
{−1, 1}M×n by

f̂M(x1
1, . . . , x

1
M , . . . , xn

1 , . . . , x
n
M) := f(X1

M , . . . , Xn
M) .

Still (as mentioned in the above heuristics) this proof requires two technical steps: a
monotonization procedure and an “approximation” step (going from f to f̂M). Since in
our applications to sharp thresholds we used Theorems III.2 and III.3 only in the case
of monotone functions, for the sake of simplicity we will not present the monotonization
procedure in these notes.

Furthermore, it turns out that for our specific needs (the applications in Chapter
III), we do not need to deal with the approximation part either. The reason is that for
any Boolean function f , the function p 7→ Ip

k(f) is continuous. Hence it is enough to
obtain uniform bounds on Ip

k(f) for dyadic values of p (i.e. p ∈ {m2−M} ∩ [0, 1]).

See the exercises for the proof of Theorems III.2 and III.3 when f is assumed to be
monotone (problem V.4).

Remark V.5. We mentioned above that generalizing hypercontractivity would not allow
us to obtain uniform bounds (with p taking any value in [0, 1]) on the influences. It
should be noted though that Talagrand obtained ([Tal94]) results similar to Theorems
III.2 and III.3 by somehow generalizing hypercontractivity, but along a different line.
Finally, let us point out that both Talagrand ([Tal94]) and Friedgut and Kalai ([FK96])
obtain sharper versions of Theorems III.2 and III.3 where the constant c = cp in fact
improves (i.e. blows up) near the edges.
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5 The noise sensitivity theorem

In this section, we prove the milestone Theorem I.5 from [BKS99]. Before recalling
what the statement is, let us define the following functional on Boolean functions. For
any f : Ωn → {0, 1}, let

H(f) :=
∑

k

Ik(f)2 = ‖Inf(f)‖22 .

Recall the Benjamini-Kalai-Schramm Theorem.

Theorem V.4 ([BKS99]). Consider a sequence of Boolean functions fn : Ωmn → {0, 1}.
If

H(fn) =
mn∑

k=1

Ik(f)2 → 0

as n→∞, then {fn}n is noise sensitive.

We will in fact prove this theorem under a stronger condition, namely that H(fn) ≤
(mn)−δ for some exponent δ > 0. Without this assumption of “polynomial decay” on
H(fn), the proof is more technical and relies on estimates obtained by Talagrand. See
the remark at the end of this proof. For our application to the noise sensitivity of
percolation (see Chapter VI), this stronger assumption will be satisfied and hence we
stick to this simpler case in these notes.

The assumption of polynomial decay in fact enables us to prove the following more
quantitative result.

Proposition V.5 ([BKS99]). For any δ > 0, there exists a constant M = M(δ) > 0
such that if fn : Ωmn → {0, 1} is any sequence of Boolean functions satisfying

H(fn) ≤ (mn)−δ ,

then ∑

1≤|S|≤M log (mn)

f̂n(S)2 → 0 .

Using Proposition IV.1, this proposition obviously implies Theorem I.5 when H(fn)
decays as assumed. Furthermore, this gives a quantitative “logarithmic” control on the
noise sensitivity of such functions.

Proof. The strategy will be very similar to the one used in the KKL Theorems (even
though the goal is very different). The main difference here is that the regularization
term ρ used in the hypercontractive estimate must be chosen in a more delicate way
than in the proofs of KKL results (where we simply took ρ = 1/2).

Let M > 0 be a constant whose value will be chosen later.
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∑

1≤|S|≤M log(mn)

f̂n(S)2 ≤ 4
∑

1≤|S|≤M log(mn)

|S|f̂n(S)2 =
∑

k

∑

1≤|S|≤M log(mn)

∇̂kfn(S)2

≤
∑

k

(
1

ρ2
)M log(mn)‖Tρ(∇kfn)‖22

≤
∑

k

(
1

ρ2
)M log(mn)‖∇kfn‖21+ρ2 .

by Theorem V.2.

Now, since fn is Boolean, one has ‖∇kfn‖1+ρ2 = ‖∇kfn‖2/(1+ρ2)
2 , hence

∑

0<|S|<M log(mn)

f̂n(S)2 ≤ ρ−2M log(mn)
∑

k

‖∇kfn‖4/(1+ρ2)
2 = ρ−2M log(mn)

∑

k

Ik(fn)2/(1+ρ2)

≤ ρ−2M log(mn)(mn)ρ2/(1+ρ2)
(∑

k

Ik(fn)2
) 1

1+ρ2

(by Hölder)

= ρ−2M log(mn)(mn)ρ2/(1+ρ2) H(fn)
1

1+ρ2

≤ ρ−2M log(mn)(mn)
ρ2

−δ

1+ρ2 .

Now by choosing ρ ∈ (0, 1) close enough to 0, and then by choosing M = M(δ)
small enough, we obtain the desired logarithmic noise sensitivity.

We now give some indications of the proof of Theorem I.5 in the general case.
Recall that Theorem I.5 is true independently of the speed of convergence of H(fn) =∑

k Ik(fn)2. The proof of this general result is a bit more involved than the one we gave
here. The main lemma is as follows:

Lemma V.6 ([BKS99]). There exist absolute constants Ck such that for any monotone
Boolean function f and for any k ≥ 2, one has

∑

|S|=k

f̂(S)2 ≤ CkH(f) (− logH(f))k−1 .

This lemma “mimics” a result from Talagrand’s [Tal96]. Indeed, Proposition 2.3 in
[Tal96] can be translated as follows: for any monotone Boolean function f , its level-2
Fourier weight (i.e.

∑
|S|=2 f̂(S)2) is bounded by O(1)H(f) log(1/H(f)). Lemma V.6

obviously implies Theorem I.5 in the monotone case, while the general case can be de-
duced by a monotonization procedure. It is worth pointing out that hypercontractivity
is used in the proof of this lemma.



Appendix: proof of
hypercontractivity

The purpose of this appendix is to show that we are not using a giant “hammer” but
rather that this needed inequality arising from Fourier analysis is understandable from
first principles. In fact, historically, the proof by Gross of the Gaussian case first looked
at the case of the hypercube and so we have the tools to obtain the Gaussian case should
we want to. Before starting the proof, observe that for ρ = 0 (where 00 is defined to be
1), this simply reduces to |

∫
f | ≤

∫
|f |.

Proof of Theorem V.2.

0.1 Tensorization

In this first subsection, we show that it is sufficient, via a tensorization procedure, that
the result holds for n = 1 in order for us to be able to conclude by induction the result
for all n.

The key step of the argument is the following lemma.

Lemma V.7. Let q ≥ p ≥ 1, (Ω1, µ1), (Ω2, µ2) be two finite probability spaces, Ki :
Ωi × Ωi → R and assume that for i = 1, 2

‖Ti(f)‖Lq(Ωi,µi) ≤ ‖f‖Lp(Ωi,µi)

where Ti(f)(x) :=
∫
Ωi

f(y)Ki(x, y)dµi(y). Then

‖T1 ⊗ T2(f)‖Lq((Ω1,µ1)×(Ω2,µ2)) ≤ ‖f‖Lp((Ω1,µ1)×(Ω2,µ2))

where T1 ⊗ T2(f)(x1, x2) :=
∫
Ω1×Ω2

f(y1, y2)K1(x1, y1)K2(x2, y2)dµ1(y1)× dµ2(y2).

Proof. One first needs to recall Minkowski’s inequality for integrals, which states that,
for g ≥ 0 and r ∈ [1,∞), we have

(∫ (∫
g(x, y)dν(y)

)r

dµ(x)

)1/r

≤
∫ (∫

g(x, y)rdµ(x)

)1/r

dν(y).
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(Note that when ν consists of 2 point masses each of size 1, then this reduces to the
usual Minkowski inequality.)

One can think of T1 acting on functions of both variables by leaving the second
variable untouched and analogously for T2. It is then easy to check that T1⊗T2 = T1◦T2.
By thinking of x2 as fixed, our assumption on T1 yields

‖T1 ⊗ T2(f)‖qLq((Ω1,µ1)×(Ω2,µ2))
≤

∫

Ω2

(∫

Ω1

|T2(f)|pdµ1(x1)

)q/p

dµ2(x2).

(It might be helpful here to think of T2(f)(x1, x2) as a function gx2(x1) where x2 is
fixed).

Applying Minkowski’s integral inequality to |T2(f)|p with r = q/p, this in turn is at
most [∫

Ω1

(∫

Ω2

|T2(f)|qdµ2(x2)

)p/q

dµ1(x1)

]q/p

.

Fixing now the x1 variable and applying our assumption on T2 gives that this is at most
‖f‖qLp((Ω1,µ1)×(Ω2,µ2))

, as desired.

The next key observation, easily obtained by expanding and interchanging of sum-
mation, is that our operator Tρ acting on functions on Ωn corresponds to an operator
of the type dealt with in the previous lemma with K(x, y) being

∑

S⊆{1,...,n}

ρ|S|χS(x)χS(y).

In addition, it is easily checked that the function K for the Ωn is simply an n-fold
product of the function for the n = 1 case.

Assuming the result for the case n = 1, Lemma V.7 and the above observations
allow us to conclude by induction the result for all n.

0.2 The n = 1 case

We now establish the case n = 1. We abbreviate Tρ by T .
Since f(x) = (f(−1) + f(1))/2 + (f(1) − f(−1))/2 x, we have Tf(x) = (f(−1) +

f(1))/2+ ρ(f(1)− f(−1))/2 x. Denoting (f(−1)+ f(1))/2 by a and (f(1)− f(−1))/2
by b, it suffices to show that for all a and b, we have

(a2 + ρ2b2)(1+ρ2)/2 ≤ |a + b|1+ρ2
+ |a− b|1+ρ2

2
.

Using ρ ∈ [0, 1], the case a = 0 is immediate. For the case, a 6= 0, it is clear we can
assume a > 0. Dividing both sides by a1+ρ2

, we need to show that

(1 + ρ2y2)(1+ρ2)/2 ≤ |1 + y|1+ρ2
+ |1− y|1+ρ2

2
(V.6)
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for all y and clearly it suffices to assume y ≥ 0.
We first do the case that y ∈ [0, 1). By the generalized Binomial formula, the right

hand side of (V.6) is

1

2

[
∞∑

k=0

(
1 + ρ2

k

)
yk +

∞∑

k=0

(
1 + ρ2

k

)
(−y)k

]
=
∞∑

k=0

(
1 + ρ2

2k

)
y2k.

For the left hand side of (V.6), we first note the following. For 0 < λ < 1, a simple
calculation shows that the function g(x) = (1 + x)λ − 1− λx has a negative derivative
on [0,∞) and hence g(x) ≤ 0 on [0,∞).

This yields that the left hand side of (V.6) is at most

1 +

(
1 + ρ2

2

)
ρ2y2

which is precisely the first two terms of the right hand side of (V.6). On the other
hand, the binomial coefficients appearing in the other terms are nonnegative, since in
the numerator there are an even number of terms with the first two terms being positive
and all the other terms being negative. This verifies the desired inequality for y ∈ [0, 1).

The case y = 1 for (V.6) follows by continuity.
For y > 1, we let z = 1/y and note, by multiplying both sides of (V.6) by z1+ρ2

, we
need to show

(z2 + ρ2)(1+ρ2)/2 ≤ |1 + z|1+ρ2
+ |1− z|1+ρ2

2
. (V.7)

Now, expanding (1 − z2)(1 − ρ2), one sees that z2 + ρ2 ≤ 1 + z2ρ2 and hence the
desired inequality follows precisely from (V.6) for the case y ∈ (0, 1) already proved.
This completes the n = 1 case and thereby the proof.
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Exercise sheet of Chapter V

Exercise V.1. Find a direct proof that Theorem I.3 implies Theorem I.2.

Exercise V.2. Is it true that the smaller the influences are, the more noise sensitive
the function is?

Exercise V.3. Prove that Theorem V.3 indeed implies Theorem III.2.
Hint: use the natural projection.

Problem V.4. In this problem, we prove Theorems III.2 and III.3 for the monotone
case.

1. Show that Theorem III.3 implies III.2 and hence one needs to prove only Theorem
III.3 (This is the basically the same as Exercise V.1).

2. Show that it suffices to prove the result when p = k/2ℓ for integers k and ℓ.

3. Let Π : {0, 1}ℓ → {0, 1/2ℓ, . . . , (2ℓ − 1)/2ℓ} by Π(x1, . . . , xℓ) =
∑ℓ

i=1 xi/2i. Ob-
serve that if x is uniform, then Π(x) is uniform on its range and that P(Π(x) ≥
i/2ℓ) = (2ℓ − i)/2ℓ.

4. Define g : {0, 1}ℓ → {0, 1} by g(x1, . . . , xℓ) := I{Π(x)≥1−p}. Note that P(g(x) =
1) = p.

5. Define f̃ : {0, 1}nℓ → {0, 1} by

f̃(x1
1, . . . , x

1
ℓ , x

2
1, . . . , x

2
ℓ , . . . , x

n
1 , . . . , x

n
ℓ ) = f(g(x1

1, . . . , x
1
ℓ), g(x2

1, . . . , x
2
ℓ), . . . , g(xn

1 , . . . , x
n
ℓ )).

Observe that f̃ (defined on ({0, 1}nℓ, π1/2)) and f (defined on ({0, 1}n, πp)) have
the same distribution and hence the same variance.

6. Show (or observe) that I(r,j)(f̃) ≤ Ip
r(f) for each r = 1, . . . , n and j = 1, . . . , ℓ.

Deduce from Theorem I.3 that
∑

r,j

I(r,j)(f̃) ≥ cVar(f) log(1/δp)

where δp := maxi I
p
i (f) where c comes from Theorem I.3.
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7. (Key step). Show that for each r = 1, . . . , n and j = 1, . . . , ℓ,

I(r,j)(f̃) ≤ Ip
r(f)/2j−1.

8. Combine parts 6 and 7 to complete the proof.



Chapter VI

First evidence of noise sensitivity of
percolation

In this lecture, our goal is to collect some of the facts and theorems we have seen so far
in order to conclude that percolation crossings are indeed noise sensitive. Recall from
the “BKS” Theorem (Theorem I.5) that it is enough for this purpose to prove that
influences are “small” in the sense that

∑
k Ik(fn)2 goes to zero.

In the first section, we will deal with a careful study of influences in the case of
percolation crossings on the triangular lattice. Then, we will treat the case of Z2,
where conformal invariance is not known. Finally, we will speculate to what “extent”
percolation is noise sensitive.

This whole chapter should be considered somewhat of a “pause” in our program,
where we take the time to summarize what we have achieved so far in our understanding
of the noise sensitivity of percolation, and what remains to be done if one wishes to prove
things such as the existence of exceptional times in dynamical percolation.

1 Bounds on influences for crossing events in criti-

cal percolation on the triangular lattice

1.1 Setup

Fix a, b > 0, let us consider some rectangle [0, a · n] × [0, b · n], and let Rn be the set
of of hexagons in T which intersect [0, a · n]× [0, b · n]. Let fn be the event that there
is a left to right crossing event in Rn. (This is the same event as in Example 7 in
chapter I, but with Z2 replaced by T). By the RSW Theorem II.1, we know that {fn}
is non-degenerate. Conformal invariance tells us that E

[
fn

]
= P

[
fn = 1

]
converges as

n→∞. The limit is given by the so-called Cardy’s formula.

In order to prove that this sequence of Boolean functions {fn} is noise sensitive,
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we wish to study its influence vector Inf(fn) and we would like to prove that H(fn) =
‖Inf(fn)‖22 =

∑
Ik(fn)2 decays polynomially fast towards 0. (Recall that in these notes,

we gave a complete proof of Theorem I.5 only in the case where H(fn) decreases as an
inverse polynomial of the number of variables.)

1.2 Study of the set of influences

Let x be a site (i.e. a hexagon) in the rectangle Rn. One needs to understand

Ix(fn) := P
[
x is pivotal for fn

]

It is easy but crucial to note that if x is
at distance d from the boundary of Rn, in
order for x to be pivotal, the four-arm event
described in Chapter II (see Figure II.2) has
to be satisfied in the ball B(x, d) of radius
d around the hexagon x. See the figure on
the right.

In particular, this implies (still under the assumption that dist(x, ∂Rn) = d) that

Ix(fn) ≤ α4(d) = d−
5
4
+o(1) ,

where α4(d) denotes the probability of the four-arm event up to distance d. See Chapter
II. The statement

α4(R) = R−5/4+o(1)

implies that for any ǫ > 0, there exists a constant C = Cǫ, such that for all R ≥ 1,

α4(R) ≤ C R−5/4+ǫ .

The above bound gives us a very good control on the influences of the points in the
bulk of the domain (i.e. the points far from the boundary). Indeed, for any fixed δ > 0,
let ∆δ

n be the set of hexagons in Rn which are at distance at least δn from ∂Rn. Most
of the points in Rn (except a proportion O(δ) of these) lie in ∆δ

n, and for any such point
x ∈ ∆δ

n, one has by the above argument

Ix(fn) ≤ α4(δn) ≤ C (δn)−5/4+ǫ ≤ Cδ−5/4n−5/4+ǫ . (VI.1)

Therefore, the contribution of these points to H(fn) =
∑

k Ik(fn)2 is bounded by
O(n2)(Cδ−5/4n−5/4+ǫ)2 = O(δ−5/2n−1/2+2ǫ). As n→∞, this goes to zero polynomially
fast. Since this estimate concerns “almost” all points in Rn, it seems we are close to
proving the BKS criterion.
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1.3 Influence of the boundary

Still, in order to complete the above analysis, one has to estimate what the influence
of the points near the boundary is. The main difficulty here is that if x is close to
the boundary, the probability for x to be pivotal is not related anymore to the above
four-arm event. Think of the above figure when d gets very small compared to n. One
has to distinguish two cases:

• x is close to a corner. This will correspond to a two-arm event in a quarter-plane.

• x is close to an edge. This involves the three-arm event in the half-plane H.

Before detailing how to estimate the influence of points near the boundary, let us
start by giving the necessary background on the involved critical exponents.

The two-arm and three-arm events in H. For these particular events, it turns out
that the critical exponents are known to be universal: they are two of the very few crit-
ical exponents which are known also on the square lattice Z2. The derivations of these
types of exponents do not rely on SLE technology but are “elementary”. Therefore, in
this discussion, we will consider both lattices T and Z2.

The three-arm event in H corre-
sponds to the event that there are
three arms (two open arms and
one ‘closed’ arm in the dual) go-
ing from 0 to distance R and such
that they remain in the upper half-
plane. See the figure for a self-
explanatory definition. The two-
arm event corresponds to just hav-
ing one open and one closed arm.

Let α+
2 (R) and α+

3 (R) denote the probabilities of these events. As in chapter II, let
α+

2 (r, R) and α+
3 (r, R) be the natural extensions to the annulus case (i.e. the probability

that these events are satisfied in the annulus between radii r and R in the upper half-
plane).

We will rely on the following result, which goes back as far as we know to M.
Aizenman. See [Wer07] for a proof of this result.

Proposition VI.1. Both on the triangular lattice T and on Z2, one has that

α+
2 (r, R) ≍ (r/R)

and
α+

3 (r, R) ≍ (r/R)2 .

Note that, in these special cases, there are no o(1) correction terms in the exponent.
The probabilities are in this case known up to constants.
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The two-arm event in the quarter-plane. In this case, the corresponding exponent
is unfortunately not known on Z2, so we will need to do some work here in the next
section, where we will prove noise sensitivity of percolation crossings on Z2.

The two-arm event in a corner corresponds to
the event illustrated on the following picture.
We will use the following proposition:

Proposition VI.2 ([SW01]). If α++
2 (R) de-

notes the probability of this event, then

α++
2 (R) = R−2+o(1) ,

and with the obvious notations

α++
2 (r, R) = (r/R)2+o(1) .

Now, back to our study of influences, we are in good shape (at least for the triangular
lattice) since the two critical exponents arising from the boundary effects are larger than
the bulk exponent 5/4. This means that it is less likely for a point near the boundary
to be pivotal than for a point in the bulk. Therefore in some sense the boundary helps
us here.

More formally, summarizing the above facts, for any ǫ > 0, there is a constant
C = C(ǫ) such that for any 1 ≤ r ≤ R,

max{α4(r, R), α+
3 (r, R), α++

2 (r, R)} ≤ C(r/R)
5
4
−ǫ . (VI.2)

Now, if x is some hexagon in Rn, let n0 be the distance to the closest edge of ∂Rn

and let x0 be the point on ∂Rn such that dist(x, x0) = n0. Next, let n1 ≥ n0 be the
distance from x0 to the closest corner and let x1 be this closest corner. It is easy to see
that for x to be pivotal for fn, the following events all have to be satisfied:

• The four-arm event in the ball of radius n0 around x.

• The H-three-arm event in the annulus centered at x0 of radii 2n0 and n1.

• The corner-two-arm event in the annulus centered at x1 of radii 2n1 and n.

By independence on disjoint sets, one thus concludes that

Ix(fn) ≤ α4(n0) α+
3 (2n0, n1) α++

2 (2n1, n)

≤ O(1)n−5/4+ǫ .
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1.4 Noise sensitivity of crossing events

This uniform bound on the influences over the whole domain Rn enables us to conclude
that the BKS criterion is indeed verified. Indeed,

H(fn) =
∑

x∈Rn

Ix(fn)
2 ≤ Cn2(n−5/4+ǫ)2 = Cn−1/2+2ǫ , (VI.3)

where C = C(a, b, ǫ) is a universal constant. By taking ǫ < 1/4, this gives us the desired
polynomial decay on H(fn), which by Proposition V.5) implies

Theorem VI.3 ([BKS99]). The sequence of percolation crossing events {fn} on T is
noise sensitive.

We will give some other consequences (for example, to sharp thresholds) of the
above analysis on the influences of the crossing events in a later section.

2 The case of Z2 percolation

Let Rn denote similarly the Z2 rectangle closest to [0, a · n]× [0, b · n] and let fn be the
corresponding left-right crossing event (so here this corresponds exactly to example 7).
Here one has to face two main difficulties:

• The main one is that due to the missing ingredient of conformal invariance, one
does not have at our disposal the value of the four-arm critical exponent (which
is of course believed to be 5/4). In fact, even the existence of a critical exponent
is an open problem.

• The second difficulty (also due to the lack of conformal invariance) is that it is
now slightly harder to deal with boundary issues. Indeed, one can still use the
above bounds on α+

3 which are universal, but the exponent 2 for α++
2 is not known

for Z2. So this requires some more analysis.

Let us start by taking care of the boundary effects.

2.1 Handling the boundary effect

What we need to do in order to carry through the above analysis for Z2 is to ob-
tain a reasonable estimate on α++

2 . Fortunately, the following bound, which follows
immediately from Proposition VI.1, is sufficient.

α++
2 (r, R) ≤ O(1)

r

R
. (VI.4)

Now let e be an edge in Rn. We wish to bound from above Ie(fn). We will use
the same notation as in the case of the triangular lattice: recall the definitions of
n0, x0, n1, x1 there.
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We obtain in the same way

Ie(fn) ≤ α4(n0) α+
3 (2n0, n1) α++

2 (2n1, n) . (VI.5)

At this point, we need another universal exponent, which goes back also to M.
Aizenman:

Theorem VI.4 (M. Aizenman, see [Wer07]). Let α5(r, R) denote the probability that
there are 5 arms (with four of them being of ‘alternate colors’). Then there are some
universal constants c, C > 0 such that both for T and Z2, one has for all 1 ≤ r ≤ R,

c
( r

R

)2 ≤ α5(r, R) ≤ C
( r

R

)2
.

This result allows us to get a lower bound on α4(r, R). Indeed, it is clear that

α4(r, R) ≥ α5(r, R) ≥ Ω(1)α+
3 (r, R) . (VI.6)

In fact, one can obtain the following better lower bound on α4(r, R) which we will
need later.

Lemma VI.5. There exists some ǫ > 0 and some constant c > 0 such that for any
1 ≤ r ≤ R,

α4(r, R) ≥ c(r/R)2−ǫ .

Proof. There are several ways to see why this holds, none of them being either very
hard or very easy. One of them is to use Reimer’s inequality (see [Gri99]) which in
this case would imply that

α5(r, R) ≤ α1(r, R)α4(r, R) . (VI.7)

The RSW Theorem II.1 can be used to show that

α1(r, R) ≤ (r/R)α

for some positive α. By Theorem VI.4, we are done. [See [[GPS10], Section 2.2 as well
as the appendix] for more on these bounds.]

Combining (VI.5) with (VI.6), one obtains

Ie(fn) ≤ O(1)α4(n0)α4(2n0, n1)α
++
2 (2n1, n)

≤ O(1)α4(n1)
n1

n
,

where in the last inequality we used quasi-multiplicativity (Proposition II.3) as well as
the bound given by (VI.4).
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Recall that we want an upper
bound on H(fn) =

∑
Ie(fn)2. In

this sum over edges e ∈ Rn, let us
divide the set of edges into dyadic
annuli centered around the 4 cor-
ners as in the next picture.

Notice that there are O(1)22k edges in an annulus of radius 2k. This enables us to
bound H(fn) as follows:

∑

e∈Rn

Ie(fn)2 ≤ O(1)

log2 n+O(1)∑

k=1

22k
(
α4(2

k)
2k

n

)2

≤ O(1)
1

n2

∑

k≤log2 n+O(1)

24k α4(2
k)2 . (VI.8)

It now remains to obtain a good upper bound on α4(R), for all R ≥ 1.

2.2 An upper bound on the four-arm event in Z2

This turns out to be a rather non-trivial problem. Recall that we obtained an easy
lower bound on α4 using α5 (and Lemma VI.5 strengthens this lower bound). For an
upper bound, completely different ideas are required. On Z2, the following estimate is
available for the 4-arm event.

Proposition VI.6. For critical percolation on Z2, there exists constants ǫ, C > 0 such
that for any R ≥ 1, one has

α4(1, R) ≤ C
( 1

R

)1+ǫ

.

Before discussing where such an estimate comes from, let us see that it indeed
implies a polynomial decay for H(fn).

Recall equation (VI.8). Plugging in the above estimate, this gives us

∑

e∈Rn

Ie(fn)2 ≤ O(1)
1

n2

∑

k≤log2 n+O(1)

24k (2k)−2−2ǫ

≤ O(1)
1

n2
n2−2ǫ = O(1)n−2ǫ ,
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which implies the desired polynomial decay and thus the fact that {fn} is noise sensitive
by Proposition V.5).

Let us now discuss different approaches which enable one to prove Proposition VI.6.

(a) Kesten proved implicitly this estimate in his celebrated paper [Kes87]. His main
motivation for such an estimate was to obtain bounds on the corresponding critical
exponent which governs the so-called critical length.

(b) In [BKS99], in order to prove noise sensitivity of percolation using their criterion
on H(fn), the authors referred to [Kes87], but they also gave a completely different
approach which also yields this estimate.

Their alternative approach is very nice: finding an upper bound for α4(R) is
related to finding an upper bound for the influences for crossings of an R×R box.
For this, they noticed the following nice phenomenon: if a monotone function f
happens to be very little correlated with majority, then its influences have to be
small. The proof of this phenomenon uses for the first time in this context the
concept of “randomized algorithms”. For more on this approach, see Chapter
VIII, which is devoted to these types of ideas.

(c) In [SS10b], the concept of randomized algorithms is used in a more powerful way.
See again Chapter VIII. In this chapter, we provide a proof of this estimate in
Proposition VIII.8.

Remark VI.1. It turns out that that a multi-scale version of Proposition VI.6 stating

that α4(r, R) ≤ C
(

r
R

)1+ǫ

is also true. However, none of the three arguments given

above seem to prove this stronger version. A proof of this stronger version is given in
the appendix of [SS10a]. Since this multi-scale version is not needed until Chapter X,
we stated here only the weaker version.

3 Some other consequences of our study of influ-

ences

In the previous sections, we handled the boundary effects in order to check that H(fn)
indeed decays polynomially fast. Let us list some related results implied by this analysis.

3.1 Energy spectrum of fn

We start by a straightforward observation: since the fn are monotone, we have by
Proposition IV.4 that

f̂n({x}) =
1

2
Ix(fn) ,
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for any site x (or edge e) in Rn. Therefore, the bounds we obtained on H(fn) imply the
following control on the first layer of the energy spectrum of the crossing events {fn}.

Corollary VI.7. Let {fn} be the crossing events of the rectangles Rn.

• If we are on the triangular lattice T, then we have the bound

Efn(1) =
∑

|S|=1

f̂n(S)2 ≤ n−1/2+o(1) .

• On the square lattice Z2, we end up with the weaker estimate

Efn(1) ≤ C n−ǫ ,

for some ǫ, C > 0.

3.2 Sharp threshold of percolation

The above analysis gave an upper bound on
∑

k Ik(fn)2. As we have seen in the first
chapters, the total influence I(fn) =

∑
k Ik(fn) is also a very interesting quantity. Recall

that, by Russo’s formula, this is the quantity which shows “how sharp” the threshold
is for p 7→ Pp[fn = 1].

The above analysis allows us to prove the following.

Proposition VI.8. Both on T and Z2, one has

I(fn) ≍ n2α4(n) .

In particular, this shows that on T that

I(fn) ≍ n3/4+o(1) .

Remark VI.2. Since fn is defined on {−1, 1}O(n2), note that the Majority function
defined on the same hypercube has a much sharper threshold than the percolation
crossings fn.

Proof. We first derive an upper bound on the total influence. In the same vein (i.e.,
using dyadic annuli and quasi-multiplicativity) as we derived (VI.8) and with the same
notation one has

I(fn) =
∑

e

Ie(fn) ≤
∑

e

O(1)α4(n1)
n1

n

≤ O(1)
1

n

∑

k≤log2 n+O(1)

23kα4(2
k) .
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Now, and this is the main step here, using quasi-multiplicativity one has α4(2
k) ≤

O(1) α4(n)
α4(2k ,n)

, which gives us

I(fn) ≤ O(1)
α4(n)

n

∑

k≤log2 n+O(1)

23k 1

α4(2k, n)

≤ O(1)
α4(n)

n

∑

k≤log2 n+O(1)

23k n2

22k
since α4(r, R) ≥ α5(r, R) ≍ (r/R)−2

≤ O(1)n α4(n)
∑

k≤log2 n+O(1)

2k

≤ O(1)n2α4(n)

as desired.
For the lower bound on the total influence, we proceed as follows. One obtains

a lower bound by just summing over the influences of points whose distance to the
boundary is at least n/4. It would suffice if we knew that for such edges or hexagons,
the influence is at least a constant times α4(n). This is in fact known to be true. It
is not very involved and is part of the folklore results in percolation. However, it still
would lead us too far from our topic. The needed technique is known under the name
of separation of arms and is clearly related to the statement of quasi-multiplicativity.
See [Wer07] for more details.

4 Quantitative noise sensitivity

In this chapter, we have proved that the sequence of crossing events {fn} is noise
sensitive. This can be roughly translated as follows: for any fixed level of noise ǫ >
0, as n → ∞, the large scale clusters of ω in the window [0, n]2 are asymptotically
independent of the large clusters of ωǫ.

Remark VI.3. Note that this picture is correct, but in order to make it rigorous, this
would require some work, since so far we only worked with left-right crossing events.
The non-trivial step here is to prove that in some sense, in the scaling limit n→∞, any
macroscopic property concerning percolation (e.g., diameter of clusters) is measurable
with respect to the σ-algebra generated by the crossing events. This is a rather subtle
problem since we need to make precise what kind of information we keep in what we
call the “scaling limit” of percolation (or subsequential scaling limits in the case of
Z2). An example of something which is not present in the scaling limit is whether one
has more open sites than closed ones since by noise sensitivity we know that this is
asymptotically uncorrelated with crossing events. We will not need to discuss these
notions of scaling limits more in these lecture notes, since the focus is mainly on the
discrete model itself including the model of dynamical percolation which is presented
at the end of these lecture notes.
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At this stage, a natural question to ask is to what extent the percolation picture is
sensitive to noise. In other words, can we let the noise ǫ = ǫn go to zero with the “size
of the system” n, and yet keep this independence of large scale structures between ω
and ωǫn ? If yes, can we give quantitative estimates on how fast the noise ǫ = ǫn may
go to zero? One can state this question more precisely as follows.

Question VI.1. If {fn} denote our left-right crossing events, for which sequences of
noise-levels {ǫn} do we have

lim
n→∞

Cov[fn(ω), fn(ωǫn)] = 0 ?

The purpose of this section is to briefly discuss this question based on the results
we have obtained so far.

4.1 Link with the energy spectrum of {fn}
It is an exercise to show that Question VI.1 is essentially equivalent to the following
one.

Question VI.2. For which sequences {kn} going to infinity do we have

kn∑

m=1

Efn(m) =
∑

1≤|S|≤kn

f̂n(S)2 −→
n→∞

0 ?

Recall that we have already obtained some relevant information on this question.
Indeed, we have proved in this chapter that H(fn) =

∑
x Ix(fn)2 decays polynomially

fast towards 0 (both on Z2 and T). Therefore Proposition V.5 tells us that for some
constant c > 0, one has for both T and Z2 that

∑

1≤|S|≤c log n

f̂n(S)2 → 0 . (VI.9)

Therefore, back to our original question VI.1, this gives us the following quantitative
statement: if the noise ǫn satisfies ǫn ≫ 1

log n
, then fn(ω) and fn(ωǫn) are asymptotically

independent.

4.2 Noise stability regime

Of course, one cannot be too demanding on the rate of decay of {ǫn}. For example if
ǫn ≪ 1

n2 , then in the window [0, n]2, with high probability, the configurations ω and ωǫn

are identical. This brings us to the next natural question concerning the noise stability
regime of crossing events.
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Question VI.3. Let {fn} be our sequence of crossing events. For which sequences {ǫn}
do we have

P
[
fn(ω) 6= fn(ωǫn)

]
−→
n→∞

0 ?

It is an exercise to show that this question is essentially equivalent to the following
one.

For which sequences {kn} do we have

∑

|S|>kn

f̂n(S)2 → 0 ?

Using the estimates of the present chapter, one can give the following non-trivial
bound on the noise stability regime of {fn}.

Proposition VI.9. Both on Z2 and T, if

ǫn = o
( 1

n2α4(n)

)
,

then

P
[
fn(ω) 6= fn(ωǫn)

]
−→
n→∞

0

On the triangular grid, using the critical exponent, this gives us a bound of n−3/4 on
the noise stability regime of percolation.

Proof. Let {ǫn} be a sequence satisfying the above assumption. There are O(n2) bits
concerned. For simplicity, assume that there are exactly n2 bits. Let us order these in
some arbitrary way: {x1, . . . , xn2} (or on Z2, {e1, . . . , en2}).

Let ω = ω0 = (x1, . . . , xn2) be sampled according to the uniform measure. Recall
that the noised configuration ωǫn is produced as follows: for each i ∈ [n2], resample the
bit xi with probability ǫn, independently of everything else, obtaining the bit yi. (In
particular yi 6= xi with probability ǫn/2).

Now for each i ∈ [n2] define the intermediate configuration

ωi := (y1, . . . , yi, xi+1, . . . , xn2)

Notice that for each i ∈ [n2], ωi is also sampled according to the uniform measure
and one has for each i ∈ {1, . . . , n2} that

P
[
fn(ωi−1) 6= fn(ωi)

]
= (ǫn/2) Ixi

(fn) .
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Summing over all i, one obtains

P
[
fn(ω) 6= fn(ωǫn)

]
= P

[
fn(ω0) 6= fn(ωn2)

]

≤
n2−1∑

i=0

P
[
fn(ωi) 6= fn(ωi+1)

]

= (ǫn/2)

n2∑

i=1

Ixi
(fn)

= (ǫn/2) I(fn)

≤ ǫnO(1)n2α4(n) by Proposition VI.8,

which concludes the proof.

4.3 Where does the spectral mass lies?

Proposition VI.9 (together with Exercise IX.2 in Chapter IX) implies that the Fourier
coefficients of {fn} satisfy

∑

|S|≫n2α4(n)

f̂n(S)2 −→
n→∞

0 . (VI.10)

From Lemma VI.5, we know that even on Z2, n2α4(n) is larger than nǫ for some
exponent ǫ > 0. Combining the estimates on the spectrum that we achieved so far
(equations (VI.9) and (VI.10)), we see that in order to localize the spectral mass of
{fn}, there is still a missing gap. See Figure VI.1.

For our later applications to the model of dynamical percolation (in the last chapter
of these lecture notes), a better understanding of the noise sensitivity of percolation
than the “logarithmic” control we achieved so far will be needed.
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Figure VI.1: This picture summarizes our present knowledge of the energy spectrum
of {fn} on the triangular lattice T. Much remains to be understood to know where, in
the range [Ω(log n), n3/4+o(1)], the spectral mass lies. This question will be analyzed in
the following chapters.



Exercise sheet on chapter VI

Instead of being the usual exercise sheet, this page will be devoted to a single Problem
whose goal will be to do “hands-on” computations of the first layers of the energy
spectrum of the percolation crossing events fn. Recall from Proposition IV.1 that a
sequence of Boolean functions {fn} is noise sensitive if and only if for any fixed k ≥ 1,

k∑

m=1

∑

|S|=m

f̂n(S)2 =

k∑

m=1

Efn(m) −→
n→∞

0 .

In the present chapter, we obtained (using Proposition IV.4) that this is indeed
the case for k = 1. The purpose here is to check by simple combinatorial arguments
(without relying on hypercontractivity) that it is still the case for k = 2 and to convince
ourselves that it works for all layers k ≥ 3.

To start with, we will simplify our task by working on the torus Z2/nZ2. This has
the very nice advantage that there are no boundary issues here.

Energy spectrum of crossing events on the torus (study

of the first layers)

Let Tn be either the square grid torus Z2/nZ2 or the triangular grid torus T/nT. Let
fn be the indicator of the event that there is an open circuit along the first coordinate
of Tn.

1. Using RSW, prove that there is a constant c > 0 such that for all n ≥ 1,

c ≤ P
[
fn = 1

]
≤ 1− c .

(In other words, {fn} is non-degenerate.)

2. Show that for all edges e (or sites x) in Tn

Ie(fn) ≤ α4(
n

2
) .

71
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3. Check that the BKS criterion (about H(fn)) is satisfied. Therefore {fn} is noise-
sensitive

From now on, one would like to forget about the BKS Theorem and try to do
some hands-on computations in order to get a feeling why most frequencies should
be large.

4. Show that if x, y are two sites of Tn (or similarly if e, e′ are two edges of Tn), then

|f̂({x, y})| ≤ 2P
[

x and y are pivotal points
]
.

Does this result hold for general Boolean functions?

5. Show that if d := |x− y|, then

P
[

x and y are pivotal points
]
≤ O(1)

α4(n/2)2

α4(
d
2
, n

2
)

.

(Hint: use Proposition II.3.)

6. On the square lattice Z2, by carefully summing over all edges e, e′ ∈ Tn×Tn, show
that

Efn(2) =
∑

|S|=2

f̂n(S)2 ≤ O(1)n−ǫ ,

for some exponent ǫ > 0.

Hint: you might decompose the sum in a dyadic way (as we did many times in
the present section) depending on the mutual distance d(e, e′).

7. On the triangular grid, what exponent does it give for the decay of Efn(2)? Com-
pare with the decay we found in Corollary VI.7 about the decay of the first layer
Efn(1) (i.e. k = 1). See also Lemma V.6 in this regard. Discuss this.

8. For T, what do you expect for higher (fixed) values of k? (I.e. for Efn(k), k ≥ 3)
?

9. (Quite hard) Try to obtain a nonrigorous combinatorial argument similar to the
one above in the particular case k = 2, that for any fixed layer k ≥ 1,

Efn(k) −→
n→∞

0 .

This would give us an alternative proof of noise sensitivity of percolation (at least
in the case of the torus Tn) not relying on Theorem I.5.

Observe that one can do similar things for rectangles but then one has to deal with
boundary issues.



Chapter VII

Anomalous fluctuations

In this lecture, our goal is to extend the technology we used to prove the KKL Theorems
on influences and the BKS Theorem on noise sensitivity to a slightly different context:
the study of fluctuations in first passage percolation.

1 The model of first passage percolation

Let us first explain what the model is. Let 0 < a < b be two positive numbers. We
define a random metric on the graph Zd, d ≥ 2 as follows. Independently for each
edge e ∈ Ed, fix its length τe to be a with probability 1/2 and b with probability 1/2.
This is represented by a uniform configuration ω ∈ {−1, 1}E

d
.

This procedure induces a well-defined (random) metric distω on Zd in the usual
fashion. For any vertices x, y ∈ Zd, let

distω(x, y) := inf
paths γ = {e1, . . . , ek}
connecting x→ y

{∑
τei

(ω)
}

.

Remark VII.1. In greater generality, the lengths of the edges are i.i.d. non-negative
random variables, but here, following [BKS03], we will restrict ourselves to the above
uniform distribution on {a, b} to simplify the exposition; see [BR08] for an extension
to more general laws.

One of the main goals in first passage percolation is to understand the large-scale
properties of this random metric space. For example, for any T ≥ 1, one may consider
the (random) ball

Bω(x, T ) := {y ∈ Zd : distω(x, y) ≤ T}.
To understand the name first passage percolation, one can think of this model as

follows. Imagine that water is pumped in at vertex x, and that for each edge e, it takes
τe(ω) units of time for the water to travel across the edge e. Then, Bω(x, T ) represents
the region of space that has been wetted by time T .

73
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Figure VII.1: A sample of a wetted region at time T , i.e. Bω(x, T ), in first passage
percolation.

An application of subadditivity shows that the renormalized ball 1
T
Bω(0, T ) con-

verges as T → ∞ towards a deterministic shape which can in certain cases be com-
puted explicitly. This is a kind of “geometric law of large numbers”. Whence the
natural question:

Question VII.1. Describe the fluctuations of Bω(0, T ) around its asymptotic deter-
ministic shape.

This question has received tremendous interest in the last 15 years or so. It is
widely believed that these fluctuations should be in some sense “universal”. More
precisely, the behavior of Bω(0, T ) around its limiting shape should not depend on the
“microscopic” particularities of the model such as the law on the edges lengths but only
on the dimension d of the underlying graph. The shape itself depends on the other hand
of course on the microscopic parameters, in the same way as the critical point depends
on the graph in percolation.

In the two-dimensional case, using very beautiful combinatorial bijections with ran-
dom matrices, certain cases of directed last passage percolation (where the law on the
edges is taken to be geometric or exponential) have been understood very deeply. For
example, it is known (see [Joh00]) that the fluctuations of the ball of radius n (i.e.
the points whose last passage times are below n) around n times its asymptotic deter-
ministic shape are of order n1/3 and the law of these fluctuations properly renormalized
follows the Tracy-Widom distribution. Very interestingly, the fluctuations of the largest
eigenvalue of GUE ensembles also follow this distribution.
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2 State of the art

Returning to our initial model of (non-directed) first passage percolation, it is thus
conjectured that, for dimension d = 2, fluctuations are of order n1/3 following a Tracy-
Widom Law. Still, the current state of understanding of this model is far from this
conjecture.

Kesten first proved that the fluctuations of the ball of radius n are at most
√

n (this
did not yet exclude a possible Gaussian behavior with Gaussian scaling). Benjamini,
Kalai and Schramm then strengthened this result by showing that the fluctuations are
sub-Gaussian. This is still far from the conjectured n1/3-fluctuations, but their approach
has the great advantage of being very general; in particular their result holds in any
dimension d ≥ 2.

Let us now state their main theorem concerning the fluctuations of the metric dist.

Theorem VII.1 ([BKS03]). For all a, b, d, there exists an absolute constant C =
C(a, b, d) such that in Zd,

Var(distω(0, v)) ≤ C
|v|

log |v|
for any v ∈ Zd, |v| ≥ 2.

To keep things simple in these notes, we will only prove the analogous statement on
the torus where one has more symmetries and invariance to play with.

3 The case of the torus

Let Td
m be the d-dimensional torus (Z/mZ)d. As in the above lattice model, indepen-

dently for each edge of Td
m, we choose its length to be either a or b equally likely. We are

interested here in the smallest length among all closed paths γ “winding” around the
torus along the first coordinate Z/mZ (i.e. those paths γ which when projected onto
the first coordinate have winding number one). In [BKS03], this is called the shortest
circumference. For any configuration ω ∈ {a, b}E(Td

m), this shortest circumference is
denoted by Circm(ω).

Theorem VII.2 ([BKS03]). There is a constant C = C(a, b) (which does not depend
on the dimension d), such that

var(Circm(ω)) ≤ C
m

log m
.

Remark VII.2. A similar analysis as the one carried out below works in greater gen-
erality: if G = (V, E) is some finite connected graph endowed with a random metric
dω with ω ∈ {a, b}⊗E, then one can obtain bounds on the fluctuations of the random
diameter D = Dω of (G, dω). See [BKS03, Theorem 2] for a precise statement in this
more general context.
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Figure VII.2: The shortest geodesic along the first coordinate for the random metric
distω on (Z/mZ)2.

Proof.

For any edge e, let us consider the gradient along the edge e: ∇eCircm. These
gradient functions have values in [−(b − a), b − a]. By dividing our distances by the
constant factor b− a, we can even assume without loss of generality that our gradient
functions have values in [−1, 1]. Doing so, we end up being in a setup similar to the
one we had in Chapter V. The influence of an edge e corresponds here to Ie(Circm) :=
P
[
∇eCircm(ω) 6= 0

]
. We will prove later on that Circm has very small influences. In

other words, we will show that the above gradient functions have small support, and
hypercontractivity will imply the desired bound.

We have thus reduced the problem to the following general framework. Consider a
real-valued function f : {−1, 1}n → R, such that for any variable k, ∇kf ∈ [−1, 1]. We
are interested in Var(f) and we want to show that if “influences are small” then Var(f)
is small. It is easy to check that the variance can be written

Var(f) =
1

4

∑

k

∑

∅6=S⊆[n]

1

|S|∇̂kf(S)2 .

If all the variables have very small influence, then, as previously, ∇kf should be of high
frequency. Heuristically, this should then imply that

Var(f) ≪
∑

k

∑

S 6=∅

∇̂kf(S)2

=
∑

k

Ik(f) .
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This intuition is quantified by the following lemma on the link between the fluctu-
ations of a real-valued function f on Ωn and its influence vector.

Lemma VII.3. Let f : Ωn → R be a (real-valued) function such that each of its discrete
derivatives ∇kf, k ∈ [n] have their values in [−1, 1]. Let Ik(f) := P

[
∇kf 6= 0

]
be the

influence of the kth bit. Assume that the influences of f are small in the sense that
there exists some α > 0 such that for any k ∈ {1, . . . , n}, Ik(f) ≤ n−α. Then there is
some constant C = C(α) such that

Var(f) ≤ C

log n

∑

k

Ik(f) .

Remark VII.3. If f is Boolean, then this follows from Theorem I.3 with C(α) = c/α
with c universal.

The proof of this lemma is postponed to the next section. In the meantime, let us
show that in our special case of first passage percolation on the torus, the assumption
on small influences is indeed verified. Since the edge lengths are in {a, b}, the smallest
contour Circm(ω) in Td

m around the first coordinate lies somewhere in [am, bm]. Hence,
if γ is a geodesic (a path in the torus with the required winding number) satisfying
length(γ) = Circm(ω), then γ uses at most b

a
m edges. There might be several different

geodesics minimizing the circumference. Let us choose randomly one of these in an
“invariant” way and call it γ̃. For any edge e ∈ E(Td

m), if, by changing the length of
e, the circumference increases, then e has to be contained in any geodesic γ, and in
particular in γ̃. This implies that P

[
∇eCircm(ω) > 0

]
≤ P

[
e ∈ γ̃

]
. By symmetry we

obtain that
Ie(Circm) = P

[
∇eCircm(ω) 6= 0

]
≤ 2P

[
e ∈ γ̃

]
.

Now using the symmetries both of the torus Td
m and of our observable Circm, if γ̃

is chosen in an appropriate invariant way (uniformly among all geodesics for instance),
then it is clear that all the “vertical” edges (meaning those edges which, when projected
onto the first coordinate, project onto a single vertex) have the same probability to lie
in γ̃. The same is true for the “horizontal” edges. In particular we have that

∑

“vertical” edges e

P
[
e ∈ γ̃

]
≤ E

[
|γ̃|

]
≤ b

a
m .

Since there are at least order md vertical edges, the influence of each of these is bounded
by O(1)m1−d. The same is true for the horizontal edges. All together this gives the
desired assumption needed in Lemma VII.3. Applying this lemma, we indeed obtain
that

Var(Circm(ω)) ≤ O(1)
m

log m
,

where the constant does not depend on the dimension d; the dimension in fact helps us
here, since it makes the influences smaller.
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Remark VII.4. At this point, we know that for any edge e, Ie(Circm) = O( m
md ). Hence,

at least in the case of the torus, one easily deduces from Poincaré’s inequality the
theorem by Kesten which says that Var(Circm) = O(m).

4 Upper bounds on fluctuations in the spirit of KKL

In this section, we prove Lemma VII.3.

Proof. Similarly as in the proofs of Chapter V, the proof relies on implementing
hypercontractivity in the right way. We have that for any c,

var(f) =
1

4

∑

k

∑

S 6=∅

1

|S|∇̂kf(S)2

≤ 1

4

∑

k

∑

0<|S|<c log n

∇̂kf(S)2 +
O(1)

log n

∑

k

Ik(f)

where the O(1) term depends on the choice of c.
Hence it is enough to bound the contribution of small frequencies, 0 < |S| < c log n,

for some constant c which will be chosen later. As previously we have for any ρ ∈ (0, 1)
and using hypercontractivity,

∑

k

∑

0<|S|<c log n

∇̂kf(S)2 ≤ ρ−2c log n
∑

k

‖Tρ∇kf‖22

≤ ρ−2c log n
∑

k

‖∇kf‖21+ρ2

≤ ρ−2c log n
∑

k

Ik(f)2/(1+ρ2)

≤ ρ−2c log n
(
sup

k
Ik(f)

) 1−ρ2

1+ρ2
∑

k

Ik(f)

≤ ρ−2c log nn
−α 1−ρ2

1+ρ2
∑

k

Ik(f) by our assumption .

(VII.1)

Now fixing any ρ ∈ (0, 1), and then choosing the constant c depending on ρ and α,
the lemma follows. By optimizing on the choice of ρ, one could get better constants if
one wants.

5 Further discussion

Some words on the proof of Theorem VII.1
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The main difficulty here is that the quantity of interest, f(ω) := distω(0, v), is no
longer invariant under a large class of graph automorphisms. This lack of symmetry
makes the study of influences more difficult. For example, edges near the endpoints 0
or v have very high influence (of order one). To gain some more symmetry, the authors
in [BKS03] rely on a very nice “averaging” procedure. We refer to this paper for more
details.

Known lower bounds on the fluctuations

We discussed mainly here ways to obtain upper bounds on the fluctuations of the
shapes in first passage percolation. It is worth pointing out that some non-trivial lower
bounds on the fluctuations are known for Z2. See [PP94, NP95].

Remark VII.5. We end by mentioning that the proof given in [BKS03] was based on
an inequality by Talagrand. The proof given here avoids this inequality.



80 CHAPTER VII. ANOMALOUS FLUCTUATIONS



Exercise sheet of Chapter VII

Problem VII.1. Let n ≥ 1 and d ≥ 2. Consider the random metric on the torus
Zd/nZd as described in this chapter. For any k ≥ 1, let Ak

n be the event that the
shortest “horizontal” circuit is ≤ k. If d ≥ 3, show that for any choice of kn = k(n),
the family of events Akn

n is noise sensitive. (Note that the situation here is similar
to the Problem I.9 in Chapter I.) Finally, discuss the two-dimensional case, d = 2
(non-rigorously).

Exercise VII.2. Show that Lemma VII.3 is false if Ik(f) is taken to be the square of the
L2 norm of ∇kf rather than the probability of its support (i.e. find a counterexample).
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Chapter VIII

Randomized algorithms and noise
sensitivity

In this chapter, we explain how the notion of revealment for so-called randomized
algorithms can in some cases yield direct information concerning the energy spectrum
which may allow not only noise sensitivity results but even quantitative noise sensitivity
results.

1 BKS and randomized algorithms

In the previous chapter, we explained how Theorem I.5 together with bounds on the
pivotal exponent for percolation yields noise sensitivity for percolation crossings. How-
ever, in [BKS99], a different approach was in fact used for showing noise sensitivity
which, while still using Theorem I.5, did not use these bounds on the critical expo-
nent. In that approach, one sees the first appearance of randomized algorithms. In a
nutshell, the authors showed that (1) if a monotone function is very uncorrelated with
all majority functions, then it is noise sensitive (in a precise quantitative sense) and
(2) percolation crossings are very uncorrelated with all majority functions. The latter
is shown by constructing a certain algorithm which, due to the RSW Theorem II.1,
looks at very few bits but still looks at enough bits in order to be able to determine the
output of the function.

2 The revealment theorem

An algorithm for a Boolean function f is an algorithm A which queries (asks the values
of) the bits one by one, where the decision of which bit to ask can be based on the
values of the bits previously queried, and stops once f is determined (being determined
means that f takes the same value no matter how the remaining bits are set).

A randomized algorithm for a Boolean function f is the same as above but
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auxiliary randomness may also be used to decide the next value queried (including for
the first bit). [In computer science, the term randomized decision tree would be used
for our notion of randomized algorithm, but we will not use this terminology.]

The following definition of revealment will be crucial. Given a randomized algorithm
A for a Boolean function f , we let JA denote the random set of bits queried by A.
(Note that this set depends both on the randomness corresponding to the choice of ω
and the randomness inherent in running the algorithm, which are of course taken to be
independent.)

Definition VIII.1. The revealment of a randomized algorithm A for a Boolean
function f , denoted by δA, is defined by

δA := max
i∈[n]

P(i ∈ JA).

The revealment of a Boolean function f , denoted by δf , is defined by

δf := inf
A

δA

where the infimum is taken over all randomized algorithms A for f .

This section presents a connection between noise sensitivity and randomized al-
gorithms. It will be used later to yield an alternative proof of noise sensitivity for
percolation crossings which is not based upon Theorem I.5 (or Proposition V.5). Two
other advantages of the algorithmic approach of the present section over that mentioned
in the previous section (besides the fact that it does not rest on Theorem I.5) is that
it applies to nonmonotone functions and yields a more “quantitative” version of noise
sensitivity.

We have only defined algorithms, randomized algorithms and revealment for Boolean
functions but the definitions immediately extend to functions f : Ωn → R.

The main theorem of this section is the following.

Theorem VIII.1 ([SS10b]). For any function f : Ωn → R and for each k = 1, 2, . . . ,
we have that

Ef(k) =
∑

S⊆[n], |S|=k

f̂(S)2 ≤ δf k ‖f‖2, (VIII.1)

where ‖f‖ denotes the L2 norm of f with respect to the uniform probability measure on
Ω and δf is the revealment of f .

Before giving the proof, we make some comments to help the reader see what is hap-
pening and suggest why a result like this might be true. Our original function is a
sum of monomials with coefficients given by the Fourier coefficients. Each time a bit
is revealed by the algorithm, we obtain a new Boolean function obtained by just sub-
stituting in the value of the bit we obtained into the corresponding variable. On the
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algebraic side, those monomials which contain this bit go down by 1 in degree while the
other monomials are unchanged. There might however be cancellation in the process
which is what we hope for since when the algorithm stops, all the monomials (except the
constant) must have been killed. The way cancellation occurs is illustrated as follows.
The Boolean function at some stage might contain (1/3)x2x4x5 + (1/3)x2x4 and then
the bit x5 might be revealed and take the value −1. When we substitute this value into
the variable, the two terms cancel and disappear, thereby bringing us 1 step closer to
a constant (and hence determined) function.

As far as why the result might be true, the intuition, very roughly speaking, is as
follows. The theorem says that for a Boolean function we cannot, for example, have
δ = 1/1000 and

∑
i f̂({i})2 = 1/2. If the level 1 monomials of the function were

a1ω1 + a2ω2 + · · ·+ anωn,

then it is clear that after the algorithm is over, then with high probability, the sum of the
squares of the coefficients of the terms which have not been reduced to a constant is still
reasonably large. Therefore, since the function at the end of the algorithm is constant,
these remaining terms must necessarily have been cancelled by higher degree monomials
which, after running the algorithm, have been “reduced to” degree 1 monomials. If, for
the sake of this heuristic argument, we assume that each bit is revealed independently,
then the probability that a degree k ≥ 2 monomial is brought down to a degree 1
monomial (which is necessary for it to help to cancel the degree 1 terms described
above) is at most δk−1 and hence the expected sum of the squares of the coefficients
from the degree k ≥ 2 monomials which are brought down to degree 1 is at most δk−1.
The total such sum for levels 2 to n is then at most

n∑

k=2

δk−1 ≤ 2δ

which won’t be enough to cancel the (originally) degree 1 monomials which remained
degree 1 after running the algorithm if δ is much less than

∑
i f̂({i})2. A similar

heuristic works for the other levels.

Proof. In the following, we let Ω̃ denote the probability space that includes the ran-
domness in the input bits of f and the randomness used to run the algorithm (which we
assume to be independent) and we let E denote the corresponding expectation. With-
out loss of generality, elements of Ω̃ can be represented as ω̃ = (ω, τ) where ω are the
random bits and τ represents the randomness necessary to run the algorithm.

Now, fix k ≥ 1. Let

g(ω) :=
∑

|S|=k

f̂(S) χS(ω) , ω ∈ Ω.

The left hand side of (VIII.1) is equal to ‖g‖2.
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Let J ⊆ [n] be the random set of all bits examined by the algorithm. Let A denote
the minimal σ-field for which J is measurable and every ωi, i ∈ J , is measurable; this
can be viewed as the relevant information gathered by the algorithm. For any function
h : Ω → R, let hJ : Ω → R denote the random function obtained by substituting the
values of the bits in J . More precisely, if ω̃ = (ω, τ) and ω′ ∈ Ω, then hJ (ω̃)(ω′) is h(ω′′)
where ω′′ is ω on J(ω̃) and is ω′ on [n]\J(ω̃). In this way, hJ is a random variable on Ω̃
taking values in the set of mappings from Ω to R and it is immediate that this random
variable is A-measurable. When the algorithm terminates, the unexamined bits in Ω
are unbiased and hence E

[
h

∣∣A
]

=
∫

hJ(= ĥJ(∅)) where
∫

is defined, as usual, to be
integration with respect to uniform measure on Ω. It follows that E[h] = E[

∫
hJ ].

Similarly, for all h,

‖h‖2 = E
[
h2

]
= E

[∫
h2

J

]
= E

[
‖hJ‖2

]
. (VIII.2)

Since the algorithm determines f , it is A measurable, and we have

‖g‖2 = E[g f ] = E
[
E
[
g f

∣∣A
]]

= E
[
f E

[
g
∣∣A

]]
.

Since E
[
g
∣∣A

]
= ĝJ(∅), Cauchy-Schwarz therefore gives

‖g‖2 ≤
√

E[ĝJ(∅)2] ‖f‖ . (VIII.3)

We now apply Parseval’s formula to the (random) function gJ : this gives (for any
ω̃ = (ω, τ) ∈ Ω̃),

ĝJ(∅)2 = ‖gJ‖22 −
∑

|S|>0

ĝJ(S)2.

Taking the expectation over ω̃ ∈ Ω̃, this leads to

E
[
ĝJ(∅)2

]
= E

[
‖gJ‖22

]
−

∑

|S|>0

E
[
ĝJ(S)2

]

= ‖g‖22 −
∑

|S|>0

E
[
ĝJ(S)2

]
by (VIII.2)

=
∑

|S|=k

ĝ(S)2 −
∑

|S|>0

E
[
ĝJ(S)2

]{
since g is supported
on level-k coefficients

≤
∑

|S|=k

E
[
ĝ(S)2 − ĝJ(S)2

] {
by restricting to
level-k coefficients

Now, since gJ is built randomly from g by fixing the variables in J = J(ω̃), and
since g by definition does not have frequencies larger than k, it is clear that for any S
with |S| = k we have

ĝJ(S) =

{
ĝ(S) = f̂(S), if S ∩ J(ω̃) = ∅
0, otherwise.
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Therefore, we obtain

‖E
[
g
∣∣J

]
‖22 = E

[
ĝJ(∅)2

]
≤

∑

|S|=k

ĝ(S)2 P
[
S ∩ J 6= ∅

]
≤ ‖g‖22 k δ .

Combining with (VIII.3) completes the proof.

Proposition IV.1 and Theorem VIII.1 immediately imply the following corollary.

Corollary VIII.2. If the revealments satisfy

lim
n→∞

δfn = 0,

then {fn} is noise sensitive.

In the exercises, one is asked to show that certain sequences of Boolean functions are
noise sensitive by applying the above corollary.

3 An application to noise sensitivity of percolation

In this section, we apply Corollary VIII.2 to prove noise sensitivity of percolation cross-
ings. The following result gives the necessary assumption that the revealments approach
0.

Theorem VIII.3 ([SS10b]). Let f = fn be the indicator function for the event that
critical site percolation on the triangular grid contains a left to right crossing of our
n× n box. Then δfn ≤ n−1/4+o(1) as n→∞.

For critical bond percolation on the square grid, this holds with 1/4 replaced by some
positive constant a > 0.

Outline of Proof. We outline the argument only for the triangular lattice; the argu-
ment for the square lattice is similar. We first give a first attempt at a good algorithm.
We consider from Chapter II the exploration path or interface from the bottom right
of the square to the top left used to detect a left right crossing. This (deterministic)
algorithm simply asks the bits that it needs to know in order to continue the interface.
Observe that if a bit is queried, it is necessarily the case that there is both a black and
white path from next to the hexagon to the boundary. It follows, from the exponent of
1/4 for the 2-arm event in Chapter II, that, for hexagons far from the boundary, the
probability that they are revealed is at most R−1/4+o(1) as desired. However, one cannot
conclude that points near the boundary have small revealment and of course the right
bottom point is always revealed.

The way that we modify the above algorithm so that all points have small revealment
is as follows. We first choose a point x at random from the middle third of the right
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side. We then run two algorithms, the first one which checks whether there is a left
right path from the right side above x to the left side and the second one which checks
whether there is a left right path from the right side below x to the left side. The first
part is done by looking at an interface from x to the top left corner as above. The
second part is done by looking at an interface from x to the bottom left corner as above
(but where the colors on the two sides of the interface need to be swapped.)

It can then be shown with a little work (but no new conceptual ideas) that this
modified algorithm has the desired revealment of at most R−1/4+o(1) as desired. One
of the things that one needs to use in this analysis is the so-called one-arm half-plane
exponent, which has a known value of 1/3. See [SS10b] for details.

3.1 First quantitative noise sensitivity result

In this subsection, we give our first “polynomial bound” on the noise sensitivity of per-
colation. This is an important step in our understanding of quantitative noise sensitivity
of percolation initiated in Chapter VI.

Recall that in the definition of noise sensitivity, ǫ is held fixed. However, as we have
seen in Chapter VI, it is of interest to ask if the correlations can still go to 0 when
ǫ = ǫn goes to 0 with n but not so fast. The techniques of the present chapter imply
the following result.

Theorem VIII.4 ([SS10b]). Let {fn} be as in Theorem VIII.3. Then, for the triangular
lattice, for all γ < 1/8,

lim
n→∞

E[fn(ω)fn(ω1/nγ )]− E[fn(ω)]2 = 0. (VIII.4)

On the square lattice, there exists some γ > 0 with the above property.

Proof. We prove only the first statement; the square lattice case is handled similarly.
First, (IV.3) gives us that every n and γ,

E[fn(ω)fn(ω1/nγ )]− E[fn(ω)]2 =
∑

k=1

Efn(k)(1− 1/nγ)k. (VIII.5)
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Note that there are order n2 terms in the sum. Fix γ < 1/8. Choose ǫ > 0 so that
γ + ǫ < 1/8. For large n, we have that δfn ≤ 1/n1/4−ǫ. The right hand side of (VIII.5)
is at most

nγ+ǫ/2∑

k=1

k/n1/4−ǫ + (1− 1/nγ)nγ+ǫ/2

by breaking up the sum at nγ+ǫ/2 and applying Theorems VIII.1 and VIII.3 to bound
the Efn(k) terms in the first part. The second term clearly goes to 0 while the first
part also goes to 0 by the way ǫ was chosen.

Observe that the proof of Theorem VIII.4 immediately yields the following general
result.

Corollary VIII.5. Let {fn} be a sequence of Boolean functions on mn bits with δ(fn) ≤
O(1)/nβ for all n. Then for all γ < β/2, we have that

lim
n→∞

E[fn(ω)fn(ω1/nγ )]− E[fn(ω)]2 = 0. (VIII.6)

4 Lower bounds on revealments

One of the goals of the present section is to show that one cannot hope to reach the
conjectured 3/4-sensitivity exponent with Theorem VIII.1. Theorem VIII.4 told us
that we obtain asymptotic decorrelation if the noise is 1/nγ for γ < 1/8. Note that
this differs from the conjectured “critical exponent” of 3/4 by a factor of 6. In this
section, we investigate the degree to which the 1/8 could potentially be improved and
in the discussion, we will bring up an interesting open problem. We will also derive
an interesting general theorem giving a nontrivial lower bound on the revealment for
monotone functions. We start with the following definition.

Definition VIII.2. Given a randomized algorithm A for a Boolean function f , let
C(A) (the cost of A) be the expected number of queries that the algorithm A makes. Let
C(f) (the cost of f) be the infimum of C(A) over all randomized algorithms A for f .

Remark VIII.1. (i). It is easy to see that C(f) is unchanged if we take the infimum
over deterministic algorithms.
(ii). Clearly nδA ≥ C(A) and hence nδf ≥ C(f).
(iii). C(f) is at least the total influence I(f) since for any algorithm A and any i, the
event that i is pivotal necessarily implies that the bit i is queried by A.

The following result due to O’Donnell and Servedio ([OS07])is an essential improve-
ment on the third part of the last remark.

Theorem VIII.6. Let f be a monotone Boolean function mapping Ωn into {−1, 1}.
Then C(f) ≥ I(f)2 and hence δf ≥ I(f)2/n.
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Proof. Fix any randomized algorithm A for f . Let J = JA be the random set of bits
queried by A. We then have

I(f) = E[
∑

i

f(ω)ωi] = E[f(ω)
∑

i

ωiI{i∈J}] ≤
√

E[f(ω)2]

√
E[(

∑

i

ωiI{i∈J})2]

where the first equality uses monotonicity (recall Proposition IV.4) and then the Cauchy-
Schwarz inequality is used. We now bound the first term by 1. For the second moment
inside the second square root, the sum of the diagonal terms yields E[|J |] while the
cross terms are all 0 since for i 6= j, E[ωiI{i∈J}ωjI{j∈J}] = 0 as can be seen by breaking
up the sum depending on whether i or j is queried first. This yields the result.

Returning to our event fn of percolation crossings, since the sum of the influences
is n3/4+o(1), Theorem VIII.6 tells us that δfn ≥ n−1/2+o(1). It follows from the method
of proof in Theorem VIII.4 that Theorem VIII.1 cannot improve the result of Theorem
VIII.4 past γ = 1/4 which is still a factor of 3 from the critical value 3/4. Of course,
one could investigate the degree to which Theorem VIII.1 itself could be improved.

Theorem VIII.3 tells us that there are algorithms An for fn such that C(An) ≤
n7/4+o(1). On the other hand, Theorem VIII.6 tell us that it is necessarily the case that
C(A) ≥ n6/4+o(1).

Open Question: Find the smallest σ such that there are algorithms An for fn with
C(An) ≤ nσ. (We know σ ∈ [6/4, 7/4].)

We mention another inequality relating revealment with influences which is a con-
sequence of the results in [OSSS05].

Theorem VIII.7. Let f be a Boolean function mapping Ωn into {−1, 1}. Then δf ≥
Var(f)/(n maxi Ii(f))

It is interesting to compare Theorems VIII.6 and VIII.7. Assuming Var(f) is of
order 1, and all the influences are of order 1/nα, then it is easy to check that Theorem
VIII.6 gives a better bound when α < 2/3 and Theorem VIII.7 gives a better bound
when α > 2/3. For crossings of percolation, where α should be 5/8, it is better to use
Theorem VIII.6 rather than VIII.7.

Finally, there are a number of interesting results concerning revealment obtained in
the paper [BSW05]. Four results are as follows.
1. If f is reasonably balanced on n bits, then the revealment is at least of order 1/n1/2.
2. There is a reasonably balanced function on n bits whose revealment is at most
O(1)(logn)/n1/2.
3. If f is reasonably balanced on n bits and is monotone, then the revealment is at
least of order 1/n1/3.
4. There is a reasonably balanced monotone function on n bits whose revealment is at
most O(1)(logn)/n1/3.

We finally end this section by giving one more reference which gives an interesting
connection between percolation, algorithms and game theory; see [PSSW07].
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5 An application to a critical exponent

In this section, we show how Theorem VIII.1 or in fact Theorem VIII.6 can be used to
show that the 4-arm exponent is strictly larger than 1; recall that with SLE technology,
this can be shown for the triangular lattice.

Proposition VIII.8. Both on the triangular lattice T and on Z2, there exists ǫ0 > 0
such that

α4(R) ≤ 1/R1+ǫ0

We will assume the separation of arms result mentioned earlier in Chapter VI which
says that for the event fR, the influence of any variable further than distance R/10
from the boundary, a set of variables that we will denote by B for bulk, is ≍ α4(R).

Proof. Theorems VIII.3 and VIII.1 imply that for some a > 0,

∑

i

f̂R({i})2 ≤ 1/Ra.

Next, using the separation of arms as explained above, we have

R2α2
4(R) ≤ O(1)

∑

i∈B

I2
i . (VIII.7)

Proposition IV.4 then yields

R2α2
4(R) ≤ O(1/Ra)

and the result follows.

Observe that Theorem VIII.6 could also be used as follows. Theorem VIII.3 implies
that C(fR) ≤ R2−a for some a > 0 and then Theorem VIII.6 yields I(fR)2 ≤ R2−a.

Exactly as in (VIII.7), one has, again using separation of arms, that

R2α4(R) ≤ O(1)
∑

i∈B

Ii ≤ O(1)I(fR). (VIII.8)

Altogether this gives us

R4α2
4(R) ≤ O(1)R2−a,

again yielding the result.
We finally mention that it is not so strange that either of Theorems VIII.1 or

VIII.6 can be used here since, as the reader can easily verify, for the case of monotone
functions all of whose variables have the same influence, the case k = 1 in Theorem
VIII.1 is equivalent to Theorem VIII.6.

Remark VIII.2. We now mention that the proof for the multi-scale version of Proposi-
tion VI.6 is an extension of the approach of O’Donnell and Servedio above.
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6 Does noise sensitivity imply low revealment?

As far as these lectures are concerned, this subsection will not connect to anything that
follows and hence can be viewed as tangential.

It is natural to ask if the converse of Corollary VIII.2 might be true. A moment’s
thought reveals that example 2, Parity, provides a counterexample. However, it is more
interesting perhaps that there is a monotone counterexample to the converse which is
provided by example 5, Clique containment.

Proposition VIII.9. Clique containment provides an example showing that the con-
verse of Corollary VIII.2 is false for monotone functions.

Outline of Proof. We first explain more precisely the size of the clique that we are

looking for. Given n and k, let f(n, k) :=
(

n
k

)
2−(

k
2), which is just the expected number

of cliques of size k in a random graph. When k is around 2 log2(n), it is easy to check
that f(n, k + 1)/f(n, k) is o(1) as n→ ∞. For such k, clearly if f(n, k) is small, then
with high probability there is no k-clique while it can be shown, via a second moment
type argument, that if f(n, k) is large, then with high probability there is a k-clique.
One now takes kn to be around 2 log2(n) such that f(n, kn) ≥ 1 and f(n, kn + 1) < 1.
Since f(n, k + 1)/f(n, k) is o(1), it follows with some thought from the above that the
clique number is concentrated on at most 2 points. Furthermore, if f(n, kn) is very large
and f(n, kn + 1) very small, then it is concentrated on one point. Again, see [AS00] for
details.

Finally, we denote the event that the random graph on n vertices contains a clique
of size kn by An. We have already seen in one of the exercises that this example is
noise sensitive. We will only consider a sequence of n’s so that An is nondegenerate in
the sense that the probabilities of this sequence stay bounded away from 0 and 1. An
interesting point is that there is such a sequence. Again, see [AS00] for this. To show
that the revealments do not go to 0, it suffices to show that the sequence of costs (see
Definition VIII.2 and the remarks afterwards) is Ω(n2). We prove something stronger
but, to do this, we must first give a few more definitions.

Definition VIII.3. For a given Boolean function f , a witness for ω is any subset W
of the variables such that the elements of ω in W determine f in the sense that for
every ω′ which agrees with ω on W , we have that f(ω) = f(ω′). The witness size
of ω, denoted w(ω), is the size of the smallest witness for ω. The expected witness
size, denoted by w(f), is E(w(ω)).

Observe that, for any Boolean function f , the bits revealed by any algorithm A for
f and for any ω is always a witness for ω. It easily follows that the cost C(f) satisfies
C(f) ≥ w(f). Therefore, in order to prove the proposition, it suffices to show that

w(fn) = Ω(n2). (VIII.9)
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Remark VIII.3. (i). The above also implies that with a fixed uniform probability, w(ω)
is Ω(n2).
(ii). Of course when fn is 1, there is always a (small) witness of size

(
kn

2

)
≪ n and so

the large average witness size comes from when fn is −1.
(iii). However, it is not deterministically true that when fn is −1, w(ω) is necessarily of
size Ω(n2). For example, for ω ≡ −1 (corresponding to the empty graph), the witness
size is o(n2) as is easily checked. Clearly the empty graph has the smallest witness size
among ω with fn = −1.

Lemma VIII.10. Let En be the event that all sets of vertices of size at least .97n
contains Ckn−3. Then limn→∞ P(En) = 1.

Proof. This follows, after some work, from the Janson inequalities. See [AS00] for
details concerning these inequalities.

Lemma VIII.11. Let U be any collection of at most n2/1000 edges in Cn. Then there
exist distinct v1, v2, v3 such that no edge in U goes between any vi and vj and

|{e ∈ U : e is an edge between {v1, v2, v3} and {v1, v2, v3}c}| ≤ n/50. (VIII.10)

Proof. We use the probabilistic method where we choose {v1, v2, v3} to be a uniformly
chosen 3-set. It is immediate that the probability that the first condition fails is at most
3|U |/

(
n
2

)
≤ 1/100. Letting Y be the number of edges in the set appearing in (VIII.10)

and Y ′ be the number of U edges touching v1, it is easy to see that

E(Y ) ≤ 3E(Y ′) = 6|U |/n ≤ n/100

where the equality follows from the fact that, for any graph, the number of edges is
half the total degree. By Markov’s inequality, the probability of the event in (VIII.10)
holds with probably at least 1/2. This shows that the random 3-set {v1, v2, v3} satisfies
the two stated conditions with positive probability and hence such a 3-set exists.

By Lemma VIII.10, we have P(Ac
n ∩ En) ≥ c > 0 for all large n. To prove the

theorem, it therefore suffices to show that if Ac
n ∩En occurs, there is no witness of size

smaller than n2/1000. Assume U to be any set of edges of size smaller than n2/1000.
Choose {v1, v2, v3} from Lemma VIII.11. By the second condition in this lemma, there
exists a set S of size at least .97n which is disjoint from {v1, v2, v3} which has no U -edge
to {v1, v2, v3}. Since En occurs, S contains a Ckn−3, whose vertices we denote by T .
Since there are no U -edges between T and {v1, v2, v3} or within {v1, v2, v3} (by the first
condition in Lemma VIII.11) and T is the complete graph, U cannot be a witness since
Ac

n occured.

The key step in the proof of Proposition VIII.9 is (VIII.9). This is stated without
proof in [FKW02]; however, E. Friedgut provided us with the above proof.
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Exercise sheet of Chapter VIII

Exercise VIII.1. Compute the revealment for Majority function on 3 bits.

Exercise VIII.2. Use Corollary VIII.2 to show that Examples 4 and 6, Iterated 3-
Majority function and tribes, are noise sensitive.

Exercise VIII.3. For transitive monotone functions, is there a relationship between
revealment and the minimal cost over all algorithms?

Exercise VIII.4. Show that for transitive monotone functions, Theorem VIII.6 yields
the same result as Theorem VIII.1 does for the case k = 1.

Exercise VIII.5. What can you say about the sequence of revealments for the Iterated
3-Majority function? [It can be shown that the sequence of revealments decays like 1/nσ

for some σ but it is an open question what σ is.]

Exercise VIII.6. You are given a sequence of Boolean functions and told that it is
not noise sensitive using noise ǫn = 1/n1/5. What, if anything, can you conclude about
the sequence of revealments δn?

Exercise VIII.7. Note that a consequence of Corollary VIII.2 and the last line in
Remark IV.2 is that if {fn} is a sequence of monotone functions, then, if the reveal-
ments of {fn} go to 0, the sums of the squared influences approach 0. Show that this
implication is false without the monotonicity assumption.
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Chapter IX

The spectral sample

It turns out that it is very useful to view the Fourier coefficients of a Boolean function
as a random subset of the input bits where the “weight” or “probability” of a subset
is its squared Fourier coefficient. It is our understanding that it was Gil Kalai who
suggested that thinking of the spectrum as a random set could shed some light on the
types of questions we are looking at here. The following is the crucial definition in this
chapter.

1 Definition of the spectral sample

Definition IX.1. Given a Boolean function f : Ωn → {±1} or {0, 1}, we let the
spectral measure Q̂ = Q̂f of f be the measure on subsets {1, . . . , n} given by

Q̂f (S) := f̂(S)2, S ⊂ {1, . . . , n} .

We let Sf = S denote a subset of {1, . . . , n} chosen according to this measure and

call this the spectral sample. We let Q̂ also denote the corresponding expectation
(even when Q̂ is not a probability measure).

By Parseval’s formula, the total mass of the so-defined spectral measure is

∑

S⊂{1,...,n}

f̂(S)2 = E
[
f 2

]
.

This makes the following definition natural.

Definition IX.2. Given a Boolean function f : Ωn → {±1} or {0, 1}, we let the
spectral probability measure P̂ = P̂f of f be the probability measure on subsets of
{1, . . . , n} given by

P̂f(S) :=
f̂(S)2

E[f 2]
, S ⊂ {1, . . . , n} .
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Since P̂f is just Q̂f up to a renormalization factor, the spectral sample Sf = S will

denote as well a random subset of [n] sampled according to P̂f . We let Êf = Ê denote
its corresponding expectation.

Remark IX.1.

(i) Note that if f maps into {±1}, then, by Parseval’s formula, Q̂f = P̂f while if it

maps into {0, 1}, Q̂f will be a subprobability measure.

(ii) Observe that if (fn)n is a sequence of non-degenerate Boolean functions into {0, 1},
then P̂fn ≍ Q̂fn .

(iii) There is no statistical relationship between ω and Sf as they are defined on
different probability spaces. The spectral sample will just be a convenient point
of view in order to understand the questions we are studying.

Some of the formulas and results we have previously derived in these notes have
very simple formulations in terms of the spectral sample. For example, it is immediate
to check that (IV.2) simply becomes

E[f(ω)f(ωǫ)] = Q̂f [(1− ǫ)|S |] (IX.1)

or
E[f(ω)f(ωǫ)]− E[f(ω)]2 = Q̂f [(1− ǫ)|S |IS 6=∅]. (IX.2)

Next, in terms of the spectral sample, Propositions IV.1 and IV.2 simply become
the following proposition.

Proposition IX.1. If {fn} is a sequence of Boolean functions mapping into {±1},
then we have the following.
1. {fn} is noise sensitive if and only if |Sfn | → ∞ in probability on the set {|Sfn | 6= 0}.
2. {fn} is noise stable if and only if the random variables {|Sfn|} are tight.

There is also a nice relationship between the pivotal set P and the spectral sample.
The following result, which is simply Proposition IV.3 (see also the remark after this
proposition), tells us that the two random sets P and S have the same 1-dimensional
marginals.

Proposition IX.2. If f is a Boolean function mapping into {±1}, then for all i ∈ [n]
we have that

P(i ∈ P) = Q̂(i ∈ S )

and hence E(|P|) = Q̂(|S |).

(This proposition is stated with Q̂ instead of P̂ since if f maps into {0, 1} instead,
then the reader can check that the above holds with an extra factor of 4 on the right
hand side while if P̂ were used instead, then this would not be true for any constant.)
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Even though S and P have the same “1-dimensional” marginals, it is not however
true that these two random sets have the same distribution. For example, it is easily
checked that for MAJ3, these two distributions are different. Interestingly, as we will
see in the next section, S and P also always have the same “2-dimensional” marginals.
This will prove useful when applying second moment method arguments.

Before ending this section, let us give an alternative proof of Proposition VI.9 using
this point of view of thinking of S as a random set.

Alternative proof of Proposition VI.9 The statement of the proposition when
converted to the spectrum states (see the exercises in this chapter if this is not clear)
that for any an →∞,

lim
n→∞

P̂(|Sn| ≥ ann
2α4(n)) = 0.

However this immediately follows from Markov’s inequality using Propositions VI.8 and
IX.2.

2 A way to sample the spectral sample in a sub-

domain

In this section, we describe a method of “sampling” the spectral measure restricted to
a subset of the bits. As an application of this, we show that S and P in fact have the
same 2-dimensional marginals, namely that for all i and j, P(i, j ∈ P) = Q̂(i, j ∈ S ).

In order to first get a little intuition about the spectral measure, we start with an
easy proposition.

Proposition IX.3 ([GPS10]). For a Boolean function f and A ⊆ {1, 2, . . . , n}, we
have

Q̂(Sf ⊆ A) = E[|E(f |A)|2]
where conditioning on A means conditioning on the bits in A.

Proof. Noting that E(χS|A) is χS if S ⊆ A and 0 otherwise, we obtain by expanding
that

E(f |A) =
∑

S⊆A

f̂(S) χS.

Now apply Parseval’s formula.

If we have a subset A ⊆ {1, 2, . . . , n}, how do we “sample” from A ∩ S ? A nice
way to proceed is as follows: choose a random configuration outside of A, then look at
the induced function on A and sample from the induced function’s spectral measure.
The following proposition justifies in precise terms this way of sampling. Its proof is
just an extension of the proof of Proposition IX.3.
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Proposition IX.4 ([GPS10]). Fix a Boolean function f on Ωn. For A ⊆ {1, 2, . . . , n}
and y ∈ {±1}Ac

, that is a configuration on Ac, let gy be the function defined on {±1}A
obtained by using f but fixing the configuration to be y outside of A. Then for any
S ⊆ A, we have

Q̂(Sf ∩ A = S) = E[Q̂(Sgy = S)] = E[ĝ2
y(S)].

Proof. Using the first line of the proof of Proposition IX.3, it is easy to check that for
any S ⊆ A, we have that

E
[
f χS

∣∣FAc

]
=

∑

S′⊆Ac

f̂(S ∪ S ′) χS′ .

This gives

E
[
E
[
f χS

∣∣FAc

]2
]

=
∑

S′⊆Ac

f̂(S ∪ S ′)2 = Q̂[S ∩ A = S]

which is precisely the claim.

Remark IX.2. Observe that Proposition IX.3 is a special case of Proposition IX.4 when
S is taken to be ∅ and A is replaced by Ac.

The following corollary was first observed by Gil Kalai.

Corollary IX.5 ([GPS10]). If f is a Boolean function mapping into {±1}, then for
all i and j,

P(i, j ∈ P) = Q̂(i, j ∈ S ).

(The comment immediately following Proposition IX.2 holds here as well.)

Proof. Although it has already been established that P and S have the same 1-
dimensional marginals, we first show how Proposition IX.4 can be used to establish
this. This latter proposition yields, with A = S = {i}, that

Q̂(i ∈ S ) = Q̂(S ∩ {i} = {i}) = E[ĝ2
y({i})].

Note that gy is ±ωi if i is pivotal and constant if i is not pivotal. Hence the last term
is P(i ∈ P).

For the 2-dimensional marginals, one first checks this by hand when n = 2. For
general n, taking A = S = {i, j} in Proposition IX.4, we have

Q̂(i, j ∈ S ) = P(S ∩ {i, j} = {i, j}) = E[ĝ2
y({i, j})].

For fixed y, the n = 2 case tells us that ĝ2
y({i, j}) = P(i, j ∈ Pgy). Finally, a little

thought shows that E[P(i, j ∈ Pgy)] = P(i, j ∈ P), completing the proof.
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3 Nontrivial spectrum near the upper bound for

percolation

We now return to our central event of percolation crossings of the rectangle Rn where
fn denotes this event. At this point, we know that for Z2, (most of) the spectrum lies
between nǫ0 (for some ǫ0 > 0) and n2α4(n) while for T it sits between n1/8+o(1) and
n3/4+o(1). In this section, we show that there is a nontrivial amount of spectrum near
the upper bound n2α4(n). For T, in terms of quantitative noise sensitivity, this tells us
that if our noise sequence ǫn is equal to 1/n3/4−δ for fixed δ > 0, then in the limit, the
two variables f(ω) and f(ωǫn) are not perfectly correlated; i.e., there is some degree
of independence. (See the exercises for understanding such arguments.) However, we
cannot conclude that there is full independence since we don’t know that “all” of the
spectrum is near n3/4+o(1) (yet!).

Theorem IX.6 ([GPS10]). Consider our percolation crossing functions {fn} (with
values into {±1}) of the rectangles Rn for Z2 or T. There exists c > 0 such that for all
n,

P̂
[
|Sn| ≥ cn2α4(n)

]
≥ c.

The key lemma for proving this is the following second moment bound on the number
of pivotals which we prove afterwards. It has a similar flavor to Exercise 6 in Chapter
VI.

Lemma IX.7 ([GPS10]). Consider our percolation crossing functions {fn} above and
let R′n be the box concentric with Rn with half the radius. If Xn = |Pn ∩ R′n| is the
cardinality of the set of pivotal points in R′n, then there exists a constant C such that
for all n we have that

E[|Xn|2] ≤ CE[|Xn|]2.

Proof of Theorem IX.6. Since Pn and Sn have the same 1 and 2-dimensional
marginals, it follows fairly straightforward from Lemma IX.7 that we also have that for
all n

P̂
[
|Sn ∩ R′n|2

]
≤ CP̂

[
|Sn ∩ R′n|

]2
.

Recall now the Paley-Zygmund inequality which states that if Z ≥ 0, then for all
θ ∈ (0, 1),

P(Z ≥ θ E[Z]) ≥ (1− θ)2 E[Z]2

E[Z2]
. (IX.3)

The two above inequalities (with Z = |Sn ∩ R′n| and θ = 1/2) imply that for all n,

P̂
[
|Sn ∩ R′n| ≥

Ê
[
|Sn ∩R′n|

]

2

]
≥ 1

4C
.
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Now, by Proposition IX.2, one has that Ê
[
|Sn ∩R′n|

]
= E[Xn]. Furthermore (a

trivial modification of) Proposition VI.8 yields E[Xn] ≍ n2α4(n) which thus completes
the proof.

We are now left with

Proof of Lemma IX.7. As indicated at the end of the proof of Theorem IX.6, we
have that E(Xn) ≍ n2α4(n). Next, for x, y ∈ R′n, a picture shows that

P(x, y ∈ Pn) ≤ α2
4(|x− y|/2)α4(2|x− y|, n/2)

since we need to have the 4-arm event around x to distance |x−y|/2, the same for y, and
the 4-arm event in the annulus centered at (x + y)/2 from distance 2|x− y| to distance
n/2 and finally these three events are independent. This is by quasi-multiplicity at
most

O(1)α2
4(n)/α4(|x− y|, n)

and hence

E[|Xn|2] ≤ O(1)α2
4(n)

∑

x,y

1

α4(|x− y|, n)
.

Since, for a given x, there are at most O(1)22k y’s with |x − y| ∈ [2k, 2k+1], using
quasi-multiplicity, the above sum is at most

O(1)n2α2
4(n)

log2(n)∑

k=0

22k

α4(2k, n)
.

Using
1

α4(r, R)
≤ (R/r)2−ǫ

(this is the fact that the four-arm exponent is strictly less than 2), the sum becomes at
most

O(1)n4−ǫα2
4(n)

log2(n)∑

k=0

2kǫ.

Since the last sum is at most O(1)nǫ, we are done.

In terms of the consequences for quantitative noise sensitivity, Theorem IX.6 implies
the following corollary; see the exercises for similar implications. We state this only for
the triangular lattice. An analogous result holds for Z2.

Corollary IX.8. For T, there exists c > 0 so that if ǫn = 1/(n2α4(n)), then for all n,

P(fn(ω) 6= fn(ωǫn)) ≥ c.
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Note, importantly, this does not say that fn(ω) and fn(ωǫn) become asymptotically
uncorrelated, only that they are not asymptotically completely correlated. To ensure
that they are asymptotically uncorrelated is significantly more difficult and requires
showing that “all” of the spectrum is near n3/4. This much more difficult task is the
subject of the next chapter.
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Exercise sheet on chapter IX

Exercise IX.1. Let {fn} be an arbitrary sequence of Boolean functions mapping into
{±1} with corresponding spectral samples {Sn}.
(i). Show that P̂

[
0 < |Sn| ≤ An

]
→ 0 implies that Ê

[
(1− ǫn)|Sn|ISn 6=∅

]
→ 0 if ǫnAn →

∞.
(ii). Show that Ê

[
(1− ǫn)|Sn|ISn 6=∅

]
→ 0 implies that P̂

[
0 < |Sn| ≤ An

]
→ 0 if ǫnAn =

O(1).

Exercise IX.2. Let {fn} be an arbitrary sequence of Boolean functions mapping into
{±1} with corresponding spectral samples {Sn}.
(i). Show that P

[
f(ω) 6= f(ωǫn)

]
→ 0 and Anǫn = Ω(1) imply that P̂

[
|Sn| ≥ An

]
→ 0.

(ii). Show that P̂
[
|Sn| ≥ An

]
→ 0 and Anǫn = o(1) imply that P

[
f(ω) 6= f(ωǫn)

]
→ 0.

Exercise IX.3. Prove Corollary IX.8.

Exercise IX.4. For the iterated 3-Majority sequence, recall that the total influence is
nα where α = 1 − log 2/ log 3. Show that for ǫn = 1/nα, P(fn(ω) 6= fn(ωǫn)) does not
tend to 0.

Exercise IX.5. Assume that {fn} is a sequence of monotone Boolean functions on n
bits with total influence equal to n1/2 up to constants. Show that the sequence cannot
be noise sensitive. Is it necessarily noise stable as the Majority function is?

Exercise IX.6. Assume that {fn} is a sequence of monotone Boolean functions with
mean 0 on n bits. Show that one cannot have noise sensitivity when using noise level
ǫn = 1/n1/2.

Exercise IX.7. Show that P and S have the same 2-dimensional marginals using only
Proposition IX.3 rather than Proposition IX.4.
Hint: It suffices to show that P({i, j} ∩ P = ∅) = Q̂({i, j} ∩S = ∅).

Exercise IX.8. (Challenging problem) Do you expect that exercise IX.5 is sharp,
meaning that, if 1/2 is replaced by α < 1/2, then one can find noise sensitive examples?
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Chapter X

Sharp noise sensitivity of
percolation

We will explain in this chapter the main ideas of the proof in [GPS10] that most of
the “spectral mass” lies near n2α4(n) ≈ n3/4+o(1). This proof being rather long and
involved, the content of this chapter will be far from a formal proof. Rather it should
be considered as a (hopefully convincing) heuristic explanation of the main results, and
possibly for the interested readers as a “reading guide” for the paper [GPS10].

Very briefly speaking, the idea behind the proof is to identify properties of the geom-
etry of Sfn which are reminiscent of a self-similar fractal structure. Ideally, Sfn would
behave like a spatial branching tree (or in other words a fractal percolation process),
where distinct branches evolve independently of each other. This is conjecturally the
case, but it turns out that it is very hard to control the dependency structure within
Sfn . In [GPS10], only a tiny hint of spatial independence within Sfn is proved. One
of the main difficulties of the proof is to overcome the fact that one has very little
independence to play with.

A substantial part of this chapter focuses on the much simpler case of fractal per-
colation. Indeed, this process can be seen as the simplest toy model for the spectral
sample Sfn . Explaining the simplified proof adapted to this setting already enables us
to convey some of the main ideas for handling Sfn .

1 State of the art and main statement

See Figure X.1 where we summarize what we have learned so far about the spectral
sample Sfn of a left to right crossing event fn.

From this table, we see that the main question now is to prove that all the spectral
mass indeed diverges at speed n2α4(n) which is n3/4+o(1) for the triangular lattice. This
is the content of the following theorem.
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on the square lattice Z2 on the triangular lattice T
The spectral

mass diverges at
polynomial

speed

There is a positive ex-
ponent ǫ > 0, s.t.
P̂
[
0 < |Sfn| < nǫ

]
→ 0

The same holds for all ǫ <
1/8

Lower tail esti-
mates

On both lattices, Theorem VIII.1 enables to obtain
(non-sharp) lower tail estimates

A positive
fraction of the
spectral mass
lies “where it

should”

There is some universal c >
0 s.t.
P̂
[
|Sfn| > c n2α4(n)

]
> c

P̂
[
|Sfn| > c n3/4+o(1)

]
> c

May be summa-
rized by the fol-
lowing picture

Figure X.1: A summary of some of the results obtained so far for Sfn .
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Theorem X.1 ([GPS10]).

lim sup
n→∞

P̂
[
0 < |Sfn| < λ n2α4(n)

]
−→
λ→0

0 .

On the triangular lattice T, the rate of decay in λ is known explicitly. Namely:

Theorem X.2 ([GPS10]). On the triangular grid T, the lower tail of |Sfn| satisfies

lim sup
n→∞

P̂
[
0 < |Sfn | < λ Ê

[
|Sfn |

]
)
]
≍

λ→0
λ2/3 .

This result deals with what one might call the “macroscopic” lower tail, i.e. with
quantities which asymptotically are still of order Ê

[
|Sfn |

]
(since λ remains fixed in

the above lim sup). It turns out that in our later study of dynamical percolation in
Chapter XI, we will need a sharp control on the full lower tail. This is the content of
the following stronger theorem:

Theorem X.3 ([GPS10]). On Z2 and on the triangular grid T, for all 1 ≤ r ≤ n, one
has

P̂
[
0 < |Sfn| < r2α4(r)

]
≍ n2

r2
α4(r, n)2 .

On the triangular grid, this translates into

P̂
[
0 < |Sfn| < u

]
≈ n−

1
2 u

2
3 ,

where we write ≈ to avoid relying on o(1) terms in the exponents.

2 Overall strategy

In the above theorems, it is clear that we are mostly interested in the cardinality of
Sfn . However, our strategy will consist in understanding as much as we can about the
typical geometry of the random set Sfn sampled according to the spectral probability

measure P̂fn.
As we have seen so far, the random set Sfn shares many properties with the set of

pivotal points Pfn . A first possibility would be that they are asymptotically similar.
After all, noise sensitivity is intimately related with pivotal points, so it is not unrea-
sonable to hope for such a behavior. This scenario would be very convenient for us
since the geometry of Pfn is now well understood (at least on T) thanks to the SLE
processes. In particular, in the case of Pfn , one can “explore” Pfn in a Markovian way
by relying on exploration processes. Unfortunately, based on very convincing heuristics,
it is conjectured that the scaling limits of 1

n
Sfn and 1

n
Pfn are singular random compact

sets of the square. See Figure X.2 for a quick overview of the similarities and differences
between these two random sets.
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Figure X.2: Similarities and differences between Sfn and Pfn .

The conclusion of this table is that they indeed share many properties, but one
cannot deduce lower tail estimates on |Sfn | out of lower tail estimates on |Pfn|. Also,
even worse, we will not be allowed to rely on spatial Markov properties for Sfn .

However, even though Pfn and Sfn differ in many ways, they share at least one essen-
tial property: a seemingly self-similar fractal behavior. The main strategy in [GPS10]
to control the lower-tail behavior of |Sfn | is to prove that in some very weak sense,



3. TOY MODEL: THE CASE OF FRACTAL PERCOLATION 111

Sfn behaves like the simplest model among self-similar fractal processes in [0, n]2: i.e.
a super-critical spatial Galton-Watson tree embedded in [0, n]2, also called a fractal
percolation process. The lower tail of this very simple toy model will be investigated in
detail in the next section with a technique which will be suitable for Sfn . The main
difficulty which arises in this program is the lack of knowledge of the independency
structure within Sfn . In other words, when we try to compare Sfn with a fractal per-
colation process, the self-similarity already requires some work, but the hardest part is
to deal with the fact that distinct “branches” (or rather their analogues) are not known
to behave even slightly independently of each other. We will discuss these issues in
Section 4 but will not give a complete proof.

3 Toy model: the case of fractal percolation

As we explained above, our main strategy is to exploit the fact that Sfn has a certain
self-similar fractal structure. Along this section, we will consider the simplest case
of such a self-similar fractal object: namely fractal percolation, and we will detail in
this simple setting what our later strategy will be. Deliberately, this strategy will not
be optimal in this simplified case. In particular, we will not rely on the martingale
techniques that one can use with fractal percolation or Galton-Watson trees, since such
methods would not be available for our spectral sample Sfn .

3.1 Definition of the model and first properties

To make the analogy with Sfn easier let

n := 2h , h ≥ 1 ,

and let’s fix a parameter p ∈ (0, 1).
Now, fractal percolation on [0, n]2 is defined inductively as follows: divide [0, 2h]2

into 4 squares and retain each of them independently with probability p. Let T 1 be the
union of the retained 2h−1-squares. The second-level tree T 2 is obtained by reiterating
the same procedure independently for each 2h−1-square in T 1. Continuing in the same
fashion all the way to the squares of unit size, one obtains Tn = T := T h which is a
random subset of [0, n]2. See [LyP11] for more on the definition of fractal percolation.
See also Figure X.3 for an example of T 5.

Remark X.1. We thus introduced two different notations for the same random set
(Tn=2h ≡ T h). The reason for this is that on the one hand the notation Tn defined on
[0, n]2 = [0, 2h]2 makes the analogy with Sfn (also defined on [0, n]2) easier, while on
the other hand inductive proofs will be more convenient with the notation T h.

In order to have a supercritical Galton-Watson tree, one has to choose p ∈ (1/4, 1).
Furthermore, one can easily check the following easy proposition.
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Figure X.3: A realization of a fractal percolation T25 = T 5

Proposition X.4. Let p ∈ (1/4, 1). Then

E
[
|Tn|

]
= n2ph = n2+log2 p ,

and

E
[
|Tn|2

]
≤ O(1)E

[
|Tn|

]2
.

In particular, by the second moment method (e.g. the Paley-Zygmund inequality),
with positive probability, Tn is of order n2+log2 p.

Let

α := 2 + log2 p .

This parameter α corresponds to the “fractal dimension” of Tn. To make the analogy
with Sfn even clearer, one could choose p in such a way that α = 2 + log2 p = 3/4, but
we will not need to.

The above proposition implies that on the event Tn 6= ∅, with positive conditional
probability |Tn| is large (of order nα). This is the exact analogue of Theorem IX.6 for
the spectral sample Sfn .

Let us first analyze what would be the analogue of Theorem X.1 in the case of our
toy model Tn. We have the following.
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Proposition X.5.

lim sup
n→∞

P
[
0 < |Tn| < λ nα)

]
−→
λ→0

0 .

Remark X.2. If one could rely on martingale techniques, then this proposition is a
corollary of standard results. Indeed, as is well-known

Mi :=
|T i|
(4p)i

,

is a positive martingale. Therefore it converges, as n→∞, to a non-negative random
variable W ≥ 0. Furthermore, the conditions of the Kesten-Stigum Theorem are ful-
filled (see for example Section 5.1 in [LyP11]) and therefore W is positive on the event
that there is no extinction. This implies the above proposition.

As we claimed above, we will intentionally follow a more hands-on approach in this
section which will be more suitable to the random set Sfn which we have in mind.
Furthermore this approach will have the great advantage to provide the following much
more precise result, which is the analogue of Theorem X.3 for Tn.

Proposition X.6. For any 1 ≤ r ≤ n,

P
[
0 < |Tn| < rα

]
≍ (

r

n
)log2 1/µ ,

where µ is an explicit constant in (0, 1) computed in Exercise X.2.

3.2 Strategy and heuristics

Letting u ≪ nα, we wish to estimate P
[
0 < |Tn| < u

]
. Even though we are only in-

terested in the size of Tn, we will try to estimate this quantity by understanding the
geometry of the conditional set:

T |un := L
(
Tn

∣∣∣ 0 < |Tn| < u
)

.

The first natural question to ask is whether this conditional random set is typically
localized or not. See Figure X.4.

Intuitively, it is quite clear that the set Tn conditioned to be very small will tend to
be localized. So it is the picture on the right in Figure X.4 which is more likely. This
would deserve a proof of course, but we will come back to this later. The fact that it
should look more and more localized tells us that as one shrinks u, this should make
our conditional T |un more and more singular with respect to the unconditional one. But
how much localization should we see? This is again fairly easy to answer, at least on the
intuitive level. Indeed, T |un should tend to localize until it reaches a certain mesoscopic
scale r such that 1≪ r ≪ n. One can compute how much it costs to maintain a single
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How does
L

(
Tn

∣∣∣ 0 <

|Tn| < u
)

look ?

More Entropy ( in V ol3)
but costs more to maintain

these 3 “islands” alive.

OR?

Less Entropy ( in V ol1) but
only one island to maintain

alive.

Figure X.4: Entropy v.s. Clustering effect

branch (or O(1) branches) alive until scale r, but once this is achieved, one should let
the system evolve in a “natural” way. In particular, once the tree survives all the way
to a mesoscopic square of size r, it will (by the second moment method) produce Ω(rα)
leaves there with positive probability.

To summarize, typically T |un will maintain O(1) many branches alive at scale 1 ≪
r ≪ n, and then it will let the branching structure evolve in a basically unconditional
way. The intermediate scale r is chosen so that rα ≍ u.

Definition X.1. If 1 ≤ r ≤ n = 2h is such that r = 2l, 0 ≤ l ≤ h, let T(r) denote the
set of branches that were still alive at scale r = 2l in the iterative construction of Tn.
In other words, T(r) ≡ T h−l and Tn ⊂

⋃ T(r). This random set T(r) will be the analogue
of the “r-smoothing” S(r) of the spectral sample Sfn defined later in Definition X.2.

Returning to our problem, the above heuristics say that one expects to have for any
1≪ u≪ nα.

P
[
0 < |Tn| < u

]
≍ P

[
0 < |T(r)| ≤ O(1)

]

≍ P
[
|T(r)| = 1

]
,

where r is a dyadic integer chosen such that rα ≍ u. Or in other words, we expect that

P
[
0 < |Tn| < rα

]
≍ P

[
|T(r)| = 1

]
. (X.1)

In the next subsection, we briefly explain how this heuristic can be implemented
into a proof in the case of the tree Tn in a way which will be suitable to the study of
Sfn . We will only skim through the main ideas for this tree case.
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3.3 Setup of a proof for Tn

Motivated by the above heuristics, we divide our system into two scales: above and
below the mesoscopic scale r. One can write the lower tail event as follows (let 1 ≪
r ≪ n):

P
[
0 < |Tn| < rα

]
=

∑

k≥1

P
[
|T(r)| = k

]
P
[
0 < |Tn| < rα

∣∣ |T(r)| = k
]
. (X.2)

It is not hard to estimate the second term P
[
0 < |Tn| < rα

∣∣ |T(r)| = k
]
. Indeed, in

this term we are conditioning on having exactly k branches alive at scale r. Indepen-
dently of where they are, “below” r, these k branches evolve independently of each
other. Furthermore, by the second moment method, there is a universal constant c > 0
such that each of them exceeds the fatal amount of rα leaves with probability at least
c (note that in the opposite direction, each branch could also go extinct with positive
probability). This implies that

P
[
0 < |Tn| < rα

∣∣ |T(r)| = k
]
≤ (1− c)k .

Remark X.3. Note that one makes heavy use of the independence structure within Tn

here. This aspect is much more nontrivial for the spectral sample Sfn . Fortunately it
turns out, and this is a key fact, that in [GPS10] one can prove a weak independence
statement which in some sense makes it possible to follow this route.

We are left with the following upper bound:

P
[
0 < |Tn| < rα

]
≤

∑

k≥1

P
[
|T(r)| = k

]
(1− c)k . (X.3)

In order to prove our goal of (X.1), by exploiting the exponential decay given by
(1− c)k (which followed from independence), it is enough to prove the following bound
on the mesoscopic behavior of T :

Lemma X.7. There is a sub-exponential function k 7→ g(k) such that for all 1 ≤
r ≤ n,

P
[
|T(r)| = k

]
≤ g(k) P

[
|T(r)| = 1

]
.

Notice as we did in Definition X.1 that since T(r) has the same law as T h−l, this is
a purely Galton-Watson tree type of question.

The big advantage of our strategy so far is that initially we were looking for a sharp
control on P

[
0 < |Tn| < u

]
and now, using this “two-scales” argument, it only remains

to prove a crude upper bound on the lower tail of |T(r)|. By scale invariance this is
nothing else than obtaining a crude upper bound on the lower tail of |Tn|. Hence this
division into two scales greatly simplified our task.
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3.4 Sub-exponential estimate on the lower-tail (Lemma X.7)

The first step towards proving and understanding Lemma X.7 is to understand the
term P

[
|T(r)| = 1

]
. From now on, it will be easier to work with the “dyadic” notations

instead, i.e. with T i ≡ T2i (see remark X.1). With these notations, the first step is
equivalent to understanding the probabilities pi := P

[
|T i| = 1

]
. This aspect of the

problem is very specific to the case of Galton-Watson trees and gives very little insight
into the later study of the spectrum Sfn . Therefore we postpone the details to Exercise
X.2. The conclusion of this (straightforward) exercise is that pi behaves as i→∞ like

pi ∼ c µi ,

for an explicit exponent µ ∈ (0, 1) (see Exercise X.2). In particular, in order to prove
Proposition X.6, it is now enough to find a sub-exponential function k 7→ g(k) such
that for any i, k ≥ 1,

P
[
|T i| = k

]
≤ g(k)µi . (X.4)

More precisely, we will prove the following lemma.

Lemma X.8. Let g(k) := 2θ log2
2(k+2), where θ is a fixed constant to be chosen later.

Then for all i, k ≥ 1, one has

P
[
|T i| = k

]
≤ g(k) µi . (X.5)

We provide the proof of this lemma here, since it can be seen as a “toy proof” of the
corresponding sub-exponential estimate needed for the r-smoothed spectral samples
S(r), stated in the coming Theorem X.13. The proof of this latter theorem shares
some similarities with the proof below but is much more technical since in the case of
S(r) one has to deal with a more complex structure than the branching structure of a
Galton-Watson tree.

Proof. We proceed by double induction. Let k ≥ 2 be fixed and assume that equa-
tion (X.5) is already satisfied for all pair (i′, k′) such that k′ < k. Based on this
assumption, let us prove by induction on i that all pairs (i, k) satisfy equation (X.5) as
well.

First of all, if i is small enough, this is obvious by the definition of g(k). Let

J = Jk := sup{i ≥ 1 : g(k)µi > 10} .

Then, it is clear that equation (X.5) is satisfied for all (i, k) with i ≤ Jk. Now let
i > Jk.

If T i is such that |T i| = k ≥ 1, let L = L(T i) ≥ 0 be the largest integer such
that T i intersects only one square of size 2i−L. This means that below scale 2i−L, the
tree T i splits into at least 2 live branches in distinct dyadic squares of size 2i−L−1. Let
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d ∈ {2, 3, 4} be the number of such live branches. By decomposing on the value of L,
and using the above assumption, we get

P
[
|T i| = k

]
≤ P

[
L(T i) > i− Jk

]
+

1

1− q

i−Jk∑

l=0

P
[
L(T i) = l

] 4∑

d=2

(
4

d

)
(µi−l−1)d

∑

(kj)1≤j≤d

kj ≥ 1,
∑

kj = k

∏

j

g(kj)

where q is the probability that our Galton-Watson tree goes extinct.
Let us first estimate what P

[
L(T i) ≥ m

]
is for m ≥ 0. If m ≥ 1, this means that

among the 22m dyadic squares of size 2i−m, only one will remain alive all the way to
scale 1. Yet, it might be that some other such squares are still alive at scale 2i−m but
will go extinct by the time they reach scale 1. Let pm,b be the probability that the
process T m+b, which lives in [0, 2m+b]2, is entirely contained in a dyadic square of size
2b. With such notations, one has

P
[
L(T i) ≥ m

]
= pm,i−m .

Furthermore, if i = m, one has pi,0 = pi ∼ cµi. It is not hard to prove (see Exercise
X.2) the following lemma.

Lemma X.9. For any value of m, b ≥ 0, one has

pm,b ≤ µm .

In particular, one has a universal upper bound in b ≥ 0.

It follows from the lemma that P
[
L(T i) = l

]
≤ P

[
L(T i) ≥ l

]
≤ µl and

P
[
L(T i) > i− Jk

]
≤ µi−Jk (X.6)

≤ 1

10
g(k) µi by the definition of Jk . (X.7)

This gives us that for some constant C

P
[
|T i| = k

]
≤ µi

10
g(k) + C

i−Jk∑

l=0

µl
4∑

d=2

(µi−l)d
∑

(kj)1≤j≤d

kj ≥ 1,
∑

kj = k

∏

j

g(kj)

=
µi

10
g(k) + Cµi

4∑

d=2

i−Jk∑

l=0

(µi−l)d−1
∑

(kj)1≤j≤d

kj ≥ 1,
∑

kj = k

∏

j

g(kj) .
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Let us deal with the d = 2 sum (the contributions coming from d > 2 being even
smaller). By concavity of k 7→ θ log2

2(k + 2), one obtains that for any (k1, k2) such that
k1 + k2 = k: g(k1)g(k2) ≤ g(k/2)2. Since there are at most k2 such pairs, this gives us
the following bound on the d = 2 sum.

i−Jk∑

l=0

(µi−l)2−1
∑

(kj)1≤j≤2

kj ≥ 1,
∑

kj = k

∏

j

g(kj) ≤
i−Jk∑

l=0

µi−lk2g(k/2)2

≤ 1

1− µ
µJk k2 g(k/2)2

≤ 10
1

1− µ
k2 g(k/2)2 (µg(k))−1 ,

by definition of Jk.
Now, some easy analysis implies that if one chooses the constant θ > 0 large enough,

then for any k ≥ 2, one has C10 1
1−µ

k2 g(k/2)2 (µg(k))−1 ≤ 1
10

g(k). Altogether (and

taking into consideration the d > 2 contributions), this implies that

P
[
|T i| = k

]
≤ 2

5
g(k)µi ≤ g(k)µi ,

as desired.

Remark X.4. Recall the initial question from Figure X.4 which asked whether the clus-
tering effect wins over the entropy effect or not. This question enabled us to motivate
the setup of the proof but in the end, we did not specifically address it. Notice that
the above proof in fact solves the problem (see Exercise X.3).

4 Back to the spectrum: an exposition of the proof

4.1 Heuristic explanation

Let us now apply the strategy we developed for Tn to the case of the spectral sample Sfn .
Our goal is to prove Theorem X.3 (of which Theorems X.1 and X.2 are straightforward
corollaries). Let Sfn ⊂ [0, n]2 be our spectral sample. We have seen (Theorem IX.6)
that with positive probability |Sfn | ≍ n2α4(n). For all 1 < u < n2α4(n), we wish to

understand the probability P̂
[
0 < |Sfn| < u

]
. Following the notations we used for Tn,

let S
|u
fn

be the spectral sample conditioned on the event {0 < |Sfn| < u}.
Question: How does S

|u
fn

typically look?

To answer this question, one has to understand whether S
|u
fn

tends to be localized
or not. Recall from Figure X.4 the illustration of the competition between entropy and
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clustering effects in the case of Tn. The same figure applies to the spectral sample Sfn .
We will later state a clustering lemma (Lemma X.14) which will strongly support
the localized behavior described in the next proposition.

Therefore we are guessing that our conditional set S
|u
fn

will tend to localize into O(1)
many squares of a certain scale r and will have a “normal” size within these r-squares.
It remains to understand what this mesoscopic scale r as a function of u is.

By “scale invariance”, one expects that if Sfn is conditioned to live in a square of
size r, then |Sfn | will be of order r2α4(r) with positive conditional probability. More
precisely, the following lemma will be proved in Problem X.6.

Lemma X.10. There is a universal c ∈ (0, 1) such that for any n and for any r-square
B ⊂ [n/4, 3n/4]2 in the “bulk” of [0, n]2, one has

P̂
[ |Sfn|
r2α4(r)

∈ (c, 1/c)
∣∣ Sfn 6= ∅ and Sfn ⊂ B

]
> c . (X.8)

In fact this lemma holds uniformly in the position of the r-square B inside [0, n]2,
but we will not discuss this here.

What this lemma tells us is that for any 1 < u < n2α4(n), if one chooses r = ru in
such a way that r2α4(r) ≍ u, then we expect to have the following estimate:

P̂
[
0 < |Sfn | < u

]
≍ P̂

[
Sfn intersects O(1) r-squares in [0, n]2

]

≍ P̂
[
Sfn intersects a single r-square in [0, n]2

]

At this point, let us introduce a concept which will be very helpful in what follows.

Definition X.2 (“r-smoothing”). Let 1 ≤ r ≤ n. Consider the domain [0, n]2 and
divide it into a grid of squares of edge-length r. (If 1≪ r ≪ n, one can view this grid
as a mesoscopic grid).

If n is not divisible by r, write n = mr+q and consider the grid of r-squares covering
[0, (m + 1)r]2.

Now, for each subset S ⊂ [0, n]2, define S(r) to be the set of r × r squares in the
above grid which intersect S. In particular |S(r)| will correspond to the number of such
r-squares which intersect S. With a slight abuse of notation, S(r) will sometimes also
denote the actual subset of [0, n]2 consisting of the union of these r-squares.

One can view the application S 7→ S(r) as an r-smoothing since all the details
below the scale r are lost.

Remark X.5. Note that in Definition X.1, we relied on a slightly different notion of
“r-smoothing” since in that case, T(r) could also include r-branches which might go
extinct by the time they reached scale one. The advantage of this choice was that there
was an exact scale-invariance from T to T(r) while in the case of Sfn , there is no such
exact scale-invariance from S to S(r).
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With these notations, the above discussion leads us to believe that the following
proposition should hold.

Proposition X.11. For all 1 ≤ r ≤ n, one has

P̂
[
0 < |Sfn| < r2α4(r)

]
≍ P̂fn

[
|S(r)| = 1

]
.

Before explaining the setup used in [GPS10] to prove such a result, let us check that
it indeed implies Theorem X.3. By neglecting the boundary issues, one has

P̂fn

[
|S(r)| = 1

]
≍

∑

r-squares
B ⊂ [n/4, 3n/4]2

P̂
[
Sfn 6= ∅ and Sfn ⊂ B

]
. (X.9)

There are O(n2

r2 ) such B squares, and for each of these, one can check (see Exercise X.5)
that

P̂
[
Sfn 6= ∅ and Sfn ⊂ B

]
≍ α4(r, n)2 . (X.10)

Therefore, Proposition X.11 indeed implies Theorem X.3.

4.2 Setup and organization of the proof of Proposition X.11

To start with, assume we knew that disjoint regions in the spectral sample Sfn behave
more or less independently of each other in the following (vague) sense. For any k ≥
1 and any mesoscopic scale 1 ≤ r ≤ n, if one conditions on S(r) to be equal to
B1 ∪ · · · ∪ Bk for k disjoint r-squares, then the conditional law of S|

S

Bi
should be

“similar” to an independent product of L
[
S|Bi

∣∣ S ∩Bi 6= ∅
]
, i ∈ {1, . . . , k}. Similarly

as in the tree case (where the analogous property for Tn was an exact independence
factorization), and assuming that the above comparison with an independent product
could be made quantitative, this would potentially imply the following upper bound for
a certain absolute constant c > 0:

P̂
[
0 < |Sfn| < r2α4(r)

]
≤

∑

k≥1

P̂
[
|S(r)| = k

]
(1− c)k . (X.11)

This means that even if one managed to obtain a good control on the dependency
structure within Sfn (in the above sense), one would still need to have a good estimate

on P̂
[
|S(r)| = k

]
in order to deduce Proposition X.11. This part of the program is

achieved in [GPS10] without requiring any information on the dependency structure of
Sfn . More precisely, the following result is proved:

Theorem X.12 ([GPS10]). There is a sub-exponential function g 7→ g(k), such that
for any 1 ≤ r ≤ n and any k ≥ 1,

P̂
[
|S(r)| = k

]
≤ g(k) P̂

[
|S(r)| = 1

]
.
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The proof of this result will be described briefly in the next subsection.

One can now describe how the proof of Theorem X.3 is organized in [GPS10]. It is
divided into three main parts:

1. The first part deals with proving the multi-scale sub-exponential bound on the
lower-tail of |S(r)| given by Theorem X.12.

2. The second part consists in proving as much as we can on the dependency struc-
ture of Sfn . Unfortunately here, it seems to be very challenging to achieve a good
understanding of all the “independence” that should be present within Sfn . The
only hint of independence which was finally proved in [GPS10] is a very weak one
(see subsection 4.4). In particular, it is too weak to readily imply a bound like
(X.11).

3. Since disjoint regions of the spectral sample Sfn are not known to behave inde-
pendently of each other, the third part of the proof consists in adapting the setup
we used for the tree (where distinct branches evolve exactly independently of each
other) into a setup where the weak hint of independence obtained in the second
part of the program turns out to be enough to imply the bound given by (X.11)
for an appropriate absolute constant c > 0. This final part of the proof will be
discussed in subsection 4.5.

The next three subsections will be devoted to each of these 3 parts of the program.

4.3 Some words about the sub-exponential bound on the lower

tail of S(r)

In this subsection, we turn our attention to the proof of the first part of the program,
i.e. on Theorem X.12. In fact, as in the case of Tn, the following more explicit statement
is proved in [GPS10].

Theorem X.13 ([GPS10]). There exists an absolute constant θ > 0 such that for any
1 ≤ r ≤ n and any k ≥ 1,

P̂
[
|S(r)| = k

]
≤ 2 θ log2

2(k+2) P̂
[
|S(r)| = 1

]
.

Remark X.6. Note that the theorems from [BKS99] on the noise sensitivity of percola-
tion are all particular cases (r = 1) of this intermediate result in [GPS10].

The main idea in the proof of this theorem is in some sense to assign a tree structure
to each possible set S(r). The advantage of working with a tree structure is that it is eas-
ier to work with inductive arguments. In fact, once a mapping S(r) 7→ “tree structure”
has been designed, the proof proceeds similarly as in the case of T(r) by double induction
on the depth of the tree as well as on k ≥ 1. Of course, this mapping is a delicate affair:
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it has to be designed in an “efficient” way so that it can compete against entropy effects
caused by the exponential growth of the number of tree structures.

We will not give the details of how to define such a mapping, but let us describe
informally how it works. More specifically than a tree structure, we will in fact assign
an annulus structure to each set S(r).

Definition X.3. Let A be a finite collection of disjoint (topological) annuli in the plane.
We call this an annulus structure. Furthermore, we will say that a set S ⊂ R2 is
compatible with A (or vice versa) if it is contained in R2 \ ⋃A and intersects the
inner disk of each annulus in A. Note that it is allowed that one annulus is “inside” of
another annulus.

Figure X.5: An example of an annulus structure A := {A1, A2, A3} compatible with
a spectral sample Sfn .

The mapping procedure in [GPS10] assigns to each S(r) an annulus structure A ⊂
[0, n]2 in such a way that it is compatible with S(r). See Figure X.5 for an example.
Again, we will not describe this procedure nor discuss the obvious boundary issues
which arise here, but let us state a crucial property satisfied by annulus structures.

Lemma X.14 (clustering Lemma). If A is an annulus structure contained in [0, n]2,
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then

P̂
[
S(r) is compatible with A

]
≤

∏

A∈A

α4(A)2 ,

where α4(A) denotes the probability of having a four-arm event in the annulus A.

Remark X.7. To deal with boundary issues, one would also need to incorporate within
our annulus structures half-annuli centered on the boundaries as well as quarter disks
centered at the corners of [0, n]2.

Let us briefly comment on this lemma.

• First of all, its proof is an elegant combination of linear algebra and percolation.
It is a short and relatively elementary argument. See Lemma 4.3 in [GPS10].

• It is very powerful in dealing with the possible non-injectivity of the mapping
S(r) 7→ A. Indeed, while describing the setup above, one might have objected that
if the mapping were not injective enough, then the cardinality of the “fibers” above
each annulus structure would have to be taken into account as well. Fortunately,
the above lemma reads as follows: for any fixed annulus structure A,

∑

S(r):S(r) 7→A

P̂
[
S(r)

]
≤ P̂

[
S(r) is compatible with A

]
≤

∏

A∈A

α4(A)2 .

• Another essential feature of this lemma is that it quantifies very efficiently the fact
that the clustering effect wins over the entropy effect in the sense of Figure X.4.
The mechanism responsible for this is that the probability of the four-arm event
squared has an exponent (equal to 5/2 on T) larger than the volume exponent
equal to 2. To illustrate this, let us analyze the situation when k = 2 (still
neglecting boundary issues). The probability that the spectrum Sfn intersects two
and only two r-squares at macroscopic distance Ω(n) from each other can be easily
estimated using the lemma. Indeed, in such a case, S(r) would be compatible with
an annulus structure consisting of two annuli, each being approximately of the
type A(r, n). There are O(n2

r2 ) × O(n2

r2 ) such possible annulus structures. Using
the lemma each of them costs (on T) ( r

n
)5+o(1). An easy exercise shows that this

is much smaller than P̂
[
|S(r)| = 2

]
. In other words, if |S(r)| is conditioned to be

small, it tends to be localized. Also, the way that the lemma is stated makes it
very convenient to work with higher values of k.

The details of the proof of Theorem X.13 can be found in [GPS10]. The double
induction there is in some sense very close to the one we carried out in detail in sub-
section 3.4 in the case of the tree; this is the reason why we included this latter proof.
For those who might read the proof in [GPS10], there is a notion of overcrowded cluster
defined there; it exactly corresponds in the case of the tree to stopping the analysis
above scale Jk instead of going all the way to scale 1 (note that without stopping at
this scale Jk, the double induction in subsection 3.4 would have failed).
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4.4 Some words on the weak independence property proved

in [GPS10]

This part of the program is in some sense the main one. To introduce it, let us start by
a naive but tempting strategy. What the first part of the program (Theorem X.13) tells
us is that for any mesoscopic scale 1 ≤ r ≤ n, if Sfn is non-empty, it is very unlikely
that it will intersect few squares of size r. In other words, it is very unlikely that |S(r)|
will be small. Let B1, . . . , Bm denote the set of O(n2/r2) r-squares which tile [0, n]2.
One might try the following scanning procedure: explore the spectral sample Sfn inside
the squares Bi one at a time. More precisely, before starting the scanning procedure,
we consider our spectral sample Sfn as a random subset of [0, n]2 about which we do
not know anything yet. Then, at step one, we reveal S|B1

. This gives us some partial
information about Sfn . What we still have to explore is a random set of [0, n]2 \ B1

which follows the law of a spectral sample conditioned on what was seen in B1 and we
keep going in this way. By Theorem X.13, many of these squares will be non-empty.
Now, it is not hard to prove the following lemma (using similar methods as in Problem
X.6).

Lemma X.15. There is a universal constant c > 0 such that for any r-square B in the
bulk [n/4, 3n/4]2, one has

P̂
[
|Sfn ∩B| > c r2α4(r)

∣∣ Sfn ∩ B 6= ∅
]

> c .

This lemma in fact holds uniformly in the position of B inside [0, n]2.
If one could prove the following (much) stronger result: there exists a universal

constant c > 0 such that uniformly on the sets S ⊂ [0, n]2 \B one has

P̂
[
|Sfn ∩ B| > c r2α4(r)

∣∣ Sfn ∩ B 6= ∅ and S|Bc = S
]

> c , (X.12)

then it would not be hard to make the above scanning strategy work together with
Theorem X.13 in order to obtain Theorem X.3. (Note that such a result would indeed
give a strong hint of independence within Sfn .) However, as we discussed before,
the current understanding of the independence within Sfn is far from giving such a
statement. Instead, the following result is proved in [GPS10]. We provide here a
slightly simplified version.

Theorem X.16 ([GPS10]). There exists a uniform constant c > 0 such that for any
set W ⊂ [0, n]2 and any r-square B such that B ∩W = ∅, one has

P̂
[
|Sfn ∩ B| > c r2α4(r)

∣∣ Sfn ∩ B 6= ∅ and Sfn ∩W = ∅
]

> c .

Note that this theorem in some sense interpolates between part of Lemma X.10 and
Lemma X.15 which correspond respectively to the special cases W = Bc and W = ∅.
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Yet it looks very weak compared to the expected (X.12) which is stated uniformly on
the behavior of Sfn outside of B.

Assuming this weak hint of independence (Theorem X.16), it seems we are in bad
shape if we try to apply the above scanning procedure. Indeed, we face the following
two obstacles:

1. The first obstacle is that one would keep a good control only as far as one would
not see any “spectrum”. Namely, while revealing S|Bi

one at a time, the first
time one finds a square Bi such that S|Bi

6= ∅, one would be forced to stop the
scanning procedure there. In particular, if the size of the spectrum in this first
non-trivial square does not exceed r2α4(r), then we cannot conclude anything.

2. The second obstacle is that, besides the conditioning S ∩W = ∅, our estimate
is also conditioned on the event that S ∩ B 6= ∅. In particular, in the above
“naive” scanning strategy where squares are revealed in a sequential way, at each
step one would have to update the probability that S ∩Bi+1 6= ∅ based on what
was discovered so far.

It is the purpose of the third part of the program to adapt the above scanning
strategy to these constraints. Before describing this third part in the next subsection,
let us say a few words on how to prove Theorem X.16.

A crucial step in the proof of this theorem is to understand the following “one-point
function” for any x ∈ B at distance at least r/3 from the boundary:

P̂
[
x ∈ Sfn and Sfn ∩W = ∅

]
.

A very useful observation is to rewrite this one-point function in terms of an explicit
coupling of two i.i.d. percolation configurations. It works as follows: let (ω1, ω2) be a
coupling of two i.i.d. percolations on [0, n]2 which are such that

{
ω1 = ω2 on W c

ω1, ω2 are independent on W

One can check that the one-point function we are interested in is related to this coupling
in the following simple way:

P̂
[
x ∈ Sfn and Sfn ∩W = ∅

]
= P

[
x is pivotal for ω1 AND ω2

]
.

Remark X.8. You may check this identity in the special cases where W = ∅ or W =
{x}c.

Thanks to this observation, the proof of Theorem X.16 proceeds by analyzing this
W -coupling. See [GPS10] for the complete details.
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4.5 Adapting the setup to the weak hint of independence

As we discussed in the previous subsection, one faces two main obstacles if, on the
basis of the weak independence given by Theorem X.16, one tries to apply the naive
sequential scanning procedure described earlier.

Let us start with the first obstacle. Assume that we scan the domain [0, n]2 in a se-
quential way, i.e., we choose an increasing family of subsets (Wl)l≥1 = ({w1, . . . , wl})l≥1.
At each step, we reveal what S|{wl+1} is, conditioned on what was discovered so far (i.e.,
conditioned on S|Wl

). From the weak independence Theorem X.16, it is clear that if
we want this strategy to have any chance to be successful, we have to choose (Wl)l≥1

in such a way that (Sfn ∩ Wl)l≥1 will remain empty for some time (so that we can
continue to rely on our weak independence result); of course this cannot remain empty
forever, so the game is to choose the increasing family (Wl)l≥1 in such a way that the
first time Sfn ∩ {wl} will happen to be non-empty, it should give a strong indication
that Sfn is large in the r-neighborhood of wl.

As we have seen, revealing the entire mesoscopic boxes Bi one at a time is not a
successful idea. Here is a much better idea (which is not yet the right one due to the
second obstacle, but we are getting close): in each r-square Bi, instead of revealing all
the bits, let us reveal only a very small proportion δr of them. Lemma X.15 tells us
that if S ∩Bi 6= ∅, then each point x ∈ Bi has probability of order α4(r) to be in Sfn .
Therefore if we choose δr ≪ (r2α4(r))

−1, then with high probability, by revealing only
a proportion δr of the points in Bi, we will “miss” the spectral sample Sfn . Hence, we
have to choose δr ≥ (r2α4(r))

−1. In fact choosing δ ≍ (r2α4(r))
−1 is exactly the right

balance. Indeed, we know from Theorem X.13 that many r-squares Bi will be touched
by the spectral sample; now, in this more sophisticated scanning procedure, if the first
such square encountered happens to contain few points (i.e. ≪ r2α4(r)), then with
the previous scanning strategy, we would “lose”, but with the present one, due to our
choice of δr, most likely we will keep Sfn ∩Wl = ∅ so that we can continue further on
until we reach a “good” square (i.e. a square containing of order r2α4(r) points).

Now, Theorems X.13 and X.16 together tell us that with high probability, one will
eventually reach such a good square. Indeed, suppose the m first r-squares touched
by the spectral sample happened to contain few points; then, most likely, if Wlm is the
set of bits revealed so far, by our choice of δr we will still have S ∩Wlm = ∅. This
allows us to still rely on Theorem X.16, which basically tells us that there is a positive
conditional probability for the next one to be a “good” square (we are neglecting the
second obstacle here). This says that the probability to visit m consecutive bad squares
seems to decrease exponentially fast. Since m is typically very large (by Theorem X.13),
we conclude that, with high probability, we will finally reach good squares. In the first
good square encountered, by our choice of δr, there is now a positive probability to
reveal a bit present in Sfn . In this case, the sequential scanning will have to stop, since
we will not be able to use our weak independence result anymore, but this is not a big
issue: indeed, assume that you have some random set S ⊂ B. If by revealing each bit
only with probability δr, you end up finding a point in S, most likely your set S is at
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least of size Ω(r2α4(r)). This is exactly the size we are looking for in Theorem X.3.

Now, only the second obstacle remains. It can be rephrased as follows: assume
you applied the above strategy in B1, . . . , Bh (i.e. you revealed each point in Bi, i ∈
{1, . . . , h} only with probability δr) and that you did not find any spectrum yet. In
other words, if Wl denotes the set of points visited so far, then Sfn ∩Wl = ∅. Now if
Bh+1 is the next r-square to be scanned (still in a “dilute” way with intensity δr), we
seem to be in good shape since we know how to control the conditioning Sfn ∩Wl = ∅.
However, if we want to rely on the uniform control given by Theorem X.16, we also
need to further condition on Sfn ∩ Bh+1 6= ∅. In other words, we need to control the
following conditional expectation:

P̂
[
Sfn ∩ Bh+1 6= ∅

∣∣ Sfn ∩Wl = ∅
]
.

It is quite involved to estimate such quantities. Fortunately, by changing our sequential
scanning procedure into a slightly more “abstract” procedure, one can avoid dealing
with such terms. More precisely, within each r-square B, we will still reveal only a δr

proportion of the bits (so that the first obstacle is still taken care of), but instead of
operating in a sequential way (i.e. scanning B1, then B2 and so on), we will gain a lot
by considering the combination of Theorem X.13 and Theorem X.16 in a more abstract
fashion. Namely, the following large deviation lemma from [GPS10] captures exactly
what we need in our present situation.

Lemma X.17 ([GPS10]). Let Xi, Yi ∈ {0, 1}, i ∈ {1, . . . , m} be random variables such
that for each i Yi ≤ Xi a.s. If ∀J ⊂ [m] and ∀i ∈ [m] \ J , we have

P
[
Yi = 1

∣∣ Yj = 0, ∀j ∈ J
]
≥ c P

[
Xi = 1

∣∣ Yj = 0, ∀j ∈ J
]
, (X.13)

then if X :=
∑

Xi and Y :=
∑

Yi, one has that

P
[
Y = 0

∣∣ X > 0
]
≤ c−1E

[
e−(c/e)X

∣∣ X > 0
]
.

Recall that B1, . . . , Bm denotes the set of r-squares which tile [0, n]2. For each
i ∈ [m], let Xi := 1S∩Bi 6=∅ and Yi := 1S∩Bi∩W6=∅, where W is an independent uniform
random subset of [0, n]2 of intensity δr.

This lemma enables us to combine our two main results, Theorems X.16 and X.13,
in a very nice way: By our choice of the intensity δr, Theorem X.16 exactly states
that the assumption (X.13) is satisfied for a certain constant c > 0. Lemma X.17 then
implies that

P̂
[
Y = 0

∣∣ X > 0
]
≤ c−1E

[
e−(c/e)X

∣∣ X > 0
]
.

Now, notice that X =
∑

Xi exactly corresponds to |S(r)| while the event {X > 0}
corresponds to {Sfn 6= ∅} and the event {Y = 0} corresponds to {Sfn ∩ W = ∅}.
Therefore Theorem X.13 leads us to



128 CHAPTER X. SHARP NOISE SENSITIVITY OF PERCOLATION

P̂
[
Sfn ∩W = ∅ , Sfn 6= ∅

]
≤ c−1E

[
e−(c/e)|S(r)| , Sfn 6= ∅

]

≤ c−1
∑

k≥1

P̂
[
|S(r)| = k

]
e−(c/e)k

≤ c−1
(∑

k≥1

2θ log2
2(k+2)e−(c/e)k)

)
P̂
[
|S(r)| = 1

]

≤ C(θ) P̂
[
|S(r)| = 1

]
≍ n2

r2
α4(r, n)2 , (X.14)

where (X.10) is used in the last step.
This shows that on the event that Sfn 6= ∅, it is very unlikely that we do not detect

the spectral sample on the δr-dilute set W. This is enough for us to conclude using the
following identity:

P̂
[
Sfn ∩W = ∅

∣∣ Sfn

]
= (1− δr)

|Sfn | = (1− 1

r2α4(r)
)|Sfn | .

Indeed, by averaging this identity we obtain

P̂
[
Sfn ∩W = ∅ , Sfn 6= ∅

]
= Ê

[
P̂
[
Sfn ∩W = ∅

∣∣ Sfn

]
1Sfn 6=∅

]

= Ê
[
(1− 1

r2α4(r)
)|Sfn | 1Sfn 6=∅

]

≥ Ω(1)P̂
[
0 < |Sfn | < r2α4(r)

]
,

which, combined with (X.14) yields the desired upper bound in Theorem X.3. See
Problem X.7 for the lower bound.

5 The radial case

The next chapter will focus on the existence of exceptional times in the model of dy-
namical percolation. A main tool in the study of these exceptional times is the spectral
measure Q̂gR

where gR is the Boolean function gR := {−1, 1}O(R2) → {0, 1} defined
to be the indicator function of the one-arm event {0 ←→ ∂B(0, R)}. Note that by
definition, gR is such that ‖gR‖22 = α1(R).

In [GPS10], the following “sharp” theorem on the lower tail of SgR
is proved.

Theorem X.18 ([GPS10]). Let gR be the one-arm event in B(0, R). Then for any
1 ≤ r ≤ R, one has

Q̂gR

[
0 < |SgR

| < r2α4(r)
]
≍ α1(R)2

α1(r)
. (X.15)
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The proof of this theorem is in many ways similar to the chordal case (Theorem
X.3). An essential difference is that the “clustering v.s. entropy” mechanism is very
different in this case. Indeed in the chordal left to right case, when Sfn is conditioned
to be very small, the proof of Theorem X.3 shows that typically Sfn localizes in some
r-square whose location is “uniform” in the domain [0, n]2. In the radial case, the
situation is very different: SgR

conditioned to be very small will in fact tend to localize
in the r-square centered at the origin. This means that the analysis of the mesoscopic
behavior (i.e. the analogue of Theorem X.13) has to be adapted to the radial case. In
particular, in the definition of an annulus structure, the annuli containing the origin
play a distinguished role. See [GPS10] for complete details.
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Exercise sheet on chapter X

Exercise X.1. Prove Proposition X.4.

Exercise X.2. Consider the fractal percolation process T i, i ≥ 1 introduced in this
chapter. (Recall that T2i ≡ T i). Recall that in Section 3, it was important to estimate
the quantity P

[
|T i| = 1

]
. This is one of the purposes of the present exercise.

(a) Let pi := P
[
|T i| = 1

]
. By recursion, show that there is a constant c ∈ (0, 1) so

that, as i→∞
pi ∼ cµi ,

where µ := 4p(1− p + pq)3 and q is the probability of extinction for the Galton-
Watson tree correponding to (T i)i≥1.

(b) Using the generating function s 7→ f(s)(= E(s number of offspring) of this Galton-
Watson tree, and by studying the behavior of its i-th iterates f (i), prove the same
result with µ := f ′(q). Check that it gives the same formula.

(c) Recall the definition of pm,b from Section 3. Let pm,∞ be the probability that
exactly 1 person at generation m survives forever. Prove that

pm,∞ = (1− q)µm

for the same exponent µ. Prove Lemma X.9. Finally, prove that limb→∞ pm,b =
pm,∞.

Exercise X.3. Extract from the proof of Lemma X.8 the answer to the question asked
in Figure X.4.

Exercise X.4. Prove that

Theorem X.3⇒ Theorem X.2⇒ Theorem X.1

Exercise X.5. Consider an r-square B ⊂ [n/4, 3n/4]2 in the “bulk” of [0, n]2.

(a) Prove using Proposition IX.3 that

P̂
[
Sfn 6= ∅ and Sfn ⊂ B

]
≍ α4(r, n)2

131
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(b) Check that the clustering Lemma X.14 is consistent with this estimate.

Problem X.6. The purpose of this exercise is to prove Lemma X.10.

(a) Using Proposition IX.3, prove that for any x ∈ B at distance r/3 from the bound-
ary,

P
[
x ∈ Sfn and Sfn ∩ Bc = ∅

]
≍ α4(r)α4(r, n)2 .

(b) Recover the same result using Proposition IX.4 instead.

(c) Conclude using Exercise X.5 that Ê
[
|Sfn ∩ B̄|

∣∣ Sfn 6= ∅ and Sfn ⊂ B
]
≍ r2α4(r),

where B̄ ⊂ B is the set of points x ∈ B at distance at least r/3 from the boundary.

(d) Study the second-moment Ê
[
|Sfn ∩ B̄|2

∣∣ Sfn 6= ∅ and Sfn ⊂ B
]
.

(e) Deduce Lemma X.10.

Problem X.7. Most of this chapter was devoted to the explanation of the proof of
Theorem X.3. Note that we in fact only discussed how to prove the upper bound.
This is because the lower bound is much easier to prove and this is the purpose of this
problem.

(a) Deduce from Lemma X.10 and Exercise X.5(a) that the lower bound on P̂
[
0 < |Sfn | < r2α4(r)

]

given in Theorem X.3 is correct. I.e., show that there exists a constant c > 0 such
that

P̂
[
0 < |Sfn | < r2α4(r)

]
> c

n2

r2
α4(r, n)2 .

(b) (Hard) In the same fashion, prove the lower bound part of Theorem X.18.



Chapter XI

Applications to dynamical
percolation

In this section, we present a very natural model where percolation undergoes a time-
evolution: this is the model of dynamical percolation described below. The study
of the “dynamical” behavior of percolation as opposed to its “static” behavior turns
out to be very rich: interesting phenomena arise especially at the phase transition
point. We will see that in some sense, dynamical planar percolation at criticality is a
very unstable or chaotic process. In order to understand this instability, sensitivity of
percolation (and therefore its Fourier analysis) will play a key role. In fact, the original
motivation for the paper [BKS99] on noise sensitivity was to solve a particular problem
in the subject of dynamical percolation. [Ste09] provides a recent survey on the subject
of dynamical percolation.

We mention that one can read all but the last section of the present chapter without
having read Chapter X.

1 The model of dynamical percolation

This model was introduced by Häggström, Peres and Steif [HPS97] inspired by a ques-
tion that Paul Malliavin asked at a lecture at the Mittag-Leffler Institute in 1995. This
model was invented independently by Itai Benjamini.

In the general version of this model as it was introduced, given an arbitrary graph
G and a parameter p, the edges of G switch back and forth according to independent
2-state continuous time Markov chains where closed switches to open at rate p and
open switches to closed at rate 1 − p. Clearly, the product measure with density p,
denoted by πp in this chapter, is the unique stationary distribution for this Markov
process. The general question studied in dynamical percolation is whether, when we
start with the stationary distribution πp, there exist atypical times at which the perco-
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lation structure looks markedly different than that at a fixed time. In almost all cases,
the term “markedly different” refers to the existence or nonexistence of an infinite con-
nected component. Dynamical percolation on site percolation models, which includes
our most important case of the hexagonal lattice, is defined analogously.

We very briefly summarize a few early results in the area. It was shown in [HPS97]
that below criticality, there are no times at which there is an infinite cluster and above
criticality, there is an infinite cluster at all times. See the exercises. In [HPS97], exam-
ples of graphs which do not percolate at criticality but for which there exist exceptional
times where percolation occurs were given. (Also given were examples of graphs which
do percolate at criticality but for which there exist exceptional times where percolation
does not occur.) A fairly refined analysis of the case of so-called spherically symmetric
trees was given. See the exercises for some of these.

Given the above results, it is natural to ask what happens on the standard graphs
that we work with. Recall that for Z2, we have seen that there is no percolation at
criticality. It turns out that it is also known (see below) that for d ≥ 19, there is no
percolation at criticality for Zd. It is a major open question to prove that this is also
the case for intermediate dimensions; the consensus is that this should be the case.

2 What’s going on in high dimensions: Zd, d ≥ 19?

For the high dimensional case, Zd, d ≥ 19, it was shown in [HPS97] that there are no
exceptional times of percolation at criticality.

Theorem XI.1 ([HPS97]). For the integer lattice Zd with d ≥ 19, dynamical critical
percolation has no exceptional times of percolation.

The key reason for this is a highly nontrivial result due to work of Hara and Slade
([HS94]), using earlier work of Barsky and Aizenman ([BA91]), that says that if θ(p) is
the probability that the origin percolates when the parameter is p, then for p ≥ pc

θ(p) = O(p− pc) . (XI.1)

(This implies in particular that there is no percolation at criticality.) In fact, this
is the only thing which is used in the proof and hence the result holds whenever the
percolation function satisfies this “finite derivative condition” at the critical point.

Outline of Proof. By countable additivity, it suffices to show that there are no times
at which the origin percolates during [0, 1]. We use a first moment argument. We
break the time interval [0, 1] into m intervals each of length 1/m. If we fix one of these
intervals, the set of edges which are open at some time during this interval is i.i.d. with
density about pc + 1/m. Hence the probability that the origin percolates with respect
to these set of edges is by (XI.1) at most O(1/m). It follows that if Nm is the number
of intervals where this occurs, then E[Nm] is at most O(1). It is not hard to check that
N ≤ lim infm Nm, where N is the cardinality of the set of times during [0, 1] at which
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the origin percolates. Fatou’s Lemma now yields that E(N) < ∞ and hence there are
at most finitely many exceptional times during [0, 1] at which the origin percolates. To
go from here to having no exceptional times can either be done by using some rather
abstract Markov process theory or by a more hands on approach as was done in [HPS97]
and which we refer to for details.

Remark XI.1. It is known that (XI.1) holds for any homogeneous tree (see [Gri99] for
the binary tree case) and hence there are no exceptional times of percolation in this
case also.

Remark XI.2. It is was proved by Kesten and Zhang [KZ87], that (XI.1) fails for Z2 and
hence the proof method above to show that there are no exceptional times fails. This
infinite derivative in this case might suggest that there are in fact exceptional times for
critical dynamical percolation on Z2, an important question left open in [HPS97].

3 d = 2 and BKS

One of the questions posed in [HPS97] was whether there are exceptional times of
percolation for Z2. It was this question which was one of the main motivations for
the paper [BKS99]. While they did not prove the existence of exceptional times of
percolation, they did obtain the following very interesting result which has a very
similar flavor.

Theorem XI.2 ([BKS99]). Consider an R×R box on which we run critical dynamical
percolation. Let SR be the number of times during [0, 1] at which the configuration
changes from having a percolation crossing to not having one. Then

SR →∞ in probability as R→∞.

Noise sensitivity of percolation as well as the above theorem tells us that certain large
scale connectivity properties decorrelate very quickly. This suggests that in some vague
sense ωpc

t “changes” very quickly as time goes on and hence there might be some chance
that an infinite cluster appears since we are given many “chances”.

In the next section, we begin our study of exceptional times for Z2 and the hexagonal
lattice.

4 The second moment method and the spectrum

In this section, we reduce the question of exceptional times to a “second moment
method” computation which in turn reduces to questions concerning the spectral be-
havior for specific Boolean functions involving percolation. Since p = 1/2, our dynamics
can be equivalently defined by having each edge or hexagon be rerandomized at rate 1.
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The key random variable which one needs to look at is

X = XR :=

∫ 1

0

1
0

ωt←→R
dt

where 0
ωt←→ R is of course the event that at time t there is an open path from the

origin to distance R away. Note that the above integral is simply the Lebesgue measure
of the set of times in [0, 1] at which this occurs.

We want to apply the second moment method here. We isolate the easy part of the
argument so that the reader who is not familiar with this method understands it in a
more general context. However, the reader should keep in mind that the difficult part is
always to prove the needed bound on the second moments which in this case is (XI.2).

Proposition XI.3. If there exists a constant C such that for all R

E(X2
R) ≤ CE(XR)2, (XI.2)

then a.s. there are exceptional times of percolation.

Proof. For any nonnegative random variable Y , the Cauchy-Schwarz inequality applied
to Y I{Y >0} yields

P(Y > 0) ≥ E(Y )2/E(Y 2).

Hence by (XI.2), we have that for all R,

P(XR > 0) ≥ 1/C

and hence by countable additivity (as we have a decreasing sequence of events)

P(∩R{XR > 0}) ≥ 1/C.

Had the set of times that a fixed edge is on been a closed set, then the above would
have yielded by compactness that there is an exceptional time of percolation with
probability at least 1/C. However, this is not a closed set. On the other hand, this
point is very easily fixed by modifying the process so that the times each edge is on is
a closed set and observing that a.s. no new times of percolation are introduced by this
modification. The details are left to the reader. Once we have an exceptional time with
positive probability, ergodicity immediately implies that this occurs a.s.

The first moment of XR is, due to Fubini’s Theorem, simply the probability of our
one-arm event, namely α1(R). The second moment of XR is easily seen to be

E(X2) = E(

∫ 1

0

∫ 1

0

1
0

ωs←→R
1

0
ωt←→R

ds dt) =

∫ 1

0

∫ 1

0

P(0
ωs←→ R, 0

ωt←→ R) ds dt (XI.3)

which is, by time invariance, at most

2

∫ 1

0

P(0
ωs←→ R, 0

ω0←→ R) ds. (XI.4)



5. PROOF OF EXISTENCE OF EXCEPTIONAL TIMES ON T 137

The key observation now, which brings us back to noise sensitivity, is that the
integrand P(0

ωs←→ R, 0
ω0←→ R) is precisely E[fR(ω)fR(ωǫ)] where fR is the indicator of

the event that there is an open path from the origin to distance R away and ǫ = 1−e−s

since looking at our process at two different times is exactly looking at a configuration
and a noisy version.

What we have seen in this subsection is that proving the existence of exceptional
times comes down to proving a second moment estimate and furthermore that the
integrand in this second moment estimate concerns noise sensitivity, something for
which we have already developed a fair number of tools to handle.

5 Proof of existence of exceptional times for the

hexagonal lattice via randomized algorithms

In [SS10b], exceptional times were shown to exist for the hexagonal lattice; this was
the first transitive graph for which such a result was obtained. However, the methods
in this paper did not allow the authors to prove that Z2 had exceptional times.

Theorem XI.4 ([SS10b]). For dynamical percolation on the hexagonal lattice T at the
critical point pc = 1/2, there exist almost surely exceptional times t ∈ [0,∞) such that
ωt has an infinite cluster.

Proof. As we noted in the previous section, two different times of our model can be
viewed as “noising” where the probability that a hexagon is rerandomized within t units
of time is 1− e−t. Hence, by (IV.2), we have that

P
[
0

ω0←→ R, 0
ωt←→ R

]
= E

[
fR

]2
+

∑

∅6=S⊆B(0,R)

f̂R(S)2 exp(−t|S|) (XI.5)

where B(0, R) are the set of hexagons involved in the event fR. We see in this expression
that, for small times t, the frequencies contributing in the correlation between {0 ω0←→
R} and {0 ωt←→ R} are of “small” size |S| . 1/t. Therefore, in order to detect the
existence of exceptional times, one needs to achieve good control on the lower tail of
the Fourier spectrum of fR.

The approach of this section is to find an algorithm minimizing the revealment as
much as possible and to apply Theorem VIII.1. However there is a difficulty here, since
our algorithm might have to look near the origin, in which case it is difficult to keep the
revealment small. There are other reasons for a potential problem. If R is very large
and t very small, then if one conditions on the event {0 ω0←→ R}, since few sites are
updated, the open path in ω0 from 0 to distance R will still be preserved in ωt at least
up to some distance L(t) (further away, large scale connections start to decorrelate).
In some sense the geometry associated to the event {0 ω←→ R} is “frozen” on a certain
scale between time 0 and time t. Therefore, it is natural to divide our correlation
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analysis into two scales: the ball of radius r = r(t) and the annulus from r(t) to R.
Obviously the “frozen radius” r = r(t) increases as t → 0. We therefore proceed as
follows instead. For any r, we have

P
[
0

ω0←→ R, 0
ωt←→ R

]
≤ P

[
0

ω0←→ r
]
P
[
r

ω0←→ R, r
ωt←→ R

]

≤ α1(r) E
[
fr,R(ω0)fr,R(ωt)

]
, (XI.6)

where fr,R is the indicator function of the event, denoted by r
ω←→ R, that there is an

open path from distance r away to distance R away. Now, as above, we have

E
[
fr,R(ω0)fr,R(ωt)

]
≤ E

[
fr,R

]2
+

∞∑

k=1

exp(−tk)
∑

|S|=k

f̂r,R(S)2. (XI.7)

The Boolean function fr,R somehow avoids the singularity at the origin, and it is
possible to find algorithms for this function with small revealments. In any case, letting
δ = δr,R be the revealment of fr,R, it follows from Theorem VIII.1 and the fact that∑

k k exp(−tk) ≤ O(1)/t2 that

E
[
fr,R(ω0)fr,R(ωt)

]
≤ α1(r, R)2 + O(1)δα1(r, R)/t2. (XI.8)

The following proposition gives a bound on δ. We will sketch why it is true after-
wards.

Proposition XI.5 ([SS10b]). Let 2 ≤ r < R. Then

δr,R ≤ O(1)α1(r, R) α2(r) . (XI.9)

Putting together (XI.6), (XI.8), Proposition XI.5 and using quasi-multiplicativity
of α1 yields

P
[
0

ω0←→ R, 0
ωt←→ R

]
≤ O(1)

α1(R)2

α1(r)

(
1 +

α2(r)

t2

)
.

This is true for all r and t. If we choose r = r(t) = (1/t)8 and ignore o(1) terms in
the critical exponents (which can easily be handled rigorously), we obtain, using the
explicit values for the one and two-arm critical exponents, that

P
[
0

ω0←→ R, 0
ωt←→ R

]
≤ O(1)t−5/6α1(R)2 . (XI.10)

Now, since
∫ 1

0
t−5/6dt <∞, by integrating the above correlation bound over the unit

interval, one obtains that E
[
X2

R

]
≤ CE

[
XR

]2
for some constant C as desired.

Outline of proof of Proposition XI.5.
We use an algorithm that mimics the one we used for percolation crossings except the
present setup is “radial”. As in the chordal case, we randomize the starting point of
our exploration process by choosing a site uniformly on the ‘circle’ of radius R. Then,
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we explore the picture with an exploration path γ directed towards the origin; this
means that as in the case of crossings, when the interface encounters an open (resp.
closed) site, it turns say to the left (resp. right), the only difference being that when
the exploration path closes a loop around the origin, it continues its exploration inside
the connected component of the origin. (It is known that this discrete curve converges
towards radial SLE6 on T, when the mesh goes to zero.) It turns out that the so-
defined exploration path gives all the information we need. Indeed, if the exploration
path closes a clockwise loop around the origin, this means that there is a closed circuit
around the origin making fr,R equal to zero. On the other hand, if the exploration
path does not close any clockwise loop until it reaches radius r, it means that fr,R = 1.
Hence, we run the exploration path until either it closes a clockwise loop or it reaches
radius r. This is our algorithm. Neglecting boundary issues (points near radius r or R),
if x is a point at distance u from 0, with 2r < u < R/2, in order for x to be examined
by the algorithm, it is needed that there is an open path from 2u to R and the two-arm
event holds in the ball centered at u with radius u/2. Hence for |x| = u, P

[
x ∈ J

]
is at

most O(1)α2(u)α1(u, R). Due to the explicit values of the one and two-arm exponents,
this expression is decreasing in u. Hence, ignoring the boundary, the revealment is at
most O(1)α2(r)α1(r, R). See [SS10b] for more details.

We now assume that the reader is familiar with the notion of Hausdorff dimen-
sion. We let E ⊆ [0,∞] denote the (random) set of these exceptional times at which
percolation occurs. It is an immediate consequence of Fubini’s Theorem that E has
Lebesgue measure zero and hence we should look at its Hausdorff dimension if we want
to measure its “size”. The first result is the following.
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Theorem XI.6 ([SS10b]). The Hausdorff dimension of E is an almost sure constant
in [1/6, 31/36].

It was conjectured there that the dimension of the set of exceptional times is a.s.
31/36.

Outline of Proof. The fact that the dimension is an almost sure constant follows
from easy 0-1 Laws. The lower bounds are obtained by placing a random measure on
E with finite so-called α–energies for any α < 1/6 and using a result called Frostman’s
Theorem. (This is a standard technique once one has good control of the correlation
structure.) Basically, the 1/6 comes from the fact that for any α < 1/6, one can

multiply the integrand in
∫ 1

0
t−5/6dt by (1/t)α and still be integrable. It is the amount

of “room to spare” you have. If one could obtain better estimates on the correlations,
one could thereby improve the lower bounds on the dimension. The upper bound is
obtained via a first moment argument similar to the proof of Theorem XI.1 but now
using (II.1).

Before moving on to our final method of dealing with the spectrum, let us consider
what we might have lost in the above argument. Using the above argument, we op-
timized things by taking r(t) = (1/t)8. However, at time t compared to time 0, we
have noise which is about t. Since we now know the exact noise sensitivity exponent,
in order to obtain decorrelation, the noise level should be at least about the negative
3/4th power of the radius of the region we are looking at. So, events in our annu-
lus should decorrelate if r(t) >> (1/t)4/3. This suggests there might be potential for
improvement. Note we used an inner radius which is 6 times larger than potentially
necessary (8 = 6 × 4/3). This 6 is the same 6 by which the result in Theorem VIII.4
differed by the true exponent (3/4 = 6 × 1/8) and the same 6 explaining the gap in
Theorem XI.6 (1−1/6) = 6×(1−31/36). This last difference is also seen by comparing
the exponents in (XI.10) and the last term in (XI.11) below.

6 Proof of existence of exceptional times via the

geometric approach of the spectrum

Recall that our third approach for proving the noise sensitivity of percolation crossings
was based on a geometrical analysis of the spectrum, viewing the spectrum as a random
set. This approach yielded the exact noise sensitivity exponent for percolation crossings
for the hexagonal lattice. This approach can also be used here as we will now explain.
Two big advantages of this approach are that it succeeded in proving the existence
of exceptional times for percolation crossings on Z2, something which [SS10b] was not
able to do, as well as obtaining the exact Hausdorff dimension for the set of exceptional
times, namely the upper bound of 31/36 in the previous result.

Theorem XI.7 ([GPS10]). For the triangular lattice, the Hausdorff dimension of E is
almost surely 31/36.
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Proof. As explained in the previous section, it suffices to lower the 5/6 in (XI.10) to
5/36. (Note that (XI.10) was really only obtained for numbers strictly larger than 5/6,
with the O(1) depending on this number; the same will be true for the 5/36.)

Let s(r) be the inverse of the map r → r2α4(r) ∼ r3/4. So more or less, s(r) := r4/3.
Using Theorem X.18, we obtain the following:

E
[
fR(ω0)fR(ωt)

]
=

∑

S

exp(−t|S|)f̂R(S)2

=
∞∑

k=1

∑

S:|S|∈[(k−1)/t,k/t)

exp(−t|S|)f̂R(S)2

≤
∞∑

k=1

exp(−k)Q̂
[
|SfR

| < k/t
]

≤ O(1)
∞∑

k=1

exp(−k)
α1(R)2

α1(s(k/t))

≤ O(1)α1(R)2

∞∑

k=1

exp(−k)(
k

t
)4/3×5/48

≤ O(1)α1(R)2(
1

t
)5/36. (XI.11)

This completes the proof. (Of course, there are o(1) terms in these exponents which we
are ignoring.)

We have done a lot of the work for proving that there are exceptional times also on
Z2.

Theorem XI.8 ([GPS10]). For dynamical percolation on Z2 at the critical point pc =
1/2, there exist almost surely exceptional times t ∈ [0,∞) such that ωt has an infinite
cluster.

Proof. s(r) is defined as it was before but now we cannot say that s(r) is about r4/3.
However, we can say that for some fixed δ > 0, we have that for all r,

s(r) ≥ rδ (XI.12)

From the previous proof, we still have

E
[
fR(ω0)fR(ωt)

]

α1(R)2
≤ O(1)

∞∑

k=1

exp(−k)
1

α1(s(k/t))
. (XI.13)

Exactly as in the proof of Theorem XI.4, we need to show that the right hand side
is integrable near 0 in order to carry out the second moment argument.
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Quasi-multiplicativity can be used to show that

α1(s(1/t)) ≤ kO(1)α1(s(k/t)). (XI.14)

(Note that if things behaved exactly as power laws, this would be clear.)
Therefore the above sum is at most

O(1)

∞∑

k=1

exp(−k)
kO(1)

α1(s(1/t))
≤ O(1)

1

α1(s(1/t))
(XI.15)

V. Beffara has shown that there exists ǫ0 > 0 such that for all r,

α1(r)α4(r) ≥ rǫ0−2. (XI.16)

Note that Theorem VI.4 and (VI.7) tell us that the left hand side is larger than
Ω(1)r−2. The above tells us that we get an (important) extra power of r in (VI.7).

It follows that

1

α1(s(1/t))
≤ α4(s(1/t))s(1/t)

2−ǫ0 = (1/t)s(1/t)−ǫ0. (XI.17)

(XI.12) tells us that the last factor is at most tη for some η > 0 and hence the
relevant integral converges as desired. The rest of the argument is the same.

One can also consider exceptional times for other events, such as for example times
at which there is an infinite cluster in the upper half-plane or times at which there
are two infinite clusters in the whole plane, and consider the corresponding Hausdorff
dimension. A number of results of this type, which are not sharp, are given in [SS10b]
while various sharp results are given in [GPS10].



Exercise sheet of Chapter XI

Exercise XI.1. Prove that on any graph below criticality, there are no times at which
there is an infinite cluster while above criticality, there is an infinite cluster at all times.

Exercise XI.2. Consider critical dynamical percolation on a general graph satisfying
θ(pc) = 0. Show that a.s. {t : ωt percolates } has Lebesgue measure 0.

Exercise XI.3. (Somewhat hard). A spherically symmetric tree is one where all ver-
tices at a given level have the same number of children, although this number may
depend on the given level. Let Tn be the number of vertices at the nth level. Show that
there is percolation at p if ∑

n

1

p−nTn
<∞

Hint: Let Xn be the number of vertices in the nth level which are connected to the
root. Apply the second moment method to the sequence of Xn’s.

The convergence of the sum is also necessary for percolation but this is harder and
you are not asked to show this. This theorem is due to Russell Lyons.

Exercise XI.4. Show that if Tn is n22n up to multiplicative constants, then the critical
value of the graph is 1/2 and we percolate at the critical value. (This yields a graph
which percolates at the critical value.)

Exercise XI.5. (Quite a bit harder). Consider dynamical percolation on a spherically
symmetric tree. Show that there for the parameter p, there are exceptional times at
which percolation occurs if ∑

n

1

np−nTn
<∞.

Hint: Find an appropriate random variable Xn to which the second moment method
can be applied.

Exercise XI.6. Find a spherically symmetric tree which does not percolate at criti-
cality but for which there are exceptional times at which percolation occurs.
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