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Abstract

We consider the Ising model with external field A and coupling
constant J on an infinite connected graph G with uniformly bounded
degree. We prove that if G is nonamenable, then the Ising model
exhibits phase transition for some h # 0 and some J < oo. On the
other hand, if G is amenable and quasi—transitive, then phase transi-
tion cannot occur for A # 0. In particular, a group is nonamenable if
and only if the Ising model on one (all) of its Cayley graphs exhibits
a phase transition for some h # 0 and some J < oo.

1 Introduction

The first connection between probability theory and amenability of groups
was obtained by H. Kesten (see [11] and [12]) where he proved that if one
takes a finite symmetric generating set for a finitely generated group, then the
group is nonamenable if and only if the return probabilities for simple random
walk on the resulting Cayley graph decay exponentially (or equivalently the
spectral radius for the resulting Markov operator on L, has spectral radius
strictly less than one). This result was extended in [6] to any graph of
bounded degree where it was shown that the return probabilities for simple
random walk on the graph decay exponentially if and only if the graph is
nonamenable (to be defined later).
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Recently, another connection between amenable groups and probability
theory has been obtained. In [1], it is shown that a group is amenable if and
only if for all @ > 0, there is a G-invariant site percolation on one (all) of its
Cayley graphs such that the probability of a site being on is larger than «
but for which there are no infinite components. (This result was motivated
by an earlier result for regular trees in [8]). See [1] for details and where the
above is stated in a more general setting. A conjecture concerning percolation
on groups is that a group is nonamenable if and only if for one (all) of its
Cayley graphs, there is a nontrivial interval of parameters p such that i.i.d.
percolation with parameter p yields infinitely many infinite clusters. See [2]
for details and a more general conjecture (Conjecture 6) as well as [9] for a
related result. For related results concerning the Ising Model, see [19] and
[20]. The latter paper proves a multiple phase transition for some hyperbolic
graphs, a property conjectured to characterize nonamenability.

In this paper, we relate amenability to phase transition in the Ising model
in the presence of an external field and we work in the more general context
of graphs. We first define the Gibbs state for the Ising model on a finite
graph.

Definition 1.1 Let G = (V, E) be a finite graph, J € [0,00) and h €
(—00,00). The Gibbs state for the Ising model on G with param-
eters h and J is the probability measure vy 5 on {—1,1}V given by

Vh,r,6(w) = ﬁeh Yoev WO X veviume W)

where u ~ v means that u is adjacent to v and Zy ;¢ is a normalization
constant.

The parameters h and J are known as the external field and the coupling
constant respectively. When one extends this definition to infinite graphs
such as Z¢ interesting things happen. First of all one has to define what a,
Gibbs state on an infinite graph is. Throughout this paper, all infinite graphs
we consider will always be assumed to be connected and locally finite.

Definition 1.2 Let G = (V, E) be an infinite graph. Let v be a probability
measure on {—1,1}V and let X be a random element chosen according to
v. We say that v is a Gibbs state for the Ising model on G with



external field A and coupling constant J if, for all finite sets W C V,
al w' € {=1,1}W and v—a.a. " € {=1,1}V\V| we have

PX(W) = | X(V\ W) = o) = — b ehaw@ @) (1)
2
where a () = Sen (0), bw(@,0") = S w0, Zh,
is a normalization constant, OW = {u € V\W : Jv € W : v ~ u} is the
boundary of W, and w € {—1,1}V is defined by letting w(v) be w'(v) for
veW and " (v) forve V\W.

It is well known (see [5], p.71) that for any infinite graph G, and for
any parameters h and J, there exists a corresponding Gibbs state. The
fundamental question of interest is whether there exists more than one Gibbs
state. When this is the case, we say that phase transition occurs. It is well
known, (see [4], p.152), that in the case of the d—dimensional integer lattice
G = Z4, phase transition cannot occur if h # 0, whereas if G is the binary
tree, then there can be phase transition for A # 0 (see [5], p.250). It is
natural to ask the general question of for which graphs phase transition can
occur for nonzero h and the point of this paper is to give a partial answer to
this question.

Definition 1.3 Let G = (V, E) be an infinite graph. The Cheeger con-
stant for G, k(G), is defined by

k(G) = [oW]

_WQVI:I\lW|<oo Wi

If kK(G) =0, G is said to be amenable and in case k(G) > 0, G is said to
be nonamenable.

Definition 1.4 An infinite graph G = (V, E) is quasi—transitive if there
exists a finite number of vertices x1,...,x in V such that for any x € V,
there is an automorphism of G taking x to some x; (i.e., the automorphism
group of G acting on V' has a finite number of orbits). If k can be taken to
be 1, the graph is transitive.



Theorem 1.5 Let G be an infinite graph with mazimum degree d < oo.

(a) If G is nonamenable, h > 0 and J > (2x(G))~1(2h+1+1og(3(d+1))),
then a phase transition occurs. In particular, there exist h > 0 and
J € [0,00) such that G ezhibits a phase transition.

(b) If G is amenable and quasi-transitive, then the Ising model on G does
not exhibit a phase transition for any h > 0 and J € [0, 00).

Part (a) will be obtained from a Peierls type argument. For (b), we extend
the classical convexity and differentiability of pressure argument for Z¢.

Remarks.

e Part (b) is already suggested by the comment in [18] that the unique-
ness of the Gibbs distribution for the Ising model for A # 0 on Z¢
depends only on the fact that the graph is transitive and that the
number of sites at distance N from a fixed site grows slower than the
number of sites at distances smaller than N as N — oco. The lat-
ter property however does not characterize graphs for which there is
uniqueness for h # 0 since there are transitive graphs (in fact, Cayley
graphs of groups), which have exponential growth (and hence the latter
property fails) but which are amenable. One such example is the group
G in [10], also called the lamplighter group.

e Part (b) of Theorem 1.5 is false for general amenable graphs. (Therefore
the analogue in our case of the extension in [6] of Kesten’s result is not
true). Consider for instance the lattice Z* and a binary tree where an
edge is placed between the root of the tree and the origin of the lattice.
The resulting graph is clearly amenable but one can show that there is
a phase transition for some h > 0.

e Griffiths’ inequality (see [15], p.186) implies that when h = 0, if there is
phase transition at J, then there is also phase transition at any larger
J. This inequality also implies that if there is no phase transition at J
with h = 0 on a graph G, then the same is true for any subgraph of G.
Interestingly, when A > 0, both of the latter statements are false; see
[18].

To relate the above result to groups, we first define amenability of a group.
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Definition 1.6 A group G is amenable if given ¢ > 0 and a finite set
B C @G, there exists F C G such that

IBFAF| < ¢|F).

Definition 1.7 Given a finitely generated group G' (amenable or not) and a
finite symmetric generating set S, the Cayley graph associated to G' and S
is the graph whose vertices are the elements of G' and an edge exists between
x and y if and only if sx = y for some s € S (or equivalently sy = x for
some s € S since S is symmetric).

It is a easy to see that a group is amenable if and only if the Cayley graph
associated with some (all) generating set S is amenable. Since Cayley graphs
are transitive, Theorem 1.5 yields a phase transition characterization of
amenable groups.

We mention here that much of classical ergodic theory has been extended
to the case where the group acting is an amenable group. This is because
it is precisely these groups which contain “good averaging sets”, so-called
Folner sequences.

§2 contains some preliminaries and §3 contains the proof of Theorem 1.5.

2 Monotonicity preliminaries

Given a finite set W C V and a 6 € {—1,1}Y\W we consider the probability
measure I/f‘,V’h, ;on {—1,1}V obtained by placing the configuration 6§ on V\W,
and on W using (1) with w” = §. We refer to ¢ as a boundary condition and
call l/g[,,h, ; the finite volume Gibbs state on W with parameters h and J and
with boundary condition 0.

One way to construct Gibbs states is to fix a sequence {W, } of subsets of
V such that W, 1+ V (meaning that W; C W, C Ws... and U;W; = V) and
a sequence 60, € {—1, 1}V\W", and consider weak subsequential limits of the
sequence {l/%n’h, 7} as n — 0o. Any such weak subsequential limit is a Gibbs
state (see [5] p.67). When the sequence {W,} is understood from context,
we will write l/f:h, ; for Vgﬁn,h, -

The fact that J > 0 results in a good deal of monotonicity in the
Ising model. For two probability measures v and p on {0,1}°, we write
v <4 p to indicate that v is stochastically smaller than u, which means
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that [ fdv < [ fdu for all increasing functions f on {0,1}°. Now, with
{W,} still fixed, consider the two particular sequences, {v;, ;} and {v,, ;},
of measures corresponding to 6, = 1 and §,, = —1 respectively. Standard
monotonicity arguments based on Holley’s Theorem (see e.g. [15], p.188)
implies that v, , ; <4 l/g’h’J <4 1/:’,1,] for any 6 € {—1,1}V\W» and that
{v; )} and {v,,, ;} are stochastically decreasing and increasing respectively.
Such arguments also imply that the weak limits v} ; = lim,_,o0 v/, ; and
Vhy = lim,, oo Vp s €Xist and are independent of the sequence of sets {W,,}.
In addition, one has that v ; <4 v <4 v}, for any Gibbs state on G with the
same parameters. The latter implies that phase transition for the parame-
ters h and J occurs if and only if v} ; # v, ;. The following lemma which is
a trivial extension of Corollary 2.8 in ([15], p.75) provides a simple tool to
check whether this is the case.

Lemma 2.1 v ; = v;, ; if and only if v ;(X(v) = 1) = v, (X (v) = 1) for
everyv € V.

It is straightforward to show that 1/,‘: s and v, ; are invariant under all graph
automorphisms of G. Therefore, if G is quasi-transitive, then v (X (v) = 1)
and v, ;(X(v) = 1) each take on at most finitely many values.

3 Proofs

3.1 The nonamenable case

We shall need the following lemma due to Kesten (see [13]).

Lemma 3.1 Let G be an infinite graph with mazximum degree d and let C,,
be the set of connected sets with m vertices containing a fized vertex v. Then

ICrm| < (e(d+1))™.

Proof of Theorem 1.5 (a).

In order to prove phase transition, note the well-known fact that the measures
vn 5 and v, ; are stochastically increasing in /. Therefore, for 2 > 0, we have
vp (X(v) =1) > vg ;(X(v) = 1) > 1/2 (the second inequality following from



symmetry) for all vertices v. Therefore if we can show that v, ;(X(v) =1) <
1/2 for some v, then phase transition follows.

Let v € V be arbitrary and C,, be as in the above lemma. For C' €
UP_ Cm, let Ac = {X(C) =1,X(0C) = —1}, i.e. the event that the cluster
of 1’s containing v is exactly C. Now for any n € {1,2,...}, we have

ina X0 =0 =050,(U U 40)= 2 % vinsld) @)

If we show that for each n and for each C € U,,,Cp,,
Vr,:h, J(AC) S e(2h—2Jl€(G))|C|, (3)

then by inserting this into (2) and using Lemma 3.1, we get

(X (@) = 1) < 3 (e(d+ ety

m=1

which is less than 1/2 uniformly in n if J > (25(G)) "' (2h+1+1og(3(d+1))).

To prove (3), fix n, fix C € U,,Cp,, identify Ac with a subset of {—1,1}"»
and let T be the injective map from A into {—1,1}"», which changes all
the 1’s in C to -1’s and leaves the other vertices alone. For w € {—1,1}"»,
let H,(w) = haw, (w) + Jbw, (w,w") where these terms come from (1) and
with w” being all -1’s. Letting 0g(C) be the edge boundary of C which is the
set of all edges connecting C to 0C, we have since |0x(C)| > |0C| that

Ho(Te(w)) = Hy () + 27|105(C)| — 2h|C| > Hy(w) + (2T(G) — 2h)[C]

and hence

—(2JK(G)—2h)|C| Dwed eHn(Te(w))

A

Vrf,h,J(AC) =———-——<e

< ¢~ 2IR(@)—2n)[C|

the last inequality following from the fact that T is injective. O



3.2 The amenable case

The first proofs that for Z¢ there is no phase transition for A > 0 can be found
in [14] and [17] and relied on the Lee-Yang Circle Theorem. Afterwards,
Preston ([16], see also Chapter V in [4]) was able to obtain the same result,
using the GHS inequality (see [7]) instead of the Lee-Yang Circle Theorem.
This latter method will be the one followed in the proof below. This method
was also exploited to study phase transition in the hard core model (see [3]).

The key step here is to establish the following proposition where quasi—
transitivity is not required.

Proposition 3.2 Let G = (V,E) be an amenable graph with uniformly
bounded degree and let hy,J > 0. Then for any sequence, {W,}, of sub-
sets of V. such that W, tV and |OW,,|/|W,| — 0 it is the case that for some
subsequence {n;},

?

Zli}’gg ‘WTM, |_1(E;|l—',h0,.]awni (X(an)) - ET_Li,ho,Ja'Wni (X(Wn’b))) = 0

where the function aw, s as in (1); the sum of the values of the variables

over the set W, and Ef{fh, 7 refers to expectation with respect to the measure

on
Z/n,h,J'

Proof: Let d be the maximum degree of a vertex. Fix any sequence, {W,,},
of subsets of V' such that W, 1+ V and [0W,,|/|W,| — 0. For h € [0, 2h,] and
a boundary condition &, on W,,, define f% (n, h, J) as |W,| ! log Zzﬁh,J, where
2 = Tef 113wa hown @ +Jbwn (@0n) g the normalization constant in (1)
with w” = §, and W = W,,. It follows from inspection of this expression that
there is K = K (J, hy) such that fo(n,h,J) € [0, K] for every n, 6, and h €
[0,2hg]. Now fix a sequence of boundary conditions {é,}. By compactness,
there exists a sequence {n;} so that the subsequence lim;_,o, o (n;, h, J)
exists for all rational A in [0, 2hy).
Now, for a fixed n,d and h, we have that

0
%f‘i(n, h,J) = [Wal "By, saw, (X (W) (4)

and
2

%f‘s(n, hy J) = [Wal (B s (aw, (X (W)?) — (B 4 saw, (X (W3)))? 2 0.



Thus fo(n,h,J) is convex in h for each n, and it follows from Theorem
V1.3.3(a) in [4] that lim; o fo (ni, b, J) exists for all A in [0,2h] and
is convex in h. Denote this limit by f(h,.J) which is defined for A in
[0,2hg] and which (possibly) depends on {W,,}, {J,,} and the sequence {n;}.
Next, for any w € {—1,1}"" and any boundary conditions ¢/, we have that
bw, (W, 0,) — b, (w,8")| < 2d|0W,| so that |fo(n,h,J) — fo(n, h,J)| <
2dJ|0oW,,|/|W,| — 0. Hence for any boundary conditions {¢/,}, and any A in
[0, 2h¢], we have
ilif?of%(ni’h’ J) = f(h,J).

Let h be a point where f(h, J) is differentiable. By Lemma IV.6.3 in ([4],

p.114), convexity and the above we have that

0 g

O, T) = o f(h, )
for any boundary conditions {d/,}. Applying the latter statement to the two
boundary conditions of all pluses and all minuses together with (4) yields the
conclusion of the proposition provided f(h,J) is differentiable at hy.

Being convex in h on [0, 2hg], f(h, J) is differentiable for all but at most
countably many values of A on [0,2hg] but we need to show this for all A,
which would complete the proof. To do this we apply the standard argument
for Z¢ (see [4], p.151) based on concavity of EfL,h,JaWn(X(Wn)) for h >
0, where the superscript f corresponds to the free boundary condition, i.e.
I/,J:’h’ 7 1s defined according to Definition 1.1 on the finite graph spanned by
W,. Clearly lim;_,o f/(ns, h, J) = f(h,J) where f/(n,h,J) is defined in the
obvious way. Concavity of thh, saw, (X (W,)) follows directly from the GHS
inequality which in [7] is stated for subsets of Z¢ but which is clearly valid
on any graph as it allows general interactions. Thus the desired concavity
follows and the rest of the argument in ([4], p.151) goes through unchanged
to conclude that f(h,J) is differentiable for all A > 0, completing our proof.
O

Remark. The last paragraph of the above proof can be avoided by appealing
to Proposition 2 of [18].

Proof of Theorem 1.5 (b).
Fix hg > 0 and J > 0. If v ; # v}, ;, then by Lemma 2.1, there must exist
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v such that Ej ;X (v) > E; ;X(v). It follows (since G is connected) that
this strict inequality holds for all v and hence by quasi-transitivity,

glelé(E;O,JX(v) —E,, ;X(v)) := ¢ > 0.

Since GG is amenable, one can show that it is possible to pick a sequence
{W,} of subsets of V' (not necessarily connected) so that W, 1 V and
lim, o |[OW,|/|W,] = 0. By Proposition 3.2, choose a sequence n; — oo
so that the conclusion of Proposition 3.2 holds. Next by stochastic mono-
tonicity, we have that for any fixed n

(Wal "By o s0w, (X (Wn)) > [Wal "By, saw, (X (W) >

Wal ™ Bry saw, (X (W) > [Wal T EL, saw, (X (W) ()

If there were a phase transition, then the difference of the two middle terms
would be at least ¢y. However the difference of the expressions on the extreme
left and right converge to 0 as n — oo along the sequence n; and hence phase
transition cannot occur for h = hg. O

Remark. The reason that the above proof breaks down for general amenable
graphs is that the strict inequality

inf (Bf, ,X (v) ~ Ep, ,X(0)) > 0,

used above does not hold as the expected spins might take on infinitely many
different values. It is still true however that Proposition 3.2 holds, a fact
which is interesting in its own right as it tells us that for a suitable choice of
{W,}, the average magnetism over W,, will ultimately be approximately the
same for v ; and v, ;. In the example of the tree and the lattice attached
by an edge, the W,,’s whose boundary/volume ratio is going to 0 will consist
of “large” parts of the lattice and “small” parts of the tree and so most of
the contribution in the terms above are coming from the lattice part (where
there is no phase transition for 4 > 0). This explains why the expression in
Proposition 3.2 can be going to 0 even in the presence of a phase transition.

Acknowledgement We thank Olle Haggstrom and Yuval Peres for discus-
sions and Itai Benjamini for some references.
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