Propp—Wilson algorithms and finitary codings
for high noise Markov random fields

Olle Haggstrom* Jeffrey E. Steif?

Chalmers University of Technology

June 24, 1999

Abstract

In this paper, we combine two previous works, the first being by the first author
and K. Nelander, and the second by J. van den Berg and the second author, to show
(1) that one can carry out a Propp—Wilson exact simulation for all Markov random
fields on Z¢ satisfying a certain high noise assumption, and (2) that all such random
fields are a finitary image of a finite state i.i.d. process. (2) is a strengthening of
the previously known fact that such random fields are so-called Bernoulli shifts.

1 Introduction

A random field with finite state space S indexed by the integer lattice Z% is a random
mapping X : Z% — S, or it can equivalently be seen as a random element of SZ'_ Here
we focus on so-called Markov random fields, characterized by having a dependency
structure which only propagates via interactions between nearest neighbors in Z?. We
specialize further to Markov random fields satsifying a certain high noise assumption,
which says that these interactions should be sufficiently weak in a way that will be made
precise in Definition 1.2 below. Our results for such random fields are twofold: First, we
devise a so-called Propp—Wilson algorithm for computer simulation of the random
field. Second, we use the existence and some properties of such an algorithm to prove
that the high noise assumption implies a certain rather strong ergodic property, known
as finitary codability, of the random field.

The rest of this introductory section is organized as follows. In Sections 1.1 and
1.2 we provide the context by giving careful descriptions of the Markov random field
property and the high noise assumption, supplemented by a couple of examples. In
Section 1.3, we describe our results concerning simulation algorithms, and in Section
1.4 we state our main result concerning finitary codability.

1.1 Markov random fields

We briefly introduce Markov random fields here, and refer to Kindermann and Snell [§],
Georgii [5], and Georgii et al. [6] for more background and detail.
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The Markov random field property is defined relative to some neighborhood structure
in Z?. Here we restrict, for simplicity and concreteness, to the case where z,y € Z% are
considered nearest neighbors, denoted z ~ y, if and only if their (Euclidean) distance is
1. For A C Z¢, we define the boundary OA of A as

OA = {z € Z*\ A: Jy € A such that = ~ y}.

With a slight abuse of notation, we will, for x € Z¢, write Oz for 8{z}.
Let X be a random field on Z¢ with finite state space S, and let  be the corre-
sponding probability measure on Sz,

Definition 1.1 The random field X with distribution u is said to be a Markov ran-
dom field if u admits conditional probabilities such that for all finite A C Z¢, all
e SN andallne SZN\A e have

WX (A) = €] X(ZU\A) = 1) = u(X(A) = £| X (9A) = n(dA)).

In words, the Markov random field property says that the conditional distribution of
what we see on A given everything else only depends on what we see on the boundary
OA.

A consistent set of conditional distributions for all finite A and all boundary condi-
tions 7 as above is called a specification, usually denoted by Q. A probability measure
[ on 52 satisfying the prescribed conditional distributions is called a Gibbs measure
for Q. Existence of Gibbs measures for a given specification follows from a standard
compactness argument. In contrast, uniqueness does not always hold, and the issue
of when it does (or does not) is a central and highly intricate one which has been the
subject of countless studies. Nonuniqueness of Gibbs measures is referred to as a phase
transition.

We assume that the specification is shift invariant. To make this more precise, let
T be the shift operator on Z¢: For z,y € Z%, we set Tpy = = + y, for A C Z% we set
T,A =z + A, and for ¢ € SA, define T,¢ € ST=A by setting Tpé(y) = £(T ,y) for each
y € TyA. A specification Q is said to be shift invariant if for each finite A, each z € Z¢
and each n € S%*, the prescribed conditional distribution of T, X (TA) given that
X (Ty0A) = Tyn is the same as the prescribed conditional distribution of X (A) given
that X (0A) = 1.

For concreteness, we give two well-known examples of Markov random fields and
their specifications.

Example: The Potts model. Fix g € {2,3,...} and J € R, and set S = {1,...,q¢};
the elements of S are called spins. A probability measure p on S 2% is said to be a Gibbs
measure for the g-state Potts model with coupling constant J if it is Markov and for
each finite A, each € %}, and each ¢ € S* we have
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Here Z/‘{’JJ7 is a normalizing constant, 14 is the indicator function of the event A, and
each nearest neighbor pair {z,y} is counted only once. Taking J = 0 gives an i.i.d.
random field. Taking J > 0 biases the i.i.d. measure in favor of configurations where



many nearest neighbor pairs have the same spin, whereas a negative value of J has the
opposite effect. The case ¢ = 2 is the much studied Ising model. Much of the interest
in Ising and Potts models in statistical mechanics comes from their phase transition
behavior: for d > 2, there is a critical value J, = J:(d,q) € (0,00) such that for
J € [0, J;) there is a unique Gibbs measure whereas for J > J, there are multiple Gibbs
measures.

Example: The Widom—Rowlinson lattice gas model. Fix ¢ € {2,3,...} and
A >0, and set S ={0,1,...,q}. A probability measure y on SZ% is said to be a Gibbs
measure for the g-state Widom—Rowlinson model with activity A, if it is Markov and
for each finite A, each € S%4, and each ¢ € S* we have

where ZX’,?] is a normalizing constant, n(¢) is the number of vertices z € A with &(z) # 0,
and A is the event that no two neighboring vertices z and y (with either z,y € A, or
xz € A, y € OA) take different values unless at least one of them is a 0. It is natural to
think of 0’s as empty sites and {1,..., ¢} as ¢ different types of particles, with a strong
repulsion between different types. The phase transition behavior in d > 2 dimensions
is similar to that of the Potts model: taking A sufficiently small gives a unique Gibbs
measure whereas taking A large enough produces multiple Gibbs measures.

1.2 The high noise assumption

A high noise assumption on a Markov random field X, or equivalently on its specifica-
tion, is a condition which states that the conditional distribution of X (z) for z € Z¢
given X (0z) does not depend too strongly on X (0z). The high noise assumption that
we will work under in this paper was used by Higgstrom and Nelander [7] in a context
where Z¢ is replaced by some finite graph structure.
Let Q be a shift invariant specification on Z¢ with state space S. For z € Z% and
s €S, set
7= %(Q) = min Q(X(@) = 5| X(3x) = 1) (1)

and note that by shift invariance, this quantity is independent of z. Also set

T=9Q) = - (2)

SES

For reasons to be explained in Section 2, we call v the multigamma admissibility of
Q. Clearly, v € [0,1], and we shall see that it can be interpreted as a probability.

Definition 1.2 A Markov random field on Z¢ and its specification Q are said to satisfy
Condition HN if
2d — 1

2d

HN is short for High Noise, and has nothing to do with the (purely coincidental!) fact
that the authors of [7] have these initials.

Other high noise conditions have been introduced by Dobrushin [4] and by van
den Berg and Maes [1], and shown to be sufficient conditions for having a unique Gibbs

(Q) >



measure for a given specification. It is easy to check that Condition HN is stronger than
the van den Berg-Maes uniqueness condition. This means that we do not need to worry
about the possible nonuniqueness of Gibbs measures when working under Condition
HN.

Remark. In many examples (such as the Widom-Rowlinson model), certain finite pat-
terns have probability 0. In such cases, the minimum in (1) can be taken over the set
of boundary conditions 1 which have positive probability, because for such a Markov
random field, we may take the conditional distribution under an exceptional bound-
ary condition to be equal to the conditional distribution under some nonexceptional
boundary condition.

Let us finally see what Condition HN means for the examples in Section 1.1. A calcula-
tion shows that the Potts model with coupling constant J has multigamma admissibility

y= { q—l+eip(4d]) for J >0
1+(q—1)eqxp(—4d.]) for J <0,
so that Condition HN is satisfied if and only if
1 q 1 q
—1 1—— —1 1 .
4d Og( 2dq—2d+1) <I<4 °g< +2d—1)
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s satisfying Condition

For the Widom—Rowlinson model with activity A, we get v =

HN if and only if A < 75—y

1.3 Propp—Wilson algorithms

It is important, both in statistical mechanics and in image analysis applications, to be
able to sample from a Markov random field living on a large but finite graph structure
G = (V, E). Direct sampling via enumeration is not computationally feasible due to the
hugeness of the sample space (for the Ising model on a 256 x 256 grid it has cardinality
265536) " The standard way to approach this problem is the Markov chain Monte
Carlo method, which dates back to the 1953 paper by Metropolis et al. [11]. The
idea is to find an ergodic (usually reversible) finite state Markov chain whose unique
stationary distribution is the desired Gibbs measure y. If we start the chain in an
arbitrary state, and run it for long enough, then the distribution of the final state is
close to u.

An example is the Gibbs sampler, also known as the heat bath algorithm,
where at each integer time a vertex x is chosen (either at random or according to
some deterministic sweeping rule) and receives a new value chosen according to the
conditional distribution (under p) of X(z) given the current value of X(0z). Such a
chain is reversible, and under an irreducibility condition (which usually is easy to check)
it is also ergodic with unique stationary distribution .

A major drawback of this approach is that it is often very difficult to determine
useful bounds on the convergence rate of the Markov chain, i.e. to decide how long the
chain must run to come close to equilibrium. For this reason, the mid-1990’s have seen
an intense effort at refining the Markov chain Monte Carlo method by designing algo-
rithms which decide automatically how long they need to run, and whose output have
ezactly the target distribution p. See e.g. the annotated bibliography [17]. Algorithms



achieving these goals are today sometimes referred to as “exact” or “perfect” simulation
algorithms. The breakthrough came in the 1996 paper by Propp and Wilson [15], who
coupled several Markov chains (i.e. ran them in parallel) in an ingenious way, in order
to produce an algorithm which has the desired properties and which moreover is fast
enough to be useful in several nontrivial instances. They gave a particularly striking
variant of the algorithm for random fields obeying a certain monotonicity property: that
the state space S admits a total ordering such that the conditional probability of a large
value at a vertex z € V given that X(V \ {z}) = 7 is increasing (with respect to the
induced partial ordering) in 7. This holds for the Ising model, and also for the g = 2
Widom-Rowlinson model (the state space {0, 1,2} then needs to be equipped with the
slightly unusual ordering 1 < 0 < 2), but not for the ¢ > 3 Potts and Widom-Rowlinson
models.

An extension of the Propp—Wilson algorithm for monotone Markov random fields
was given by van den Berg and Steif [2]. While Propp and Wilson only handled Markov
random fields living on finite graphs, van den Berg and Steif showed how to sample
from the exact distribution of a monotone Markov random field living on the infinite
lattice Z%, provided that the specification of the Markov random field has a unique
Gibbs measure. Of course, an entire configuration n € S 24 i typically not even possible
to store in a finite computer, so what their algorithm does is the following: given a
finite set A C Z% and a specification Q which has the required monotonicity property
and which gives rise to a unique Gibbs measure u on Szd, it produces a sample from
the projection of 4 on S*. Equipping SZ¢ with the usual product topology, it is thus
possible to sample from g with arbitrary prespecified precision; this is similar in spirit
to the “e-accurate perfect simulation” algorithm of Mgller [12].

Higgstrom and Nelander [7] developed the Propp—Wilson approach in a different
direction: they stayed within the context of finite graphs, but showed how fast exact
simulation of a Markov random field is possible when the monotonicity assumption is
replaced by (a finite graph variant of) Condition HN.

In Section 2 of this paper we shall unite the approaches in [2] and [7] in order to
devise an algorithm which achieves the following. Given any finite A C Z¢ and any
specification Q satisfying Condition HN, we can sample from the projection on S of
the (unique) Gibbs measure y for the specification Q. The computational complexity
of this algorithm is moderate. In fact, the expected running time grows only linearly
in the cardinality of A (as is the case for the algorithm in [2] for the Ising model with
J € [0,J.)) — a fact which may be of substantial value for the practitioner of the
algorithm, and which moreover is crucial to the application in ergodic theory to be
described in the next subsection.

1.4 Finitary codings

In this section, we give a very brief description of the notion of a finitary coding. While
all definitions will later be given in complete detail, the reader is referred to [2] for a
much more complete description of known results and how these concepts fit into the
general ergodic theory framework.

Loosely speaking, we say that a stationary process Y = {Y,}, ¢z« is a factor of a
stationary process X = {Xp},cza if there is a map which maps the realizations of the
X process into new realizations such that these new realizations are essentially the Y
process and such that this mapping is spatially invariant. If in this “coding procedure”,



to determine the image process at a fixed location z “downstairs”, you only need to
look at a sufficiently large (random) window around x in the upstairs process, then one
calls this mapping finitary. Precise definitions are given in Section 3.

One of the main results of [2] is that there exists (resp. does not exist) a finitary
mapping from a finite state i.i.d. process to the so-called plus state of the Ising model
for J € [0,J.) (resp. J > J.). Monotonicity for the Ising model played an important
role in this result as well as in the known exponential convergence results (see [10]) of
the corresponding dynamics. Here, we are able to drop the monotonicity at the cost of
only being able to work under Condition HN (in the Ising model, this means working
well below the critical interaction parameter).

Theorem 1.3 For any Markov random field Y on Z¢ satisfying Condition HN, there
exists an i.i.d. finite-state process X on Z% and a finitary coding f such that Y and
f(X) are equal in distribution.

This is a strengthening of the well known fact that all high noise Markov random
fields are Bernoulli shifts, i.e. that they are a factor (not necessarily finitary) of a finite
state i.i.d. process. This latter fact can be obtained from the standard ergodic theory
literature together with any of the following papers concerning Markov random fields:
[9], [16], [1] or [3].

One of the results in [2] is that a phase transition always precludes the existence of
a finitary coding as above. It is not clear whether one should expect that the lack of a
phase transition implies the existence of such a finitary coding, i.e. whether Condition
HN can be weakened to “absence of phase transition” in Theorem 1.3. See [2] for an
extensive discussion concerning this point.

2 The algorithm

Fix the dimension d, the finite state space .S, and a specification Q satisfying Condition
HN. Let p be the unique Gibbs measure on SZ¢ for Q.

As a first step towards the algorithm described in the last paragraph of Section 1.3,
we first define a so-called probabilistic cellular automaton (PCA) {X,};cz, which
in our case is effectively a Gibbs sampler for ;4 with massive parallel updating. It is,
however, only a theoretical construction, not aimed at running on a computer, because
at each integer time an infinite number of vertices are updated. Starting with an initial
configuration X, € Szd, what this cellular automaton does is to select a set Yy C Z¢ of
vertices, and to update these according to the conditional distribution prescribed by O,
given X((Z%\ Yy). This gives a new configuration X; € SZ%. A new set Y; of vertices
is then selected, and these are updated according to Q given X;(Z¢\ Y1), producing
another configuration X5, and so on. We require that each set Y; of vertices is spread
out, in the sense that it does not contain any nearest neighbor pair £ ~ y. The point
of this is that all the vertices then update independently of each other, conditional on
X;(Z%\'Y;). We propose two ways of selecting Y;.

Updating scheme A: For some p € (0,1), let {I; z},c7 yezq¢ be i.i.d. Bernoulli variables
with expectation p. For each ¢ and z, take

z€Y; ifandonlyif I,;=1 and ZIy,iZO-
yEdx



In other words, each z € Z? is independently selected to be a candidate for membership
in Y; with probability p, and then all candidates that have another candidate among its
nearest neighbors are dismissed. The probability that a given vertex x is included in Y;
is p(1 —p)?¢. Tt makes sense to try to maximize this probability, and to this end we will
always take p = ﬁ.

Updating scheme B: Partition Z¢ into two sets Zd,,, and ZZ,,, by letting each

z = (z1,...,24) belong to ngen if its coordinate sum z1 + ...+ x4 is even, and to ngd
otherwise. Let ¥; = Z¢ _ for i even, and Y; = ngd for ¢ odd.

even

When it comes to doing simulation in practice using algorithms based on this PCA, the
most natural choice is probably to use updating scheme B. On the other hand, updating
scheme A has the mathematically more pleasing property of space-time homogeneity,
which in fact is crucial to the construction of finitary codings in Section 3.

Now let U; , be i.i.d. random variables, uniformly distributed on [0, 1]. Also let O
denote the origin in Z¢, and define a function

¢: 80 x[0,1] =8

with the property that for each € $%° and each s € S we have

1
/0 1 smtr—spdt = Q(X(0) = 5| X(90) =1)). (3)

The updating in the PCA can then be realized from ¢ and {U; s}z zeze as follows.
Whenever z € Y; and X (0z) =1, we set X;1(z) = ¢(T—z1,Uiz). That this gives the
dynamics of the PCA the desired distribution is clear from (3).

This gives a natural way of coupling several copies of the PCA with different initial
configurations: just expose them to the same U;, variables (and, in case of updating
scheme A, also the same I; ; variables). If the single-site conditional probabilities in Q
depend only weakly on neighbors’ values, then it may be possible to define ¢ in such a
way that the evolutions of PCAs starting with different initial conditions tend to rapidly
coalesce, so that in other words the initial configurations are quickly forgotten. Here is
where the multigamma admissibility v defined in (2) comes in. To propose a concrete
choice for ¢, we first need some more definitions.

Define subprobability measures @ and {Q, : 7 € S%°} on S as follows. For each
s€ Sandne 8%, set

Q(s) =7s(Q)
and
Qn(s) = Q(X(0) = s[X(90) =) —75(Q) -

Note that @@ + @, is a probability measure for each 7 € S90  and that it equals the
conditional distribution of X (0) given X(90) = 7. Equip S with a total ordering <,
and denote the elements of S by si,..., s, in such a way that s; < --- < s;. For all
n € 89 and u € [0,1], set

S ) = min{s; € S: Q({s1,-..,5;}) > u} for u <~
MU= min{s; € §: Qy({s1,...,55}) 2 u—7} foru>~.

A little thought shows that this is a valid choice of ¢, i.e. that (3) holds. The main
point of this choice of ¢ is that whenever z € Y; and U; ; < v, the value of X, 1(z) does
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not depend on X;. Hence, if we couple the PCA with itself with two or more initial
configurations using ¢ and the same Uj; ;, then the values at a vertex after it is updated
coincide for all the PCAs with probability at least y. One can check that no other choice
of ¢ can guarantee a higher such coalescence probability. This way of coupling several
random objects to maximize coalescence probability is called multigamma coupling
(hence the term multigamma admissibility for ), and was introduced in the study of
Propp—Wilson algorithms by Murdoch and Green [13].

Now define a more complicated PCA {Z;};cz, in which vertices in Z? are assigned
values in S rather then in S, where S denotes the set of all nonempty subsets of S. To
avoid confusion between {E;} and {X;}, we call {E;} a super-PCA, and {X;} is called
an ordinary PCA. For ¢ € SZ° and A C Z¢, we identify £(A) with the set

{neSh: n(z) € &(x) for all z € A}.

The evolution of the super-PCA is as follows. If at time 7 we have a configuration
=i € Szd, then we obtain Z;,1 by selecting a set Y; € Z? according to updating scheme
A or B, and for each z € Z¢ setting

Bpo(z) = 4 18 €53 € Ei(9) such that H(Ton, Uig) = s} iz €Y;
Hitvi(z) = =, (z) otherwise.

(4)

Given Z, we define the {0, 1}-valued random variables { Z; () },cz zcz¢ by letting Z;(z) =
1 if the cardinality of Z;(z) is at least 2, and letting Z;(z) = 0 otherwise. In other words,
Zi(z) = 0 if and only if E;(z) consists of a single element of S.

Suppose that we start the super-PCA {E;} at time 0 in the state Szd, that we start
an ordinary PCA {X;} at time 0 with some arbitrary configurationn € S Zd, and that we
expose {Z;} and {X;} to the same randomness (i.e. to the same I; ;- and U; ,-variables).
We write P for the probability measure on an appropriate probability space underlying
the PCA and the super-PCA.

We claim that

Xi(z) € Ei(z) (5)

for all 4 > 0 and all z € Z%. To see this, note that it holds trivially for i = 0 and that
it is preserved under the dynamics of {E;} and {X;}.

In particular, (5) tells us that if Z;(z) = 0, then we know that we would see the same
value of X;(x) irrespective of the starting configuration Xy. It is therefore reasonable
to argue that if for some given i and A C Z% we have Z;(z) = 0 for all z € A, then
the values on A at time ¢ for the ordinary PCA have forgotten the initial configuration.
The following result tells us that the random field {Z;(z) : = € Z¢} quickly turns into
“mostly zeroes” as ¢ increases. It is precisely here that Condition HN does its job.

Proposition 2.1 Suppose that Q satisfies Condition HN with multigamma admissibil-
ity v, and that we run the super-PCA starting at time 0 with Zy = SZ¢, Then, for
any © € Z%, the probability that Z;(x) = 1 tends to 0 exzponentially fast as i — oo.
Quantitatively:

(a) If updating scheme A is used, then

) (2041~ 2d(1 = 7))\
P(Z,(.’II) = 1) S (1 - (2d+ 1)2d+1 >

for all i > 0 and all z € Z°.



(b) If updating scheme B is used, then
P(Zi(z) =1) < (2d(1 — )"
for all i > 0 and all z € Z°.

Proof: We prove (a); (b) follows by a similar argument. Set

(2d)2d
(2d+ 1)2d+1

*

and note that p* is the probability that z € Y} for given x and k. The proof is by
induction over i. For ¢ = 0, (6) holds trivially. Assuming that (6) holds for ¢ = k, the
following calculation shows that it holds also for ¢ = k + 1:

P(Za () = 1) =
P(z € Yo)P(Zi11(z) = 1|z € Vi) + Pz € Yi)P(Zir () = 1|z € Vi)

< PP(Zia(z) = 1]z € Yi) + (1 —p*) 1 —p*(1—2d(1 — 7)) (M)
< p*P(Zy(y) = 1 for some y € 9z, Up e >7) + (1 —p*) (1 —p*(1 — 2d(1 —7))*  (8)
= p*(1—7)P(Zk(y) =1 for some y € dz) + (1 - p*) (1 — p*(1 — 2d(1 — 7)))" 9)
< p1-v) Y PUry) =1+ (1-p")(1-p(1-2d(1-7)))"
yEdx
p*(1—7)2d (1 - p*(1 —2d(1 — )" + (1 - p*) (1 — p*(1 = 2d(1 — 7)))" (10)

(1= p*(1 - 2d(1 =) .

Here (7) and (10) use the induction hypothesis, (8) uses the fact that Zx,1(z) = 0
unless Uy ; > v and some neighbor y of z has Z;(y) = 1, and (9) uses independence
between X and Uy ;. O

We now show how these theoretical constructions can be turned into actual algorithms
for sampling from p. We make the usual assumption that we have access to an unlimited
sequence of i.i.d. uniform [0, 1] random variables (this is of course unrealistic, since, at
least to our knowledge, only pseudo-random number generators are available), to be used
for generating elements from the arrays {U;}icz yeza and {; z}icz rezd, Sequentially
as we need them. Our task is the following: for a fixed finite A C Z¢, we want to sample
from the projection of p on S™.

We described the PCAs as starting at time 0 and running forwards in time. The
Propp—Wilson approach to simulation is a somewhat different scheme: running from
negative times until time 0, and trying earlier and earlier starting times until eventually
it can be verified that the starting configuration has become irrelevant. In our context,
the idea amounts to the following where we write x,Zj, for the state of the super-PCA at
time k9, having started at time ki in state Szd, and similarly adopt the notation x,Zy,.
First run the super-PCA from some negative time K (starting with Eg, = $Z) until
time 0, and check whether we have coalescenced at time 0, i.e. whether x,Zy(z) = 0 for
each z € A. If yes, then output the unique element of S* corresponding to g,Zo(A).
Otherwise, try an earlier starting time Ko and see if we have coalescenced at time 0,
and so on. Here (K1, Ks,...) is some sequence of earlier and earlier starting times. For
simplicity, we shall take (K1, K»,...) = (—1,—2,...) even though more sophisticated
choices have been advocated, e.g. in [15].



Define sets Ag,Aq,... C Z¢ by setting Ag = A, and, for j = 1,2,..., setting Aj =
Aj_1UO(Aj—1). In other words, A; is the set of vertices that are at distance at most ¢
from some vertex of A.

It is important to note that to generate gZ¢(A) from xZ_;, we only need to know
the values of kZ_1 on A1, because of the locality (spatial Markovianness) of the update
rule (4). Next, k=_1(A1) only depends on x=_5 through xZ_5(A3), and so on. So to get
xZ0(A) we start with xEx (A x) = SA% and sequentially calculate xEx.1(A x 1),
k=k+2(A_k—2) and so on. In pseudocode, the algorithm is as follows; we have taken
the liberty to abridge the trivial calculations of Y, and xZj.

K:=0
repeat
K=K-1
forallz € A_g
KEK(LE) =5
k=K
repeat
compute A_;_1NYy
forallz e A_p_1NY;
KZk+1(x) == {s € §: In € gEy(0x) such that (T_,n, Uy ,) = s}
k:=k+1
until £ =0
compute gZg(A)
until gZg =0 for allz € A
output xZo(A)

Note that the algorithm sometimes uses U; , for the same ¢ and z more than once; we
stress that the same value of U;, must be used each time (rather than generating a
new random number each time). We need to verify the correctness of this algorithm,
and that is done in the following theorem. We write pa for the projection on S* of the
Gibbs measure y.

Theorem 2.2 For any finite A C Z¢, the above algorithm (with either updating scheme
A or updating scheme B) terminates with probability 1, and outputs an unbiased sample
X from un.

Proof: Again we give the proof for updating scheme A only; the other case follows
similarly.

Proposition 2.1 in conjunction with space-time homogeneity of the dynamics of the
PCA imply that

(2d)%(1 — 2d(1 — v))>K

P(KZO(CE) = 1) < (1 - (2d+ 1)2d+1

for each K < 0. Writing |A| for the cardinality of A, we thus have

2d(1 _ _ —
P(kZ(z) = 0 for all z € A) > 1 — |A| (1 _ (2d) (2S+ f)‘igil 7))>

which tends to 1 as K — —o0, and the a.s. termination of the algorithm follows.
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To prove unbiasedness of the output, define the negative integer-valued random-
variable K(A) to be the earliest starting time needed before the algorithm terminates.
Let X* be a random element of Szd, which has distribution g and which furthermore
is independent of {I; +},cz sezd and {Uiz}icz pezd- For J <0, write ;X§ for the 52°
valued random element obtained at time 0 by taking X; = X* as starting configuration
for the ordinary PCA (using the same I; ;’s and U; ;’s) running from time J to time 0.
Since the dynamics of the PCA preserves p, we have that ;X§ has distribution p for
each J.

On the other hand, an obvious extension of (5) shows that ;Xj(A) = X (A) for each
J < K(A), so that ;X (A) converges a.s. to X(A) as J — —oc. But since ;X§(A) has
distribution ua for each J, we get that X (A) also has distribution jx. O

A variant of the above algorithm, worth considering for large |A|, is to run it separately
for each € A (again reusing the random variables U; , and I; , whenever the same (7, z)
is encountered more than once). The advantage of this approach is that the expected
time needed to simulate the value at a single vertex is easily shown to be finite, whence
the same holds for any number of vertices, and moreover the expected time to simulate
X (A) grows only linearly in |A|. Indeed, the number of updates needed to simulate the
value at a single vertex z is (in the case of updating scheme A) no more than

= - x 2d)24(1 — 2d(1 — 7))\ ©
X KEKAP(E) < ) < 3 K@K+ (1— (2d) (2(d+1)2§+1 7”) < .

The same idea can be useful even in the context of Markov random fields of finite
graphs. For large finite subgraphs A of Z% we get an expected running time which
is O(|A|), improving on an algorithm in [7] which (still under Condition HN) has an
expected running time which is O(|A|log|A|). The algorithm in [7] is simpler and may
be preferable for moderately sized A.

3 The finitary coding

Recall from Section 1.4 the processes X and Y. If the X process takes its values in the
finite set A and the Y process takes its values in the finite set B, then the distributions
of these processes are translation invariant probability measures y and v on AZ? and
BZ’ respectively. If there exists a measure preserving map f from (A%, p) to (B%,v)
which is defined a.e. and which commutes with shifts, then we say that Y is a factor of
X (or v a factor of u). Here measure preserving means that for all measurable U C BZ,
v(B) = u(f~Y(B)) or equivalently the processes f(X) and Y are equal in distribution.
To say that f commutes with shifts means that f(T%(n)) = Tx(f(n)) for all z € Z¢ and
p-a.e. 1.

The coding or mapping f is called finitary if it is continuous after removing some
set of measure 0. There is another more natural equivalent definition of finitary (which
also explains the word finitary). f is a finitary coding if and only if there exists a
set N C AZ® of y—measure 0 such that for all ¢ € Azd\/\/ , there exists an integer r
(depending on () so that if n € AZ\N and n(i) = ((i) for all i with ||i|| < 7, then
fm)(0) = f(¢)(0). (By translation invariance, the analogous thing holds at locations
other than 0.) In words, after a large enough finite box of the ¢ configuration is revealed,
we know the Oth coordinate of f((). If this occurs, we say that Y is a finitary factor of
X.
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The finitary codings for our high noise Markov random fields is based on the Propp—
Wilson algorithm of the previous section. We first observe that although the random
variables U; ; were uniform variables, it is clear, since there are only finitely many
possibilities for the relevant conditional probabilities, that we could take the random
variables U; ; to take values in some finite set I/ and proceed precisely as we did before.
We therefore now assume that. We now let W; ; := (U 4, I; o) fori € Z,z € yAS

The algorithm in the previous section, with updating scheme A, immediately implies
the following.

Proposition 3.1 Letting Z, = {W; 4,0 € Z,i < 0}, we have that Z = {Z;},cza is
an i.i.d. process and that the Markov random field X = {X;},cza with distribution p
arises as a finitary coding of Z.

(Of course, finitary was not defined in the case where a process is not finite-valued but
it is still clear what the proposition means.)

The point now which remains to be resolved before we have a proof of Theorem 1.3,
is that {Z;},cza is not a finite-valued process. The idea is now to modify the process
{Z;} 4eze and the simulation algorithm so that we can obtain a finitary coding from a
finite-valued i.i.d. process to p.

This argument is essentially the same as that carried out in [2]. We therefore only
explain intuitively why this should be possible.

The fast (exponential) convergence of the algorithm easily yields the fact that for
each € Z? the ezpected number of i € {---,—2,—1} for which Wi+ is actually used
to simulate X (or u) is finite. If we let M be any integer larger than this expectation,
and N; (N2) be the number of ¢ € {—M,---,-2,-1} ( € {---,—M — 1}) for which
Wiz is used to simulate X (or p), then we have E[M — N;] > E[N;]| which means that
the expected number of unused W; ;’s in {—M,---,—2, —1} is larger than the expected
number of needed W; ;’s in {- .-, —M —1}. Therefore, it seems reasonable that if we only
had {Wis}tic{—m,...~2,—1} zcze available to us, this might be enough for us to simulate
X since if, for some z, we need a W; ; with ¢ < —M, we can transport some unused
Wi, from elsewhere with i € {—M,---, -2, -1} and y € Z%. Of course, this procedure
must be done in a translation-invariant finitary manner.

At this stage, one can carry over the proof in [2] exactly and so in order to save space,
we just refer to the somewhat lengthy argument there. This in fact yields the following
result. It is more general than Theorem 1.3, but on the other hand its assumptions are
less explicit.

Theorem 3.2 Let X be a Markov random field for Z% and some specification Q. As-
sume that there ezists an update function ¢ satisfying (3) for Q, and having the property
that the Propp—Wilson algorithm for simulating the value at a single vertex, based on
the super-PCA corresponding to ¢ and updating scheme A, converges a.s. and with a
finite expected number of single-site updates. Then X may be representated as a finitary
coding of a finite state i.i.d. process.

4 Relaxing the assumptions

A fair amount of what we have done can be carried out in somewhat greater generality.
For example, we assumed throughout that the random fields that we dealt with were
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Markov, meaning that the conditional distribution of the state at a given location given
everything else only depended on the values of its (usual) neighbors. One can instead
study finite range Gibbs measures where the above conditional distribution is required
to depend only on the values of locations which are at most r away where r is some fixed
number. Everything we have done can easily be extended to this case, under appropriate
modifications of Condition HN. However, extending to infinite range Gibbs measures
(which is an interesting area in itself) appears to be a more difficult matter.

One could also deal with specifications which are not shift invariant. In this case,
provided that the system is “high noise uniformly everywhere”, one can carry out the
algorithm similarly as we did in the shift invariant case. This may be useful e.g. for
simulating certain high temperature spin glasses (see e.g. [14]). On the other hand, since
ergodic theory and the notion of finitary coding only deal with stationary processes, it
does not make much sense to say anything in this direction for the non-shift invariant
case.

Another direction is to try to replace Condition HN by weaker conditions, either in
general or in special cases. The Ising model results in [2] show that Condition HN is
far from being a necessary condition for either the simulation algorithm or the finitary
coding result, and some of the computer simulations in [7] are also an indication in this
direction.
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