DYNAMICAL MODELS FOR CIRCLE COVERING: BROWNIAN MOTION
AND POISSON UPDATING
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ABSTRACT. We consider two dynamical variants of the classical problem of random in-
terval coverings of the unit circle, the latter having been completely solved by L. Shepp. In
the first model, the centers of the intervals perform independent Brownian motions and in
the second model, the positions of the intervals are updated according to independent Pois-
son processes where an interval of length £ is updated at rate £~ where « is a parameter.
For the model with Brownian motions, a special case of our results is that if the length of
the nth interval is ¢/n, then there are times at which a fixed point is not covered if and only
if ¢ < 2 and there are times at which the circle is not fully covered if and only if ¢ < 3.
For the Poisson updating model, we obtain analogous results with ¢c < aand¢c < a + 1
instead. We also compute the Hausdorff dimension of the set of exceptional times for some
of these questions.
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1. INTRODUCTION

1.1. The classical (static) circle covering model. Let C' denote the circle with circum-
ference 1 and consider a decreasing sequence {/, },>1 of positive numbers approaching 0.
Let {U,},>1 be a sequence of independent random variables each of which is uniformly
distributed on C. Let I,, be the open arc of C' with center point U,, and length ¢,,. Let
E := limsup, I, and F' := E*. It follows immediately from the Borel-Cantelli Lemma
that for each z € C, P(x € E) = lifand only if > 7, ¢, = co. Fubini’s Theorem yields
immediately that in this case F' has Lebesgue measure 0 a.s. In 1956, Dvoretzky (see [3])
raised the question of whetherinthe ) ¢, = oo case it was possible that F' was nonempty
and gave examples where this occurred. There were a number of various contributions to
this question with the final result proved by Shepp, (see [14]). Note that Kolmogorov’s 0-1
law tells us that P(F' = () € {0,1}.
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Theorem 1.1. (L. Shepp). P(F = () = 1 if and only if

o0

E izeel—k—kln = 0.
n

n=1

In particular if £, = c/n for all n, then P(F = ()) = 1 if and only if ¢ > 1.

The special cases ¢, = ¢/n for a constant ¢ were known earlier. The result for ¢ > 1
was proved by Kahane (see [9]) and that for ¢ < 1 was proved by Billard (see [2]). For the
case ¢ = 1, Billard also showed that F' is at most countable while Mandelbrot (see [11])
and independently Orey (unpublished) then showed that F' is a.s. empty in this case. The
result that F' is at most countable for ¢ = 1 also appeared in the first edition of Kahane’s
book (see [10]) where some of the above results were also presented. The second edition
of this book also contains some more history as well as other results such as the Hausdorff
dimension of F' and a determination of which sets intersect F' with positive probability,
described in terms of their Hausdorff dimension. We finally mention that in recent years,
many refinements of these results have been obtained; see [4], [S] and [1]. We finally
mention that it is trivial to check that for any sequence {¢, },>1, E is dense a.s.

1.2. The dynamical circle covering model. In this paper, we consider two dynamical
variants of the above problem. In the first of these models, each of the centers U,, perform
independent Brownian motions on C, each with variance 1. In the second model, we
associate independent Poisson processes with the different intervals, where the Poisson
process associated with the nth interval has intensity ¢, for some real parameter cv. At the
times of the Poisson process associated to the nth interval, I, is given a new center, chosen
uniformly on C', independent of everything else.

We then ask for each of these two models if there are exceptional times at which we
see different “covering behavior” from that which is seen in the earlier static model. We
have potentially five (or even more) different types of exceptional times, depending on the
¢,’s and which of the two models we are looking at.

(I) times when a fixed point is not covered even though ) °_ /,, = oo,
(I) times when the circle is not fully covered even though >_ ettt /n? = oo,
(IIT) times when a fixed point is covered i.0. even though > ¢, < oo,
(IV) times when the circle is fully covered i.0. even though Y eftTeF-+h /n? < oo,
(V) times when F is not dense.

To state things more formally, consider the first dynamical model. Here we let for each
1> 1, {Ui,t}tZO be an independent standard Brownian motion on (' started uniformly. For
the second dynamical model, let {{C; ; }i j>1,{Yi;}ij>1} be independent random variables
with C; ; being uniformly distributed on C' and with Y; ; being exponentially distributed
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with parameter £; “. Foreach¢ > 1,1etT; o := Oandforj > 1,letT; ; := £:1 Y; ;. Inthis
way, (7;,;);>1 is a Poisson process with rate £; “, independent for different ¢. Finally, we
let Uy = 3272, Cijlim,;_y 1) (t). Henceforth we refer to the first model as the Brownian
model and the second as the Poisson model with parameter «.. In either case, we let [, ;
be the open arc of C' with center point U,,; and length ¢,,. Let E, := limsup, I,,; and
F, .= E}.

Conventions and notation. Our circle C is {(z,y) : 22 + y* = 1/(27)?}. When we
subtract two elements in C', we mean modular arithmetic so that (1/(27), 0) is the identity.
If x € C, by || we mean arclength from the identity; in this way |z| € [0,1/2] and |z| = 0
only for (1/(27),0). The real line projects onto C' via u — 1/(27)(cos(27u), sin(27u)).
We will assume without loss of generality that /; < 1/2. Throughout much of the paper,
we will also assume that

tn =O(1/n) ey

i.e. that there are constants 0 < M, < M; < oo such that for every n, My/n < ¢, <
M; /n. Besides © notation, as usual O(1) will denote a quantity which is bounded away
from oo.

Remark on the parametrization of the Poisson model. One might think that the most
natural parameter would be o« = 0. However, in the Brownian model the average time to
cover most of the circle is of order 1 and therefore in the Poisson model one should take
a = 1. On the other hand, what turns out to be important is the time that it takes for the nth
interval to move a distance of order /,, and for the Brownian model, this time is of order
/2. To make the expected motion of the nth interval in the Poisson model of similar order,
we should take @ = 2. These considerations suggest that we carry out our analysis for
general a. However, we point out that the results for the o = 2 case will match very well
the results for the Brownian case.

Measurability Remark. Insuring the measurability of the events described below can be
handled in the same way as was done in [8] for dynamical percolation. Also, the fact
that all the events described below have probability O or 1 (once we know that they are
measurable) follows immediately from Kolmogorov’s 0-1 law.

For a fixed point z € C, in the £, = ©(1/n) case, it follows immediately from the Borel-
Cantelli Lemma that P(z € F) = 0 and hence for any of the dynamical models, by
Fubini’s Theorem, {¢ : € F;} has Lebesgue measure 0 a.s. The question we address in
the first two theorems is when there are exceptional times ¢ at which x is covered by only
finitely many of the I,,,’s; i.e., x € F}. See [10] for the definition of Hausdorff dimension
which we denote here by HD.
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Theorem 1.2. Assume that (1) holds. Consider the Brownian model. Fix x € C and let
Un = [Ty (1 = &).

(i). Ifliminf, n?u, < oo, then P(3t € [0,1] : z € F}) = 0. In particular, if £,, = ¢/n for
all n, then this holds if c > 2.

(ii). If Y22 ehtbet-tl /n3 < oo, then P(3t € [0,1] : x € F,) = 1. In particular, if
¢, = c/n for all n, then this holds if ¢ < 2.

(iii). Let
' o0 €€1+€2+...+€n
,80 = 1nf{ﬁ : Z W < OO}
n=1
Then

HD({t € [0,1]:z € F}) = (1 - %) AO a.s.

In particular, in the case £, = c/n for all n with ¢ < 2, we have

HD({t[0,1]:z € F}) =1 —g as.

Remarks. Unfortunately we have not been able to determine the behavior of the Brownian
model for the “intermediate” cases when the conditions in (i) and (ii) both fail. An example
of such a sequence would be ¢, = 2/n — 1/(nlogn). On the other hand, an example of a
sequence which leads to exceptional times but where the HD of these exceptional times is

0is given by 4, = 2/n — 1/(n/logn).
The Poisson model however turns out to be more amenable to our analysis and we obtain
an exact condition for having exceptional times of type (I).

Theorem 1.3. Assume that (1) holds. Consider the Poisson model with parameter o > 0.
Fixx € C.
(i). Then P(3t € [0,1] : x € F}) = 1 if and only if

o0 elitlat...+in
T pita S
n=1

In particular, if £, = c/n for all n, then this holds if and only if ¢ < a.
(ii). Let, as in Theorem 1.2,

) o0 elitlot . +tn
Bo := inf{f : Z 5 < oo}
n=1

Then

HD({t € [0,1]:z € F}) = (1 - %) AO a.s.

In particular, in the case ¢, = c¢/n for all n with ¢ < «, we have

HD({t€[0,1]:z € F,})=1— 2 as.
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Remarks. The case a < 0 is almost trivially covered by the Borel-Cantelli Lemma by
noting that the probability that the nth interval covers x for the whole time span [0, 1] is
then at least e~/,,. Hence there are no exceptional times of type (I) for o < 0.

Our next two results deal with the question of exceptional times of type (II).

Theorem 1.4. Assume that (1) holds. Consider the Brownian model and let u,, be defined
as in Theorem 1.2.
(i). If lim inf, n3u, < oo, then

P(3te0,1]: F, #0) =0.

In particular if £, = c¢/n for all n, then this holds if ¢ > 3.
(ii). If Y02 ehrtletthn Int < oo, then

P(3te[0,1]: F, #£0) = 1.

In particular if £,, = c¢/n for all n, then this holds if ¢ < 3.
(iii). Let, as in Theorem 1.2,
] o0 651+e2+---+ﬁn
ﬁo = 1nf{ﬁ : Z W < OO}
n=1
Then a.s.
2% f0<p<2

0 ifBo >3
=1 if0< Gy <2
() HD{z:Jt:z € F,}){ <3-58y if2<B <3
=0 if Bo > 3
=1 fo< B <1
© HD({t: F, #0}){ <Xl if1<B,<3
=0 iffBop >3

In particular, in the case £, = c/n for all n and ¢ < 3, then the dimension bounds are
simply obtained by plugging in c for (.

Remarks. The first equalities in (b) and (c) hold since the event in question then occurs at
a fixed time. Note the lack of smoothness in (a) at 8, = 2 which is of course due to the
fact that 2 is the critical value arising in Theorem 1.2. As for the type (I) case, there are
intermediate cases such as ¢, = 3/n — 1/(nlogn) where both (i) and (ii) fail and so we
cannot determine if there are exceptional times. This will also occur in the Poisson case.
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Theorem 1.5. Assume that (1) holds. Consider the Poisson model with parameter o« > 0.
(i). Iflim inf, n'T%u, < oo, then

P(3te0,1]: F, #0) = 0.

In particular if £, = c/n for all n, then this holds ifc > 1 + .
(ii). If

& elitlat.+in

ota < 00,

n=1
then P(3t € [0,1] : Fy # 0) = 1. In particular, when £,, = c/n for all n, then this holds if
c<l+au.
(iii). Let, as in Theorem 1.2,

) o0 e£1+£2+---+£n
50 = 1nf{ﬁ . Z W < OO}

n=1
Then a.s.
2—% fO< B <a
@) (fora>1)HD({(t,z):z € F;}) =4 1+a—-08y ifa<b<1l+a
0 fb>1+a
2 — fo F0< 5 <1
@) (fora € (0,1)) HD({(t,z) :z € R})=¢ 2P 1< <1+a
0 ifbo>1+a
=1 f0<py<a
GO HD{{z:Ft:z € F,}) <l14+a—-08 ifa<B<l+a
=0 fby>1+a
=1 f0<pfy <1
© HD({t: B #0}){ <ofo 1< g <1+a
=0 fb>1+a

In particular, in the case £, = c/n for all n and c < 1 + «, then the dimension bounds
are simply obtained by plugging in c for (.

Remarks. Again, the first equalities in (b) and (c) hold since the event in question then
occurs at a fixed time. The difference in the form of the Hausdorff dimension in (a) and
(a’) is due to the fact that as 3, decreases starting from oo, when o > 1, we encounter
exceptional points on the circle in the sense of Theorem 1.2 before we encounter excep-
tional times in [0, 1] in the sense of Theorem 1.1, while when o < 1, we encounter these
objects in the opposite order. As in Theorem 1.4, there are intermediate cases such as
¢, = (o +1)/n — 1/(nlogn) where both (i) and (ii) fail and so we cannot determine if
there are exceptional times.
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As for type (I) exceptional times, the case av = 0 requires special treatment, but unlike the
type (I) situation, it is not trivial. Indeed there are situations with aw = 0 where the circle is
fully covered i.0. in the static model, but where there are exceptional times at which some
point on the circle fails to be covered infinitely often; the sufficient condition differs from
Shepp’s condition for the static case by a logarithmic factor.

Theorem 1.6. Assume that (1) holds and consider the Poisson model with oo = 0.
(i). If lim inf,, n(logn)u, < oo, then P(3t € [0,1] : F; # () = 0.
(ii). If

o0 6f1+€2+---+€n

< o0
2 b
~ n logn

then P(3t € [0,1]: F; #0) = 1.

Remarks. An example of a sequence where F' = (J in the static model but for which
there are exceptional times from this is given by ¢, = 1/n — 1/(nlogn). Note that the
case £, = 1/n is not covered by parts (i) or (ii) and so we cannot determine if there are
exceptional times in this case. We mention that one can also prove, along the same lines as
the other HD results, that HD({(¢, z) : € F;}) < 1; this bound is also strongly suggested
by Theorem 1.5(iii)(a’).

Our next result here, which is quite easy, tells us that for v < 0, things are as in the static
model.

Theorem 1.7. Assume that (1) holds. For the Poisson model with o < 0, P(3t € [0,1] :
F, # 0) = 1 if and only if

o0 elitlat..+ln
—_— < 0.

2
n=1 n
Remark. If o < —1, the result is completely trivial since in that case only finitely many
intervals update their position in the time interval [0, 1].

We now move to results concerning the Z;’:’Zl ¢, < oo case, which we feel are less central
than the Y ° | ¢, = oo results. We start with type (III) exceptional times.

Theorem 1.8. Assume that ), {, < oo, fixx € C andletT := {t € [0,1] : z € E;}.

(a). In the Brownian model, P(T # () = 1.

(b). In the Poisson model, if Y 0.~* < oo, then P(T = 0) = 1 while if Y, £}~* = o0,
then P(T # () = 1.
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For type (IV) exceptional times, we have no results but finally for type (V), we have the
following.

Theorem 1.9. Let T := {t € [0,1] : E, is not dense }

(a). For the Brownian model and any sequence {{,, },>1, we have that P(T # () = 0.

(b). In the Poisson model with o« > 0, if £, > 1/n° for all n and some c, then P(T # () =
0.

(c). In the Poisson model with o < 0, for all {£,,},>1, we have P(T # () = 0.

(d). In the Poisson model with o > 0, there exists a sequence {{y, },>1 so that P(T # () =
1.

Remark. With more work, one could obtain more quantitative statements concerning (b)
and (d).

The rest of the paper is organized as follows. In Section 2, we prove Theorems 1.2 and
1.3, in Section 3, we prove Theorems 1.4, 1.5, 1.6 and 1.7, and in Section 4, we prove
Theorems 1.8 and 1.9. These correspond respectively to type (1), type (II) and finally type
(IIT) and (V) results.

Remark. We finally make one comment about the fact that we took open intervals. Since
3 independent 1-dimensional Brownian motions never meet at the same time, it follows
that a.s. there are no times at which the endpoints of three arcs line up. This implies that
the whole process { E;} would be unchanged had we worked with closed intervals instead;
hence the fact that the intervals are open is not essential in any of our results.

2. PROOFS OF TYPE (I) RESULTS.

Recall our standing assumption (1). We begin with three technical lemmas that will prove
useful on several occasions.

Lemma 2.1. Assume that (1) holds. Let 3 > 0. Then for every b > 0
b
/ eZntfxe Mt < oo 2
0

if and only if
0 elitlat...+in

1B < 0.

n=1

Proof. We will use Lemma 11.4.1 of [10] which states that for a convex decreasing function
f(t) on (0,b), fob e’ dt < oo if and only if fob e ?’,c(g% < 0.
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To apply this result, put f(t) = >0 £17P(¢6 — ¢)*. Then f(t) is decreasing and
convex and
(M1 Jt/B)

=) b=t ) 6 =0( Z K1 =0(1).

n:égzt n:égzt

Hence (2) is equivalent to fob e/ dt < co. We now use the above result. We have

n

FOy==> 67" 0,<t<l

k=1

and in particular that f'(t) = —Q(nf), £7, | <t < (8. Since f'(t) jumps when ¢ = £ and
the size of the corresponding jump is /1 # = ©(n?1), we get that

b
ln
/eszﬁ?t dt < oo
0

if and only if
©_ f(R)
Z . dt < oo.
n=1
Finally

FU=ti+b+ . +0,— B> 4P =li+ b+ ...+, +0(1)
k=1

and the lemma follows. |

Lemma 2.2.

b e£1+52+---+5n
sup{p3 : linkinfnﬁun < oo} > inf{s: Z —

n=1

< oo}

) b+l + ...+ 4,
= lim sup logn .

Remark. The last expression comes up in Section 11.8 in [10] where the HD of the set F’
is studied. If ¢, = ©(1/n), then Steps 1 and 2 in the proof of Theorem 1.2 tell us that the
first inequality is an equality.

Proof. For the first inequality, it suffices to show that for any € > 0,

X ehtlat. Al
lim inf nPu,, = oo implies that — < 0
n " TLH'ﬁ te ’
n=1

However, this follows from noting that e=* > 1 — x implies that e®1T6+-+ < 1 /4,
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Let L denote the third expression. Fix e > 0. Then ¢; + 4, +...+ £, < (L+¢/2)logn
and hence ef1He2++n < plte/2 for all n large. It follows that
o0 631 +lo+... 4Ly

n1+L+e < o0

n=1
and hence the third term is at least the second term. For the other direction, we may assume
that L > 0 and we need to show that for all € € (0, L),
o elitlat..+in
nltL—e = 0.
n=1

We have ¢ + 0y + ... + £, > (L — €)logn and hence ef1Té2+-+tn > pl=¢j o It is not
hard to show that if et +é++no > nl~¢ then

2no 6E1+£2+...+€k 1

kl+Ll—e o(1)’

k=no
the O(1) term being independent of ng. To do this, one simply bounds e T#2++4 from
below by ng ¢ for each k and computes. This clearly implies divergence of the series. [

The last lemma is elementary and the proof is left to the reader.

Lemma 2.3. There exists a constant C so that for all t,a € [0,1] and b € (—1/2,1/2), if
Z* is a normal random variable with mean 0 and variance t, then

Y P(Z*€(k+b-ak+b+a) <CP(Z € (b—a,b+a)).

keZ
Proof of Theorem 1.2. We begin with part (i). Let I, = Uy2, [, ; and J; = I and note that
it is elementary that P(3¢ € [0,1] : z € F}) = 1 if and only if P(3t € [0,1] : z € J;) > 0.
LetT = {t € [0,1] : z € J;}. Now put J,,;, = (Up_,Ix )¢ and note that N, J,,, = J;. We
shall first show that if lim inf,, n?u,, = 0, then

lim P(3t:xz € J,;) = 0. 3)

n—0o0

Fixn > 1. Fori = 1,2,...,n?, let A; be the event that there exists a t € [(z — 1)/n?,i/n?|
for which z € J,, ;. (We suppress the dependence on 7 in the notation.) Then

PEt:z € Jyy) = P(EJ A < iP(Ai) = n?P(A)).

For k < n, let B, be the event that the kth interval covers = for the whole time inter-
val [0,1/n?]. This event contains the event that [x — M,z + M| C I, where M =
maxeo,1/n?] |Uk,t — Ukl. Letting B denote the latter event, we have

4
P(By) > P(B,) = E[P(B,|M)] > E[ty — 2M] = £ — 2EM > £, — —
n
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where we have used the usual scaling property of Brownian motion. Since 4; C (,_, B,
the By’s are independent and ¢; < 1/2, we get

P(A)) < ﬁu — o+ %)

n

<[Ja-a)a+ %) < O(uy).

k=1
Hence

P(Ft:x € Joy) < O(nuy).

Since the left hand side is decreasing in n, (3) is established. The case liminf, n*u, €
(0, 00) requires one extra step. Let N, be the number of 7 € {1,2,...,n?} such that A;
occurs. Then the above arguments show that lim inf, EN,, < oo. It is easy to see that
T < liminf, N,. Hence by Fatou’s Lemma, E|T'| < oo and so |T| < oo a.s. Since our
process is a reversible stationary Markov process, we finally conclude that P(T # () = 0
by combining Theorem 6.7 in [7] and (2.9) in [6]. This finishes the proof of part (i).

For part (ii), letting 7,, = {t € [0,1] : © & U;_, In+}, we have that T = ()~ T,.
Next, since the intervals are taken to be open and Brownian motion has continuous paths,
it follows that the sets 7,, are closed and therefore by compactness, 7' is nonempty if and
only if all the 7;,’s are. Thus if it can be shown that P(7,, # @) is bounded away from 0,
then it follows that P(7T" # () > 0 and (ii) then follows.

Let

1
Xﬂ = / I{teTn}dt,
0

which is the Lebesgue amount of time that x is not covered by the first n intervals. Since
the probability that z ¢ |J;_, Iy at a fixed time ¢ is [[,_, (1 — €) = uy,, it follows from
Fubini’s Theorem that EX,, = u,,. We will now establish that E[X?2] < O(u2) if (and in
fact only if) Y ef*-F /n3 < co. Once this has been done it then follows, under this
condition, from the second moment method that
(EX,)”
P(T, #0) > P(X, > 0) > EX?]

is bounded away from 0, as desired. Now, by Fubini’s Theorem

E[X?] = /01 /01 P{seT,} n{t e T,})dsdt. (4)

By stationarity, it is easy to see that (4) is at most

2/1 P({t € T,} N {0 € T, })dt



12 JOHAN JONASSON AND JEFFREY E. STEIF

and at least
1

1/2/2 P({t € T,} N {0 € To})dt.

Fix n. Put A, = {t € T,,} and A, for the event that x is not covered by I at time ¢ and
note that A; = (;_, A, Clearly

P(At ﬂ Ao) - H P(Ak,t ﬂ Ak,O)'

k=1
The probability P(Ag: N Ak,) is the probability that I} o N {z,z — Z;} = (), where Z; :=
Ukt — Uy, the increment of the kth interval during the time [0,¢]. Note that Z; is a
normal random variable with zero mean and variance ¢ projected onto C' as described in
the introduction. We have

P(Ak,t N Ak,O) == ]E[P(Ak’t N Ak,0|Zt)] - 1 - 2€k + ]E[(Ek - ‘Zt|)+] (5)

Some elementary considerations (using again that /; < 1/2) allow us to write (5) as

(1= 1) 2eM =120 (1 4 1))
where |ry| < 5¢2. We then have that [[)° (1 + 7,) < oo and so it follows that E[X?2] <
O(u?) if

1
/ enet B —12e)%] 1t « o0 (6)
0

and only if

1
/ T S 17D g < oo, 0
0

Note that trivially

E{(ln — |Z])"] < P(|1Z4] < £y)tn
and a standard bound on the normal distribution together with Lemma 2.3 gives
14
P(|Z, < £,) =0(1)—=. 8
(12 <€) =0(1) i (8)
These easily yield that (6) holds if and only if (7) does and so we concentrate only on (6).
Next, we have

E[(6, — |Zd)"] = P(Z] < 60)(6a = El|Z:| [0 < |Z:] < £]).

Since a nonnegative random variable conditioned on being smaller than some value is
stochastically dominated by the original random variable, we have that the expectation in
the right hand side is bounded above by #,, A v/t. Hence

E[(bn —1Z)*] 2 P(|Zi] < £a) (b — V)™
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Using that £, = ©(1/n) we get
» Vi=0().
nil2>t

From (8), we get

1
Y P(Z|<ty) < — Y £ =0(1)
02 \/E 2
nilz <t nil3 <t
(where we again used that £, = ©(1/n)). Putting this together we have that E[X?] <
O(u?2) if and only if

1
[
0

Since the probability that a standard normal random variable exceeds a value y > 0 is
bounded above by O(1)/y we get that 3 - o, nP(|Ze] > €n) < 32, 05y Vvt =0(1) and
so the above integral is finite if and only if

1
/ eXnt3ze b gt < oo,
0

Plugging this into Lemma 2.1 yields E[X?] < O(u2) if and only if

o0 elitlat..+in
—_— < 0.

1 n’
This finishes the proof of of (ii).

The proof of part (iii) consists of two steps but we note that we will just simply be

refining the arguments already presented.
Step 1: lim inf,, nPu,, < oo implies that HD(T) < 1 — 3/2 a.s.
Step 2: Y0 | efrtltthn /plth < o0 implies that P(HD (T') > 1 — 3/2) > 0.

It is clear from Kolmogorov’s 0-1 law, the fact that a countable union of sets each of
which has HD at most d also has HD at most d and countable additivity that the HD results
follow from these two steps and Lemma 2.2.

For Step 1, consider the union of the set of intervals of the form [(i — 1)/n?,i/n?|
which contain a time ¢ for which « € J, ;. This is a covering of 7" with /V,, elements and
we have seen that E[V, | = O(1)n?u,. If lim inf,, n®u,, < oo, then

liminf B[N, Jn’~2 < oo.
n
Fatou’s lemma now gives that
liminf N,,n’~2 < 0o a.s.
n
Since the intervals in the nth covering have length 1/n? and n~2 = (1/n2)'~%, we con-

clude (see for example page 77 in [12]) that the lower Minkowski dimension and hence the
HD is at most 1 — g
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For Step 2, we will follow the usual method for solving problems of this type which is
to put a random measure on the set in question and compute its expected energy. We may
assume that # < 2. The exact details will follow extremely closely [13], a paper dealing
with dynamical percolation in 2 dimensions.

We first note that Yoo | et /plts < o0 implies by Lemma 2.1 that

1
ln
/ezm’gzt dt < 0.
0

An easy change of variables shows that this is equivalent to

1 1 1*%
/ Xtz b (_> dt < oo. 9)
0 t
For each integer n, define a random measure o, on [0, 1] by
1
on(S) = —/I{teTn}dt
Un S
for each Borel set S C [0,1]. The argument in part (ii) gives that E[||o,,||] = 1 and
E[||o.||*)] = O(1) where ||o,|| denotes the total variation of the measure o,. Cauchy-

Schwarz then gives
Elllon |72 Pllonll > 1/2)/2 > Elllonl|Ljo,s1/2] > Elllowl] - 1/2 = 1/2.

Consequently, P(||o,|| > 1/2) > C) for some constant C; > 0. Given a measure m on

[0,1] and v > 0, let
m) =//|t—s|_7dm(t) dm(s)

denote the y-energy of m. Note that

co=n[ [ OS0 _ [[PHETING R,

The proof of part (ii) showed that

P({t € T,} N {s € T,}) = O(1)ule>rtazi—s .

(9) now implies that
Cy :=supE[E,_s(0,)] < 0.
n 2

By Markov’s inequality, for all n and for all K,
P(é’l_%(on) > (C,K) < 1/K.
Choose K so that 1/K < C}/2. Letting
Un = {llonll > 1/2} N {& s(0n) < C2K},



DYNAMICAL MODELS FOR CIRCLE COVERING 15
by the choice of K, we have that
PU,) > Cy)2.

By Fatou’s lemma,
P(limsupU,) > C1/2.

n
Since o, is supported on 7T;,, the fact that the HD of 7 is at least 1 — g on the event
lim sup,, U,, follows from the following easy lemma which is stated and proved in [13] (the
proof of which just uses compactness and Frostman’s Lemma). O

Lemma 2.4, Let D1 O Dy O Ds. .. be a decreasing sequence of compact subsets of [0, 1],
and let i1, o, . . . be a sequence of positive measures with ., supported on D,,. Suppose
that there is a constant C' such that for infinitely many values of n, we have

lenll > 1/C, and  E,(pn) < C.
Then the HD of [, D», is at least .

In the above proof it was shown that the “Shepp-like” condition Y eft+-Fn /n3 < oo
is necessary and sufficient for the second moment argument to work. What we have not
been able to determine is if failure of the second moment argument necessarily implies that
there are no exceptional times. The reason is that it is difficult to control the conditional
distribution of the positions of the first n arcs at the first time when z is not covered by any
of them. For the Poisson model this problem vanishes.

Proof of Theorem 1.3. We use exactly the same notation as in the proof of Theorem 1.2.
As in that proof, we have EX,, = u,, and we will show that

E[X?] < O(u2) if and only if Zezﬁ'"”“/n”a < 0. (10)
n=1
However, we first show E[X?2] < O(u2) is necessary and sufficient for 7' to be nonempty
with positive probability. Note that, using the fact that (14) below is decreasing in ¢, we
have
E[X,|0 € T,Ju, = O(1)E[X2]. (11)

The sufficiency argument is identical to the proof of Theorem 1.2 except for the small
irritation that T, is not a closed set. So inf,, P(T}, # 0) > 0 does not immediately allow us
to conclude that P(T' # ()) > 0. This very minor issue arose in [8] (as well as in [13]) and
was taken care of there by Lemma 3.2. Analogous to that, we claim here that

ﬂT_n:T a.s. (12)

n>0
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This claim takes care of the above problem allowing us to conclude that P(7" # (}) > 0 and
will be needed for part (ii) as well. To see this claim, let 7" be the set of times at which two
intervals jump, 7" be the set of times at which some interval jumps and z is not contained
in any of the other intervals at that time and observe that

ﬂTngTUT’UT"
n>0

and P(T'"UT" # 0) = 0.
For the necessity, observe that

EX
PX,>0)= " . 13
( ) E[X,|X, > 0] (13)
Put S, := min{t : t € T,} (the minimum exists since the Poisson processes are right

continuous). Now the crucial observation to make is that at the time S,,, the positions
of the first n arcs are independent and uniform given that none of them contains x. By
translation invariance, P (S, < 1/2|X, > 0) > 1/2 and so

1 1
E[Xa| X, > 0] > JE[X, |, < ]

1 1 1 1
> -EX -, 1||= €T,| > -E[X T,

The second to last inequality follows from the observation concerning .S,, and the strong
Markov property while the last inequality follows from the fact that (14) below is decreas-
ing in t. The observation concerning the distribution of the process at time 5,, together
again with the strong Markov property yields

E[Xn|Xn > 0] < ]E[Xn|0 € Tn]

Using this, together with (11) and (13), necessity now follows.
We now show (10). The rest of the proof is very similar to the proof of Theorem 1.2(ii).
With n fixed, by conditioning on whether or not arc ;, has been updated or not before time

t we get
P(Ags N Ago) = (1= £,)%(1 — e75%) + (1 — £;,)e V5. (14)
Hence
\ n e eft/eg
P(ANA) =ul [ - e % + 1—€k)
k=1
a Lpe MG ~
_ .2 k _ 2 —t/02
= [T+ 37 = 0z [0 + )

k=1
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where the ©(1) term is bounded between 1 and [[;, (1 + 26;) < oco. Therefore, using
(11), we have that E[X?] < O(u?) if and only if

/ H(l + Lpe ) dt < 0.
0 pn=1

Since r — 2% < log(1 + z) < z on [0, 00), this is equivalent to

1
/eE 1 ene ™ gt < 0. (15)
0

Using ¢, < M /n it follows that

Z gne—t/ﬁg Stl/a Z e—t/é% Stl/a i(e—Ml_at)na

a6 <t n:a<t n=1
_ o(1)t/e L —oe — o).
(1—eMr t)l/a tl/a
We also have that
My /tt/
Yo t(i—eEy<t Y are=0)t Y T =0(1)
n:g >t ne>t n=1

Putting this together, (15) is equivalent to

1
/ eXngztln gt < 0.
0

Now Lemma 2.1 finishes the proof of (10).

For part (i1), we follow very closely the proof for the Brownian model and hence the
argument will just be sketched. Steps 1 and 2 there will be modified by replacing the /2
term by /5/a and Lemma 2.2 will be applied.

For Step 1, [0, 1] is partitioned into intervals of length 1/n®. Since the probability that
x 1s not covered by a certain arc at some time during an interval is bounded above by 1
minus the probability that x is covered by the arc at the start of the interval and the arc
never updates during the time interval, we obtain that if I is an interval of length 1/n®

P(T,NI#0)< H (1- zkewk)a

A computation, using (1) and left to the reader, shows that this is at most O(1)u,,. Letting
N,, be the number of intervals which intersect 7;,, we have E[V,,| = O(1)n*u,,. The rest
of Step 1 is done as before.

Step 2 is also done by a trivial modification of Step 2 for the Brownian case which we
therefore also skip except to remark that (12) is needed since the random measure o,, will
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be supported on T}, and one uses, proved as in the Brownian case, that the summability of

. . 1 1-£

3. PROOFS OF TYPE (II) RESULTS

Recall our standing assumption (1). In this section, the general approach will be to try to
analyze the “space-time” random set {(z,t) € C'x[0,1] : x € J;} rather than {¢ : .J; # 0}.

Proof of Theorem 1.4. The proof is similar to the proofs of the previous section, but with
the spatial component taken into account. Let Iy, J;, and J,, ; be defined as in Theorem 1.2.
As before, we have that P(3t € [0,1] : F; # 0) = 1 if and only if P(3t € [0,1] : J; #
@) > 0. Next, let T, := {t : Uj_; I # C} and note that 7,, is closed. Also, it is an
elementary topology exercise (using the fact that the arcs are open and Brownian motion
paths are continuous) left to the reader to check that if ¢ € N, T, then J; # (). Hence
P(A,) bounded away from 0 implies that P(3t € [0,1] : J; # ) > 0.
Part (i): We will first show that if lim inf,, n®u,, < oo, then

lim P(3t € [0,1]: Jos # 0) = 0 (16)

(or equivalently lim,, o, P(T,, # @) = 0). Fixn. Fori =1,2,...,n?and j = 1,2,...,n,
put A(, 7) for the event that for some ¢ € [(1—1)/n?,i/n?] and some z € [(j —1)/n, j/n],
z & Up_y Ir- Then

P(Et€[0,1]: Joy # 0) < n*P(A(1,1))

We have A(1,1) C (,_, Bf where By, is the event that [0,1/n] C I, for every t €
[0,1/n?]. The event By, in turn contains the event that Iy o O [—M, M + 1/n], where, as
in the above proof, M = maxc[,1/n2] |Uk,s — Usk,l|. Letting B, denote this last event, we
have

P(BY) > P(B]) = E[P(B{|M)] > Elfs - 2M = ] > b~ >

and consequently

n n

PEte0,1]: Ju, £0) < n3kl:[1(1 e+ %) < n3kl:[1(1 — o)+

10
=) < O(n’uy,).
) < O(nu)
Since the LHS is decreasing in n, (16) is established. For the case liminf, n3u, <
0o, define N, as the number of (7, j) for which A(4,j) occurs. Then the above gives

liminf,, EN,, < oco. Letting
T :={(z,t) e Cx[0,1]: z € J;},

we easily get T < liminf, N, and so by Fatou’s lemma, we have that T is a.s. finite. In
particular, the set {¢t € [0,1] : J;, # 0} is finite a.s. Again, Theorem 6.7 in [7] and (2.9) in
[6] allow us to conclude that the latter set is empty a.s.
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Part (ii): Let 7, := {(z,t) : * € Jn;}. Then the T,’s are closed and N, T, = T}
hence if all the 7},’s are nonempty, then so is 7". Thus it suffices to show that P(Tn # () is
bounded away from 0. Let X,, be the 2-dimensional Lebesgue measure of 7},. By Fubini’s
Theorem, EX,, = u, and so when E[X?] < O(u2) an application of the second moment
method tells us that inf,, P(T}, # () > 0. We will now show that E[X?] < O(u2) if and
only if Y00 efrt o /nt < o0

Fix n. Let Ay, be the event that (¢, z) is in 7},. Then, again by stationarity, E[X?] is at

1
2// P(AtyxﬂAo,O)dtdiC
cJOo

1 2
- / / P(At’z N A0,0)dtdl'.
2 CcJo

most

and at least

Independence yields

P(Aiz N Agp) = H P(Age N Akop)
k=1

where Ay, , is the event that I ; does not contain z. Now Ay ;. N Ay o0 is the event that
ItoN {0,z — Z;} = 0 where Z; = U,y — Uy, is the increment of I, in the time interval
[0, t], which is a normal random variable with mean 0 and variance ¢ projected onto C' as
described in the introduction. Hence

P(AgizN Agop) =E[P(Agsz N AroolZi)] =1 — 20, + E[(b — |Z, — z|)7T].

Inserting this into the product above gives, using the derivations in the proof of Theorem
1.2

P(At T M AO 0) = @(1)u2622:1 ]E[(ek—|Zt—m\)+].
Hence E[X?] < O(u?) if

1
// eXnmt b =1Z=2) N gy < o0 (17)
cJo
and only if

1
/ / P X 2= g < oo, (18)
CJO

The terms in the exponent are obviously bounded above by ¢,P(|Z; — z| < £,). For
t > 1/2, this is clearly O(1)¢2 and so (17) holds if and only if (18) does.

Note next that for all positive ¢ and x € C' we have, using Lemma 2.3 and basic facts
of the normal distribution that

Y P(Z—z <) =0(1) >

nil2 <t nil2 <t

£2

i o)
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and

Y P2 - x| < ) ) Y z ‘ 0(1).

niln <2|x| n:ln<2|x|
To see that P(|Z; — z| < ¢,) = O(1)¢,/|z|, we use Lemma 2.3 together with that fact that
the probability that a standard normal random variable takes values in [y, y + d] with y > 0
is bounded above by O(1)d/y and note that there is nothing to prove unless ¢,, < |z|/2.
It follows that (17) is equivalent to

1
/ / Entuzoavvi 2D gy < o
CcJO

A lower bound for the exponent is given by

Y. Ellta— 12 —al)’]

n:ln>2|z| VT

= Y E—1Z 2|12~ 2] <]P(Z — 2] < )
n:ln>2|T|VVE

Yo a3l —VOP(Zi—al < )= > GP(Z -3 <t)+0(1).

n:3n22\z\vx/i n:En22|m|V\/i

v

Thus our integral condition is equivalent to
1
/ / e2mstn22lalvvi InPUZ=l<b) gy < o,

However when /,, > 2|z| V /1,

tn
P(|Z, — x| < t,) > P(|Z] < 5) =1-0(1)

=SS
S ~+

Thus

Y Pz -z >0) 1) Y Vi=o(

nily >2|w|V\/_ niln >V
This shows that E[X?] < O(u2) if and only if

// eXnitn 212l Wil Qi de < 0.
cJo

This clearly holds if and only if

1,1
//62n=en2zvﬁz"dtdx<oo-
0o Jo

Now

1 pl 1 p2? 1 pv/t
/ / ezn:znzmv\/ﬂn didz = / / ezmlnzwe"dtdx + / / ezn:znZWanxdt
0 0 0 0 0 0
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1 1 1
:/ geXmtnze oy 4 / VieXninxvitndt = 3 / w2eXntnzs by
0 0 0

where the last equality follows from the substitution z = +/Z. Via the substitution v = z*

the last expression becomes
1
/ eXenitn>al/3 0 gy
0

and Lemma 2.1 now proves part (ii).

Part (iii)(a): We will more or less follow Steps 1 and 2 in the previous HD arguments.

We first show that lim inf,, n®u,, < oo implies

HD(T) < min{3 — 8, #}.

Once this is done, the fact that 3 — 2 > 2 — 7 on (0, 2) and the reverse holds on (2, 3) and
using Lemma 2.2, the upper bounds will be obtained. Consider now the union of the set
of rectangles of the form [(i — 1)/n?,i/n?] x [(j — 1)/n, j/n] which contain a point (¢, z)
with z & UZ:1 Iy ;. This is a covering of T with N, elements and from what we have seen
in the proof of part (i) we can conclude that E[N,,| = O(1)n3u,. Since the elements of the
covering have diameter of order 1/n, we can conclude, as earlier, that HD(T) <3-—-p4.If
we instead cover by 1/n? x 1/n? boxes, we get a covering T with N, elements of diameter
of order 1/n? with E[N’] = O(1)n*u, and we can conclude that HD(T') < (4 — 3)/2 as
well.

For the lower bound, assume first that 5y € (0,2). Then Theorem 1.2(iii) says that
foreach z € C, HD({t € [0,1] : z € F;}) = 1 — (§y/2 a.s. By Fubini’s Theorem, we

conclude that

{x:HD({tE[O,l]:mEFt}):l—%
has Lebesgue measure 1 a.s. Now, Theorem 7.7 in [12] (with f there taken to be the
projection onto [0, 1]) allows us to conclude that HD({(¢,z) : = € F,}) > 2 — (/2.
(Theorem 7.7. says vaguely that any set in the square almost all of whose “slices” have HD
1 — Bo/2 > 0 must have HD at least 2 — (3y/2.)

For By € [2,3), we argue differently. We follow the HD lower bound arguments
given earlier and therefore only sketch the proof. We again place a random measure on
T,, and get a uniform upper bound on the expected energy. The random measure is of
course Lebesgue measure restricted to 7}, and normalized by u,,. Using what was derived
in part (ii), obtaining a uniform upper bound on the expected energy reduces to verifying

the finiteness of
3-8

1 1 1 3-8
/ / eXnitn >V Vi bn 5 dtdx
o Jo x? + 12
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under the assumption Y >0 eftTe2F+ /pl+h < o0, Breaking up the double integral as in
the first part of the proof and checking that

2 3-8

x 1 2
— =01z’ !
A <ﬂ+ﬂ> =0

11/2 1 %
B—2
/ ) de=e)tT,
0 x? 4 12

it reduces to the finiteness of

and

1
/ uPteXnitnzu by,
0

Another change of variables (w = u”) together with Lemma 2.1 shows that finiteness of
this integral is equivalent to the convergence of the given series.

Part (iii)(b): The 0 < By < 2 case follows from Theorem 1.2. The other cases follow
from part (iii)(a) together with the fact that projections do not increase HD; see for example
Theorem 7.5 in [12]. Alternatively, one can use a covering argument.

Part (iii)(c): The 0 < [y < 1 case follows from Theorem 1.1. For the other cases,
break the time interval into intervals of length 1/n? and consider those intervals which
contain a ¢ such that UZ:1 Iy, # C. If N, is the number of such intervals, we have from
what was derived in part (i) that E(N,) = O(1)n3u,. This as before leads to the upper
bound (3 — ) /2 for the HD, as desired. O

As for the type (I) case, the reason that we do not know if failure of the second moment
method implies nonexistence of exceptional times is due to the fact that we cannot control
the positions of the first n arcs at the first time that the circle fails to be covered by them.

Proof of Theorem 1.5. Part (i): Fix n and partition [0, 1] x C' into boxes of size 1/n*x 1/n.
For the given block [0, 1/n%] x [0, 1/n], we have, using similar arguments as given earlier,

P(3(t,z) € B:x & Uiy Iy) < ﬁP(EI(t, z) € Bix ¢ Iiy)
k=1

- 1, =1
< 1— (b — —)e®™ ).
<11 (1- 0 - o)
As before, one can show this is O(1)u,. Since the number of blocks is of order n'™®,
we get P(3t € [0,1] : F; # 0) = 0 if liminf, n'™u, = 0 and proceed as earlier if
lim inf,, n'*@u,, € (0, c0).

Part (ii): We use the same notation as in Theorem 1.4. Using that argument (together
with the analogous small modification given in Theorem 1.3 that dealt with the fact that
certain time sets were not closed), proving the existence of exeptional times comes down
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to showing that E[X2] < O(u2). We now show that this holds if and only if the sum in the
statement of the theorem is convergent.
By conditioning on whether arc I has been updated by time ¢ or not we get

P(AgseN Apoo) = (1—e V) (1 =) + e V% (1 = 20, + (6 — |z ).

Hence

. ot (1 — s
P(Ay, N Agg) = u? H(1 oty y €= 26+ (6 — |a) ))

11 (1 — £)2
o1, e R — |zt 2 T e -
=omu [[0+ =) =0 u [0+l ~ ls)")

= O(1) u2eZhare F o)t
Thus E[X?2] < O(u?2) if and only if

/ / 622‘;1 e*‘/Z%(én—|z|)+dtdm < o0
CcJO

which clearly holds if and only

1 1
/ / eXnzie =2 qrar < oo,
0o Jo

By a series of considerations analogous to what been done in the earlier proofs we get

Ze—t/e% (4, — as)+ — Z et (4, — x)+ +0(1)
n=1

ndy >t
=) t-2"+00)= Y &+0()
n:ly >t nAg >Vt
Hence the given integral is finite if and only if

1 1
/ / 6271,:[%2"”0‘\“ e"dtd.@ < .
0 0

Copying the final parts of the proof of Theorem 1.4, we get

1 1 1
/ / eXmegzaavebndtdy = / eZme iz gy,
0 0 0

Now apply Lemma 2.1.

For the Hausdorff dimension upper bounds, we only sketch these since these follow
along the exact same arguments as in the previous arguments. First, we have seen that
P(T, N [0,1/n%] x [0,1/n] # 0) < O(uy). Consider (a) and (a’). For a > 1, we break
up either into n™® x n~!-boxes or n~* x n~*-boxes depending on whether f3; is > or <
« and for a < 1, we break up either into n™® x n~!-boxes or n~! x n~!-boxes depending
on whether (3 is > or < 1. This yields the upper bounds.
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For (b), partition space into intervals of length 1/7n and proceed in the same way. For
(c), partition time into intervals of length 1/n* and proceed in the same way.

For the lower bounds, we follow the same arguments as in Theorem 1.4. First assume
that o > 1. If §y € (0, «), we argue exactly as in the case 5y € (0, 2) in Theorem 1.4 with
2 replaced by « throughout. If §y € [, o + 1), we argue exactly as in the case 3y € [2, 3)
in Theorem 1.4 where now things come down to verifying the finiteness of

1+a—8

1 1 1 2
eZn:l% >zxVi n _— dtd$
0 0 :EQ + t2

under the assumption Y oo eftlet-Fbn /nIt8 < 50, Now assume that o < 1. If 5y €
(0, 1), we argue analogously but a theorem of Kahane replaces our use of Theorem 1.2(iii).
Theorem 4 in Section 11.8 of [10] together with Lemma 2.2 tells us that for each ¢t €
C,HD{z € C : ¢ € F;}) = 1 — B, as. An application of Fubini’s Theorem and
Theorem 7.7 in [12] exactly as in the case 5y € (0, 2) in Theorem 1.4 allows us to conclude
HD({(t,z) : ¢ € F;}) > 2 — B, as desired. For 3y € [1,1 + «), we argue as in the case
Bo € [2,3) in Theorem 1.4 where now things come down to verifying the finiteness of

1+a—p8

1 1 1 2a
ezn:l% >aXVi tn _ dtdl‘
0 0 x? + t2

under the assumption Y >° | ef1TeFFhn /nlth < o0, This is done in more or less the same

way with a few easy needed modifications. a

Proof of Theorem 1.6. Part (i): Fix n and partition [0, 1] x C into boxes of size 1/ logn X
1/n. For the given block B, we have, by using the same arguments as in Theorem 1.5,

P(3(t,z) e B:ax g Up_1I1t) < ﬁP(EI(t, z) € B:a ¢ Ii,)

k=1

< - 1— (¢ —lelo_sln).
<1 (1-t- )

One can again show this is O(1)u,. Since the number of blocks is of order nlogn, we
get P(3t € [0,1] : Fy # 0) = 0 if liminf, n(logn)u, = 0 and proceed as earlier if
lim inf,, n(log n)u, € (0, c0).

Part (ii): The difference between the situation here and that of the previous proof is
that Lemma 2.1 does not work for 5 = 0. Therefore the analysis will be slightly different
even though the ideas are the same. By repeating the beginning of the previous proof, it
follows that existence of exceptional times is implied by

1 1
/ / et T =D gy < oo
0 0
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which in turn is, of course, equivalent to

b b
0 0

for any b > 0. The rest of the proof will consist of showing analytically that this is equiva-
lent to the convergence of the series in the statement of the theorem. Since 1 — ¢ < e~ <
1 —t/2 (fort € (0, 1)), it suffices to show that for any x € [1/2, 1],

b b
/ / =) 30 (=) i < 00
o Jo

is equivalent to convergence of the series. Let g(z) := Y~ (¢, — z)* and choose b so
that g(z) > 2 on [0, b]. Now

b
/ e(1=68) 0L (n—2)t gy — o9(@) [ —
0

e—ntg(w) :| b 1— 6—[)"59(55)
kg(z) Jo
The last expression is ©(1)e?® /(g(z)). Thus

e9(@) b
// (1K) 32 b dt gy = O(1 )/ mdmz@(l)/ /@) dy
0

where f(x) (z) — log g(x). We again use Lemma 11.4.1 of [10] which was stated in
the proof of Lemma 2.1. We have that

! ! _L _ o 1
Fo =g (1) ==n (1= ) e < e <

By choice of b, f’ is negative and increasing. Hence f is convex and decreasing and we
may apply the lemma. Since f'(z) = O(n), {11 < = < £,, f' makes jumps of size
1+ o(1) when z = ¢,, and

fll)=bi+b+ ...+ Ly —nly —log(ly + b+ ...+ L, —nby) =

b+ b+ ...+, —loglogn+ O(1),

b f( ) 0 e€1+52+...+£n
e\ Vdx = _
/0 z_: n?logn

the lemma gives us that

as desired. O

Proof of Theorem 1.7. The if direction is trivial by Theorem 1.1 and so we assume that
Some | ayefitete = o0 and show that P(3¢ € [0,1] : F, # ) = 0. Consider the random
sequence of lengths ¢/, ¢}, ... which are obtained by taking the lengths of those intervals
which have never been updated during [0, 1]. If we can show that

1 ! !
ZnQ et = o as., (19)
n=1
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then Theorem 1.1 gives us the result since then these intervals would already be enough to
cover the circle i.0. at all times. Let U,, be the event that the nth interval is updated during
[0, 1] and note that

E

0.1 = /1 < o
z] S

by (1). Hence ), ¢, Iy, < oo a.s. and it follows that

o

1
> —elluptethlus = o0 as.
nZ
n=1

which clearly implies (19). O
4. PROOFS OF TYPE (III) AND (V) RESULTS.

Proof of Theorem 1.8.
Proof of (a). Fix n and an open time interval J and let H ;,, be the event that {z € U1, ;}.
It is elementary that for any J, inf,, P(H,) > 0. It follows from countable additivity that

P(ﬂjez {ijn 1.0. (1’1)}) =1
where 7 is the collection of open intervals in [0, 1] with rational endpoints. It is an el-
ementary exercise left to the reader to show that Njez {Hjy, i.0. (n)} C {7 is dense},
completing the proof.

Proof of (b). Fix n and an open time interval J of length e. We first claim that with

H,, defined as above, we have that

P(HS,) = (1= L),
To see this, let U,, be the number of updates of /,, during the interval .J, note that U,, has a
Poisson distribution with parameter e/,,* and compute

P(Hg,n) = E[P(Hin‘Un)] = E[(1 - KR)U“+1] =(1- En)efd}f"‘_

It is easy to check that fora > 0, )" (1 —(1- Kn)e*d}z_a) < o0 if and only if

>, 4 < 00, and hence we have
> P(H;,) < ocoifandonlyif » £,* < oo

for a > 0. For o < 0, this equivalence trivially holds since both sums converge.

Now if Y £,7® < oo, we have then have P(Hj, i.0. (n)) = 0 which implies
P(T # 0) = 0. On the other hand, if }_, ¢ * = oo, then by the Borel Cantelli Lemma
and countable additivity we obtain

P(Njez {Hypnio. (n)}) =1
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where 7 is as above. Again we have that Njez {H, i.0. (n)} C {7 is dense}, completing
the proof. O

Proof of Theorem 1.9.

Proof of (a). Fix n and interval J in the circle and let G';, be the event that U;eo 11 /sn € J.
It is clear that for any J, P(G ) is nondecreasing in n (since the {/,,}’s are nonincreasing)
and the limit is positive. It follows that

P(ﬂJE;[ {Gj,n 1.0. (n)}) =1

where 7 is the collection of open intervals in C' with rational endpoints. It is an elementary
exercise left to the reader to show that ez {G, 1.0. (n)} C {T" = 0}, completing the
proof.

Proof of (b). Fix @ > 0. It is easy to check that

Niefo,] Nsez {Uny € Ji0. () } CH{T =0}

with 7 as above. So it suffices to show thatforall J € Z, P(Vt € [0,1] U, € Ji.0. (n)) =
1 and for this it suffices to show P (3t € [0,1] U, € J¢ Vn) = 0. Since the total number
of different configurations we see of the first n intervals has a Poisson distribution with
parameter » -, £;°,

P@Ete (0,1 Ury,...,Ung € J) < (L= ()" D6
=1

Under our assumption, the right hand side converges to 0, as desired.

Proof of (c). The proof is identical to part (b) with the phrase “with parameter
Yor, £;7%” replaced by “with parameter at most n”.

Proof of (d). Fix a > 0. Itis easy to show and left to the reader that if {/,, },>1 goes to
0 sufficiently fast, then

P(3t € [0,1] : N, {U, in left half circle }) > 0.
This is simply a nested intervals type argument as is done in Theorem 1.2 in [8]. This
yields (d). O
5. FURTHER QUESTIONS

In this section, we list a number of questions and problems that remain.

1. When 4, = 1/n and o = 0, are there exceptional times in the Poisson model?
2. Show that the inequalities in Theorem 1.4 (iii) are equalities.

3.If ¢ < 1 and ¢, = ¢/n, then we know that P(F' = ()) = 0. Is it also the case that

PEte[0,1]:F=0)=0 ?
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Does this depend on the value of ¢?

This is analogous to the dynamical percolation question of whether, when we do per-
colate for ordinary percolation, there are exceptional times at which percolation does not
occur. For dynamical percolation, this question is much less understood than the reverse
question where one does not percolate for ordinary percolation but asks if there are excep-
tional times at which percolation does occur.

4. Given subsets of the time interval, determine when they contain exceptional times
of various types.
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