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Abstract

In dynamical percolation, the status of every bond is refreshed ac-
cording to an independent Poisson clock. For graphs which do not
percolate at criticality, the dynamical sensitivity of this property was
analyzed extensively in the last decade. Here we focus on graphs which
percolate at criticality, and investigate the dynamical sensitivity of the
infinite cluster. We first give two examples of bounded degree graphs,
one which percolates for all times at criticality and one which has ex-
ceptional times of nonpercolation. We then make a nearly complete
analysis of this question for spherically symmetric trees with spheri-
cally symmetric edge probabilities bounded away from 0 and 1. One
interesting regime occurs when the expected number of vertices at the
nth level that connect to the root at a fixed time is of order n(log n)α.
R. Lyons (1990) showed that at a fixed time, there is an infinite cluster
a.s. if and only if α > 1. We prove that the probability that there is
an infinite cluster at all times is 1 if α > 2, while this probability is 0 if
1 < α ≤ 2. Within the regime where a.s. there is an infinite cluster at
all times, there is yet another type of “phase transition” in the behav-
ior of the process: if the expected number of vertices at the nth level
connecting to the root at a fixed time is of order nθ with θ > 2, then
the number of connected components of the set of times in [0, 1] at
which the root does not percolate is finite a.s., while if 1 < θ < 2, then
the number of such components is infinite with positive probability.
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1 Introduction

Consider bond percolation on an infinite connected locally finite graph G,
where for some p ∈ [0, 1], each edge (bond) of G is, independently of all
others, open with probability p and closed with probability 1 − p. Write πp

for this product measure. Some of the main questions in percolation theory
(see [5]) deal with the possible existence of infinite connected components
(clusters) in the random subgraph of G consisting of all sites and all open
edges. Write C for the event that there exists such an infinite cluster. By
Kolmogorov’s 0-1 law, the probability of C is, for fixed G and p, either 0
or 1. Since πp(C) is nondecreasing in p, there exists a critical probability
pc = pc(G) ∈ [0, 1] such that

πp(C) =

{
0 for p < pc

1 for p > pc.

At p = pc, we can have either πp(C) = 0 or πp(C) = 1, depending on G.
Häggström, Peres and Steif [6] initiated the study of dynamical percola-

tion. In this model, with p fixed, the edges of G switch back and forth ac-
cording to independent 2 state continuous time Markov chains where closed
switches to open at rate p and open switches to closed at rate 1− p. Clearly,
πp is a stationary distribution for this Markov process. The general ques-
tion studied in [6] was whether, when we start with distribution πp, there
could exist atypical times at which the percolation structure looks markedly
different than that at a fixed time. As the results in [6] suggest, it is most
interesting to consider things at criticality; that is, when p = pc.

Write Ψp for the underlying probability measure of this Markov process,
and write Ct for the event that there is an infinite cluster of open edges
(somewhere in the graph) at time t.

There have been a number of papers on dynamical percolation after [6],
namely [12], [8] and [13], but all of the results (except one, see the comment
after Theorem 1.1) in these papers have been concerned with the case where
the graph does not percolate at criticality (and for which there may or may
not exist exceptional times). The present paper deals with the case where
the graph percolates at criticality at a fixed time.

Our first theorem gives examples where exceptional times exist, and other
examples where they do not exist.
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Theorem 1.1. (i). There is a bounded degree graph which, at criticality,
percolates at all times; i.e.,

Ψpc( Ct occurs for all t ) = 1. (1.1)

(ii). There is a bounded degree graph which percolates at criticality but has
exceptional times, i.e.,

Ψpc(¬Ct occurs for some t ) = 1. (1.2)

Remarks: An example of an unbounded degree graph which percolates at
criticality but for which there are exceptional times of nonpercolation can be
found in [6].

Although Theorem 1.1 follows from our Theorem 1.2 below, we find it
instructive to treat it separately, since the proof is easier and self-contained.

We now discuss spherically symmetric trees with spherically symmetric
edge probabilities. These are trees in which every vertex on a given level has
the same number of offsprings and the edge probabilities may vary but are
constant on a given level.

Denote the root of the tree by ρ, the edge probability for edges going
from level n− 1 to level n by pn, the set of vertices at level n by Tn and the
subtree of T rooted at some vertex x by T x.

Standing assumption: We assume throughout the paper that 0 < infn pn ≤
supn pn < 1.

By a result of R. Lyons ([9]), percolation occurs (at a fixed time) if and
only if ∑

n

(
∏n

i=1 pi)
−1

|Tn|
< ∞.

If we let Wn := |{x ∈ Tn : ρ ↔ x}| and wn := E[Wn], this is equivalent to∑
n

1

wn

< ∞. (1.3)

In fact, it follows from [9] that

P (ρ ↔ Tn) �

(
n∑

k=1

1

wk

)−1

. (1.4)
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(The relation � means that the ratio between the two sides is bounded
between two positive constants which may depend on infn pn and supn pn.)

Dynamical percolation for a graph with edge dependent probabilities is
defined in the obvious way. To be able to see the crossover between having
exceptional times of nonpercolation and not having such times, we need to
look at things at the right scale. It turns out that the proper parameterization
is to assume that wn � n(log n)α for some α > 0. Lyons’ criterion (1.3) easily
yields that percolation occurs (at a fixed time) if and only if α > 1.

Theorem 1.2. Consider a spherically symmetric tree with spherically sym-
metric edge probabilities.

(i). If

lim
n

wn

n(log n)α
= ∞

for some α > 2, then there are no exceptional times of nonpercolation.

(ii). If
wn � n(log n)α

for some 1 < α ≤ 2, then there are exceptional times of nonpercolation.

Remarks:
(1). To see a concrete example, if we have a tree with |Tn| � 2nn(log n)α and
p = 1/2 for all edges, then if α > 2, we are in case (i) while if α ≤ 2, we are
in case (ii). (Note Lyons’ theorem tells us that pc = 1/2 in these cases.)
(2). The theorem implies that if wn � nα with α > 1, then there are no
exceptional times of nonpercolation, while if wn � n, then (1.3) implies that
there is no percolation at a fixed time. Hence, if we only look at the case
where wn � nα for some α ≥ 1, we do not see the dichotomy we are after.
Rather, Theorem 1.2 tells us that one needs to look at a “finer logarithmic
scale” to see this “phase transition”.

Interestingly, it turns out that even within the regime where there are no
exceptional times of nonpercolation, there are still two very distinct dynam-
ical behaviors of the process.

Theorem 1.3. Consider a spherically symmetric tree T , with spherically
symmetric edge probabilities. Let dj denote the number of children that a
vertex in Tj has.
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(i). When
∑∞

k=1 k w−1
k < ∞, a.s. the set of times t ∈ [0, 1] at which the root

percolates has finitely many connected components. (This holds for example if
wk � kθ with θ > 2 as well as for supercritical percolation on a homogeneous
tree.)

(ii). If supj dj < ∞ and wk � kθ, where 1 < θ < 2, then with positive
probability the set of times t ∈ [0, 1] at which the root percolates has infinitely
many connected components. The same occurs if wk � k(log k)θ for any
θ > 1.

Remarks: (1). There is some gap between cases (i) and (ii), in particular,
the case wk � k2. In Theorem 5.2 we give more general conditions under
which (ii) holds, but we do not close this gap.
(2). It is easy to show (see, for example, Lemma 3.2) that for any graph,
if there are exceptional times of nonpercolation, then the set of times t ∈
[0, 1] at which a fixed vertex percolates is totally disconnected and hence has
infinitely many connected components with positive probability.

From the proof of Theorem 1.3.(i), it is easy to see that for any graph,
any edge dependent probabilities and any fixed vertex x, if In is the sum
of the influences (see Section 5 for the definition of influence) for the event
{x percolates to distance n away}, then lim infn In < ∞ implies that the set
of times t ∈ [0, 1] at which x percolates has finitely many connected compo-
nents a.s. Next, if Ix(e) is the influence of the edge e for the event {x ↔∞},
it is easy to see from Fatou’s lemma that∑

e

Ix(e) ≤ lim inf
n

In. (1.5)

The next result tells us what we can conclude under the assumption that∑
e Ix(e) < ∞.

Theorem 1.4. Consider dynamical percolation on any connected graph with
possibly edge dependent probabilities which percolates at a fixed time and let
x ∈ V . Assume that ∑

e

Ix(e) < ∞. (1.6)

Then a.s. f(t) := 1{x t↔∞} is equal a.e. to a function of bounded variation on

[0, 1]. Moreover, this implies that there are no exceptional times of nonper-
colation.
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Remarks: (1). Note that this result is applicable even in the supercritical
case.
(2). While it is easy to check that when the graph is a tree the summability
above does not depend on x, interestingly, this is false in the general context
of connected graphs, even in the case of bounded degree.

In [6], it was argued that the events discussed in the above theorems are
measurable; a similar comment applies to all of our results. Thus, measura-
bility issues will not concern us here.

As far as motivation, the questions that we look at give us a better under-
standing of the stability properties of a critical infinite cluster while at the
same time fall into the general framework of studying polar sets for stationary
reversible Markov processes.

The dynamical percolation results in [6] were extended in [12] and then
further refined in [8]. In [13], it was shown that there are exceptional times
at criticality on the triangular lattice, yielding the first example of a transi-
tive graph with this property. We mention a few other papers where anal-
ogous dynamical sensitivity questions have been studied for other models.
Analogous questions for the Boolean model, where the points undergo inde-
pendent Brownian motions, were studied in [3] and for certain interacting
particle lattice systems (where updates are therefore not done in an indepen-
dent fashion) are studied in [4]. In [2], it is shown that there are exceptional
two dimensional slices for the Boolean model in four dimensions and finally,
in [7], dynamical versions of Dvoretzky’s circle covering problem are studied.

Notation: (1). For subsets A and B of the vertices and t, we let {A t↔ B}
be the event that at time t there is an open path from A to B and {A ↔ B}
be the analogous event for ordinary percolation. (If B = ∞, this has the
obvious meaning.) In the context of trees with a distinguished root, A 7→ B
will mean that there is a path of open edges connecting A to B along which

the distance to the root is monotone increasing. The notation A
t7→ B is

similarly defined.
(2). We use � to denote the relationship between two quantities whose ratio
is bounded away from both 0 and ∞.
(3). O(1) will denote a function bounded away from ∞, o(1) will denote a
function approaching 0, and Ω(1) will denote a function bounded away from
0.

Convention: The edges are defined to be on at the times at which they
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change state; in this way, the set of times an edge is on is a closed set.
As explained in [6], this modification is of no significance, but allows some
notational simplification in some topological arguments.

The rest of the paper is organized as follows. In Section 2, we prove
Theorem 1.1. In Section 3, we prove two lemmas which will be needed for
the proof of Theorem 1.2. We prove Theorem 1.2 in Section 4, Theorem 1.3
in Section 5 and Theorem 1.4 in Section 6. In Section 7, we prove a certain 0-
1 law for the evolution of the process and finally we list some open questions
in Section 8.

2 Two Examples

The idea in the construction of the examples is rather simple; we take the
planar square lattice Z2 and replace each edge by an appropriate graph, with
different graphs for different edges. For the example without exceptional
times, we will want the connection along the corresponding graphs to be
rather stable, while for the example with exceptional times, we will want the
connections to switch quickly. The following lemma gives the existence of the
necessary building blocks for both examples. It contains a variant of Lemma
2.3 in [6] with the crucial difference being that the degrees are now bounded.

Lemma 2.1. There is a sequence of finite graphs Gj and pairs of vertices xj

and yj in Gj, such that the following properties hold:

1. PGj
1
2

(
xj ↔ yj

)
> 2

3
for all j,

2. limj→∞ PGj
p

(
xj ↔ yj

)
= 0 for all p < 1

2
,

3. for every ε > 0 we have

lim
j→∞

Ψ
Gj
1
2

( ⋂
t∈[0,ε]

{xj
t↔ yj}

)
= 0 ,

4. and there is some finite upper bound for the degrees of the vertices in
Gj (the bound does not depend on j).

Proof. Let H be obtained from the square grid in the plane by replacing
each edge by m parallel edges, where m is chosen so that the probability
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that the origin percolates in H at p = 1/2 is at least 0.99. Let vi denote the
vertex (i, 0) of H. Then for every i we have PH

1/2

(
v0 ↔ vi

)
≥ (0.99)2 > 0.98.

Hence, there is a finite subgraph Hj of H such that PHj

1/2

(
v0 ↔ v

)
≥ 0.98

holds for every v ∈ Aj, where Aj := {vi : 1 ≤ i ≤ 9 · 2j}. The graph Gj

is obtained by taking two disjoint copies of Hj and connecting each of the
vertices corresponding to vi ∈ Aj in one copy to the vertex corresponding
to vi in the other copy by a path of length j, where the paths are of course
disjoint. The vertex xj is chosen as v0 in one copy of Hj, while yj is v0 in the
other copy. The paths of length j in Gj connecting one copy of Hj to the
other will be called bridges.

We now verify that Gj satisfies the required properties. Let Bj denote
the set of vertices in Aj connected to v0 by an open path in Hj. Since

PHj

1/2

(
v0 ↔ v

)
≥ 0.98 for all v ∈ Aj, we have PHj

1/2

(
|Bj| < (2/3) |Aj|

)
< 0.9.

This implies that in Gj at p = 1/2 with probability at least (0.9)2 we have
that the endpoints of at least 1/3 of the bridges are connected to xj within
xj’s copy of Hj and to yj within yj’s copy of Hj. On this event, the conditional
probability that xj and yj are not connected is at most

(1− 2−j)
|Aj |

3 ≤ exp(−2−j)
|Aj |

3 = e−3.

Thus, we get PGj

1/2(xj ↔ yj) ≥ (0.9)2 (1− e−3) > 2/3, proving 1.

If p < 1/2, then the expected number of bridges that are open in Gj is
|Aj| pj = 9 · 2j · pj → 0 as j →∞, which proves 2.

In order to prove 3, fix some ε > 0, and consider dynamical percolation
at p = 1/2 on Gj. Let t, s ∈ [0, ε] satisfy s 6= t, and let Xj

t denote the event
that at time t there is some bridge in Gj that is open. Fix some ordering of
the bridges in Gj, and let Xj

t (i) denote the event that the i’th bridge is open

at time t. Also let X̂j
t (i) be the event that the i’th bridge is open at time t

and this does not hold for any smaller i. Note that for every fixed i,

Ψ
Gj

1/2

(
Xj

t \Xj
t (i) | X̂j

s (i)
)
≤ Ψ

Gj

1/2

(
Xj

t

)
.

Therefore,

Ψ
Gj
1
2

(
Xj

t , X̂j
s (i)
)
= Ψ

Gj
1
2

(
Xj

t \Xj
t (i), X̂j

s (i)
)
+Ψ

Gj
1
2

(
Xj

t (i), X̂j
s (i)
)

≤ Ψ
Gj
1
2

(
Xj

t

)
Ψ

Gj
1
2

(
X̂j

s (i)
)
+Ψ

Gj
1
2

(
Xj

t (i), X̂j
s (i)
)
.
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On the other hand, the conditional probability of Xj
t (i) given X̂j

s (i) does not
depend on i and goes to zero as j →∞ while s 6= t are held fixed. Thus,

Ψ
Gj
1
2

(
Xj

t , X̂j
s (i)
)
≤ Ψ

Gj
1
2

(
Xj

t

)
Ψ

Gj
1
2

(
X̂j

s (i)
)
+o(1)Ψ

Gj
1
2

(
X̂j

s (i)
)
.

As Xj
s is the disjoint union of the events X̂j

s (i), by summing the above over
i, we obtain

Ψ
Gj
1
2

(
Xj

t , Xj
s

)
≤ Ψ

Gj
1
2

(
Xj

t

)
Ψ

Gj
1
2

(
Xj

s

)
+o(1) ,

as j →∞.
Set Xj :=

∫ ε

0
1Xj

t
dt. Fubini and the dominated convergence theorem now

imply that lim supj→∞ E
[
(Xj)2

]
− E

[
Xj
]2 ≤ 0; that is, the variance of Xj

tends to 0. Since

E
[
Xj
]

= εΨ
Gj
1
2

(Xj
0) = ε

(
1− (1− 2−j)|Aj |

)
−→
j→∞

ε (1− e−9) ,

and the right hand side is smaller than ε, it follows that Ψ
Gj

1/2(X
j = ε) tends

to 0 as j →∞. This proves 3.
Claim 4 is obvious from the construction.

Proof of Theorem 1.1. Both examples are obtained by replacing each
edge [x, y] in the square lattice Z2 by a copy of some Gj, with xj identified
with x and yj identified with y. The difference between the two examples
has to do with the choice of j for the different edges.

We start by proving (i). By property 1 of Lemma 2.1, it follows that for
each j there is some positive integer nj > 0 such that

Ψ
Gj
1
2

( ⋂
t∈[0, 1

nj
]

{xj
t↔ yj}

)
>

3

5
.

We may assume without loss of generality that the sequence {nj} is increasing
in j. We now define inductively an increasing sequence {Rj}. Set n∗j := nj+2.
For any two radii 0 < r < r′, let A(r, r′) denote the event that there is an
open cycle in Z2 separating ∂B(0, r) from ∂B(0, r′) where ∂B(0, r) := {x :
|x|∞ = r} and |x|∞ denotes the L∞ norm of x. Let R0 be so large that

P 3
5
(B(0, R0) ↔∞) ≥ 1

2
.
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For all j > 0, given Rj−1, we choose Rj > Rj−1 sufficiently large so that

P 3
5

(
B(0, Rj) ↔∞, A(Rj−1, Rj)

)
≥ 1− 2−j (n∗j)

−1.

Let G be obtained from Z2 by replacing, for each j > 0, each edge e in
the annulus B(0, Rj) \ B(0, Rj−1) by a new copy of Gj, where xj and yj are
identified with the endpoints of e. By property 2 of the lemma, it follows
that at every p < 1/2, Bernoulli percolation on G a.s. has no infinite cluster.
Hence pc(G) ≥ 1/2.

We now consider dynamical percolation on G with parameter p = 1
2
, and

show that ΨG
1/2-a.s. there is an infinite percolation cluster at all times. This,

in particular, implies that pc(G) ≤ 1/2; and hence pc(G) = 1/2.
For I ⊆ [0,∞), let Aj(I) denote the event that at all times t ∈ I there is

an open cycle in G separating ∂B(0, Rj) from ∂B(0, Rj−1) and an open path
in G connecting ∂B(0, Rj−1) with ∂B(0, Rj+1). Then ΨG

1/2{Aj([0, 1/nj+1])} ≥
1 − 2−j+2/n∗j−1, whence ΨG

1/2(Aj([0, 1])) ≥ 1 − 2−j+2. Now note that if⋂
j>k Aj([0, 1]) holds for some k, then there is percolation in G for every t ∈

[0, 1]. Since ΨG
1/2

(⋂
j>k Aj([0, 1])

)
≥ 1−2−k+2, this gives ΨG

1/2

(⋂
t∈[0,1] Ct

)
=

1, which implies (i).

We now turn to the proof of (ii). Using Lemma 2.1 together with the proof
of the second part of Theorem 1.2 in [6], it is easily seen that if we replace
the ith edge by Gji

with the sequence {ji} growing to infinity sufficiently
fast, we obtain an example of the desired form.

3 Some lemmas

We now consider a spherically symmetric tree with spherically symmetric
edge probabilities. As in the introduction, Wn will denote the number of
vertices in Tn that are connected to the root, and wn denotes the expectation
of Wn.

By Theorem 2.3 of [9] (together with the proof of Theorem 2.4 in that
paper and the fact that for a spherically symmetric kernel, the measure that
minimizes energy is the uniform measure, a fact which in turn is obtained
using convexity of energy together with symmetry), it follows that

w2
n

E[W 2
n ]
≤ P (Wn > 0) ≤ 2w2

n

E[W 2
n ]

. (3.1)
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The second inequality yields

E[W 2
n |Wn > 0] ≤ 2E[Wn|Wn > 0]2, (3.2)

which will be useful below.

Lemma 3.1. Consider an indexed collection {Xi,j}i≥1,1≤j≤Ni
of nonnegative

mean 1 random variables such that (1) for each i, {Xi,j}1≤j≤Ni
are i.i.d. and

(2) the entire family of random variables is uniformly integrable. Then for
each ε > 0, there is c > 0 such that for each i,

P

(
Ni∑
j=1

Xi,j ≤ Ni(1− ε)

)
≤ e−cNi .

Proof. Let ε > 0. By uniform integrability, there exists h = h(ε) such that
for all i and j,

E(Xi,j ∧ h) ≥ 1− ε

2
.

We then have

P

(
Ni∑
j=1

Xi,j ≤ Ni(1− ε)

)
≤ P

(
Ni∑
j=1

Xi,j ∧ h ≤ Ni(1− ε)

)

≤ P
( Ni∑

j=1

Xi,j ∧ h ≤ Ni

(
E(Xi,j ∧ h)− ε

2

))
.

As we now have bounded random variables, the standard Chernoff bound
arguments allow us to bound the latter by e−cNi for some fixed c = c(ε, h) >
0.

Lemma 3.2. Fix a connected graph G and x ∈ V (G). Let BM := {y :
dG(x, y) ≤ M} where dG is the graph distance. Then the following are equiv-
alent.
(i).

Ψp( Ct occurs for every t ) = 1.

(ii).

P (∃M : BM
t↔∞ ∀t ∈ [0, 1]) = 1.

(iii).

P (x
t↔∞ ∀t ∈ [0, 1]) > 0.
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Proof. The implication (iii) ⇒ (i) is immediate from Kolmogorov’s 0-1 Law.
The implication (ii) ⇒ (iii) is easy and left to the reader. We now show that
(i) implies (ii). If (ii) is false, Kolmogorov’s 0-1 Law implies that the event
in (ii) has probability 0. Positive association of the process and the above
0-1 Law then would yield that for all δ > 0,

P (∃M : BM
t↔∞ ∀t ∈ [0, δ]) = 0 . (3.3)

Now, for each vertex v, let Uv be the open set of times in [0, 1] at which v
is not percolating. Countable additivity and (3.3) easily imply that a.s. each
Uv is dense. The Baire Category Theorem implies that a.s.⋂

v

Uv 6= ∅ .

However, this intersection is exactly the set of nonpercolating times in [0, 1]
and hence (i) is false.

Remarks: Observe that given any graph which percolates at criticality and
for which there are exceptional nonpercolating times, using the Uv’s as above,
the Baire Category Theorem gives that the set of nonpercolating times in
[0, 1] is a dense Gδ set of zero measure. An additional use of the Baire
Category Theorem tells us that if we hook up a finite number of such graphs
at a common vertex, there will still be nonpercolating times and they will
also form a dense Gδ of zero measure. This situation is very different from
the case where one looks at time sets corresponding to the times at which a
tree, which does not percolate at criticality (in static percolation), percolates;
such time sets do not necessarily intersect each other.

4 Proof of Theorem 1.2

We now begin with the

Proof of Theorem 1.2(i). Recall that ρ denotes the root of the tree.
Fix an α > 2, and assume that limn

wn

n(log n)α = ∞. Choose ε > 0 such that

2 + 2 ε < α. Let nk := 22k
. (So n0 = 2 and nk+1 = n2

k.) For each k and each

i ∈ {1, . . . , n2
k}, let Ik

i = [(i− 1)/n2
k, i/n

2
k]. Let Ak

i := {x ∈ Tnk
: ρ

t↔ x ∀t ∈
Ik
i }, and let Gk denote the event that |Ak

i | ≥ wnk
/(log nk)

ε holds for every
i ∈ {1, 2, . . . , n2

k}. We need to obtain a good bound on P (Gc
k+1|Fnk

) on the
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event Gk, where Fn is the σ-algebra generated by the evolution of the first
n levels of the tree. The key proposition, whose proof we give afterwards, is
the following.

Proposition 4.1. There exists γ > 1 so that for all large k, if A ⊆ Tnk
is

fixed with |A| ≥ wnk
/(log nk)

ε, then

P
(∣∣{x ∈ Tnk+1

: A
t7→ x ∀t ∈ Ik+1

1 }
∣∣ ≤ wnk+1

/(log nk+1)
ε
)
≤ e−(log nk)γ

.

We now first complete the proof of Theorem 1.2(i) by noting that it is easy
to see that Proposition 4.1 implies that for large k, we have that on Gk

P (Gc
k+1|Fnk

) ≤ n2
k+1e

−(log nk)γ

.

Since γ > 1, we have ∑
k

n2
k+1e

−(log nk)γ

< ∞ .

For any finite k′, we have P
(⋂

k≤k′ Gk

)
> 0. Hence, the above implies that

P (Gk ∀k) > 0, and since
⋂

k Gk ⊆ {ρ t↔∞ ∀t ∈ [0, 1]}, this implies

P (ρ
t↔∞ ∀t ∈ [0, 1]) > 0.

This yields the required result by Lemma 3.2.

Before starting the proof of Proposition 4.1, we first need the following
lemma.

Lemma 4.2. Consider a spherically symmetric tree with spherically symmet-
ric edge probabilities, and assume that for some β > 1, wn ≥ Ω(1) n (log n)β

holds for every n. If x ∈ Tnk
, then

P (x 7→ Tnk+1
) wnk

≥ Ω(1) (log nk)
β−1.

Proof. It is easy to see that for x ∈ Tnk
, the expected number of vertices in

T` connected to x within T x is w`/wnk
for ` ≥ nk. Hence by (1.4), if x ∈ Tnk

,
we have that

P (x 7→ Tnk+1
) �

( nk+1∑
`=nk+1

wnk

w`

)−1

≥ Ω(1)
1

wnk

( nk+1∑
`=nk+1

1

`(log `)β

)−1

.
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Next

nk+1∑
`=nk+1

1

`(log `)β
�
∫ nk+1

nk

1

x(log x)β
dx =

∫ log(nk+1)

log nk

1

uβ
du � (log nk)

1−β,

since nk = 22k
, completing the proof.

Proof of Proposition 4.1.
For x ∈ Tnk

, let Rx be the number of vertices at level nk+1 which are
connected to x within T x throughout [0, 1/n2

k+1] and let Rk denote a random
variable which has distribution Rx. The expected number of vertices at level
nk+1 which are connected to x within T x at time 0 is wnk+1

/wnk
. Since a

given path of length nk+1−nk is updated during [0, 1/n2
k+1] with probability

o(1), we have

E[Rk] =
wnk+1

wnk

(
1− o(1)

)
, (4.1)

as k →∞.

Lemma 4.3. Let R̃k have distribution Rk conditioned on {Rk > 0}. Then

E[(R̃k)
2] ≤ O(1)E[(R̃k)]

2.

Proof. Fix some x ∈ Tnk
, and let R′

x :=
∣∣{y ∈ Tnk+1

: x
07→ y}

∣∣. We have
argued above that E[Rk] ≥

(
1 − o(1)

)
E[R′

x]. This implies E[Rk] � E[R′
x].

A similar argument gives P (R′
x > 0) � P (Rk > 0). Since R′

x ≥ Rx, this
together with (3.2) easily leads to the statement; the details are left to the
reader.

Lemma 4.4. There exists γ > 1 so that for all δ > 0, we have that for large
k, if A ⊆ Tnk

with |A| ≥ wnk
/(log nk)

ε, then

P
(∣∣{x ∈ A : Rx > 0}

∣∣ ≤ (1− δ)
P (Rk > 0) wnk

(log nk)ε

)
≤ e−(log nk)γ

.

Proof. The random variable X :=
∣∣{x ∈ A : Rx > 0}

∣∣ has a binomial
distribution with parameters |A| and P (Rk > 0). The probability in the
statement of the lemma is at most

P
(
X ≤ E[X](1− δ)

)
.
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By standard large deviations (see for example Corollary A.1.14 in [1]), the
latter is a most 2 e−cδE(X). Lemma 4.2 and our choice of ε imply that E[X] ≥
Ω(1) (log nk)

1+ε, proving the claim.

Lemma 4.5. There exists δ > 0 and γ > 1 such that for all large k, if

M ≥ (1− δ)
P (Rk > 0) wnk

(log nk)ε

and Y1, . . . , YM are i.i.d. with the distribution of R̃k (defined in Lemma 4.3),
then

P

(
M∑
i=1

Yi ≤
wnk+1

(log nk+1)ε

)
≤ e−(log nk)γ

. (4.2)

Proof. Choose δ so that
1

2ε(1− δ)
< 1. (4.3)

Our lower bound on M and an easy calculation shows that the left hand side
of (4.2) is bounded by

P

(
1

M

M∑
i=1

Yi

E[Yi]
≤ Sk

)
, where Sk :=

wnk+1
(log nk)

ε

wnk
(log nk+1)ε(1− δ)E[Rk]

.

The expression (4.1) for E[Rk] implies that limk→∞ Sk = 1/(2ε(1− δ)). Since
a family of random variables which have a uniform bound on their second
moments is uniformly integrable, Lemmas 3.1 and 4.3 and (4.3) imply that

P
( 1

M

M∑
i=1

Yi

E[Yi]
≤ Sk

)
≤ e−cM ,

for some c > 0 and all large k. Lemma 4.2 insures that M ≥ Ω(1)(log nk)
1+ε,

completing the proof.

One finally notes that Proposition 4.1 is a consequence of Lemmas 4.4
and 4.5.

Remark: In the proof of Theorem 1.2(ii), we separate things into the two
cases α < 2 and α = 2 but we emphasize that this is done for presentational
purposes only.

We now move to

15



Proof of Theorem 1.2(ii); case α < 2. Let A := {ρ t↔∞ ∀t ∈ [0, 1]}. By
Lemma 3.2, it suffices to show that P (A) = 0 and for this it suffices to show
that for every M > 0, there is an event G = G(M) so that P (G) ≥ 1− 2/M
and P (A|G) = 0. We now fix such an M . The O(1) terms appearing below
may (and will) depend on M (but they will of course be independent of the
level of the tree under discussion).

For the moment, we consider our percolation at a fixed time. It is well
known that {Wn/wn} (recall Wn is the number of vertices on the n’th level
connected to the root) is a nonnegative martingale and hence converges a.s.
to a random variable denoted W∞ with E[W∞] ≤ 1. Doob’s inequality tells
us that

P

(
Wn

wn

≥ M for some n ≥ 0

)
≤ 1

M
. (4.4)

Returning to our dynamical model, we let Wn,t be the analogue of Wn

above but at time t. We now define

G :=

{
µ
{
t ∈ [0, 1] : Wn,t/wn ≥ M for some n ≥ 0

}
<

1

2

}
,

where µ denotes Lebesgue measure. Fubini’s theorem, Markov’s inequality
and (4.4) easily yield that P (G) ≥ 1− 2/M . We will show that P (A|G) = 0,
completing the proof.

Set mn := bM wnc. For all B ⊆ Tn with |B| ≤ mn, let B̃ be a subset
of Tn containing B such that |B̃| = mn, and such that B̃ is a deterministic
function of B. Of course, this can only be done for n ≥ N = N(M) :=
min

{
k : |Tk| ≥ mk

}
. If |B| > mn, we take B̃ to be the leftmost mn elements

of B.
Let Sn,t be the set of vertices in Tn that are connected to ρ by open paths

at time t. Then Wn,t = |Sn,t|. For each n ≥ N = N(M), define the random
variable

Xn := µ
{
t ∈ [0, 1] : Wn,t ≤ mn, S̃n,t

t

67→ ∞
}

.

The key step is to carry out a conditional second moment argument on Xn

conditioned on the evolution of the first n levels on that part of the probability
space where something “good” happens. The following proposition will be
the consequence of this conditional second moment argument.

Proposition 4.6. There exists c = c(M) > 0 such that for all n sufficiently
large

P (Xn > 0|Fn) ≥ c on G
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where Fn is the σ-algebra generated by the evolution of the first n levels of
the tree.

We postpone the proof of the proposition, and continue with the proof of the
theorem. It is clear that {Xn > 0} ⊆ Ac and hence

P (Ac|Fn) ≥ c on G.

Letting n → ∞, Levy’s 0-1 Law implies that the left hand side approaches
1Ac a.s. As c > 0, we conclude that P (A|G) = 0, as desired.

Before starting the proof of Proposition 4.6, we need a lemma. Let

qn := P
(
x

07→ ∞
)

and qn(t) := P
(
{x t7→ ∞} ∩ {x 07→ ∞}

)
,

where x ∈ Tn.
It is easy to check that the proof of Lemma 4.2 shows that

qn �
1

n log n
. (4.5)

Lemma 4.7.

qn(t) ≤ O(1)q2
n

t
.

Proof. Fix x ∈ Tn and t ∈ (0, 1]. Suppose that x
07→ ∞, and condition on

the left most open path π = (π0, π1, . . . ) from x to ∞ inside Tx at time 0. Let
Kj be the event that at time t there is an open path from x to ∞ that shares
exactly j edges with π. Because in the complement of π the conditional
law of the dynamical percolation is dominated by the unconditional law, we
clearly have

P
(
Kj | x

07→ ∞
)
≤ P

(
πj

t7→ ∞
)

P
(
x

t7→ πj | x
07→ ∞

)
= qn+j

j∏
i=1

(
pn+i(1− e−t) + e−t

)
.

Since P (K∞) = 0, we get

qn(t) = qn P
(
x

t7→ ∞ | x 07→ ∞
)
≤ qn

∞∑
j=0

P
(
Kj | x

07→ ∞
)

≤ qn

∞∑
j=0

qn+j

j∏
i=1

(
pn+i(1− e−t) + e−t

)
.
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As the pi’s are bounded away from 1, there exists a constant ε0 ∈ (0, 1) such
that each factor in the product on the right is at most 1− ε0t (regardless of
the choice of t in (0, 1]). Hence, the above gives

qn(t) ≤ qn

∞∑
j=0

qn+j (1− ε0 t)j ≤ qn sup{qn+j : j = 0, 1, . . . }
∞∑

j=0

(1− ε0 t)j

= qn sup{qn+j : j = 0, 1, . . . } (ε0 t)−1.

Now an appeal to (4.5) completes the proof.

Let
q̃n := 1− qn. (4.6)

Next, letting q̃n(t) be the probability that a given vertex at level n does not
percolate to ∞ both at time 0 and at time t, we easily have that

q̃n(t) = 1− 2qn + qn(t). (4.7)

We use (4.6) and (4.7), to obtain

q̃n(t)

q̃2
n

=
1− 2 qn + qn(t)

(1− qn)2
= 1 +

qn(t)− q2
n

(1− qn)2
≤ 1 +

qn(t)

(1− qn)2
.

By Lemma 4.7 and (4.5) we therefore get

q̃n(t)

q̃2
n

≤ 1 + O
(
q2
n/t
)
. (4.8)

We can now carry out the

Proof of Proposition 4.6.
We apply a conditional second moment argument. First, it is immediate

that for any n ≥ N

E[Xn|Fn] ≥ 1

2
(q̃n)mn 1G .

In order to estimate E[X2
n|Fn], we note that

P
[
S̃n,s

s

67→ ∞, S̃n,t

t

67→ ∞
∣∣∣ Fn

]
= q̃n(|t− s|)|S̃n,s∩S̃n,t| q̃|S̃n,s\S̃n,t|+|S̃n,t\S̃n,s|

n .

Since q̃n(t) ≥ q̃2
n, this gives for every n ≥ N a.s.

E[X2
n|Fn] ≤

∫ 1

0

∫ 1

0

q̃n(|t− s|)mn dt ds ≤ 2

∫ 1

0

q̃n(t)mn dt . (4.9)
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Using the trivial bound q̃n(t) ≤ q̃n for t ≤ 1/n and the bound (4.8) for larger
values of t, we get that on G

E[X2
n|Fn]

E[Xn|Fn]2
≤ 8

∫ 1
n

0

(
1

q̃n

)mn

dt + 8

∫ 1

1
n

(
1 + O

(
q2
n/t
))mn

dt . (4.10)

Using (4.5) and (4.6), if α < 2, then the first integrand is easily checked
to be at most O(1) nσ for some σ < 1 (and in fact for any σ < 1 with
the O(1) term then of course depending on σ) and hence the first integral
goes to 0. If α ≤ 2, then, using (4.5), it is easy to check that the second
integrand, when t ≥ 1

n
, is at most O(1). So the ratio of the conditional

second moment and the conditional first moment squared on G is bounded
above and so the (conditional) Cauchy Schwartz inequality yields the claim
of the proposition.

Proof of Theorem 1.2(ii); case α = 2. For any integers n ≥ L ≥ 1, and
any v ∈ TL, let W v

n be the number of vertices at level n connected to ρ which
are in T v.

Lemma 4.8. Letting EL,ε := {W v
n ≤ εwn ∀n ≥ L, ∀v ∈ TL}, we have that

for all ε > 0,
lim

L→∞
P (EL,ε) = 1.

Proof. Fix ε > 0 and v ∈ TL. Since W v
n/E

[
W v

n

]
is a martingale with respect

to n (for n ≥ L), we have

P (W v
n ≥ εwn for some n ≥ L) = P

(
W v

n ≥ ε E[W v
n ] |TL| for some n ≥ L

)
≤ 1

ε2|TL|2
sup
n≥L

E[(W v
n )2]

E[W v
n ]2

,

(4.11)
by Doobs L2 martingale inequality. The estimate (3.1) gives for n ≥ L

E[(W v
n )2]

E[W v
n ]2

≤ O(1)

P (W v
n > 0)

≤ O(1)

P (ρ ↔ v) qL

=
O(|TL|)
wL qL

. (4.12)

We sum (4.11) over v ∈ TL and use (4.12) as well as (4.5), to obtain

P (Ec
L,ε) ≤

O(1) L log L

wL ε2
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which approaches 0 as L →∞, since α > 1.

Next, using wn � n(log n)2 and (4.5), choose an ε > 0 sufficiently small
so that (1/q̃n)εwn−1 ≤ n for all n sufficiently large, and set mn := bε wnc. Let
EL,ε,t denote the event that EL,ε occurs at time t, let GL,ε := {t ∈ [0, 1] : EL,ε,t}
and let G̃L,ε be the (closed) support of the restriction of the Lebesgue measure
µ to GL,ε. Finally, let GL,ε := {G̃L,ε 6= ∅} = {µ(GL,ε) 6= 0}. Lemma 4.8 easily
implies that limL→∞ P (GL,ε) = 1.

For any vertex v, let

T v := {t ∈ [0, 1] : ρ
t

6↔ v} ∪ {t ∈ [0, 1] : v
t

67→ ∞} ,

which is the set of times in [0, 1] in which ρ does not connect to ∞ through
v. Note that T v is open.

Proposition 4.9. With the above choice of ε > 0, for all L and v ∈ TL,

P (T v ∩ G̃L,ε is dense in G̃L,ε) = 1.

Given this proposition, the Baire category theorem (or an easy induction)
yields that

P
(
G̃L,ε ∩

⋂
v∈TL

T v is dense in G̃L,ε

)
= 1

and hence
P (Ac|GL,ε) = 1.

Since limL→∞ P (GL,ε) = 1, we are done.

Proof of Proposition 4.9. Fix L and v ∈ TL. By countable additivity, it
suffices to show that for all open intervals I with rational endpoints,

P
(
µ(I ∩ GL,ε) = 0 or µ(T v ∩ I ∩ GL,ε) > 0

)
= 1 . (4.13)

Set Y := µ(I ∩ GL,ε) and Yn := E
[
Y
∣∣ Fn

]
. We claim that for some constant

c > 0, depending only on I and L, and for all sufficiently large n, we have

P
(
µ(T v ∩ I ∩ GL,ε) > 0 | Fn

)
≥ c Y 2

n . (4.14)

Clearly, Yn → Y a.s., while Levy’s 0-1 Law implies that the left hand side
converges a.s. to 1{µ(T v∩I∩GL,ε)>0}. Therefore, (4.14) implies (4.13) and the
proposition.
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For all B ⊆ Tn∩T v with |B| ≤ mn, let B̃ be a subset of Tn∩T v containing
B such that |B̃| = mn and B̃ is a deterministic function of B. (This only
works for large enough n so that |T v ∩ Tn| ≥ mn.) If |B| > mn, let B̃ be the
subset of B consisting of the leftmost mn elements of B. Let Sv

n,t denote the
set of vertices in T v ∩ Tn that are connected to ρ at time t, and define

Xn := µ
({

t ∈ I ∩ GL,ε : S̃v
n,t

t

67→ ∞
})

.

Then

E[Xn | Fn] =

∫
I

P (t ∈ GL,ε | Fn) P (S̃v
n,t

t

67→ ∞ | t ∈ GL,ε, Fn) dt.

Since our process is positively associated even when conditioned on Fn, the

second factor in the integrand is at least as large as P (S̃v
n,t

t

67→ ∞ | Fn) =
(q̃n)mn , and hence the above gives

E[Xn | Fn] ≥ Yn (q̃n)mn .

For the conditional second moment, let

X∗
n := µ

({
t ∈ I : S̃v

n,t

t

67→ ∞
})

.

Then X∗
n ≥ Xn. Arguing as in the case α < 2, we get

E
[
X2

n

∣∣ Fn

]
≤ E

[
(X∗

n)2
∣∣ Fn

]
≤ 2 µ(I)

∫ µ(I)

0

q̃n(t)mn dt .

We take n larger than 1/µ(I), and use the bounds q̃n(t) ≤ q̃n and (4.8), to
get

E[X2
n|Fn]

E[Xn|Fn]2
≤ 2 µ(I)

Y 2
n

∫ 1/n

0

(q̃n)−mn dt +
2 µ(I)

Y 2
n

∫ µ(I)

1/n

(
1 + O(q2

n/t)
)mn

dt .

By our choice of ε and mn, the left integral is bounded. As we have seen in
the previous case, the integrand of the right integral is also bounded. The
(conditional) Cauchy Schwartz inequality therefore gives (4.14).
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5 Proof of Theorem 1.3

We first recall the definitions of pivotality and influence.

Definition: An edge e is pivotal for an event A if changing the status of e
changes whether or not A occurs. The influence of e on the event A, IA(e),
is the probability that e is pivotal for A.

Next we need the definition of a “flip time”.

Definition: Given a graph and a vertex x, a time t is called a flip time for
x if x percolates at time t but there is an edge e which is pivotal for the
event {x ↔∞} at time t and which changes its status at time t. (Note in
this case, there is a δ > 0 such that either (1) x does not percolate during
(t− δ, t) or (2) x does not percolate during (t, t + δ).)

Lemma 5.1. In a spherically symmetric tree with spherically symmetric edge
probabilities

E
[
Wn

]
P
[
Wn = 1

]
≤ P

[
Wn > 0

]2
.

As we will later see in Lemma 5.4, the reverse inequality holds up to a
multiplicative constant under some reasonable assumptions.

Proof. Let Q be the set of vertices in Tn that are connected to ρ. For
v ∈ Tn, let Lv denote the event that v ∈ Q and v is the leftmost vertex in Q.
Likewise, let Rv denote the event that v ∈ Q and v is the rightmost vertex
in Q. Then

P
[
Q = {v}

]
= P

[
Lv, Rv

]
=

P
[
Lv

]
P
[
Rv

]
P
[
v ∈ Q

] ,

by the independence of what happens to the right of the path from ρ to v
and what happens to the left of this path. Applying the arithmetic-geometric
means inequality, we find

P
[
Q = {v}

]1/2
P
[
v ∈ Q

]1/2 ≤ 1

2
P
[
Lv

]
+

1

2
P
[
Rv

]
.

When Q 6= ∅, there is precisely one vertex v satisfying Lv and precisely one
vertex satisfying Rv. Hence, by summing the above over all v ∈ Tn, we get∑

v∈Tn

P
[
Q = {v}

]1/2
P
[
v ∈ Q

]1/2 ≤ P
[
Wn > 0

]
.

Now note that for every v ∈ Tn we have P
[
Q = {v}

]
= P

[
Wn = 1

]
/|Tn| and

P
[
v ∈ Q

]
= E

[
Wn

]
/|Tn|. The Lemma follows.
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Proof of Theorem 1.3.(i). We will estimate from above the expected
number of pivotal edges for the event {ρ ↔ Tn} in a static configuration. For
each m ∈ {1, . . . , n}, let vm be the leftmost vertex in Tm, and let u(m, n)
be the expected number of edges between Tm−1 and Tm that are pivotal for
{ρ ↔ Tn}. Also let a(m, n) be the probability that vm is connected to Tn

within its subtree; that is, a(m,n) = P
[
vm 7→ Tn

]
. To estimate u(m,n),

we consider a different tree T ′ which is identical to T until level m, but
each vertex at level m in T ′ has only one child at level m + 1, and the
edge probability for the edges between levels m and m+1 in T ′ is a(m, n) =
a(m, n; T ) (and the m+1 level is the last level of T ′). The probability that the
edge [vm−1, vm] is pivotal for {ρ ↔ Tn} and ρ ↔ Tn holds is the probability
that in T ′ the child of vm is the only vertex at level m + 1 connected to ρ.
By Lemma 5.1, the latter is bounded by

P
[
ρ ↔ Tn

]2 (|Tm|wm a(m, n)
)−1

(where the notations all relate to the tree T ). Therefore,

pm u(m,n) ≤
(
wm a(m, n)

)−1
.

Observe that the expected number of vertices v ∈ Tk satisfying vm 7→ v is
wk/wm. Therefore (1.4) applied to the tree T vm gives

a(m, n)−1 � wm

n∑
k=m+1

w−1
k .

Plugging this into the above, we get

pm u(m,n) ≤ O(1)
n∑

k=m+1

w−1
k . (5.1)

We now move to the dynamical setting. Let Zn be the set of times
in [0, 1] at which ρ ↔ Tn, and let Z =

⋂
n>0 Zn be the percolation times

of the root in [0, 1]. It is clear that ∂Z = lim supn ∂Zn. (By definition,
lim supn An :=

⋂
n>0

⋃
j>n Aj.) Note that the set ∂Zn is the set of times at

which a pivotal edge for {ρ ↔ Tn} switches its value. Hence,

E
[
|∂Zn|

]
=

n∑
m=1

2 pm (1− pm) u(m, n)
(5.1)

≤ O(1)
n∑

k=1

k w−1
k .
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Our assumptions therefore imply that supn E
[
|∂Zn|

]
< ∞. Consequently,

lim infn→∞ |∂Zn| < ∞ a.s. Since |∂Z| ≤ lim infn→∞ |∂Zn|, this proves (i) of
Theorem 1.3.

Part (ii) of Theorem 1.3 is an easy consequence of the following theorem.

Theorem 5.2. Suppose that supj dj < ∞, (1.3) and the following assump-
tions hold:

n∑
m=1

1

m
≤ O(1)

n∑
m=1

∞∑
k=m

1

wk

, (5.2)

∞∑
n=0

( ∞∑
m=n+1

wn

wm

)−2

< ∞ , (5.3)

∞∑
k=0

(
(k + 1) wk

( ∞∑
j=k

w−1
j

)2)−1

< ∞ . (5.4)

Then with positive probability there are infinitely many flip times for the event
{ρ ↔∞} in the time interval [0, 1].

Let bj denote the probability that a vertex at level j percolates to ∞ (at
time 0) through its leftmost child.

Lemma 5.3. Assume supj dj < ∞, (1.3) and (5.3). Then

n−1∏
j=0

(1− bj)
dj−1 �

( ∞∑
m=n

1

wm

)2

, (5.5)

where the implied constants may depend on the tree and on the sequence {pj}.

Proof. We start by deriving a rough estimate for bn. If v ∈ Tn and m > n,
then the expected number of vertices u ∈ Tm such that v 7→ u is wm/wn.
Therefore, (1.4) gives

bn �
1

dn wn

( ∞∑
m=n+1

1

wm

)−1

. (5.6)

This estimate in itself will not be fine enough to yield (5.5), but will be a
useful first step.
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For each node at level j in the tree, we order its children according to
some fixed linear order (e.g., left to right, if we think of the tree as embedded
in the plane). If v is a vertex at level n and j ∈ {1, . . . , n}, let uj(v) denote
the vertex at level j that has v in its subtree, and let ij(v) be the position
of uj(v) among its siblings in the above order. This induces an ordering on
the vertices at level n: we say that v′ < v if at the minimal j such that
ij(v

′) 6= ij(v) we have ij(v
′) < ij(v). Fix some v ∈ Tn. Let Lv denote

the event that v is the minimal vertex at level n such that ρ percolates to
∞ through v. Note that the probability that v percolates to ∞ within its
subtree is bn−1/pn and that P

[
ρ ↔ v

]
= wn/|Tn|. Hence

P
[
Lv

]
=

wn

|Tn|
bn−1

pn

n−1∏
j=0

(1− bj)
ij+1(v)−1.

Since P
[
ρ ↔∞

]
=
∑

v∈Tn
P
[
Lv

]
, this gives

pn P
[
ρ ↔∞

]
bn−1 wn

=
1

|Tn|
∑
v∈Tn

n−1∏
j=0

(1− bj)
ij+1(v)−1.

We now use |Tn| =
∏n−1

j=0 dj, and get

pn P
[
ρ ↔∞

]
bn−1 wn

=
∑
v∈Tn

n−1∏
j=0

(1− bj)
ij+1(v)−1

dj

=
n−1∏
j=0

dj∑
i=1

(1− bj)
i−1

dj

=
n−1∏
j=0

1− (1− bj)
dj

bj dj

.

If we compare the factor corresponding to j on the right with (1− bj)
(dj−1)/2,

we find that they agree up to a factor of exp
(
O(b2

j)
)
, where the implied

constant may depend on supj dj and on supj bj ≤ supj pj < 1. Hence,

pn P
[
ρ ↔∞

]
bn−1 wn

=
(n−1∏

j=0

(1− bj)
(dj−1)/2

)
exp
(
O(1)

n−1∑
j=0

b2
j

)
.

Now (5.5) follows by squaring both sides, using the estimate (5.6) for bn−1,
using pn dn−1 wn−1 = wn and noting that

∑
j b2

j < ∞ by (5.6) and (5.3).

The following lemma can be seen as a partial converse to Lemma 5.1, but
for convenience it is stated in a slightly different setting.
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Lemma 5.4. Let Un denote the number of edges joining Tn−1 to Tn through
which ρ percolates to ∞. Then under the assumptions of Lemma 5.3, we
have

P
[
Un = 1

]
E
[
Un

]
� 1 .

Proof. By (5.6) and (5.5), we have

n−1∏
j=0

(1− bj)
dj−1 � (bn−1 wn−1 dn−1)

−2 = E
[
Un

]−2
.

Now multiply the left hand side by |Tn| p1 p2 · · · pn−1 bn−1 and the right hand
side by its equal, E

[
Un

]
. On the left hand side we then get P

[
Un = 1

]
, as

required.

Proof of Theorem 5.2. The proof is based on a second moment argument.
For an edge e let X(e) denote the number of flips (for ρ ↔∞) occuring at
times in [0, 1] when e switches. Let m = m(e) := |e| denote the level of e;
that is e connects Tm and Tm−1. Set X(e) := 1{X(e)>0}, Xn :=

∑
|e|≤n X(e)

and Xn :=
∑

|e|≤n X(e). The second moment argument will be applied to Xn:

we will show that limn→∞ E
[
Xn

]
= ∞, and that supn E

[
X2

n

]
/E
[
Xn

]2
< ∞.

At this point, we use an equivalent version of the dynamics in which at
rate 1, an edge is refreshed and when refreshed, it chooses to be in state 1
with probability pe. Let now Ye be the set of times in which e refreshed, and
let Ae be the set of times t ∈ [0, 1] at which e is pivotal for {ρ ↔∞}. Since
2 pm (1 − pm) is the probability a refresh time is a switch time, and Ye is a
Poisson point process with rate 1 independent from Ae, we have

1− exp
(
−µ(Ae)

)
≥ E

[
X(e)

∣∣ Ae

]
≥ 2 pm (1− pm)

(
1− exp

(
−µ(Ae)

))
,

where µ denotes Lebesgue measure. It follows that

E
[
X(e)

∣∣ Ae

]
� µ(Ae) .

Moreover, Fubini gives

E
[
µ(Ae)

]
= P

[
e pivotal for {ρ ↔∞} at time 0

]
.

Hence,

E
[
Xn

]
�

n∑
m=1

∑
|e|=m

P
[
e pivotal for {ρ ↔∞} at time 0

]
.
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Lemma 5.4 easily implies that if |e| = m, then

P
[
e pivotal for {ρ ↔∞} at time 0

]
� 1

|Tm|wm−1 dm−1 bm−1

.

The above together with (5.6) gives

E
[
Xn

]
�

n∑
m=1

∞∑
k=m

1

wk

. (5.7)

We now turn to estimating E
[
X2

n

]
. Let e, e′ be two different edges at levels

m and m′, respectively, where m, m′ ≤ n. Then X(e) X(e′) ≤ |Ye∩Ae| · |Ye′∩
Ae′|. Let νe,e′ denote the counting measure on the set (Ye∩Ae)×(Ye′∩Ae′) ⊆
[0, 1]2, and let I, I ′ ⊆ [0, 1] be disjoint time intervals. Note that Ye∩I, Ye′∩I ′

and (Ae ∩ I, Ae′ ∩ I ′) are independent. (Note however that Ae ∩ I is usually
not independent from Ae′ ∩ I ′.) Therefore

E
[
νe,e′(I × I ′)

∣∣∣ Ae ∩ I, Ae′ ∩ I ′
]

= µ(Ae ∩ I) µ(Ae′ ∩ I ′) .

Hence

E
[
νe,e′(I × I ′)

]
=

∫
I×I′

P
[
t ∈ Ae, s ∈ Ae′

]
dt ds .

For e 6= e′, νe,e′ gives no mass to the diagonal, and hence we can conclude
that

E
[
X(e) X(e′)

]
≤ E

[
νe,e′([0, 1]× [0, 1])

]
=

∫ 1

0

∫ 1

0

P
[
t ∈ Ae, s ∈ Ae′

]
dt ds .

Since
∑

|e|≤n X(e) X(e) = Xn, we have

X2
n = Xn +

∑
|e|,|e′|≤n

1{e6=e′} X(e) X(e′) ≤ Xn +
∑

|e|,|e′|≤n

1{e6=e′} X(e) X(e′) .

Consequently,

E
[
X2

n

]
≤ E

[
Xn

]
+

∑
|e|,|e′|≤n

1{e6=e′}

∫ 1

0

∫ 1

0

P
[
t ∈ Ae, s ∈ Ae′

]
dt ds .

At this point, we break up the pairs (e, e′) for which e 6= e′ into two sets,
those where e and e′ don’t lie on the same path from the root to ∞ (which
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is the generic case) and those where they do lie on the same path. Call the
first class E1 and the second class E2. We consider now pairs (e, e′) in E1.

Let v0 = ρ, v1, . . . , vm denote the path from the root ρ to the endpoint
of e at level m = |e|, and let v′0, v

′
1, . . . , v

′
m′ denote the path from the root

to the endpoint of e′ at level m′ = |e′|. Let k ≤ (m − 1) ∧ (m′ − 1) be
maximal such that vk = v′k. Also, fix s, t ∈ [0, 1] and set r := |s − t|.
Note that for every j ∈ N+ and any edge at level j, the probability that
the edge is open at time s and at time t is p2

j + (1 − pj) pj exp(−r). For
j = 0, . . . ,m − 1, let Uj denote the event that at time t we have vj ↔∞
inside T vj \ vj+1, and let U ′j denote the corresponding event with each vi

replaced by v′i, with t replaced by s and with m replaced by m′. Note that
the event {t ∈ Ae, s ∈ Ae′} is contained in the intersection of the following

events: L := {ρ t↔ vk, ρ
s↔ vk}, Q1 := {vk

t7→ vm−1}, Q′
1 := {vk

s7→ v′m′−1},
Q2 := {vm

t7→ ∞}, Q′
2 := {v′m′

s7→ ∞}, Z1 :=
⋂k−1

j=0 ¬Uj, Z2 :=
⋂m−1

j=k+1 ¬Uj,

Z ′
2 :=

⋂m′−1
j=k+1 ¬U ′j, and that these events are all independent. Consequently,

P
[
t ∈ Ae, s ∈ Ae′

]
≤

k∏
j=1

(
p2

j + (1− pj) pj exp(−r)
)
×

m−1∏
j=k+1

pj ×
m′−1∏
j=k+1

pj ×

bm−1

pm

× bm′−1

pm′
×

k−1∏
j=0

(1− bj)
dj−1 ×

m−1∏
j=k+1

(1− bj)
dj−1 ×

m′−1∏
j=k+1

(1− bj)
dj−1.

Setting δ := 1 − supj pj and noting that r ≤ 1, we may estimate the first
product as

≤
(
1− δ r/3)k

k∏
j=1

pj ≤ exp
(
−δ k r

3

) k∏
j=1

pj .

Using the above and Lemma 5.3, we arrive at the estimate

P
[
t ∈ Ae, s ∈ Ae′

]
≤ O(1) exp

(
−δ k r

3

)
×(∏m−1

j=1 pj

)(∏m′−1
j=1 pj

)
bm−1 bm′−1

(∑∞
j=m w−1

j

)2(∑∞
j=m′ w

−1
j

)2

(∏k
j=1 pj

)
(1− bk)2dk−2

(∑∞
j=k w−1

j

)2 .

Since we are assuming supj dj < ∞ and since bj ≤ pj+1 ≤ 1 − δ, we have
(1− bk)

2−2dk = O(1), and that factor may be dropped. Now note that when
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(t, s) is uniform in [0, 1]2, the probability that r is in any interval I ⊆ [0, 1] is

at most twice the length of I. Since
∫ 1

0
exp(−δ k r/3) dr ≤ O

(
1/(δ (k+1))

)
=

O(1/(k + 1)), we get∫ 1

0

∫ 1

0

P
[
t ∈ Ae, s ∈ Ae′

]
dt ds ≤

O(1)

(∏m−1
j=1 pj

)(∏m′−1
j=1 pj

)
bm−1 bm′−1

(∑∞
j=m w−1

j

)2(∑∞
j=m′ w

−1
j

)2

(k + 1)
(∏k

j=1 pj

)(∑∞
j=k w−1

j

)2 .

If we fix m,m′ and vk, there are at most |Tm|/|Tk| possible choices for e and
|Tm′|/|Tk| possible choices for e′. Thus, there are at most |Tm| |Tm′| |Tk|−2

possible choices for pairs (e, e′). Since |Tj| = dj−1 |Tj−1| and Tj

∏j
i=1 pi = wj,

the sum of the above over all such pairs (e, e′) is

≤ O(1)
dm−1 dm′−1 wm−1 wm′−1 bm−1 bm′−1

(∑∞
j=m w−1

j

)2(∑∞
j=m′ w

−1
j

)2

(k + 1) |Tk|wk

(∑∞
j=k w−1

j

)2

(5.6)
�

(∑∞
j=m w−1

j

)(∑∞
j=m′ w

−1
j

)
(k + 1) |Tk|wk

(∑∞
j=k w−1

j

)2 .

We now sum over all possible choices for vk, which eliminates the |Tk|−1

factor. Next, we bound the sum of the resulting expression for m ∈ {k +
1, k + 2, . . . , n} and m′ ∈ {k + 1, k + 2, . . . , n} by summing over all m,m′ =
1, 2, . . . , n. Finally, we sum over k = 0, 1, . . . , n− 1, to obtain

∑
|e|,|e′|≤n

1{(e,e′)∈E1}

∫ 1

0

∫ 1

0

P
[
t ∈ Ae, s ∈ Ae′

]
dt ds

≤ O(1)

(
n∑

m=1

∞∑
j=m

w−1
j

)2 ∞∑
k=0

(
(k + 1) wk

( ∞∑
j=k

w−1
j

)2)−1

.

By (5.4) and (5.7), this is at most O(1)E
[
Xn

]2
.

We now explain the necessary modifications for the case (e, e′) ∈ E2. Let
m = |e| < |e′| = m′. Using the same notations as above, it is easy to see that
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the event {t ∈ Ae, s ∈ Ae′} is contained in the intersection of the following

independent events: {ρ t↔ vm−1, ρ
s↔ vm−1}, {vm

s7→ vm′−1}, {vm′
s7→ ∞} and⋂m′−1

j=0 ¬U ′j. This leads, after a computation exactly as before, to∫ 1

0

∫ 1

0

P
[
t ∈ Ae, s ∈ Ae′

]
dt ds

≤ O(1)

(∏m′−1
j=1 pj

)
bm′−1

∏m′−1
j=0 (1− bj)

dj−1

m + 1
.

With e and m′ fixed, there are at most |Tm′|/|Tm| possible choices for e′ and
so the sum of the above over such e′ is at most

O(1)
wm′−1 bm′−1

∏m′−1
j=0 (1− bj)

dj−1

m|Tm|
≤ O(1)

∑∞
k=m′

1
wk

m|Tm|
,

by (5.5) and (5.6). At level m, there are |Tm| choices for e. As m′ ≥ m + 1,
we can sum over m′ from 1 to n and then sum over m from 1 to n to yield

∑
|e|,|e′|≤n

1{(e,e′)∈E2}

∫ 1

0

∫ 1

0

P
[
t ∈ Ae, s ∈ Ae′

]
dt ds

≤ O(1)

(
n∑

m=1

∞∑
j=m

w−1
j

)
n∑

m=1

1

m

= O(1)

(
n∑

m=1

∞∑
j=m

w−1
j

)2 ∑n
m=1

1
m(∑n

m=1

∑∞
j=m w−1

j

) .

By (5.2) and (5.7), this is also at most O(1)E
[
Xn

]2
.

All of the above therefore yields E
[
X2

n

]
≤ E

[
Xn

]
+ O(1)E

[
Xn

]2
. Since

limn→∞ E
[
Xn

]
= ∞ by (5.2) and (5.7), this gives E

[
X2

n

]
≤ O(1)E

[
Xn

]2
. A

one-sided Chebyshev inequality (see, e.g., Lemma 5.4 in [6]) or alternatively
the Paley Zygmund inequality yields that there is some c > 0, which does not

depend on n, such that P
[
Xn ≥ cE[Xn]

]
≥ c. Hence P

[
limn→∞ Xn = ∞

]
≥

c, which completes the proof.

Proof of Theorem 1.3.(ii). This easily follows from Theorem 5.2.
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6 Proof of Theorem 1.4

We start with a lemma connecting the concepts of flip time and influence.

Lemma 6.1. Fix a vertex x. Then

2
∑

e

Ix(e)pe(1− pe) = E[|S|],

where S is the set of flip times for x during [0, 1].

Proof. Fix e. The probability that during [t, t + dt] the edge e switches its
state precisely once is easily seen to be 2 pe (1−pe) dt+O(dt2). Conditioning
on that time, the probability that e is pivotal for {x ↔∞} at that time is
Ix(e). Hence, the probability that there is a flip associated to e during [t, t+
dt] is 2 Ix(e) pe (1− pe) dt + O(dt2). It follows that E[Se] = 2 Ix(e) pe (1− pe)
where Se is the set of flip times associated to e during [0, 1]. Summing over
e yields the result.

Proof of Theorem 1.4. Fix x. Let En be the set of edges which are within
graph distance n of x and let Fn be the σ-algebra generated by the evolution
of the edges in En during the time interval [0, 1]. Let

Xn(t) = Xn(ω, t) := P (x
t↔∞|Fn).

While conditional probabilities are usually only defined a.s., it is clear that
there is a canonical version of these conditional probabilities and these will
always be used. Let Vn denote the total variation of Xn(t) on [0, 1].

The following two lemmas are left to the reader.

Lemma 6.2.
E[Vn] = 2

∑
e∈En

I(e)pe(1− pe).

Lemma 6.3. {Vn}n≥1 is a submartingale.

By our assumption (1.6) and by Lemma 6.2, we have supn E(Vn) < ∞.
Since {Vn}n≥1 is a nonnegative submartingale, this implies that there is an
a.s. limit V := limn→∞ Vn satisfying E(V ) < ∞. Now, for all t, the Martin-
gale convergence theorem tells us that Xn(t) converges a.s. to 1{x t↔∞}. By
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Fubini’s theorem, for a.e. ω, there exists Aω ⊆ [0, 1] such that µ(Aω) = 1 (µ
is Lebesgue measure here) and

lim
n→∞

Xn(ω, t) = 1{x t↔∞} for all t ∈ Aω. (6.1)

Now define

X̃(ω, t) :=

{
1{x t↔∞} if t ∈ Aω,

lim sups↑t,s∈Aω
1{x s↔∞} if t 6∈ Aω.

Statement (6.1) implies that the total variation of X̃ restricted to time points
in Aω is at most V for a.e. ω. It is then easy to check that the total variation
of X̃ over [0, 1] is then at most V for a.e. ω as well. We conclude that a.s.
1{x t↔∞} is equal a.s. to a function of bounded variation.

We now show that the fact that a.s. 1{x t↔∞} is equal a.e. to a function

of bounded variation implies that there are no exceptional times. Let X be
the Lebesgue measure of the amount of time that x percolates during [0, 1].
By Fubini’s theorem, E(X) is the probability that x percolates. It follows
that with positive probability, X > 0. If there were exceptional times of
nonpercolation, an easy application of Kolmogorov’s 0-1 law tells us that a.s.
there would be such times in every nonempty interval. However, the latter
together with the fact that the set of times at which x does not percolate
is open and that X > 0 contradicts the fact that 1{x t↔∞} is equal a.s. to a

function of bounded variation.

7 A 0-1 Law

In this section, we present a 0-1 law concerning the process. In addition to
being of interest in itself, we believe it might be useful for obtaining a better
understanding of the path behavior of our process and might be relevant to
some of the problems at the end of the paper.

Theorem 7.1. Consider dynamical percolation (ωt : t ∈ R) on a spherically
symmetric tree T with spherically symmetric edge probabilities, and let Q be
the set of times t ∈ R such that the cluster of the root is infinite in ωt. If
P
[
0 ∈ ∂Q

]
> 0, then a.s. Q = ∂Q (and hence by Lemma 3.2 there is a.s. a

dense set of times t ∈ R in which there is no infinite cluster in ωt).
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Now consider an arbitrary locally finite tree T with root ρ and a vertex
v of T . For any ω ⊆ 2E(T ), we may start dynamical percolation ωt with
ω0 = ω. It is easy to see that for this Markov process, the probability that

there is a positive ε such that v
t7→ ∞ for all times t ∈ [0, ε) is 0 or 1. Let

hv(ω) ∈ {0, 1} denote this probability.

Lemma 7.2. With the above notation, let v1, . . . , vm denote the children of
v; that is, the neighbors of v within Tv. Then

hv(ω) = max
{
1[v,vj ]∈ω hvj

(ω) : j = 1, 2, . . . ,m
}

holds for a.e. ω with respect to the invariant measure of the Markov process
ωt.

We point out that the lemma does not need to assume that T is spherically
symmetric.

Proof. It is certainly clear that hv is at least as large as the max on the right
hand side. We therefore only need to prove the reverse inequality. Let Uj be
the set of times t ∈ [0,∞) such that v does not percolate to ∞ in [v, vj]∪T vj

at time t. Then Uj is a relatively open set.

Set Qk :=
⋂k

j=1 Uj, and Q′
k :=

⋃k
j=1

(
[0,∞) \ Uj

)
. Note that the max on

the right hand side in the statement of the lemma is equal to 10∈Q′
m
. We prove

by induction on k that 0 ∈ Qk ∪Q′
k a.s. holds for k = 0, 1, . . . ,m. The case

k = m then implies the statement of the lemma. The base of the induction,
k = 0, is clear, because Q0 = [0,∞), by convention. Now suppose that
0 < k < m and 0 ∈ Qk ∪Q′

k. If 0 ∈ Q′
k, then 0 ∈ Q′

k+1. Therefore, suppose

that 0 ∈ Qk. Hence, there is a sequence (tn : n ∈ N) in Qk such that tn → 0.
Moreover, it is easy to see that we may choose the sequence to depend only on
Qk and in such a way that each tn is measurable. In particular, the sequence
{tn} is independent from the restriction of (ωt : t ≥ 0) to [v, vk+1]∪T vk+1 . Fix
some n ∈ N, and suppose for the moment that tn is in the closure of Uk+1.
Then we can find a point t′ in Uk+1 arbitrarily close to tn. Since tn ∈ Qk,
and Qk is relatively open, there is a point t′ arbitrarily close to tn that is in
Qk+1 = Qk ∩ Uk+1. Therefore, in the case that

{
n : tn ∈ Uk+1

}
is infinite

a.s., we have 0 ∈ Qk+1 a.s. and the inductive claim follows.
For every measurable S ⊆ [0, 1] we have by elementary Fourier analysis

that 1S(t) − 1S(t + tn) tends to zero in L2 as n → ∞. Therefore, there is
some infinite Y ⊆ N such that 1S(t)− 1S(t+ tn) tends to zero a.e. as n →∞
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within Y . Consequently, a.e. t ∈ S satisfies
∣∣{n : t + tn ∈ S}

∣∣ = ∞. We

may apply this to the set S := Uk+1 ∩ [0, 1]. However, given the sequence
{tn}, the distribution of Uk+1 is invariant under translations. Consequently,
a.s. either 0 ∈ Q′

k+1 or
∣∣{n : tn ∈ Uk+1

}∣∣ = ∞. This proves 0 ∈ Qk+1 ∪
Q′

k+1 a.s., and completes the induction. The statement of the lemma follows
immediately.

Lemma 7.3. Consider stationary percolation on a spherically symmetric
tree with spherically symmetric edge probabilities (and, as usual, assume that
the edge probabilities are bounded away from 0 and 1). Then a.s. W∞ =
limn→∞ Wn/wn exists and W∞ < ∞. Moreover, a.s. W∞ > 0 if and only if
ρ ↔∞.

Proof. As we have noted before, Wn/wn is a non-negative martingale, which
implies the a.s. existence and finiteness of W∞. Let Xn be the set of vertices
v at level n satisfying ρ ↔ v, and let Un := {v ∈ Xn : v 7→ ∞}. Fix some
v ∈ Tn. With no loss of generality, assume that P

[
ρ ↔∞

]
> 0, and hence

P
[
v ∈ Un

]
> 0. For m ≥ n, let Xv

m := {u ∈ Tm : v 7→ u} and W v
m := |Xv

m|.
The inequality (3.2) applied to T v implies that there is a universal constant
δ > 0 such that

P
[
W v

m ≥ δ E[W v
m | W v

m > 0]
∣∣∣ W v

m > 0
]
≥ δ .

Since 1{W v
m>0} → 1{v 7→∞} a.s. as m →∞, and E

[
W v

m

∣∣ W v
m > 0

]
≥ wm/|Tn|,

this implies

lim inf
m→∞

P
[
W v

m ≥ δwm |Tn|−1
∣∣∣ v 7→ ∞

]
≥ δ .

Hence,

P
[

lim
m→∞

W v
m/wm > 0

∣∣∣ v 7→ ∞
]
≥ δ .

By conditioning on the set Un and using conditional independence on the
various trees T v, v ∈ Un, we therefore get

P
[
W∞ > 0

∣∣ Un

]
≥ 1− (1− δ)|Un| .

By Lemma 4.2 in [11], a.s. on the event ρ ↔∞ we have limn→∞ |Un| = ∞.
Hence, for every finite N we have P

[
|Un| > N

∣∣ ρ ↔∞
]
→ 1 as n → ∞.

The lemma follows.
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Proof of Theorem 7.1. Let ω be a sample from the stationary measure
of the Markov process ωt. Let qn := E

[
hun(ω)

]
, where un is a vertex at level

n (since the tree is spherically symmetric, the choice of un does not affect
qn). Let Fn denote the σ-field generated by the restriction of ω to the ball
of radius n about the root u0. Lemma 7.2 easily implies by induction that
hu0(ω) = 1 if and only if there is a vertex v at level n that is connected in ω
to u0 and satisfies hv(ω) = 1. Therefore,

E
[
hu0(ω)

∣∣ Fn

]
= 1− (1− qn)Wn = 1− exp

(
log(1− qn) Wn

)
.

Since E
[
hu0(ω)

∣∣ Fn

]
tends to hu0(ω) as n →∞, we conclude that a.s. log(1−

qn) Wn tends to 0 or −∞. If

P
[

lim
n→∞

log(1− qn) Wn = −∞
]

> 0 ,

then Lemma 7.3 implies

P
[

lim
n→∞

log(1− qn) Wn = −∞
∣∣∣ ρ ↔∞

]
= 1 .

Therefore, we get either hu0(ω) = 0 a.s., or else hu0(ω) = 1{ρ↔∞} a.s. The
theorem follows.

8 Some open questions

Following are a few questions and open problems suggested by the present
paper.

1. In the spherically symmetric tree case, if wk � k2, is it the case that
with positive probability the set of times t ∈ [0, 1] at which the root
percolates has infinitely many connected components? In this case
E
[
Xn

]
� log n grows to ∞ but the second moment method fails.

2. Under the assumption of Theorem 1.4, is it the case that {t ∈ [0, 1] :

ρ
t↔∞} has finitely many connected components a.s.? (From an earlier

remark, this would be true if in this setting finiteness of the left-hand
term in (1.5) implies finiteness of the right-hand term.)
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3. Does the conclusion of Theorem 1.2(ii) hold under the weaker assump-
tions that

lim sup
n

wn

n(log n)α
< ∞

for some α ≤ 2 and the tree percolates with positive probability at
a fixed time? We describe a natural approach which does not work.
Note that under the above assumption, one can find a new tree which
dominates the original tree (in the sense that the number of vertices at
the nth level level is larger for any n) for which the new wn’s satisfy the
assumption of Theorem 1.2(ii) and hence would have exceptional times.
In [10], it is shown that this domination has a number of implications.
However, one cannot conclude that the set of times at which the original
tree percolates is dominated by the set of times at which the new tree
percolates. An example is T1 being a tree with degrees d1 = 1 and
d2 = 2, T2 being a tree with degrees d1 = 2 and d2 = 1 and the edge
probabilities are very small. Then T2 dominates T1, but the probability
that the root is connected to level 2 throughout the time interval [0, 10]
is larger for T1.

There are various questions concerning the path behavior of the process
which might be interesting to pursue. In the following questions, we con-
sider a spherically symmetric tree in which the root percolates with positive

probability at a fixed time. Let Z := {t ∈ R : ρ
t↔∞}.

4. Are the boundary points of the connected components of R \Z always
flip times?

5. If Z has connected components of positive length, do the boundary
points of these intervals have to also be boundary points of intervals in
R \ Z?

6. If there are exceptional times of nonpercolation, is Z the closure of the
flip times?
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