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Abstract

We show that for any Cayley graph, the probability (at any p) that

the cluster of the origin has size n decays at a well-defined exponential

rate (possibly 0). For general graphs, we relate this rate being positive

in the supercritical regime with the amenability/nonamenability of the

underlying graph.
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1 Introduction

Percolation is perhaps the most widely studied statistical physics model for

modeling random media. In addition, it is a source of many challenging open

problems and beautiful conjectures which are easy to state but often are very

difficult to settle; see [13] for a survey and introduction. The classical literature

concentrates on studying the model on Euclidean lattices Zd, d ≥ 2 and on

trees. However in recent years, there has been a great deal of interest in studying
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percolation on other infinite, locally finite, connected graphs; see [10, 9, 8, 15,

16, 14, 17, 27].

Our first theorem states that for any Cayley graph, the probability that the

cluster of the origin has size n decays at a well-defined exponential rate. For

Zd, this is Theorem 6.78 in [13].

Throughout this paper, C will denote the connected component of a fixed

vertex (the origin for Cayley graphs) for Bernoulli percolation.

Theorem 1 If G is a Cayley graph, then

lim
n→∞

− 1
n

log Pp (|C| = n)

exists for every p ∈ (0, 1).

Our method for proving this result combines a randomized version of the

usual method using subadditivity (as in for Zd) together with a proof that any

two finite subgraphs of G have disjoint translates that are at distance ≤ δ from

each other where δ is an appropriate function of the sizes of the subgraphs. One

expects perhaps that one should be able to take δ being a constant, depending

only on the graph. See Question 3 for the statement of this problem.

Remark: Interesting, as we point out later, there is a concept of an ordered

group who’s definition is as follows:

Definition 1 A group G with a linear ordering ≤∗ is called an (right) ordered

group if for every a ≤∗ b we have ag ≤∗ bg for all g ∈ G.

For such groups, the proof of Theorem 6.78 in [13] can be extended. However,

for general groups, it seems that this proof cannot be applied.

It is of course of interest to know if the limit above is positive or 0. As will be

pointed out later, it is positive below the critical value for all transitive graphs

and so we restrict discussion to the supercritical regime. In this case, for Zd,

the limit is 0 (see Theorem 8.61 in [13]) while for trees it is positive (although 0
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at the critical value). Equation (10.12) in [13]) has an explicit formula for these

probabilities for the rooted infinite 3-ary tree.

One of the key issues studied in percolation is the difference in the behav-

ior of percolation depending on whether the underlying graph is amenable or

nonamenable [9, 8, 17, 27]. For example, for amenable transitive graphs, there

is uniqueness of the infinite cluster for all values of p while for nonamenable

transitive graphs, it is conjectured that there is nonuniqueness of the infinite

cluster for some values of p. Here it is also worthwhile to point out that it

is well known that properties of other probabilistic models associated with a

graph differ depending on whether the graph is amenable or not. Perhaps the

most classical of all is the relation with simple random walk on a graph, first

studied by Kesten [22] where it was shown that there is a positive spectral gap

in the transition operator if and only if the group is nonamenable. Similar rela-

tionships have been investigated with respect to other statistical physics models

(see e.g. [20, 21, 17, 11]).

For the nonamenable case, we state the following question.

Question 1 Is it true that for a general transitive nonamenable graph G we

have

Pp (|C| = n) ≤ exp (−γ (p)n) ∀ n ≥ 1 (1)

for some γ (p) > 0 whenever p 6= pc (G) ?

Consider a general weakly nonamenable graph G := (V, E) (not necessarily

transitive) with bounded degree. Using a not so difficult argument of counting

lattice animals, one can prove that if v0 is a fixed vertex of G and C is the

open connected component of v0, then for sufficiently large p there is a function

γ (p) > 0, such that

Pp (|C| = n) ≤ e−γ(p) n ∀ n ≥ 1 . (2)

In fact, in the appendix by Gábor Pete in [11] (see equation (A.3)), it is
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shown by a slightly more involved argument, that the exponential decay (2)

holds whenever p > 1/ (1 + κ′) where κ′ = κ′ (G, v0) is the anchored Cheeger

constant. This is certainly in contrast to the Zd case and also, as we will see later

in Section 4, to what happens for a large class of transitive amenable graphs.

Using classical branching process arguments, one can conclude that for any

infinite regular tree (which are prototypes for transitive nonamenable graphs),

we must have an exponential tail bound for the cluster size distribution, when

p is not equal to the critical probability.

The assumption of transitivity is however needed for Question 1 to have

a positive answer as the following example illustrates. The graph obtained

by taking Zd and attaching a regular rooted tree with degree r + 1 at each

vertex where r satisfies pc

(
Zd

)
< 1

r is a nontransitive, nonamenable graph which

possesses an intermediate regime (above the critical value) of sub-exponential

decay as next stated in detail.

Theorem 2 Consider the graph just described and suppose pc

(
Zd

)
< 1

r .

(a) If p ∈
(
0, pc

(
Zd

))
∪

(
1
r , 1

)
then there are functions φ1 (p) <∞ and φ2 (p) >

0, such that for all n ≥ 1,

exp (−φ1 (p)n) ≤ Pp (n ≤ |C| <∞) ≤ exp (−φ2 (p) n) . (3)

(b) If p ∈
(
pc

(
Zd

)
, 1

r

)
then there are functions ψ1 (p) < ∞ and ψ2 (p) > 0,

such that for all n ≥ 1,

exp
(
−ψ1(p)n(d−1)/d

)
≤ Pp (n ≤ |C| <∞) ≤ exp

(
−ψ2(p)n(d−1)/d

)
.

(4)

(c) For p = 1
r we have constants c1 > 0 and c2 (ε) <∞ such that every ε > 0

and for all n ≥ 1,

c1
n1/2

≤ Pp (n ≤ |C| <∞) ≤ c2
n1/2−ε

. (5)
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As also explained in Section 5, if pc

(
Zd

)
> 1

r , this intermediate regime disap-

pears.

An interesting class of graphs to investigate in regard to Question 1 are

products of Zd with a homogeneous tree.

Question 2 Is there exponential decay in the supercritical regime for Zd × Tr

where Tr is the homogeneous r-ary tree?

We now move to the amenable case.

Conjecture 1 Let G := (V, E) be a transitive amenable graph. Then there is a

sequence αn = o (n), such that for p > pc (G)

Pp (n ≤ |C| <∞) ≥ exp (−η (p)αn) ∀ n ≥ 1 , (6)

where η (p) <∞.

It turns out that the argument of Aizenman, Delyon and Souillard [2, 13]

for proving this sub-exponential behavior for Zd can be successfully carried out

for a large class of transitive amenable graphs. For Zd, the sequence {αn} can

be taken to be {n d−1
d }.

Theorem 3 If G := (V, E) is a Cayley graph of a finitely presented amenable

group with one end, then there is a sequence αn = o (n) such that for p > pc (G),

there is η (p) <∞ such that

Pp (n ≤ |C| <∞) ≥ exp (−η (p)αn) ∀ n ≥ 1 . (7)

We finally point out that transitivity is a necessary condition in Conjecture

1.

Proposition 4 There is an amenable nontransitive graph with pc < 1 for which

one has exponential decay of the cluster size distribution at all p 6= pc.
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This paper concerns itself mostly with the supercritical case. It therefore

seems appropriate to end this introduction with a few comments concerning

the subcritical case. It was shown independently in [25] and [1] that for Zd in

the subcritical regime, the size of the cluster of the origin has a finite expected

value. While it seems that the argument in [25] does not work for all transitive

graphs as it seems that it is needed that the balls in the graph grow slower than

enγ

for some γ < 1, it is stated in [27] that the argument in [1] goes through

for any transitive graph. Theorem 6.75 in [13] (due to [3]) states that for Zd,

if the expected size of the cluster is finite, then exponential decay of the tail

of the cluster size follows. As stated in [3], this result holds quite generally in

transitive situations and so, in combination with the statement in [27] referred

to above, for all transitive graphs, one has exponential decay of the cluster size

in the subcritical regime.

We point out however, not surprisingly, that transitivity is again needed

here. An example of a graph which does not have exponential decay in (a

portion of) the subcritical regime is obtained by taking the positive integers,

planting a binary tree of depth ak (sufficiently large) at k for k ≥ 1 and also

attaching to the origin a graph whose critical value is say 3/4. This graph has

pc = 3/4 but for some p < 3/4, exponential decay fails.

We mention that Questions 3 and 4 which appear later on and arise naturally

in our study could also be of interest to people in geometric group theory.

The rest of the paper is organized as follows. In Section 2, we provide all

the necessary definitions and notations. In Section 3, we prove Theorem 1. In

Section 4, we prove Theorem 3 and Proposition 4. Finally, in Section 5, we prove

Theorem 2 as well as study the variant of the example in Theorem 2 obtained

by taking pc

(
Zd

)
> 1

r instead.

6



2 Definitions and notations

Let G = (V, E) be an infinite, connected graph. We will say G is locally finite if

every vertex has finite degree.

The i.i.d. Bernoulli bond percolation with probability p ∈ [0, 1] on G is

a probability measure on {0, 1}E , such that the coordinate variables are i.i.d.

with Bernoulli (p) distribution. This measure will be denoted by Pp. For a given

configuration in {0, 1}E , it is customary to say that an edge e ∈ E is open if

it is in state 1, otherwise it is said to be closed. Given a configuration, write

E = Eo ∪ Ec, where Eo is the set of all open edges and Ec is the set of all closed

edges. The connected components of the subgraph (V, Eo) are called the open

connected components or clusters.

One of the fundamental quantities in percolation theory is the critical prob-

ability pc (G) defined by

pc (G) := inf
{
p ∈ [0, 1]

∣∣∣ Pp (∃ an infinite cluster ) = 1
}
. (8)

The percolation model is said to be subcritical, critical or supercritical regime

depending on whether p < pc (G), p = pc (G) or p > pc (G) respectively.

For a fixed vertex v ∈ V, let C (v) be the open connected component con-

taining the vertex v. Let

θv
G (p) := Pp (C (v) is infinite ) . (9)

For a connected graph G, it is easy to show that irrespective of the choice of

the vertex v

pc (G) = inf
{
p ∈ [0, 1]

∣∣∣ θv
G (p) > 0

}
. (10)

Definition 2 We will say a graph G = (V, E) is transitive if for every pair of

vertices u and v there is an automorphism of G, which sends u to v. In other

words, a graph G is transitive if its automorphism group Aut (G) acts transitively

on V.
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Observe that if G is transitive then we can drop the dependency on the vertex v

in (9), and then we can write θG (p) = Pp (C (v0) is infinite ) for a fixed vertex

v0 of G. θG (·) is called the percolation function for a transitive graph G.

We now give definitions of some of the qualitative properties of a graph G

which are important for our study.

Definition 3 Let G := (V, E) be an infinite, locally finite, connected graph. The

Cheeger constant of G, denoted by κ (G), is defined by

κ (G) := inf
{
|∂W |
|W |

∣∣∣∣ ∅ 6= W ⊆ V and |W | <∞
}

(11)

where ∂W :=
{
u 6∈W

∣∣∣ ∃v ∈W, such that {u, v} ∈ E
}

is the external vertex

boundary. The graph G is said to be amenable if κ (G) = 0; otherwise it is

called nonamenable.

A variant and weaker property than the above is the following.

Definition 4 Let G := (V, E) be an infinite, locally finite, connected graph. We

define the anchored Cheeger constant of G with respect to the vertex v0 by

κ′ (G, v0) := inf
{
|∂W |
|W |

∣∣∣∣ v0 ∈W ⊆ V,W connected and |W | <∞
}

(12)

where ∂W is defined as above. The graph G is said to be strongly amenable if

κ′ (G, v0) = 0, otherwise it is called weakly nonamenable.

It is easily argued that for a connected graph G, κ′ (G, v0) = 0 implies that

κ′ (G, v) = 0 for every vertex v and so the definition of strong amenability (or

weak nonamenability) does not depend on the choice of the vertex v0. Of course,

the value of the constant k′ (G, v0) may depend on the choice of v0 in the weakly

nonamenable case. It follows by definition that κ (G) ≤ κ′ (G, v0) for any v0

and so strong amenability implies amenability. On the other hand, it is easy to

show that the two notions are not equivalent although if G is transitive then

they are equivalent.
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A special class of transitive graphs which are associated with finitely gener-

ated groups are the so-called Cayley graphs.

Definition 5 Given a finitely generated group Ḡ and a symmetric generating

set S (symmetric meaning that S=S−1), a graph G := (V, E) is called the left-

Cayley graph of Ḡ obtained using S if the vertex set of G is Ḡ and the edge set

is
{
{u, v}

∣∣∣ v = su for some s ∈ S
}
.

Similarly we can also define a right-Cayley graph of the group Ḡ obtained using

S. Observe that the left- and right-Cayley graphs obtained using the same

symmetric generating set are isomorphic, where an isomorphism is given by the

group involution u 7→ u−1, u ∈ Ḡ. It is also easy to see that multiplication

on the right by any element in Ḡ is a graph automorphism of any left-Cayley

graph.

If not explicitly mentioned otherwise, by a Cayley graph of a finitely gen-

erated group Ḡ, we will always mean a left-Cayley graph with respect to some

symmetric generating set.

Definition 6 A group is finitely presented if it is described by a finite number

of generators and relations.

Definition 7 A graph is one-ended if when one removes any finite subset of the

vertices, there remains only one infinite component. A group is one-ended if its

Cayley graph is; it can be shown that this is then independent of the generators

used to construct the Cayley graph.

3 Limit of the tail of the cluster size distribution

for Cayley graphs

In this section, we prove Theorem 1. Throughout this section o will denote the

identity element of our group.

A Cayley graph is said to have polynomial growth if the size of a ball is

bounded by some polynomial (in its radius). Given a finitely generated group,

9



its Cayley graph having polynomial growth does not depend on the choice of the

finite symmetric generating set. It is well known (see [19]) that the growth of

a Cayley graph of polynomial growth is always between α rk and 1
αr

k, for some

k ∈ N and α ∈ (0, 1) and that if a Cayley graph is not of polynomial growth,

then for any polynomial p(n), the ball of radius n around o is larger than p(n)

for all but at most finitely many n.

Let G be a Cayley graph with degree d. Denote by Cx the open component

of vertex x; C will stand for the open component of o. As usual, for a (not

necessarily induced) subgraph H of G, E(H) is the edge set and V (H) is the

vertex set of H. Given some p ∈ [0, 1], let πn := Pp (|C| = n).

Lemma 5 If G is a Cayley graph of linear or of quadratic growth, then

lim
n→∞

− 1
n

log Pp (|C| = n)

exists for every p ∈ (0, 1).

Proof: If G has quadratic growth then the vertices of G can be partitioned into

finite classes, so-called blocks of imprimitivity, in such a way that the group of

automorphisms restricted to the classes is Z2, see [28]. Now we can mimic the

proof of the claim for Z2, see [13]: use the subadditive theorem and the fact that

for any two connected finite subgraphs of G, one of them has a translate that

is disjoint from the other, but at bounded distance from it. For Cayley graphs

of linear growth, one can proceed along the same arguments, since a partition

into blocks of imprimitivity, as above, exists (see [19]).

Before starting the proof of Theorem 1, we first prove the following lemma

which gives an important estimate for Cayley graphs with at least cubic growth.

Using the simple structure of Cayley graphs of linear or quadratic growth,

Lemma 6 is true for every Cayley graph. (In the latter two cases, (|A|+ |B|)3/4

can be replaced by 1.)
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Lemma 6 Let G be a Cayley graph of at least cubic growth and A,B ⊂ G be

connected subgraphs. Then there is a γ ∈ Aut(G) such that the translate γA is

disjoint from B and dist(γA,B) ≤ (|A|+ |B|)3/4.

Proof: Let An be the set of all connected subgraphs of size n in G that contain

the o. Fix Γ to be the group whose Cayley graph G is. Note that Γ acts vertex-

transitively by right multiplication on G and only the identity of Γ has a fixed

point. For a vertex x of G, let γx ∈ Γ be the (unique) element of Γ that takes

o to x. Finally, for a subgraph H of G denote by H ′ the 1-neighborhood of H

(that is, the set of vertices at distance ≤ 1 from H). Note that if H is connected

and |V (H)| > 1, then |V (H ′)| ≤ d|V (H)|, because every point of H has at most

d− 1 neighbors outside of H.

Let n,m > 1 and A ∈ An, B ∈ Am. Suppose that for some γ 6= γ̄ ∈ Γ

there is a point x in A′ such that γB′ and γ̄B′ both contain x. Then, by the

choice of Γ, γ−1x 6= γ̄−1x. Since γ−1x, γ̄−1x ∈ B′, we conclude that every

x ∈ A′ is contained in at most |V (B′)| translates of B′ by Γ. Hence there

are at most |V (A′)| |V (B′)| translates of B′ that intersect A′. Since G has at

least cubic growth, so there is a constant α > 0 such that, the ball of radius

(n + m)3/4 around o contains at least α(n + m)9/4 points, which is greater

than |V (A′)| |V (B′)| ≤ d2nm for m,n sufficiently large. Therefore there exists

a vertex xA,B in this ball of radius (n + m)3/4 such that γxA,B
B′ does not

intersect A′. Fix such an xA,B . Fix some path P (A,B) of minimal length

between A and xA,B , denote its length by |P (A,B)|. By the choice of xA,B we

have |P (A,B)| ≤ (n+m)3/4. Taking γ := γ−1
xA,B

completes the proof.

Proof of Theorem 1: For graphs of linear or quadratic growth, the theorem

follows from Lemma 5.

Assume now that our group has at least cubic growth and so the ball of

radius r has volume ≥ αr3 with some α > 0 by the facts about Cayley graphs

that we mentioned earlier. Fix Γ as in the proof of the previous lemma.

The generalized subadditive limit theorem (see Theorem II.6 in the Appendix
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of [13]) gives the result if we can show that

πm+n ≥ πmπnc
(m+n)3/4 log2(m+n) (13)

whenever m and n are sufficiently large, where 0 < c = c(d, p) < 1 is some

constant depending only on d and p.

We will first show that

2(m+n)3/4((1+d) log2(m+n)+c1(d))πm+n

≥
∑

A∈An

∑
B∈Am

Pp (C = A) Pp

(
CxA,B

= γxA,B
(B)

)
p(n+m)3/4

(1− p)2d(n+m)3/4

where c1(d) is a constant depending only on d. We will then show that the

theorem will follow easily from here.

To prove the above inequality let A ∈ An, B ∈ Am. Define xA,B and γxA,B

as in the proof of Lemma 6. Let U(A,B) be defined as the union of three graphs:

U(A,B) := A∪γxA,B
B∪P (A,B). Fix some arbitrary X̃(A,B) ⊂ U(A,B) set of

vertices not containing o such that the subgraph K(A,B) := U(A,B)\ X̃(A,B)

is connected and |V (K(A,B))| = n+m. Then let X(A,B) be the subgraph of

U(A,B) consisting of the edges incident to some element of X̃(A,B).

For fixed A ∈ An and B ∈ Am we obtain

Pp (C = K(A,B))

≥ Pp (C = A) Pp

(
CxA,B

= γxA,B
(B)

∣∣C = A
)
p|P (A,B)|(1− p)2d|P (A,B)|

by first opening the edges of P (A,B), closing the other edges incident to the

inner vertices of P (A,B) but not in A ∪ γxA,B
(B), and finally closing every

edge incident to some element of X(A,B), whenever it is necessary. The events

{C = A} and {CxA,B
= γxA,B

(B)} are independent because they are determined

by disjoint sets of edges, since xA,B was chosen such that A′ and γxA,B
(B′) are
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disjoint. Hence the previous inequality can be rewritten as

Pp (C = K(A,B))

≥ Pp (C = A) Pp

(
CxA,B

= γxA,B
(B)

)
p(m+n)3/4

(1− p)2d(m+n)3/4
(14)

also using |P (A,B)| ≤ (n+m)3/4.

Now we will show that a given K ∈ Am+n can be equal to K(A,B) for

at most 2(m+n)3/4((1+d) log2(m+n)+c1(d)) pairs (A,B), where c1(d) is a constant

depending only on d. First, given m and n, U(A,B) determines (A,B) up to a

factor

2(log2(m+n)+1+log2 d)(m+n)3/4
m.

This is because of the following reason. An upper bound for the number of

choices for the edges of P (A,B) \ (A ∪ γxA,B
B) from U(A,B) is

|E(U(A,B))|(m+n)3/4
≤ (2d(m+ n))(m+n)3/4

= 2(log2(m+n)+1+log2 d)(m+n)3/4
,

using |P (A,B)| ≤ (n + m)3/4 and |E(U(A,B))| ≤ (n + m + (n + m)3/4)d.

If we delete the edges of P (A,B) \ (A ∪ γxA,B
B) from U(A,B), we get back

A∪γxA,B
B. This has two components, so one of them is A and the other one is

γxA,B
B. The set γxA,B

B may coincide for at most |V (B)| = m many different

B’s (all being Γ-translates of γxA,B
B to o, using again the choice of Γ). We

conclude that the number of (A,B) pairs that give the same U(A,B) is at most

2(m+n)3/4(log2(m+n)+1+log2 d)m. Now, X(A,B) is U(A,B)\E(K(A,B)) without

its isolated points (points of degree 0) and so for a given K ∈ Am+n,

|{(A,B) : K(A,B) = K}|

≤ 2(m+n)3/4(log2(m+n)+1+log2 d)m |{U(A,B) : K(A,B) = K}|

= 2(m+n)3/4(log2(m+n)+1+log2 d)m |{X(A,B) : K(A,B) = K}| .

We will bound the cardinality of the set on the right side, with this fixed
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K. Given A and B, X(A,B) is such a graph that the union K(A,B)∪X(A,B)

is connected, and |V (X(A,B))| ≤ d(n + m)3/4 (since X is contained in the

1-neighborhood of X̃, and |X̃| ≤ (n + m)3/4). To find an upper bound for

the number of possible X(A,B)’s with these two properties (and hence where

possibly K(A,B) = K), we first specify the vertices of K(A,B) that are also in

X(A,B) (at most
(

n+m
d(n+m)3/4

)
possibilities). If X(A,B) has k components, with

some arbitrary fixed ordering of the vertices of G, let xi be the first element

of K(A,B) ∩X(A,B) in the i’th component. Then for each xi choose the size

of the component of X(A,B) that contains it. There are at most 2d(n+m)3/4+1

total ways to do this because the number of ways to express an integer k as

the ordered sum of positive integers (which would be representing the sizes of

the different components) is at most 2k and then we can sum this up from 1

to d(n + m)3/4 corresponding to the different possible sizes for the vertex size

of X(A,B). Next, we finally choose the components themselves. It is known

that the number of lattice animals on ` vertices is at most 72d` (see (4.24) in

[13]) which gives us a total bound of 72d2(n+m)3/4
for the number of ways to

choose all the components. Note that we did not have to choose xi, since xi is

determined by X(A,B)∩K(A,B) as soon as we know the components of the xj

for all j < i. Calculations similar to the above can be found in [29]. We obtain

an upper bound of

2(m+n)3/4(log2(m+n)+1+log2 d)m

(
n+m

d(n+m)3/4

)
2d(n+m)3/4+172d2(n+m)3/4

for the number of all possible pairs (A,B) that define the same K = K(A,B)

for some connected subgraph K with n+m vertices, whenever m and n are not

too small. Bounding the binomial coefficient by (n+m)d(n+m)3/4
, it easy to see

that this is at most 2(m+n)3/4((1+d) log2(m+n)+c1(d)) for some constant c1(d).

Since every K(A,B) is in Am+n, the first inequality below follows from this
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last estimation on the overcount. The second one is a consequence of (14)

2(m+n)3/4((1+d) log2(m+n)+c1(d))πm+n

≥
∑

A∈An

∑
B∈Am

Pp (C = K(A,B))

≥
∑

A∈An

∑
B∈Am

Pp (C = A) Pp

(
CxA,B

= γxA,B
(B)

)
p(n+m)3/4

(1− p)2d(n+m)3/4

≥ πnπmβ
(n+m)3/4

≥ πnπmβ
(n+m)3/4 log2(m+n) ,

where β := p(1− p)2d ∈ (0, 1), whenever m and n are large enough. This yields

Equation (13) with an appropriate choice of c(d, p) as desired and proves the

theorem.

Remarks: The following claim seems intuitively clear, but “continuity” argu-

ments that work for Zd (or more generally, for so-called ordered groups) fail for

arbitrary groups. If it were true, then the proof of Theorem 1 would become

significantly simpler: the subadditive theorem could be applied almost right

away.

Question 3 Let G be a transitive graph. Is there a constant c depending on G

such that for any finite subgraphs A and B there is an automorphism γ such

that γA and B are disjoint and at distance c from each other?

Our Lemma 6 only shows that there exists a γ such that A and γB are at

distance ≤ (|A|+ |B|)3/4. As observed by Iva Kozáková (personal communica-

tion), one cannot have a positive answer to Question 3 with c = 1 for all groups.

An example showing this is the free product of a cycle of length 3 and a cycle

of length 4, with A and B equal to cycles of length 3 and 4 respectively.

It is worth noting that for a Cayley graph of a so-called ordered group, the

proof of Theorem 1 is rather straightforward. This is primarily because of the

remarks made above. In this case the proof is really a generalization of the

proof for Zd. Interesting enough one can also show that on the infinite regular
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tree with degree 3 (with is not a Cayley graph of an ordered group) such an

argument does not work. Still, Theorem 1 holds of course for it and there is in

fact an affirmative answer to Question 3 in this case.

4 Sub-exponential decay for certain transitive

amenable graphs in the supercritical regime

While Question 1 and Conjecture 1 propose a characterization of amenability

via cluster size decay in the supercritical regime (assuming, for completeness,

the widely believed conjecture [10], that pc < 1 whenever G grows faster than

linear), a conjecture of Pete suggests that this sharp contrast vanishes from

a slightly different point of view. Instead of the size of the cluster, consider

the size of its boundary. It is known from Kesten and Zhang [23] that when

G = Zd, for all p > pc, there exists a k such that the probability that the exterior

boundary of the k-closure (see Definition 8) of a finite supercritical cluster has

size ≥ n decays exponentially in n. (This is not true without taking the closure,

as also shown in [23] for p ∈ (pc, 1 − pc).) This led Pete to conjecture that for

any transitive graph and supercritical p, there exists a constant k = k(p) such

that P(n < |∂+
k C(o)| < ∞) ≤ exp(−cn), where ∂+

k C(o) denotes the exterior

boundary of the k-closure of the cluster of o. See [26] for applications.

Before starting on the proof of Theorem 3, we prove the following (technical)

lemma which will be needed in the proof.

Lemma 7 Let G be an amenable Cayley graph. Then there is a sequence

{Wn}n≥1 of subsets of V such that for every n ≥ 1 the induced graph on Wn is

connected and

lim
n→∞

|∂Wn|
|Wn|

= 0. (15)

Moreover, supn
|Wn+1|
|Wn| <∞.

Proof: For groups of linear or quadratic growth, define Wn to be the ball of

radius n and it is immediate. (In fact, for all groups of polynomial growth,
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the (nontrivial) facts we mentioned earlier concerning them implies that we can

take Wn to be the ball of radius n in these cases as well.)

We now assume that the group as at least cubic growth rate. Since G

is amenable, there exists a sequence {Wn}n≥1 of nonempty finite subsets of V

such that for every n ≥ 1 the induced subgraph on Wn is connected and satisfies

equation (15). (In the definition of amenability, the Wn’s are not necessarily

connected, but it is easy to check that they may be taken to be.) Without loss

of generality, we can also assume |Wn| ≤ |Wn+1|.

Now, whenever |Wn+1| / |Wn| > 3 we will add a new set E in the Følner

sequence, after Wn, with the property that E is connected, that |E|/|Wn| ≤ 3,

and such that |∂E|/|E| ≤ |∂Wn|/|Wn| + 2d/|Wn|1/4. The lemma then can be

proved by repeating this procedure as long as there are two consecutive sets in

the sequence whose sizes have ratio greater than 3.

So all what is left, is to show the existence of such an E. Now, apply Lemma

6 with A and B both chosen to be Wn. Take the union of A, γB, and the path

of length ≤ (|A| + |B|)3/4 between A and γ(B). Let the resulting graph be E.

Clearly E satisfies the condition about its size. It also satisfies the isoperimetric

requirement, because |∂E| ≤ 2|∂Wn|+(2d|Wn|)3/4 and |E| ≥ 2|Wn|, where d is

the degree of a vertex in G. This completes the proof.

Proof of Theorem 3: Let {Wn}n≥1 be a sequence of subsets of V satisfying the

conditions of Lemma 7.

For a finite set W ⊆ V (G), let ∂ExtW be the set of v ∈ ∂W for which there

exists a path from v to ∞ which lies (other than v) in V (G) \ (W ∪ ∂W ). It

is easy to see that if the induced graph on W is connected, then for any vertex

w ∈ W the set ∂ExtW is a minimal cutset between w and ∞. From [6, 29] we

know that, since we are assuming the graph G is a Cayley graph of a finitely

presented group with one end, there exists a positive integer t0, such that any
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minimal cutset Π between any vertex v and ∞ must satisfy

∀A,B with Π = A ∪B,distG (A,B) ≤ t0. (16)

Letting U t :=
{
v ∈ V (G)

∣∣∣ distG (v, U) ≤ t
}

for any U ⊆ V (G), and t ∈ N,

it is not hard to deduce from the above that for any connected finite subset of

vertices W , we have that the induced subgraph on (∂ExtW )t0 is connected. In

particular, it follows that for each n ≥ 1 the induced graph on (∂ExtWn)t0 is

connected, and further by using (15) we get

lim
n→∞

∣∣∣(∂ExtWn)t0
∣∣∣

|Wn|
= 0 . (17)

Now the proof by Aizenman, Delyon and Souillard [2] as given in [13] (see

page 218), essentially goes through when we replace a “n-ball” of Zd by Wn,

and the “boundary of a n-ball” by (∂ExtWn)t0 , leading to the sub-exponential

bound (7). The point of Lemma 7 is that we need to obtain the claim in the

theorem for all n; without Lemma 7, we could only make the conclusion for a

sequence of n going to ∞.

Remarks: Note that to carry out the above proof, we do not need that (16)

holds for all minimal cutsets but only for some fixed Følner sequence, i.e. for

a sequence of connected Wn’s satisfying (15). Thus a positive answer to the

following question would imply Theorem 3 for an arbitrary amenable group.

Definition 8 The k-closure of a graph G is defined to be the graph on the vertex

set of G with an edge between two vertices if and only if their distance in G is

at most k.

Hence (16) is equivalent to saying that any minimal cutset Π of G is con-

nected in the t0-closure of G.

Question 4 Does every amenable graph have a Følner sequence {Wn} (that is,

a sequence satisfying Equation (15)), such that for some k the k-closure of ∂Wn
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is connected for every n?

In [29], an example of a Cayley graph (coming from the so-called the lamplighter

group) with one end, whose “usual” Følner sequence does not satisfy the above

property for its minimal cutsets, is given. As a consequence, the lamplighter

group is not finitely presented (which was first shown in [7]), and hence 3 does

not apply to this case. However, the lamplighter group is not a counterexample

to Question 4, as shown by the following construction. Consequently, it has

subexponential decay of cluster size probabilities in the supercritical regime.

Example 1 Recall that, informally, the lamplighter group G is defined as fol-

lows. An element of G is a labeling of Z with labels “on” or “off”, with only

finitely many on, together with one specified element of Z, the position of the

lamplighter. Take the element when we move the lamplighter one step to the

right (corresponding to multiplication from the right by the element with all the

lamps off and the lamplighter at 1), and the element when we switch the lamp

where the lamplighter is (corresponding to the element when the lamplighter

is in 0 and the lamp there is the only one on), as a set of generators for the

right-Cayley graph that we consider now. This way we defined multiplication

for any two elements. See e.g. [29] for a more formal definition.

Given x ∈ G, let π(x) be the position of the lamplighter.

To construct the desired Følner sequence Wn, let Bn be the set of elements

x with π(x) ∈ [1, n] and all the lamps outside [1, n] are off. The Bn form the

“usual” Følner sequence that we referred to earlier. We shall add paths to Bn

to get Wn, in the following way. For each element x of the inner boundary of

Bn we will define a path Px. Note that since x is on the boundary of Bn, π(x)

is either 1 or n. If π(x) = n, and if the rightmost lamp that is on is at place

n − k, Px will be the following. Start from x, then the lamplighter moves to

the n + k + 1’th place, switches the lamp on there, then moves back to place

n−k, switch the lamp, then move to n+k+1 again and switch, and then move

back to n. The endpoints of Px are in the boundary of Bn and the interior of
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Px is disjoint from Bn. For those x, where π(x) = 1, use the above definition

but “reflected”. Finally, define a path from the point where all lamps are off

and the lamplighter is in n to the one where all lamps are off and he is in 1,

by sending the lamplighter to 2n, switch, go to −n, switch, back to 2n, switch,

back to −n, switch, and then go to 1. Define Wn as the union of Bn and all the

Px, where x is some boundary point of Bn.

We only sketch the proof of that Wn is a Følner sequence with boundaries

that are connected in the 2-closure. We leave it for the interested reader to fill

out the details.

Look at the 2-closure G2 of G. Define a graph on the connected components

of the inner boundary ∂Bn in this thickening: put an edge between two if some

points of the two are connected by a path Px defined above. One can show

that the paths were defined so that this graph is connected. The boundary

of a path is clearly connected in the 2-closure, and (one can show that) these

path-boundaries are (basically) contained in ∂Wn. One concludes that Wn has

a connected boundary in G2. Wn is Følner, because the paths added (and hence

their boundaries, and the boundary of Wn) were constructed so as to have total

length constant times 2n, while Wn has size of order n2n.

We complete this section with the

Proof of Proposition 4:

Let Tρ
2 be the infinite rooted binary tree, with root ρ. Consider the graph

G obtained by attaching an infinite ray (a copy of Z+) at the vertex ρ of the

graph Tρ
2. It is easy to see that G is amenable even though Tρ

2 is not, but of

course is not transitive.

Observe that for the i.i.d. bond percolation on G, the critical probability

pc (G) = pc (T2) = 1
2 . Let C be the open connected component containing the

vertex ρ. Fix 0 < p < 1, it is immediate that under the measure Pp we have

|C| d= X + Y ,
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where X ∼ Geometric (p) and Y has a distribution same as the total size of

a Galton-Watson branching process with progeny distribution Binomial (2, p),

and X and Y are independent.

Now for every p ∈ (0, 1) we know that X has an exponential tail. Moreover

from classical branching process theory we know that when p 6= 1
2 we must also

have an exponential tail for Y on the event [Y <∞]. This is because when

p < 1
2 the process is subcritical and we can use Lemma 8(a) (given in Section

5); and when p > 1
2 , the process is supercritical, but on the event [Y <∞] it

is distributed according to a subcritical Galton-Watson process (see Theorem

I.D.3 on page 52 of [5]). These facts together prove that for every p 6= 1
2 there

is a constant λ (p) > 0, which may depend on p, such that

Pp (|C| = n) ≤ exp (−λ (p)n) ∀ n ≥ 1 . (18)

5 A special non-transitive, nonamenable graph

In this section we will study a particular non-transitive graph, which is also

nonamenable; namely, the d-dimensional integer lattice Zd with rooted regular

trees planted at each vertex of it. More precisely, for each x ∈ Zd, let Tx
r be an

infinite rooted regular tree with degree (r+ 1) which is rooted at x. Thus each

vertex of Tx
r has degree (r + 1) except for the root x, which has degree r. We

consider the graph

G := Zd
⋃  ⋃

x∈Zd

Tx
r

 . (19)

Observe that pc(G) = min
{
pc

(
Zd

)
, pc

(
T0

r

)}
and recall pc

(
T0

r

)
= 1

r .

Before we prove Theorem 2, we note that for this particular graph G the two

critical points pc

(
Zd

)
and 1

r play two different roles. pc

(
Zd

)
is the critical point

for the i.i.d. Bernoulli bond percolation on G, but when p is between pc

(
Zd

)
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and 1
r the cluster size of the origin behaves like the cluster size of the origin for

supercritical bond percolation on Zd. This is of course intuitively clear, because

in this region the planted trees are all subcritical. On the other hand when

p > 1
r then the tree components take over and we have the exponential decay

of the cluster size of the origin, conditioned to be finite (see Lemma 8 below).

The following lemma will be needed to prove Theorem 2. This result is

classical in the branching process literature, for a proof see [24, 4].

Definition 9 we say that a nonnegative random variable has an exponential

tail if there exists c so that P (X ≥ t) ≤ e−ct for t ≥ 1.

Lemma 8 Consider a subcritical or critical branching process with progeny dis-

tribution N . Let S be the total size of the population starting with one individual.

(a) If N has an exponential tail and the process is subcritical, then S has an

exponential tail.

(b) If the process is critical and N has a finite but non-zero variance, then

then there is a constant c (depending on the distribution of N), such that

P (S = n) ≤ c

n3/2
. (20)

Moreover if the offspring distribution is non sub-lattice, that is, there is

no a ∈ N and b ∈ N ∪ {0} such that P (N ∈ aN + b) = 1, then

P (S = n) ∼ c

n3/2
. (21)

Proof of Theorem 2: Let CZd := C ∩ Zd and CTx
r

:= C ∩ Tx
r for x ∈ Zd. By

definition

C =
⋃

x∈CZd

CTx
r
, (22)
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where the union is a disjoint union. Thus

|C| =
∑

x∈CZd

∣∣CTx
r

∣∣ . (23)

Moreover, using the special structure of this particular graph G, we observe that

under Pp, when conditioned on the random cluster CZd , the tree-components,{
CTx

r

}
x∈CZd

, are independent and identically distributed, each being a family

tree of a Galton-Watson branching process with progeny distribution Binomial (r, p).

(a) First of all it is easy to show that for any bounded degree graph the tail of

the size of the cluster of any fixed vertex has an exponential lower bound. So

the lower bound for our graph follows trivially.

Now for p < pc

(
Zd

)
= pc (G) we must have Pp (|C| <∞) = 1. The expo-

nential upper bound follows using the representation (23) the following (easy)

lemma, who’s proof is given later.

Lemma 9 Let (Sj)j≥1 be i.i.d. non-negative random variables, which are inde-

pendent of N , which is a positive integer valued random variable. Let

Z :=
N∑

j=1

Sj . (24)

Then if Sj’s and N have exponential tails, so does Z.

Here we note that by Lemma 8 the summands of the right-hand side of (23) have

exponential tail while the random index in the same equation has exponential

tail by Theorem 6.75 of Grimmett [13].

For the case p > 1
r > pc (G), we have Pp (|C| <∞) < 1. Observe that

[|C| <∞] =
[
|CZd | <∞, and

∣∣CTx
r

∣∣ <∞ ∀ x ∈ CZd

]
. (25)

Once again the exponential upper bound follows from the decomposition (23)

and using Lemma 9. This is because under the conditional distribution Pp

(
·
∣∣∣ |C| <∞

)
summands of the right-hand side of (23) have exponential tail (see Theorem
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I.D.3 of [5]), and the index has exponential tail because of the following argu-

ment:

Pp

(
|CZd | ≥ n

∣∣∣ |C| <∞
)

=
Pp

(
∞ > |CZd | ≥ n and

∣∣CTx
r

∣∣ <∞ ∀ x ∈ CZd

)
Pp (|C| <∞)

≤
(
Pp

(∣∣CT0
r

∣∣ <∞
))n

Pp (|C| <∞)
.

(b) First we obtain the lower bound for p ∈
(
pc

(
Zd

)
, 1

r

)
. We observe that

Pp

(∣∣CTx
r

∣∣ <∞
)

= 1 for all x ∈ Zd. So the events [|C| <∞] and [|CZd | <∞] are

a.s. equal under Pp. But from the decomposition (23) we get [n ≤ |C| <∞] ⊇

[n ≤ |CZd | <∞]. So the required lower bound follows from the corresponding

lower bound in Theorem 8.61 of Grimmett [13].

Now to get the upper bound note that for every fixed L > 0 such that

n/L ∈ N,

Pp (n ≤ |C| <∞) ≤ Pp

(
n
L ≤ |CZd | <∞

)
+ P

n/L∑
j=1

Sj ≥ n

 (26)

where (Sj)j≥1 are i.i.d. random variables distributed as the total size of a subcrit-

ical Galton-Watson branching process with Binomial (r, p) progeny distribution.

This again follows from the decomposition (23)

Now from Lemma 8 we get that µ := E [S1] <∞ and moreover the moment

generating function MS1 (s) := E [exp (sS1)] < ∞ for some s > 0. Thus using

the large deviation estimate Lemma 9.4 of [12] we will get an exponential upper

bound for the second summand on the right hand side of (26), by choosing

L > µ. But by Theorem 8.65 of Grimmett [13] we get that the first term on the

right-hand side of (26) must satisfy an upper bound of the form

Pp

(
n
L ≤ |CZd | <∞

)
≤ exp

(
− η(p)

L(d−1)/dn
(d−1)/d

)
, (27)

where η (p) > 0. This proves the required upper bound.
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(c) Finally we will prove the polynomial bounds when p = 1
r . First to get the

upper bound, we observe that for any 0 < β < 1 we have

Pp (n ≤ |C| <∞) ≤ Pp

(
bnβc ≤ |CZd | <∞

)
+ P

bnβc∑
j=1

S̄j ≥ n

 (28)

where
(
S̄j

)
j≥1

are i.i.d. random variables distributed as the size of a critical

Galton-Watson branching process with Binomial
(
r, 1

r

)
progeny distribution.

This estimate along with Lemma 8(b) yields the desired polynomial upper

bound.

To get the lower bound, we note that as in case (b), we also have
∣∣CTx

r

∣∣ <∞

a.s. with respect to Pp, for all x ∈ Zd and so [|C| <∞] and [|CZd | <∞] are a.s.

equal. Thus

Pp (n ≤ |C| <∞) = Pp (|C| ≥ n, |CZd | <∞)

≥ Pp

(
|CZd | <∞ and

∣∣CT0
r

∣∣ ≥ n
)

= (1− θZd (p)) Pp

(∣∣CT0
r

∣∣ ≥ n
)

=
c′′

n1/2

where c′′ > 0 is a constant. The last equality follows from Lemma 8(b).

Remark: The above theorem does not cover the case p = pc

(
Zd

)
and for that

we would need exact tail behavior of the cluster-size distribution for critical i.i.d.

bond percolation on Zd. Unfortunately, except for d = 2 (see Theorem 11.89 of

[13]) and for large d (see [18]), such results are largely unknown.

We now provide a proof of Lemma 9 which is presumably well known.

Proof of Lemma 9: By assumption, there exists γ > 1 such that the random

variable N has a generating function φN (s) := E
[
sN

]
which is finite for all

s < γ. Similarly, there exists c > 0, such that the moment generating function

MS1 (λ) := E [exp (λS1)] < ∞ for all λ < c. By the Lebesgue dominated
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convergence theorem, MS1 (λ) → 1 as λ ↓ 0 and so we can find λ0 > 0 such that

1 ≤ MS1 (λ0) < γ.

Now by definition (24), the moment generating function of Z is given by

MZ (s) = φ (MS1 (s)) .

So in particular MZ (λ0) <∞. Then by Markov inequality we get

P (Z > z) ≤ MZ (λ0) exp (−λ0z) ,

which completes the proof.

The following theorem covers the case when pc

(
Zd

)
> 1

r , in which case

pc (G) = 1
r . It is not surprising that the intermediate regime of sub-exponential

decay does not appear in this case. The proof of this theorem is quite similar

to that of Theorem 2 so we omit the proof.

Theorem 10 Suppose pc

(
Zd

)
> 1

r and let C be the open connected component

of the origin 0 of G.

(a) For p 6= 1
r we have

exp (−ν1 (p)n) ≤ Pp (n ≤ |C| <∞) ≤ exp (−ν2 (p) n) ∀n ≥ 1 , (29)

where ν1 (p) <∞ and ν2 (p) > 0.

(b) For p = 1
r the lower bound in equation (5) holds with the same constant

c1 > 0, and the upper bound holds for every ε > 0 but with possibly a

different constant c′2 ≡ c′2 (ε) <∞.

Remark: Once again, the case p = pc

(
Zd

)
= 1

r is left open, because of similar

reason as mentioned in the remark after the proof of Theorem 2. (Of course,

one would be surprised if there were any d and r (other than d = r = 2) where

the above held.)
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Gábor Pete for helpful discussions. Bandyopadhyay wishes to thank the Depart-

ment of Mathematics, Chalmers University of Technology, Göteborg, Sweden
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Ádám Timár

Mathematics Department

The University of British Columbia

1984 Mathematics Road

Vancouver V6T 1Z2, Canada

timar@math.ubc.ca

http://www.math.ubc.ca/~timar/

30


