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Abstract

We study the behavior of random walk on dynamical percolation. In this model, the edges
of a graph G are either open or closed and refresh their status at rate µ while at the same
time a random walker moves on G at rate 1 but only along edges which are open. On the
d-dimensional torus with side length n, we prove that in the subcritical regime, the mixing
times for both the full system and the random walker are n2/µ up to constants. We also obtain
results concerning mean squared displacement and hitting times. Finally, we show that the
usual recurrence transience dichotomy for the lattice Zd holds for this model as well.
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1 Introduction

Random walks on finite graphs and networks have been studied for quite some time; see [1]. Here
we study random walks on certain randomly evolving graphs. The simplest such evolving graph is
given by dynamical percolation. Here one has a graph G = (V,E) and parameters p and µ and one
lets each edge evolve independently where an edge in state 0 (absent, closed) switches to state 1
(present, open) at rate pµ and an edge in state 1 switches to state 0 at rate (1− p)µ. We assume
µ ≤ 1. Let {ηt}t≥0 denote the resulting Markov process on {0, 1}E whose stationary distribution
is product measure πp. We next perform a random walk on the evolving graph {ηt}t≥0 by having
the random walker at rate 1 choose a neighbor (in the original graph) uniformly at random and
move there if (and only if) the connecting edge is open at that time. Letting {Xt}t≥0 denote the
position of the walker at time t, we have that

{Mt}t≥0 := {(Xt, ηt)}t≥0

is a Markov process while {Xt}t≥0 of course is not. One motivation for the model is that in real
networks, the structure of the network itself can evolve over time; however the time scale at which
this might occur is much longer than the time scale for the walker itself. This would correspond to
the case µ� 1 which is indeed the interesting regime for our results.
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We state at this point that all the results in this paper concern only the d-dimensional discrete
torus and the lattice Zd. Our first result shows that the usual recurrence/transience criterion for
ordinary random walk holds for this model as well. We consider Theorem 1.1 and Theorem 3.1 (to
be given later on) as minor results. It is certainly possible that these are obtainable by methods
in some of the papers being referenced here; however, we find our proofs of these two results quite
simple.

Theorem 1.1. Assume the random walker starts at the origin.
(i). If G = Zd with d being 1 or 2, then for any p ∈ [0, 1], µ > 0 and initial bond configuration η0,

we have that, for any s0 ≥ 0, P
(⋃

s≥s0{Xs = 0}
)

= 1.

(ii). If G = Zd with d ≥ 3, then for any p ∈ (0, 1], µ > 0 and initial bond configuration η0, we have
that

lim
t→∞

Xt =∞ a.s.

We note that when G is finite and has constant degree, one can check that u × πp is the unique
stationary distribution and that the process is reversible; u here is the uniform distribution.

Next, our main theorem gives the mixing time up to constants for {Mt}t≥0 and {Xt}t≥0 on the
d-dimensional discrete torus with side length n, denoted by Td,n, in the subcritical regime for
percolation, where importantly µ may depend on n.

Let ‖m1 − m2‖TV denote the total variation distance between two probability measures m1 and
m2, Tmix denote the mixing time for a Markov chain and let pc(d) denote the critical value for
percolation on Zd. See Section 2 for definitions of all these terms. Next, starting the walker at the
origin and taking the initial bond configuration to be distributed according to πp, let

TRW
mix (ε) := inf{t ≥ 0: ‖L(Xt)− u‖TV ≤ ε}.

(The superscript RW refers to the fact that we are only considering the walker here rather than the
full system.) Below pc(Zd) denotes the critical value for bond percolation on Zd and θd(p) denotes
the probability that the origin is in an infinite component when the parameter is p; see Section 2.

Theorem 1.2. (i). For any d ≥ 1 and p ∈ (0, pc(Zd)), there exists C1 < ∞ such that, for all n
and for all µ, considering the full system {Mt}t≥0 on Td,n, we have

Tmix ≤
C1n

2

µ
.

(ii). For any d ≥ 1, p ∈ (0, pc(Zd)) and ε < 1, there exist C2 > 0 and n0 > 0 such that, for all
n ≥ n0 and for all µ, considering the system on Td,n, we have

TRW
mix (ε) ≥ C2n

2

µ
.

Remarks 1.3. 1. (ii) implies that the upper bound in (i) is also a lower bound up to constants.
2. (i) implies, using (5) in Section 2, that the lower bound in (ii) is also an upper bound up to
(ε dependent) constants.
3. The theorem shows that the “mixing time” for the random walk component of the chain is
the same as for the full system. However, as this component is not Markovian, there is no well
established definition of the mixing time in this context; this is why we write “mixing time”.
4. Part (ii) becomes a stronger statement when ε becomes larger.
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One of the key steps in order to prove (ii) of Theorem 1.2 is to prove that the mean squared
displacement of the walker is at most linear on the time scale 1/µ uniform in the size of the torus.
This result, which is also of independent interest, is presented next. Here and throughout the
paper, dist(x, y) will denote the graph distance between two vertices x and y in a given graph.

Theorem 1.4. Fix d and p ∈ (0, pc(Zd)). Then there exists C1.4 = C1.4(d, p) < ∞ so that for all
n, for all µ and for all t, if G = Td,n, we have that

E
[
dist(X t

µ
, X0)

2
]
≤ C1.4(t ∨ 1) (1)

when we start the full system in stationarity with u× πp.

Remark 1.5. The above inequality is false if the “∨1” is removed since if t = µ is very small, then
the LHS is not arbitrarily close to 0.

From Theorem 1.4, we can obtain a similar bound for the full lattice Zd.

Corollary 1.6. Fix d and p ∈ (0, pc(Zd)). Then for all µ and for all t, if G = Zd, we have that

E
[
dist(X t

µ
, 0)2

]
≤ C1.4(t ∨ 1)

when we start the system with distribution δ0 × πp and where C1.4 comes from Theorem 1.4.

In Theorem 1.2(ii), Theorem 1.4 and Corollary 1.6, it was assumed that the bond configuration was
started in stationarity (in Theorem 1.2(ii), this is true since this was incorporated into the definition
of TRW

mix (ε)). For Theorem 1.4 and Corollary 1.6, if the initial bond configuration is identically 1,
µ = 1

nd+2 and t = 1
nd+1 , then the LHS’s of these results grow to ∞ while the RHS’s stay bounded

and hence these results no longer hold. The reason for this is that the bonds which the walker might
encounter during this time period are unlikely to refresh and so the walker is just doing ordinary
random walk on Zd or Td,n. For similar reasons, if one takes the initial bond configuration to be
identically 1 in the definition of TRW

mix (ε), then if µ is very small, TRW
mix (ε) will be of the much smaller

order n2. However, due to Theorem 1.2(i), one cannot on the other hand make TRW
mix (ε) larger than

order n2

µ by choosing an appropriate initial bond configuration.

For general p, we obtain the following lower bounds on the mixing time. This is only of interest
in the supercritical and critical cases p ≥ pc since Theorem 1.2(ii) essentially implies this in the
subcritical case; one minor difference is that in (i) below, the constants do not depend on p.

Theorem 1.7. (i). Given d ≥ 1 and ε < 1, there exist C1 > 0 and n0 > 0 such that, for all p, for
all n ≥ n0 and for all µ, if G = Td,n, then

TRW
mix (ε) ≥ C1n

2.

(ii). Given d ≥ 1, p and ε < 1 − θd(p), there exists C2 > 0 and n0 > 0 such that, for all n ≥ n0
and for all for µ, if G = Td,n, then

TRW
mix (ε) ≥ C2

µ
. (2)

In particular, for ε < 1− θd(p), we get a lower bound for TRW
mix (ε) of order 1

µ + n2.
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Remark 1.8. The lower bound in (ii) holds only for sufficiently small ε ∈ (0, 1) depending on p. To
see this, take d = 2 and choose p sufficiently close to 1 so that θ2(p) > .999. Take n large, µ� n−4

and t = Cn2, where C is a large enough constant. Then, with probability going to 1 with n, the
giant cluster at time 0 will contain at least .999 fraction of the vertices. Therefore, with probability
about .999, the origin will be contained in this giant cluster. By [10], with probability going to 1
with n, this giant cluster will have a mixing time of order n2. Therefore, if C is large, a random
walk on this giant cluster run for t = Cn2 units of time will be, in total variation, within .0001 of
the uniform distribution on this cluster and hence be, in total variation, within .0002 of the uniform
distribution u. Since µ � n−4, no edges will refresh up to time t with very high probability and
hence ‖L(Xt) − u‖TV ≤ .0002. Since t � 1

µ , we see that (2) above is not true for all ε but rather
only for small ε depending on p. This strange dependence of the mixing time on ε cannot occur for
a Markov process but can only occur here since {Xt}t≥0 is not Markovian.

We mention that heuristics suggest that the lower bound of 1
µ +n2 for the supercritical case should

be the correct order.

We now give an analogue of Theorem 1.4 for general p. This is also of interest in itself and as
before is a key step in proving Theorem 1.7(i). While it is of course very similar to Theorem 1.4,
the fundamental difference between this result and the latter result is that we do not now obtain
linear mean squared displacement on the time scale 1/µ as we had before.

Theorem 1.9. Fix d ≥ 1. Then there exists C1.9 = C1.9(d) so that for all p, for all n, for all µ
and for all t, if G = Td,n, then

E
[
dist(Xt, X0)

2
]
≤ C1.9t (3)

when we start the full system in stationarity with u× πp.

From this, we can obtain, as before, a similar bound on the full lattice Zd.

Corollary 1.10. Fix d ≥ 1. For all p, for all µ and for all t, if G = Zd, we have

E
[
dist(Xt, 0)2

]
≤ C1.9t (4)

when we start the full system with distribution δ0 × πp and where C1.9 comes from Theorem 1.9.

Remark 1.11. Theorem 1.9 and Corollary 1.10 are false if we start the bond configuration in an
arbitrary configuration. In [9], a subgraph G of Z2 is constructed such that if one runs random
walk on it, the expected mean squared distance to the origin at time t2 is much larger than t for
large t. If we start the bond configuration in the state G and µ is sufficiently small, then clearly (4)
fails for large t provided (for example) that td+1µ = o(1). Similarly, (3) fails for such t and large n.

For Markov chains, one is often interested in studying hitting times. For discrete time random walk
on the torus Td,n, it is known that the maximum expectation of the time it takes to hit a point
from an arbitary starting point behaves, up to constants, as nd for d ≥ 3, n2 log n for d = 2 and n2

for d = 1. Here we obtain an analogous result for our dynamical model in the subcritical regime.

For y ∈ Td,n, let σy := inf{t ≥ 0 : Xt = y} be the first hitting time of y. We will always start our
system with distribution δ0 × πp (otherwise the results would be substantially different). Finally,
we let Hd(n) := max{E [σy] : y ∈ Td,n} denote the maximum expected hitting time.

Theorem 1.12. For all d ≥ 1 and p ∈ (0, pc(Zd)), there exists C1.12 = C1.12(d, p) <∞ so that the
following hold.
(i). For all n and for all µ ≤ 1,

n2

C1.12 µ
≤ H1(n) ≤ C1.12 n

2

µ
.
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(ii). For all n and for all µ ≤ 1,

n2 log n

C1.12 µ
≤ H2(n) ≤ C1.12 n

2 log n

µ
.

(iii). For all d ≥ 3, for all n and for all µ ≤ 1,

nd

C1.12 µ
≤ Hd(n) ≤ C1.12 n

d

µ
.

One of the usual methods for obtaining hitting time results (see [23]) is to first develop and then to
apply results from electrical networks. However, in our case, where the network itself is evolving in
time, this approach does not seem to be applicable. More generally, many of the standard methods
for analyzing Markov chains do not seem helpful in studying the case, such as this, where the
transition probabilities are evolving in time stochastically.

Previous work.
Studying random walk in a random environment has been done since the early 1970’s. In the initial
models studied, one chose a random environment which would then be used to give the transition
probabilities for a random walk. Once chosen, this environment would be fixed. There are many
papers on random walk in random environment, far too many to list here.

After this, one studied random walks in an evolving random environment. The evolving random
environment could be of a quite general nature. A sample of papers from this area are [2], [3], [4],
[5], [6], [8], [12], [13], [14], [15], [16], [18], [21] and [26].

However, the focus of these papers and the questions addressed in them are of a very different
nature than the focus and questions addressed in the present paper. We therefore do not attempt
to describe at all the results in these papers.

Organization.
The rest of the paper is organized as follows. In Section 2, various background will be given. In
Section 3, Theorem 1.1 is proved as well as a central limit theorem and a general technical lemma
which will be used here as well as later on. In Section 4, we prove the mean squared displacement
results and the lower bound on the mixing time in the subcritical regime: Theorem 1.4, Corollary
1.6 and Theorem 1.2(ii). In Section 5, we prove the mean squared displacement results and the
lower bound on the mixing time in the general case: Theorem 1.9, Corollary 1.10 and Theorem
1.7. In Section 6, the upper bound on the mixing time in the subcritical regime, Theorem 1.2(i), is
proved. Finally, in Section 7, Theorem 1.12 is proved. In Section 8, we state an open question.

2 Background

In this section, we provide various background.

Percolation.
In percolation, one has a connected locally finite graph G = (V,E) and a parameter p ∈ (0, 1). One
then declares each edge to be open (state 1) with probability p and closed (state 0) with probability
1− p independently for different edges. Throughout this paper, we write πp for the corresponding
product measure. One then studies the structure of the connected components (clusters) of the
resulting subgraph of G consisting of all vertices and all open edges. We will use PG,p to denote
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probabilities when we perform p-percolation on G. If G is infinite, the first question that can be
asked is whether an infinite connected component exists (in which case we say percolation occurs).
Writing C for this latter event, Kolmogorov’s 0-1 law tells us that the probability of C is, for fixed
G and p, either 0 or 1. Since PG,p(C) is nondecreasing in p, there exists a critical probability
pc = pc(G) ∈ [0, 1] such that

PG,p(C) =

{
0 for p < pc
1 for p > pc.

For all x ∈ V , let C(x) denote the connected component of x, i.e. the set of vertices having an open
path to x. Finally, we let θd(p) := PZd,p(|C(0)| =∞) where 0 denotes the origin of Zd. See [19] for
a comprehensive study of percolation.

Let Td,n be the d-dimensional discrete torus with vertex set [0, 1, . . . , n)d. This is a transitive graph
with nd vertices. For large n, the behavior of percolation on Td,n is quite different depending on
whether p > pc(Zd) or p < pc(Zd); in this way the finite systems “see” the critical value for the
infinite system. In particular, if p > pc(Zd), then with probability going to 1 with n, there will be
a unique connected component with size of order nd (called the giant cluster) while for p < pc(Zd),
with probability going to 1 with n, all of the connected components will have size of order at most
log(n).

Dynamical Percolation.
This model was introduced in Section 1. Here we mention that the model can equally well be
described by having each edge of G independently refresh its state at rate µ and when it refreshes,
it chooses to be in state 1 with probability p and in state 0 with probability 1 − p independently
of everything else. We have already mentioned that for all G, p and µ, the product measure πp
is a stationary reversible probability measure for {ηt}t≥0. Dynamical percolation was introduced
independently in [20] and by Itai Benjamini. The types of questions that have been asked for
this model is whether there exist exceptional times at which the percolation configuration looks
markedly different from that at a fixed time. See [27] for a recent survey of the subject. Our focus
however in this paper is quite different.

Random walk on Dynamical Percolation.
Random walk on Dynamical Percolation was introduced in Section 1. Throughout this paper, we
will assume µ ≤ 1. This model is most interesting when µ→ 0 as the size of the graph gets large.
Note that if µ = ∞, then {Xt}t≥0 would simply be ordinary simple random walk on G with time
scaled by p and hence would not be interesting. One would similarly expect that if µ is of order
1, the system should behave in various ways like ordinary random walk. (We will see for example
that the usual recurrence/transience dichotomy for random walk holds in this model for fixed µ.)
This is why µ→ 0 is the interesting regime.

Mixing times for Markov chains.
We recall the following standard definitions. Given two probability measures m1 and m2 on a finite
set S, we define the total variation distance between m1 and m2 to be

‖m1 −m2‖TV :=
1

2

∑
s∈S
|m1(s)−m2(s)|.

If X and Y are random variables, by ‖L(X)−L(Y )‖TV, we will mean the total variation distance
between their laws. There are other equivalent definitions; see [23], Section 4.2. One which we will
need is that

‖L(X)− L(Y )‖TV = inf{P(X ′ 6= Y ′)}
where the infimum is taken over all pairs of random variables (X ′, Y ′) defined on the same space
where X ′ has the same distribution as X and Y ′ has the same distribution as Y .
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Given a continuous time finite state irreducible Markov chain with state space S, t ≥ 0 and x ∈ S,
we let P t(x, ·) be the distribution of the chain at time t when started in state x and we let π denote
the unique stationary distribution for the chain.

Next, one defines
Tmix(ε) := inf{t ≥ 0: max

x∈S
‖P t(x, ·)− π‖TV ≤ ε},

in which case the standard definition of the mixing time of a chain, denoted by Tmix, is Tmix(1/4).
It is well known (see [23], Section 4.5 for the discrete-time analogue) that maxx ‖P t(x, ·)− π‖TV is
decreasing in t and that

Tmix(ε) ≤ dlog2 ε
−1eTmix. (5)

In the theory of mixing times, one typically has a sequence of Markov chains that one is interested
in and one studies the limiting behavior of the corresponding sequence of mixing times.

3 Recurrence/transience dichotomy

In this section, we prove Theorem 1.1 as well as a central limit theorem for the process {Xt}.

Proof of Theorem 1.1. Since d, p and µ are fixed, we drop these superscripts. We first prove
this result when the bond configuration starts in state πp; at the end of the proof we extend this
to a general initial bond configuration.

For this analysis, we let Ft be the σ-algebra generated by {Ms}0≤s≤t as well as, for each edge e,
the times before t at which e is refreshed and at which the random walker attempted to cross e.
We now define a sequence of sets {Ak}k≥0. Let A0 = ∅. For k ≥ 1, define Ak to be the set of edges
of Ak−1 that did not refresh during [k − 1, k] plus the set of edges that the walker attempted to
cross during [k − 1, k] which did not refresh before time k after the last time in [k − 1, k] that the
walker attempted to cross it. Note that Ak is measurable with respect to Fk. Let τ0 = 0 and, for
k ≥ 1, define

τk = min{i > τk−1 : Ai = ∅}.

We will see below that for all k, τk < ∞ a.s. Note that the random variables {τk − τk−1}k≥1 are
i.i.d. For k ≥ 1, let Uk = Xτk − Xτk−1

. Clearly the {Uk}k≥1 are i.i.d. and hence {Xτn}n≥0 is a
random walk on Zd with step distribution U1. It is easy to check that U1 takes the value 0 as
well as any of the 2d neighbors of 0 with positive probability and hence the random walk is fully
supported, irreducible and aperiodic.

Let Ji denote the number of attempted steps by the random walk during [i − 1, i] and Zk :=∑τk
i=τk−1+1 Ji be the number of attempted steps by the random walk between τk−1 and τk. Now

clearly {Ji}i≥1 are i.i.d. as are {Zk}k≥1. A key step is to show that

E
[
ecZ1

]
<∞ for some c > 0. (6)

(Note that this implies that each τk is finite a.s.) Assuming (6) for the moment, we finish the proof
of (i) when the bond configuration is started in stationarity. (6) implies, since dist(U1, 0) ≤ Z1, that
dist(U1, 0) has an exponential tail and in particular a finite second moment. Since U1 is obviously
symmetric, it therefore necessarily has mean zero. The fact that {Xτn}n≥0 is recurrent in one and
two dimensions now follows from [22, Theorem 4.1.1]. This proves (i) when the bond configuration
is started in stationarity.
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If d ≥ 3, it follows from [22, Theorem 4.1.1] that {Xτn}n≥0 is transient and so approaches ∞ a.s.
To show (ii), we need to deal with times between τk and τk+1. Fix M , let Bdist(0,M) be the ball
around 0 of dist-radius M and let Ek be the event that the random walk returns to Bdist(0,M)
during [τk, τk+1], we have

∞∑
k=0

P (Ek) ≤
∞∑
k=0

P
(
Ek | dist(Xτk , 0) ≥ k

1
4d

)
+ P

(
dist(Xτk , 0) ≤ k

1
4d

)
.

Now P
(
Ek | dist(Xτk , 0) ≥ k

1
4d

)
≤ P

(
Z1 ≥ k

1
4d −M

)
and since Z1 has an exponential tail, the

first terms are summable. Next, the local central limit theorem (cf. [22, Theorem 2.1.1]) implies

that for large k, P
(

dist(Xτk , 0) ≤ k
1
4d

)
≤ Ck

1
4

k
d
2

for some constant C. Since d ≥ 3, it follows that

the second terms are also summable. It now follows from Borel-Cantelli that the walker eventually
leaves Bdist(0,M) a.s. and hence by countable additivity (ii) holds when the bond configuration is
started in stationarity.

We will now verify (6) by using Proposition 3.2 with Yk = |Ak| + 1 and Fk being itself. Property
(1) is immediate. With Jk as above and Rk being the number of edges of Ak−1 that were refreshed
during [k − 1, k], it is easy to see that

|Ak| ≤ |Ak−1| −Rk + Jk.

This implies that

E [|Ak| | Fk−1] ≤ E [|Ak−1| −Rk + Jk | Fk−1] = |Ak−1|e−µ + 1.

This easily yields that there are positive numbers a0 = a0(µ) and b0 = b0(µ) < 1 so that
E [Yk | Fk−1] ≤ b0Yk−1 on the event Yk−1 > a0. This verifies property (2). Since properties
(3) and (4) are easily checked, we can conclude from Proposition 3.2 at the end of this section
that τ1 has some positive exponential moment. An application of Lemma 3.3 to τ1 and the Ji’s
allows us to conclude that (6) holds. This completes the proof when the bond configuration starts
in stationarity.

We now analyze the situation starting from an arbitrary bond configuration. Let En be the event
that some vertex whose dist-distance to the origin is n has an adjacent edge which does not refresh
by time

√
n. Let Hn be the event that the number of attempted steps by the random walker by

time
√
n is larger than n. It is elementary to check that∑

n

P [En] <∞ and
∑
n

P [Hn] <∞.

By Borel-Cantelli, given ε > 0 there exists n0 such that

P [∩n≥n0E
c
n ∩ ∩n≥n0H

c
n] ≥ 1− ε.

Now let η be an arbitrary initial bond configuration and let ηp be the random configuration which
is the same as η at edges within distance n0 of the origin and otherwise is chosen according to πp.

We claim that by what we have already proved, we can infer that when the initial bond configuration
is ηp, the random walker returns to 0 at arbitrarily large times a.s. if d is 1 or 2 and converges
to ∞ a.s. if d ≥ 3. To see this, first observe that by Fubini’s Theorem, we can infer from what
we have proved that for πp-a.s. bond configuration, the random walker has the desired behavior
a.s. Therefore, since such a random bond configuration takes the same values as η at edges within
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distance n0 of the origin with positive probability, it must be the case that a.s. ηp is such that the
random walk has the desired behavior. Using Fubini’s Theorem again demonstrates this claim.

One can next couple the random walker when the initial bond configuration is η with the random
walker when the initial bond configuration is ηp in the obvious way. They will remain together
provided ∩n≥n0E

c
n holds and ∩n≥n0H

c
n holds for the walks. Therefore the random walker with

initial bond configuration η has the claimed behavior with probability 1− ε. As ε is arbitrary, we
are done.

We now provide a central limit theorem for the walker.

Theorem 3.1. Given d, p ∈ (0, 1) and µ, there exists σ ∈ (0,∞) so that random walk in dynamical
percolation on Zd with parameters p and µ started from an arbitrary configuration satisfies{

Xkt√
k

}
t∈[0,1]

⇒ {Bt}t∈[0,1]

in C[0, 1] as k →∞ where {Bt}t∈[0,1] is a standard d-dimensional Brownian motion with variance
σ2. Moreover

σ2 =
Var(U

(1)
1 )

E [τ1]

where U1 and τ1 are given in the proof of Theorem 1.1 and U
(1)
1 is the first coordinate of U1.

Proof. This type of argument is very standard and so we only sketch the proof. We therefore only
mention that a tightness argument is needed to prove the convergence for the fixed value t = 1.
We also assume that the bond configuration is started in stationarity with distribution πp and that
the walker starts at the origin. To deal with general initial bond configurations, the methods in
the proof of Theorem 1.1 can easily be adapted.

Now, symmetry considerations give that E
[
U

(1)
1

]
= 0 and that the different coordinates are uncor-

related. We have also seen that U
(1)
1 has a finite second moment. The central limit theorem now

tells us that
Xτn√

nVar(U
(1)
1 )1/2

=

∑n
1 Ui√

nVar(U
(1)
1 )1/2

⇒ N (7)

where N is a standard d-dimensional Gaussian.

We need to show that Xk√
k

converges to the appropriate Gaussian. Let n(k) := dk/E [τ1]e and write
Xk√
k

as √
n(k)√
k

[
Xk −Xn(k)E[τ1]√

n(k)
+
Xn(k)E[τ1] −Xτn(k)√

n(k)
+
Xτn(k)√
n(k)

]
.

The first fraction converges to 1/
√

E [τ1]. The first fraction in the second factor is easily shown
to converge in probability to 0. The weak law of large numbers gives that τn(k)/n(k) converges in
probability to E [τ1] which easily leads to the second fraction in the second factor converging in
probability to 0. Finally, using (7) for the last fraction, we obtain the result.

Technical lemma.
We now present the technical lemma which was used in the previous proof and will be used again
later on. This result is presumably well known in some form but we provide the proof nevertheless
for completeness. As the result is “obvious”, the reader might choose to skip the proof.

9



Proposition 3.2. For all α ≥ 1, δ < 1, ε > 0 and γ, there exist c3.2 = c3.2(α, δ, ε, γ) > 0 and
C3.2 = C3.2(α, δ, ε, γ) < ∞ with the following property. If {Yi}i≥0 is a discrete time process taking
values in {1, 2, . . .} adapted to a filtration {Fi}i≥0 satisfying
(1) Y0 = 1,
(2) for all i, E [Yi+1 | Fi] ≤ δ Yi on Yi > α,
(3) for all i, P [Yi+1 = 1 | Fi] ≥ ε on Yi ≤ α and
(4) for all i, E [Yi+1 | Fi] ≤ γ on Yi ≤ α,
and if T := min{i ≥ 1 : Yi = 1}, then

E
[
ec3.2T

]
≤ C3.2

and so in particular by Jensen’s inequality

E [T ] ≤ logC3.2

c3.2
.

To prove this, we will need a slight strengthening of a lemma from [24] which essentially follows
the same proof.

Lemma 3.3. Given positive numbers λ and a, there exist c3.3 = c3.3(λ, a) > 0 and C3.3 =
C3.3(λ, a) < ∞ so that if {Xi} are nonnegative random variables adapted to a filtration {Gi}i≥0
satisfying

‖E
[
eλXi+1 | Gi

]
‖∞ ≤ a for all i ≥ 0, (8)

and M is a nonnegative integer valued random variable satisfying

E
[
eλM

]
≤ a, (9)

then
E
[
ec3.3

∑M
i=1Xi

]
≤ C3.3. (10)

(Note that this implies, by Jensen’s inequality, that E
[∑M

i=1Xi

]
≤ logC3.3

c3.3
.)

Proof. Choose k = k(λ, a) sufficiently large so that a < eλk. We claim there exist b < 1 and B,
depending only on λ and a, such that for all n

P

[
M∑
i=1

Xi ≥ kn

]
≤ Bbn. (11)

To see this, note that this above probability is at most

P [M ≥ n] + P

[
n∑
i=1

Xi ≥ kn

]
≤ ae−λn +

E
[
eλ

∑n
i=1Xi

]
eλkn

by Markov’s inequality and (9). Using (8), taking conditional expectations and iterating, one sees
that

E
[
eλ

∑n
i=1Xi

]
≤ an

and hence the second term is at most ( a
eλk

)n. We can conclude that there are b and B, depending
only on λ and a, such that (11) holds. Since b, B and k all depend only on λ and a, it then easily
follows from (11) that there are c3.3 and C3.3 depending only on λ and a so that (10) holds.

10



Proof of Proposition 3.2. Let U0 = 0 and for k ≥ 1, let Uk := min{i ≥ Uk−1 + 1 : Yi ≤ α}.
Let M := min{k ≥ 0 : YUk+1 = 1}. Property (3) implies that M is stochastically dominated by a
geometric random variable with parameter ε. Next, clearly

T ≤ 1 +
M∑
k=1

(Uk − Uk−1). (12)

(Equality does not necessarily hold since it is possible that YT−1 > α in which case T − 1 does not
correspond to any Uk.) We claim that for all k ≥ 1

‖E

[(
1

δ

)Uk−Uk−1

| FUk−1

]
‖∞ ≤

γ

δ
. (13)

We write

E

[(
1

δ

)Uk−Uk−1

| FUk−1

]
= E

[
E

[(
1

δ

)Uk−Uk−1

| FUk−1+1

]
| FUk−1

]
.

Concerning the inner conditional expectation, we claim that

E

[(
1

δ

)Uk−Uk−1

| FUk−1+1

]
≤
YUk−1+1

δ
. (14)

Case 1: YUk−1+1 ≤ α.
In this case, Uk = Uk−1 + 1 and so

E

[(
1

δ

)Uk−Uk−1

| FUk−1+1

]
=

1

δ
.

Case 2: YUk−1+1 > α.
In this case, we first make the important observation that property (2) implies that on the event
YUk−1+1 > α,

Mj :=

(
1

δ

)j∧(Uk−Uk−1−1)
Y(j∧(Uk−Uk−1−1))+Uk−1+1, j ≥ 0

is a supermartingale with respect to {Fj+Uk−1+1}j≥0. From the theory of nonnegative supermartin-
gales (see [17], Chapter 5), we can let j → ∞ in the defining inequality of a supermartingale and
conclude that

E

[(
1

δ

)Uk−Uk−1−1
YUk | FUk−1+1

]
≤ YUk−1+1,

It follows that

E

[(
1

δ

)Uk−Uk−1

| FUk−1+1

]
≤
YUk−1+1

δ
. (15)

Since the Yi’s are at least 1, this establishes (14).

Taking the conditional expectation of the two sides of (14) with respect to FUk−1
and using property

(4) finally yields (13).

Lastly, Lemma 3.3 (withXi = Ui−Ui−1, Gi = FUi , M = M , λ = min{ ε2 , log(1δ )} and a = max{γδ , 2})
together with (12), (13) and the fact that M is dominated by a geometric random variable with
parameter ε gives us the desired conclusion.

Remark 3.4. We see that c3.2 and C3.2 actually depend only on δ, ε and γ but not on α.
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4 Proofs of the mixing time lower bound in the subcritical case

In this section, we prove Theorem 1.4, Theorem 1.2(ii) and Corollary 1.6. We begin with the proof
of Theorem 1.4 as this will be used in the proof of Theorem 1.2(ii).

Proof of Theorem 1.4. Fix d and p ∈ (0, pc(Zd)). Choose β = β(d, p) sufficiently small so that
for all n and µ, the probability that, for {ηt}t≥0, a fixed edge e is open at some point in [0, β/µ] is
less than pc(Zd). By time scaling, the latter probability is independent of µ (and of course of n).

The main idea of the proof is that by setting β as above we can easily obtain an upper bound for

E

[
dist(Xβ

µ
, X0)

2

]
(cf. Lemma 4.1 below), and then apply a general result for discrete-time Markov

chains (Lemma 4.2 below) which allows us to bound E
[
dist(X t

µ
, X0)

2
]

in terms of E

[
dist(Xβ

µ
, X0)

2

]
.

In order to carry out this last step, we introduce the function gn below that measures distance over

the torus in a clean way, and which is bi–Lipschitz so that an upper bound on E
[(
gn(X t

µ
)− gn(X0)

)2]
translates to an upper bound on E

[
dist(X t

µ
, X0)

2
]
. We now proceed to the details of the proof.

Let gn : Td,n → R2d be given by

gn(x1, . . . , xd) := (n cos(2πx1/n), n sin(2πx1/n), . . . , n cos(2πxd/n), n sin(2πxd/n)). (16)

Observe that for fixed d, the functions {gn}n≥1 are uniformly bi–Lipschitz when Td,n is equipped
with the metric dist and R2d has its usual metric. Let CLip = CLip(d) be a uniform bound on the
bi–Lipschitz constants.

We need the following two lemmas. The first lemma will be proved afterwards while the second
lemma, which is implicitly contained in [7], is stated explicitly in [25]; in fact a strengthening of it
yielding a maximal version is proved in [25].

Lemma 4.1. There exists C4.1 = C4.1(d, p) so that for all n, for all µ and for all s ≤ β,

E
[
dist(X s

µ
, X0)

2
]
≤ C4.1

when we start the full system in stationarity.

Lemma 4.2. Let {Yi}i∈Z be a discrete time stationary reversible Markov chain with finite state
space S and let h : S → Rm. Then for each k ≥ 1,

E
[
‖h(Yk)− h(Y0)‖2L2

]
≤ kE

[
‖h(Y1)− h(Y0)‖2L2

]
where ‖ ‖L2 denotes the Euclidean norm on Rm.

We may assume that β ≤ 1. For t ≤ β(≤ 1), the LHS of (1) is by Lemma 4.1 at most C4.1 which
is at most C1.4(t ∨ 1) if C1.4 is taken to be larger than C4.1.

On the other hand, if t ≥ β, choose ` ∈ N so that v := t
` ∈ [β/2, β]. Consider the discrete time

finite state stationary reversible Markov chain given by

Yk := M kv
µ
, k ∈ Z

12



with state space S := Td,n × {0, 1}E(Td,n). With all the parameters for the chain fixed, let hn :
S → R2d be given by hn(x, η) := gn(x). Then Lemma 4.1 (with s = v) together with the uniform
bi–Lipschitz property of the gn’s implies that

E
[
‖hn(Y1)− hn(Y0)‖2L2

]
≤ C2

LipC4.1.

We now can apply Lemma 4.2 with k = ` and obtain

E
[
‖gn(X t

µ
)− gn(X0)‖2L2

]
≤ C2

LipC4.1`.

Since t
` ∈ [β/2, β], we have that ` ≤ 2t/β. Using this and the bi–Lipschitz property of the gn’s

again, we obtain

E
[
dist(X t

µ
, X0)

2
]
≤ 2C4

LipC4.1t/β.

As all of the terms except t on the RHS only depend on d and p, we are done.

The proof of Lemma 4.1 requires the following important result concerning subcritical percolation.
For V ′ ⊆ V , we let Diam(V ′) := max{dist(x, y) : x, y ∈ V ′} denote the diameter of V ′. This
following theorem is Theorem 5.4 in [19] in the case of Zd. The statement for Zd immediately
implies the result for Td,n.

Theorem 4.3. For any d ≥ 1 and α ∈ (0, pc(Zd)), there exists C4.3 = C4.3(d, α) > 0 so that for all
r ≥ 1,

PZd,α(Diam(C(0)) ≥ r) ≤ e−C4.3r.

The previous line holds with Zd replaced by Td,n.

We now give the

Proof of Lemma 4.1. Let η be the set of edges which are open some time during [0, β/µ]. By
our choice of β, there exists p0 = p0(d, p) < pc(Zd) so that for all n and all µ, the distribution of η
is πp0 .

Letting Cη(x) denote the cluster of x with respect to the bond configuration η, the observation
above and Theorem 4.3 implies that there exists a constant C4.1.1 = C4.1.1(d, p) so that for all n,
for all µ and for all x ∈ Td,n,

E
[
(Diam(Cη(x)))2

]
≤ C4.1.1.

By independence of X0 and η, we get

E
[
(Diam(Cη(X0)))

2
]
≤ C4.1.1. (17)

Since the random walker can only move along η during [0, β/µ], we have that for all s ≤ β, X s
µ

necessarily belongs to Cη(X0) and hence dist(X s
µ
, X0) ≤ Diam(Cη(X0)). The result now follows

from (17).

We next move to the

Proof of Corollary 1.6. Fix µ and t. By Theorem 1.4 and symmetry, we have that for each n,

E
[
dist(X t

µ
, 0)2|δ0 × πp

]
≤ C1.4(t ∨ 1).

Clearly dist(X t
µ
, 0)|δ0 × πp converges in distribution to dist(X t

µ
, 0) as n → ∞ where the latter is

started in δ0 × πp. The result now follows by squaring and applying Fatou’s lemma.
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Proof of Theorem 1.2(ii). Fix d, p ∈ (0, pc(Zd)) and ε < 1. It suffices to show that there exists

δ = δ(d, p, ε) > 0 and n0 = n0(d, p, ε) > 0 so that for n ≥ n0 and s ≤ δn2

µ

‖L(Xs)− u‖TV > ε.

By symmetry, the distribution of dist(X t
µ
, X0) conditioned on {X0 = a} does not depend on a.

Hence by Theorem 1.4 and Markov’s inequality, we have that for all λ > 0, for all n, for all µ and
for all t

P
(

dist(X t
µ
, 0) ≥ λ|δ0 × πp

)
≤ C1.4(t ∨ 1)/λ2 (18)

where C1.4 comes from Theorem 1.4. Next, choose b = b(d, ε) > 0 so that

(2b)d <
1− ε

2
.

We then have that there exists n0 = n0(d, p, ε) > 0 sufficiently large so that for all n ≥ n0 we have
that

|{x ∈ Td,n : dist(x, 0) ≤ bn}| ≤ (1− ε)nd

2
(19)

and
C1.4

(bn)2
<

1− ε
2

.

Next choose δ = δ(d, p, ε) > 0 so that
C1.4δ

b2
<

1− ε
2

.

We now let n ≥ n0 and s ≤ δn2

µ . Applying (18) with t = sµ ≤ δn2 and λ = bn yields

P (dist(Xs, 0) ≥ bn|δ0 × πp) ≤
C1.4(δn

2 ∨ 1)

(bn)2
<

1− ε
2

. (20)

Letting En := {x ∈ Td,n : dist(x, 0) ≤ bn}, we have by (20)

P (Xs ∈ En|δ0 × πp) ≥
1 + ε

2

and by (19), we have

u(En) ≤ 1− ε
2

.

Hence, by considering the set En, it follows that ‖L(Xs)− u‖TV ≥ 1+ε
2 −

1−ε
2 = ε, completing the

proof.

We end this section by proving that not only is the mixing time for the full system of order at least
n2/µ but that this is also a lower bound on the relaxation time. Moreover, in proving this, we will
only use Lemma 4.1 and do not need to appeal to the so-called Markov type inequality contained
in Lemma 4.2.

Proposition 4.4. For any d and p ∈ (0, pc(Zd)), there exists C4.4 = C4.4(d, p) > 0 such that, for

all n and for all µ, the relaxation time of the full system is at least C4.4n2

µ .
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Remarks 4.5. While it is a general fact that the mixing time is bounded below by (a universal
constant times) the relaxation time, this does not provide an alternative proof of Theorem 1.2(ii)
for two reasons. First, in the latter, we have a lower bound for the “mixing time” of the walker
(which is stronger than just having a lower bound on the mixing time for the full system) and
secondly ε in Theorem 1.2(ii) can be taken close to 1 while one could only conclude this for ε < 1

2
directly from a lower bound on the relaxation time.

Proof. We will obtain an upper bound on the spectral gap by considering the usual Dirichlet form;
see Section 13.3 in [23]. Consider the function fn : Td,n × {0, 1}E(Td,n) → R given by fn(x, η) :=
dist(x, 0) where 0 is the origin in Td,n. Clearly, there exists a constant C4.4.1 = C4.4.1(d) > 0 such
that for all d, p, n and µ,

Var(fn) ≥ C4.4.1n
2

where Var(fn) denotes the variance of fn with respect to the stationary distribution.

Letting β be defined as in the proof of Theorem 1.4, Lemma 4.1 and the triangle inequality imply
that

E

[
|fn(Mβ

µ
)− fn(M0)|2

]
≤ 4C4.1.

Hence

E

[
|fn(Mβ

µ
)− fn(M0)|2

]
2Var(fn)

≤ 2C4.1

C4.4.1n2
.

By Section 13.3 in [23], we conclude that the spectral gap for the discrete time process viewed at
times 0, βµ ,

2β
µ , . . . is at most 2C4.1

C4.4.1n2 . If −λ = −λ(d, p, n, µ) is the nonzero eigenvalue of minimum
absolute value for the infinitesimal generator of the continuous time process (in which case λ is the
spectral gap for the continuous time process), then the spectral gap for the above discrete time

process is 1− e
−λβ
µ and so

1− e
−λβ
µ ≤ 2C4.1

C4.4.1n2
.

We can conclude that for large n, for any µ, we have that λβ
µ ≤

1
2 . Since 1 − e−x ≥ x/2 on [0, 1],

we conclude that
λβ

2µ
≤ 2C4.1

C4.4.1n2

or

λ ≤ 4C4.1µ

βC4.4.1n2
.

Since the relaxation time is the reciprocal of the spectral gap, we are done.

5 Proofs of the mixing time lower bounds in the general case

In this section, we prove Theorem 1.9, Theorem 1.7 and Corollary 1.10. We begin with the proof
of Theorem 1.9 as this will be used in the proof of Theorem 1.7.

Proof of Theorem 1.9. Clearly, dist(Xa, X0) is stochastically dominated by a Poisson random
variable with parameter a. It follows that

E
[
dist(Xs, X0)

2
]
≤ s+ s2. (21)
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(This will be used in the same way that Lemma 4.1 was used.) (21) tells us that (3) holds for t ≤ 1
if C1.9 ≥ 2.

If t ≥ 1, choose ` ∈ N so that v := t
` ∈ [1/2, 1]. Consider the discrete time finite state stationary

reversible Markov chain given by
Yk := Mkv, k ∈ Z.

Letting S and hn be as in the proof of Theorem 1.4, (21) (with s = v ≤ 1) together with the
uniform bi–Lipschitz property of the gn’s implies that

E
[
‖h(Y1)− h(Y0)‖2L2

]
≤ 2C2

Lip.

Lemma 4.2 with k = ` now yields

E
[
‖gn(Xt)− gn(X0)‖2L2

]
≤ 2C2

Lip`.

Since t
` ∈ [1/2, 1], we have that ` ≤ 2t. Using this and the bi–Lipschitz property of the gn’s again,

we obtain
E
[
dist(Xt, X0)

2
]
≤ 4C4

Lipt.

Letting C1.9 := 4C4
Lip(≥ 2), we obtain (3) for t ≥ 1 as well.

Proof of Corollary 1.10. This can be obtained from Theorem 1.9 in the exact same way as
Corollary 1.6 was obtained from Theorem 1.4.

Proof of Theorem 1.7. (i). One can check that in the same way that Theorem 1.2(ii) is proved
using Theorem 1.4, one can use Theorem 1.9 to prove this part. The details are left to the reader.

(ii). Fix ε < 1 − θd(p). Let ρ = ρ(d, p, ε) :=
√

1−θd(p)+ε
2(1−θd(p)) ∈ (0, 1). By countable additivity, there

exists κ = κ(d, p, ε) so that PZd,p(|C(0)| ≤ κ) ≥ (1 − θd(p))ρ. For n > κ, we therefore have
that PTd,n,p(|C(0)| ≤ κ) ≥ (1 − θd(p))ρ. Choose C1.7.2 = C1.7.2(d, p, ε) sufficiently small so that

e−2dκC1.7.2 ≥ ρ.

Now, let Ct(0) be the cluster of the origin at time t. For any n larger than κ and for any µ,
conditioned on {|C0(0)| ≤ κ}, the conditional probability that no edges adjacent to C0(0) refresh
during [0, C1.7.2

µ ] is at least e−2dκC1.7.2 which was chosen larger than ρ. If |C0(0)| ≤ κ and no edges

adjacent to C0(0) refresh during [0, C1.7.2
µ ], then it is necessarily the case that dist(XC1.7.2

µ

, 0) ≤ κ.

Hence

P

(
dist(XC1.7.2

µ

, 0) ≤ κ|δ0 × πp
)
≥ (1− θd(p))ρ2 =

1− θd(p) + ε

2
> ε.

Letting En := {x ∈ Td,n : dist(x, 0) ≤ κ}, we therefore have

P

(
XC1.7.2

µ

∈ En|δ0 × πp
)
> ε.

On the other hand, it is clear that u(En) goes to 0 as n→∞. This demonstrates (2) and completes
the proof.

We end this section by stating a proposition concerning the relaxation time analogous to Proposition
4.4 which holds for all p. The proof of this proposition follows the proof of Proposition 4.4 in a
similar way to how the proof of Theorem 1.9 followed the proof of Theorem 1.4. The details are
left to the reader.

Proposition 5.1. For any d, there exists C5.1 = C5.1(d) > 0 such that, for all n, p and µ, the
relaxation time of the full system is at least C5.1n

2.
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6 Proof of the mixing time upper bound in the subcritical case

In this section, we prove Theorem 1.2(i). This section is broken into four subsections. The first
sets up the key technique of increasing the state space, the second gives a sketch of the proof, the
third provides some percolation preliminaries and the fourth finally gives the proof.

6.1 Increasing the state space in the general case

In this subsection, we fix an arbitrary graph G = (V,E) with constant degree and parameters
p and µ and consider the resulting random walk in dynamical percolation which we denote by
{Mt}t≥0 = {(Xt, ηt)}t≥0. In order to obtain upper bounds on the mixing time, it will be useful
to introduce another Markov process which we denote by {M̃t}t≥0 = {(Xt, η̃t)}t≥0 which will
incorporate more information than {Mt}t≥0; the extra information will be the set of edges that the
random walker has attempted to cross since their last refresh time. The state space for this Markov
process will be

Ω := {(v, η̃) ∈ V × {0, 1, 0?, 1?}E : η̃(e) ∈ {0, 1} for each e adjacent to v}. (22)

If we identify 0? with 0 and 1? with 1, we want to recover our process {Mt}t≥0. The idea of the
possible extra ? for the state of the edge e is that this will indicate that the walker has not touched
the endpoints of e since e’s last refresh time. Hence, for such an edge e, whether there is a 1? or 0?

at e at that time is independent of everything else.

With the above in mind, it should be clear that we should define {M̃t}t≥0 as follows. An edge
refreshes itself at rate µ. Independent of everything else before the refresh time, the state of the
edge after the refresh time will be 1? with probability p and 0? with probability 1 − p unless the
edge is adjacent to the walker at that time. If the latter is the case, then the state of the edge after
the refresh time will instead be 1 with probability p and 0 with probability 1 − p. The random
walker will as before choose at rate 1 a uniform neighbor (in the original graph) and move along
that edge if the edge is in state 1 and not if the edge is in state 0. (Note that this edge can only be
in state 1 or 0 since it is adjacent to the walker.) Finally, when the random walker moves along an
edge, the ?’s are removed from all edges which become adjacent to the walker. Clearly, dropping
?’s recovers the original process {Mt}t≥0. We call an edge open if its state is 1? or 1 and closed
otherwise.

In order to exploit the ?-edges, we want that conditioned on (i) the position of the walker, (ii) the
collection of ?-edges and (iii) the states of the non-?-edges, we have no information concerning the
states of the ?-edges. This is not necessarily true for all starting distributions. We therefore restrict
ourselves to a certain class of distributions. To define this, we first let

Π : {0, 1, 0?, 1?}E → {0, 1, ?}E

be defined by identifying 1? and 0?.

Definition 6.1. A probability measure on Ω (as defined in (22)) is called good if conditioned on
(v,Π(η)), the conditional distribution of η at the ?-edges is i.i.d. 1? with probability p and 0? with
probability 1− p.

Note that if ν is supported on V × {0, 1}E , then ν is good.

We will let {Ft}t≥0 be the natural filtration of σ-algebras generated by {Mt}t≥0 which also keeps
track of all the refresh times and the attempted steps made by the walker. Note that {M̃t}t≥0 is
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measurable with respect to this filtration. Next, let {F?t }t≥0 be the smaller filtration of σ-algebras
which is obtained when one does not distinguish 1? and 0? but is otherwise the same. This filtration
will be critical for our analysis.

A key property of good distributions, which also indicates the importance of the filtration {F?t }t≥0,
is given in the following obvious lemma, whose proof is left to the reader.

Lemma 6.2. If the starting distribution for the Markov process {M̃t}t≥0 is good, then, for all s,
the conditional distribution of M̃s given F?s is good, as is the unconditional distribution of M̃s.
More generally, if S is a {F?t }t≥0 stopping time, then the conditional distribution of M̃S given F?S
is good, as is the unconditional distribution of M̃S.

6.2 Sketch of proof

In order to make this argument more digestable, we explain here first the outline of the proof.
Throughout this and the next subsection, our processes of course depend on d, p, n and µ; however,
we will drop these in the notation throughout which will not cause any problems. We start {M̃t}t≥0
with two initial configurations both in Td,n × {0, 1}E(Td,n); recall that these are necessarily good
distributions.

We want to find a coupling of the two processes and a random time T with mean of order at most
n2/µ so that after time T , the two configurations agree. Since {Mt}t≥0 is obtained from {M̃t}t≥0
by dropping the ?’s, we will obtain our result.

This coupling will be achieved in three distinct stages.

Stage 1.
In this first phase, we will run the processes independently until they simultaneously reach the set

ΩREG := {(x, η̃) ∈ Ω: η̃(e) = 0 for all e adjacent to x and η̃(e) ∈ {1?, 0?} for all other e}. (23)

Proposition 6.14 says that this will take at most order log n/µ units of time. To prove this, one
considers the set of edges

As := {e : η̃s(e) ∈ {0, 1}} (i.e., the set of edges without a ? at time s).

The hardest step is to show that on the appropriate time scale of order 1/µ, the sets As tend to
decrease in size; this is the content of Proposition 6.11, which relies on comparisons with subcritical
percolation. The fact that As tends to decrease is intuitive as follows. A fixed proportion of the
set As will be refreshed during an interval of order 1/µ while the random walker (which is causing
As to increase by encountering new edges) is somewhat confined even on this time scale since we
are in a subcritical setting. Next Lemma 6.13 will tell us that once As is relatively small, then
the process will enter ΩREG within a time interval of order 1/µ with a fixed positive probability.
Proposition 6.11 and Lemma 6.13 will allow us to prove Proposition 6.14.

Stage 2.
At the start of the second stage, the two distributions are the same up to a translation σ. At
this point, we look at excursions from ΩREG at discrete times on the time scale 1/µ. Proposition
6.11 and Lemma 6.13 will now be used again in conjunction with Proposition 3.2 to show that the
number of steps in such an excursion is of order 1 which means order 1/µ in real time; this is stated
in Theorem 6.18. The joint distribution of the number of steps in an excursion and the increment
of the walker during this excursion is complicated but it has a component of a fixed size where
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the excursion is one step and the increment is a lazy simple random walk. Coupling lazy simple
random walk on Td,n takes on order n2 steps and so we can couple two copies of our process by
having them do the exact same thing off of this component of the distribution and doing usual lazy
simple random walk coupling on this component. Since this component has a fixed probability, this
coupling will couple in order n2 excursions and hence in order n2/µ time.

Stage 3.
After this, we can couple the full systems by a color switch.

We carry this all out in detail at the end of this section.

6.3 Some percolation preliminaries

In this subsection, we gather a number of results concerning percolation.

Theorem 6.3. For any d ≥ 1 and α ∈ (0, pc(Zd)), there exists C6.3 = C6.3(d, α) > 0 so that for all
r ≥ 2,

PZd,α(|C(0)| ≥ r) ≤ e−C6.3r.

The previous line holds with Zd replaced by Td,n.

Proof. This is Theorem 6.75 in [19] in the case of Zd. Next, Theorem 1 in [11] states that if one
has a covering map from a graph G to a graph H, then the size of a vertex component in H is
stochastically dominated by the size of the corresponding vertex component in G. (This is stated
for site percolation but site percolation is more general than bond percolation.) Since we have a
covering map from Zd to Td,n, we obtain the result for Td,n from the result for Zd.

We collect here some graph theoretic definitions that we will need.

Definition 6.4. If V ′ ⊆ V , then E(V ′) will denote the set {e ∈ E : ∃v ∈ V ′ with v ∈ e}. (It is not
required that both endpoints of e are in V ′.)

Definition 6.5. If E′ ⊆ E, then V (E′) will denote the union of the endpoints of the edges in E′.

Definition 6.6. If V ′ ⊆ V , then Nk(V ′) := {x ∈ V : ∃v ∈ V ′ with dist(x, v) ≤ k} will be called the
k-neighborhood of V ′.

Definition 6.7. If V ′ ⊆ V , then E\V ′ is defined to be those edges in E which have at least one
endpoint not in V ′.

Given a set of vertices F of Zd or Td,n and a bond configuration η, let F η to be the set of vertices
reachable from F using open edges in η. If F is a set of vertices, then the configuration η might
only be specified for edges in E\F but note that this has no consequence for the definition of
F η. For a set of vertices F , we also let Fα be the random set obtained by choosing η ⊆ E\F
according to πα and then taking F η. We let Fα,1 := Fα and we also define inductively, for L ≥ 2,
Fα,L := (Fα,L−1)α. It is implicitly assumed here that we use independent randomness in each
iteration.

Theorem 6.8. Fix d ≥ 1 and α ∈ (0, pc(Zd)). Then for all L, there exists C6.8(L) = C6.8(d, α, L)
so that for all finite F ⊆ Zd and for all ` ≥ 1,

P(Fα,L 6⊆ Nκ(F )) ≤ L

2
`

log `

where κ := `C6.8(L) log(|F | ∨ 2). In addition, for the case L = 1, the log ` term can be removed.
Finally, the same result holds for Td,n as well.
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Proof. The following proof works for both Zd and Td,n. We prove this by induction on L. The
case L = 1 without the log ` term follows easily from Theorem 4.3 and is left to the reader. We
now assume the result for L = 1 (without the log ` term) and for L − 1 and prove it for L. It is
elementary to check that

{Fα,L 6⊆ Nκ(F )} ⊆ E1 ∪ (E2 ∩ E3)

where E1 := {Fα,L−1 6⊆ Nκ1(F )}, E2 := {Fα,L−1 ⊆ Nκ1(F )}, E3 := {Fα,L 6⊆ Nκ−κ1(Fα,L−1)} and
κ1 := `C6.8(L− 1) log(|F | ∨ 2).

The probability of the first event is, by induction, at most L−1

2
`

log `

. Note next that when E2 occurs,

it is necessarily the case that

|Fα,L−1| ≤ |F |(2`C6.8(L− 1) log(|F | ∨ 2) + 1)d.

The latter yields

log(|Fα,L−1| ∨ 2) ≤ log(|F |) + d log(2`C6.8(L− 1) log(|F | ∨ 2) + 1). (24)

Now the neighborhood size arising in the event E3 is

` log(|F | ∨ 2)(C6.8(L)− C6.8(L− 1))

C6.8(1) log(|Fα,L−1| ∨ 2)
× C6.8(1) log(|Fα,L−1| ∨ 2).

By (24), this first factor is at least

` log(|F | ∨ 2)(C6.8(L)− C6.8(L− 1))

C6.8(1)(log(|F |) + d log(2`C6.8(L− 1) log(|F | ∨ 2) + 1))
.

It is easy to show that given C6.8(1) and C6.8(L − 1), one can choose C6.8(L) sufficiently large so
that for all F and for all `, this is larger than `

log ` . It now follows from the L = 1 case (where no

log ` term appears) that P(E2 ∩ E3) ≤ 1

2
`

log `

. Adding this to the first term yields the result.

The previous theorem gave bounds on how far Fα (and its higher iterates) could be from F . The
next proposition yields bounds on the size of Fα in terms of F . We will only need a bound on the
mean which would then be easy to extend to higher iterates.

Theorem 6.9. Fix d ≥ 1 and α ∈ (0, pc(Zd)). Then there is a constant C6.9 = C6.9(d, α) so that
for all finite F ⊆ Zd, one has

E|Fα| ≤ C6.9|F |.

The same result holds for Td,n as well.

Proof. The following proof works for both Zd and Td,n. Theorem 4.3 immediately implies that
Ed,α|C(0)| < ∞. Note now that Fα ⊆ ∪x∈F C(x) where C(x) is the set of vertices that can be
reached from x using the α-open edges in E\F and so |Fα| ≤

∑
x∈F |C(x)|. This now gives the

result with C6.9(d, α) = Ed,α[|C(0)|].
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6.4 Details of the proof

We now fix d and p ∈ (0, pc(Zd)) for the rest of the argument. We next choose ε = ε(d, p) so that

ε <
pc − p

4

and we may assume that ε is an inverse integer. Since the probability that an edge is refreshed
during an interval of length ε/µ is 1− e−ε < ε, it follows that if, conditioned on F?s , an edge is open
at some fixed time t ≥ s with conditional probability at most pc+p

2 , then the conditional probability
given F?s that e is open some time during [t, t+ ε

µ ] is at most

pc + p

2
+ ε <

3

4
pc +

1

4
p.

In particular, the unconditional probability that e is open some time during [t, t + ε
µ ] is at most

3
4pc + 1

4p. For notational convenience, we let

p′ :=
3

4
pc +

1

4
p.

Proposition 6.11 is a crucial result showing As decreases by a fixed amount on an appropriate time
scale. Before doing this, we need the following lemma which yields an apriori bound on the growth
rate of |As|.

Lemma 6.10. There exists a constant C6.10 = C6.10(d, p) so that for all n, µ, k ∈ N and s, if we
consider {M̃t}t≥0 with an arbitrary good initial distribution, then

E
[
|As+ kε

µ
| | F?s

]
≤ Ck6.10 |As| a.s. (25)

Moreover C6.10 can be taken to be
4dC6.9(d, p

′)

where the latter constant comes from Theorem 6.9.

Proof. We prove this by induction on k. The main step is k = 1. Define a random configuration
η of edges of E\As consisting of those edges which are open some time during [s, s + ε/µ]. Note
that, by Lemma 6.2 and the way ε was chosen, for all µ and n, conditioned on F?s , η is i.i.d. with
density at most p′. The key observation to make is that

As+ ε
µ
⊆ E(V (As)

η) (see Definitions 6.4 and 6.5) .

It follows from Theorem 6.9 that

E
[
|As+ ε

µ
|
]
≤ C6.10 |As|

where C6.10 = 4dC6.9(d, p
′). For k ≥ 2, we have

E
[
|As+ kε

µ
| | F?s

]
= E

[
E

[
|As+ kε

µ
| | F?

s+
(k−1)ε
µ

]
| F?s

]
≤

E

[
C6.10 |As+ (k−1)ε

µ

| | F?s
]
≤ Ck6.10 |As|

where the first inequality follows from the k = 1 case already proved and the last inequality follows
by induction.
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We now move to

Proposition 6.11. There exist positive constants C6.11.1 = C6.11.1(d, p) and C6.11.2 = C6.11.2(d, p)
so that for all n and for all µ, if we consider {M̃t}t≥0 started with an arbitrary good initial distri-
bution, then we have that

E

[
|A

s+
C6.11.1

µ

| | F?s
]
≤ |As|

4
+ C6.11.2 log |As|. (26)

Proof. Given F?s , the conditional probability that an edge e is not refreshed during [s, s+ k1
µ ] or is

refreshed and is open at time s+ k1
µ is e−k1 +(1−e−k1)p. Choose an integer k1 = k1(d, p) sufficiently

large so that

e−k1 + (1− e−k1)p ≤ pc + p

2
.

Given a sufficiently large integer k2 = k2(d, p) to be chosen later, we let t1 := s+ k1
µ and t2 := t1+ k2

µ .

Denoting the range of the random walker during the time interval [u, v] byR[u, v], a key observation
is that

|A
s+

k1+k2
µ

| ≤ Q+ |E(R[t1, t2])| (see Definition 6.4)

where Q is the number of edges in At1 which are not refreshed during [t1, t2]. The proof would be
completed (by taking C6.11.1 to be k1 + k2) if we can choose k2 = k2(d, p) and C6.11.2 = C6.11.2(d, p)
so that for all n and µ,

E [Q | F?s ] ≤ |As|
4

(27)

and
E [|E(R[t1, t2])| | F?s ] ≤ C6.11.2 log |As|. (28)

We start by finding k2 so that (27) holds for all n and µ. For this, we simply choose k2 so that

e−k2C
k1
ε

6.10 ≤
1

4
(29)

where C6.10 comes from Lemma 6.10 and note that k2 only depends on d and p.

Clearly E
[
Q | F?t1

]
= e−k2 |At1 | which implies that

E [Q | F?s ] = E
[
E
[
Q | F?t1

]
| F?s

]
= E

[
e−k2 |At1 | | F?s

]
.

Since t1 = s + k1
ε
ε
µ (with ε being an inverse integer), Lemma 6.10 and (29) imply that this last

expression is at most |As|4 , demonstrating (27).

With k1 and k2 now chosen, we want to find C6.11.2 = C6.11.2(d, p) so that for all n and µ, (28)
holds. Since |E(R[t1, t2])| ≤ 2d|R[t1, t2]|, it suffices to prove such a bound for |R[t1, t2]| instead.

We first observe that by the way k1 was chosen, conditioned on F?s , the probability that an arbitrary
edge e is open at some fixed time t ≥ t1 is at most pc+p

2 and hence by our choice of ε, we have that
for any interval I := [y, y + ε

µ ] ⊆ [t1, t2], the conditional probability given F?s that e is open some

time during [y, y+ ε
µ ] is at most p′. Note that conditioned on F?s , the evolution of the states of the

different edges after time s are independent although they are not identically distributed.
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We next partition [t1, t2] into D = D(d, p) disjoint intervals of length ε
µ . Note importantly that D

does not depend on n or µ. It now suffices to show that if I := [y, y + ε
µ ] ⊆ [t1, t2] with y = t1 + `ε

µ
and ` ∈ N, then

E [|R[I]| | F?s ] ≤ C log |As| a.s. (30)

for some C depending only on d and p. To do this, it suffices to show that

‖
∑
`≥1

P

[
|R[I]| ≥ ` 4d

C6.3(d, p′)
log |V (As)| | F?s

]
‖∞ <∞

where C6.3(d, p
′) comes from Theorem 6.3. Let η be the set of edges which are open some time

during I. By our choice of ε, conditioned on F?s , η is stochastically dominated by an i.i.d. process
with density p′. Since R[I] is necessarily contained inside of a η-cluster, we have

P

[
|R[I]| ≥ ` 4d

C6.3(d, p′)
log |V (As)| | F?s

]
≤ P [dist(Xy, Xs) ≥ `Ξ | F?s ] + (31)

P

[
η contains a cluster of size ≥ ` 4d

C6.3(d, p′)
log |V (As)| intersecting B(Xs, `Ξ) | F?s

]
where

Ξ := 4dC6.8(d, p
′, D)|V (As)| log |V (As)|,

where C6.8(d, p
′, D) comes from Theorem 6.8 and where, as before, B(v, r) is the set of vertices

within dist-distance r of v.

It is easy to check that Theorem 6.3 together with a union bound implies that the second terms
are summable over ` uniform in the conditioning, i.e.

‖
∑
`≥1

P

[
η contains a cluster of size ≥ ` 4d

C6.3(d, p′)
log |V (As)| intersecting B(Xs, `Ξ) | F?s

]
‖∞ <∞.

To deal with the first terms, we partition the interval [s, y] into successive intervals J1, J2, . . . , JL
of lengths ε

µ where L ≤ D. Let ηi be the set of edges which are open some time during Ji. The
key observation is (see Definition 6.6) that for each w ≥ |V (As)| log |V (As)|

{dist(Xy, Xs) > 4dw} ⊆ {V (As)
η1,...,ηL 6⊆ N w

|V (As)|
(V (As))}. (32)

To see this, one first makes the important observation that the random walk path between times
s and y is contained in V (As)

η1,...,ηL and a geometric argument shows that {dist(Xy, Xs) > 4dw}
implies that R[s, y] cannot be contained in N w

|V (As)|
(V (As)).

We claim that conditioned on F?s , the set

V (As)
η1,...,ηL is stochastically dominated by V (As)

p′,L. (33)

To see this, one first notes that since we are assuming a good initial distribution, when we condition
on F?s , the edges not in As, which are the only relevant edges in the construction of V (As)

η1,...,ηL ,
are in stationarity and hence, conditioned on F?s , each ηi, off of the edge set As, is stochastically
dominated by an i.i.d. process with density p′. Second, one notes that when one further conditions
on the sets V (As)

η1 , . . . , V (As)
η1,...,ηj , this can only stochastically decrease the edges of ηj+1 which

are relevant at that point. Hence we obtain (33). This stochastic domination implies that

P
[
V (As)

η1,...,ηL 6⊆ N w
|V (As)|

(V (As))
]
≤ P

[
V (As)

p′,L 6⊆ N w
|V (As)|

(V (As))
]
. (34)
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Letting w := `C6.8(d, p
′, D)|V (As)| log |V (As)|, (we may assume C6.8(d, p

′, D) ≥ 1) (32), (34) and
Theorem 6.8 now imply that the first terms of (31) are also summable over ` uniform in the
conditioning, i.e.,

‖
∑
`≥1

P [dist(Xy, Xs) ≥ `Ξ | F?s ] ‖∞ <∞.

Remark 6.12. If one wants, one could avoid the use of Theorem 6.3 and thereby the need for
Theorem 1 from [11]. One could do this by modifying the above proof using only Theorem 4.3
obtaining (26) with the log term replaced by a power of log which would suffice for the rest of the
proof.

We are now going to look at our process at integer multiples of C6.11.1
µ where C6.11.1 comes from

Proposition 6.11. We therefore let, for integer k ≥ 0,

Dk := (X kC6.11.1
µ

, η̃ kC6.11.1
µ

), Bk := A kC6.11.1
µ

and Gk := F?kC6.11.1
µ

. (35)

We will use the set ΩREG (see (23)) as a regenerative set. We therefore define the set of regeneration
times along our subsequence of times by

I := {k ≥ 0 : Dk ∈ ΩREG}. (36)

Our next lemma says that when we are not far away from ΩREG, then we have a good chance of
entering it.

In the proof of this lemma, if E′ ⊆ E, then we let ∂(E′) denote the set {e 6∈ E′ : ∃e′ ∈
E′ with e and e′ adjacent}; this will be called the boundary of E′.

Lemma 6.13. For all R, there exists α6.13 = α6.13(d, p,R) > 0 so that for all n and for all µ, if
we consider {M̃t}t≥0 with an arbitrary good initial distribution, then

P [j + 1 ∈ I | Gj ] ≥ α6.13

on the event |Bj | ≤ R.

Proof. First, let E1 be the event that all edges of the boundary of Bj , ∂(Bj) are closed at time
jC6.11.1

µ , E2 be the event that no edge of ∂(Bj) refreshes during [C6.11.1
µ j, C6.11.1

µ (j + 1
2)] and E3 be

the event that all edges in Bj are refreshed closed during [C6.11.1
µ j, C6.11.1

µ (j + 1
2)]. Observe that if

E1 ∩E2 ∩E3 occurs, then the edges next to the walker necessarily are closed and belong to either
Bj or ∂(Bj). Next, let E4 be the event that the edges adjacent to XC6.11.1

µ
(j+ 1

2
)

do not refresh

during [C6.11.1
µ (j + 1

2), C6.11.1
µ (j + 1)] and E5 be the event that all the edges of Bj and ∂(Bj) except

for the edges adjacent to XC6.11.1
µ

(j+ 1
2
)

refresh during [C6.11.1
µ (j + 1

2), C6.11.1
µ (j + 1)]. It is elementary

to check, using the fact that we started with a good initial distribution, that P
[
∩5i=1Ei | Gj

]
is

bounded away from 0 on the event |Bj | ≤ R uniformly in n and µ and the conditioning and that
∩5i=1Ei ⊆ {j + 1 ∈ I}. This completes the proof.

Our next proposition tells us that we can do the first stage of the coupling described in the sketch;
namely, two copies of our system will enter ΩREG within log n many steps and hence within log n/µ
units of time.
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Proposition 6.14. There exists C6.14 = C6.14(d, p) <∞ so that for all n and for all µ, if {D1
k}k≥0

and {D2
k}k≥0 are two independent copies of {Dk}k≥0 each starting from arbitrary initial configura-

tions in Td,n × {0, 1}E(Td,n), and if we set

T1 := min{k ≥ 1 : D1
k ∈ ΩREG and D2

k ∈ ΩREG},

then E [T1] ≤ C6.14 log n.

Proof. Let Zk := |B1
k|+ |B2

k| using obvious notation. By Proposition 6.11, we obtain that for all n
and for all µ,

E [Zk+1 | Gk × Gk] ≤
Zk
4

+ 2C6.11.2 log(Zk).

This immediately gives that there is a constant C6.14.1 = C6.14.1(d, p) <∞ so that

E [Zk+1 | Gk × Gk] ≤
Zk
3

(37)

on the event Zk ≥ C6.14.1. Now, noting that Z0 = 2dnd (which is ≥ C6.14.1 for n large), (37) implies

that 3k∧T̃Zk∧T̃ is a Gk × Gk-supermartingale where

T̃ := min{k : Zk ≤ C6.14.1}.

From the theory of stopping times for nonnegative supermartingales [17, Chapter 5], we obtain the
fact that

E
[
3T̃ZT̃

]
≤ Z0.

Since the Zk’s are always at least 1 and Z0 = 2dnd, we infer that

E
[
3T̃
]
≤ 2dnd

which in turn implies, by Jensen’s inequality, that

E
[
T̃
]
≤ log3(2dn

d).

Since both |B1
T̃
| and |B2

T̃
| are less than C6.14.1, using the fact that T̃ is a stopping time and the

independence of the two processes, we can conclude from Lemma 6.13 that for all n and µ, the
probability that both D1

T̃+1
and D2

T̃+1
are in ΩREG is at least α6.13(d, p, C6.14.1)

2. If this fails, we

start again and wait on average another at most log3(2n
d). After a geometric number of trials, we

are done. By Wald’s Theorem [17, Theorem 4.1.5], this proves the result.

We now return to looking at just one copy of our system and study the excursions of {M̃t}t≥0 away
from ΩREG. Assume now that M̃0 has a good distribution supported on ΩREG. We let τ0 = 0 and,
for j ≥ 1, define

τj := min{i > τj−1 : i ∈ I}, Uj := D′τj −D
′
τj−1

(38)

where D′k denotes the first coordinate of Dk.

Note that, by Lemma 6.2, for each j, the distribution of the process at time
τjC6.11.1

µ conditioned
on Gτj is good.
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Remark 6.15. It is easy to see that the set of good probability measures supported on ΩREG can
be described as follows; one chooses a vertex v at random according to any distribution and then
sets the edges adjacent to v to be in state 0 and all other edges are (conditionally) independently
chosen to be 1? with probability p and 0? with probability 1− p.

The following lemma, whose proof is left to the reader, is clear.

Lemma 6.16. If our initial distribution is a good distribution supported on ΩREG, then
{(τj−τj−1, Uj)}j≥1 are i.i.d. and moreover, for each j ≥ 1, given Gτj−1, the conditional distribution
of (τj − τj−1, Uj) is the same as (τ1, U1).

Remark 6.17. Of course τj − τj−1 and Uj are not independent of each other.

The next theorem tells us that the number of steps in one of our excursions away from ΩREG is of
order 1.

Theorem 6.18. There exists C6.18 = C6.18(d, p) <∞ such that, for all n and for all µ, if we start
with a good initial distribution supported on ΩREG, then

E [τ1] ≤ C6.18.

Proof. Let Yk := 1 + B′k + Lk where B′k is the number of edges not adjacent to the walker which
are in state 0 or 1 at time kC6.11.1

µ and where Lk is the number of edges adjacent to the walker

which are in state 1 at time kC6.11.1
µ . Note Yk = 1 if and only if Dk ∈ ΩREG; hence Y0 = 1 and

τ1 corresponds to the first return of the Y process to 1. We will apply Proposition 3.2 with Fi
there being Gi. Property (1) trivially holds. Proposition 6.11 easily implies that for δ = 1/3 and
for α sufficiently large, but only depending on d and p, Property (2) holds for all n and µ. Next,
with α now fixed, Lemma 6.10 implies that there exists γ sufficiently large, but only depending
on d and p, so that Property (4) holds for all n and µ. Finally, since α is now fixed, Lemma 6.13
guarantees that property (3) holds for all n and µ for some positive ε also only depending on d and
p. Proposition 3.2 now yields the result.

We now finally have all of the ingredients to give the

Proof of Theorem 1.2(ii). Let {M̃1
t }t≥0 and {M̃2

t }t≥0 denote two copies of our process {M̃t}t≥0,
each starting from an arbitrary configuration in Td,n × {0, 1}E(Td,n). We will find a coupling
({M̃1

t }t≥0, {M̃2
t }t≥0, T ) of our two processes and a nonnegative random variable T so that

(1) M̃1
t = M̃2

t for all t ≥ T and

(2) E [T ] ≤ Od,p(1)n
2

µ .

From here, it is standard that this gives a bound on the mixing time as follows. If t ≥ 4 E [T ], then

‖L(M1
t )− L(M2

t )‖TV ≤ P
[
M1
t 6= M2

t

]
≤ P

[
M̃1
t 6= M̃2

t

]
≤ P [T > t] ≤ 1

4

by Markov’s inequality. As outlined earlier, we do this coupling in two separate stages.

Stage 1.
In this first stage we run the two processes independently until both processes simultaneously hit
ΩREG at some time T1 of the form kC6.11.1

µ , k ∈ N. By Proposition 6.14, this first stage will take in

expectation at most Od,p(1) lognµ time. Let F1,?
T1

be the σ-algebra generated by {M̃1
t }0≤t≤T1 including
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all the refresh times in [0, T1] but where one does not distinguish 1? and 0?. Let F2,?
T1

be defined
analogously. (A trivial variant of) Lemma 6.2 and the independence of the two processes imply
that, conditioned on (1) T1, (2) F1,?

T1
and (3) F2,?

T1
, we have that these two conditional distributions

at time T1 are good. Also, the two conditional distributions of the walker are trivially degenerate.
In view of Remark 6.15, these two conditional distributions will then agree up to a translation σ
which translates one walker to the other. Moreover, the two processes at time T1 are conditionally
independent given (1), (2) and (3) above.

Stage 2.
We now condition on (1), (2) and (3) above. Viewing things from time T1, we are then in the
setting of Lemma 6.16 where we can view our two processes as being independent and having good
distributions supported on ΩREG with the walker having a degenerate distribution.

Before completing the second stage, we first recall for the reader how one couples two lazy simple
random walks on Td,n. By definition, a lazy simple random walk on Td,n with probability 1/2 stays
where it is and with probability 1/2 moves to a neighbor chosen uniformly at random. The usual
coupling of two lazy simple random walks on Td,n is a Markov process on Td,n × Td,n defined as
follows. One chooses one of the d coordinates uniformly at random. If the two walkers agree in this
coordinate, then they both stay still, both move “right” in this coordinate or both move “left” in
this coordinate with respective probabilities 1/2, 1/4 and 1/4. If the two walkers disagree in this
coordinate, then one of the walkers, chosen at random, stays still while the other one moves “right”
or “left” in this coordinate, each with probability 1/2. It is easy to check that this is a coupling
of the two lazy simple random walks. It is known (see Section 5.3 in [23]) that the expected time
until the two walkers meet is at most Od(1)n2.

Denote the joint distribution of (τ1, U1) by νd,p,n,µ; this is a probability measure on N × Td,n. It
is easy to show, along the same lines as the proof of Lemma 6.13, that for any d and p, there is a
γ = γ(d, p) > 0 so that for any n and µ,

νd,p,n,µ = γ(δ1 × νLSRW) + (1− γ)md,p,n,µ (39)

where δ1× νLSRW is the probability measure on N×Td,n where the first coordinate is always 1 and
the second coordinate is a step of a lazy simple random walk on Td,n and where md,p,n,µ is some
probability measure on N× Td,n.

We will first couple the random sequence {(τj − τj−1, Uj)}j≥1 for the two systems and denote

the coupled variables by {
(

(τ1j − τ1j−1, U1
j ), (τ2j − τ2j−1, U2

j )
)
}j≥1. We will do this in such a way

that τ1j − τ1j−1 = τ2j − τ2j−1 for all j. Given {
(

(τ1j − τ1j−1, U1
j ), (τ2j − τ2j−1, U2

j )
)
}1≤j≤K so that

τ1j − τ1j−1 = τ2j − τ2j−1 for all 1 ≤ j ≤ K, we know where the two walkers are located at time

C6.11.1

µ

K∑
j=1

(
τ1j − τ1j−1

)
(=

C6.11.1

µ
τ1K =

C6.11.1

µ
τ2K =

C6.11.1

µ

K∑
j=1

(
τ2j − τ2j−1

)
).

We now define
(
(τ1K+1 − τ1K , U1

K+1), (τ
2
K+1 − τ2K , U2

K+1)
)

as follows. With probability 1 − γ, one

chooses an element from N × Td,n according to distribution md,p,n,µ and uses it for both systems.
With probability γ, one takes the first coordinate to be 1 for both systems and does the coupled
lazy simple random walk (described above) for the second coordinates of the two systems. (This
coupling is reminiscent of a coupling due to D. Ornstein.) Note that this is a coupling and with it,
we have that τ1j − τ1j−1 = τ2j − τ2j−1 for all j and (τ1j − τ1j−1, U1

j ) = (τ2j − τ2j−1, U2
j ) for all large j

depending on ω.
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By (39), the fact that γ is uniformly bounded away from 0, the fact that the standard coupling
of two lazy simple random walks on Td,n couples in expected time at most Od(1)n2 and Wald’s
Theorem [17, Theorem 4.1.5], we have that the expected number of steps, denoted by N , in the
above coupling until the two walkers meet is at most Od,p(1)n2. Using Theorem 6.18, another
application of Wald’s Theorem tells us that the expected value of

T2 :=
C6.11.1

µ

N∑
j=1

(
τ1j − τ1j−1

)
is at most Od,p(1)n

2

µ . We now let
T := T1 + T2

and note that we have E [T ] ≤ Od,p(1)n
2

µ .

Stage 3.
By construction, we have that {T1,F1,?

T1
} is independent of the random variables {(τ1j −τ1j−1, U1

j )}j≥1
from the second stage and similarly, we have that {T1,F2,?

T1
} is independent of the random variables

{(τ2j − τ2j−1, U2
j )}j≥1 from the second stage. It also follows by construction that the conditional

distribution of {M̃1
t }t≥T conditioned on {T1,F1,?

T1
, {(τ1j − τ1j−1, U1

j )}j≥1, T} is the same as the con-

ditional distribution of {M̃2
t }t≥0 conditioned on {T1,F2,?

T1
, {(τ2j − τ2j−1, U1

j )}j≥1, T}. This implies
that we have a coupling of the desired form and completes the proof.

7 Hitting time results

This section is devoted to proving Theorem 1.12. We will use a number of the results which were
derived in Section 6. We first need some lemmas which might be of independent interest.

Our first lemma follows easily from the usual local central limit theorem for lazy simple random
walk on Zd and therefore no proof is given.

Lemma 7.1. Fix d ≥ 1 and let P kn be the k-step transition probability for lazy simple random walk
on Td,n. Then there exists a constant C(d) such that for all n and k

sup
x,y∈Td,n

P kn (x, y) ≤ C(d)

(
1

kd/2
∨ 1

nd

)
(40)

and in addition for any α > 0, there is a constant C(d, α) such that for all n

inf
x,y∈Td,n,k≥αn2

P kn (x, y) ≥ 1

C(d, α)nd
(41)

and such that for all k

inf
n,x,y∈Td,n,α(dist(x,y))2≤k

P kn (x, y) ≥ 1

C(d, α) kd/2
. (42)

Lemma 7.2. Fix γ > 0 and d ≥ 1. Then there exists a constant C7.2 = C7.2(γ, d) so that if S(n)

is any discrete time random walk on Td,n whose step distribution νn satisfies

νn = γνLSRW + (1− γ)mn
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where νLSRW is the distribution of a step of a lazy simple random walk on Td,n and where mn is
some probability measure on Td,n, then the following hold.
(i). If d = 1, then for all n,

max{E [σy] : y ∈ T1,n} ≤ C7.2n
2.

(ii). If d = 2, then for all n,

max{E [σy] : y ∈ T2,n} ≤ C7.2n
2 log n.

(iii). If d ≥ 3, then for all n,

max{E [σy] : y ∈ Td,n} ≤ C7.2n
d.

Proof. Letting P k
S(n) be the k-step transition probability for S(n), we claim that there exists a

constant C(d, γ) so that for all n and k

sup
x,y∈Td,n

P k
S(n)(x, y) ≤ C(d, γ)(

1

kd/2
∨ 1

nd
) (43)

and so that for all n

inf
x,y∈Td,n,k≥n2/2

P k
S(n)(x, y) ≥ 1

C(d, γ)nd
. (44)

We argue (43). Let Y (n, k) be the number of times that S(n) uses the lazy simple random walk
component up to time k and observe that Y (n, k) has a binomial distribution with parameters k
and γ. Therefore, the probability of {Y (n, k) ≤ kγ/2} is exponentially small in k. On the other
hand, if Y (n, k) ≥ kγ/2, then we can bound the probability of being at some y at time k by
conditioning on the steps up to time k taken by S(n) when it doesn’t use the lazy simple random
walk component and then using (40) for the remaining steps. Together, this yields

P k
S(n)(x, y) ≤ e−c(γ)k + C(d)

((
2

kγ

)d/2
∨ 1

nd

)

which is bounded above by C(d, γ)( 1
kd/2
∨ 1

nd
) for some constant C(d, γ), obtaining (43). (44) is

handled similarly by using (41) instead.

Next, given a general Markov chain X = {Xn}, an element y in the state space and k ≥ 1, we let
LX(k, y) = L(k, y) :=

∑k
i=1 I{Xi=y} be the local time at y up to time k.

Case (i): d = 1. By using (44) and summing over k ∈ {n2/2, . . . , n2} and then using (43) and
summing over k ∈ {1, . . . , n2}, we obtain

n

2C(1, γ)
≤ min

y
E
[
LS(n)(n2, y)

]
≤ max

y
E
[
LS(n)(n2, y)

]
≤ 2C(1, γ)n. (45)

The inequalities in (45) easily yield that for any y,

E
[
(LS(n)(n2, y))2

]
≤ 8C2(1, γ)n2 ≤ 32C4(1, γ)(E

[
(LS(n)(n2, y))

]
)2.

The Cauchy-Schwarz inequality allows us to conclude that for any y,

P
[
LS(n)(n2, y)) > 0

]
≥ 1

32C4(1, γ)
.
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By symmetry, starting from any state, we hit y after n2 steps with probability at least 1
32C4(1,γ)

.

This immediately gives an upper bound of the desired form.

Case (ii): d = 2. Proceed exactly as in the case d = 1 except we consider the local time up to time
n2 log n and sum (44) and (43) over k ∈ {n2/2, . . . , n2 log n} and k ∈ {1, . . . , n2 log n} respectively.
The right and left most terms of what will become (45) are then of order log n in this case.

Case (iii): d ≥ 3. Proceed exactly as in the case d = 1 except we consider the local time up to time
nd and sum (44) and (43) over k ∈ {nd/2, . . . , nd} and k ∈ {1, . . . , nd} respectively. The right and
left most terms of what will become (45) are then of order 1 in this case.

Lemma 7.3. Fix γ > 0, R > 0, and d ≥ 1. Then there exists a constant C7.3 = C7.3(γ,R, d) so
that if S(n) is any discrete time random walk on Td,n whose step distribution νn satisfies

νn = γνLSRW + (1− γ)mn

where νLSRW is the distribution of a step of a lazy simple random walk on Td,n and where mn is
some probability measure on Td,n and

E
[
dist(S

(n)
1 , 0)2

]
≤ R, (46)

then it follows that for any k,

inf
n,x,y∈Td,n:dist(x,y)2≤k

P k
S(n)(x, y) ≥ C7.3

kd/2
. (47)

Proof. We just sketch the proof. This can be proved in a similar fashion as (43) but now using
(42) as follows. By the uniform variance assumption (46), if we add up the steps taken up to time
k when we don’t use the lazy simple random walk component, then, with fixed probability, this is
not much larger than

√
k (times a constant depending on R). Since dist(x, y) ≤

√
k, we won’t be

more than order
√
k away from y. Also, with a fixed probability, the number of times we use the

lazy simple random walk component up to time k is at least kγ/2. By (42), these latter steps will
bring us to y with probability at least a constant times 1

kd/2
.

Since we are always starting in δ0 × πp, we may consider all the edges to have a ?, as in Section 6.
We let τ0 = 0 and, for j ≥ 1, let, as in (38), τj := min{i > τj−1 : i ∈ I} (recall (35) and (36)). We
have that {τj − τj−1}j≥1 are independent and all of these, except τ1, have the same distribution
as those introduced in (38). τ1 has a different distribution since we are not starting in ΩREG. As

it will be simpler to look at the real time corresponding to τk, we let τ̃k :=
C6.11.1 τk

µ . Recall, as
introduced in the proof of Proposition 6.11, that R[u, v] denotes the range of the random walker
during the time interval [u, v].

Lemma 7.4. For all d and for all p ∈ (0, pc(Zd)), there are finite constants C7.4.1 = C7.4.1(d, p)
and C7.4.2 = C7.4.2(d, p) so that for all n, for all µ and for all i ≥ 1,

E
[
eC7.4.1|R[τ̃i,τ̃i+1]|

]
≤ C7.4.2 .

In particular, for some constant C7.4.3 = C7.4.3(d, p), E [|R[τ̃i, τ̃i+1]|] ≤ C7.4.3 for all n, for all µ
and for all i ≥ 1.
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Proof. We prove this for i = 1. For i ≥ 2, the distributions are of course the same while one
can modify the argument for i = 0. We say that a family of random variables {Xα} has uniform
exponential tails if there are constants c1 and c2 so that E

[
ec1Xα

]
≤ c2 for all α. The proof of

Theorem 6.18, where Proposition 3.2 is critically invoked, actually shows that the family of random
variables τ2 − τ1 as we vary n and µ has uniform exponential tails. (One can similarly argue that
this is also true for τ1.) Note next that

|R[τ̃1, τ̃2]| ≤
τ2−τ1−1∑
k=0

∣∣∣∣R [τ1C6.11.1

µ
+
k C6.11.1

µ
,
τ1C6.11.1

µ
+

(k + 1)C6.11.1

µ

]∣∣∣∣ . (48)

For β = β(d, p) sufficiently small, we have that for all n and µ, the probability that, for {ηt}t≥0
started in stationarity, a fixed edge e is open at some point in [0, β/µ] is less than pc(Zd). It follows
from Theorem 6.3 that started from stationarity, the family of random variables |R[s, s+ β

µ ]| as n

and µ vary has uniform exponential tails. Since the distribution of |R[ τ1 C6.11.1
µ +s, τ1 C6.11.1

µ +s+ β
µ ]|

is just the distribution of |R[u, u + β
µ ]| conditioned on an event whose probability is uniformly

bounded away from 0 (namely, that the edges next to the walker are closed at the appropriate
time), we have that the family of random variables |R[ τ1 C6.11.1

µ + s, τ1 C6.11.1
µ + s+ β

µ ]| as we vary n,
µ and s has uniform exponential tails. Since each of the summands in (48) is a sum of a uniformly
bounded number of such random variables, the family of summands also has uniform exponential
tails. Finally, this together with the fact that the variables τ2 − τ1 has uniform exponential tails
(as n and µ vary) allows us to invoke Lemma 3.3 to conclude that the family of random variables
{|R[τ̃1, τ̃2]|} has uniform exponential tails (as n and µ vary). This is exactly the claim of the
lemma.

Proof of Theorem 1.12. It is easy to show that for any fixed n, one can find constants so that
the upper and lower bounds hold for all µ. Hence we need to only consider large n below. We
first establish the lower bounds. Fix d and p with p ∈ (0, pc(Zd)). As usual, we choose β = β(d, p)
sufficiently small, so that for all n and µ, the probability that, for {ηt}t≥0 started at stationarity, a
fixed edge e is open at some point in [0, β/µ] is less than pc(Zd). Since u×πp is stationary, it easily
follows that starting from δ0× πp, the distribution of the cluster of the random walker at any time
t has the same distribution as an ordinary cluster at the origin. It follows, as we saw in the proof
of Lemma 7.4, that for any t, E|R[t, t+ β/µ]| ≤ C1.12.1 where C1.12.1 only depends on d and p.

We now move to the dimension dependent parts of the argument, going in order of increasing
difficulty.

Case (iii): d ≥ 3: lower bound.
It follows from the above that for any N ,

E [|R[0, N/µ]|] ≤ C1.12.1N/β.

Letting N := βnd

3C1.12.1
, we have

E

[
|R[0,

βnd

3C1.12.1µ
]|
]
≤ nd/3.

On the other hand, Markov’s inequality implies that starting from δ0 × πp, we have that for any n
and d and any y ∈ Td,n,

P [σy ≥ 2Hd(n)] ≤ 1/2

from which it follows that
E [|R[0, 2Hd(n)]|] ≥ nd/2.
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We conclude that Hd(n) ≥ βnd

6C1.12.1µ
as desired.

Case (i): d = 1: lower bound.
Let y have maximum distance from 0 in T1,n. Observe that

{σy <
αn2

µ
} ⊆ E1 ∪ E2

where

E1 :=

{
max

{
dist(Xβk

µ
, 0) : 1 ≤ k ≤ αn2

β

}
≥ n

8

}
and

E2 := ∪
αn2

β

k=1 {|R[β(k − 1)/µ, βk/µ]| ≥ n/8} .

By Markov’s inequality,

P [E1] ≤ E

[
max

{
dist2(Xβk

µ
, 0) : 1 ≤ k ≤ αn2

β

}]
64

n2
.

By the proof of Theorem 1.4 but using the maximal version of Lemma 4.2 mentioned earlier instead,
we obtain that the latter term is at most Od,p(1)α. Therefore, if α = α(d, p) is taken sufficiently

small, then P [E1] ≤ 1/4. Since |R[s, s + β
µ ]| has uniform exponential tails as n and µ vary, it

follows that P [E2] → 0 as n → ∞. We conclude that for large n, P
[
σy <

αn2

µ

]
≤ 1/2 and hence

E [σy] ≥ αn2

2µ yielding the desired lower bound.

Case (ii): d = 2: lower bound.
Note that we have that for all k,

τ̃k ≥
k C6.11.1

µ
. (49)

By Lemma 7.4, there exists R such that the second moments of |R[τ̃i, τ̃i+1]| are bounded uniformly
(in n and µ) by R. We also let γ be such that the distribution of Xτ̃i+1 − Xτ̃i contains, for all n
and µ, γνLSRW.

For simplicity, let C1.12.2 := C7.3(γ,R,d)
16C7.4.3

. If there exists y ∈ Td,n such that

P
[
σy ≤ τ̃C1.12.2n2 logn

]
≤ 3/4, (50)

then, by (49), we have

P

[
σy ≤

C6.11.1C1.12.2 n
2 log n

µ

]
≤ 3/4.

This would lead to

E [σy] ≥
C6.11.1C1.12.2 n

2 log n

4µ

and we would be done. Hence we may assume that for all y ∈ Td,n

P
[
σy ≤ τ̃C1.12.2 n2 logn

]
≥ 3/4. (51)

We will prove below that under this assumption, for all large n, we have that

E
[∣∣R[0, τ̃C1.12.2 n2 logn]

∣∣] ≤ n2

4
. (52)
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On the other hand, by summing (51) over y, one immediately obtains

E
[∣∣R[0, τ̃C1.12.2n2 logn]

∣∣] ≥ 3n2

4
. (53)

This contradiction tells us that in fact (51) cannot be true for all y and so we would have our
desired lower bound on the hitting time.

We are now left to prove that (51) implies (52). First we abbreviate the event {σy ≤ τ̃C1.12.2 n2 logn}
by Uy. Next, for i ≥ 1, let Yi := R[τ̃i−1, τ̃i]. Clearly for all y ∈ Td,n, we have that

P [Uy] ≤
E
[∑2C1.12.2 n2 logn

i=1 I{y∈Yi}

]
E
[∑2C1.12.2 n2 logn

i=1 I{y∈Yi} | Uy
] .

We will argue further down that for all y

E

2C1.12.2 n2 logn∑
i=1

I{y∈Yi} | Uy

 ≥ C7.3(γ,R, d) log n/2. (54)

Assuming this for the moment, we plug this into the previous inequality, sum over y ∈ Td,n, use
Lemma 7.4 and conclude (52). This leaves us with proving (54).

Let Gi := {|R[τ̃i−1, τ̃i]| ≤ (log n)2} and G = ∩n3

i=1Gi. Using Lemma 7.4, one easily sees that

lim
n→∞

P [G] = 1. (55)

Note that (55) and (51) imply that

P [G | Uy] = 1− o(1).

Let T := min{i : y ∈ Yi}. By writing P [G | Uy] as

C1.12.2 n2 logn∑
j=1

P [G | T = j] P [T = j | Uy] ,

we see that there must be a set Jn ⊆ {1, 2, . . . , C1.12.2 n
2 log n} so that

P [T ∈ Jn | Uy] = 1− o(1) and inf
j∈Jn

P [G | T = j] = 1− o(1).

These imply that

E

2C1.12.2 n2 logn∑
i=1

I{y∈Yi} | Uy

 =
∑
j

E

2C1.12.2 n2 logn∑
i=1

I{y∈Yi} | T = j

P [T = j | Uy] ≥

(1− o(1)) min
j∈Jn

E

2C1.12.2 n2 logn∑
i=1

I{y∈Yi} | T = j

 ≥
(1− o(1)) min

j∈Jn
P [Gj | T = j] E

2C1.12.2 n2 logn∑
i=1

I{y∈Yi} | Gj , T = j

 ≥
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(1− o(1)) min
j∈Jn

E

2C1.12.2 n2 logn∑
i=1

I{y∈Yi} | Gj , T = j

 ≥
(1− o(1)) min


j+n∑

i=j+(logn)4

P [Xτ̃i = y | Gj , T = j] : j ∈ {1, 2, . . . , C1.12.2 n
2 log n}

 .

Now, recall R was chosen so that the i.i.d. increments of Xτ̃j , Xτ̃j+1 , . . . have variances bounded by
R, uniformly in n and µ. In addition, these increments are independent of the event {Gj , T = j}.
The occurence of Gj implies that dist(y,Xτ̃j ) ≤ (log n)2. It then follows from Lemma 7.3 that for

i ∈ {j + (log n)4, . . . , j + n}, P [Xτ̃i = y | Gj , T = j] ≥ C7.3(γ,R,d)
i−j . Summing over our set of i yields

(54).

We now move to the upper bounds which can be obtained simultaneously for all dimensions with
an application of Lemma 7.2 as follows.

Letting Uk := Xτ̃k as in (38), we have that {Uk − Uk−1}k≥1 are independent with all, except the
first, having the same distribution. (Recall d and n are suppressed in the notation.) We will
apply Lemma 7.2 to the random walk on Td,n whose steps have distribution {U2 − U1}. The
key hypothesis of this lemma holds as indicated in (39). Letting σ̂y denote the hitting time for
our induced discrete time system, Lemma 7.2 yields that E [σ̂y] is bounded above by Od,p(1)n2,
Od,p(1)n2 log n and Od,p(1)nd respectively in dimensions 1,2 and ≥ 3. (Note that while the constant
in Lemma 7.2 depends on γ, our γ here only depends on d and p.)

Note next that

σy ≤
σ̂y∑
i=1

τ̃i − τ̃i−1

By Wald’s lemma [17, Theorem 4.1.5], we obtain

E [σy] ≤
C6.11.1

µ
E [τ2 − τ1] E [σ̂y] .

We cheated a little since τ1 has a different distribution than the other τi − τi−1’s; however, as
mentioned earlier, the proof of Theorem 6.18 easily yields that E [τ1] is also bounded by a constant
depending only on d and p and so this can be ignored in the above. Finally, Theorem 6.18 and our
derived bound on E [σ̂y] yields the desired upper bound on E [σy].

8 Open questions

In Theorem 3.1, the diffusion constant σ2 depends on d, p and µ. It is easy to see that limµ→∞ σ
2(d, p, µ) =

p since in the large µ limit, this just corresponds to random walk time scaled by p. Also Corollary

1.6 implies that for p < pc(d), we have that lim infµ→0
σ2(d,p,µ)

µ < ∞. One can also show that the
corresponding lim sup is positive in this case as well.

1. Show that σ2(d, p, µ) is increasing in both p and µ.

2. Show that even σ2(d,p,µ)
µ is increasing in µ.
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