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Abstract. In this paper, we initiate the study of “Generalized Divide and Color
Models”. A very interesting special case of this is the “Divide and Color Model”
(which motivates the name we use) introduced and studied by Olle Häggström.

In this generalized model, one starts with a finite or countable set V , a random
partition of V and a parameter p ∈ [0, 1]. The corresponding Generalized Divide
and Color Model is the {0, 1}-valued process indexed by V obtained by indepen-
dently, for each partition element in the random partition chosen, with probability
p, assigning all the elements of the partition element the value 1, and with proba-
bility 1− p, assigning all the elements of the partition element the value 0.

Some of the questions which we study here are the following. Under what sit-
uations can different random partitions give rise to the same color process? What
can one say concerning exchangeable random partitions? What is the set of prod-
uct measures that a color process stochastically dominates? For random partitions
which are translation invariant, what ergodic properties do the resulting color pro-
cesses have?

The motivation for studying these processes is twofold; on the one hand, we
believe that this is a very natural and interesting class of processes that deserves
investigation and on the other hand, a number of quite varied well-studied processes
actually fall into this class such as (1) the Ising model, (2) the fuzzy Potts model,
(3) the stationary distributions for the Voter Model, (4) random walk in random
scenery and of course (5) the original Divide and Color Model.
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1. Introduction

1.1. Overview. In this paper, we initiate the study of a large class of processes
which we call “Generalized Divide and Color Models”. The name is motivated by
a model, introduced and studied by Olle Häggström (Häggström, 2001), called the
“Divide and Color Model”, which is a special case of the class we look at here; this
special case will be described later in this section.

We believe that this general class of models warrants investigation, partly be-
cause it seems to be a very natural class and partly because a number of very
different processes studied in probability theory fall into this class, as described in
Subsection 1.3.

We now describe this class somewhat informally; formal definitions will be given
in Subsection 1.2. We start with a finite or countable set V . In the first step, a
random partition of V (with an arbitrary distribution) is chosen and in the second
step, independently, for each partition element in the random partition chosen in the
first step, with probability p, all the elements of the partition element are assigned
the value 1 and with probability 1 − p, all the elements of the partition element
are assigned the value 0. This yields in the end a {0, 1}-valued process indexed
by V , which we call a “Generalized Divide and Color Model” and it is this process
which will be our focus. Note that this process depends on, in addition of course to
the set V , the distribution of the random partition and the parameter p. A trivial
example is when the random partition always consists of singletons, in which case
we simply obtain an i.i.d. process with parameter p.

1.2. Definitions and notation. Let V be a finite or countable set and let PartV
be the set of all partitions of V . Elements of V will be referred to as vertices.
Elements of a partition will be referred to either as equivalence classes or clusters.
If π ∈ PartV and v ∈ V , we let π(v) denote the partition element of π containing v.

For any measurable space (S, σ(S)), let P(S) denote the set of probability mea-
sures on (S, σ(S)). If π ∈ PartV and K ⊆ V , let πK denote the partition of K
induced from π in the obvious way. On PartV we consider the σ-algebra σ(PartV)
generated by {πK}K⊂V, |K|<∞.
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We denote the set of all probability measures on (PartV, σ(PartV)) by RERV

where RER stands for “random equivalence relation”. When V has a natural set of
translations (such as Zd), we let RERstat

V (“stat” for stationary) denote the elements
of RERV which are invariant under these translations. When V is a graph (such
as Zd with nearest neighbor edges), we let RERconn

V denote the subset of RERV

which are supported on partitions for which each cluster is connected in the induced
graph. Finally, we let RERexch

V (“exch” for exchangeable) denote the elements of
RERV which are invariant under all permutations of V which fix all but finitely
many elements.

For each finite or countable set V and for each p ∈ [0, 1], we now introduce a
mapping Φp from RERV to probability measures on {0, 1}V . The image of some
ν ∈ RERV will be called the “color process” or “Generalized Divide and Color
Model” associated to ν with parameter p and is defined as follows. Let π ∈ PartV
be picked at random according to ν. For each partition element φ of π, we assign all
vertices in φ the value 1 with probability p and the value 0 with probability 1− p,
independently for different partition elements. This yields for us a {0, 1}V -valued
random object, Xν,p, whose distribution is denoted by Φp(ν). (Clearly Φp(ν) is
affine in ν.) We will also refer to Xν,p as the color process associated to ν with
parameter p. This clearly corresponds, in a more formal way, to the generalized
divide and color model introduced in Subsection 1.1. Finally, we let CPV,p (CP
for “color process”) be the image of RERV under Φp and we also let CP∗V,p be the
image under Φp of the relevant subset RER∗V of RERV (∗ is stat, conn or exch.)

We usually do not consider the cases p = 0 or 1 for they are of course trivial.
We let | · |1 denote the L1 norm on Zd.

We end this section with the following elementary observation. For any ν ∈
RERV, p ∈ [0, 1] and u, v ∈ V , we have, letting E denote the event that u and v
are in the same cluster,

P(Xν,p(u) = Xν,p(v) = 1) = pP(E) + p2P(Ec)

≥ p2 = P(Xν,p(u) = 1)P(Xν,p(v) = 1)
(1.1)

and hence Xν,p has nonnegative pairwise correlations. Note trivially that Xν,p is
pairwise independent if and only if it is i.i.d.

1.3. Examples of color processes. It turns out that a number of random processes
which have been studied in probability theory have representations as color pro-
cesses. In this subsection, we give five such key examples. There is a slight difference
between the first two examples and the last three examples. In the first two exam-
ples, the known model corresponds to a color process with respect to a particular
RER at a specific value of the parameter p but not for other values of p, while in
the last three examples, the known model corresponds to all the color processes
with respect to a particular RER as p varies over all values.

1.3.1. The Ising Model. For simplicity, we stick to finite graphs here. While the
results here are essentially true also for infinite graphs as well, there are some issues
which arise in that case but they will not concern us here. Let G = (V,E) be a
finite graph.
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Definition 1.1. The Ising model on G = (V,E) with coupling constant J ∈ R and
external field h ∈ R is the probability measure µG,J,h on {−1, 1}V given by

µG,J,h({η(v)}v∈V ) := eJ
∑
{v,w}∈E η(v)η(w)+h

∑
v η(v)/Z

where Z = Z(G, J, h) is a normalization constant.

It turns out that µG,J,0 is a color process when J ≥ 0; this corresponds to
the famous FK (Fortuin-Kasteleyn) or so-called random cluster representation. To
explain this, we first need to introduce the following model.

Definition 1.2. The FK or random cluster model on G = (V,E) with parameters
α ∈ [0, 1] and q ∈ (0,∞) is the probability measure νRCM

G,α,q on {0, 1}E given by

νRCM
G,α,q({η(e)}e∈E) := αN1(1− α)N2qC/Z

where N1 is the number of edges in state 1, N2 is the number of edges in state 0, C
is the resulting number of connected clusters and Z = Z(G,α, q) is a normalization
constant.

Note, if q = 1, this is simply an i.i.d. process with parameter α. We think of
νRCM
G,α,q as an RER on V by looking at the clusters of the percolation realization;
i.e., v and w are in the same partition if there is a path from v to w using edges in
state 1.

The following theorem from Fortuin and Kasteleyn (1972) tells us that the Ising
Model with J ≥ 0 and h = 0 is indeed a color process. We however must identify
−1 with 0. See also Edwards and Sokal (1988).

Theorem 1.3. (Edwards and Sokal, 1988, Fortuin and Kasteleyn, 1972) For any
graph G and any J ≥ 0,

µG,J,0 = Φ1/2(νRCM
G,1−e−2J ,2).

See Häggström (1998) for a nice survey concerning various random cluster rep-
resentations. We remark that while for all p, Φp(ν

RCM
G,α,2) is of course a color process,

we do not know if this corresponds to anything natural when p 6= 1
2 . We mention

that, if G is the complete graph, then an alternative way to see that the Ising
model with J ≥ 0 and 0 external field is a color process is to combine Theorem 3.16
later in this paper with the fact that the Ising model on the complete graph can
be extended to an infinitely exchangeable process. This latter fact was proved in
Papangelou (1989) where the technique is credited to Kac and Thompson (1966);
see also Theorem 1.1 in Liggett et al. (2007). We end by mentioning that for the
Ising model on the complete graph on 3 vertices, there are other RERs, besides the
random cluster model, that generate it and that in some sense, the random cluster
model is not the most natural generating RER; see remark (iii) after Question 7.7.

1.3.2. The Fuzzy Potts Model. Again for simplicity, we stick to finite graphs here
and so let G = (V,E) be a finite graph.

Definition 1.4. For q ∈ {2, 3, . . . , }, the q-state Potts model on G = (V,E) with
coupling constant J (and no external field) is the probability measure µPotts

G,J,q on
{1, . . . , q}V given by

µPotts
G,J,q({η(v)}v∈V ) := eJ

∑
{v,w}∈E I{η(v)=η(w)}/Z

where Z = Z(G, J, q) is a normalization constant.
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Definition 1.5. ForG, q and J as in Definition 1.4 and parameter ` ∈ {1, . . . , q−1},
the fuzzy q-state Potts model onG with parameters J and `, denoted by µPotts,Fuzzy

G,J,q,` ,
is obtained by taking a realization from µPotts

G,J,q and changing each i ∈ {1, . . . , `} to
a 1 and each i ∈ {`+ 1, . . . , q} to a 0.

It turns out that µPotts,Fuzzy
G,J,q,` is also a color process for J ≥ 0.

Theorem 1.6. (Edwards and Sokal, 1988, Fortuin and Kasteleyn, 1972) For any
graph G, and any J ≥ 0, q and ` as above,

µPotts,Fuzzy
G,J,q,` = Φ `

q
(νRCM
G,1−e−2J ,q).

This follows easily from an extension of Theorem 1.3 which says that one can
obtain a realization of µPotts

G,J,q by taking a realization of νRCM
G,1−e−J ,q and “coloring”

each cluster independently and uniformly from {1, . . . , q}. We again remark that
while for all p, Φp(ν

RCM
G,α,q) is also of course a color process, we do not know if this

corresponds to anything natural when p is not of the form `
q .

1.3.3. The (Classical) Divide and Color Model. Unlike the previous examples dis-
cussed in this subsection, this model is defined as a color process. In this model,
which was introduced and studied in Häggström (2001), one first performs ordinary
percolation with some parameter α on a finite or infinite graph G and then considers
the RER corresponding to the clusters which result. The divide and color model is
then defined to be the color processes coming from this RER as p varies. Of course,
using the terminology of the previous two examples, this is simply Φp(ν

RCM
G,α,1). Some

papers dealing with this model are the following: Bálint (2010), Bálint et al. (2013)
and Bálint et al. (2009).

1.3.4. Stationary distributions for the Voter Model. The Voter Model on Zd is a
continuous time Markov process with state space {0, 1}Zd ; an element of {0, 1}Zd

specifies for each location (voter) in Zd whether it is in state 0 or 1 representing
two possible opinions. Heuristically, the Markov process evolves as follows: each
location in Zd at rate 1 chooses a neighbor at random and then changes its state
to that of its neighbor. (If the chosen neighbor has the same state, then nothing
happens.) A detailed description of this process and the results described below
can be found in Durrett (1988), Liggett (1985) and Liggett (2004). Clearly, the
two states consisting of all 0’s or of all 1’s are fixed states and hence the two point
masses at these configurations as well as their convex combinations are stationary
distributions. It turns out that in dimensions 1 or 2, these are the only stationary
distributions while in d ≥ 3, there is a continuum of extremal stationary distri-
butions indexed by [0, 1], denoted by {µp}p∈[0,1]. For each p, µp is a translation
invariant ergodic measure and is obtained by starting the Markov process i.i.d.
with density p and taking the limiting distribution as time goes to infinity. This
dichotomy between d ≤ 2 and d ≥ 3 is exactly due to the recurrence/transience
dichotomy in these cases.

While it is by no means obvious, it turns out, based on the analysis of the voter
model carried out in the above references, that for each d ≥ 3, there is an RER νd
on Zd such that for each p ∈ [0, 1], µp = Φp(νd). This is also true for d ≤ 2 but then
µp is taken to be the (nonergodic) measure corresponding to a (p, 1 − p) convex
combination of the point mass at all 1’s and the point mass at all 0’s and νd is
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concentrated on the partition which has only one partition element, all of Zd. For
all d ≥ 1, the RER νd corresponds to “coalescing random walks” and is described as
follows. Start independent continuous time rate 1 simple random walkers at each
location of Zd, any two of which coalesce upon meeting. Run the random walkers
until time ∞ and then declare two locations x, y ∈ Zd to be in the same partition
if the two random walkers starting at x and y ever coalesce. Note that for d ≤ 2
we have, due to recurrence, that this yields one partition element, Zd, which is
consistent with our description of νd above.

For d ≥ 3, all the equivalence classes will be infinite with 0 density. Transience
of random walk implies clusters must have 0 density. The formula for return prob-
abilities easily yields the fact that the expected size of the cluster of the origin is
infinite. Finally, the fact that the cluster size is in fact infinite a.s. can be found in
Griffeath (1978/79).

1.3.5. Random Walk in Random Scenery. Let (Xi)i≥1 be an i.i.d. sequence of ran-
dom variables taking values in Zd. Let (Sn)n≥1 be the associated random walk
defined by S0 = 0 and Sn =

∑n
i=1Xi for n ≥ 1. Next, let {Cpz }z∈Zd be an i.i.d.

process taking the value 1 with probability p and taking the value 0 with probabil-
ity 1 − p. Finally, letting, for k ≥ 0, Y pk := CpSk , we call (Y pk )k≥0 “Random Walk
in Random Scenery” since the process gives the “scenery” at the location of the
random walker.

It turns out that (Y pk )k≥0 is also in fact a color process which can be seen as
follows. We define an RER ν on N by declaring i, j ≥ 0 to be in the same partition
if Si = Sj . It is then straightforward to see that (Y pk )k≥0 has distribution Φp(ν).

Although it is not so natural when thinking of random walk in random scenery,
it is sometimes useful to have the index set being Z instead of N which can be done
as follows. One starts with an i.i.d. process (Xi)i∈Z and then defines Sn as above for
n ≥ 0 and for n ≤ −1 to be −

∑0
i=n+1Xi. Finally, one defines Y

p
k to be CpSk for any

k ∈ Z. The strange definition of Sn for negative n in fact insures that (Y pk )k∈Z is a
stationary process. Moreover, the process (Xk, Y

p
k )k∈Z is also a stationary process

and is called a generalized TT−1-process. (The name TT−1 comes from the case of
simple random walk in 1 dimension where T denotes the left shift by 1 of {Cpz }z∈Z:
the idea then is that from the walker’s perspective, the latter sequence is shifted to
the left or right depending on the step of the walker.) One can generalize further
by allowing (Xi)i∈Z to be an arbitrary stationary process rather than requiring it
to be i.i.d., in which case the random walk in random scenery would still be a color
process.

If (Xi)i∈Z yields a recurrent random walk, then a.s. all the equivalence classes
are infinite and have 0 density (provided X1 is not identically 0), while if (Xi)i∈Z
yields a transient random walk, then all the equivalence classes are finite a.s.

1.4. Summary of paper. In this subsection, we summarize the different sections of
the paper.

Section 2 deals exclusively with the case that V is the finite set [n] :={1, 2, . . . , n}.
A first natural question is whether, for fixed p, the map Φp : RER[n] → CP[n],p is
injective or not. One can also ask this same question when RER[n] is replaced with
RERexch

[n] . Moreover, one can also address the question of whether there can be two
distinct (exchangeable) RERs such that their corresponding color processes agree
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for all values of p. For each of these questions, we identify a phase transition in n.
These are given in Theorem 2.1 which is the main result in the finite case. We also
obtain more refined results in this section as well as develop some general results.

In Section 3, we stick to color processes arising from exchangeable RERs on N.
We first there remind the reader of Kingman’s characterization of such RERs; see
Theorem 3.10. Some of the obtained results are as follows. For p = 1/2, it is shown
that the set of color processes are exactly the collection of exchangeable processes
which exhibit 0-1-symmetry; see Theorem 3.16. While Proposition 3.13 tells us
that, for each p ∈ (0, 1), Φp is injective when restricted to the extremal elements
of RERexch

N (the so-called paint-boxes), it is shown that, for p = 1/2, Φp is highly
non-injective on RERexch

N and the subset where “Φp is injective” is characterized;
see Theorem 3.18. It turns out however that the behavior for p 6= 1/2 seems quite
different and Φp is “much more injective”.

In Section 4, we look at a very specific type of color process; namely those where
V = Z and the classes are connected and hence are simply intervals.

In Section 5, we study the question of stochastic domination of product measures
for the set of color processes. More specifically, given an RER and p ∈ (0, 1), we
consider the maximum density product measure which the corresponding color
process dominates. Of particular interest is the limit, as p → 1 of this maximum
density which often is not 1; this is related to the large deviation picture of the
number of clusters intersecting a large box. In addition to obtaining various general
results, the case of RERexch

N as well as our various models from Subsection 1.3 are
analyzed in detail.

In Section 6, we move into our “ergodic theory” section. Here we consider sta-
tionary color processes indexed by Zd and study their ergodic behavior. Some of
the obtained results are as follows. Theorem 6.3 tells us that if there is positive
probability of a positive density cluster, then ergodicity is ruled out. On the other
hand, Theorem 6.6 tells us that if all clusters are finite a.s., then the color process
inherits all of the ergodic properties of the generating RER. These two results tell
us that the interesting cases are when the RER has infinite clusters but all with
0 density a.s. Various results in this case are obtained as well as other questions
looked at.

Finally, in Section 7, we present a number of questions and further directions
which we feel might be interesting to pursue.

2. The finite case

In this section, we restrict ourselves to the case when V is finite. In the first
and main subsection, we state and prove Theorem 2.1 concerning uniqueness of the
representing RER and present further refined results. The second subsection deals
with some other general results in the finite case.

2.1. Uniqueness of the representing RER in the finite case. It is natural to ask, for
various color processes, whether the representing RER is unique. We give in this
subsection fairly detailed answers to this in the finite case. Recall p ∈ (0, 1).

We begin by giving an alternative description of RERexch
[n] which is as follows.

A partition of the integer n is given by an integer s ≥ 1 and positive integers
k1 ≤ k2 ≤ . . . ≤ ks such that

∑
i ki = n. We denote by [ks-ks−1- . . . -k1] the set of
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all partitions of (the set) [n] that can be written as {C1, . . . , Cs} where |Ci| = ki. It
is easy to see that RERexch

[n] are those ν ∈ RER[n] such that if π and π′ belong to the
same [ks-ks−1- . . . -k1], then ν(π) = ν(π′). In this way, RERexch

[n] can be identified
with probability measures on partitions of the integer n.

The following is the main result in the finite case.

Theorem 2.1. (A). The map

Φ1/2 : RER[n] → CP[n],1/2

is injective if n = 2 and non-injective if n ≥ 3.
(B). The map

Φ1/2 : RERexch
[n] → CPexch

[n],1/2

is injective if n = 2 and non-injective if n ≥ 3.
(C). If p 6= 1/2, then the map

Φp : RER[n] → CP[n],p

is injective for n = 2, 3 and non-injective for n ≥ 4.
(D). If p 6= 1/2, then the map

Φp : RERexch
[n] → CPexch

[n],p

is injective if n = 2, 3 and non-injective if n ≥ 4.
(E). There are ν1 6= ν2 ∈ RER[n] such that Φp(ν1) = Φp(ν2) for all p ∈ [0, 1] if

and only if n ≥ 4.
(F). There are ν1 6= ν2 ∈ RERexch

[n] such that Φp(ν1) = Φp(ν2) for all p ∈ [0, 1] if
and only if n ≥ 6.

Proof : Before starting with any of the parts, we first show that in each of these
parts, we have monotonicity in n; for (A)-(D), this means that the relevant map
being non-injective for n implies it is non-injective for n+ 1 and for (E) and (F),
this means that if we have such a pair of measures as described for n, then we have
such a pair for n + 1. To do this, we first note that there are simple injections
from RER[n] into RER[n+1] and from RERexch

[n] into RERexch
[n+1]. For the first one,

given ν ∈ RER[n], we can let T (ν) ∈ RER[n+1] be such that n + 1 is its own
cluster and the partition on [n] is distributed according to ν. For the second one,
given ν ∈ RERexch

[n] , we construct S(ν) ∈ RERexch
[n+1] as follows. For every partition

s, k1, . . . , ks of n, let S(ν)([ks-ks−1- . . . -k1-1]) := ν([ks-ks−1- . . . -k1]). (Note that,
unlike for T , the projection of S(ν) to [n] is not ν.) Finally, it is easy to check that
if µ and ν give the same color process in (A)-(D) or satisfy the properties in (E)
or (F), then this will also hold for the extended measures T (µ) and T (ν) or S(µ)
and S(ν), as the case may be.

(A). In view of the above monotonicity, we only need to look at n = 2 and 3.
First consider the case n = 2. We represent ν ∈ CP[2] as the probability vector
(q1, q2) where q1 := ν({{1}, {2}}) and q2 := 1 − q1 = ν({{1, 2}}). Observe that
Φp(ν)((0, 1)) = q1p(1 − p). The injectivity now follows immediately, not just for
p = 1/2 but for all p ∈ (0, 1), since ν is determined by q1.

Next, consider the case n = 3. We write ν ∈ RER[3] as (q1, . . . , q5)t where q1 :=
ν({{1}, {2}, {3}}), q2 := ν({{1, 2}, {3}}), q3 := ν({{1}, {2, 3}}), q4 :=
ν({{1, 3}, {2}}) and q5 := ν({{1, 2, 3}}). In addition, we write Φ1/2(ν) as
(p111, p110, p101, p011, p100, p010, p001, p000)t, where pijk = Φ1/2(ν)((i, j, k)). Let ν1 =
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(2/3, 0, 0, 0, 1/3) and ν2 = (0, 1/3, 1/3, 1/3, 0). Note in fact, ν1, ν2 ∈ RERexch
[3] .

Straightforward calculations which are left to the reader give that

Φ1/2(ν1) = Φ1/2(ν2) = (1/4, 1/12, 1/12, 1/12, 1/12, 1/12, 1/12, 1/4),

and the non-injectivity follows.
(B). Again, we only need to look at n = 2 and 3. These are however contained

in (A) since (i) it is easier to be injective on a subset (in fact, in this case, RER[2] =

RERexch
[2] ) and (ii) the examples there showing non-injectivity for n = 3 are in fact

exchangeable.
(C). This time, by monotonicity, we only need to look at n = 3 and 4. For

n = 3,
Φp(ν) = Lpν,

where Lp is the matrix given by

Lp =



p3 p2 p2 p2 p
p2(1− p) p(1− p) 0 0 0
p2(1− p) 0 0 p(1− p) 0
p2(1− p) 0 p(1− p) 0 0
p(1− p)2 0 p(1− p) 0 0
p(1− p)2 0 0 p(1− p) 0
p(1− p)2 p(1− p) 0 0 0
(1− p)3 (1− p)2 (1− p)2 (1− p)2 (1− p)


, (2.1)

where we use the same notation and ordering as in (A). Suppose that p 6= 1/2.
Let ν = (q1, . . . , q5)t and ν′ = (q′1, . . . , q

′
5)t. We must show that if Φp(ν) = Φp(ν

′),
then ν = ν′. So suppose that Φp(ν) = Φp(ν

′). Denote the entries of Φp(ν
′)

by p′111, p
′
110, . . .. Calculating the entries in Φp(ν) and Φp(ν

′) (using (2.1)) gives
p011 = p2(1− p)q1 + p(1− p)q3 and p100 = p(1− p)2q1 + p(1− p)q3, and the same
formulas for p′011 and p′100 with q1 and q3 replaced with q′1 and q′3. Observe that

p011 − p100 = (2p− 1)p(1− p)q1,

and
p′011 − p′100 = (2p− 1)p(1− p)q′1.

Since Φp(ν) = Φp(ν
′) and p 6= 1/2, we get that q1 = q′1. From the facts that

p100 = p′100 and q1 = q′1 it follows that q3 = q′3. By symmetry, it then follows that
q2 = q′2 and q4 = q′4. Hence, ν = ν′.

For the n = 4 case, we first let g(p) := p(1 − p) and then define ν1 and
ν2 = ν2(p) ∈ RERexch

[4] as follows. Let ν1([4]) = ν1([3-1]) = ν1([2-2]) = ν1([2-1-1]) =

ν1([1-1-1-1]) = 1/5, and let ν2([4]) = 1/5 + g(p)/10, ν2([3-1]) = 1/5 − 2g(p)/5,
ν2([2-2]) = 1/10 + 3g(p)/10, ν2([2-1-1]) = 2/5 and ν2([1-1-1-1]) = 1/10. Straight-
forward calculations which are left to the reader show that for all p, Φp(ν1) =
Φp(ν2(p)), from which the non-injectivity follows.

We mention that the (nonexchangeable) construction in part (E) below also
could have been used here in this case; however, we would still need the above for
(D).

(D). Again, by monotonicity, we only need to look at n = 3 and 4. These are
however contained in (C) since (i) it is easier to be injective on a subset and (ii)
the examples there showing non-injectivity for n = 4 are in fact exchangeable.
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(E). Again, by monotonicity, we only need to look at n = 3 and 4. The case
n = 3 follows from Part (C). Now consider the case n = 4 and define ν1 by letting

ν1({{1, 3}, {2}, {4}}) = ν1({{1}, {3}, {2, 4}}) = 1/3

and
ν1({{1, 2}, {3, 4}}) = ν1({{1, 4}, {2, 3}}) = 1/6.

Then define ν2 by letting

ν2({{1, 2}, {3}, {4}}) = ν2({{1}, {2, 3}, {4}})
= ν2({{1}, {2}, {3, 4}}) = ν2({{1, 4}, {2}, {3}}) = 1/6,

and
ν2({{1, 3}, {2, 4}}) = 1/3.

Observe that ν1 and ν2 are each invariant under rotations and reflections. Straight-
forward calculations show that for i = 1, 2, Φp(νi)((1, 1, 1, 1)) = 2p3/3 + p2/3,
Φp(νi)((0, 1, 1, 1)) = (1 − p)p2/3, Φp(νi)((1, 1, 0, 0)) = p(1 − p)/6 and
Φp(νi)((1, 0, 1, 0)) = p(1 − p)/3. Since ν1 and ν2 are each invariant under rota-
tions and since the roles of 1 and 0 get switched when p is replaced by 1 − p, we
conclude that Φp(ν1) = Φp(ν2) for all p.

(F). By monotonicity, we only need to look at n = 5 and 6. For the case of
n = 5, we will make important use of Lemma 2.2 below, which we believe can be
of independent interest. We state and prove it after the completion of the present
proof. Assume now, by way of contradiction, that there exist ν1 6= ν2 in RERexch

[5]

such that Φp(ν1) = Φp(ν2) for all p. We now want to “singularize” ν1 and ν2. Let
m be the largest subprobability measure dominated by both ν1 and ν2. Since Φp is
affine, it is easy to see that we also have that Φp(

ν1−m
|ν1−m|1 ) = Φp(

ν2−m
|ν2−m|1 ) for all p.

The latter two measures are singular with respect to each other. The conclusion is
that we may now assume that we have ν1 6= ν2 in RERexch

[5] which are singular and
such that Φp(ν1) = Φp(ν2) for all p.

We now make use of Lemma 2.2 several times. The application of part (i)
is always made with S = [5]. By Lemma 2.2 (i) and the assumed singularity
between ν1 and ν2, we can conclude that ν1 and ν2 both vanish on [5], [2-1-1-1] and
[1-1-1-1-1]. Also, Lemma 2.2 (ii) tells us that ν1 and ν2 give the same measure to
[4-1] and hence they both vanish there by singularity. At this point, we know that
both ν1 and ν2 are concentrated on [3-2], [3-1-1] and [2-2-1]. Again using Lemma 2.2
(i) and singularity shows that ν1 and ν2 vanish on [3-2]. Next, Lemma 2.2 (ii) and
singularity then shows that ν1 and ν2 vanish on [3-1-1]. Hence, both ν1 and ν2
are both concentrated on [2-2-1] which is a contradiction since they are singular
probability measures.

For the case n = 6 we define two probability measures ν1 and ν2 on partitions
of the integer 6 as follows. First let

ν1([4-2]) = 1/3 and ν1([3-2-1]) = 2/3.

Then let
ν2([4-1-1]) = ν2([3-3]) = ν2([2-2-2]) = 1/3.

Let Ak be the event that there are exactly i ones in the color process. Exchange-
ability implies that if Φp(ν1)(Ak) = Φp(ν2)(Ak) for k = 0, 1, . . . 6 and all p, then
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Φp(ν1) = Φp(ν2) for all p. Simple calculations left to the reader show that for
i = 1, 2,

Φp(νi)(A6) =
p2

3
+

2p3

3
, Φp(νi)(A5) =

2p2(1− p)
3

and Φp(νi)(A4) =
p

3
+
p2

3
− 2p3

3
.

Since we have, for i = 1, 2, Φp(νi)(A0) = Φ1−p(νi)(A6), Φp(νi)(A1) =
Φ1−p(νi)(A5), Φp(νi)(A2) = Φ1−p(νi)(A4) and Φp(νi)(A3) = 1−

∑
k 6=3 Φp(νi)(Ak),

we can finally conclude that Φp(ν1) = Φp(ν2) for all p. �

Next, we give the lemma which was used repeatedly in the proof of (F) in
Theorem 2.1 above.

Lemma 2.2. Let ν1, ν2 ∈ RER[n]. Then each one of the following conditions im-
plies that Φp(ν1) 6= Φp(ν2) for some p.
(i). For some S ⊆ [n], the distribution of the number of equivalence classes of πS
is different under ν1 and ν2.
(ii). For some T ≥ 1, the mean of the number of equivalence classes whose size is
equal to T is different under ν1 and ν2.
(iii). For some C ⊆ [n], the probability that C is an equivalence class is different
under ν1 and ν2.

Proof : (i). For the given S, let F be the event that the color process is identically
1 on S, and let N be the number of equivalence classes of πS . Then for all p and
i = 1, 2,

Φp(νi)(F ) = Eνi(p
N ).

By assumption, some coefficient in these two polynomials in p are different and
hence Φp(ν1) and Φp(ν2) give F different probability for some p.

(ii). For the given T let X be the number of equivalence classes of size equal to
T , and suppose that Eν1(X) 6= Eν2(X). Let K be the event that the color process
contains exactly T 1’s. Then Φp(ν1)(K) = pEν1(X)+O(p2) as p→ 0 and similarly
for ν2. We conclude that Φp(ν1) and Φp(ν2) give the event K different probability
for small p.

(iii). For the given C, let D be the event that C is a cluster and let H be
the event that the color process is identically 1 exactly on C. Then Φp(ν1)(H) =
ν1(D)p+O(p2) as p→ 0 and similarly for ν2. We conclude that Φp(ν1) and Φp(ν2)
give H different probability for small p. �

Remark 2.3. (i) Concerning Theorem 2.1(E,F), it might at first be surprising that
one can find distinct and exchangeable µ and ν such that Φp(µ) = Φp(ν) for all p
since there are infinitely many p. However, since all the functions of p that arise
are polynomials in p of degree at most n, we are essentially in a finite dimensional
situation. Another way to see this is that if Φp(µ) = Φp(ν) for n + 1 many values
of p, then this holds for all p.
(ii). We describe how we came up with the example for the n = 6 case. The
negations of conditions (i) and (ii) of Lemma 2.2 for S = [6] give a set of linear
equations that must hold in order for two RERs to have the same color process.
With the help of Mathematica, the nullspace of the coefficient matrix of the linear
system was calculated. By looking at the positive and negative parts of one of the
vectors of the nullspace, the two measures ν1 and ν2 were then constructed.
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The next result, Proposition 2.5, describes our injectivity results in more linear
algebraic terms and goes into more detail concerning what happens in the non-
injective case. In particular, in the case of non-injectivity, it is natural to try to
identify “where Φp is non-injective”. The next definition captures this notion.

Definition 2.4. Let V be a finite or countable set. Let R ⊆ RERV and p ∈ (0, 1).
We say that ν ∈ R is (R, p)-unique if Φp(ν

′) 6= Φp(ν) for all ν′ ∈ R \ {ν}.

Proposition 2.5. Let n ≥ 2, p ∈ (0, 1) and consider the map

Φp : RER[n] → CP[n].

Noting that Φp, being affine, extends to the vector space of signed measures on
Part[n] and denoting this extension by Φ∗p, the following four statements hold:

(i). Φp is non-injective if and only if Ker(Φ∗p) 6= {0}.
(ii). Suppose that n ≥ 2 and p ∈ (0, 1). Then ν ∈ RER[n] is not (RER[n], p)-

unique if and only if there is v ∈ Ker(Φ∗p) \ {0} such that vi ≥ 0 for all
i ∈ (supp ν)c.

(iii). If Dim(Ker(Φ∗p)) = 1, then there is a unique pair ν1, ν2 ∈ RER[n], singular
with respect to each other, such that Φp(ν1) = Φp(ν2).

(iv). If Dim(Ker(Φ∗p)) ≥ 2, then there infinitely many distinct pairs ν1, ν2 ∈
RER[n], singular with respect to each other, such that Φp(ν1) = Φp(ν2).

Moreover, if R is a closed and convex subset of RER[n] and Φ∗p,〈R〉 is the re-
striction of Φ∗p to 〈R〉, the subspace spanned by R, then (i) and (ii) still hold with
RER[n], Φp and Φ∗p replaced by R, Φp|R and Φ∗p,〈R〉. Also, if in addition R is such
that that ν1, ν2 ∈ R and ν1 6= ν2 imply that

ν1 − (ν1 ∧ ν2)

|ν1 − (ν1 ∧ ν2)|1
∈ R, (2.2)

then (iii) and (iv) hold with RER[n] and Φ∗p replaced by R and Φ∗p,〈R〉.

Proof : (i). First, Ker(Φ∗p) = {0} trivially implies injectivity. Now suppose that
Ker(Φ∗p) 6= {0}. Let ν ∈ RER[n] be such that if we let π1, . . . be an enumeration of
Part[n] we have ν(πi) ∈ (0, 1) for all i. Pick u ∈ Ker(Φ∗p) \ {0}. Since ν(πi) ∈ (0, 1)
for all i and Part[n] is finite, we can pick ε > 0 such that ν(πi) + εui > 0 for all i.
Let ν′ = ν + εu. It is easy to show that

∑
i ui = 0 for any u ∈ Ker(Φ∗p) and so we

have ν′ ∈ RER[n]. Moreover, Φp(ν
′) = Φp(ν), finishing the proof.

(ii). Suppose that ν ∈ RER[n] is such that there is v ∈ Ker(Φ∗p)\{0} with vi ≥ 0
for all i ∈ (supp ν)c. In similar fashion as in the proof of part (i), we get that
if ε > 0 is sufficiently small, then ν′ := ν + εv belongs to RER[n] and moreover,
Φp(ν) = Φp(ν

′). Hence ν is not (RER[n], p)-unique.
For the other direction, suppose that ν is not (RER[n], p)-unique. Then we

can pick ν′ ∈ RER[n] such that ν′ 6= ν and Φp(ν) = Φp(ν
′) in which case 0 6=

v := ν′ − ν ∈ Ker(Φ∗p). Moreover, since ν′ = v + ν it follows that vi ≥ 0 for all
i ∈ (supp ν)c since otherwise ν′ would have a negative entry.

(iii). Suppose that Dim(Ker(Φ∗p)) = 1. Pick w ∈ Ker(Φ∗p) \ {0}. Write w =
w+ − w− where (w+)i = wi if wi ≥ 0 and (w+)i = 0 if wi < 0. Then, letting
ν1 := 2w+/|w|1 and ν2 := 2w−/|w|1, we have ν1, ν2 ∈ RER[n], ν1 6= ν2 and since
w ∈ Ker(Φ∗p) we have Φp(ν1) = Φp(ν2). It is also clear that ν1 and ν2 are singular
with respect to each other. It remains to prove uniqueness. For this, assume that
ν′1, ν

′
2 ∈ RER[n] satisfy Φp(ν

′
1) = Φp(ν

′
2) and that ν′1 and ν′2 are singular with respect
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to each other. Since Φp is affine, ν′1 − ν′2 ∈ Ker(Φ∗p), and since Dim(Ker(Φ∗p)) = 1
it follows that ν′1 − ν′2 = c(ν1 − ν2) for some c 6= 0. If c > 0, then by singularity,
ν′1 = cν1 and c = 1. Hence, ν1 = ν′1 and ν2 = ν′2. Similarly, c < 0 implies ν1 = ν′2
and ν2 = ν′1. Hence, the uniqueness is established.

(iv). Now instead assume that Dim(Ker(Φ∗p)) ≥ 2. Let v and w be two lin-
early independent elements in Ker(Φ∗p). It follows that either 2v+/|v|1 differs from
2w+/|w|1 or 2v−/|v|1 differs from 2w−/|w|1 (or both). Without loss of general-
ity, we assume the first. For a ≥ 0, let u(a) := 2(av + w)/|av + w|1 and let
ν1(a) := u(a)+ and let ν2(a) := u(a)−, defined as in part (iii). Then for every a,
ν1(a), ν2(a) ∈ RER[n], Φp(ν1(a)) = Φp(ν2(a)) and ν1(a) and ν2(a) are singular with
respect to each other. Observe that ν1(a) is continuous in a, ν1(0) = 2w+/|w|1 and
ν1(a)→ 2v+/|v|1 as a→∞. The latter are distinct and hence (ν1(a))a≥0 contains
an uncountable collection of distinct elements from RER[n].

Finally we observe that the extensions mentioned to certain R ⊆ RER[n] require
easy modifications of the given proofs. �

Remark 2.6. (i). Taking R ⊂ RER[3] to be

R = {ν1, ν2, ν3} := {(1, 0, 0, 0, 0), (0, 0, 0, 0, 1), (0, 1/3, 1/3, 1/3, 0)},

we have that Ker(Φ∗1/2,〈R〉) is nonempty (indeed, by Example 2.7 below we have
that 2ν1 + ν2 − 3ν3 ∈ Ker(Φ∗1/2,〈R〉)) but Φp is injective on R; hence we need some
convexity assumption on R.
(ii). If R is either the set of probability measures supported on some fixed subset
of Part[n] or R is the set of probability measures invariant under some group action
(such as RERexch

[n] ), then all of the last conditions in Proposition 2.5 hold and hence
so do (i)-(iv).
(iii). An example of a closed and convex set R ⊂ RER[3] where (iii) fails when
p = 1/2 is

{(q1, . . . , q5) ∈ RER[3] : q5 ≤ min(q1, q2, q3, q4)}.
(q1, . . . , q5 are defined as they were in the proof of Theorem 2.1(A).) To see this, first
observe that ν1 := ( 3

7 ,
1
7 ,

1
7 ,

1
7 ,

1
7 ) and ν2 := ( 1

7 ,
2
7 ,

2
7 ,

2
7 , 0) are in R and Φ1/2(ν1) =

Φ1/2(ν2). Hence Ker(Φ∗1/2|R) has dimension at least 1 while this dimension is at
most 1 since Example 2.7 (given below) shows that Ker(Φ∗1/2) has dimension 1.
Now part (iii) of Proposition 2.5 applied to RER[3] gives that there is only one
pair of singular measures in RER[3] with the same Φ1/2 value, namely ( 2

3 , 0, 0, 0,
1
3 )

and (0, 13 ,
1
3 ,

1
3 , 0). Since the first is not in R, we do not have such a singular pair

there, showing (iii) fails. As must be the case, (2.2) fails and one can immediately
check that it fails for ν1 = ( 3

7 ,
1
7 ,

1
7 ,

1
7 ,

1
7 ) and ν2 = ( 1

7 ,
2
7 ,

2
7 ,

2
7 , 0), whose difference

is in Ker(Φ∗1/2). However, it is easy to see that (iii) can never fail the “other way”,
namely that if the dimension of the relevant kernel is 1, then there are at most one
desired pair of singular measures; to see this, one notes that the proof given goes
through verbatim for any R ⊂ RER[3].

Example 2.7. As we saw in Theorem 2.1, Φ1/2 : RER[3] → CP[3],1/2 is not injec-
tive. Using Proposition 2.5 (ii), we can determine exactly which ν ∈ RER[3] are
(RER[3], 1/2)-unique. Recall that we write Φ1/2(ν) = L1/2ν. The first four rows of
L1/2 will be the same as the last four (unlike in the p 6= 1/2 case). The first four
rows of L1/2 are given by
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(L1/2)1≤i≤4,1≤j≤5 =


1/8 1/4 1/4 1/4 1/2
1/8 1/4 0 0 0
1/8 0 0 1/4 0
1/8 0 1/4 0 0

 .

Elementary algebraic calculations show that the kernel of L1/2 is spanned by
2
−1
−1
−1
1

 . (2.3)

Using Proposition 2.5 (ii) and (2.3) we can conclude that for ν ∈ RER[3]:
(1) If |supp ν| = 1 then ν is (RER[3], 1/2)-unique.
(2) If |supp ν| = 2 then ν is not (RER[3], 1/2)-unique if and only if supp ν =
{1, 5}.

(3) If |supp ν| = 3 then ν is not (RER[3], 1/2)-unique if and only if
supp ν = {2, 3, 4}, {1, 2, 5}, {1, 3, 5} or {1, 4, 5}.

(4) If |supp ν| = 4 then ν is not (RER[3], 1/2)-unique.
(5) If |supp ν| = 5 then ν is not (RER[3], 1/2)-unique.

Using (iii)−(iv) of Proposition 2.5 applied to RER[n] and RERexch
[n] , we can obtain

the following corollary. This corollary only deals with cases where we already have
established non-injectivity.

Corollary 2.8. (i). If p = 1/2 then there is a unique singular pair ν1, ν2 ∈ RER[n]

such that Φp(ν1) = Φp(ν2) if n = 3 and infinitely many such pairs if n ≥ 4.
(ii). If p = 1/2 then there is a unique singular pair ν1, ν2 ∈ RERexch

[n] such that
Φp(ν1) = Φp(ν2) if n = 3 and infinitely many such pairs if n ≥ 4.
(iii). If p 6= 1/2 then there are infinitely many distinct singular pairs ν1, ν2 ∈
RER[n] such that Φp(ν1) = Φp(ν2) if n ≥ 4.
(iv). If p 6= 1/2 then there is a unique singular pair ν1, ν2 ∈ RERexch

[n] such that
Φp(ν1) = Φp(ν2) if n = 4 and infinitely many such pairs if n ≥ 5.

Proof : First we show the following monotonicity property: If n is such that RER[n]

contains infinitely many pairs of singular measures ν1, ν2 ∈ RER[n] with Φp(ν1) =
Φp(ν2), then the same holds for n+ 1. To see this, assume that ν1, ν2 ∈ RER[n] are
singular with Φp(ν1) = Φp(ν2). Let T : RER[n] → RER[n+1] be the injection from
the proof of Theorem 2.1. Then it is straightforward to verify that T (ν1) and T (ν2)
are singular and give the same color process. The same proof using the injection
S (instead of T ) from the proof of Theorem 2.1 shows that the same monotonicity
property holds for RERexch

[n] .
In the general case, (RER[n]), the dimension of the domain of our operator will

be the number of partitions of the set [n] and the dimension of the image space will
be 2n. In the exchangeable case, (RERexch

[n] ), the dimension of the domain of our
operator will be the number of partitions of the integer n and the dimension of the
image space will be n+ 1.

(i). By Example 2.7, we have that Dim(Ker(Φ∗1/2)) = 1 if n = 3. For n = 4, we
have a mapping from a 15-dimensional space to a 16-dimensional space. However,
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since p = 1/2, the probability on the latter has a 0-1-symmetry and so the range is
at most 8-dimensional. From this, we conclude that Dim(Ker(Φ∗1/2)) ≥ 7 and hence
(i) follows from Proposition 2.5 (iii,iv) and the above monotonicity. We mention
that Mathematica shows that indeed Dim(Ker(Φ∗1/2)) = 7.

(ii). One also can check directly that Dim(Ker(Φ∗
1/2,〈RERexch

[3]
〉)) = 1 (which es-

sentially follows from (i) also). For n = 4, Φ∗
1/2,〈RERexch

[4]
〉 maps from a 5-dimensional

space to a 5-dimensional space and one easily checks that the range is 3-dimensional
and therefore Dim(Ker(Φ∗

1/2,〈RERexch
[4]
〉)) = 2. Hence (ii) follows from Proposi-

tion 2.5 (iii,iv) and the above monotonicity.
(iii). For n = 4, Φ∗p maps from a 15-dimensional space to a 16-dimensional

space. Mathematica claims to give a basis (depending on p) for the kernel which is
3-dimensional. One can then check by hand that this proposed basis is linearly inde-
pendent and belongs to the kernel. Hence, (iii) follows from Proposition 2.5 (iii,iv)
and the above monotonicity. (Note that Mathematica is not needed for the formal
proof.)

(iv). Finally, with p 6= 1/2, if n = 4, one can check by hand that Φ∗
p,〈RERexch

[4]
〉,

which maps from a 5-dimensional space to a 5-dimensional space, has a range which
is 4-dimensional and hence

Dim(Ker(Φ∗p,〈RERexch
[4]
〉)) = 1.

If n = 5, Φ∗
p,〈RERexch

[5]
〉 maps a 7-dimensional space into a 6-dimensional space. Math-

ematica claims to give a basis (depending on p) for the kernel which is 2-dimensional.
One can then check by hand that this proposed basis is linearly independent and
belongs to the kernel. Hence (iv) follows from Proposition 2.5 (iii,iv) and the above
monotonicity. (Note that Mathematica is not needed for the formal proof.) �

Remark 2.9. In the recent paper Forsström and Steif (2019), the dimension of the
kernel was determined in all cases.

2.2. Other general results in the finite case.

Proposition 2.10. If µ ∈ P({0, 1}[2]), then µ ∈ CP[2] if and only if µ satisfies
non-negative pairwise correlations and µ((1, 0)) = µ((0, 1)).

Proof : The "only if" direction is immediate. For the other direction, let

ν({{1}, {2}}) =
µ((0, 1))

(µ((1, 1)) + µ((0, 1)))(µ((0, 1)) + µ((0, 0)))

and p = µ((1, 1)) + µ((0, 1)). Then the assumption of non-negative pairwise corre-
lations implies that ν({{1}, {2}}) ≤ 1 and a straightforward calculation shows that
Φp(ν) = µ, as desired. �

Definition 2.11. A measure µ on {0, 1}n is said to be exchangeable if it is invariant
under all permutations of [n].

If we move to n = 3, then it turns out that non-negative pairwise correlations
and exchangeability (the latter no longer being necessary for being a color process
with n = 3) do not suffice for being a color process as is shown by the following
example. We consider the distribution 1

9m1 + 8
9m2 where m1,m2 are product
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measures with respective densities .9 and .45. This is exchangeable and has non-
negative pairwise correlations. Since the marginals are 1/2 but the process does
not exhibit 0-1-symmetry (see next definition), it cannot be a color process.

Definition 2.12. A measure µ on {0, 1}n is said to be 0-1-symmetric if for any
ξ ∈ {0, 1}n, we have µ(ξ) = µ(ξ̂) where we define ξ̂ by letting ξ̂(i) = 1− ξ(i) for all
i ∈ [n].

The following result characterizes color processes for n = 3 in the special case
p = 1/2.

Proposition 2.13. Let µ be a probability measure on {0, 1}3. Then µ ∈ CP[3],1/2

if and only if µ has non-negative pairwise correlations and is 0-1-symmetric.

Proof : The "only if" direction is immediate. For the other direction, let p1 =
µ(1, 1, 1) = µ(0, 0, 0), p2 = µ(1, 1, 0) = µ(0, 0, 1), p3 = µ(1, 0, 1) = µ(0, 1, 0) and
p4 = µ(0, 1, 1) = µ(1, 0, 0) where clearly

∑
i pi = 1/2. Let q1 = ν({1, 2, 3}), q2 =

ν({{1, 2}, {3}}), q3 = ν{{{1, 3}, {2}}}, q4 = ν({{1}, {2, 3}}) and q5 =
ν({{1}, {2}, {3}}). Without loss of generality, we may assume that p2≤min{p3, p4}.
We then take q1 := 2(p1 + p2 − p3 − p4), q2 := 0, q3 := 4p3 − 4p2, q4 := 4p4 − 4p2
and q5 := 8p2. One can immediately check that

∑
i qi = 1 with no assumptions.

The key point is to show that qi ∈ [0, 1] for each i. After this, it is easy to check
that this ν works and this is left to the reader.

To establish qi ∈ [0, 1] for each i, we will of course use the non-negative pairwise
correlations assumption. The latter assumption easily yields p1+p2 ≥ 1/4, p1+p3 ≥
1/4 and p1 + p4 ≥ 1/4. Recall also

∑
i pi = 1/2 and p2 ≤ min{p3, p4}. These are

all that will be used.
If p2 = 1/8+ε for some ε > 0, then

∑
i pi = 1/2 and p2 ≤ min{p3, p4} imply that

p1 ≤ 1/8−3ε, contradicting p1 +p2 ≥ 1/4. Hence p2 ≤ 1/8 and so q5 ∈ [0, 1]. Next,
q1 ≥ 0 since p1 +p2 ≥ 1/4 and

∑
i pi = 1/2. The latter also gives that q1 ≤ 1. Next

p2 ≤ min{p3, p4} yields q3 ≥ 0. If p3 = 1/4 + ε for some ε > 0, then
∑
i pi = 1/2

yields that p1 + p2 < 1/4, contradicting one of our inequalities. Therefore p3 ≤ 1/4
implying q3 ≤ 1. Lastly, q4 is handled exactly as q3. �

Unfortunately, we don’t have any nice characterization of CP[3],p for p 6= 1/2
since we don’t have a good replacement for the 0-1-symmetry in this case. The
next result shows that Proposition 2.13 has no extension to larger n, even if ex-
changeability is assumed.

Proposition 2.14. For each n ≥ 4, there is a measure µ on {0, 1}[n] which is ex-
changeable, 0-1-symmetric and has non-negative pairwise correlations but for which
µ /∈ CP[n],1/2.

Proof : Consider the measure µ on {0, 1}[n] which is uniform on all points belong-
ing to levels 1 or n − 1 where level i refers to those elements which have i 1’s.
Exchangeability and 0-1-symmetry are obvious. Next, we have

Eµ[X(1)X(2)] =
1

2
× (n− 2)

n
=

1

2
− 1

n
so that

Covµ(X(1), X(2)) =
1

2
− 1

n
− 1

4
=

1

4
− 1

n
,

which is non-negative if and only if n ≥ 4. Finally, since µ assigns measure 0 to the
configuration {1, . . . , 1}, µ /∈ CP[n],1/2. �
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We recall the following two definitions.

Definition 2.15. A probability measure on {0, 1}[n] is called positively associated
if any two increasing events are positively correlated.

Definition 2.16. A probability measure on {0, 1}[n] is said to satisfy the FKG
lattice condition, if, whenever all but two of the variables are conditioned on, then
the remaining two variables are (conditionally) positively correlated.

The famous FKG Theorem (see Fortuin et al., 1971) says that if a measure on
{0, 1}[n] has full support and satisfies the FKG lattice condition, then, whenever
some of the variables are conditioned on, then the (conditional) distribution of the
remaining variables is positively associated (and so, in particular, the measure itself
is positively associated).

One can show that the example right before Definition 2.12 satisfies the FKG
lattice condition. This shows that exchangeability and the FKG lattice condition do
not necessarily lead to being a color process. Interestingly, although color processes
of course always have non-negative pairwise correlations, they are not necessarily
positively associated as shown by the following simple example.

Example 2.17. Define ν ∈ RER[4] to be {{1, 2}, {3}, {4}} with probability 1/2

and {{1}, {2}, {3, 4}} with probability 1/2. Let A be the event that Xν,1/2(1) =
Xν,1/2(2) = 1 and B the event that Xν,1/2(3) = Xν,1/2(4) = 1. Then P(A) =
P(B) = 3/8 but P(A ∩B) = 1/8 < 9/64 = P(A)P(B).

While we have not bothered to check, we suspect that all color processes for
n = 3 are in fact positively associated; this is certainly true for n = 2. There are
results concerning positive association for color processes associated to the RER
corresponding (using the percolation clusters) to the FK model given in Defini-
tion 1.2. Positive association was proved, in chronological order, (1) for q ≥ 1 and
p ∈ [1/q, 1 − 1/q] in Häggström (1999), (2) for q = 1 and p ∈ [0, 1] in Häggström
(2001) and (3) for q ≥ 1 and p ∈ [0, 1] in Kahn and Weininger (2007). Interest-
ingly, in this last mentioned paper, the authors conjecture that this is true for all
q > 0 and bring up the question of positively association in the general setup of
generalized divide and color models that we study in this paper.

3. Color processes associated to infinite exchangeable random partitions

In this section, we restrict ourselves to color processes arising from so-called in-
finite exchangeable random partitions. In Subsection 3.1, we recall the notions of
simplices, infinite exchangeable processes and infinite exchangeable random parti-
tions as well as the central de Finetti’s and Kingman’s Theorems concerning such
objects. In Subsection 3.2, we develop some general results which apply for all
values of p. It turns out that the map Φp seems to have very different properties
depending on whether p = 1/2 or p 6= 1/2, being “much more injective” in the
latter case. (Recall, analogously, that Theorem 2.1(A) and (C) (or (B) and (D))
in Section 2 tells us that for n = 3, we have injectivity in the p 6= 1/2 case and
non-injectivity in the p = 1/2 case.) In Subsection 3.3, we restrict to the p = 1/2
case, characterizing the set of color processes as those which exhibit 0-1-symmetry
(Theorem 3.16) and characterizing “where Φ1/2 is injective”, i.e., which ν ∈ RERexch

N
are RERexch

N -unique (Theorem 3.18). In Subsection 3.4, we restrict to the p 6= 1/2
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case, obtaining some results which might suggest that Φp is injective in this case.
In Subsection 3.5, we look at threshold Gaussian and stable processes.

3.1. Background: Simplices and de Finetti’s and Kingman’s Theorems. We first
recall Choquet’s Theorem (see Glasner, 2003, p. 367).

Theorem 3.1. If Q is a metrizable compact convex subset of a locally convex
topological vector space, then for each x ∈ Q, there is a probability measure µ on
the extremal elements ext(Q) of Q for which x is the barycenter (average) of µ in
the sense that for all continuous affine functions f on Q,

f(x) =

∫
ext(Q)

fdµ.

Definition 3.2. If Q is a metrizable compact convex subset of a locally convex
topological vector space, then Q is a simplex if for all x ∈ Q, the representing µ in
Choquet’s Theorem is unique.

The following example is illustrative and will appear soon. Let C3 be the set of
probability measures on [0, 1] in the weak∗ topology, C2 be the subset consisting
of probability measures with mean 1/2 and C1 the further subset consisting of
probability measures which are symmetric about 1/2. Clearly C1 ⊆ C2 ⊆ C3 and
each Ci is a metrizable compact convex set in this topology for which Choquet’s
Theorem is applicable. Interesting, while C1 and C3 are simplices, C2 is not, as can
be checked. The extremal elements of C3 are the point masses while the extremal
elements of C1 are measures of the form δ1/2+a+δ1/2−a

2 .
Next, let PermN denote the space of permutations on N which fix all but finitely

many elements.

Definition 3.3. A stochastic process (X(i))i∈N is said to be exchangeable if for
any σ ∈ PermN, (X(σ(i)))i∈N and (X(i))i∈N are equal in distribution.

The following is de Finetti’s Theorem (see Durrett, 2010, p. 228).

Theorem 3.4. Given a real-valued exchangeable process X, there is a unique ran-
dom distribution Ξ on R such that X is obtained by first choosing Ξ and then letting
X be i.i.d. with distribution Ξ. It follows that this set of exchangeable processes is
a simplex whose extremal elements are product measures.

In this paper, we mainly consider processes which are {0, 1}-valued.

Definition 3.5. Let EPN denote the space of exchangeable processes on N taking
values in {0, 1}N. For p ∈ [0, 1], let EPN,p denote the space of elements in EPN
whose marginal distribution has mean p.

Mostly, we will refer to the elements of EPN,p as probability measures, but some-
times as processes. If ν ∈ EPN, then de Finetti’s Theorem says that there exists a
unique probability measure ρν on [0, 1] such that

ν =

∫ 1

s=0

Πs dρν(s), (3.1)

where Πs denotes product measure on {0, 1}N with density s. In this case, Ξ is
concentrated on {0, 1} and hence is parameterized by [0, 1]. We therefore have a
bijection between EPN and probability measures on [0, 1]. In what follows, we will
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denote by ξν a random variable with law ρν . Similarly, given a random variable ξ
on [0, 1] we will by νξ denote the exchangeable process obtained by (3.1) where ρν
is taken to be the law of ξ; i.e., ξ has distribution ρνξ .

Given a real-valued exchangeable process X and h ∈ R, we let Y h = (Y h(i))∞i=0

be the “h-threshold process obtained from X” defined by Y h(i) = 1{X(i) ≥ h}.
Clearly Y h ∈ EPN and it is of interest to determine if Y h is a color process. In
Section 3.5, we will see that this is the case for the 0-threshold Gaussian and stable
processes.

Next, we find the probability measure ρY h corresponding to Y h. Recall the
definition of Ξ used in the representation of X above. Observe that for any k ≥ 1,
any sequence of integers 0 ≤ n1 < . . . < nk and any choices of in1

, . . . , ink ∈ {0, 1}
we have

P (Y h(n1) = in1 , . . . , Y
h(nk) = ink)

= E
[
Ξ([h,∞))

∑k
j=1 inj (1− Ξ([h,∞)))k−

∑k
j=1 inj

]
.

(3.2)

From (3.2) it follows that ρY h is the law of Ξ([h,∞)), or equivalently, ξY h =
Ξ([h,∞)).

For σ ∈ PermN and π ∈ PartN define σπ ∈ PartN by letting σπ(x) = σπ(y) if
and only if π(σ−1(x)) = π(σ−1(y)). The “−1” is present to ensure that we have a
"group action". For ν ∈ RERN and σ ∈ PermN, let σ ◦ ν ∈ RERN be defined as
σ ◦ ν(·) = ν(σ−1(·)).

Definition 3.6. We say that ν ∈ RERN is exchangeable if for any σ ∈ PermN we
have σ ◦ν = ν. The space of exchangeable RERs on N will be denoted by RERexch

N .

Of course, N can be replaced by any countable set here since there is no "geomet-
ric structure" since we are considering all permutations but we use N for simplicity.

The following is the first step in introducing our collection of exchangeable RERs.

Definition 3.7. We say that p = (p1, p2, . . .) is a paint-box if pi ≥ 0 for all i,
pi ≥ pi+1 for all i, and

∑
i pi ≤ 1.

Given a paint-box p = (p1, p2, . . .), we obtain an element of RERexch
N as follows.

Define the random equivalence classes (Si)i≥1 by putting each element of N inde-
pendently in Si with probability pi and with probability 1−

∑
i pi put it in its own

equivalence class. We denote this RER by νp. It follows easily that νp ∈ RERexch
N .

Remark 3.8. We use slightly different terminology for paint-boxes than what is
used in Bertoin (2006), where it is the RER νp, rather than the vector p, which is
called a paint-box.

Definition 3.9. The subset of RERexch
N which consists of RERs obtained from

paint-boxes will be denoted by RERexch,pure
N .

We can obtain more elements in RERexch
N by taking convex combinations and in

fact generalized convex combinations of the elements in RERexch,pure
N . It is imme-

diate that all of these are in RERexch
N . Kingman’s famous theorem (Theorem 3.10

below, see also Bertoin, 2006) says that these account for all of the elements of
RERexch

N . Moreover, the uniqueness in this theorem tells us that RERexch
N is a

simplex whose extremal elements are RERexch,pure
N .
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Theorem 3.10. (Kingman) Suppose that ν ∈ RERexch
N . Then there is a unique

probability measure ρ = ρν on RERexch,pure
N such that

ν =

∫
νp∈RERexch,pure

N

νp dρ(νp).

3.2. Infinite exchangeable color processes. Our first result says that CPexch
N,p (which

recall was defined to be the image of RERexch
N under Φp) is simply EPN,p ∩ CPN,p.

Proposition 3.11. For any p ∈ [0, 1],

CPexch
N,p = EPN,p ∩ CPN,p.

Proof : The containment ⊆ is clear. Assume that µ ∈ EPN,p∩CPN,p. Then there is
some ν ∈ RERN such that Φp(ν) = µ. We will be done if we find some ν′ ∈ RERexch

N
such that Φ(ν′) = µ. We will construct such a ν′ from ν. Let Perm[n] denote the
set of permutations on [n] and let

νn =
1

|Perm[n]|
∑

σ∈Perm[n]

σ ◦ ν,

where it is understood that a σ ∈ Perm[n] is viewed as an element of PermN which
fixes all k larger than n. Since µ ∈ EPN,p and Φp commutes with permutations it
follows that Φp(σ ◦ ν) = σ ◦ Φp(ν) = σ ◦ µ = µ for any σ ∈ Perm[n]. In particular,
Φp(νn) = µ for all n. Clearly νn is invariant under permutations of [n] (meaning
that σ ◦ νn = νn for any σ ∈ Perm[n]), so that in particular the restriction of νn
to [n] belongs to RERexch

[n] . By compactness, we can choose some subsequence nk
so that νnk converges to some ν∞ as k → ∞. It is clear that ν∞ ∈ RERexch

N and
Φp(ν∞) = µ follows from the easily shown fact that Φp(·) is continuous. �

We now show that the mixing random variable ξ for the color process corre-
sponding to a paintbox is a so-called Bernoulli convolution.

Lemma 3.12. Fix p ∈ [0, 1] and a paintbox p = (p1, p2, . . .). For the associated
color process, let ξp,p be the representing random variable in [0, 1] in de Finetti’s
Theorem. Then, in distribution,

ξp,p = (1−
∑
i≥1

pi)p+
1

2

∑
i≥1

pi +
1

2

∑
i≥1

piZi, (3.3)

where the Zi are i.i.d. random variables with P (Zi = 1) = p and P (Zi = −1) =
1− p. If p = 1/2, (3.3) simplifies to

ξp,1/2 =
1

2
+

1

2

∑
i≥1

piZi. (3.4)

Proof : Let p ∈ [0, 1] and consider the paintbox p = (p1, p2, . . .). Define a random
subset S of N by independently putting each n ∈ N in S with probability p and in
Sc with probability 1− p. Letting

ξp,p :=
∑
i≥1

I{i ∈ S}pi + (1−
∑
i≥1

pi)p, (3.5)
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and Fξp,p be the law of ξp,p, it is straightforward to see that

Φp(νp) =

∫ 1

s=0

ΠsdFξp,p(s) (= νξp,p).

Finally, one verifies that (3.5) can be rewritten as (3.3). �

As an application of Lemma 3.12 we get the identities

Φp(ν(p1,0,...)) = pΠp1+(1−p1)p + (1− p)Π(1−p1)p, (3.6)

and
Φp(ν(p1,p2,0,...)) = p2Πp1+p2+(1−p1−p2)p + (1− p)pΠp1+(1−p1−p2)p

+ (1− p)pΠp2+(1−p1−p2)p + (1− p)2Π(1−p1−p2)p,
(3.7)

which in the case p = 1/2 simplify to

Φ1/2(ν(p1,0,...)) =
1

2
(Π1/2+p1/2 + Π1/2−p1/2), (3.8)

and
Φ1/2(ν(p1,p2,0,...))

=
1

4
(Π1/2+(p1+p2)/2 + Π1/2+(p1−p2)/2 + Π1/2−(p1−p2)/2 + Π1/2−(p1+p2)/2).

(3.9)

From (3.8) and (3.9) we obtain

Φ1/2(ν(p1,p2,0,...)) =
1

2
Φ1/2(ν(q1,0,...)) +

1

2
Φ1/2(ν(q2,0,...)), (3.10)

where q1 = p1 +p2 and q2 = p1−p2. Note that this implies that Φ1/2 : RERexch
N →

CPexch
N,1/2 is not injective.

On the other hand, we have the following proposition, where the key part of the
proof was provided to us by Russell Lyons.

Proposition 3.13. The map

Φp : RERexch,pure
N → CPexch

N,p

is injective for every p ∈ (0, 1).

Proof : Fix p ∈ (0, 1) and consider two different paintboxes p and p′. In view of
Lemma 3.12 and the uniqueness in de Finetti’s Theorem, we need to show that

(1−
∑
i≥1

pi)p+
1

2

∑
i≥1

pi +
1

2

∑
i≥1

piZi, (3.11)

and
(1−

∑
i≥1

p′i)p+
1

2

∑
i≥1

p′i +
1

2

∑
i≥1

p′iZi, (3.12)

have different distributions where, as before, the Zi are i.i.d. random variables with
P (Zi = 1) = p and P (Zi = −1) = 1 − p. The length of the smallest intervals
containing the supports of these distributions are

∑
i≥1 pi and

∑
i≥1 p

′
i and hence

if these differ, then the distributions are different. Assume now that
∑
i≥1 pi =∑

i≥1 p
′
i. In this case, if the distributions were the same, we would also have that

the distributions of
∑
i≥1 piZi and

∑
i≥1 p

′
iZi were the same.
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We will now be done if we prove that the Fourier transform

f(z) := E[ez
∑∞
i=1 piZi ], z ∈ C

determines the paintbox p. We do this in the case pi > 0 for all i ≥ 1. The argument
is easily modified to the case pi = 0 for all i sufficiently large. By independence,

f(z) =

∞∏
j=1

E[ez pjZj ] =

∞∏
j=1

(p ez pj + (1− p) e−z pj ).

For j ≥ 1, let ∆j = {z ∈ C : E[ez pjZj ] = 0}. Then

∆j =

 1

pj

 log
(

1−p
p

)
2

+ i(πk + π/2)

 : k ∈ Z

 . (3.13)

Let g1(z) = f(z) and for n ≥ 2 let

gn(z) =

∞∏
j=n

E[ez pjZj ].

For n ≥ 1, let
tn = inf{|Im(z)| : gn(z) = 0}.

Since
∑
j≥1 pj ≤ 1, we have gn(z) = 0 only if z ∈ ∆j for some j. Hence, according

to (3.13), tn = π/(2pn). Hence, we can recover the sequence (pn)n≥1 from the
sequence (tn)n≥1 and the result follows. �

3.3. The case p = 1/2. In this subsection, we obtain some results concerning Φ1/2

on RERexch
N . First observe that if µ ∈ CPexch

N,1/2, then µ is 0-1-symmetric and hence
so is the representing random variable ξµ; i.e. ξµ = 1− ξµ in law. Interestingly, as
we will see below in Theorem 3.16, this necessary condition of symmetry is actually
a sufficient condition for being a color process when p = 1/2. In Theorem 3.18
we determine exactly which are the exchangeable RERs that are (RERexch

N , 1/2)-
unique.

In the proofs below, we will make use of the following lemma which follows easily
from de Finetti’s theorem.

Lemma 3.14. Let EPsymm
N,1/2 be the set of exchangeable processes which are 0-1-

symmetric (or equivalently their representing distribution in [0, 1] is symmetric
about 1/2) and for α ∈ [0, 1/2], let µα := (Π1/2+α + Π1/2−α)/2. Then EPsymm

N,1/2
is a simplex and

ext(EPsymm
N,1/2 ) = (µα)α∈[0,1/2]. (3.14)

The following subset of RERexch,simple
N will play an important role in our discus-

sions below.

Definition 3.15. The subset of RERexch,pure
N which consists of RERs obtained

from paint-boxes with p2 = 0 will be denoted by RERexch,simple
N .

Note that, using (3.4), we have a natural identification between RERexch,pure
N ,

{µα}α∈[0,1/2] from Lemma 3.14 and [0, 1/2] via

(p, 0, . . .)↔ µp/2 ↔ p/2

with the first bijection also being given by Φ1/2.
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Theorem 3.16. The map Φ1/2 : RERexch
N → EPsymm

N,1/2 is onto. Moreover, for every

µ ∈ EPsymm
N,1/2 there is a unique probablity measure ρµ on RERexch,simple

N such that

µ = Φ1/2

(∫
ν∈RERexch,simple

N

ν dρµ(ν)

)
. (3.15)

(Hence EPsymm
N,1/2 = CPexch

N,1/2 is a simplex whose extremal elements is the set

{µα}α∈[0,1].) On the other hand, the map Φ1/2 : RERexch,pure
N → EPsymm

N,1/2 is not
onto.

Proof : We start with (3.15). As already observed right before Theorem 3.16, if
pα = (2α, 0, . . .) with α ∈ [0, 1/2], then

Φ1/2(νpα) = µα. (3.16)

Hence µα ∈ CPexch
N,1/2. Now pick an arbitrary µ ∈ EPsymm

N,1/2 . By Lemma 3.14 there is
a unique law Fµ on [0, 1/2] such that

µ =

∫ 1/2

0

µαdFµ(α). (3.17)

It follows from the affine property of Φ1/2 that

Φ1/2

(∫ 1/2

0

νpαdFµ(α)

)
=

∫ 1/2

0

Φ1/2(νpα)dFµ(α)
(3.16)
=

∫ 1/2

0

µαdFµ(α)
(3.17)
= µ,

(3.18)
and (3.15) follows. The uniqueness of ρµ follows from the comment before Theo-
rem 3.16.

Next, we need to prove that there exist elements of EPsymm
N,1/2 which can not be

obtained as the image of some element of RERexch,pure
N under Φ1/2. Consider a

paintbox p = (p1, p2, . . .). Recall ξp,1/2 from (3.4). Then

Φ1/2(νp) =

∫ 1

s=0

ΠsdFξp,1/2(s), (3.19)

where Fξp,1/2 is the law of ξp,1/2. From (3.4) and (3.19), we see that it suffices to
find a random variable W in [0, 1] which is symmetric around 1/2 which can not
be written as

W =
1

2
+

1

2

∑
i

p′iZi, (3.20)

for any paintbox p′ = (p′1, . . .) where the {Zi}’s are as in the proof of Proposi-
tion 3.13. Take W to be a random variable with P (W = 1) = P (W = 0) = 3/8
and P (W = 1/2) = 1/4. Now, if W has the above representation, then we must
have p′i 6= 0 for i = 1, 2 and p′i = 0 for all i ≥ 3, since W has three possible values.
However, we then obtain

P (W =
1

2
+
p′1 + p′2

2
) = P (W =

1

2
+
p′1 − p′2

2
) = (3.21)

P (W =
1

2
+
p′2 − p′1

2
) = P (W =

1

2
− p′1 + p′2

2
) = 1/4. (3.22)
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Since we assumed that P (W = 1/2) > 0, we must have p′2 − p′1 = 0. However then
according to (3.21) we get P (W = 1/2) = 1/2, which is a contradiction. Hence W
does not have the representation (3.20) and the result follows. �

Corollary 3.17. For any ν ∈ RERexch
N there is a unique probability measure ρ = ρν

on [0, 1] such that

Φ1/2(ν) = Φ1/2

(∫ 1

0

ν(p,0,...) dρ(p)

)
. (3.23)

Proof : We have that Φ1/2(ν) ∈ EPsymm
N,1/2 . Now (3.23) follows immediately from

(3.15) and the comment preceding Theorem 3.16. �

We have seen in the previous subsection that Φ1/2 is not injective. The following
characterizes exactly the subset of RERexch

N on which Φ1/2 is injective.

Theorem 3.18. If ν ∈ RERexch
N , then ν is (RERexch

N , 1/2)-unique if and only if
ν ∈ RERexch,simple

N .

Proof : If ν = ν(p,0,...), then the support of ξν is { 12 + p
2 ,

1
2−

p
2}. The ξ corresponding

to every other ν′ ∈ RERexch,pure
N has part of its support outside of the above set.

Hence any ν′ ∈ RERexch
N other than ν has its corresponding ξ having part of its

support outside of this set. It follows that ν is (RERexch
N , 1/2)-unique.

For the other direction, fix ν ∈ RERexch
N \RERexch,simple

N . By Corollary 3.17 and
the fact that ν is not simple, it suffices to consider the case when we can write

ν =

∫ 1

p=0

ν(p,0,...)dψ(p), (3.24)

for some probability measure ψ on [0, 1] where ψ 6= δt for any t ∈ [0, 1]. Then we
can find constants a1, a2, b1, b2 such that 0 ≤ a1 < a2 < b1 < b2 ≤ 1, ψ([a1, a2]) > 0
and ψ([b1, b2]) > 0. Let I = [a1, a2] and J = [b1, b2] and K = [0, 1] \ (I ∪ J). For
any T ⊂ [0, 1] such that ψ(T ) > 0 let ψ̃T := ψT /ψ(T ) where ψT stands for the
restriction of ψ to T .

Without loss of generality, assume that ψ(J) ≥ ψ(I). Observe that

ψ = ψ(I)ψ̃I + ψ(J)ψ̃J + ψ(K)ψ̃K

= ψ(K)ψ̃K + (ψ(J)− ψ(I))ψ̃J + 2ψ(I)(ψ̃I/2 + ψ̃J/2).

Hence,

ν = ψ(K)

∫
p∈K

ν(p,0,...)dψ̃K(p) + (ψ(J)− ψ(I))

∫
p∈J

ν(p,0,...)dψ̃J(p)

+2ψ(I)

(
1

2

∫
p∈I

ν(p,0,...)dψ̃I(p) +
1

2

∫
p∈J

ν(p,0,...)dψ̃J(p)

)
.

We now focus on the last term in the sum above. Let

ρ =
1

2

∫
p∈I

ν(p,0,...)dψ̃I(p) +
1

2

∫
p∈J

ν(p,0,...)dψ̃J(p),

and observe that ρ ∈ RERexch
N since ψ̃I is a probability measure on I and ψ̃J is a

probability measure on J . Since Φ1/2 is affine and ψ(I) > 0, we will be done if we
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can find ρ′ ∈ RERexch
N such that ρ′ 6= ρ but Φ1/2(ρ) = Φ1/2(ρ′). We let

ρ′ =

∫
p1∈J

∫
p2∈I

ν((p1+p2)/2,(p1−p2)/2,0,...)dψ̃I(p2)dψ̃J(p1),

where we recall that p1 > p2 for p1 ∈ J and p2 ∈ I. Clearly, ρ′ ∈ RERexch
N .

Moreover, ρ′ 6= ρ since ρ′ assigns measure 1 to those ν(q1,q2,...) ∈ RERexch,pure
N

which have q2 6= 0. Since Φ1/2 is affine, we get

Φ1/2(ρ′) =

∫
p1∈J

∫
p2∈I

Φ1/2(ν((p1+p2)/2,(p1−p2)/2,0,...))dψ̃I(p2)dψ̃J(p1)

(3.10)
=

1

2

∫
p1∈J

∫
p2∈I

Φ1/2(ν(p1,0,...)) + Φ1/2(ν(p2,0,...))dψ̃I(p2)dψ̃J(p1)

=
1

2

∫
p1∈J

Φ1/2(ν(p1,0,...))dψ̃J(p1) +
1

2

∫
p2∈I

Φ1/2(ν(p2,0,...))dψ̃I(p2) (3.25)

= Φ1/2(ρ).

�

3.4. The case p 6= 1/2. If p = 1/2, we have seen in the previous subsection that
the map Φp : RERexch

N → CPexch
N,p is “highly non-injective”. In this subsection, we

present evidence that, for p 6= 0, 1/2, 1, Φp might be injective, although we do not
manage to prove such a result.

We first introduce some notation. Let S0 = {ν(0,...)} and for k ≥ 1, define

Sk := {νp ∈ RERexch,pure
N : p = (p1, . . . , pk, 0, . . .) with pk > 0},

and
S∞ := {νp ∈ RERexch,pure

N : p = (p1, . . .) with pi > 0 ∀i}.

Then the Sk’s are disjoint and RERexch,pure
N = ∪0≤k≤∞Sk.

The following result from Kačena and Spurný (2009) (see Theorem 1.3 there)
tells us what needs to be verified in order to conclude that Φp is injective.

Theorem 3.19. If φ is a continuous affine map from a compact convex set X to
a simplex Y such that φ(ext(X)) ⊆ ext(Y ) and φ is injective on ext(X), then φ is
injective.

It is not so difficult to show (and left to the reader) that if x ∈ ext(X) is φ-unique
(meaning φ(x) 6= φ(y) for all y 6= x), then φ(x) ∈ ext(Y). Hence, in our context,
to show injectivity using Theorem 3.19, one needs, in addition to Proposition 3.13,
to show that, for p 6= 1/2, (1) CPexch

N,p is a simplex and (2) for all 0 ≤ k ≤ ∞, all
elements of Sk are (RERexch

N , p)-unique. We are not able to show (1) (but note we
have seen this is true for p = 1/2) and in the rest of the subsection, we show (2)
for S0, S1, S2 and a subset of S3.

Observe first that Φp(ν(0,...)) = Πp, so it is easy to see that ν(0,...) is (RERexch
N , p)-

unique for every p ∈ (0, 1). The following three propositions cover the cases k = 1, 2
and part of k = 3.

Proposition 3.20. Suppose that ν ∈ S1. Then ν is (RERexch
N , p)-unique for every

p ∈ (0, 1) \ {1/2}. (This is also true for p = 1/2 by Theorem 3.18.)
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Proof : By symmetry we assume that p ∈ (1/2, 1). Fix ν = ν(s,0,...) ∈ S1. Suppose
that ν̃ ∈ RERexch

N is such that Φp(ν) = Φp(ν̃). Recall that by Kingman’s theorem,
there is a unique probability measure ρ = ρν̃ on RERexch,pure

N such that

ν̃ =

∫
νp∈RERexch,pure

N

νpdρ(νp). (3.26)

Hence, we will be done if we show that Φp(ν) = Φp(ν̃) implies that ρ = δν . For our
fixed ν ∈ S1, we have, using (3.3), that

ξ(s,0,...),p =

{
y1 := p+ s(1− p) w.p. p
y2 := p− sp w.p. 1− p (3.27)

Observe that if νp ∈ Sk, then |supp(ξp,p)| ≥ k + 1. Hence ρ(∪k≥2Sk) = 0.
Using (3.27), we see that if νp ∈ S1 then in order to have supp(ξp,p) ⊆ supp(ξ(s,0,...))
we must have νp = ν. Hence ρ(S1 \ {ν}) = 0. Finally, since y2 < p < y1 for every
p ∈ (0, 1), it follows that ρ(S0) = 0. Hence ρ = δν as claimed. �

Proposition 3.21. Suppose that ν ∈ S2. Then ν is (RERexch
N , p)-unique for every

p ∈ (0, 1) \ {1/2}. (This is false for p = 1/2 by Theorem 3.18.)

Proof : The strategy of this proof will be the same as that of the proof of Propo-
sition 3.20, but more involved since there will be more cases to deal with. By
symmetry we assume that p ∈ (1/2, 1). We fix ν = ν(p1,p2,0,...) ∈ S2 and suppose
that ν̃ ∈ RERexch

N is such that Φp(ν) = Φp(ν̃). Let ρ = ρν̃ be the unique probability
measure on RERexch,pure

N such that

ν̃ =

∫
νp∈RERexch,pure

N

νpdρ(νp). (3.28)

We will show that Φp(ν) = Φp(ν̃) implies that ρ = δν . Again, we recall the random
variable ξp,p from Lemma 3.12, and we will proceed by looking at the support of
this random variable. For our fixed ν ∈ S2, we have, using (3.3), that

ξ(p1,p2,0,...),p =


z1 := p+ (p1 + p2)(1− p) w.p. p2

z2 := p+ p1(1− p)− p2p w.p. p(1− p)
z3 := p+ p2(1− p)− p1p w.p. p(1− p)
z4 := p− (p1 + p2)p w.p. (1− p)2

(3.29)

In (3.29), we have ordered the elements of supp(ξ(p1,p2,0,...),p) in decreasing order,
with the largest element on the first line.

Now, we will look at the elements in S0, S1, . . . in order to find those νp for
which ξp,p has its support contained in supp(ξ(p1,p2,0,...),p). The measure ρ must be
supported on such ξp,p’s.

Case 1: First we look at the single element of S0, namely ν(0,...). We have

ξ(0,...),p = p w.p. 1. (3.30)

Since p > 1/2 we have z1 > p and z3, z4 < p. Hence we see that if supp(ξ(0,...),p) ⊆
supp(ξ(p1,p2,0,...),p), then p = z2 so that p1/p = p2/(1− p). From this we conclude
that

If ρ(ν(0,...)) > 0, then p1/p = p2/(1− p) and p = z2. (3.31)
Case 2: Assume that ν(s,0,...) ∈ S1 and recall that

ξ(s,0,...),p =

{
y1 := p+ s(1− p) w.p. p
y2 := p− sp w.p. 1− p (3.32)
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Assume now that supp(ξ(s,0,...),p) ⊆ supp(ξ(p1,p2,0,...),p). Since z3, z4 < p and y1 > p,
we have y1 = z1 or y1 = z2. The former case implies that s = p1 +p2. If we instead
assume that y1 = z2 then we must also have y2 = z3 or y2 = z4. If y2 = z4, then
s = p1 +p2. On the other hand, y1 = z2 and y2 = z3 imply after a short calculation
that p = 1/2, which is a contradiction. Hence we can conclude

ρ(S1 \ {ν(p1+p2,0,...)}) = 0. (3.33)

Also observe that from the above it follows that

s = p1 + p2 implies that y1 = z1 and y2 = z4. (3.34)

Case 3: Assume that ν(s1,s2,0,...) ∈ S2. We consider four subcases.
Case 3(i): Suppose that s1 6= s2 and p1 6= p2. Then supp(ξ(s1,s2,0,...),p) ⊆

supp(ξ(p1,p2,0,...),p) implies that, since both supports have four elements,

supp(ξ(s1,s2,0,...),p) = supp(ξ(p1,p2,0,...),p).

From this it is easy to conclude (using (3.29)) that s1 = p1 and s2 = p2 so that
ν(s1,s2,0,...) = ν(p1,p2,0,...).

Case 3(ii): Suppose that s1 = s2 and p1 = p2. Then, arguing similarly as in case
3(i), supp(ξ(s1,s2,0,...),p) ⊆ supp(ξ(p1,p2,0,...),p) implies that ν(s1,s2,0,...) = ν(p1,p2,0,...).

Case 3(iii): Suppose that s1 6= s2 and p1 = p2. Then |supp(ξ(p1,p2,0,...),p)| = 3
while |supp(ξ(s1,s2,0,...),p)| = 4, and so supp(ξ(s1,s2,0,...),p) cannot be a subset of
supp(ξ(p1,p2,0,...),p).

Case 3(iv): Suppose that s1 = s2 and p1 6= p2. Then using (3.29) we see that

ξ(s1,s2,0,...),p =

 q1 := p+ 2s1(1− p) w.p. p2

q2 := p+ s1(1− 2p) w.p. 2p(1− p)
q3 := p− 2s1p w.p. (1− p)2

(3.35)

Assume that supp(ξ(s1,s2,0,...),p) ⊆ supp(ξ(p1,p2,0,...),p). Since q1 = z1 or q3 = z4, we
have 2s1 = p1 + p2. Using (3.29) and (3.35) we see that (q1 − q2, q2 − q3) = (s1, s1)
and (z1− z2, z2− z3, z3− z4) = (p2, p1− p2, p2). Therefore, since {q1, q2} = {z1, z2}
or {q2, q3} = {z3, z4}, we have s1 = p2, contradicting 2s1 = p1 + p2 since p1 6= p2.
Hence, this case can not occur either.

Putting cases 3(i)− 3(iv) together we can now conclude that

ρ(S2 \ {ν(p1,p2,0,...)}) = 0. (3.36)
Case 4: Assume now that ν(t1,t2,t3,0...) ∈ S3. Unless t1 = t2 = t3 it is straight-

forward to see that supp(ξ(t1,t2,t3,0,...),p) has at least 5 elements. Hence we can
conclude

ρ(S3 \ {ν(t,t,t,0,...) : t ∈ (0, 1/3]}) = 0. (3.37)
So assume now that t1 = t2 = t3 = t for some t ∈ (0, 1/3]. We get that, again
using (3.3) that

ξ(t,t,t,0,...),p =


x1 := p+ t(3− 3p) w.p. p3

x2 := p+ t(2− 3p) w.p. 3p2(1− p)
x3 := p+ t(1− 3p) w.p. 3p(1− p)2
x4 := p− 3tp w.p. (1− p)3

(3.38)

Clearly, if p1 = p2, then supp(ξ(t,t,t,0,...),p) is not a subset of supp(ξ(p1,p2,0,...),p), so
assume that p1 6= p2. Then in order to have supp(ξ(t,t,t,0,...),p) ⊆ supp(ξ(p1,p2,0,...),p)
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we must have supp(ξ(t,t,t,0,...),p) = supp(ξ(p1,p2,0,...),p). This implies that x1 = z1 so
that t = (p1 + p2)/3. So we can conclude that

ρ(S3 \ {ν((p1+p2)/3,(p1+p2)/3,(p1+p2)/3,0,...)}) = 0. (3.39)

So we must have

t = (p1 + p2)/3 and (x1, x2, x3, x4) = (z1, z2, z3, z4). (3.40)

Case 5: Finally we show that we do not need to consider Sk for k ≥ 4. Observe
that if νp ∈ Sk, then it is straightforward to check that |supp(ξp,p)| ≥ k + 1. Since
|supp(ξ(p1,p2,0,...),p)| ≤ 4, we can conclude that

ρ(Sk) = 0 for every 4 ≤ k ≤ ∞. (3.41)

From (3.31), (3.33), (3.36) and (3.39) above, we see that to show that ρ = δν
and thereby finish the proof it suffices to show that we cannot find α, β ∈ [0, 1] with
α+ β ≤ 1 such that

Φp(ν(p1,p2,0,...)) = αΦp(ν(0,...))

+ βΦp(ν(p1+p2,0,...)) + (1− α− β)Φp(ν( p1+p2
3 ,

p1+p2
3 ,

p1+p2
3 ,0,...)

).
(3.42)

Comparing (3.29) with (3.30), (3.32) and (3.38) we see that in order for (3.42)
to hold, it is necessary that (keeping (3.31), (3.34) and (3.40) in mind)

p2 = βp+ (1− α− β)p3

p(1− p) = α1{p1p = p2
(1−p)}+ (1− α− β)3p2(1− p)

p(1− p) = (1− α− β)3p(1− p)2
(1− p)2 = β(1− p) + (1− α− β)(1− p)3

(3.43)

Since p ∈ (0, 1), the third equation gives that 1 − α − β 6= 0. Therefore, since
p ∈ (1/2, 1), the right hand side of the second equation of (3.43) is strictly larger
than the right hand side of the third equation. Hence, the linear system in (3.43)
does not have any solution for α, β ∈ [0, 1] with α+ β ≤ 1 when p ∈ (1/2, 1). �

Proposition 3.22. Let t ∈ (0, 1/3]. Then ν(t,t,t,0,...) ∈ S3 is (RERexch
N , p)-unique

for every p ∈ (0, 1) \ {1/2}. (This is false for p = 1/2 by Theorem 3.18.)

Proof : The strategy of this proof is the same as in the proof of Proposition 3.21,
so we will be somewhat briefer. By symmetry we can assume that p ∈ (1/2, 1).
Fix t ∈ (0, 1/3] and let ν := ν(t,t,t,0,...). Assume that ν̃ ∈ RERexch

N is such that
Φp(ν) = Φp(ν̃). Let ρ = ρν̃ be the unique probability measure on RERexch,pure

N
such that

ν̃ =

∫
νp∈RERexch,pure

N

νpdρ(νp). (3.44)

As above, we will show that ρ = δν .
Case 1: First we consider S0 = {ν(0,...)}. Recall that supp(ξ(0,...),p) = {p}.

Using (3.38), we see that only if p = 2/3 can we have that p ∈ supp(ξ(t,t,t,0,...),p).
Hence,

If ρ(ν(0,...)) > 0, then p = 2/3. (3.45)
Case 2: Now suppose that ν(s,0,...) ∈ S1. Recall that supp(ξ(s,0,...),p) = {y1, y2}

from (3.32) and supp(ξ(t,t,t,0,...),p) = {x1, x2, x3, x4} from (3.38). We have that
y1 > p, y2 < p, x1 > p and (since p > 1/2), x3 < p. Hence if supp(ξ(s,0,...),p) ⊆
supp(ξ(t,t,t,0,...),p) it must be the case that y1 = x1 or y1 = x2. First, if y1 = x1,
we get that s = 3t. If y1 = x2 and y2 = x3 then s = t(2 − 3p)/(1 − p) and s =
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−t(1− 3p)/p, and these two equations give that p = 1/2, which is a contradiction.
Finally, if y1 = x2 and y2 = x4 then s = t(2− 3p)/(1− p) and s = 3t, and it is easy
to see that these two equations can not hold at the same time for any p. Hence, we
can conclude that

ρ(S1 \ {ν(3t,0,...)}) = 0. (3.46)

Also observe that

If s = 3t then y1 = x1 and y2 = x4. (3.47)

Case 3: Now assume that ν(p1,p2,0,...) ∈ S2. Recall from (3.29) that
supp(ξ(p1,p2,0,...),p) = {z1, z2, z3, z4}, where the four elements are distinct when
p1 6= p2, and z1 > z2 = z3 > z4 if p1 = p2. Also observe that we have (x1−x2, x2−
x3, x3 − x4) = (t, t, t) and, as before, (z1 − z2, z2 − z3, z3 − z4) = (p2, p1 − p2, p2).

Case 3(i): Assume that p1 6= p2. From the above, we see that in order to have
supp(ξ(p1,p2,0,...),p) ⊆ supp(ξ(t,t,t,0,...),p) we must have t = p2 = p1 − p2, which
implies p1 = 2p2 = 2t.

Case 3(ii): Assume that p1 = p2. From the above, it follows that in order to
have supp(ξ(p1,p2,0,...),p) ⊆ supp(ξ(t,t,t,0,...),p) we must have t = p2. However, in this
case |supp(ξ(p1,p2,0,...),p)| = 3 so we must also have z1 = x1 or z4 = x4. Each of
these two cases imply that t = (p1 + p2)/3, which contradicts t = p2 since p1 = p2.

From Case 3(i) and Case 3(ii) we conclude that

ρ(S2 \ {ν(2t,t,0,...)}) = 0. (3.48)

Also observe that

If p1 = 2t and p2 = t then (x1, x2, x3, x4) = (z1, z2, z3, z4). (3.49)

Case (4): Now assume that ν(t1,t2,t3,0,...) ∈ S3. If (t1, t2, t3) 6= (t′, t′, t′) for
some t′, then |supp(ξ(t1,t2,t3,0,...),p)| > |supp(ξ(t,t,t,0,...),p)|. Next, if t′ 6= t and
t′ ∈ (0, 1/3], then by looking at (3.38) we see that supp(ξ(t′,t′,t′,0,...),p) cannot be a
subset of supp(ξ(t,t,t,0,...),p). It follows that

ρ(S3 \ {ν(t,t,t,0,...)}) = 0. (3.50)

We now finish in the same way as in the proof of Proposition 3.21. From (3.45),
(3.46), (3.48) and (3.50) above, we see that to show that ρ = δν and thereby finish
the proof it suffices to show that we cannot find α, β ∈ [0, 1] with α + β ≤ 1 such
that

Φp(ν(t,t,t,0,...)) = αΦp(ν(0,...)) + βΦp(ν(3t,0,...)) + (1− α− β)Φp(ν(2t,t,0,...)) (3.51)

Comparing (3.38) with (3.29), (3.30) and (3.32) we see that in order for (3.51)
to hold, it is necessary that (keeping (3.45), (3.47) and (3.49) in mind)

p3 = βp+ (1− α− β)p2

3p2(1− p) = α1{p = 2/3}+ (1− α− β)p(1− p)
3p(1− p)2 = (1− α− β)p(1− p)

(1− p)3 = β(1− p) + (1− α− β)(1− p)2
(3.52)

If p 6= 2/3, then the second and third equations in (3.52) imply that p = 1/2,
finishing the proof in this case. If p = 2/3, then the third equation implies that
α = β = 0, in which case the first equation does not hold, completing this case. �
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Remark 3.23. In the paper Björnberg et al. (2019), injectivity of the above mapping
for p 6= 1/2 for a number of different random exchangeable partitions is obtained.
The class obtained in Björnberg et al. (2019) neither contains, nor is contained in,
the classes obtained above.

3.5. Gaussian and symmetric stable exchangeable processes. In this section, we first
consider the exchangeable Gaussian threshold process, and then the more general
case of exchangeable symmetric stable threshold processes. Suppose that X is an
exchangeable Gaussian process with N(0, 1)-marginals and pairwise correlations
r ∈ [0, 1]. Let Ξ be the random distribution used in the representation of X from
Subsection 3.1. Observe that in the case r = 0 we have Ξ is N(0, 1) a.s. and in the
case r = 1 we have Ξ = δx where x has distribution N(0, 1). For general r ∈ [0, 1],
Ξ is N(r1/2W, (1−r)) whereW is N(0, 1). We can equivalently obtain X as follows:
Let W,U1, U2, . . . be i.i.d. N(0, 1) and let Xi := r1/2W + (1− r)1/2Ui.

Now let Y h be the h-threshold process obtained from X as described in Subsec-
tion 3.1, where r is suppressed in the notation. A straightforward calculation left
to the reader shows that (recall (3.2))

ξY h = Ξ([h,∞]) =

∫ ∞
h−r1/2W
(1−r)1/2

e−t
2/2

√
2π

dt. (3.53)

In particular, if h = 0 and r = 1/2, then we see that

ξY 0 = Ξ([0,∞]) = 1− Φ(−W ),

where Φ is the probability distribution function of the N(0, 1)-distribution. Now
Φ(−W ) is uniformly distributed on [0, 1], and hence so is Ξ([0,∞]).

By symmetry and Theorem 3.16, we can conclude that for h = 0 and any r, Y 0

is a color process. Observe that if p = (p1, . . .) where pi = 1/2i for i ≥ 1, then
the random variable ξp,1/2 in (3.4) is uniformly distributed on [0, 1]. It follows that
when r = 1/2, Y 0 is the color process associated to the paintbox (1/2, 1/4, 1/8, . . .).

Now we move on to the symmetric stable case. Recall that a stable distribution
is characterized by four parameters: the location parameter µ ∈ R, the skewness
parameter β ∈ [−1, 1], the scale parameter c ∈ (0,∞) and the stability parameter
α ∈ (0, 2]. Here we consider only the special case when µ = 0, c = 1 and β = 0.
In this case, the characteristic function of the stable distribution with stability
parameter α is given by e−|t|

α

, t ∈ R. We denote this distribution by S(α). If
α = 2, then we (essentially) get the N(0, 1) distribution, the case of which we
already covered above.

We obtain an exchangeable process where the marginals are S(α) as follows. First
recall that if |a|α + |b|α = 1 and V1, V2 ∈ S(α) are independent, then aV1 + bV2 ∈
S(α). Let W,U1, U2, . . . ∈ S(α) be i.i.d. and fix a ∈ (0, 1). Let b = (1 − aα)1/α

and let X = (X(i))i∈N where Xi = aW + bUi. Then X is clearly exchangeable
with marginals given by S(α). Let Y h be the h-threshold process obtained from
X. This depends on α and a but this is suppressed in the notation. In the same
way as in the Gaussian case, one gets that

ξY h = 1− F
(
h− aW

b

)
where F be the distribution function of W . We see that in the special case of h = 0
and a = b = (1/2)1/α we have that ξY 0 is uniform on [0, 1].



Generalized Divide and Color Models 31

By symmetry and Theorem 3.16, we can conclude that for h = 0 and any α and
a, Y 0 is a color process. As in the Gaussian case, we have that when a = (1/2)1/α,
Y 0 is the color process associated to the paintbox (1/2, 1/4, 1/8, . . .). In particular,
the 0-threshold Gaussian for r = 1/2 is the same process as the 0-threshold stable
process when a = (1/2)1/α.

4. Connected random partitions on Z

In this section, we focus on the class of connected RERs on Z thought of as a
graph with nearest neighbor edges. Therefore, in this case, all of the clusters are
of the form φ = {m,m + 1, . . . , n} with −∞ ≤ m ≤ n ≤ ∞. For m ∈ Z, the edge
between m and m+ 1 will be denoted by em,m+1. The next definition gives a way
of creating an element from RERconn

Z by using a process on the edges of Z.

Definition 4.1. Let {Y (en,n+1)}n∈Z be any process on the edges of Z with state
space {−1, 1} Define πY to be the random equivalence relation on Z obtained as
follows: m < n ∈ Z are said to be in the same equivalence class of πY if and only
if Y (em,m+1) = . . . = Y (en−1,n) = 1.

Observe that Y and πY can be recovered from each other. It follows that πY
will inherit any property which Y has. We will often say that πY is induced by Y .

Definition 4.2. Let {Y (en,n+1)}n∈Z be any process with state space {−1, 1}. We
denote by XY,p the color process obtained from the RER induced by Y with pa-
rameter p.

In the next proposition we describe exactly which Markov chains with state space
{0, 1} are color processes. In some sense, most of this proposition is well known.

Proposition 4.3. Let Z = (Z(n))n∈Z be a Markov chain with state-space {0, 1}
and transition probabilities p0,0, p0,1, p1,0 and p1,1. The following statements are
equivalent:

(1) For all m,n ∈ Z, Cov(Z(m), Z(n)) ≥ 0
(2) p0,1 ≤ p1,1
(3) (Z(n))n∈Z is a color process
(4) (Z(n))n∈Z satisfies the FKG lattice condition
(5) (Z(n))n∈Z satisfies positive associations

Proof : 1 =⇒ 2 : This is completely straightforward.
2 =⇒ 3 : Assume that p0,1 ≤ p1,1. Let {Y (en,n+1)}n∈Z be an i.i.d. process with

P (Y (en,n+1) = 1) = p1,1 − p0,1 = 1− P (Y (en,n+1) = 0).

We now claim that the color process XY,p where p = p0,1/(p0,1 + p1,0) has the
same law as Z. First we show that XY,p has the Markov property. Let s :=
P (Y (en,n+1) = 1). Fix n ≥ 1 and i0, . . . , in ∈ {0, 1}. We have

P (XY,p(0) = i0|XY,p(1) = i1, . . . , X
Y,p(n) = in)

=
P (XY,p(0) = i0, . . . , X

Y,p(n) = in)

P (XY,p(1) = i1, . . . , XY,p(n) = in)
.

We now observe that conditioned on {Y (e0,1) = 0} the events {XY,p(0) = i0}
and {XY,p(1) = i1, . . . , X

Y,p(n) = in} are conditionally independent. This follows
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from the fact that {Y (e0,1) = 0} implies 0 and 1 are in different clusters of πY .
Hence

P (XY,p(0) = i0, . . . , X
Y,p(n) = in|Y (e0,1) = 0)

= P (XY,p(0) = i0|Y (e0,1) = 0)P (XY,p(1) = i1, . . . , X
Y,p(n) = in|Y (e0,1) = 0)

= P (XY,p(0) = i0)P (XY,p(1) = i1, . . . , X
Y,p(n) = in),

where the last equality uses the fact that Y is an i.i.d. process. Observe that
{Y (e0,1) = 1} implies XY,p(0) = XY,p(1). We get that, again using that Y is i.i.d. ,

P (XY,p(0) = i0, . . . , X
Y,p(n) = in|Y (e0,1) = 1)

= 1{i0 = i1}P (XY,p(1) = i1, . . . , X
Y,p(n) = in).

Hence,

P (XY,p(0) = i0, . . . , X
Y,p(n) = in)

= (s1{i0 = i1}+ (1− s)P (XY,p(0) = i0))P (XY,p(1) = i1, . . . , X
Y,p(n) = in),

which implies

P (XY,p(0) = i0|XY,p(1) = i1, . . . , X
Y,p(n) = in)

= s1{i0 = i1}+ (1− s)P (XY,p(0) = i0),

which does not depend on i2, . . . , in. Hence the Markov property of XY,p follows.
It remains to show that the transition probabilities coincide with those of Z. We
have that

P (XY,p(n) = 1|XY,p(n− 1) = 1)

= P (Y (en−1,n) = 1) +
p0,1

p0,1 + p1,0
P (Y (en−1,n) = 0)

= p1,1 − p0,1 +
p0,1

p0,1 + p1,0
(1− p1,1 + p0,1)

= p1,1 − p0,1 +
p0,1

p0,1 + p1,0
(p1,0 + p0,1)

= p1,1,

and

P (XY,p(n) = 0|XY,p(n− 1) = 0)

= P (Y (en−1,n) = 1) +
p1,0

p0,1 + p1,0
P (Y (en−1,n) = 0)

= p1,1 − p0,1 +
p1,0

p0,1 + p1,0
(1− p1,1 + p0,1)

= p1,1 − p0,1 +
p1,0

p0,1 + p1,0
(p1,0 + p0,1)

= p1,1 − p0,1 + p1,0

= 1− p0,1
= p0,0.

From the above, it follows that Z D= XY,p, and so Z is a color process.
3 =⇒ 1 : This follows from the fact that any color process has non-negative pairwise
correlations.
4 =⇒ 5 : This implication was already mentioned in the paragraph following
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Definition 2.16.
2 =⇒ 4 : This is a standard but tedious calculation which we omit.
5 =⇒ 1 : This implication is trivial. �

The Ising model on Z will play an important role in this section from now on.
However, we will define the Ising model on the edges of Z since we will use it to
generate an RER as in Definition 4.1. Since we now also want to allow a varying
external field, we regive the definition.

Definition 4.4. For m < n let Em,n = {em,m+1, . . . , en−1,n}. Let J ≥ 0 and
h = (he)e∈Em,n be a sequence of real numbers. Let µm,nJ,h denote the Ising model
with nearest neighbor interaction J and edge varying external field h on Em,n, i.e.
for any x ∈ {−1, 1}Em,n ,

µm,nJ,h (x) =
exp(J

∑n−2
i=m x(ei,i+1)x(ei+1,i+2) +

∑n−1
i=m h(ei,i+1)x(ei,i+1))

Zm,n
.

Here Zm,n(J, h) is a normalizing constant making µm,nJ,h into a probability measure.
The Ising model on the edges of all of Z is defined as the distributional limit

µZ
J,h := lim

n→∞m→−∞
µm,nJ,h ,

which is well known to exist.

We will denote by Y m,nJ,h (Y Z
J,h) a random object with law µm,nJ,h (µZ

J,h).
In the proof of Proposition 4.3 we saw that discrete time two-state Markov chains

with non-negative pairwise correlations can be viewed as color processes, where the
underlying RER is generated by an i.i.d. process. Theorem 4.7 below shows that if,
instead of an i.i.d. process, we use a (nontrivial) Ising model to generate an RER,
then the resulting process is not n-step Markov for any n ≥ 2. First, we give some
more preliminary results. The first proposition might be of independent interest.

Proposition 4.5. Let J ≥ 0 and let the (possibly edge dependent) external field h
be arbitrary. Then for any 0 ≤ k ≤ l ≤ n and any p,

D(Y 0,n
J,h |X

Y,p(k) = 1, . . . , XY,p(l) = 1) = µ0,n

J,h̃k,l
(4.1)

where h̃k,l(ei,i+1) = h(ei,i+1) − (log p)/2 for i = k, . . . , l − 1 and h̃k,l(ei,i+1) =

h(ei,i+1) otherwise and where we write Y for Y 0,n
J,h .

Proof : Fix 0 ≤ k ≤ l ≤ n and y(e0,1), . . . , y(en−1,n) ∈ {−1, 1}{e0,1,...,en−1,n}. Then

P(Y (e0,1) = y(e0,1), . . . , Y (en−1,n) = y(en−1,n) |XY,p(k) = 1, . . . , XY,p(l) = 1)

=
P(XY,p(k) = 1, . . . , XY,p(l) = 1 |Y (e0,1) = y(e0,1), . . . , Y (en−1,n) = y(en−1,n))

P(XY,p(k) = 1, . . . , XY,p(l) = 1)

×P(Y (e0,1) = y(e0,1), . . . , Y (en−1,n) = y(en−1,n)). (4.2)

Let M(k, l) = M(k, l, Y ) be the number of equivalence classes in πY intersecting
{k, .., l}. For s = −1, 1 let

Ns(k, l) = Ns(k, l, Y ) = |{i ∈ {k, . . . , l − 1} : Y (ei,i+1) = s}|.

We observe the identities

M(k, l) = 1 +N−1(k, l), (4.3)
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and

(l − k)− 2N−1(k, l) = N1(k, l)−N−1(k, l) =

l−1∑
i=k

Y (ei,i+1). (4.4)

In what follows, the constant implicit in the proportionality sign ∝ is allowed to
depend only on J, h, k, l, n and p. We now get that

P(XY,p(k) = 1, . . . , XY,p(l) = 1 |Y (e0,1) = y(e0,1), . . . , Y (en−1,n) = y(en−1,n))

= pM(k,l) (4.3)
∝ pN−1(k,l) =

(
1

p1/2

)−2N−1(k,l)

∝
(

1

p1/2

)(l−k)−2N−1(k,l)

(4.4)
= exp

{
− log p

2

l−1∑
i=k

y(ei,i+1)

}
. (4.5)

In addition we have

P(Y (e0,1) = y(e0,1), . . . , Y (en−1,n) = y(en−1,n))

∝ exp

{
J

n−2∑
i=0

y(ei,i+1)y(ei+1,i+2) +

n−1∑
i=0

h(ei,i+1)y(ei,i+1)

}
(4.6)

Combining (4.2), (4.5) and (4.6), we get

P(Y (e0,1) = y(e0,1), . . . , Y (en−1,n) = y(en−1,n) |XY,p(k) = 1, . . . , XY,p(l) = 1)

∝ exp

{
J

n−2∑
i=0

y(ei,i+1)y(ei+1,i+2) +

k−1∑
i=0

h(ei,i+1)y(ei,i+1)

+

l−1∑
i=k

(
h(ei,i+1)− log p

2

)
y(ei,i+1) +

n−1∑
i=l

h(ei,i+1)y(ei,i+1)

}
,

finishing the proof of the proposition. �

Lemma 4.6. Let J > 0 and let the (possibly edge dependent) external field h be
arbitrary. Then for any n ∈ Z and k ≤ l ∈ Z,

E(Y Z
J,h(en,n+1) |XY Z

J,h,p(k) = 1, . . . , XY Z
J,h,p(l) = 1)

> E(Y Z
J,h(en,n+1) |XY Z

J,h,p(k) = 1, . . . , XY Z
J,h,p(l − 1) = 1). (4.7)

If k = l, then there is no conditioning on the right hand side of the above.

Proof : In the proof, we will work on the interval [−N,N ] and keep J fixed, so we
write Y Nh = Y −N,NJ,h , and in addition we write Yh = Y Z

J,h. Without loss of generality,
we can choose n = 0 and so we will be done if we show that for any fixed k ≤ l,

lim
N→∞

E(Y Nh (e0,1) |XY Nh ,p(k) = 1, . . . , XY Nh ,p(l) = 1)

> lim
N→∞

E(Y Nh (e0,1) |XY Nh ,p(k) = 1, . . . , XY Nh ,p(l − 1) = 1), (4.8)

since the LHS and RHS in (4.8) coincide with the LHS and RHS of (4.7) respectively.
If N > max(|k|, |l|), then we know from Proposition 4.5 that

D(Y Nh |XY Nh ,p(k) = 1, . . . , XY Nh ,p(l − 1) = 1) = D(Y N
h̃k,l−1

),

and
D(Y Nh |XY Nh ,p(k) = 1, . . . , XY Nh ,p(l) = 1) = D(Y N

h̃k,l
),



Generalized Divide and Color Models 35

where h̃k,l is given in the statement of Proposition 4.5. It is well known and easy
to prove (see Ellis (1985) p. 148) that for all i and j,

∂E[Y Nh (ej,j+1)]

∂h(ei,i+1)
= Cov(Y Nh (ei,i+1), Y Nh (ej,j+1)).

This implies that

E[Y N
h̃k,l

(e0,1)]−E[Y N
h̃k,l−1

(e0,1)]

=

∫ h(el−1,l)−(log p)/2

h(el−1,l)

Cov(Y Ns (e0,1), Y Ns (el−1,l))ds(el−1,l), (4.9)

where s(ei,i+1) = h̃k,l−1(ei,i+1) for i 6= l − 1. As N → ∞, the right hand side
of (4.9) converges (by the bounded convergence theorem) to∫ h(el−1,l)−(log p)/2

h(el−1,l)

Cov(Ys(e0,1), Ys(el−1,l))ds(el−1,l).

Since J > 0, this last expression is strictly positive. (Percus’ equality in Percus,
1975, see also Ellis, 1985 p. 142) gives the weaker fact that the expression is non-
negative.) Now (4.8) follows. �

In what follows, we write, as in the proof of Lemma 4.6, Yh = Y Z
J,h.

Theorem 4.7. Let J > 0 and let the external field h be constant but arbitrary.
Then the color process XYh,p is not n-step Markov for any n ≥ 1 unless p ∈ {0, 1}.

Proof : Observe that

P(XYh,p(0) = 1|XYh,p(1) = 1, . . . , XYh,p(n) = 1)

= P(Yh(e0,1) = 1 |XYh,p(1) = 1, . . . , XYh,p(n) = 1)

+ pP(Y h(e0,1) = 0 |XYh,p(1) = 1, . . . , XYh,p(n) = 1)

= p+ (1− p)P(Yh(e0,1) = 1 |XYh,p(1) = 1, . . . , XYh,p(n) = 1).

Lemma 4.6 says that the last expression is strictly increasing in n and so the
theorem is proved. �

5. Stochastic domination of product measures

Given ν and p, it is natural to ask which product measures the color process
Φp(ν) stochastically dominates. In this section, we present results in this direction.
We write µ1 � µ2 if µ2 stochastically dominates µ1 which we recall means that the
two measures can be coupled so that the joint distribution is concentrated on pairs
of configurations where the realization for µ1 is below the realization for µ2.

To begin with, the following definition is natural.

Definition 5.1. Let V be a finite or countable set and let ν ∈ RERV . For p ∈ (0, 1),
let d(ν, p) := max{α : Πα � Φp(ν)}. We also let d(ν) := limp→1 d(ν, p). (Πs denotes
as before product measure on {0, 1}V with density s.)
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5.1. Some general results for stochastic domination. At first, one might think that
d(ν) should often be 1. However, this is usually not the case; see e.g. Proposition 5.4
(ii) below. Our first proposition tells us that d(ν) = 1 does hold if the cluster sizes
are bounded.

Proposition 5.2. Suppose that ν ∈ RERV where V is an arbitrary set and that

ν({π : |φ| ≤M for all φ ∈ π}) = 1. (5.1)

Then for all p ∈ (0, 1),
d(ν, p) ≥ 1− (1− p) 1

M

and hence d(ν) = 1.

Proof : Suppose first that π ∈ PartV is such that π contains only equivalence classes
of size at most M . Letting α := 1 − (1 − p) 1

M , it is straightforward to show that
Πα � Φp(δπ) where δπ stands for the point measure at π. Now write

Φp(ν) =

∫
π∈PartV

Φp(δπ)dν(π).

The claim now follows, since Πα � Φp(δπ) for ν-almost every π. �

The next proposition, due to Olle Häggström, shows that having uniformly
bounded cluster sizes is not a necessary condition for d(ν) = 1.

Proposition 5.3. There exists an RER ν with d(ν) = 1 for which the supremum
of the cluster sizes is infinite a.s.

Proof : The main step is to first construct an RER ν with d(ν) = 1 for which (5.1)
fails for each M . To do this, let V2, V3, . . . be disjoint finite sets with |Vk| = k for
each k and let V = ∪k≥2Vk. Given a sequence (εk), we consider the RER ν on
V obtained as follows. Independently for different k, we let Vk be a cluster with
probability εk and we let all the elements of Vk to be singletons with probability
1− εk. Clearly if εk > 0 for each k, then (5.1) fails for each M . We now claim that
if εk = 1

2k2
, then d(ν) = 1. We need to show that for each α < 1, there is p < 1 so

that Πα � Φp(ν). Since the behavior on different Vk’s is independent under ν, we
only need to check the stochastic domination for each Vk. We first check that we
can obtain the desired inequality for the (decreasing) event of having all 0’s. This
inequality is then

(1− α)k ≥ εk(1− p) + (1− εk)(1− p)k

and it is easy to check that with εk = 1
2k2

as above, given any α < 1, there is p < 1

so that this inequality holds for all k. Theorem 1.3 in Liggett and Steif (2006)
states that a finite exchangeable process which satisfies the FKG lattice condition
dominates a given product measure once one has the appropriate inequality for the
event of having all 0’s. It is not hard to see that the color process above on Vk is
exchangeable and satisfies the FKG lattice condition therefore yielding the desired
stochastic domination.

Finally, once we have an RER ν with d(ν) = 1 for which (5.1) fails for each M ,
we can obtain what is claimed in the proposition simply by considering an infinite
number of independent such systems. �

The next proposition relates stochastic domination with the behavior of the
number of clusters intersecting a large box.
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Proposition 5.4. Let d ≥ 1, ν ∈ RERstat
Zd and Cn = Cνn be the number of clusters

intersecting [−n, n]d.
(i). If p, α ∈ (0, 1) is such that we have Πα � Φp(ν), then for all n ≥ 0 and all

k ≥ 1,

ν(Cn ≤ k) ≤ 1

(1− p)k
(1− α)(2n+1)d . (5.2)

(ii). If

lim inf
n→∞

− log ν(Cn ≤ δ(2n+ 1)d)

(2n+ 1)d
≤ ε, (5.3)

then d(ν, p) ≤ 1− (1−p)δ
eε . In particular if this lim inf is 0, then d(ν, p) ≤ 1−(1−p)δ.

(iii). If there exists kn = o(nd) such that

lim inf
n→∞

− log ν(Cn ≤ kn)

(2n+ 1)d
≤ ε, (5.4)

then d(ν) ≤ 1− e−ε. In particular if this lim inf is 0, then d(ν) = 0.
(iv). If ν(Cn = 1) ≥ γ(2n+1)d for infinitely many values of n, then d(ν) ≤ 1− γ.

Proof : (i). Fix p, α ∈ (0, 1) with Πα � Φp(ν) and let n ≥ 0 and k ≥ 1. Then

(1− α)(2n+1)d = Πα(X|[−n,n]d ≡ 0) ≥ Φp(ν)(X|[−n,n]d ≡ 0)

= E[(1− p)Cn ] ≥ ν(Cn ≤ k)(1− p)k. (5.5)

(ii). This follows from (i) in a straightforward manner.
(iii). This follows from (ii) in a straightforward manner.
(iv). This follows from (iii) in a straightforward manner. �

We next have the following proposition for RERs concentrated on connected
classes.

Proposition 5.5. (i). Let ν ∈ RERstat,conn
Z . If p, α ∈ (0, 1) is such that we have

Πα � Φp(ν), then for all n ≥ 1

ν(|π(0)| ≥ n) ≤ (n+ 2)
1

1− p
(1− α)2bn/2c+1. (5.6)

It follows that if ν(|π(0)| ≥ n) ≥ Cγn for infinitely many n for some C > 0, then
d(ν) ≤ 1− γ.

(ii). There exists ν ∈ RERstat
Z and p, α ∈ (0, 1) such that Πα � Φp(ν) but where

the LHS of (5.6) does not go to 0 with n.
(iii). There exists d ≥ 2, ν ∈ RERstat,conn

Zd and p, α ∈ (0, 1) such that Πα � Φp(ν)
but where the LHS of (5.6) does not go to 0 with n.

(iv). Let ν ∈ RERstat,conn
Zd . If p, α ∈ (0, 1) is such that we have Πα � Φp(ν),

then for all n ≥ 1

ν(|π(0)| ≥ n) ≤ (7d(1− α))n

1− p
. (5.7)

(This only has content if α ∈ (1 − 7−d, 1).) It follows that if ν(|π(0)| ≥ n) ≥ Cγn

for infinitely many n for some C > 0, then d(ν) ≤ 1− γ
7d
.
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Proof : (i). Observe that since ν produces only connected equivalence classes a.s.
the following inclusion holds a.s.

{|π(0)| ≥ n} ⊆
dn/2e⋃

i=−dn/2e

{π(i) ⊇ [i− bn/2c, i+ bn/2c]}.

Hence

ν(|π(0)| ≥ n) ≤
dn/2e∑

i=−dn/2e

ν(π(i) ⊇ [i− bn/2c, i+ bn/2c])

≤ (n+ 2)
1

1− p
(1− α)2bn/2c+1, (5.8)

using Proposition 5.4(i) with k = 1 in the last inequality, finishing the proof. The
last statement follows easily.

(ii). We use Proposition 5.9 which comes later in this section. Assume we have
a paintbox with p1 > 0 and

∑
i pi < 1. Since

∑
i pi < 1, Proposition 5.9 says that

Πα � Φp(ν) for some α, p ∈ (0, 1). However, since p1 > 0, ν(|π(0)| = ∞) > 0 and
so the LHS of (5.6) does not go to 0 with n.

(iii). Let ν ∈ RERstat,conn
Zd be the random cluster model with J > Jc. Then,

using the fact that the random cluster model has a unique infinite cluster, the color
process Φ1/2(ν) is necessarily given by (µZd,+

J +µZd,−
J )/2 where these two measures

are respectively the plus and minus states for the Ising model with coupling constant
J . It is well known that there is some ε = ε(J, d) > 0 such that Πε � µZd,−

J (� µZd,+
J )

and hence Πε � Φ1/2(ν). However ν(|π(0)| = ∞) > 0 and hence the LHS of (5.6)
does not go to 0 with n.

(iv). Let Sn be the set of connected subsets of Zd of size n containing the origin.
It is known that |Sn| ≤ 7dn, see p. 81 of Grimmett (1999). We then have

ν(|π(0)| ≥ n) ≤
∑
φ∈Sn

ν(φ ⊆ π(0)). (5.9)

Since by assumption Πα � Φp(ν), we get, using domination in the second in-
equality, that for any φ ∈ Sn

(1− p)ν(φ ⊆ π(0)) ≤ Φp(ν)(X|φ ≡ 0) ≤ (1− α)n,

so that

ν(φ ⊆ π(0)) ≤ (1− α)n

1− p
. (5.10)

From (5.9) and (5.10) it follows that

ν(|π(0)| ≥ n) ≤ |Sn|
(1− α)n

1− p
≤ (7d(1− α))n

1− p
,

as claimed. The last statement follows easily. �

Remark 5.6. The essential reason that (i) does not hold when d ≥ 2 is that the
number of connected sets of size n containing the origin is exponential in n rather
than linear in n as in d = 1.

The next proposition says that no matter how fast ν(|π(0)| ≥ n) decays to 0 for
d = 1, there is no guarantee that Φp(ν) will dominate any product measure, even for
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ν ∈ RERstat,conn
Z . This shows in particular that the converse of Proposition 5.5(i)

is false.

Proposition 5.7. Let (bn)n≥1 be a decreasing sequence of real numbers such that
bn → 0 as n → ∞ and bn > 0 for all n. Then there exists ν ∈ RERstat,conn

Z such
that ν(|π(0)| ≥ n) ≤ bn for all n ≥ 2 but d(ν) = 0.

Proof : For n ≥ 1 let (Kn)n≥1 be uniform on {0, . . . , n− 1}. For k ∈ Z and n ≥ 1,
let Ik,n = {kn, . . . , kn + n − 1}. For n ≥ 1 let πn be the RER with equivalence
classes given by (Ik,n + Kn)k∈Z and let νn be the law of πn. Let (pn)n≥1 satisfy
pn ∈ (0, 1) for all n and

∑
n≥1 pn = 1 and then put ν =

∑
n≥1 pnνn. We now show

that the sequence (pn) can be chosen so that ν satisfies the properties required.
First, we see that the decay of the probabilities ν(|π(0)| ≥ n) can be given the

desired behavior by an appropriate choice of the sequence (pn)n≥1. For example one
can let p1 := 1−b2 and then pn := bn−bn+1 for n ≥ 2. This gives ν(|π(0)| ≥ n) = bn
for all n ≥ 2.

To show that d(ν) = 0, we proceed as follows. If d(ν) > 0, then there would
exist ε, p ∈ (0, 1) such that Πε � Φp(ν). Next consider the ergodic decomposition
of any stationary coupling of Πε and Φp(ν) which couples the former below the
latter. Since Πε is ergodic, it follows that Πε � Φp(

∑
n≥1 pnνn) can only occur if

Πε � Φp(νn) for each n. However, Πε � Φp(νn) implies that

1− p
n
≤ Φp(νn)(X|1,...,n ≡ 0) ≤ (1− ε)n

which is clearly false for large n. �

5.2. Stochastic domination for the infinitely exchangeable case. We now turn to the
infinitely exchangeable case and give a formula (see Proposition 5.9 below) d(ν, p).
Suppose first that µ ∈ EPN. Recall (see (3.1)) that

µ =

∫ 1

s=0

Πs dρµ(s),

for some unique measure ρµ on [0, 1]. The proof of the next lemma is straightforward
and certainly known, so we omit it.

Lemma 5.8. Suppose that µ ∈ EPN. Then

sup{s : Πs � µ} = inf supp ρµ. (5.11)

Recall (see Theorem 3.10) that for any ν ∈ RERexch
N , there is a unique measure ρν

on RERexch,pure
N such that

ν =

∫
νp∈RERexch,pure

N

νp dρν(νp). (5.12)

As an application of Lemma 5.8 to exchangeable color processes, we have the fol-
lowing.

Proposition 5.9. If νp ∈ RERexch,pure
N with p = (p1, p2, . . .), then for all p ∈ (0, 1)

d(νp, p) = p

1−
∑
i≥1

pi

 . (5.13)
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Hence
d(νp) = 1−

∑
i≥1

pi.

More generally, if ν ∈ RERexch
N then for all p ∈ (0, 1)

d(ν, p) = inf

p
1−

∑
i≥1

pi

 : νp ∈ supp ρν

 . (5.14)

Hence

d(ν) = 1− sup

∑
i≥1

pi : νp ∈ supp ρν

 .

Proof : Statement (5.13) follows from Lemma 5.8 by inspection of (3.3). The general
statement (5.14) follows from (5.13) and the upper semicontinuity of the map
νp 7→ p(1−

∑∞
i=1 pi) (which in fact is not continuous) by observing that

Φp(ν)
(5.12)
=

∫
νp∈RERexch,pure

N

Φp(νp) dρν(νp).

�

Next we present a result for the infinite exchangeable case projected to a finite
set which follows from a result in Liggett and Steif (2006). For ν ∈ RERexch

N we let
ν[n] ∈ RERexch

[n] stand for the RER on [n] induced by ν. Similarly for µ ∈ EPN let
µ[n] be the measure induced by µ on {0, 1}[n]. Corollary 1.1 in Liggett and Steif
(2006) says that for all µ ∈ EPN and all n ≥ 1

sup{s : Πs � µ[n]} = 1−
(∫ 1

s=0

(1− s)ndρµ(s)

)1/n

.

This immediately implies the following proposition which we therefore give without
proof. Recall the definition of ξp,p from (3.3).

Proposition 5.10. Let n ≥ 1 and suppose that ν ∈ RERexch
N . Then

sup{s : Πs � Φp(ν[n])} = 1−

(∫
νp∈RERexch,pure

N

∫ 1

s=0

(1− s)n dFξp,p(s)dρν(νp)

)1/n

.

5.3. Stochastic domination for our various models. In this subsection, we examine
what the earlier results in this section tell us about stochastic domination for some
of our standard models.

5.3.1. Random walk in random scenery.

Proposition 5.11. (i). Consider a recurrent random walk on Zd and let ν be the
associated RER on Z. Then d(ν) = 0.
(ii). Consider a random walk on Zd whose steps have mean 0 and let ν be the
associated RER on Z. Then d(ν) = 0.

While (ii) is much stronger in some sense than (i), it does not actually imply it
since there are recurrent random walks with infinite mean.
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Proof : (i). It is well known and easy to show that for any recurrent random walk,
E(Rn) = o(n) where Rn is the range of the random walk up to time n, i.e., the
cardinality of the set {S0, S1, . . . , Sn−1}. It is clear that Rn is exactly the number
of clusters intersecting [0, n−1] in the associated RER. Using a trivial modification
of Proposition 5.4 (iii) (where [−n, n] is simply replaced by [0, n− 1]), we let kn :=
2E(Rn). Then kn = o(n) and ν(Rn ≥ kn) ≤ 1

2 by Markov’s inequality and hence
ν(Rn ≤ kn) ≥ 1

2 . It follows that (5.4) holds in this case with ε = 0 and hence
d(ν) = 0 by Proposition 5.4 (iii).

(ii). We will use Lemma 2.2 in Steif (2001) which is the following.

Lemma 5.12. Consider a random walk on Zd whose steps have mean 0. Then for
every ε > 0, it is the case that

P

(
Rn
n
≤ ε
)
≥
(

1

2

)εn
holds for large n.

The key ingredient in the proof of the above lemma is Lemma 5.1 in Donsker
and Varadhan (1979) which gives a much stronger result when the distribution of
the steps is compact or even satisfies much weaker assumptions.

It is easy to see that Lemma 5.12 implies that we can choose (εn) going to 0
such that for all n ≥ 1

P

(
Rn
n
≤ εn

)
≥
(

1

2

)εnn
.

Now let kn := nεn which is clearly o(n). The above inequality yields that (5.4)
holds in this case with ε = 0 as well and hence d(ν) = 0 by Proposition 5.4 (iii). �

Understanding what happens with d(ν) for 1 dimensional random walk with drift
seems to be an interesting question; see Question 7.16.

5.3.2. Stationary distributions for the voter model. Recall that in this case, the
RER νd is described by taking independent coalescing random walkers starting at
each point of Zd and running to time∞ and letting two points be in the same class
if the random walkers started at those two points ever coalesce.

Proposition 5.13. For all d ≥ 1, d(νd) = 0.

Proof : For d = 1, 2, νd has a.s. 1 cluster and therefore the result is trivial. For
d ≥ 3, it is stated (in different terminology) on p. 60 in Lebowitz and Schonmann
(1988) that E(Cn) ≤ O(nd−2). Letting kn := nd−1(= o(nd)) and using Markov’s
inequality, we obtain ν(Cn ≤ kn)→ 1 as n→∞. It follows that (5.4) holds in this
case with ε = 0 and hence d(ν) = 0 by Proposition 5.4 (iii). �

5.3.3. 1-dimensional Random Cluster Model. Consider the RER, denoted by νs,
in RERstat,conn

Z where one performs i.i.d. percolation with parameter s on Z and
considers the connected components. (This is exactly the RER that arises in Defi-
nition 4.1 where the Y process is i.i.d. with marginal probability s.)

Proposition 5.14. d(νs, p) = p− ps and hence, by letting p→ 1, d(νs) = 1− s.
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Proof : By the proof of Proposition 4.3, as we vary s and p, the collection of
color processes that we obtain are exactly the set of 2 state Markov chains with
nonnegative correlations and the correspondence is given by s = p1,1 − p0,1 and
p = p0,1/(p0,1 + p1,0).

Now, by Proposition 5.1 in Liggett and Steif (2006), the maximal density product
measure that our Markov chain dominates has density p0,1. Next, we want to
express this in terms of s and p. Inverting the above set of equations yields p0,1 =
p− ps and p1,1 = s+ p− ps. It follows that d(νs, p) = p− ps, as desired. �

We point out that, in the terminology of Proposition 5.4, we clearly have that
νs(Cn = 1) = s2n and hence we can conclude from Proposition 5.4 (iv) that d(νs) ≤
1− s. Hence Proposition 5.4 (iv) is sharp in this case.

Finally, we recall that the above set of color processes (as s and p vary) corre-
sponds to the set of 1-dimensional nearest neighbor Ising models as we vary J ≥ 0
and h ∈ R. Using the exact correspondence given in Georgii (2011), p. 50-51
between Ising models on Z and the above processes, one can can determine the
largest product measure which the Ising model with parameters J ≥ 0 and h ∈ R
dominates.

5.3.4. Random Cluster models in Zd. We refer to Grimmett (2006) for all back-
ground concerning the random cluster model. Given d ≥ 2, α ≥ 0 and q ≥ 1, we
let νRCM

d,α,q be the random cluster model on Zd with parameters α and q which is a
probability measure on {0, 1}E , where E are the edges in Zd, obtained by taking
a limit of the random cluster models on finite boxes as defined in Subsection 1.3.
We then think of νRCM

d,α,q as an RER on Zd by considering the induced connected
components. (For the experts, using one of the possible definitions of a random
cluster model, there might be more than one such measure on Zd; nonetheless, our
definition of νRCM

d,α,q above is well-defined as this limit exists.) Recall that q = 1
corresponds to the classical divide and color model.

Proposition 5.15. (i). For all d ≥ 2, q ≥ 1 and α > 0, d(νRCM
d,α,q ) < 1.

(ii). (Bálint et al., 2013) For all d ≥ 2, α > 0 and p > 0, d(νRCM
d,α,1 , p) > 0.

Proof : (i). It is easy to show that for all d ≥ 2, q ≥ 1 and α > 0, there exists C, γ >
0 so that for all n, νRCM

d,α,q (|π(0)| ≥ n) ≥ Cγn. It follows from Proposition 5.5 (iv)
that d(νRCM

d,α,q ) < 1.
(ii). This is stated in Theorem 3.1 in Bálint et al. (2013). �

6. Ergodic results in the translation invariant case

In this section, the main theme is to investigate the ergodic theoretic properties
of our color processes in the translation invariant case. These will turn out to
depend both on the ergodic behavior of the RERs generating the color process as
well as on the structure of the clusters which arise. We therefore assume in this
section that V = Zd and we only consider RERs in RERstat

V .
We will refer to Einsiedler and Ward (2011) and Walters (1982) for the standard

definitions in ergodic theory and will not, in view of space, recall these defini-
tions here. The ergodic concepts which we will consider are (1) ergodicity, (2)
weak-mixing, (3) mixing, (4) k-mixing, (5) K-automorphism and (6) Bernoullicity.
Importantly, in Einsiedler and Ward (2011), these definitions are also stated for
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Zd. In addition, we will assume familiarity with the notion of the entropy of a dy-
namical system or a stationary process. We recall that one stationary process is a
factor of another stationary process if the former can be expressed as a translation
invariant function of the latter. All the standard ergodic properties (in particular
all those considered in this paper) are easily shown (or known to be) preserved by
factor maps. In addition, it is known that i.i.d. processes satisfy all of the ergodic
properties that we study and that, in addition, if we have a stationary process µ
satisfying one of our ergodic properties, then the joint stationary process where (1)
the first marginal is µ, (2) the second marginal is an i.i.d. process and (3) the two
processes are independent also satisfies this given ergodic property.

In what follows, (π,Xν,p) is our joint RER and color process where π is the
random partition with distribution ν and Xν,p is the corresponding color process
with parameter p; the latter of course has distribution Φp(ν). The distribution of the
joint law will be denoted by P = Pν,p. With d specified, we let Bn := [−n, n]d∩Zd
(so that |Bn| = (2n+ 1)d). For a subset A ⊆ Zd and x ∈ Zd, define the translation
of A by x by T xA := {y : y − x ∈ A} and for subsets B ⊆ {0, 1}Zd and x ∈ Zd,
T xB will also have the obvious meaning.

6.1. Positive density clusters imply nonergodicity of the color process. Essentially
following Burton and Keane (1989), we first make the following definition.

Definition 6.1. We say that a subset S of Zd has density α if

lim
i→∞

|S ∩Bi|
|Bi|

= α.

We say that S has upper density α if

lim
i→∞

|S ∩Bi|
|Bi|

= α.

The proof of Theorem 1 in Burton and Keane (1989) easily yields the following
result.

Theorem 6.2. Suppose that ν ∈ RERstat
Zd . Then

ν(every φ ∈ π has a density) = 1. (6.1)

The main result of this subsection is the following result.

Theorem 6.3. Fix d ≥ 1, p ∈ (0, 1) and suppose that ν ∈ RERstat
Zd . If

ν(∃φ ∈ π : φ has positive density) > 0,

then Φp(ν) is not ergodic. In particular, if under ν there are a positive finite number
of infinite clusters with positive probability, then Φp(ν) is not ergodic.

To prove this, we begin with the following lemma.

Lemma 6.4. Suppose ν ∈ RERstat
Zd and that

ν(∃φ ∈ π : φ has positive density) > 0.

Then there exists a set S ⊆ Zd of positive upper density and a number δ = δS > 0
such that

ν(π(0) = π(x)) ≥ δ for all x ∈ S.
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Proof : We proceed by contradiction. Assume that there does not exist a set S with
positive upper density and a δ > 0 such that ν(π(0) = π(x)) ≥ δ for all x ∈ S. Let
ε > 0 be arbitrary and let

Sε = {x : ν(π(0) = π(x)) ≥ ε}.
Our assumptions imply that Sε has upper density 0. We now get that

lim
n→∞

Eν [|π(0) ∩Bn|]
(2n+ 1)d

= lim
n→∞

∑
x∈Bn

ν(π(0) = π(x))

(2n+ 1)d

= lim
n→∞

∑
x∈Bn∩Sε

ν(π(0) = π(x))

(2n+ 1)d
+ lim
n→∞

∑
x∈Bn∩Scε

ν(π(0) = π(x))

(2n+ 1)d

≤ lim
n→∞

∑
x∈Bn∩Sε

1

(2n+ 1)d
+ lim
n→∞

∑
x∈Bn∩Scε

ε

(2n+ 1)d

≤ 0 + ε = ε,

using that Sε has upper density 0 in the last inequality. Since ε > 0 was arbitrary,
it follows that

lim
n→∞

Eν [|π(0) ∩Bn|]
(2n+ 1)d

= 0. (6.2)

On the other hand, by Theorem 6.2,

lim
n→∞

|π(0) ∩Bn|
(2n+ 1)d

= L a.s., (6.3)

for some random variable L. The assumption ν(∃φ ∈ π : φ has positive density) >
0 implies that Pν(L > 0) > 0, so that Eν [L] > 0. Hence, using (6.3) and the
bounded convergence theorem,

lim
n→∞

Eν [|π(0) ∩Bn|]
(2n+ 1)d

= Eν [L] > 0. (6.4)

However (6.4) contradicts (6.2), finishing the proof. �

Proof of Theorem 6.3: If Φp(ν) is ergodic, then

lim
n→∞

∑
x∈Bn

Φp(ν)(X(0) = X(x) = 1)

(2n+ 1)d
= p2. (6.5)

From Lemma 6.4, it follows that there is a deterministic set S ⊆ Zd of positive
upper density and a δ = δS > 0 such that

ν(π(0) = π(x)) ≥ δ for x ∈ S. (6.6)

Hence,
Φp(ν)(X(0) = X(x) = 1) ≥ δp+ (1− δ)p2 for x ∈ S. (6.7)

However, we also know that

Φp(ν)(X(0) = X(x) = 1) ≥ p2 for all x. (6.8)

Equations (6.7), (6.8) and the fact that S has positive upper density imply that

lim
n

∑
x∈Bn

Φp(ν)(X(0) = X(x) = 1)

(2n+ 1)d
> p2, (6.9)

which implies that Φp(ν) is not ergodic due to (6.5). The final statement follows
easily from the ergodic theorem. �
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Remark 6.5. We will see later (Theorem 6.7), that the converse to Theorem 6.3
holds when ν is ergodic.

6.2. When does the color process inherit ergodic properties from the RER?. The
first theorem in this subsection tells us that, when all clusters are finite, then any
ergodic property of ν is automatically passed on to Pν,p and hence to Φp(ν). This is
really just an extension (with the same proof) of Theorem 3.1 in Steif (2001) where
this was proved for the particular property of being Bernoulli. Nonetheless, since
the proof is short, we include it for completeness. We mention that Bernoulliness
for the TT−1-process (and consequently for random walk in random scenery) in the
transient case (which is a special case of having finite clusters) was proved earlier
by a different method in den Hollander and Steif (1997).

Theorem 6.6. Fix d ≥ 1, p ∈ (0, 1) and ν ∈ RERstat
Zd . Assume that ν satisfies

ν(∀φ ∈ π : φ is finite) = 1.

Then, letting µp denote product measure with density p on Zd, we have that Pν,p is
a factor of ν×µp. In particular, if p denotes any one of the ergodic properties being
studied here, then ν has property p if and only if Pν,p has property p. In particular,
if ν has property p, then Φp(ν) has property p.

Proof : Concerning the middle statement, first, since π is a factor of (π,Xν,p) and all
of these properties are preserved under factors, the “if” direction follows. Secondly,
for the “only if” direction, we observe that if ν has property p, then so does ν × µp
and hence Pν,p in turn has this property being, as claimed, a factor of the latter.
Since Φp(ν) is a factor of Pν,p, the final statement is immediate.

For the first and main statement, let Y = (Y (z))z∈Zd be an i.i.d. field with
P (Y (z) = 1) = p = 1 − P (Y (z) = 0) for z ∈ Zd, and let Z = (π, Y ). We will
now obtain (π,Xν,p) as a factor of Z. For the first marginal, we just copy the
first marginal of Z. For the second marginal, we proceed as follows. Choose an
arbitrary lexicographic ordering of Zd. For x ∈ Zd, let yx be that element y of
π(x) which minimizes y − x with respect to the above ordering. Finally, we let
Xν,p(x) = Z(yx). It is easy to see that this yields the desired factor map. �

Theorems 6.3 and 6.6 suggest to us that the interesting case is when π contains no
equivalence class of positive density but contains some infinite equivalence class,
necessarily of 0 density. Theorems 6.7, 6.8, 6.9 and 6.12 below cover this case for
some ergodic properties.

Theorem 6.7. Fix d ≥ 1 and p ∈ (0, 1) and assume that ν ∈ RERstat
Zd satisfies

ν(∃φ ∈ π : φ has positive density) = 0.

Then ν is ergodic if and only if Pν,p is ergodic. In particular, if ν is ergodic, then
Φp(ν) is ergodic.

Proof : First assume that (π,Xν,p) is ergodic. Since π is a factor of (π,Xν,p) and
ergodicity is preserved under factors, the if part of the theorem follows. Similarly,
we obtain the last statement of the theorem from the first statement since Xν,p is
a factor of (π,Xν,p).

We move on to the only if part of the theorem. Assume that ν is ergodic.
Suppose that K1 and K2 are finite subsets of Zd. For i = 1, 2, suppose that
Ei is an event depending only on the color process Xν,p restricted to Ki, that is
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Ei ∈ σ(Xν,p(z) : z ∈ Ki). For i = 1, 2, fix φi ∈ ∆Ki and let Fi = {πKi = φi}. By
standard approximation by cylinder sets, it suffices to show that

lim
n→∞

1

(2n+ 1)d

∑
x∈Bn

P(E1, F1, T
xE2, T

xF2) = P(E1, F1)P(E2, F2). (6.10)

For x ∈ Zd, let Cx = Cx(K1,K2) be the event that there is some z1 ∈ K1 and
some z2 ∈ K2 such that π(z1) = π(T x(z2)).

We will be done if we show that

lim
n→∞

1

(2n+ 1)d

∑
x∈Bn

P(Ccx, E1, F1, T
xE2, T

xF2) = P(E1, F1)P(E2, F2) (6.11)

and
lim
n→∞

1

(2n+ 1)d

∑
x∈Bn

P(Cx, E1, F1, T
xE2, T

xF2) = 0. (6.12)

We start with (6.12). Clearly, it suffices to show

lim
n→∞

1

(2n+ 1)d

∑
x∈Bn

P(Cx) = 0. (6.13)

We get that ∑
x∈Bn

P(Cx)

(2n+ 1)d

≤
∑
x∈Bn

∑
z1∈K1,z2∈K2

P(π(z1) = π(T xz2))

(2n+ 1)d

=
∑

z1∈K1,z2∈K2

∑
x∈Bn

P(π(z1) = π(T xz2))

(2n+ 1)d
. (6.14)

For fixed z1 and z2, the inner sum in (6.14) converges to 0 as n → ∞ since every
cluster of π has density 0 a.s. Hence, (6.13) follows, and so (6.12) is established.

We now move on to prove (6.11). We write

P(Ccx, E1, F1, T
xE2, T

xF2) (6.15)
= P(Ccx, F1, T

xF2)P(E1, T
xE2|Ccx, F1, T

xF2)

= P(Ccx, F1, T
xF2)P(E1|F1)P(T xE2|T xF2),

= P(Ccx, F1, T
xF2)P(E1|F1)P(E2|F2)

where in the second equality we used the fact that E1 and T xE2 are conditionally
independent given the event {Ccx, F1, T

xF2}, and translation invariance was used
in the last equality.

Next, we argue that for φ1, φ2 fixed,

lim
n→∞

1

(2n+ 1)d

∑
x∈Bn

P(Ccx, F1, T
xF2) = P(F1)P(F2). (6.16)

To see this, we observe that

P(Ccx, F1, T
xF2) ≤ P(F1, T

xF2) (6.17)

and
P(Ccx, F1, T

xF2) ≥ P(F1, T
xF2)−P(Cx). (6.18)
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By ergodicity of ν,

lim
n→∞

1

(2n+ 1)d

∑
x∈Bn

P(F1, T
xF2) = P(F1)P(F2). (6.19)

Next, we already proved in (6.13) that

lim
n→∞

1

(2n+ 1)d

∑
x∈Bn

P(Cx) = 0. (6.20)

Hence, Equation (6.16) follows from (6.17), (6.18), (6.19) and (6.20). We are
now ready to obtain (6.11) from (6.15) and (6.16). We get

lim
n→∞

1

(2n+ 1)d

∑
x∈Bn

P(Ccx, E1, F1, T
xE2, T

xF2)

(6.15)
= lim

n→∞

1

(2n+ 1)d

∑
x∈Bn

P(Ccx, F1, T
xF2)P(E1|F1)P(E2|F2)

(6.16)
= P(F1)P(F2)P(E1|F1)P(E2|F2) = P(E1, F1)P(E2, F2).

Hence, (6.11) is established. Since K1 and K2 are arbitrary finite sets, ergodicity
of Φp(ν) follows. �

Theorem 6.8. Fix d ≥ 1 and p ∈ (0, 1) and assume that ν ∈ RERstat
Zd satisfies

ν(∃φ ∈ π : φ has positive density) = 0.

Then ν is weakly mixing if and only if Pν,p is weakly mixing. In particular, if ν is
weakly mixing, then Φp(ν) is weakly mixing.

Proof : First assume that (π,Xν,p) is weakly mixing. Since π is a factor of (π,Xν,p)
and weak mixing is preserved under factors, the if part of the theorem follows.
Similarly, we obtain the last statement of the theorem from the first statement
since Xν,p is a factor of (π,Xν,p).

We move on to the only if part of the theorem. Assume that ν is weak mixing.
Suppose that K1 and K2 are finite subsets of Zd. For i = 1, 2, suppose that
Ei is an event depending only on the color process Xν,p restricted to Ki, that is
Ei ∈ σ(Xν,p(z) : z ∈ Ki). For i = 1, 2, fix φi ∈ ∆Ki and let Fi = {πKi = φi}. By
approximation by cylinder sets, it suffices to show that

lim
n→∞

∑
x∈Bn |P(E1, F1, T

xE2, T
xF2)−P(E1, F1)P(E2, F2)|

(2n+ 1)d
= 0. (6.21)

Define Cx in the same way as in the proof of Theorem 6.7. By the triangle
inequality, we have for each n∑

x∈Bn |P(E1, F1, T
xE2, T

xF2)−P(E1, F1)P(E2, F2)|
(2n+ 1)d

(6.22)

≤
∑
x∈Bn P(Cx)

(2n+ 1)d
+

∑
x∈Bn |P(Ccx, E1, F1, T

xE2, T
xF2)−P(E1, F1)P(E2, F2)|

(2n+ 1)d
.
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The first term in the last line of (6.22) converges to 0 as n → ∞ due to Equa-
tion (6.13) above, so we can focus on the second term. We get that∑

x∈Bn |P(Ccx, E1, F1, T
xE2, T

xF2)−P(E1, F1)P(E2, F2)|
(2n+ 1)d

(6.23)

=

∑
x∈Bn |P(Ccx, F1, T

xF2)P(E1|F1)P(E2|F2)−P(E1|F1)P(E2|F2)P(F1)P(F2)|
(2n+ 1)d

≤
∑
x∈Bn |P(Ccx, F1, T

xF2)−P(F1)P(F2)|
(2n+ 1)d

≤
∑
x∈Bn P(Cx)

(2n+ 1)d
+

∑
x∈Bn |P(F1, T

xF2)−P(F1)P(F2)|
(2n+ 1)d

→ 0,

as n → ∞ due to the weak mixing of ν and the comment above Equation (6.23).
Since K1 and K2 are arbitrary finite sets, this finishes the proof. �

Theorem 6.9. Fix d ≥ 1 and p ∈ (0, 1) and assume that ν ∈ RERstat
Zd satisfies

lim
x→∞

ν(π(x) = π(0)) = 0.

Then ν is mixing if and only if Pν,p is mixing. In particular, if ν is mixing, then
Φp(ν) is mixing.

Remark 6.10. It is elementary to check that the condition that ν(π(x) = π(0))→ 0
as x → ∞ is necessary for mixing, since if this fails, pairwise correlations in the
color process do not converge to 0 and hence mixing does not hold.

Remark 6.11. Clearly the condition ν(π(x) = π(y))→ 0 as |x−y| → ∞ implies the
condition ν(∃φ ∈ π : φ has positive density) = 0. To see that the converse does not
hold, consider the following deterministic example in Z2. Let π be the partition into
horizontal lines. Then clearly each cluster has density 0, but ν(π(x) = π(y)) = 1 if
x2 = y2. Obviously, a similar example exists for any d ≥ 2.

Proof : First assume that (π,Xν,p) is mixing. Since π is a factor of (π,Xν,p) and
mixing is preserved under factors, the if part of the theorem follows. Similarly, we
obtain the last statement of the theorem from the first statement since Xν,p is a
factor of (π,Xν,p).

We move on to the only if part of the theorem. Assume that ν is mixing.
Suppose that K1 and K2 are finite subsets of V . For i = 1, 2, suppose that Ei
is an event depending only on the color process Xν,p restricted to Ki, that is
Ei ∈ σ(Xν,p(z) : z ∈ Ki). For i = 1, 2, fix φi ∈ ∆Ki and let Fi = {πKi = φi}. By
approximation by cylinder sets, it suffices to show that

lim
|x|→∞

P(E1, F1, T
xE2, T

xF2) = P(E1, F1)P(E2, F2). (6.24)

For x ∈ Zd, let Cx be the event as defined in the proof of Theorem 6.7.
Then

P(E1, F1, T
xE2, T

xF2) (6.25)
= P(Cx, E1, F1, T

xE2, T
xF2) + P(Ccx, E1, F1, T

xE2, T
xF2).

SinceK1 andK2 are finite, the property that P(π(x) = π(y))→ 0 as |x−y| → ∞
implies that P(Cx) → 0 as |x| → ∞. Hence, the first term in the right hand side
of (6.25) converges to 0 as |x| → ∞, and we can focus on the second term.
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Observe that as in the proof of Theorem 6.7,

P(Ccx, E1, F1, T
xE2, T

xF2) = P(Ccx, F1, T
xF2)P(E1|F1)P(E2|F2). (6.26)

Using the mixing property of ν and the fact that P(Ccx)→ 1 as |x| → ∞, we get

lim
|x|→∞

P(Ccx, F1, T
xF2)P(E1|F1)P(E2|F2) (6.27)

= P(F1)P(F2)P(E1|F1)P(E2|F2) = P(E1, F1)P(E2, F2).

Since K1 and K2 are arbitrary finite sets, this establishes the mixing property
of Φp(ν) and the proof is finished. �

The following theorem also holds. Its proof is a straightforward modification of
the proof of Theorem 6.9 and hence is left to the reader. In addition, also here the
condition ν(π(x) = π(y))→ 0 as |x− y| → ∞ clearly cannot be weakened.

Theorem 6.12. Fix d ≥ 1 and p ∈ (0, 1) and assume that ν ∈ RERstat
Zd satisfies

lim
x→∞

ν(π(x) = π(0)) = 0.

Then ν is k-mixing if and only if Pν,p is k-mixing. In particular, if ν is k-mixing,
then Φp(ν) is k-mixing.

Theorem 6.6 tells us that when all the clusters are finite, all ergodic properties
of ν are passed to Pν,p and Theorems 6.7, 6.8, 6.9 and 6.12 tell us that four specific
ergodic properties are passed from ν to Pν,p under the weaker assumption (and
even under weaker assumptions for two of these) that

lim
x→∞

ν(π(x) = π(0)) = 0.

However, it turns out interestingly that the important property of being Bernoulli
is not necessarily passed from ν to Pν,p under this latter assumption. We call the
following a theorem although it is actually just an observation based on Kalikow’s
famous work (see Kalikow, 1982) on the TT−1-process.

Theorem 6.13. There exists ν ∈ RERstat
Z which is Bernoulli satisfying

lim
x→∞

ν(π(x) = π(0)) = 0

but for which Pν,1/2 is not Bernoulli and even for which Φ1/2(ν) is not Bernoulli.

Proof : Let (X(i))i∈Z be an i.i.d. sequence such that P (X(i) = 1) = P (X(i) =
−1) = 1/2. Let ν ∈ RERstat

Z be the distribution of the RER given by j < k are put
in the same cluster if

∑k
i=j+1X(i) = 0. (This is of course just our RER for random

walk in random scenery from Subsection 1.3.) Being a factor of an i.i.d. process, ν
is Bernoulli and one easily has limx→∞ ν(π(x) = π(0)) = 0. The fact however that
Pν,1/2 is not Bernoulli is Kalikow’s famous theorem (Kalikow, 1982). The stronger
fact that even Φ1/2(ν) is not Bernoulli was proved by Hoffman (Hoffman, 2003).
One should however stress that the latter proof relies on Kalikow’s theorem. �

6.3. Can the color process enjoy more ergodic properties than the RER?. WhilePν,p
cannot of course exhibit stronger ergodic behavior than ν itself (since the latter is a
factor of the former), Φp(ν) could possibly exhibit stronger ergodic behavior than ν.

Our first example shows that Φ1/2 is not injective on RERstat
Z and as a conse-

quence gives us a nonergodic RER whose color process is ergodic.
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Proposition 6.14. There exist ν3, ν4 ∈ RERstat
Z with ν3 6= ν4, Φ1/2(ν3) = Φ1/2(ν4)

and such that the latter process is ergodic. It follows that there is a nonergodic RER
whose color process is ergodic.

Proof : Construct ν3 as follows: on each subset of the type {i, i + 1, i + 2} for i
divisible by 3, independently use the RER ν1 from the proof of Theorem 2.1(A)
on these 3 points. Next, shift the configuration, uniformly at random by 0, 1 or
2 steps to the right to construct a stationary RER. Next construct ν4 in the same
way, using ν2 from the proof of Theorem 2.1(A). Since ν1 and ν2 yield the same
color processes in the setting with three elements, it follows easily that Φ1/2(ν3) =
Φ1/2(ν4). Ergodicity (but not mixing) of the latter is easily established. The
final claim is established by considering any nontrivial convex combination of ν3
and ν4. �

Remark 6.15. (1) Using Theorem 2.1(E), one can even, in the same way, find
ν3, ν4 ∈ RERstat

Z with ν3 6= ν4 such that Φp(ν3) = Φp(ν4) for all p.
(2). The above also shows that ergodicity of the color process may depend on
p. If we take ν3 and ν4 from the above proof and take any p 6= 0, 1/2, 1, then
Φp(ν3) 6= Φp(ν4) (since now ν1 and ν2 yield different color processes for such p by
Theorem 2.1(C)) and hence the image of any nontrivial convex combination of ν3
and ν4 is nonergodic, being a nontrivial convex combination of the respective color
processes.

One can strengthen Proposition 6.14, obtaining examples where the color process
is Bernoulli.

Proposition 6.16. There exist a non-ergodic ν ∈ RERstat
Z such that Φ1/2(ν) is

Bernoulli.

Proof : We will only sketch the proof. Define ν3 ∈ RERstat
Z as follows. Let (Z(i))i∈Z

be an i.i.d. sequence such that P (Z(i) = 1) = P (Z(i) = 0) = 1/2. Call all vertices i
with Z(i) = 0 white, and all vertices i with Z(i) = 1 blue. Replace each blue vertex
with three green vertices. Let each white vertex be its own equivalence class. The
green vertices come in blocks of length divisible by 3. Partition the green blocks
independently using ν1 as in Proposition 6.14 yielding what we also call here ν3.
Define ν4 in the same way as ν3 but using ν2 from Proposition 6.14 instead of
ν1. Again Φ1/2(ν3) = Φ1/2(ν4) but now it is easily seen that the latter process is
Bernoulli. Now take a nontrivial convex combination of ν3 and ν4 as above. �

Remark 6.17. Again, Φp(ν3) 6= Φp(ν4) for any p 6= 0, 1/2, 1 and so we see that a
color process can change from being Bernoulli to being nonergodic as p varies.

We should confess at this point, although we felt it important to point out the
above results to the reader, we do feel at the same time that using nonergodic RERs
in this context is a little bit of a cheat.

We give another result which gives some restriction on the ergodic behavior of
the color process in terms of a restriction on the RER.

Proposition 6.18. If ν ∈ RERstat
Zd has 0 entropy and is not the RER which assigns

probability 1 to the “all singletons” partition, then for any p ∈ (0, 1), Φp(ν) is not
a K-automorphism.
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Proof : Case 1. ν is deterministic; i.e., there exists π ∈ PartZd such that ν(π) = 1.
In this case, since π, by assumption, is not the “all singletons” partition, there must
exist x 6= y so that x and y are in the same cluster with positive probability and
hence with probability 1. By translation invariance, there are points arbitrarily far
away which are in the same cluster with probability 1. This clearly rules out even
mixing.

Case 2. ν is nondeterministic. Considering the joint process (π,Xν,p), it is easy
to see that if ν is nondeterministic, then the two processes π and Xν,p cannot
be independent. However, it has been proved by H. Furstenberg (see Theorem
18.16 in Glasner, 2003) that if one has a 0 entropy system and a K-automorphism,
then the only stationary joint process (so-called joining) for them is when they are
independently coupled. (When two processes have this latter property, they are
called disjoint.) Therefore, since π is assumed to have 0 entropy, Xν,p cannot be a
K-automorphism. �

6.4. Constructing color processes with various ergodic behavior. The first observa-
tion in this subsection that we want to make is that we can find ν ∈ RERstat,conn

Z
which falls anywhere in the ergodic hierarchy (e.g., weak-mixing but not mixing).
This is an immediate consequence of the following lemma and of course the fact
that we can find stationary 0,1-valued processes anywhere in the ergodic hierarchy.

Lemma 6.19. Given a stationary 0-1 valued process {Xn} on Z, there is ν ∈
RERstat,conn

Z which is isomorphic to {Xn}; i.e., there is a translation invariant
invertible measure preserving transformation between them.

Proof : This is nothing other than what we considered in Section 4. If Xn = 1,
then we place n and n+ 1 in the same class and then we saturate this so that it is
an equivalence relation. (So, essentially, the clusters will correspond to intervals of
1’s in {Xn}.) This map is clearly invertible, proving the lemma. �

We first mention that constructing a color process which is ergodic but not weak-
mixing is a triviality. Let {Xn} be the stationary 0-1 valued process on Z which
goes back and forth between 0 and 1 and consider the associated ν ∈ RERstat,conn

Z
given in the proof of Lemma 6.19. It is immediate that for all p ∈ (0, 1), the
associated color process is ergodic but not weak-mixing. We next have the following
proposition.

Proposition 6.20. There exists ν ∈ RERstat,conn
Z so that for all p ∈ (0, 1), the

associated color process Φp(ν) is weak-mixing but not mixing.

Proof : We start with a stationary 0-1 valued process {Xn} on Z which is weak-
mixing but for which lim supnP(X0 = Xn = 1) > P(X0 = 1)2 (and hence is not
mixing). An example of such a process is the so-called Chacon example; see for
example page 216 in Petersen (1983). Next consider the associated ν ∈ RERstat,conn

Z
given in the proof of Lemma 6.19. Clearly, limx→∞ ν(π(x) = π(0)) = 0 and hence
Theorem 6.8 implies that Φp(ν) (and in fact Pν,p) is weak-mixing. To show that
Φp(ν) is not mixing, consider the two events A := {Xν,p

0 = Xν,p
1 } and Bn :=

{Xν,p
n = Xν,p

n+1}. An elementary computation left to the reader gives that

lim sup
n

P(A ∩Bn) > P(A)2

which implies that Φp(ν) is not mixing. �
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7. Questions and further directions

In this final section, we list a number of questions and a number of directions
which might be interesting to pursue. The questions certainly might be of somewhat
varying difficulty but all seem natural to us.

Question 7.1. Let X = (X1, . . . , Xn) be a n-dimensional Gaussian random variable,
where each Xi is N(0, 1) and the pairwise correlations are given by σi,j . Assume
σi,j ≥ 0 for all i, j. Let h ∈ (−∞,∞) and Y h = (Y h1 , . . . , Y

h
n ) be, as earlier, given

by Y hi = 1 if Xi ≥ h and Y hi = 0 if Xi < h. When is Y h a color process?

Remark 7.2. Note that if n = 3 and h = 0, then Y h is a color process by Proposi-
tion 2.13. The next three questions are special cases of the above question.

Question 7.3. Concerning the exchangeable Gaussian process described in Subsec-
tion 3.5, which nonzero thresholds yield color processes?

Question 7.4. Given ρ ∈ [0, 1], consider the Markov chain on R where if in state
x, then the next state has distribution ρ1/2x + (1 − ρ)1/2Z where Z is standard
normal. Clearly the stationary distribution is a standard normal and we consider
the corresponding stationary Markov Chain (Zi)i∈Z. Fix h and define the process
Y = (Yi)i∈Z where Yi = 1 if Zi ≥ h and Yi = 0 if Zi < h. For which ρ and h is Y a
color process?

Question 7.5. Consider a centered Gaussian free field (Z(x))x∈Zd with d ≥ 3. Fix
h and consider the process Y h = (Y h(x))x∈Zd where Y h(x) = 1 if Z(x) ≥ h and
Y h(x) = 0 if Z(x) < h. When is Y a color process?

Remark 7.6. A number of results concerning the last three questions are obtained
in Forsström and Steif (2019) but none of these questions are solved completely. In
particular, in the latter two questions, the answer is shown to be affirmative when
h = 0.

Question 7.7. On which graphs and for which values of the parameters J ≥ 0 and
h > 0 is the Ising model a color process?

Remark 7.8. (i). Unlike in the case h = 0, the marginal distributions of the Ising
model with J ≥ 0 and h > 0 need not be the same in which case it of course cannot
be a color process; this happens for example for a path of length 2. One might
therefore restrict to transitive graphs for this question.
(ii). In Alexander (2001), an asymmetric random cluster model is studied and it is
shown how one can obtain the Ising model with J ≥ 0 and h > 0 using this model.
However, this procedure does not correspond to a color process in our sense as it
does in the case h = 0.
(iii). Theorem 2.1(B) and (D) in Section 2 yield that there is more than one RER
generating the Ising model on K3 (the complete graph on 3 vertices) when J > 0
and h = 0 while there is at most one RER generating the Ising model on K3

when J > 0 and h > 0. Mathematica gives a (necessarily unique) solution for the
latter RER for positive h which interestingly does not coverge, as h → 0, to the
RER corresponding to the random cluster model but rather converges to a different
RER. One might conclude from this that the random cluster RER is not the natural
RER which yields the Ising model on K3 with J > 0 and h = 0 since it cannot be
perturbed to obtain the h > 0 case.
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(iv). A number of results concerning this question have been obtained in Forsström
(2019).

Question 7.9. For p 6= 1/2, determine those ν ∈ RERexch
N which are (RERexch

N , p)-
unique. Is it all of RERexch

N (which is equivalent to Φp being injective)? Late
remark: Alexander E. Holroyd has found an example showing noninjectivity.

Question 7.10. What are all the possible limiting distributions (after normalization)
of ∑

i∈Bn

Xν,p(i)

which one can obtain by varying ν and p?

Remark 7.11. It was shown in Kesten and Spitzer (1979) that one can obtain a
large number of limiting distributions for the special case of random walk in random
scenery. Also, it is known (see Newman and Wright, 1981) that if {Xn}n≥0 is a
stationary and positively associated process with

∑
n Cov(X0, Xn) < ∞, then one

obtains a central limit theorem. This, together with (1.1), could be used to show
that certain classes of color processes obey a central limit theorem. In addition, a
central limit theorem and various other results concerning the original divide and
color model are obtained in Garet (2001).

Question 7.12. If an RER ν1 is finer than another RER ν2, in the sense that ν1
and ν2 can be coupled so that the clusters of ν2 are unions of clusters of ν1, does it
follow that d(ν1, p) ≥ d(ν2, p) for each p?

Remark 7.13. We note that for d ≥ 1 and J1 < J2, the RER for the random
cluster model with parameters q = 2 and J1 is finer than the RER for q = 2 and
J2 and in this case, Proposition 1.6 in Liggett and Steif (2006) states the asked for
inequality above for the special case p = 1/2, in which case the color process is just
the Ising model. There is a minor additional point here. In the color process, even
the infinite clusters are colored using p = 1/2 while in Proposition 1.6 in Liggett
and Steif (2006), one was looking at the plus states for the Ising model which is
obtained by coloring the unique (if there is any) infinite cluster 1. However, by
Proposition 1.2 in Liggett and Steif (2006), the set of product measures that one
dominates is the same whether the infinite cluster is colored 1 (corresponding to
the plus state) or colored −1 (corresponding to the minus state) and therefore also
for the above color process which lies inbetween.

Question 7.14. If an RER ν is such that d(ν) > 0, does it follow that d(ν, p) > 0
for all p > 0?

Question 7.15. Let νRCM
d,α,2 be the random cluster model on Zd with q = 2 and

parameter α. One would perhaps expect that (1) d(νRCM
d,α,2 , p) is jointly continuous

in α and p and decreasing in α for fixed p, (2) d(νRCM
d,α,2 ) is continuous in α, (3)

limα→0 d(νRCM
d,α,2 ) = 1 and (4) limα→∞ d(νRCM

d,α,2 ) = 0. Verify as much of this picture
as possible. Does anything interesting happen near the critical value αc(d)?.

Question 7.16. Consider a 1-dimensional random walk which moves to the right
with probability 1

2 + σ and to the left with probability 1
2 − σ where σ > 0. Let νσ

be the associated RER on Z (whose color process is then random walk in random
scenery). What results can one obtain concerning d(νσ, p) and d(νσ)? Is there some
phase transition in the parameter σ?
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Remark 7.17. In Blachère et al. (2011), a phase transition in σ is shown for random
walk in random scenery, concerning Gibbsianness of the process. Is it possible that
this could be related to a phase transition concerning the stochastic domination
behavior?

Question 7.18. Provide natural examples of RERs for which all clusters are infinite
and d(ν) > 0.

Question 7.19. What can be said about the Gibbsian properties of our generalized
divide and color models? This is very related to asking if the single spin conditional
distributions given the outside are a continuous function of the outside configura-
tion.

Remark 7.20. This question has been studied in the context of the fuzzy Potts
model in Häggström (2003).

Question 7.21. Are the stationary distributions for the voter model (which we have
seen are color processes) in d ≥ 3 dimensions Bernoulli shifts?

Remark 7.22. If we look at the RER corresponding to coalescing random walks
in d ≥ 4 dimensions and we restrict the clusters down to a d − 3 dimensional
sublattice, then all the clusters become finite. It follows from Theorem 6.6 that
the restriction of the stationary distributions for the voter model to this d − 3
dimensional sublattice is a Bernoulli shift and the fact that the RER itself in any
dimension is a Bernoulli shift. The latter is most easily seen by noting that the
entire evolution of the process of coalescing random walks (which yields the RER)
can be generated by uniform [0, 1] random variables at each of the points of Zd and
hence must be a Bernoulli shift being a factor of an i.i.d. process.

Question 7.23. If one cannot provide an affirmative answer to Question 7.21, can
one give an example of an RER which has infinite clusters but the corresponding
color process is Bernoulli?
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