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Abstract

We consider random walk on dynamical percolation on the discrete torus Zd
n. In previous

work, mixing times of this process for p < pc(Zd) were obtained in the annealed setting where one
averages over the dynamical percolation environment. Here we study exit times in the quenched
setting, where we condition on a typical dynamical percolation environment. We obtain an
upper bound for all p which for p < pc matches the known upper bound.
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1 Introduction

In this paper, we study quenched mixing results for random walk on dynamical percolation on the
torus Zdn of side length n with parameters p and µ ≤ 1/2. Let each edge evolve independently
where an edge in state 0 (absent, closed) switches to state 1 (present, open) at rate pµ and an edge
in state 1 switches to state 0 at rate (1 − p)µ. Let (ηt)t≥0 denote the resulting Markov process

on {0, 1}E(Zdn) whose stationary distribution is product measure with density p, denoted by πp;
this model is called dynamical percolation. We next perform a random walk on the evolving graph
(ηt)t≥0 by having the random walker at rate 1 choose a neighbour (in the original graph) uniformly
at random and move there if (and only if) the connecting edge is open at that time. Letting (Xt)t≥0

denote the position of the walker at time t, we have, when initial configurations are given, that

(Mt)t≥0 := ((Xt, ηt))t≥0

is a Markov process while (Xt)t≥0 of course is not. It is easy to see that the unique stationary
distribution for (Mt) is π × πp, where π is uniform on Zdn, and that this measure is reversible.

In [5], a number of annealed results were obtained for this model where one has d and p fixed
while µ and n are considered the important parameters with respect to which we want to study
the model. Also in [1] the authors study the mixing time of the non-backtracking random walk on
certain dynamical configuration models.

We summarise here the relevant results obtained in [5] concerning mixing time.
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Even though mixing times are traditionally defined only for Markov chains, one can easily adapt
the definition to cases like X above as follows. For ε ∈ (0, 1) and η0 a configuration of edges we
write

tmix(ε, η0) = min
{
t ≥ 0 : max

x
‖Px,η0(Xt = ·)− π‖TV ≤ ε

}
.

We write Px,πp(), when the environment process starts from stationarity and the random walk
starts from x. We then write

tmix(ε, πp) = min
{
t ≥ 0 :

∥∥P0,πp(Xt = ·)− π
∥∥

TV
≤ ε
}
.

As usual we let pc(Zd) be the critical value for bond percolation on Zd and θd(p) be the probability
that the origin is in an infinite cluster of Zd at percolation parameter p.

The following describes the subcritical picture very well.

Theorem 1.1 ([5]). For any d ≥ 1, ε > 0 and p ∈ (0, pc(Zd)), there exists C = C(d, ε, p) ∈ (0,∞)
and n0 = n0(d, ε, p) ∈ N such that, for all n ≥ n0 and for all µ ≤ 1/2, we have

n2

Cµ
≤ tmix(ε, πp) ≤ sup

η0
tmix(ε, η0) ≤ Cn2

µ
.

The following yields lower bounds throughout the whole parameter space of p.

Theorem 1.2 ([5]). (i) Given d ≥ 1 and ε > 0, there exist C1 = C1(d, ε) > 0 and n0 = n0(d, ε)
such that, for all p, for all n ≥ n0 and for all µ ≤ 1/2, we have

tmix(ε, πp) ≥ C1n
2.

(ii) Given d ≥ 1, p and ε < 1 − θd(p), there exists C2 = C2(d, p, ε) > 0 and n0 = n0(d, p, ε) such
that, for all n ≥ n0 and for all µ ≤ 1/2, we have

tmix(ε, πp) ≥
C2

µ
. (1.1)

In particular, for ε < 1− θd(p), we get a lower bound for tmix(ε, πp) of order n2 + 1
µ .

Remarks (i). In the usual theory of Markov chains, a lower bound on the ε-mixing time for a fixed ε
(small) would yield a lower bound of a similar order (depending on ε) on the mixing time when
ε = 1/4; this is however not the case here which is not a contradiction since (Xt)t≥0 is not a Markov
chain.
(ii). We believe (as stated in [5]) that in the supercritical regime, the mixing time is much faster
than in the subcritical regime and has order at most 1

µ + n2. Despite this, the methods in [5] did

not even yield the much larger (subcritical) upper bound of n2

µ in the supercritical regime. One of
the corollaries of one of our main results is to obtain a related upper bound uniform in p (away
from 0 and 1).

The above results concerned annealed mixing times, meaning that the marginal distribution of
(Xt)t≥0 is studied. Here we study mixing and exit times of the conditional distribution of (Xt)t≥0

given (typical) (ηt)t≥0; in other words, we study the quenched mixing and exit time behaviour
of (Xt)t≥0.

For certain results, an annealed version immediately yields a quenched version. This is true (due
to Fubini’s Theorem) for almost sure results such as recurrence and transience. Note, on the
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other hand, that annealed upper bounds on mixing times do not automatically pass to quenched
upper bounds on mixing times. One way to see this is to observe that if a convex combination of
probability measures is close in total variation to some probability measure ν, it still of course may
be the case that all the probability measures appearing in the convex combination are far in total
variation from ν. An example of this, in the context of a Markov chain in a randomly evolving
environment, is the following. Let (Mn)n≥1 be an i.i.d. sequence of 2×2 matrices where each matrix
is either (

1 0
0 1

)
or (

0 1
1 0

)
each with probability 1/2. Let (Xk)k≥0 be the process on {0, 1} which at time n jumps according to
the matrix Mn+1. It is clear that the annealed mixing time is 1 since, independent of the starting
distribution for X0, the distribution of X1 is uniform. However the quenched mixing time is always
infinite, since if we condition on any “environment” (Mn)n≥1, the resulting time inhomogeneous
Markov chain is such that for every k, Xk is deterministic. On the other hand, an appropriately
defined quenched mixing upper bound easily yields an annealed mixing upper bound. A version of
this is given by Proposition 1.5.

Next we write Px,η(·) for the probability measure of the walk, when the environment process is
conditioned to be η = (ηt)t≥0 and the walk starts from x. We write P for the distribution of the
environment which is dynamical percolation on the torus, a measure on càdlàg paths [0,∞) 7→
{0, 1}E(Zdn). We write Pη0 to denote the measure P when the starting environment is η0. Abusing
notation we write Px,η0(·) to mean the law of the full system when the walk starts from x and the
initial configuration of the environment is η0. To distinguish it from the quenched law, we always
write η0 in the subscript as opposed to η.

Now we discuss hitting time bounds in both the quenched and annealed settings. The bounds we
obtain are valid for all values of the percolation parameter p.

Let A ⊆ Zdn. We denote by τA the first hitting time of A by X, i.e.

τA = inf{t ≥ 0 : Xt ∈ A}.

Theorem 1.3. For all d ≥ 1 and δ > 0, there exists C = C(d, δ) <∞ and c = c(d, δ) < 1, so that
for all p ∈ [δ, 1], for all n and for all µ ≤ 1/2, random walk in dynamical percolation on Zdn with
parameters p and µ satisfies that for all A ⊆ Zdn with |A| ≥ nd/2 and for all k

max
η0
Pη0
(
η = (ηt)t≥0 : max

x
Ex,η[τA] ≥ k · Cn

2 log n

µ

)
≤ ck and

max
x,η0

Ex,η0 [τA] ≤ Cn2

µ
.

Remark 1.4. We note that the second statement for p < pc follows from Theorem 1.1.

For ε ∈ (0, 1), x ∈ Zdn and a fixed environment η = (ηt)t≥0 we write

tmix(ε, x, η) = min
{
t ≥ 0 : ‖Px,η(Xt = ·)− π‖TV ≤ ε

}
.

We also write
tmix(ε, η) = max

x
tmix(ε, x, η)
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which we refer to as the quenched ε-mixing time. We remark that tmix(ε, η) could be infinite. Using
the obvious definitions, the standard inequality tmix(ε) ≤ log2(1/ε)tmix(1/4) does not necessarily
hold for time-inhomogeneous Markov chains and therefore also not for quenched mixing times.
Therefore, in such situations, to describe the rate of convergence to stationarity, it is more natural
to give bounds on tmix(ε, η) for all ε rather than just considering ε = 1/4.

Proposition 1.5. For all d ≥ 1 and δ > 0, there exists C = C(d, δ) <∞ so that for all p ∈ [δ, 1], for
all n, for all µ ≤ 1/2 and for all ε, random walk in dynamical percolation on Zdn with parameters p
and µ satisfies for all x ∈ Zdn

max
η0
Pη0
(
η = (ηt)t≥0 : tmix(ε, η, x) ≥ Cn2 log(1/ε)

µ4

)
≤ ε. (1.2)

We next discuss quenched lower bounds on the mixing time. It is now important whether p belongs
to the sub or supercritical regime for percolation. In [5], it was proved that n2

µ is the correct order
of the (annealed) mixing time in the subcritical regime and, as already stated, it was conjectured
there that the mixing time in the supercritical regime is much faster.

Proposition 1.6. For all d ≥ 1, p ∈ (0, pc(Zd)), ε > 0 and M , there exists β = β(d, p, ε,M) > 0
and n0 = n0(d, p, ε,M) so that if (ηt)t≥0 is dynamical percolation started in stationarity, then for
all n ≥ n0 we have

Pπp
(
η = (ηt)t≥0 : tmix(1− ε, 0, η) ≤ βn2

µ

)
≤ 1

M
. (1.3)

Proof. Fix d ≥ 1, p ∈ (0, pc(Zd)), ε and M . Let σ := min{ε2, 1
M2 }. By Theorem 1.1 there exists

β = β(d, p, σ) so that for all large n and for all µ ≤ 1/2,∥∥∥∥P0,πp

(
Xβn2

µ

= ·
)
− π

∥∥∥∥
TV

≥ 1− σ.

Since

P0,πp

(
Xβn2

µ

= ·
)

=

∫
P0,η

(
Xβn2

µ

= ·
)
dPη0((ηt)t≥0) dπp(η0),

convexity of the total variation norm in the sense that∥∥∥∥∫ µαdρ(α)− π
∥∥∥∥

TV

≤
∫
‖µα − π‖TV dρ(α)

yields that ∫ ∥∥∥∥P0,η

(
Xβn2

µ

= ·
)
− π

∥∥∥∥
TV

dPη0((ηt)t≥0)) dπp(η0) ≥ 1− σ, (1.4)

where η = (ηt)t≥0. This now implies that

P
(
η = (ηt)t≥0 :

∥∥∥∥P0,η

(
Xβn2

µ

= ·
)
− π

∥∥∥∥
TV

≤ 1− σ
1
2

)
≤ σ

1
2

Since σ := min{ε2, 1
M2 }, this gives the result.

The following is a quenched lower bound in the context of Theorem 1.2. The first statement is
proved as the previous result. The second one follows from the fact that with high probability the
environment will be such that there will exist a vertex isolated throughout the interval [0, β/µ].
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Proposition 1.7. Given d ≥ 1, ε ∈ (0, 1), p < 1 and M , there exist β > 0 and n0 > 0 such that,
for all n ≥ n0 and for all µ ≤ 1/2, if (ηt)t≥0 is dynamical percolation started in stationarity, then

Pπp
(
η = (ηt)t≥0 : tmix(ε, 0, η) ≤ βn2

)
≤ 1

M
and

Pπp
(
η = (ηt)t≥0 : tmix(ε, 0, η) ≤ β

µ

)
≤ 1

M
.

Mixing times in the supercritical case will be studied in [4]. Some of the results in this paper will
be used there.

In Section 2, we state a general result, Theorem 2.1, giving an upper bound on the quenched mixing
time for a Markov process in a random environment. In Section 3, Theorem 2.1 is applied to obtain
Theorem 1.3 and Proposition 1.5. Finally Theorem 2.1 is proved in Section 4.

2 General setup

Given a general finite state Markov chain p(·, ·) with state space Ω and a stationary distribution π,
we let

Qp(A,B) = Qp,π(A,B) :=
∑

x∈A,y∈B
π(x)p(x, y) (2.1)

for A,B ⊆ Ω. Also, for S ⊆ Ω, we let

ϕp(S) = ϕp,π(S) :=
Qp(S, S

c)

π(S)
.

Observe that
ϕp(S) = P(X1 6∈ S | X0 ∈ S)

where (Xk)k∈Z is the stationary Markov chain associated to p(x, y) and π. We call ϕp(S) the
expansion of S (relative to the Markov chain p(·, ·) and stationary distribution π). Note that p(·, ·)
may have more than one stationary distribution and so we need to make π explicit.

Finally we recall standard notation. Let µ and ν be two probability measures on the same space Ω.
We write

χ2(µ, ν) =
∑
x∈Ω

ν(y)

(
µ(y)

ν(y)
− 1

)2

=
∑
y

µ(y)2

ν(y)
− 1.

By Cauchy-Schwarz we have
2 ‖µ− ν‖TV ≤ χ(µ, ν).

We will now consider the following general set up of a finite state Markov chain in a Markovian
evolving environment.

Let E be a state space for a discrete time homogeneous Markov chain η with transition kernel R.
Moreover, for every ζ ∈ E let (pζ(x, y))x,y∈S be a transition matrix on a finite state space S. Assume
π is a probability distribution on S which is stationary for pζ for all ζ ∈ E and has full support.

We now define an annealed discrete time Markov chain (X, η) on S × E evolving as follows: when
in state (x, ζ), it jumps to the state (x′, ζ ′) by first choosing ζ ′ at random according to R(ζ, ·) and
then choosing x′ at random according to pζ′(x, ·). In symbols if Q denotes the annealed transition
kernel we have

Q((x, ζ), (x′, dζ ′)) = R(ζ, dζ ′)pζ′(x, x
′).
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Given a realisation of the environment process, η = (ηi)i≥0, the coordinate X becomes a time
inhomogeneous Markov chain with transition matrix pηi at time i− 1.

Observe that since πpζ = π for all ζ ∈ E , it follows easily that maxx ‖Px,η(Xk = ·)− π‖TV is
decreasing in k for any fixed environment η. Next, as defined in the introduction we let

tmix(ε, η) := inf
{
k : max

x
‖Px,η(Xk = ·)− π‖TV ≤ ε

}
= max

x∈S
tmix(ε, x, η)

be the ε-mixing time in the environment η.

The following general theorem yields quenched upper bounds on the mixing time in our general set
up of a Markov chain in a Markovian evolving environment. We let π? := minx π(x) below. For
ζ ∈ E and S ⊆ S we let

ϕ(ζ, S) := Eζ
[
ϕpη1 (S)

]
. (2.2)

Notice that in the previous expression we average over the new environment η1, i.e. we run the
environment process for one step starting from ζ and use the transition matrix that it yields. For
r ∈ [π?,

1
2 ], let

ϕ(r) := inf{ϕ(ζ, S) : ζ ∈ E , π(S) ≤ r}

and ϕ(r) := ϕ(1
2) for r ≥ 1

2 . Clearly ϕ(r) is weakly decreasing in r. It is crucial for our applications
that in the above definitions, the minimisation over S occurs outside of the expectation in (2.2)
rather than inside. If the minimum was taken on the inside, then ϕ(r) would be much smaller and
the following result therefore would be much weaker.

Theorem 2.1. Consider a finite state Markov chain X in a Markovian evolving environment
satisfying pζ(x, x) ≥ γ for all ζ and all x with γ ∈ (0, 1/2]. For all ε > 0 and x ∈ S if

n ≥ 1 +
2(1− γ)2

γ2

∫ 4/ε

4π(x)

du

uϕ2(u)

then for all ζ ∈ E,

Pζ
(
η = (ηt)t≥0 : χ(Px,η(Xn = ·) , π) ≥ ε1/4

)
≤ ε1/4.

Remark 2.2. We note that the above theorem remains true in the following variant of the Markov
chain described above. Suppose that at every step, the chain X remains in place with probability
1/2 and with probability 1/2 it jumps according to the transition kernel given by the environment
at this time. When X stays in place (because of laziness), then the environment at the next step
also stays in place, otherwise it moves according to its transition kernel. So the transition matrix of
the environment depends on the extra randomness coming from whether X made an actual jump
or not. For the changes needed in the proof see Remark 4.2. This version will be used when proving
Theorem 1.3.

3 Returning to random walk on dynamical percolation

In this section we prove Proposition 1.5 using the general result Theorem 2.1 stated in the previous
section. We also prove Theorem 1.3. In order to apply Theorem 2.1 we need to obtain a bound
on ϕ valid for all values of p. We also need to discretise our process.

Before starting the proofs we introduce some notation and prove some preliminary results.
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Let E := D[0,1]({0, 1}E(Zdn)) be the space of right continuous paths with left limits from [0, 1] into

{0, 1}E(Zdn). Letting ηk := η[k−1,k], it is easy to see that ((Xk, ηk))k≥0 is a Markov chain in a
Markovian evolving environment. It is clear that (ηk)k≥0 is a Markov chain with state space E and
that for all ζ ∈ E , the corresponding Markov chain pζ simply corresponds to doing random walk
on Zdn for time 1 during which time the bond configuration evolution is fixed to be ζ.

Lemma 3.1. For all δ > 0, there exists σ = σ(δ) > 0 so that for all d ≥ 1, for all n, for all
µ ≤ 1/2, for all p ∈ [δ, 1], for all A ⊆ E(Zdn) and for all η0,

Pη0(|a ∈ A : ηt(a) = 1 for all t ∈ [1/2, 1]| ≥ |A|σµ) ≥ σµ.

Proof. The left hand size is minimised when η0 ≡ 0. In this case, the left hand side equals
P
(
Bin(|A|, (1− e−µ/2)pe−µ(1−p)/2) ≥ |A|σµ

)
where Bin(m, q) denotes a Binomial random variable

with parameters m and q. Since µ ≤ 1/2 and p ≥ δ, it is easy to see that there exists a σ satisfying
the requirements.

For S ⊆ Zdn we now let ∂E(S) denote the edge boundary of S which is the set of edges from S to Sc.
We simply write ϕη[0,1] to denote ϕpη[0,1] ,π, i.e. we run the environment process for time 1 starting

from η0 and use pη[0,1] for the transition probability of the random walk.

Lemma 3.2. For all d, there exists cd > 0 so that for all n, for all µ ≤ 1/2, for all p, for all β,
for all nonempty sets S ⊆ Zdn with π(S) ≤ 1/2, for all η[0,1] satisfying

|e ∈ ∂E(S) : ηt(e) = 1 for all t ∈ [1/2, 1]| ≥ |∂E(S)|β,

we have

ϕη[0,1](S) ≥ cdβ

n(π(S))1/d
.

Proof. Let Sgood := {s ∈ S : ∃ e from s to Sc which is open during [1/2, 1]} and let Sbad :=
S\Sgood. (Note that Sgood is a subset of the internal vertex boundary of S.) Note that

|Sgood| ≥
1

2d
× |e ∈ ∂E(S) : ηt(e) = 1 for all t ∈ [1/2, 1]|

and hence |Sgood| ≥ |∂E(S)|β
2d . Since π(S) ≤ 1/2, by the standard isoperimetric inequality on Zdn,

we have that |∂E(S)| ≥ c′d|S|(d−1)/d for some universal constant c′d only depending on d. It follows
that

|Sgood| ≥
c′d
2d
|S|(d−1)/dβ. (3.1)

Consider now
ϕη[0,1](S) = Pπ,η[0,1](X1 6∈ S | X0 ∈ S) .

The subscript η[0,1] means that the environment is fixed to be this realisation. The conditioning
X0 ∈ S gives probability 1/|S| to each point in S. Since the uniform distribution is stationary for
all realisations of the environment by the definition of the random walk, one can infer that

max
y∈Zdn

Pπ,η[0,1]
(
X 1

2
= y

∣∣∣ X0 ∈ S
)
≤ 1

|S|
. (3.2)

Now

Pπ,η[0,1](X1 6∈ S | X0 ∈ S) ≥Pπ,η[0,1]
(
X 1

2
∈ Sgood ∪ Sc

∣∣∣ X0 ∈ S
)

× Pπ,η[0,1]
(
X1 6∈ S

∣∣∣ X0 ∈ S,X 1
2
∈ Sgood ∪ Sc

)
.

(3.3)
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By (3.2), the first factor on the right hand side is at least 1 − |Sbad|
|S| . This equals

|Sgood|
|S| , which,

by (3.1), is at least
c′d
2d |S|

−1/dβ =
c′d
2d(π(S))−1/dn−1β. For the second term, if X 1

2
∈ Sgood, we fix

an arbitrary edge e from X 1
2

to Sc which is open during [1/2, 1]. The probability that the random

walk attempts only one jump during [1
2 , 1] and the attempted jump is along this edge is at least

a constant γ = γ(d) > 0 only depending upon d. On the other hand, if X 1
2
∈ Sc, there is a fixed

probability the walk does not move during [1/2, 1], which we can also take to be γ(d).

This gives that the left hand side of (3.3) is at least
γ(d)c′d

2d (π(S))−1/dn−1β. Letting c(d) :=
γ(d)c′d

2d
yields the claim.

Proof of Proposition 1.5. We will apply Theorem 2.1 with E being the space of right continuous
paths with left limits on [0, 1]. Observe that for all x

tmix(ε, x, η) ≤ tmix(ε, x, (ηk)k≥0)).

We now show that for all d ≥ 1 and δ > 0, there exists C1 = C1(d, δ) > 0 so that for all p ∈ [δ, 1],

for all µ ≤ 1/2, for all n, for all η0 ∈ {0, 1}E(Zdn) and for all S with π(S) ≤ 1/2,

Pη0
(
ϕη1(S) ≥ C1µ

n(π(S))1/d

)
≥ C1µ. (3.4)

Fix d and δ. Choose σ(δ) from Lemma 3.1 and cd from Lemma 3.2. Fix S with π(S) ≤ 1/2.
Combining Lemmas 3.1 and 3.2 with A in Lemma 3.1 taken to be ∂E(S) and β in 3.2 taken to
be σµ, the two lemmas imply that

Pη0
(
ϕη1(S) ≥ cdσµ

n(π(S))1/d

)
≥ σµ,

establishing (3.4). From (3.4) we now get that for all sets S with π(S) ≤ 1/2 and for all η0

ϕ(η0, S) ≥ C2
1µ

2

n(π(S))1/d
,

and hence ∫ 4/ε

4π(x)

du

uϕ2(u)
=

∫ 1/2

4/nd

du

uϕ2(u)
+

1

ϕ2(1/2)

∫ 4/ε

1/2

du

u
≤ C2

(
n

µ2

)2

log

(
1

ε

)
,

where C2 is a positive constant. Since for any environment η and any x ∈ Zdn we have

Pη(X1 = x | X0 = x) ≥ 1

e
,

applying Theorem 2.1 completes the proof.

We turn to prove Theorem 1.3. We now let Ẽ := D[0,1/µ]({0, 1}E(Zdn)) be the space of right continuous

paths with left limits from [0, 1/µ] into {0, 1}E(Zdn). Let η̃k := η[ k−1
µ
, k
µ

] and Zk := X k
µ

. Then again

((Zk, η̃k))k≥0 is a Markov chain in a Markovian evolving environment. It is clear that (η̃k)k≥0 is a

Markov chain with state space Ẽ and that for all ζ ∈ Ẽ , the corresponding Markov chain pζ simply
corresponds to doing random walk on Zdn for time 1/µ during which time the bond configuration
evolution is fixed to be ζ.

The following lemmas follow in exactly the same way as Lemmas 3.1 and 3.2.
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Lemma 3.3. For all δ > 0, there exists σ = σ(δ) > 0 so that for all d ≥ 1, for all n, for all
µ ≤ 1/2, for all p ∈ [δ, 1], for all A ⊆ E(Zdn) and for all η0,

Pη0
(∣∣∣∣a ∈ A : ηt(a) = 1 for all t ∈

[
1

µ
− 1,

1

µ

]∣∣∣∣ ≥ |A|σ) ≥ σ.
Lemma 3.4. For all d, there exists cd > 0 so that for all n, for all µ ≤ 1/2, for all p, for all β,
for all nonempty sets S ⊆ Zdn with π(S) ≤ 1/2, for all η[0,1/µ] satisfying∣∣∣∣e ∈ ∂E(S) : ηt(e) = 1 for all t ∈

[
1

µ
− 1,

1

µ

]∣∣∣∣ ≥ |∂E(S)|β,

we have

ϕη[0,1/µ](S) ≥ cdβ

n(π(S))1/d
.

Proof of Theorem 1.3. In order to prove the theorem we first consider a lazy version of the
Markov chain ((Zk, η̃k))k≥0 as follows. At every step, the walk remains in place with probability 1/2
and with probability 1/2 it jumps according to the transition matrix given by the environment at
this time. When Z stays in place, then the environment at the next step also stays in place,
otherwise it moves according to its transition kernel. This is the setup of Remark 2.2.

For this new chain the statement of Lemma 3.4 remains the same with an extra factor of 1/2 in the
lower bound for ϕη[0,1/µ] , which is defined to be ϕ(pη[0,1/µ]+I)/2 (see Remark 4.2). Also Lemma 3.3

still holds with an extra factor of 1/2 again in the lower bound of the probability.

Remark 2.2 now shows that the statement of Theorem 2.1 remains true, and hence we obtain

max
η0
Pη0
(
η = (ηt)t≥0 : tmix(ε, x, η) ≥ Cn2 log(1/ε)

µ

)
≤ ε, (3.5)

where the mixing time refers to the lazy version of the discretised random walk.

Using (3.5) for ε = 1/4 and performing independent experiments immediately gives that for some
constant C

max
x,η0

Ex,η0 [τA] ≤ Cn2

µ
.

By letting ε = ε/nd in (3.5) and taking a union bound over all x ∈ Zdn we obtain

max
η0
Pη0
(
η = (ηt)t≥0 : tmix(ε, η) ≥ Cn2 log(n/ε)

µ

)
≤ ε. (3.6)

We will apply (3.6) when ε = 1/100. We break time into intervals of length T := C ′n2 log n/µ and
call an interval good if the “mixing time during that interval” is at most T . Equation (3.6) yields
that for all η0, the set of good intervals dominates an i.i.d. process with density 0.99.

By the usual comparison of hitting times with mixing times, it follows that, conditioned on the
past, if we enter a good interval, then, no matter where we start, we have a probability of at
least 1/4 of hitting A. It follows that if the proportion of good intervals within the first ` intervals
is at least 0.9, then, for all starting states, the probability that we have not hit A by time `T is
at most (3/4)0.9`. Since an interval is good with probability 0.99, using the domination above, the
probability that there are at most proportion 0.9 good intervals among the first ` decays like c`

for some c < 1. Hence, the (environment) probability that for some starting point, the (random
walk) probability that we do not hit A by time `T is larger than (3/4)0.9` decays like c`. It follows
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that the (environment) probability that for some ` ≥ k and some starting point, the (random walk)
probability that we have not hit A by time `T is larger than (3/4)0.9` decays like ck (since the tail of
a geometric series also decays exponentially). On the complementary event, which has probability
1 − ck, we have that for all ` ≥ k, for all starting points, the (random walk) probability that we
have not hit A by time `T is at most (3/4)0.9`. Expressing the expectation of a random variable
as a sum of the tail probabilities, we obtain that on this event, the expectation of the hitting time
from any starting point is at most kT .

Therefore we obtain

max
η0
Pη0
(
η = (ηt)t≥0 : max

x
Ex,η[τA] ≥ k · C

′n2 log n

µ

)
≤ ck

and this concludes the proof.

Remark 3.5. We note that in the above proof we obtained an upper bound of n2/µ for the mixing
time of the lazy version of the chain as defined above. However, this does not give us a bound on
the mixing time of the original chain. On the other hand, we used it in the proof to obtain an exit
time result for the lazy version which does pass through to the original chain.

4 Evolving Sets

In this section, we extend the theory of evolving sets to the setting of a Markovian random envi-
ronment in order to prove Theorem 2.1. The exposition here follows closely [3].

We first recall the definition of evolving sets in the context of a finite state Markov chain; see [2].
Given a Markov chain p(x, y) with state space Ω and a stationary distribution π, the corresponding
evolving-set process {Sn}n≥0 is a Markov chain on subsets of Ω whose transitions are described as
follows. Let Q be defined as in (2.1) (with ν being π) and let U be a uniform random variable on
[0, 1]. If S ⊆ Ω is the present state, we let the next state S̃ be defined by

S̃ :=

{
y ∈ Ω :

Q(S, y)

π(y)
≥ U

}
.

Note that Ω and ∅ are absorbing states and it is immediate to check that

P(y ∈ Sk+1 | Sk) =
Q(Sk, y)

π(y)
. (4.1)

Moreover, one can describe the evolving set process as that process on subsets which satisfies the
“one-dimensional marginal” condition (4.1) and where these different events, as we vary y, are
maximally coupled.

For later use we also define now

ψp(S) := 1− E

√π(S̃)

π(S)

 ,
where S̃ is the first step of the evolving set process started from S and when the transition proba-
bility for the Markov chain is p and the stationary distribution π.

We next define completely analogously the evolving set process in the context of a time inhomo-
geneous Markov chain. Consider a time inhomogeneous Markov chain with state space S whose
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transition matrix for moving from time k to time k + 1 is given by pk+1(x, y) where we assume
that the probability measure π is a stationary distribution for each pk. In this case, we say that π
is a stationary distribution for the inhomogeneous Markov chain. Let Qk be defined as in (2.1)
but with respect to pk and π. We then obtain a time inhomogeneous Markov chain S0, S1, . . . on
subsets of S generated by

Sk+1 :=

{
y ∈ S :

Qk+1(Sk, y)

π(y)
≥ Uk+1

}
where (Ui)i are i.i.d. random variables uniform on [0, 1]. We call this the evolving set process with
respect to p1, p2, . . . and π.

We now need to consider the Doob transform of the evolving set process. If Pζ is the transi-
tion probability for the evolving set process when the environment is ζ, then we define the Doob
transform via

P̂ζ(S, S
′) =

π(S′)

π(S)
Pζ(S, S

′).

We now let ψ(ζ, S) := Eζ
[
ψpη1 (S)

]
. For r ∈ [π?,

1
2 ], we let

ψ(r) := inf{ψ(ζ, S) : ζ ∈ E , π(S) ≤ r}

and ψ(r) := ψ(1
2) for r ≥ 1

2 .

In the following, we let

S# :=

{
S if π(S) ≤ 1

2
Sc otherwise

and

Zn :=

√
π(S#

n )

π(Sn)
.

Lemma 4.1. Let ε > 0 and x ∈ S. If

n ≥
∫ 4/ε

4π(x)

du

uψ(u)
,

then Ê{x},η0 [Zn] ≤
√
ε for all η0.

Proof. We fix x, η0 and to simplify notation we do not include them in the notation. We now get
that almost surely

Ê
[
Zn+1

Zn

∣∣∣∣ Sn, η0, . . . , ηn

]
= E

[
π(Sn+1)

π(Sn)
· Zn+1

Zn

∣∣∣∣ Sn, η0, . . . , ηn

]
= E


√√√√π(S#

n+1)

π(S#
n )

∣∣∣∣∣∣ Sn, η0, . . . , ηn

 .
Suppose first that π(Sn) ≤ 1/2. Then

E


√√√√π(S#

n+1)

π(S#
n )

∣∣∣∣∣∣ Sn, η0, . . . , ηn

 ≤ E

[√
π(Sn+1)

π(Sn)

∣∣∣∣∣ Sn, η0, . . . , ηn

]
.
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The Markov property of the environment now gives

E

[√
π(Sn+1)

π(Sn)

∣∣∣∣∣ Sn, η0, . . . , ηn

]
=
∑
η

R(ηn, η)(1− ψpη(Sn))

= 1− ψ(ηn, Sn) ≤ 1− ψ(π(Sn)).

(4.2)

Suppose next that π(Sn) > 1/2. Then

E


√√√√π(S#

n+1)

π(S#
n )

∣∣∣∣∣∣ Sn, η0, . . . , ηn

 ≤ E

√π(Scn+1)

π(Scn)

∣∣∣∣∣∣ Sn, η0, . . . , ηn


and using the Markov property of the environment as before (as well as the fact that (Scn)n is also
an evolving set process) we obtain

E

√π(Scn+1)

π(Scn)

∣∣∣∣∣∣ Sn, η0, . . . , ηn

 ≤ 1− ψ(π(Scn)). (4.3)

Since the function ψ is non-increasing, it follows that if π(Sn) > 1/2, then ψ(π(Scn)) ≥ ψ(π(Sn)),
and hence from (4.2) and (4.3) we get that in all cases

E


√√√√π(S#

n+1)

π(S#
n )

∣∣∣∣∣∣ Sn, η0, . . . , ηn

 ≤ 1− ψ(π(Sn)) = 1− f0(Zn),

where following [3] we set f0(z) := ψ(1/z2) which is non-decreasing. (Note that π(Sn) = Z−2
n when

Zn ≥
√

2, i.e. when π(Sn) ≥ 1/2 and ψ(x) = ψ(1/2) for x ≥ 1/2.) Therefore, we conclude

Ê[Zn+1 | Zn] ≤ Zn(1− f0(Zn))

and hence using [3, Lemma 11 (iii)] we get that Ê[Zn] ≤
√
ε for all

n ≥
∫ 4/ε

4π(x)

du

uψ(u)

and this finishes the proof.

Remark 4.2. We now explain the changes in the proof of the lemma above needed to justify
Remark 2.2. The matrix R is replaced by R(ζ, `, η), where ` ∈ {0, 1} depending on whether the
walk made an actual step or not, i.e. R(ζ, 0, η) = 1(ζ = η) and R(ζ, 1, η) = R(ζ, η). In the
definition of ψ, the matrix pη is replaced by (pη+I)/2. The proof of the lemma above then remains
unchanged with this new notation.

Lemma 4.3. If (Sk)k≥0 is the evolving set process relative to an inhomogeneous Markov chain (Xk)
and stationary distribution π, then

Px(Xk = y) =
π(y)

π(x)
P{x}(y ∈ Sk) .

Proof. In the case of a homogeneous Markov chain, this is Lemma 17.12 in [2]. The proof for the
inhomogeneous case goes through verbatim.
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Lemma 4.4. If {Sk}k≥0 is the evolving set process relative to an inhomogeneous Markov chain
with stationary distribution π, then starting from any initial state, {π(Sk)}k≥0 is a martingale.

Proof. In the case of a homogeneous Markov chain, this is Lemma 17.13 in [2]. The proof for the
inhomogeneous case goes through verbatim.

Lemma 4.5. For all fixed environments η = (ηi)i≥0 and all x ∈ S we have

χ (Px,η(Yn = ·) , π) ≤ Êx,η[Zn] .

Proof. In the homogeneous case this is [3, equation (24)]. The proof for the inhomogeneous case
goes through verbatum using Lemmas 4.3 and 4.4.

Proof of Theorem 2.1. By Markov’s inequality we obtain

Pζ
(
η : χ(Px,η(Yn = ·) , π) ≥ ε1/4

)
≤ ε−1/4Eζ [χ(Px,η(Yn = ·) , π)] ,

where the last expectation is taken over the environment η started from ζ. From Lemma 4.5 we can
upper bound the right hand side by ε−1/4Ê{x},ζ [Zn]. From Lemma 4.1 we get that Ê{x},ζ [Zn] ≤

√
ε

for all

n ≥ 1 +

∫ 4/ε

4π(x)

du

uψ(u)
.

Lemma 10 in [3] implies that for all p and S,

ψp(S) ≥ γ2

2(1− γ)2
ϕ2
p(S).

Therefore, taking expectations and using Jensen’s inequality we get for all ζ and S

ψ(ζ, S) ≥ γ2

2(1− γ)2
ϕ2(ζ, S),

and hence for all r

ψ(r) ≥ γ2

2(1− γ)2
ϕ2(r).

Thus this gives that for all

n ≥ 1 +
2(1− γ)2

γ2

∫ 4/ε

4π(x)

du

uϕ2(u)

we have Ê{x},ζ [Zn] ≤
√
ε and hence this completes the proof.

Acknowledgements

We thank Microsoft Research for its hospitality where parts of this work were completed. The third
author also acknowledges the support of the Swedish Research Council and the Knut and Alice
Wallenberg Foundation.

13



References
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