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a b s t r a c t

Using formulas for certain quantities involving stable vectors, due to I. Molchanov, and in
some cases utilizing the so-called divide and color modelwe prove that certain families
of integrals which, ostensibly, depend on a parameter are in fact independent of this
parameter.
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1. Statement of result and proof

In the pursuit of some other questions, we realized that the following integrals surprisingly had the same value for
all α.

Theorem 1.1. The following two integrals, the first to be taken in the Cauchy principal value sense as it is not Lebesgue
integrable, are independent of α > 0, the first having value π2/6 and the second having value π2/4.∫ π
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Proof. We will show the independence in α for α ∈ (0, 2) and then appeal to analyticity to draw the conclusion for all
α > 0.

Let S, S1, S2 be i.i.d. each having a symmetric stable distribution with stability exponent α ∈ (0, 2) and scale one; this
means that their common characteristic function is given by f (θ ) = e−|θ |

α
. Next, let

X1 :=
S + S1
21/α , X2 :=

S + S2
21/α .

One immediately checks (from known theory, e.g. Samorodnitsky and Taqqu (1994), or by computing the characteristic
functions) that X1 and X2 each also has a symmetric stable distribution with stability exponent α and scale one.
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(i) For the first integral, we will consider

E[sgn(X1) sgn(X2)] (1)

and compute its value in two different ways. On one hand, Corollary 6.12 in Molchanov (2009) implies, after some work,
that (1) is, for a given α ∈ (0, 2),
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where the integral is to be taken in the Cauchy principal value sense. On the other hand, one can show directly, as we do
below, that

E[sgn(X1) sgn(X2)] = 1/3 (2)

for each such value of α. This implies that this integral is independent of α with value π2/6. In order to obtain (2), note
first that, by symmetry,

E[sgn(X1) sgn(X2)] = 4P[sgn(X1) = sgn(X2) = 1] − 1

and so it suffices to show that

P[sgn(X1) = sgn(X2) = 1] = 1/3.

Here

P[sgn(X1) = sgn(X2) = 1] = E[P[sgn(X1) = sgn(X2) = 1 | S]]

which in turn is equal to

E[P[sgn(X1) = 1 | S]2] = E[P[S1 ≥ −S | S]2] = E[P[S1 ≥ −S]2].

By symmetry of S1, this equals

E[P[S1 ≤ S]2] = E[F [S]2]

where F is the distribution function of S. For any random variable W with a continuous distribution function G, on has
that G(W ) has a uniform distribution. It follows that this last expression is∫ 1

0
x2dx = 1/3.

This completes (i).
(ii) For the second integral, we will consider

E[sgn(X1) sgn(S)] (3)

and compute its value in two different ways. On one hand, Corollary 6.12 in Molchanov (2009) implies, after some work,
that (3) is, for a given α ∈ (0, 2),
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On the other hand, as we explain below,

E[sgn(X1) sgn(S)] = 1/2 (4)

for each such value of α. This will then imply that this integral is independent of α with value π2/4. Similar to (i),
symmetry yields

E[sgn(X1) sgn(S)] = 4P[sgn(X1) = sgn(S) = 1] − 1

and so it suffices to show that

P[sgn(X1) = sgn(S) = 1] = 3/8.

To this end, note first that

P[sgn(X1) = sgn(S) = 1] =

∫
∞

0
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∫
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0
P[S1 ≥ −s]dF (s) =

∫
∞

0
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by symmetry of S1. This becomes after the change of variables x = F (s),∫ 1

1
2

xdx = 3/8.

This completes (ii). □
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Remark 1.2.

(i) After having obtained the above theorem, we asked on Mathematics Stack Exchange if one could more directly
obtain the value of π2/6, independent of α, in the first integral. This was shown by Jack D’Aurizio, see https:
//tinyurl.com/y6fth8vr.

(ii) Once we knew that E[sgn(X1) sgn(X2)] was independent of α, of course any formula for E[sgn(X1) sgn(X2)] would
have to be independent of α, in particular the formula given in Corollary 6.12 in Molchanov (2009) which is the
above integral. However we would have guessed that the independence in α of such a formula would have appeared
in a more transparent way in the integral; surprisingly this was not the case.

(iii) There is an alternative argument of (4) which we very briefly sketch. Consider the vector (sgn(X1), sgn(S), sgn(S1)).
It is clear that this vector is ±1-symmetric and has pairwise nonnegative correlations. It follows from Proposition
2.12 in Steif and Tykesson (2019) that this is then a so-called divide and color process. This means that there is
a random partition of the set {1, 2, 3} so that if we first randomly partition {1, 2, 3} and then assign the same
value to each element of a partition element, ±1 each with probability 1/2, independently for different partition
elements, then we obtain, in distribution, (sgn(X1), sgn(S), sgn(S1)). What can this random partition look like? Since
S and S1 are independent, ‘‘2’’ and ‘‘3’’ must always be put in different partition elements. ‘‘1’’ can never be its own
partition element, since then the realization (−1, 1, 1) would have positive probability. However it is clear that
for (sgn(X1), sgn(S), sgn(S1)), this has zero probability. Hence the only partitions which can have positive weight
are {{1, 2}, {3}} and {{1, 3}, {2}} and by symmetry these must each have weight 1/2. It is however clear that the
covariance of two variables in a divide and color process is simply the probabilty that they are in the same partition
element, and hence we obtain (4).

One can extend the proof of the independence in α of the first integral to higher dimensional integrals. Let S, S1, S2, . . .
be i.i.d. each having a symmetric stable distribution with stability exponent α ∈ (0, 2) and scale one, and let for i ≥ 1

Xi :=
S + Si
21/α .

We now consider E[sgn(X1X2 · · · Xn)], the analogue of E[sgn(X1) sgn(X2)]. By symmetry, this is zero for n odd. The following
proposition follows partially from the analysis in Section 3.5 in Steif and Tykesson (2019). The case n = 2 corresponds
to (2). The proof is only sketched.

Proposition 1.3. For even n and for all values of α ∈ (0, 2), E[sgn(X1X2 · · · Xn)] = 1/(n + 1)

Proof. Clearly (sgn(X1), sgn(X2), . . .) is an infinite exchangeable sequence and hence its distribution is given, due to de
Finetti’s Theorem (Durrett, 2010), by∫ 1

s=0
Πs dν(s), (5)

where Πs denotes product measure on {−1, 1}N with density s and ν is some (unique) probability measure on [0, 1]. It
is shown in Steif and Tykesson (2019) that for all α ∈ (0, 2), ν is uniform distribution on [0, 1].

We now exploit a different representation of this process. Partition the unit interval [0, 1] into intervals I1, I2, I3, . . .
where Ii has length 1/2i. Let U1,U2,U3, . . . be i.i.d. uniform random variables on [0, 1] and Z1, Z2, Z3, . . . be i.i.d. uniform
random variables on ±1. Let V1, V2, V3, . . . be defined by

Vi := Zj(i)
where j(i) is chosen so that Ui ∈ Ij(i). For people who are familiar with Kingman’s theory of exchangeable random
partitions of the integers, we are just first choosing an exchangeable random partition of the integers using the paintbox
(1/2, 1/4, . . .) (see Bertoin (2006)) and then assigning the same value 1 or −1, each with probability 1/2, to all elements in
a partition element, independently for different partition elements. (V1, V2, V3, . . .) is clearly exchangeable and its mixing
measure ν in de Finetti’s Theorem is also uniform by Theorem 3.12 in Steif and Tykesson (2019). It follows that for all
α ∈ (0, 2), (sgn(X1), sgn(X2), . . .) and (V1, V2, V3, . . .) have the same distribution. Next it is clear that E[V1V2 · · · Vn] is the
probability that in the random (1/2, 1/4, . . .)-paintbox partition restricted to {1, . . . , n} there are only partitions with an
even number of elements. One can show, using induction, conditioning on the number of terms entering the first box and
using the scale invariance of this paintbox, that the probability of this latter event is 1/(n+ 1), completing the proof. □

Corollary 6.12 in Molchanov (2009) provides formulas for E[sgn(X1X2 · · · Xn)] in terms of integrals over the sphere Sn−1

which ostensibly depend on α. However, a consequence of Proposition 1.3 now is that these higher dimensional integrals
do not in fact depend on α.
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