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Abstract. We develop a formula for the power-law decay of various sets for symmetric stable
random vectors in terms of how many vectors from the support of the corresponding spectral mea-
sure are needed to enter the set. One sees different decay rates in “different directions”, illustrating
the phenomenon of hidden regular variation. We give several examples and obtain quite varied
behavior, including sets which do not have exact power-law decay.

1. Main result and remarks

Many distributions have tails that exhibit regular variation (see [2] and [9]) which means that
they behave like a power-law times a slowly varying function. Examples are one-dimensional stable
distributions where the slowly varying function is just constant. For stable random vectors, one
also has this but in addition, one can have more interesting behavior, so-called hidden regular
variation (see [4], [10], [11]), meaning that one has different power-law decay in different directions.
Ideally, one would like to capture the correct decay rate in each such direction. Our main result,
Theorem 1.1, describes such behavior for symmetric stable distributions. Needed definitions and
background will be given in Section 2.

Let α P p0, 2q and X be an n-dimensional symmetric α-stable random vector with spectral
measure Λ (see (4)). Then Λ is a bounded measure on the unit sphere Sn´1 in Rn. Let E Ď Rn be
a Borel set with 0 R Ē, where Ē and Eo denote the closure and interior of E respectively. With d
being the Euclidean distance, define the δ-neighborhood of E by

Eδ,` :“ tx P Rn : dpx, Eq ă δu.

For any integer k ě 1 and any E as above, letting Cα be a constant defined in Section 2 and
Λk :“ Λ ˆ ¨ ¨ ¨ ˆ Λ (k times), define

LpE, k,αq :“
Ck
α

k!

ż 8

0
¨ ¨ ¨

ż 8

0
Λk

˜

"

x1, . . . ,xk P Sn´1 :
k

ÿ

i“1

sixi P E

*

¸

¨
k

ź

i“1

αs
´p1`αq
i dsi. (1)

Theorem 1.1. For any α, X, E and k as above,

LpEo, k,αq ď lim inf
hÑ8

hkαP pX P hEq

ď lim sup
hÑ8

hkαP pX P hEq ď lim
δÑ0

LpEδ,`, k,αq.
(2)

Remark 1.2.
(i) Clearly LpEo, k,αq ď LpĒ, k,αq ď limδÑ0 LpEδ,`, k,αq. Also, by the Lebesgue dominated

convergence theorem, LpĒ, k,αq “ limδÑ0 LpEδ,`, k,αq provided that LpEδ,`, k,αq is finite
for some δ ą 0.

2010 Mathematics Subject Classification. 60E07, 60G70.
Key words and phrases. Hidden regular variation, multivariate stable distributions.

1



(ii) Since 0 R Ē, for small δ ą 0 and s1 ą 0 we have that s1Sn´1 X Eδ,` “ H. This implies in
particular that the integrand in the definition of LpEδ,`, 1, δq is equal to zero for small δ and
s1, removing the singularity at s1 “ 0, and hence limδÑ0 LpEδ,`, 1,αq is always finite.

(iii) We let supppΛq be the (topological) support of Λ and, for k P t1, 2, . . . , nu, let

SΛpkq :“
!

x P Rn : x “
k

ÿ

i“1

sixi for some s1, . . . , sk P R and
x1, . . . ,xk P supppΛq

)

.

Then limδÑ0 LpEδ,`, k,αq “ 0 whenever Eε,` XSΛpkq “ H for sufficiently small ε ą 0. On the
other hand, if EoXSΛpkq “ 0, then LpEo, k,αq ą 0. Finally, assume that E Ď Eo, EoXSΛpkq “
0 and there is ε ą 0 such that whenever

řk
i“1 sixi P Eo for some x1, . . . ,xk P suppΛ, then

|s1|, . . . , |sk| ą ε. This implies that if δ P p0, εq, then LpEδ,`, k,αq ă 8, and hence by (i),
LpĒ, k,αq “ limδÑ0 LpEδ,`, k,αq. Furthermore, if in addition we assume that the boundary
of E has zero Lebesgue measure, then LpEo, k,αq “ LpĒ, k,αq and hence by Theorem 1.1,
limhÑ8 hkαP pX P hEq “ LpE, k,αq P p0,8q. This illustrates what would typically hold in
most generic or ”nice” situations.

Remark 1.3. Taking E to be the set tx P Rn : minxi ą 1u and k “ 1, one obtains Theorem 4.4.1
in [12] in the symmetric case (see equation (4.4.2) in [12]).

Remark 1.4. If we for x P Rn let }x}2 :“ px21 ` . . . ` x2nq1{2 and define

E :“ ConepAq :“
$

x P Rn : }x}2 ą 1 and x{}x}2 P A
(

for some A Ď Sn´1 with ΛpBAq “ 0, and then apply Theorem 1.1 to both E and to the complement
of the unit ball with k “ 1, we recover Corollary 6.20 in [1] in the symmetric case, stating that

lim
hÑ8

P
`

X P ConepAq, }X}2 ą h
˘

P
`

}X}2 ą h
˘ “

ΛpAq

Λ
`

Sn´1
˘ . (3)

Remark 1.5. Our motivation for looking at Theorem 1.1 and its consequences (see Section 4) was
to understand which threshold stable vectors can be obtained as divide and color processes in the
sense of [13]. These applications, as well as a study of which threshold Gaussian vectors can be
obtained as divide and color processes, is carried out in [6].

Remark 1.6. One might guess that Theorem 1.1 would generalize to so-called regularly varying
random vectors (see e.g. Proposition 2.2.20 on p. 57 in [9]). This is however not the case. To
see this, let α P p0, 2q and let X1 be an α-stable random vector in R2 whose spectral measure Λ1

has mass 1{4 at ˘p1, 0q and ˘p0, 1q. Further, let α1 P pα, 2αq X p0, 2q and let X2 be an α1-stable
random vector in R2 with uniform spectral measure independent of X1. Then X1 and X1 ` X2

are both regularly varying with the same index and same limiting measure. However, if we let
E :“ Conepπ{8, 3π{8q, then using Theorem 1.1 one easily obtains P pX1 P hEq — h´2α while, letting
E1 :“ Coneppπ{8q ` .001, p3π{8q ´ .001q, we have for h large

2P
`

X1 ` X2 P hE
˘

ě P
`

X2 P hE1˘ — h´α1
" h´2α.

(As usual, — denotes two quantities whose ratio is bounded away from zero and infinity.)

2. Background

2.1. Stable random vectors. In this section we now give some relevant definitions. These will be
very brief as we assume the reader is familiar with the basics of stable vectors. For a more thorough
introduction to stable random vectors, we refer the reader to [12].
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Definition 2.1. A random vector X :“ pXiq1ďiďn in Rn has a symmetric stable distribution if X
is symmetric (invariant under x ÞÑ ´x) and if for all k ě 1, there exists ak ą 0 so that if X1, . . . ,
Xk are k i.i.d. copies of X, then

ÿ

1ďiďk

Xi D“ akX.

It is well known that for any symmetric stable vector X there exists α P p0, 2s, called the stability
index, so that for all k ě 1, ak “ k1{α. The stability index α “ 2 corresponds to Gaussian random
vectors. If n “ 1, then besides α, there is only one parameter, the scale parameter σ, and in this
case the characteristic function φXpθq is given by

φXpθq “ e´σα|θ|α , θ P R.

(When α “ 2, σ corresponds to the standard deviation divided by
?
2, an irrelevant scaling.)

When σ “ 1, we denote this distribution by Sα. For stable vectors, the picture is somewhat more
complicated. A random vector X in Rn has a symmetric stable distribution with stability exponent
α if and only if its characteristic function φXpθq has the form

φXpθq “ exp
´

´
ż

Sn´1

|θ ¨ x|α dΛpxq
¯

, θ P Rn (4)

for some finite measure Λ on the unit sphere Sn´1 which is invariant under x ÞÑ ´x. Λ is called
the spectral measure of X. If (4) holds for some α and Λ, we write X „ SαpΛq. For α P p0, 2q fixed,
different Λ’s yield different distributions. This is not true for α “ 2.

When S1, S2, . . . , Sm are i.i.d. random variables with distribution Sα, S :“ pS1, . . . , Smq, and A
is an n ˆ m matrix, then the vector X :“ pX1, . . . , Xnq defined by

X :“ AS

is a symmetric α-stable random vector. To describe the spectral measure of X, consider the columns
of A as elements of Rn, denoted by ŷ1, . . . , ŷm. Then Λ is obtained by placing, for each i P rms :“
t1, 2, . . . ,mu, a mass of weight }ŷi}α2 {2 at ˘ŷi{}ŷi}2. See p. 69 in [12].

Finally, we need the following facts. If X „ Sα, then

P pX ě hq „
Cα h

´α

2
as h Ñ 8 (5)

where there is an exact formula for Cα; see e.g. page 17 in [12]. The exact formula for this constant
will not be relevant to us and so we will express quantities in terms of Cα. Moreover, if we let f
denote the probability density function of X, then

fphq „
Cα αh

´p1`αq

2
as h Ñ 8; (6)

see [5]. Also, fpxq is decreasing in x for x ą 0; see Theorem 2.7.4 on page 128 in [15].

2.2. Related work. When the spectral measure Λ of X is finitely supported, some asymptotic
behavior of the corresponding probability density function fpxq in different directions is obtained
in [8]. However, since the convergence in this case is not known to be uniform, this result cannot
be used to get a version of Theorem 1.1 for finitely supported Λ. We also mention that results
in [14] can be used to find the correct normalizing function above for many sets, but that these
results cannot be used to find an expression for the limit as given by Theorem 1.1, as only upper
and lower bounds are given. In both [8] and [14], the proofs are analytical, while our proofs are
more probabilistic.
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3. Proof of Theorem 1.1

The proof of Theorem 1.1 is somewhat simpler in the case when the spectral measure is finitely
supported in addition to being symmetric. We therefore first give a proof in this simpler setting,
which is also sufficient for the examples covered in Section 4.

Proof of Theorem 1.1 for symmetric and finitely supported spectral measures. Suppose that Λ is sym-
metric and has support in ˘y1, . . . ,˘ym P Sn´1. For i “ 1, 2, . . .m, let ŷi :“ p2Λpyiqq1{αyi and let
S1, S2, . . . , Sm „ Sα be i.i.d. Then we have (see Section 2) that

X “ pX1, X2, . . . , Xnq D“ ŷ1S1 ` . . . ` ŷmSm.

The rest of the proof will be divided into two steps. In the first step, we give a proof under the
additional assumption that, for some positive integer k,

@ps1, . . . , smq P Rm :
m
ÿ

i“1

siŷi P Ē ñ |ti P rms : si “ 0u| ě k. (7)

In the second step, we show that this additional assumption can be removed.
Step 1. Assume that (7) holds. Given this assumption, we make the following observations.

(O1): The assumption on Ē in (7) implies that there is ε0 ą 0 such that if s1, s2, . . . , sm are
such that

řm
i“1 siŷi P Ē, then there is a set J Ď rms, with |J | ě k, such that |si| ą ε0 for

all i P J .
(O2): It follows from the previous observation and (5) that

P
`

X P hĒ
˘

“ O
`

h´kα
˘

. (8)

(O3): For any ε1 ą 0,

P
”

|ti P rms : |Si| ą ε1h| ą k
ı

“ oph´αkq.

For each δ ą 0, recall
Eδ,` “

$

x P Rn : dpx, Eq ă δ
(

and define
Eδ,´ :“

$

x P E : dpx, BEq ą δ
(

.

Using the observations above, it follows that for any ε1 P p0, ε0q

P
`

X P hE
˘

“
ÿ

JĎrms : |J |“k

P
”

X P hE and @i P rmszJ : |Si| ď ε1h
ı

` o
`

h´kα
˘

.

Fix δ ą 0 arbitrarily and set ε1 “ ε0 ^
`

δ{ppm ´ kq supiPrms }ŷi}2q
˘

. Note that for each set J , the
event in question implies that |Si| ď δh{

`

pm ´ kq supiPrms }ŷi}2q
˘

for all i P rmszJ , which in turn
implies that }

ř

iPrmszJ Siŷi}2 ď δh. Hence the previous equation can be bounded from below by
ÿ

JĎrms : |J |“k

P
”

ÿ

iPJ

Siŷi P hEδ,´, and @i P rmszJ : |Si| ď ε1h
ı

` oph´kαq

ě
ÿ

JĎrms : |J |“k

P
”

ÿ

iPJ

Siŷi P hEδ,´

ı

` oph´kαq.

Let f denote the common probability density function of S1, S2, . . ., Sm. By (O1), we have that
for a fixed set J of size k,

P
”

ÿ

iPJ

Siŷi P hEδ,´

ı

“
ż

s1,...,skPR :

|s1|,...,|sk|ąε0h

I
´

ÿ

iPJ

siŷi P hEδ,´

¯

ź

iPJ

fpsiq dsi.
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Using first (6) and then (O1), it follows that

P
”

ÿ

iPJ

Siŷi P hEδ,´

ı

„
Ck
α

2k

ż

s1,...,skPR :

|s1|,...,|sk|ąε0h

I
´

ÿ

iPJ

siŷi P hEδ,´

¯

ź

iPJ

αs
´p1`αq
i dsi

“
Ck
α

2k

ż

Rk

I
´

ÿ

iPJ

siŷi P hEδ,´

¯

ź

iPJ

αs
´p1`αq
i dsi.

Making the change of variables p2Λpyiqq1{αsi{h ÞÑ si, we obtain

Ck
α

2k
¨

„

ź

iPJ

2Λpyiqh
´α

ȷ
ż

Rk

I
´

ÿ

iPJ

siyi P Eδ,´

¯

ź

iPJ

αs
´p1`αq
i dsi “

Ck
αh

´kα

„

ź

iPJ

Λpyiq

ȷ
ż

Rk

I
´

ÿ

iPJ

siyi P Eδ,´

¯

ź

iPJ

αs
´p1`αq
i dsi.

Summing over all J Ď rms with |J | “ k, we get

Ck
αh

´kα
ÿ

JĎrms : |J |“k

«

„

ź

iPJ

Λpyiq

ȷ
ż

Rk

I
´

ÿ

iPJ

siyi P Eδ,´

¯

ź

iPJ

αs
´p1`αq
i dsi

ff

“ Ck
αh

´kα

ż

Rk

ÿ

JĎrms : |J |“k

«

„

ź

iPJ

Λpyiq

ȷ

I
´

ÿ

iPJ

siyi P Eδ,´

¯

ź

iPJX

αs
´p1`αq
i dsi

ff

.

Now note that
(i) each pair of points, ˘yi, i “ 1, 2, . . . ,m, is counted only once in the last equation and
(ii) each set J of size k can be ordered exactly in k! ways.

Using this, and symmetry, it follows that the previous equation is equal to

Ck
αh

´kα

2kk!

ż

Rk

Λk

˜

"

x1, . . . ,xk P Sn´1 :
k

ÿ

i“1

sixi P Eδ,´

*

¸

k
ź

i“1

αs
´p1`αq
i dsi “

Ck
αh

´kα

k!

ż

Rk
`

Λk

˜

"

x1, . . . ,xk P Sn´1 :
k

ÿ

i“1

sixi P Eδ,´

*

¸

k
ź

i“1

αs
´p1`αq
i dsi

and hence, by taking h to infinity and then δ to zero,

lim inf
hÑ8

hkαP pX P hEq

ě lim
δÑ0

Ck
α

k!

ż

Rk
`

Λk

˜

"

x1, . . . ,xk P Sn´1 :
k

ÿ

i“1

sixi P Eδ,´

*

¸

k
ź

i“1

αs
´p1`αq
i dsi.

Using the monotone convergence theorem, this implies in particular that

lim inf
hÑ8

hkαP pX P hEq ě LpEo, k,αq

and hence the lower bound in Theorem 1.1 holds. The proof of the upper bound is completely
analogous and slightly easier, and is hence omitted here.
Step 2. It now remains only to show that the assumption on Ē given in (7) can be removed. So we
now assume that

Dps1, . . . , smq P Rm :
m
ÿ

i“1

siŷi P Ē and |ti P rms : si “ 0u| ă k.
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Then it is easy to see that the integral in the definition of LpEδ,`, k,αq is infinite for every δ ą 0
and hence the upper bound holds without the assumption on Ē.

We now show that the lower bound holds also without the assumption on Ē. To this end, assume
first that there is t :“ pt1, . . . , tmq P Rm such that

(i)
řm

i“1 tiŷi P Eo, and
(ii) |ti P rms : ti “ 0u| “ ℓ ă k.

Assume further that ℓ is the smallest integer for which such a point t exists. Then, for all sufficiently
small δ ą 0 we have that

řm
i“1 tiŷi P Eδ,´, and

@pt1, . . . , tmq P Rm :
m
ÿ

i“1

tiŷi P Eδ,´ ñ |ti P rms : ti “ 0u| ě ℓ.

Since by the first part of the proof, we have that

lim inf
hÑ8

hℓαP pX P hEq ě lim inf
hÑ8

hℓαP pX P hEδ,´q “ LpEδ,´, ℓ,αq ą 0

it follows that
lim inf
hÑ8

hkαP pX P hEq “ 8

and hence the lower bound is still valid in this case. If no such point t exists, then we have that

@pt1, . . . , tmq P Rm :
m
ÿ

i“1

tiŷi P Eo ñ |ti P rms : ti “ 0u| ě k.

Using Step 1, this implies in particular that for all δ ą 0, we have that

lim inf
hÑ8

hkαP pX P hEq ě lim inf
hÑ8

hkαP pX P hEδ,´q “ LpEδ,´, k,αq.

Since LpEδ,´, k,αq is monotone in δ, the desired conclusion follows by applying the monotone
convergence theorem. This concludes the proof.

□

Remark 3.1. We observe that we have shown that if there is a matrix A “ pŷ1, ŷ2, . . . , ŷmq such
that X

D“ ApS1, . . . , Smq, where S1, S2, . . . , Sm „ Sα are i.i.d. (or equivalently that the spectral
measure is finitely supported), then, for any set E Ď Rn,

1

k!

ż 8

0
¨ ¨ ¨

ż 8

0
Λk

˜

"

x1, . . . ,xk P Sn´1 :
k

ÿ

i“1

sixi P E

*

¸

k
ź

i“1

αs
´p1`αq
i dsi

“ 2´k
ÿ

JĎrms : |J |“k

ż

R
¨ ¨ ¨

ż

R
I

ˆ

ÿ

iPJ

siŷi P E

˙ k
ź

i“1

αs
´p1`αq
i dsi.

Remark 3.2. With only small adjustments of the proof above, the assumption that X is symmetric
can be dropped. To do this, one replaces the matrix representation used above with the corre-
sponding representation for when X is not symmetric (i.e. define A by Ap¨, iq “ pΛpyiqq1{αyi and
Si is a so-called totally skewed α-stable random variable with scale one, and then adjust the proof
accordingly. This is not as easy to do however when Λ is not finitely supported.

Remark 3.3. By Theorem 1(ii) in [3], any multivariate stable distribution X „ SαpΛq can be
approximated by a multivariate stable distribution Xε „ SαpΛεq which is such that

(i) Λε is finitely supported, and
(ii) sup

E : EĎRn,
E is a Borel set

ˇ

ˇP pX P Eq ´ P pXε P Eq
ˇ

ˇ ă ε.
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Here Λε is chosen by partitioning the unit sphere into a finite number of sets of small diameter, and
then concentrating all the mass of Λ in each such set at an arbitrarily chosen point in the set.

This result, together with the proof for the finitely supported case, is however not sufficient to
be able to make the same conclusion for any spectral measure. To see this, let E and Λ be as in
Example 4.4, and let α P p0, 1q so that Example 4.4 gives that limhÑ8 h2αP pX P hEq P p0,8q.
Then there are Λε as above which are arbitrarily close to Λ but for which the corresponding limit
is infinite by Theorem 1.1.

To be able to give the proof of Theorem 1.1 in the general setting, we will first need the following
lemma. The special case k “ 2 was stated in [12] (see Equation 1.4.8 on p. 27), but no proof is
given there. A sketch of the proof of this particular case was provided in private correspondence
with one of the authors.

Lemma 3.4. Let pWiqiě1 be a sequence of i.i.d. random variables with 0 ď Wi ď 1, pεiqiě1 be a
sequence of i.i.d. random variables with εi „ unifpt´1, 1uq and pΓiqiě1 be the arrival times of a
Poisson process with rate one where we assume that these three sequences are independent of each
other. Next let α P p0, 2q, k ě 2 be an integer and ε P p0,minptα, pk ´ 1qp2 ´ αquqq. Then

E

«

ˇ

ˇ

ˇ

ˇ

8
ÿ

i“k

εiΓ
´1{α
i Wi

ˇ

ˇ

ˇ

ˇ

pk´1qα`ε
ff

ă 8.

Proof of Lemma 3.4. To simplify notation, write β :“ pk ´ 1qα ` ε. We then need to show that

E

«

ˇ

ˇ

ˇ

ˇ

8
ÿ

i“k

εiΓ
´1{α
i Wi

ˇ

ˇ

ˇ

ˇ

β
ff

ă 8.

To this end, note first that for any fixed m ě k we have that

E

«

ˇ

ˇ

ˇ

ˇ

m
ÿ

i“k

εiΓ
´1{α
i Wi

ˇ

ˇ

ˇ

ˇ

β
ff

ď E

«

„ m
ÿ

i“k

Γ
´1{α
i Wi

ȷβ
ff

ď E

«

„ m
ÿ

i“k

Γ
´1{α
i

ȷβ
ff

ď E
„

´

pm ´ k ` 1qΓ´1{α
k

¯β
ȷ

“ pm ´ k ` 1qβ E
”

Γ
´β{α
k

ı

.

Since k ą β{α, we have that E
”

Γ
´β{α
k

ı

ă 8, and hence

E

«

ˇ

ˇ

ˇ

ˇ

m
ÿ

i“k

εiΓ
´1{α
i Wi

ˇ

ˇ

ˇ

ˇ

β
ff

ă 8 (9)

for any fixed m ě k.
Now recall that for any real-valued random variables X and Y with E

“

|X|β
‰

ă 8 and E
“

|Y |β
‰

ă
8 we have that Er|X ` Y |βs ă 8. Using (9), the conclusion of the lemma will thus follow if we can
prove that

E

«

ˇ

ˇ

ˇ

ˇ

8
ÿ

i“m

εiΓ
´1{α
i Wi

ˇ

ˇ

ˇ

ˇ

β
ff

ă 8

for some m ě k. To this end, fix m ą β{α ¨ k{pk ´ 1q. Then

E

«

ˇ

ˇ

ˇ

ˇ

8
ÿ

i“m

εiΓ
´1{α
i Wi

ˇ

ˇ

ˇ

ˇ

β
ff

“ E

«

„ˆ 8
ÿ

i“m

εiΓ
´1{α
i Wi

˙2pk´1qȷβ{p2pk´1qq
ff

“ E

«

Epεiq

«

ˆ

´

8
ÿ

i“m

εiΓ
´1{α
i Wi

¯2pk´1q
˙β{p2pk´1qq

| σ
`

pWiq, pΓiq
˘

ffff

.
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Since β{p2pk ´ 1qq “ ppk ´ 1qα ` εq{p2pk ´ 1qq ă 1 by the assumption on ε, we can apply Jensen’s
inequality to bound this expression from above by

E

«

Epεiq

„

´

8
ÿ

i“m

εiΓ
´1{α
i Wi

¯2pk´1q
| σ

`

pWiq, pΓiq
˘

ȷβ{p2pk´1qq
ff

ď E

«

„

p2pk ´ 1qq!
ÿ

i1,...,,ik´1 :

mďi1ď...ďik´1

k´1
ź

j“1

Γ
´2{α
ij

W 2
ij

ȷβ{p2pk´1qq
ff

.

Now we can again use the fact that β{p2pk´1qq ă 1 and the so-called cr-inequality (see e.g. Theorem
2.2 in [7]) to move this exponent into the summands to bound the previous expression from above
by

pp2pk ´ 1qq!qβ{p2pk´1qq E

«

ÿ

i1,...,,ik´1 :

mďi1ď...ďik´1

Γ
´β{pαpk´1qq
ij

W
β{pk´1q
ij

ff

“ pp2pk ´ 1qq!qβ{p2pk´1qq
ÿ

i1,...,,ik´1 :

mďi1ď...ďik´1

E

«

k´1
ź

j“1

Γ
´β{pαpk´1qq
ij

W
β{pk´1q
ij

ff

ď pp2pk ´ 1qq!qβ{p2pk´1qq
ÿ

i1,...,,ik´1 :

mďi1ď...ďik´1

E

«

k´1
ź

j“1

Γ
´β{pαpk´1qq
ij

ff

.

In particular, this implies that it now only remains to show that

ÿ

i1,...,,ik´1 :

mďi1ď...ďik´1

E

«

k´1
ź

j“1

Γ
´β{pαpk´1qq
ij

ff

ă 8. (10)

To do this, first fix γ P R`. If i P Z`, then ErΓ´γ
i s ă 8 if and only if i ą γ. Moreover, for such i

and γ we easily have that E
”

Γ´γ
i

ı

“ Γpi´γq
Γpiq . By Stirling’s formula, it follows that for a fixed γ we

have that E
”

Γ´γ
i

ı

„ i´γ and hence E
”

Γ´γ
i

ı

ă Cγi
´γ for some constant Cγ ě 1 and all i ą γ.

Now assume that 1 ď i1 ď . . . ď ik´1 is a sequence of integers. Then for j “ 2, 3, . . . , k ´ 1 we
have that Γij ě Γi1 , and Γij ě Γij ´ Γij´1 . The random variables Γij ´ Γij´1 are independent and
equal in distribution to Γij´ij´1 if ij “ ij´1 noting that Γ0 “ 0. Using this, it follows that for any
fixed integer M ą 0 we have that

E
„ k´1

ź

j“1

Γ´γ
ij

ȷ

ď E
„

Γ
´γ´γ

řk´1
jě2 1pij´ij´1ăMq

i1

ȷ

¨
k´1
ź

jě2:
ij´ij´1ěM

E
”

Γ´γ
ij´ij´1

ı

ď E
”

Γ´γ
i1

¨ IpΓi1 ě 1q ` Γ
´pk´1qγ
i1

¨ IpΓi1 ă 1q
ı

¨
k´1
ź

jě2:
ij´ij´1ěM

E
”

Γ´γ
ij´ij´1

ı

ď E
”

Γ´γ
i1

` Γ
´pk´1qγ
i1

ı

¨
k´1
ź

jě2:
ij´ij´1ěM

E
”

Γ´γ
ij´ij´1

ı

.
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If i1 ą pk ´ 1qγ and M ą γ, then, using the above, this is bounded from above by

pCγ ` Cpk´1qγq ¨ i1
´γ ¨ Ck´2

γ

k´1
ź

jě2:
ij´ij´1ěM

pij ´ ij´1q´γ .

In particular, if we let γ “ β{pαpk ´ 1qq “ pαpk ´ 1q ` εq{pαpk ´ 1qq ą 1 and M “ m, then for
i1 ě m we have that

i1 ě m ą β{α ¨ k{pk ´ 1q “ kγ ą pk ´ 1qγ

and therefore, since k ě 2, M “ m ą γ. Hence it follows that (10) is bounded from above by
`

Cβ{pαpk´1qq ` Cβ{α
˘

Ck´1
β{pαpk´1qq

ÿ

i1,...,,ik´1 :

mďi1ď...ďik´1

i
´β{pαpk´1qq
1

ź

jPt2,3,...,k´1u :
ij´ij´1ěm

pij ´ ij´1q´β{pαpk´1qq.

This implies in particular that it only remains to show that
ÿ

i1,...,,ik´1 :

mďi1ď...ďik´1

i
´β{pαpk´1qq
1

ź

jPt2,3,...,k´1u :
ij´ij´1ěm

pij ´ ij´1q´β{pαpk´1qq ă 8.

To see this, we first change the order of summation as follows. First, we will sum over all possible
choices of i1. Then we sum over the number G of terms in the product, which will range between
0 and k ´ 2. Finally, we sum also over the possible choices of ℓj :“ ij ´ ij´1 in the product, which
will range from m to infinity. To sum over all possible sequences m ď i1 ď . . . ď ik´1, we find an
upper bound on the number of ways to choose the differences ij ´ ij´1 which are smaller than m
and also, on the number of ways to choose which of the differences are larger than or equal to m.
The former of these quantities is clearly bounded from above by mk´2, and the latter is equal to
`

k´2
G

˘

ă 2k´2. Putting these observations together, we get
ÿ

i1,...,,ik´1 :

mďi1ď...ďik´1

ź

jPt2,3,...,k´1u :
ij´ij´1ěm

pij ´ ij´1q´β{pαpk´1qq

ď p2mqk´2
8
ÿ

i1“m

i
´β{pαpk´1qq
1

k´2
ÿ

G“0

8
ÿ

ℓ1,...,ℓG“m

G
ź

j“1

ℓ
´β{pαpk´1qq
j

“ p2mqk´2
8
ÿ

i1“m

i
´β{pαpk´1qq
1

k´2
ÿ

G“0

˜

8
ÿ

ℓ“m

ℓ´β{pαpk´1qq

¸G

“ p2mqk´2
k´1
ÿ

G“1

˜

8
ÿ

ℓ“m

ℓ´β{pαpk´1qq

¸G

.

Since β{pαpk ´ 1qq “ pαpk ´ 1q ` εq{pαpk ´ 1qq ą 1, the desired conclusion now follows.
□

We now state the following lemma which will be used in the proof of Theorem 1.1. For a proof
of this lemma we refer the reader to [12].

Lemma 3.5 (Theorem 3.10.1 in [12]). Let Λ be a symmetric spectral measure on Sn´1. Furthermore,
let Cα be defined by P pY ě hq „ Cαh

´α{2 for Y „ Sα, let pΓiqiě1 be the arrival times of a rate one
Poisson process and let pWiqiě1 be i.i.d., each with distribution Λ̄ :“ Λ{ΛpSn´1q (the normalized
spectral measure), independent of the Poisson process. Then

C1{α
α ΛpSn´1q1{α

8
ÿ

i“1

Γ
´1{α
i Wi

9



converges almost surely to a random vector with distribution SαpΛq.

We now give a proof of Theorem 1.1 using Lemmas 3.4 and 3.5.

Proof of Theorem 1.1. Let Cα, pΓiq and pWiq be as in Lemma 3.5. Define

X “
`

X1, X2, . . . , Xn

˘

:“ C1{α
α Λ

`

Sn´1
˘1{α

8
ÿ

i“1

Γ
´1{α
i Wi.

Then Lemma 3.5 implies that X has distribution SαpΛq. For j P rns and i ě 1, let Wipjq denote
the jth component of Wi. By Markov’s inequality, for any j “ 1, 2, . . . , n and all h ą 0 and ε ą 0
we have that

P

„

´

CαΛ
`

Sn´1
˘

¯1{α ˇ

ˇ

ˇ

8
ÿ

i“k`1

Γ
´1{α
i Wipjq

ˇ

ˇ

ˇ
ą h

ȷ

ď
E

„

´

CαΛ
`

Sn´1
˘

¯pkα`εq{α ˇ

ˇ

ˇ

ř8
i“k`1 Γ

´1{α
i Wipjq

ˇ

ˇ

ˇ

kα`ε
ȷ

hkα`ε
.

By picking ε sufficiently small and applying Lemma 3.4 using k`1 (noting that by symmetry, Wipjq
has the same distribution as εi|Wipjq| with the two factors independent), it follows that

P

„

´

CαΛ
`

Sn´1
˘

¯1{αˇ

ˇ

ˇ

8
ÿ

i“k`1

Γ
´1{α
i Wipjq

ˇ

ˇ

ˇ
ą h

ȷ

ď o
`

h´kα
˘

and hence

P

„

´

CαΛ
`

Sn´1
˘

¯1{α ›

›

›

8
ÿ

i“k`1

Γ
´1{α
i Wi

›

›

›

8
ą h

ȷ

ď o
`

h´kα
˘

.

This implies in particular that for any ε1 ą 0

P

„

´

CαΛ
`

Sn´1
˘

¯1{α ›

›

›

8
ÿ

i“k`1

Γ
´1{α
i Wi

›

›

›

8
ą ε1h

ȷ

ď o
`

h´kα
˘

.

Now for any δ ą 0, let Eδ,´ :“
$

x P E : dpx, BEq ą δ
(

. Setting δ :“
?
nε1, we then have

P
`

pX1, X2, . . . , Xnq P hE
˘

“ P

„

pX1, X2, . . . , Xnq P hE,
´

CαΛ
`

Sn´1
˘

¯1{α ›

›

›

8
ÿ

i“k`1

Γ
´1{α
i Wi

›

›

›

8
ă ε1h

ȷ

` oph´kαq

ě P

«

´

CαΛ
`

Sn´1
˘

¯1{α´

Γ
´1{α
1 W1 ` . . . ` Γ

´1{α
k Wk

¯

P hEδ,´,

´

CαΛ
`

Sn´1
˘

¯1{α ›

›

›

8
ÿ

i“k`1

Γ
´1{α
i Wi

›

›

›

8
ă ε1h

ff

` oph´kαq

“ P

«

´

CαΛ
`

Sn´1
˘

¯1{α ´

Γ
´1{α
1 W1 ` . . . ` Γ

´1{α
k Wk

¯

P hEδ,´

ff

` oph´kαq.

(11)

10



Similarly, we have that

P
`

pX1, X2, . . . , Xnq P hE
˘

“ P

„

pX1, X2, . . . , Xnq P hE,
´

CαΛ
`

Sn´1
˘

¯1{α ›

›

›

8
ÿ

i“k`1

Γ
´1{α
i Wi

›

›

›

8
ă ε1h

ȷ

` oph´kαq

ď P

«

´

CαΛ
`

Sn´1
˘

¯1{α ´

Γ
´1{α
1 W1 ` . . . ` Γ

´1{α
k Wk

¯

P hEδ,`,

´

CαΛ
`

Sn´1
˘

¯1{α ›

›

›

8
ÿ

i“k`1

Γ
´1{α
i Wi

›

›

›

8
ă ε1h

ff

` oph´kαq

ď P

„

´

CαΛ
`

Sn´1
˘

¯1{α ´

Γ
´1{α
1 W1 ` . . . ` Γ

´1{α
k Wk

¯

P hEδ,`

ȷ

` oph´kαq.

(12)

To be able to simplify these expressions, first recall that if pΓ1,Γ2, . . . ,Γk`1q are the first k ` 1
arrivals of a mean one Poisson process and U1, U2, . . . , Uk „ unifp0, 1q are independent,

$

Γ1{Γk`1, . . . ,Γk{Γk`1 | Γk`1

( d“
$

U1, . . . , Uk

(

.

Using this and now letting U1, U2, . . . , Uk be i.i.d. uniforms defined on the same probability space
as everything else but independent of them, we see that for Eδ,¨ “ Eδ,` or Eδ,¨ “ Eδ,´, we have that

P

„

´

CαΛ
`

Sn´1
˘

¯1{α k
ÿ

i“1

Γ
´1{α
i Wi P hEδ,¨

ȷ

“ P

„

´

CαΛ
`

Sn´1
˘

¯1{α
Γ

´1{α
k`1

k
ÿ

i“1

U
´1{α
i Wi P hEδ,¨

ȷ

“
ż 8

0

xke´x

k!

ż 1

0
¨ ¨ ¨

ż 1

0
Λ̄k

˜

"

pwiq
k
i“1 : x

´1{α
k

ÿ

i“1

ˆ

CαΛpSn´1q
ui

˙1{α

wi P hEδ,¨

*

¸

k
ź

i“1

dui dx.

If, for each fixed x, we make the change of variables

si “ x´1{α
ˆ

CαΛpSn´1q
hαui

˙1{α

,

then this simplifies to

ż 8

0

e´x

k!

´

CαΛ
`

Sn´1
˘

h´α
¯k

ż 8

0
¨ ¨ ¨

ż 8

0
Λ̄k

˜

"

pwiq
k
i“1 :

k
ÿ

i“1

siwi P Eδ,¨

*

¸

¨ I

„

min
i

si ą
´CαΛpSn´1q

hαx

¯1{α
ȷ k

ź

i“1

αs
´p1`αq
i dsi dx

“
Ck
αh

´αk

k!

ż 8

0
¨ ¨ ¨

ż 8

0
Λk

˜

"

pwiq
k
i“1 :

k
ÿ

i“1

siwi P Eδ,¨

*

¸ «

ż 8

CαΛpSn´1q
hα mini s

α
i

e´x dx

ff

k
ź

i“1

αs
´p1`αq
i dsi.
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Note that the integral above is increasing in h. Combining the previous equation with (11) and (12)
and applying the monotone convergence theorem, it follows that for any δ ą 0,

Ck
α

k!

ż 8

0
¨ ¨ ¨

ż 8

0
Λk

˜

"

pwiq
k
i“1 :

k
ÿ

i“1

siwi P Eδ,´

*

¸

k
ź

i“1

αs
´p1`αq
i dsi (13)

ď lim inf
hÑ8

hkαP
`

pX1, X2, . . . , Xnq P hE
˘

ď lim sup
hÑ8

hkαP
`

pX1, X2, . . . , Xnq P hE
˘

ď
Ck
α

k!

ż 8

0
¨ ¨ ¨

ż 8

0
Λk

˜

"

pwiq
k
i“1 :

k
ÿ

i“1

siwi P Eδ,`

*

¸

k
ź

i“1

αs
´p1`αq
i dsi.

Noting that the integrand in (13) is monotone in δ and converges pointwise to the integrand in
LpEo, k,αq, the desired conclusion follows by letting δ Ñ 0 and applying the monotone convergence
theorem. □

4. Examples

We will now apply Theorem 1.1 to a few examples.

Example 4.1. Let α P p0, 2q and let X1 and X2 be i.i.d. with X1 „ Sα and let X “ pX1, X2q.
The corresponding spectral measure Λ has four point masses each of weight 2´1 at p1, 0q, p0, 1q,
p´1, 0q and p0,´1q. With this example, we will consider three different sets E which will be our
three different cases.
Case (i). Let E “

$

x P R2 : x1, x2 ą 1
(

. Then it is easy to see that LpEo, 2,αq “ limδÑ0 LpEδ,`, 2,αq
and furthermore this common value is

C2
α{2 ¨ 2

ż 8

0

ż 8

0
p2´1q2 ¨ I

`

s1, s2 ą 1
˘

¨ αs´p1`αq
1 αs

´p1`αq
2 ds1 ds2 “ C2

α ¨ 2´2.

Applying Theorem 1.1 with k “ 2, we obtain

lim
hÑ8

h2αP
`

X1, X2 ą h
˘

“ C2
α ¨ 2´2

which is of course consistent with what independence yields.

x1

x2

Figure 1. The figure above shows the set 2E (gray area) considered in Case (i) of
Example 4.1 together with the four points (in red) at which Λ is supported.
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Case (ii). Let A Ď S1 X pε,8q2 for some ε ą 0 and define

CA :“
$

x P R2 : }x}2 ą 1 and x{}x}2 P A
(

be the cone above A. Then we have the following.

Proposition 4.2. Let X, A and CA be as above, and assume that in addition to the above, the
boundary of A has zero (one-dimensional) measure. Then

lim
hÑ8

h2αP
`

X P hCA

˘

“
C2
α

8

ż

A
αpcos θ sin θq´p1`αq dθ

Proof. We begin with the following computation which is valid for any set A contained in S1Xpε,8q2.

C2
α

2

ż 8

0

ż 8

0
Λ2

`

x1,x2 P S1 : s1x1 ` s2x2 P CA

˘

¨
2

ź

i“1

αs
´p1`αq
i dsi

“ C2
α

ż 8

0

ż 8

0
2´2 ¨ I

`

ps1, s2q P CA

˘

¨
2

ź

i“1

αs
´p1`αq
i dsi

“
C2
α

4

ż

ps1,s2qPCA

α2s
´p1`αq
1 s

´p1`αq
2 ds1 ds2 (14)

“
C2
α

4

ż

A

ż 8

1
α2pr cos θq´p1`αqpr sin θq´p1`αq r dr dθ

“
C2
α

8

ż

A
αpcos θ sin θq´p1`αq dθ.

For any set U , letting Uo be the interior of U , one easily checks that

pCAqo “ CAo and CĀ Ă C̄A Ă CĀ Y S1

keeping in mind that the interiors and closures are with respect to different spaces, in one case R2

and in one case S1. Therefore the above computation shows that

LpCo
A, 2,αq “

C2
α

8

ż

Ao

αpcos θ sin θq´p1`αq dθ

and

LpCA, 2,αq “
C2
α

8

ż

Ā
αpcos θ sin θq´p1`αq dθ

where for the latter equation, we also used the fact that the S1 piece adds nothing to the relevant
integral.

Now, using the fact the boundary of A has measure zero, we conclude that LppCAqo, 2,αq “
LpCA, 2,αq. Since ε is fixed, it is easy to see that LppCAqδ,`, 2,αq is finite for sufficiently small δ
allowing us to conclude that LppCAqo, 2,αq “ limδÑ0 LppCAqδ,`, 2,αq. Theorem 1.1 with k “ 2 now
yields the result. □

Remark 4.3. This improves on (3) in this case since it yields the correct decay rate and demonstrates
the hidden regular variation behavior. The former result would only give limhÑ8 hαP pX P CAq “ 0.
Not surprisingly, when A is as large as possible with ε fixed, the integral tends to infinity as ε goes
to 0; this is because we are getting closer to the support of the spectral measure.
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x1

x2

Figure 2. The figure above shows the set 2CA (gray) considered in Case (ii) of
Example 4.1, together with the four points (in red) at which Λ has support.

Case (iii). This example, while fairly simple, has three different values arising in (2) when k “ 1
and, in particular, Theorem 1.1 yields nonmatching upper and lower bounds. We let

E “ tx P R2 : x1 ą 1, x2 ă 0u.

It is easy to check that for any α P p0, 2q, we have that LpEo, 1,αq “ 0, LpĒ, 1,αq “ limδÑ0 LpEδ,`, 1,αq “
Cα{2 while using the independence of the components, it is immediate that the middle terms in (2)
when k “ 1 are Cα{4.

x1

x2

Figure 3. The figure above shows the set 2E (gray) considered in Case (iii) of
Example 4.1 together with the four points (in red) at which Λ has support.

Our next example illustrates a number of interesting phenomena which we summarize in Propo-
sition 4.5 after giving the example. This provides an example where (i) the decay rate has three
possible behaviors depending on α, (ii) LpEo, k,αq ‰ limδÑ0 LpEδ,`, k,αq and (iii) where the tail
behavior can drastically change due to a modification in the set E in an arbitrarily small neighbor-
hood of one point, namely p1, 1q. It is also a “baby version” of the example following it which will
be crucially used in [6].

Example 4.4. Let α P p0, 2q and S1 and S2 be i.i.d. with distribution Sα and let

X “ p1, 1qS1 ´ p0, 1qS2.

Then X is a symmetric α-stable random vector and the spectral measure Λ of X has mass 2α{2{2
at ˘p1, 1q{

?
2 and mass 1{2 at ˘p0, 1q. Let

E :“
$

x P R2 : x1 ą 1, x2 ă 1
(

.
14



x1

x2

Figure 4. The figure above shows the set 2E (gray) considered in Example 4.4
together with the four points (in red) at which Λ has support.

We mention that it is straightforward to show that for all α, limδÑ0 LpEδ,`, 1,αq “ 0.

Proposition 4.5. Let Λ, X and E be as above.
(i) ‚ For α ă 1,

lim
hÑ8

h2αP pX P hEq “
C2
ααΓp2αqΓp1 ´ αq

4Γp1 ` αq
ă 8. (15)

‚ For α “ 1,

lim
hÑ8

h2

log h
P pX P hEq “

C2
1

4
. (16)

‚ For α ą 1,

lim
hÑ8

h1`αP pX P hEq “
CααEr|S1|s

4
. (17)

(ii) For all α P p0, 2q, limδÑ0 LpEδ,`, 2,αq “ 8. Moreover, LpEo, 2,αq “ LpĒ, 2,αq is equal to 8

if α P r1, 2q and is equal to C2
ααΓp2αqΓp1´αq

4Γp1`αq if α P p0, 1q.
(iii) Let Bε :“ B8pp1, 1q, εq be the ball around p1, 1q of radius ε in the L8 metric. For any ε ą 0

and α P p0, 1q,

g`pα, εq :“ LpEo Y Bε, 1,αq “ lim
δÑ0

LppE Y Bεqδ,`, 1,αq P p0,8q

implying by Theorem 1.1 that

lim
hÑ8

hαP pX P hpE Y Bεqq “ g`pα, εq

and
g´pα, εq :“ LppEzBεqo, 2,αq “ lim

δÑ0
LppEzBεqδ,`, 2,αq P p0,8q

implying by Theorem 1.1 that

lim
hÑ8

h2αP pX P hpEzBεqq “ g´pα, εq.

(iv) For all α P p0, 2q, g`pα, εq is increasing in ε with limεÑ0 g
`pα, εq “ 0 while g´pα, εq is de-

creasing in ε with limεÑ0 g
´pα, εq “ 8 for α P r1, 2q and C2

ααΓp2αqΓp1´αq
4Γp1`αq for α P p0, 1q.

Proof. We only prove (i) and (ii). (iii) and (iv) are fairly straightforward and left to the reader. We
start with the proof of (ii).
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It is easy to see that LpEo, 2,αq “ LpĒ, 2,αq and that their common value is

C2
α ¨ 2α{2{2 ¨ 1{2 ¨

ż 8

?
2

ż 8

ps1{
?
2q´1

α2s
´p1`αq
1 s

´p1`αq
2 ds2 ds1

“
C2
α

4

ż 8

1

ż 8

t1´1
α2t

´p1`αq
1 s

´p1`αq
2 ds2 dt1

“
C2
α

4

ż 8

1
αt

´p1`αq
1

“

´s´α
2

‰8
t1´1

dt1

“
C2
α

4

ż 8

1
αt

´p1`αq
1 pt1 ´ 1q´α dt1

“
C2
α

4

ż 1

0
αx2α´1p1 ´ xq´α dx.

This integral is easily verified to be infinite if and only if α ě 1 and strictly positive for all α P
p0, 1q. Recognizing the integrand as the probability density function (up to a constant) of a Beta
distribution with parameters 2α and 1 ´ α, we see that the last expression is equal to

C2
ααΓp2αqΓp1 ´ αq

4Γp1 ` αq
.

The fact that limδÑ0 LpEδ,`, 2,αq is 8 is seen by noting that for any fixed δ ą 0, the term

Λ2
`

x1,x2 P S1 : s1x1 ` s2x2 P Eδ,`
˘

is uniformly bounded away from 0 for arbitrarily small s2 and hence the integral diverges. This
finishes the proof of (ii).

We now move to (i). Since X “ p1, 1qS1 ´ p0, 1qS2, we have

tX P hEu “ th ă S1 ă h ` S2u

and so for any α, we have

P pX P hEq “
ż 8

0
fptqP ph ă S1 ă h ` tq dt.

We now proceed with the α P p0, 1q case. It is not hard to show that for every ε ą 0,

LppEzBεqo, 2,αq “ lim
δÑ0

LppEzBεqδ,`, 2,αq P p0,8q

and hence by Theorem 1.1

lim
hÑ8

h2αP pX P hpEzBεqq “ LppEzBεqo, 2,αq.

Letting ε Ñ 0, we can apply the monotone convergence theorem to both sides (using the fact that
E is open) and conclude (15) as desired.

Now instead let α “ 1. It is not hard to show that for every ε ą 0, by breaking up the following
integral into r0, hs and rh,8q and using the fact that f is decreasing, we have

h2

log h
P pX P hEq “

h2

log h

ż 8

0
fptqP ph ă S1 ă h ` tq dt

ď
h2

log h

”

fphq
ż h

0
fptqt dt ` P pS1 ě hq2

ı

.

Noting that (5) implies the second term goes to 0 as h Ñ 8 and the fact that that (6) easily implies
that

lim
hÑ8

şh
0 fptqt dt

log h
“ C1{2 (18)
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as well as applying (6) directly, we get

lim sup
hÑ8

h2

log h
P pX P hEq ď

C2
1

4
.

For the lower bound, we fix ε ą 0, integrate only over r0, εhs and use f is decreasing to obtain

h2

log h
P pX P hEq ě

h2

log h
fpp1 ` εqhq

ż εh

0
fptqt dt.

Using (6) and (18), the limit of the last term is, as h Ñ 8, equal to C2
1{4p1 ` εq2. Hence for every

ε ą 0, we have

lim inf
hÑ8

h2

log h
P pX P hEq ě

C2
1

4p1 ` εq2

and we can then let ε Ñ 0 to complete the proof.
Finally, we now do the case α P p1, 2q. Using the fact that f is decreasing and using (6), we have

P pX P hEq “
ż 8

0
fptqP ph ă S1 ă h ` tq dt ď fphq

ż 8

0
fptqt dt (19)

„
CααEr|S1|s

4
h´p1`αq

establishing the upper bound in (17). For the lower bound, fixing ε ą 0, we have

P pX P hEq “
ż 8

0
fptqP ph ă S1 ă h ` tq dt ě

ż εh

0
fptqP ph ă S1 ă h ` tq dt

ě fphp1 ` εqq
ż εh

0
fptqt dt „ p1 ` εq´p1`αq CααEr|S1|s

4
h´p1`αq.

(20)

It follows that

lim inf
hÑ8

hp1`αqP pX P hEq ě p1 ` εq´p1`αq CααEr|S1|s
4

.

One can now let ε Ñ 0, obtaining the lower bound in (17), completing the proof. □

Remark 4.6. If X is as in our first example where we have independent components, one can
construct a set, namely

E :“ tx P R2 : x1 ą 1, x2 ą apx ´ 1qu

for a P p0, 1q, which exhibits similar behavior to that in the above proposition. However, the
above example, when generalized to three variables, is what we need in another context and so we
proceeded in this way.

Remark 4.7. With the previous result in mind, one might wonder if any threshold for events of the
type tX P hEu will occur at α “ 1. To show that this is not the case, fix α P p0, 2q and σ ą 0, and
define

Eσ :“
$

x P R2 : 1 ă x1 ă 1 ` xσ2
(

.

Further, let S1, S2 „ Sα be i.i.d and consider the decay rate of P pX P hEσq as h Ñ 8. Then, using
a very similar argument to the argument in the proof of Proposition 4.5, one can show that we get
a phase transition in the behavior of the decay rate of P pX P hEσq at α “ σ, and in fact

P
`

X P hEσ

˘

—

$

’

&

’

%

h´pα`σq if α ą σ

h´2α log h if α “ σ

h´2α if α ă σ.

17



x1

x2

(a) σ “ 0.5

x1

x2

(b) σ “ 1.8

Figure 5. The figures above shows the set 2Eσ in Remark 4.7, for two different
values of σ, together with the four points (in red) at which the spectral measure Λ
from the same remark has support.

In our next, and final, example we study one of the simplest three-dimensional permutation
invariant multivariate stable distributions, and show that it exhibits the same behavior as our
previous example. Here we only study the case α P p0, 1q in detail, but the cases α “ 1 and α ą 1
can be done similarly as in the the proof of Proposition 4.5.

Example 4.8. Let α P p0, 2q and let S0, S1, S2 and S3 be i.i.d. with S0 „ Sα. Furthermore, let
a P p0, 1q and define X1, X2 and X3 by

Xi :“ aS0 ` p1 ´ aαq1{αSi, i “ 1, 2, 3.

Clearly pX1, X2, X3q is a three-dimensional symmetric α-stable random vector whose marginals are
Sα. The corresponding spectral measure Λ has mass aα3α{2{2 at ˘p1, 1, 1q{

?
3 and mass p1´ aαq{2

at ˘p1, 0, 0q, ˘p0, 1, 0q and ˘p0, 0, 1q. Consider the set

E :“ tx P R3 : x1, x2 ą 1,x3 ă 1u.

The proof of the following proposition follows the proof of Proposition 4.5 exactly, and therefore
we only give a sketch of the proof here.

Proposition 4.9. Let Λ, X and E be as above. Then for all α P p0, 1q, we have that

lim
hÑ8

h2αP pX P hEq “
C2
α

4

˜

p1 ´ aαq2 ` aαp1 ´ aαq ¨
αΓp2αqΓp1 ´ αq

Γp1 ` αq

¸

ă 8. (21)

Moreover, for all α P p0, 2q, limδÑ0 LpEδ,`, 2,αq “ 8, and LpEo, 2,αq “ LpĒ, 2,αq is equal to 8 if
α P r1, 2q and is equal to the right hand side of (21) if α P p0, 1q.

Proof sketch. It is easy to see that LpEo, 2,αq “ LpĒ, 2,αq and that their common value is

Λpe1qΛpe2q ¨ C2
α

ż 8

1

ż 8

1
α2s

´p1`αq
1 s

´p1`αq
2 ds1 ds2

` Λpp1, 1, 1q{
?
3qΛp´e3q ¨ C2

α

ż 8

?
3

ż 8

ps0{
?
3q´1

α2s
´p1`αq
0 s

´p1`αq
3 ds3 ds0

“
C2
α

4

ˆ

p1 ´ aαq2 ` aαp1 ´ aαq
ż 1

0
αx2α´1p1 ´ xq´α dx

˙

.
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The rest of the proof follows the lines of the proof of Proposition 4.5 exactly, and is hence omitted
here.

x1

x2

x3 x1 “ x2 “ x3

Figure 6. The figure above shows the set 2E (gray) considered in Example 4.8
together with the eight points (in red) at which Λ has support.
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