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Abstract
This paper analyzes the question of where one should stand when

playing darts. If one stands at distance d > 0 and aims at a ∈ Rn,
then the dart (modelled by a random vector X in Rn) hits a random
point given by a+ dX. Next, given a payoff function f , one considers

sup
a
Ef(a+ dX)

and asks if this is decreasing in d; i.e., whether it is better to stand
closer rather than farther from the target. Perhaps surprisingly, this
is not always the case and understanding when this does or does not
occur is the purpose of this paper.

We show that if X has a so-called selfdecomposable distribution,
then it is always better to stand closer for any payoff function. This
class includes all stable distributions as well as many more.

On the other hand, if the payoff function is cos(x), then it is always
better to stand closer if and only if the characteristic function |φX(t)|
is decreasing on [0,∞). We will then show that if there are at least two
point masses, then it is not always better to stand closer using cos(x).
If there is a single point mass, one can find a different payoff function
to obtain this phenomenon.

Another large class of darts X for which there are bounded contin-
uous payoff functions for which it is not always better to stand closer
are distributions with compact support. This will be obtained by us-
ing the fact that the Fourier transform of such distributions has a zero
in the complex plane. This argument will work whenever there is a
complex zero of the Fourier transform.

Finally, we analyze if the property of it being better to stand closer
is closed under convolution and/or limits.
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1 Introduction

1.1 Model and Main Results

We begin immediately by formalizing the notion of a general dart game in
Rn.

Definition 1.1. A dart is a random vector X taking values in Rn. It
represents the distribution of where you hit the target (Rn) when you stand
at distance one and aim at the origin.

Definition 1.2. A payoff function f is a measurable function from Rn to
R which is bounded from above.

Given a dart X and a player standing at distance d aiming at a ∈ R, the
distribution of where she hits the target is modelled by a + dX. Assuming
you want to maximize the expected payoff with respect to a given payoff
function f from a certain distance, it is natural to consider the function

Definition 1.3.
g
X,f

(d) := sup
a∈Rn

Ef(a+ dX) (1)

defined for d > 0.

So g
X,f

(d) is the best you can achieve with dart X, standing at distance
d with payoff function f . Note that the supremum is not always assumed.

Question: Is it always better to stand closer to the target? I.e., is g
X,f

(d)
a decreasing function of d?

Perhaps surprisingly, the answer is no. We start off by quickly giving
a simple example showing that this is not necessarily the case. In one di-
mension, let X be uniform on [0, 2] and f be 1 on intervals of the form
[2k, 2k+1] and 0 on intervals of the form (2k− 1, 2k) where k is an integer.
It is then immediate to check that g

X,f
(1) = 1/2 (and it doesn’t matter

where you aim) but g
X,f

(3/2) = 2/3 (by aiming e.g. at 1.5). We will later
see how this is related to a more general phenomenon where the behavior of
the characteristic function of X will play a central role, see Theorem 1.8.

We introduce the following concepts which capture those situations where
standing closer is better.

Definition 1.4. The pair (X, f) is reasonable if g
X,f

(d) is decreasing in d.
The dart X is reasonable with respect to a family F of payoff functions
if (X, f) is reasonable for all f ∈ F . If (X, f) is reasonable for all payoff
functions f , then X is said to be reasonable. The payoff function f is
reasonable with respect to a family X of darts if (X, f) is reasonable
for all X ∈ X . If (X, f) is reasonable for all darts X, then f is said to be
reasonable.
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We will often use the expression that “X is reasonable with respect to
f ” to mean that (X, f) is reasonable. One of the central goals of this paper
is to try to determine which darts X are reasonable, either against a given
payoff function f or a family of payoff functions.

We now wish to introduce a large collection of darts which turn out
to be reasonable, and to do this we recall the notion of a selfdecomposable
probability measure (see [11]). However, we first need to recall what it means
for one random vector to divide another random vector.

Definition 1.5. We say a random vector X divides a random vector Y ,
written X|Y if there exists a random vector Z so that if Z and X are
independent, then X + Z and Y have the same distribution.

Definition 1.6. A random vector X is selfdecomposable if for all d > 1,
X|dX.

We mention that the set of selfdecomposable distributions sits properly
between the set of stable distributions and the set of infinitely divisible dis-
tributions. In addition, an independent sum of selfdecomposable random
vectors is also selfdecomposable. Later on, we will give a large number of
known examples of selfdecomposable distributions which are not stable. This
notion of selfdecomposability, while not as well known as other more stan-
dard notions, was in fact already studied by Lévy in [6] but not under this
name. (Actually, the present authors came up with this notion in conjunc-
tion with this project before learning that the concept already existed.) Very
loosely speaking, in this reference, Lévy characterized selfdecomposable dis-
tributions as those distributions which arise as limits of normalized sums of
a sequence of independent (not necessarily identically distributed) random
variables. See [11], Theorem 15.3, p. 91. Khintchine also referred to these
distributions as "class L" (presumably named after Lévy).

Our first theorem, to be proved in Section 4, tells us that being selfde-
composable is a sufficient condition for being reasonable.

Theorem 1.7. If X|dX, where d > 1, then g
X,f

(s) ≥ g
X,f

(ds) for all f and
for all s. In particular, if X is selfdecomposable, then X is reasonable.

While we have already proved that the uniform distribution is not rea-
sonable, we now study which darts X are such that (X, cos(x)) is reasonable
in 1-dimension. It turns out that by just using the payoff function cos(x),
we will be able to reveal that a number of distributions are not reasonable.
We will extend the following result to any dimension and also strengthen the
statement in Section 5.

Theorem 1.8. Let X be any dart taking values in R with characteristic func-
tion φX . Then (X, cos(x)) is reasonable if and only if |φX(t)| is decreasing
in t on [0,∞).
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Corollary 1.9. If X is a 1-dimensional dart, whose characteristic function
is analytic and has a (real) zero, then (X, cosx) is not reasonable.

Remark 1.10. Analyticity in Corollary 1.9 is necessary since there is a sym-
metric dart whose characteristic function has a zero but such that (X, cosx)
is reasonable. Namely, it is known (see [4], p. 131) that if X has density
function 1−cosx

πx2
, then its characteristic function is given by the tent function

max{1− |t|, 0}. By Theorem 1.8, (X, cosx) is reasonable.

Theorem 1.8 gives us a powerful tool to study the behavior of g
X,f

(d), and
we can immediately find several examples of common distributions that are
not reasonable with respect to cos(x). For example, the following distribu-
tions all have characteristic functions φX such that |φX(d)| is not decreasing
for d ∈ (0,∞), and thus by Theorem 1.8 are not reasonable with respect
to cos(x): Binomial distribution, Negative binomial distribution, Poisson
distribution, Uniform distribution and Geometric distribution.

We give two further examples of absolutely continuous distributions which
are not reasonable with respect to cos(x). These are the semi-circle distri-
bution whose probability density function on [−1, 1] is

2

π
·
√

1− x2

and the arcsine law whose probability density function on [−1, 1] is

1

π ·
√
(1 + x)(1− x)

.

For the semi-circle distribution, it is not hard to verify that the charac-
teristic function is positive at 3 and negative at 4 and hence must have a
zero in between. By Corollary 1.9, we conclude that the distribution func-
tion is not reasonable against cos(x). It is interesting to also point out that
this characteristic function is equal to 2J1(d)

d where J1 is the so-called Bessel
function of the first kind of order 1 which is known to have its first zero at
≈ 3.8317.

For the arcsine distribution, the characteristic function is J0(d) where J0
is the so-called Bessel function of the first kind of order 0 which is known to
have its first zero at ≈ 2.4. Therefore Corollary 1.9 again implies it is not
reasonable against cos(x).

We note that the uniform distribution, the semi-circle distribution and
the arcsine distribution are all special cases of the symmetric Beta distribu-
tion. The characteristic function of a Beta distribution is something which
is called a confluent hypergeometric function. It seems that the literature on
confluent hypergeometric functions could supply answers to what happens
for the general (symmetric) Beta distribution (with regard to being reason-
able against cos(x)) but we have chosen not to investigate this. (In any case,
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none of the Beta distributions will be reasonable by Theorem 1.14 since they
are compactly supported.)

Finally, concerning the semi-circle distribution, since this is the projec-
tion onto the x-axis of the uniform distribution on the disc in R2, it follows
from Proposition 2.9 that the latter distribution is not reasonable against
f(x, y) = cos(x). We will in fact see later on that this latter distribution is
also not reasonable against the standard dart board.

We will now give two applications of Theorem 1.8 which will also be
proved in Section 5.

Theorem 1.11. If X is a random variable with at least two point masses,
then (X, cos(x)) is not reasonable. Moreover, if X is a random vector with
at least two point masses, then, for some j, (X, cos(πj(x))) is not reasonable
where πj is the projection onto the jth coordinate.

Proposition 1.12. Let X be a continuous dart (i.e., no point masses) taking
values in R, with characteristic function φX . If φX(t) does not go to zero as
t → ∞, then (X, cos(x)) is not reasonable. (There is also some version of
this in higher dimensions.)

Note that by the Riemann-Lebesgue Lemma, any dart satisfying this as-
sumption necessarily has a nontrivial continuous singular component. How-
ever, (see [8]) a continuous singular distribution may in fact have φX(t) going
to zero as t → ∞. Such measures are called Rajchman measures and the
first example was constructed by Menshov (see [9]).

While the payoff function cos(x) will in a number of cases reveal nonrea-
sonableness, it will not always succeed; i.e. there are nonreasonable darts X
so that (X, cosx) is reasonable.

For example, it is easy to check using Theorem 1.8 that a convex combi-
nation of a point mass at 0 and a normal distribution is reasonable against
cosine, but it will follow from Theorem 1.16 below that it is not reasonable.

More interestingly, there are also absolutely continuous distributions with
this property. In [14], a function f ∈ C∞(R) which is real, nonnegative,
symmetric, supported on [−1, 1], not identically equal to zero and such that
its (real-valued) Fourier transform f̂(t) is monotone decreasing for t ≥ 0 (and
hence nonnegative) is constructed. After possibly rescaling, any such f is the
probability density function of some absolutely continuous random variable,
which by Theorem 1.8 is reasonable with respect to cos(x). However it is
not reasonable according to Theorem 1.14 below.

A third such example is covered by the next result which will also be
proved in Section 5. We know from either Theorem 1.8 or Theorem 1.11 that
a Bern(p) distributed random variable with distribution pδ1+(1−p)δ0 is not
reasonable with respect to cos(x). One can ask if one could "smooth out"
this distribution so that it becomes reasonable with respect to cos(x). The
following result yields a phase transition where the answer to the question
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depends on both the parameter p and the degree of "smoothing out". Note
that it also yields two darts X,Y taking values in R such that (X, cos(x)) is
reasonable, (Y, cos(x)) is not reasonable, but the independent sum of X and
Y is such that (X + Y, cos(x)) is reasonable.

Theorem 1.13. Let X1 be Bern(p) distributed and X2 be N(0,σ2) dis-
tributed. If they are independent, then X := X1 + X2 is reasonable with
respect to cos(x) if and only if

σ2d
(
p2 + (1− p)2 + 2(1− p)p cos(d)

)
+ (1− p)p sin(d) ≥ 0, ∀d ≥ 0. (2)

This implies that for p = 1/2, (X, cos(x)) is not reasonable for any σ, and
that for any p 6= 1/2 there exists σp ∈ (0,∞) such that for all σ ≥ σp,
(X, cos(x)) is reasonable, and for any σ < σp, (X, cos(x)) is not reasonable.
In addition, for p 6= 1/2, σp ≤ (1− p)p/(π|1− 2p|2).

Finally for all σ > 0 and p ∈ (0, 1), X is not reasonable.

Our next four theorems identify further classes of nonreasonable darts.
The first two of these results will be proved in Section 6.

Theorem 1.14. If X is a nondegenerate dart in R which is compactly sup-
ported, then X is not reasonable with respect to some nonnegative continuous
payoff function with compact support. Furthermore, if X is a dart in Rn for
which some projection is nondegenerate and compactly supported, then X is
not reasonable with respect to some nonnegative continuous payoff function
with compact support.

The proof of this result will in fact prove the following result.

Theorem 1.15. If X is a nondegenerate dart in R whose Fourier transform
in the complex plane is entire and contains a zero, then X is not reasonable
against some continuous payoff function. Moreover, this is still true if the
characteristic function is analytic at 0 and has a zero in its strip of regularity.

An illustrative example here are the family of probability density func-
tions on R indexed by α > 1 given by

fα(x) := Cαe
−|x|α ;

the Fourier transforms of all of these are clearly entire since α > 1. For α = 2,
we have the normal density which is stable and hence selfdecomposable and
therefore reasonable. However, for α 6= 2, Pólya ([10]) showed that the
Fourier transform has zeroes in the complex plane and hence Theorem 1.15
tells us that they are not reasonable.

Another illustrative example is X = |Z| where Z is a standard normal
random variable. The Fourier transform of X is (essentially) the Mittag-
Leffler function E1/2(z) which is known to have zeroes and hence Theorem
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1.15 tells us that X is not reasonable. It is interesting to contrast this with
Y = |C| where C is a standard Cauchy random variable which is known to
be selfdecomposable and therefore reasonable.

The next two results are proved in Sections 7 and 8 respectively.

Theorem 1.16. If X is a nondegenerate dart taking values in Rn which
has a single point mass, then there exists a nonnegative continuous payoff
function f with compact support such that (X, f) is not reasonable.

Theorem 1.17. Given any dart X in R which is not absolutely continu-
ous and whose singular part (in the Lebesgue decomposition) is compactly
supported, then there exists a nonnegative bounded payoff function f with
compact support such that (X, f) is not reasonable.

Note that in this last result, we only claim that f is bounded, not that it
is necessarily continuous. This naturally then raises the question of whether
the existence of f ’s for which (X, f) is not reasonable implies the existence
of “nice” payoff functions g for which (X, g) is not reasonable. Section 3 will
provide a number of results of this type but doesn’t allow us to determine
whether f can be taken to be continuous in Theorem 1.17. One such result
of this type is the following.

Theorem 1.18. Assume that X is a dart taking values in Rn with an abso-
lutely continuous law µX and f is a bounded payoff function on Rn such that
(X, f) is not reasonable. Then there exists a nonnegative continuous payoff
function h with compact support on Rn such that (X,h) is not reasonable.

Remark 1.19. Without absolute continuity of X, we can still, by Proposition
3.1, modify f to be bounded and have compact support but not necessarily
be continuous.

Our next two results, which will be proved in Section 9, concern opera-
tions which leave us within the class of reasonable distributions.

Let F be some set of payoff functions, and let XF be the set of darts which
are reasonable with respect to F . It is natural to ask whether X,Y ∈ XF
implies that X +Y ∈ XF (X and Y being independent of course). The next
result gives a positive answer for some classes F .

Theorem 1.20. Assume F is a family of payoff functions and assume that
X1, ..., Xm are independent darts taking values in Rn, each of which belongs
to XF . If F is any of the following sets

1. The set of all payoff functions

2. The set of all continuous payoff functions

3. The set of all bounded payoff functions
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4. The set of all bounded continuous payoff functions

5. The set of all payoff functions of the same type as cos(
∑n

j=1 xj),

then for any d1, ..., dm, D1, ..., Dm ≥ 0 such that dj ≤ Dj for all j we have
that

sup
a
Ef(a+

m∑
j=1

djXj) ≥ sup
a
Ef(a+

m∑
j=1

DjXj), ∀f ∈ F (3)

and in particular
∑m

j=1Xj ∈ XF .

Next, one would expect that the set of reasonable darts is closed with
respect to convergence in distribution. The following theorem provides a
result of this type. See (5) for some notation used here.

Theorem 1.21. Let {Xj}∞j=1 be a sequence of darts taking values in Rn
which converges in distribution to some dart X.
(i) For any f ∈ C0(Rn), d > 0, limj gXj,f (d) = g

X,f
(d). As a consequence,

for any f ∈ C0(Rn) for which (Xj , f) is reasonable for all j, we have that
(X, f) is reasonable.
(ii) The first statement in (i) is false if f ∈ C0(Rn) is replaced by f ∈ Cb(Rn).
(iii) If, in addition, Xj approaches X in total variation, then (i) is still true
if C0(Rn) is replaced by Cb(Rn).
(iv) If each Xj is reasonable with respect to Cb(Rn), then X is reasonable
with respect to Cb(Rn).

Note that in (iv) we are not claiming that (Xj , f) being reasonable for a
fixed f ∈ Cb(Rn) implies that (X, f) is reasonable.

We are mostly concerned about whether darts are reasonable rather than
whether payoff functions are reasonable. Nonetheless, we give one result of
the latter type.

Definition 1.22. A function f : Rn → R is called weakly unimodal if for
all x ∈ Rn, f(rx) is decreasing in r on [0,∞).

In Section 10, we prove

Proposition 1.23. If f is a weakly unimodal payoff function, then f is
reasonable.

The rest of the paper is organized as follows. In the second part of the
present section, we discuss what happens with a standard dartboard. In
Section 2, we simply give some elementary background, some notation and a
couple of elementary results. The theorems in the introduction are proved in
the relevant sections as stated. Finally, in Section 11, we list some questions.
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Figure 1: The dartboard is divided into 20 sectors with an irregular but
standardized numbering. The black and white regions give a single score
(the plain number of the sector), while the outer red-green double ring and
the similar treble ring half-way between the center and the rim give twice
and three times the number of the sector respectively. In the middle of the
board, the green bull’s ring gives 25 points, and the red bull’s eye 50 points.

1.2 What happens for standard darts?

We have computed numerically what happens for the standard dartboard
f in R2 assuming that the dart distribution X is uniform distribution on a
disc. We have looked at both the best place to aim and how the function
g
X,f

(d) behaves. We will see in particular that (X, f) is not reasonable.

When the disc is small enough to fit completely inside the treble 20
region, this is of course where to aim, and the expected payoff is 60 points.
When the radius increases beyond 4 mm this is no longer possible, but the
best place to aim is still at treble 20. At radius about 16 mm, we can no
longer keep the disc completely inside the 20 sector while at the same time
maximizing its intersection with the treble ring. Here the best place to aim
is somewhere in the “fat 20”, a bit above the treble 20, making a compromise
between including as much as possible of the treble 20 region while not having
too much of the disc sticking out into the 5- and 1-sectors.

At radius 33.6 mm, something interesting happens: The average score
starts to increase as the radius of the disc increases further! This is because
as the radius goes from about 33.6 to 35.7 mm, we can suddenly fit most of
both treble 20 and the double 20 into the disc. At radius 33.6 mm we score
an average of 18.45 points, but with the larger radius 35.7 mm, the score
increases to 18.60!
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gX,f (d)

Radius (mm)
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Figure 2: Two of the at least seven places where this function increases are
circled in red.

A little later, at radius 39 mm, the best place to aim suddenly jumps
from the 20-sector to the 19-sector. At 43 mm there is another jump after
which we should aim near treble 7, with fair chances of scoring 16 or 19 or
even a high treble.

As the radius increases, there are (at least!) five more places where
g
X,f

(d) increases. The most clear-cut of them is when the radius increases
from 104.8 mm to 107 mm, which is where we can fit the entire treble ring
into the disc. The last one occurs from radius 164 mm, when we only get
half the double ring into the disc, to 170 mm, which is the radius of the
whole dartboard.

Lastly, we mention that there have been some studies for the standard
dartboard with the dart being the normal distribution concerning what
g
X,f

(d) looks like and how one should play optimally (i.e., where one should
aim). See [13] and http://datagenetics.com/blog/january12012/index.
html
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2 Background, Notation and some elementary re-
sults

2.1 Various background

First, the term nondegenerate will refer to any distribution which is not a
single point mass.

Definition 2.1. We say that the random vectors X and Y have the same
type if there exist a > 0 and b ∈ Rn such that Y and aX + b have the same
distribution. We say that the functions f and h have the same type if there
exist a, c > 0, b ∈ Rn, and d ∈ R such that h(x) = cf(ax+ b) + d for all x.

If X and Y have the same type and f and h have the same type, then it
will follow from Proposition 2.8 below that (X, f) is reasonable if and only
if (Y, h) is.
Remark 2.2. It is easy to check that X|dX only depends on X’s type and
hence being selfdecomposable also only depends on the type of X.

Definition 2.3. Let X be a random vector taking values in Rn. The char-
acteristic function of X is the function φX : Rn → C defined by

φX(t) = Eexp(i(t ·X)). (4)

Next we will recall the concepts of stable and infinitely divisible distri-
butions.

Definition 2.4. A random vector X has a stable distribution if for in-
dependent copies X1 and X2 of X, and any a, b > 0, there exist constants
c > 0 and d ∈ Rn such that aX1 + bX2 is equal to cX + d in distribution.

Definition 2.5. A random vector X has an infinitely divisible distribu-
tion if for all positive m ∈ N, there exist m independent identically dis-
tributed random vectors Y1, ..., Ym such that

∑n
j=1 Yj has the same distribu-

tion as X.

As we stated earlier, it is known that all stable distributions are selfde-
composable (see [11], p. 91) and that all selfdecomposable distributions are
infinitely divisible (see [11], p. 93). It is also known that on R all nondegen-
erate selfdecomposable distributions are absolutely continuous (see [11], p.
177) and unimodal ([11], p. 404).

The following is a concept which is used to construct examples of darts
with desired properties.

Definition 2.6. Let X and Y be darts taking values in Rn with laws µX
and µY . A dart Z taking values in Rn is a convex combination of X and
Y if its law is given by µZ = pµX+(1−p)µY for some p ∈ [0, 1]. If p ∈ (0, 1),
then Z is called a nontrivial convex combination of X and Y .
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Finally, let us define three function spaces which will be used in some of
our theorems. We define Cc(Rn) ⊆ C0(Rn) ⊆ Cb(Rn) by

Cc(Rn) :=
{
f : Rn → R| f is continuous and has compact support}

C0(Rn) :=
{
f : Rn → R| f is continuous and lim

||x||→∞
f(x) = 0

}
Cb(Rn) :=

{
f : Rn → R| f is continuous and bounded

} (5)

The following lemma, whose proof is easy and left to the reader, will be
used twice.

Lemma 2.7. For any finite continuous measure µ on Rn, one has

lim
δ→0

sup
x∈R

µ({y : ‖x− y‖ < δ}) = 0.

2.2 Basic properties of gX ,f

We next give a few very simple observations concerning our functions g
X,f

(d).

Proposition 2.8. Let X and Y be two independent darts taking values in
Rn, and let f and h be two payoff functions on Rn. If ad, ap, cp > 0, dp ∈ R,
and bd, bp ∈ Rn, then the following statements hold

1. g
adX+bd,cpf(apx+bp)+dp

(d) = cpgX,f (adapd) + dp

2. g
X+Y,f

(d) ≤ g
X,f

(d)

3. g
X,f+h

(d) ≤ g
X,f

(d) + g
X,h

(d)

4. infx(f(x)) ≤ gX,f (d) ≤ supx(f(x))

Proof. This proof only requires some simple straightforward computations.
1. We compute

g
adX+bd,cpf(apx+bp)+dp

(d) = sup
a
E [cpf (ap(a+ d(adX + bd)) + bp) + dp]

= cp(sup
a
E [f ((apa+ apdbd + bp) + adapdX)]) + dp

= cp(sup
a
E [f (a+ adapdX)]) + dp = cpgX,f (adapd) + dp.

(6)
2. Due to the independence of X and Y we have that for any a ∈ Rn

Ef(a+ dX + dY ) =

∫
Ef(a+ dy + dX)dµY (y)

≤
∫

sup
a
Ef(a+ dX)dµY (y)

= sup
a
Ef(a+ dX) = g

X,f
(d)

(7)
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and thus
g
X+Y,f

(d) = sup
a

Ef(a+ dX + dY ) ≤ g
X,f

(d). (8)

3 and 4 are easily shown.

2.3 Behavior of reasonableness under projections

In this subsection, we prove a fairly straightforward result concerning the
relationship between the behavior of a dart in Rn and the behavior of its
various projections with respect to our questions.

Proposition 2.9. Let X be a dart taking values in Rn, and let h be a
nonzero linear function from Rn to R. If f is a payoff function on R, then
g
h(X),f

(d) = g
X,f◦h(d) so that (h(X), f) is reasonable if and only if (X, f ◦h)

is reasonable. Hence if X is reasonable, then h(X) is reasonable.

Proof. We have

g
h(X),f

(d) = sup
a∈R

Ef(a+ dh(X)) = sup
b∈Rn

Ef(h(b) + dh(X)) =

sup
b∈Rn

Ef(h(b+ dX)) = sup
b∈Rn

E(f ◦ h)(b+ dX)) = g
X,f◦h(d)

where h being onto was used in the second equality. The second statement
follows immediately.

3 Improvement of payoff functions

In this section, we will obtain a number of results showing that if a dart is not
reasonable against a certain payoff function, then it will be not reasonable
against a payoff function with perhaps nicer properties. Some of these will
be used later in the paper.

3.1 From nonreasonable bounded payoff functions to non-
negative compact support

Proposition 3.1. Let X be a dart taking values in Rn, and let f be a bounded
payoff function on Rn. If (X, f) is not reasonable, then there exists a bounded
nonnegative payoff function f ′ with compact support such that (X, f ′) is not
reasonable. If f is continuous, then f ′ can be taken to be continuous.

Proof. As f is bounded from below, we may assume that f ≥ 0. For any
B > 0 we can define a function hB : [0,∞) → [0,∞) to be 1 for x ≤ B, 0
for x ≥ B + 1 and linearly in between, making it continuous. From this we
define a payoff function fB by

fB(x) := f(x) · hB(||x||). (9)
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Note that f ≥ fB ≥ 0, and that if f is continuous, then so is fB. By the
monotone convergence theorem we have that

lim
B→∞

EfB(a+ dX) = Ef(a+ dX), ∀a ∈ Rn, d > 0 (10)

which easily yields
lim
B→∞

g
X,fB

(d) ≥ g
X,f

(d) (11)

for all d. Since the reverse inequality is trivial, we obtain

lim
B→∞

g
X,fB

(d) = g
X,f

(d), ∀d > 0. (12)

Some (X, fB) must not be reasonable since otherwise g
X,fB

would be de-
creasing in d for all B implying that g

X,f
is decreasing, a contradiction.

A variant of the proof of Proposition 3.1 explains why we have defined
our payoff functions to be bounded from above.

Proposition 3.2. Let X be a dart taking values in Rn. Let f : Rn → R.
(Note f is not assumed to be bounded above and so it is not necessarily a
payoff function.) Assume that Ef(a + dX) is well defined and finite for all
a ∈ Rn, d > 0. Letting, as we do for payoff functions,

g
X,f

(d) := sup
a∈Rn

Ef(a+ dX), (13)

assume that there exist d1 < d2 so that g
X,f

(d1) < g
X,f

(d2). Then there exists
a payoff function f ′ (hence bounded from above by definition) so that (X, f ′)
is not reasonable. If f is continuous, then f ′ may be taken to be continuous.

Proof. For M > 0, let fM (x) = max{f(x),M} which is continuous if f is.
By the Lebesgue dominated convergence theorem,

lim
M→∞

EfM (a+ dX) = Ef(a+ dX), ∀a ∈ Rn, d > 0 (14)

easily leading to
lim
M→∞

g
X,fM

(d) = g
X,f

(d), ∀d > 0. (15)

Exactly as in the proof of 3.1, we have that for some M , (X, fM ) is not
reasonable.

3.2 Absolutely continuous darts: making noncontinuous pay-
off functions continuous

Proof of Theorem 1.18. By Proposition 3.1, we can replace f by a nonneg-
ative bounded function with compact support which is nonreasonable. Let-
ting m denote Lebesgue measure, by Lusin’s Theorem (see [5], p. 217), for
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any ε > 0 there exists a measurable set A ⊆ Rn and a continuous non-
negative function hε ∈ Cc(Rn), such that f = hε on A, m(Ac) < ε, and
supx |hε(x)| ≤ supx |f(x)|.

For any d ≥ 0 we have that

|Ef(a+ dX)− Ehε(a+ dX)| ≤
∫
{x:a+dx∈Ac}

|f(a+ dx)− hε(a+ dx)|dµX(x)

≤ 2 sup
y
|f(y)|µX({x : a+ dx ∈ Ac})

(16)
and thus

g
X,hε

(d) ≤ sup
a

(
Ef(a+ dX) + 2 sup

y
|f(y)|µX({x : a+ dx ∈ Ac})

)
g
X,hε

(d) ≥ sup
a

(
Ef(a+ dX)− 2 sup

y
|f(y)|µX({x : a+ dx ∈ Ac})

) (17)

If (X, f) is not reasonable, then there exists d1, d2 ≥ 0 such that d1 < d2
and g

X,f
(d1) < g

X,f
(d2). As µX is an absolutely continuous finite measure

there exists a δ > 0 such that for any measurable set E with m(E) < δ, we
have that

µX(E) <
g
X,f

(d2)− gX,f (d1)
8 supy |f(y)|

. (18)

Now note that by the properties of Lebesgue measure, m({x : a + dx ∈
Ac}) = m((Ac − a)/d) = m(Ac)/dn < ε/dn, and now choose ε > 0 so that
ε/dn1 < δ. For all d ≥ d1 we now get

g
X,hε

(d) ≤ sup
a

(
Ef(a+ dX) + 2 sup

y
|f(y)|

g
X,f

(d2)− gX,f (d1)
8 supy |f(y)|

)
= g

X,f
(d) +

g
X,f

(d2)− gX,f (d1)
4

(19)

and

g
X,hε

(d) ≥ sup
a

(
Ef(a+ dX)− 2 sup

y
|f(y)|

g
X,f

(d2)− gX,f (d1)
8 supy |f(y)|

)
= g

X,f
(d)−

g
X,f

(d2)− gX,f (d1)
4

(20)

We now get that

g
X,hε

(d2)− gX,hε (d1) ≥ gX,f (d2)− gX,f (d1)−
g
X,f

(d2)− gX,f (d1)
2

=
g
X,f

(d2)− gX,f (d1)
2

> 0

(21)

and thus (X,hε) is not reasonable.
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3.3 Making payoff functions with a countable number of dis-
continuities continuous

Theorem 3.3. Assume that X is a continuous dart taking values in Rn
and f is a bounded payoff function on Rn such that (X, f) is not reasonable.
Then if f has at most a countable number of discontinuities, then there exists
a continuous nonnegative payoff function h with compact support on Rn such
that (X,h) is not reasonable.

Proof. In view of Proposition 3.1, it suffices to find an h which is bounded
and continuous which we now do.

If (X, f) is not reasonable, there exist d1, d2 ≥ 0 such that d1 < d2 and
g
X,f

(d1) < g
X,f

(d2). Let {xk}∞k=1 be the discontinuity points of f .
By Lemma 2.7, we have that for any ε > 0 there exists a sequence of

positive numbers {δk}∞k=1 such that for all k we have

µX

(
{y ∈ Rn : ||x− y|| < δk

d1
}
)
<

ε

2k
, ∀x ∈ Rn. (22)

Now define the set, which depends upon ε

A =
∞⋃
k=1

{z ∈ Rn : ||xk − z|| < δk}. (23)

Note that A is an open set which contains all of the discontinuities of f . Thus
f is continuous on the closed set Ac, and therefore by the Tietze Extension
Theorem, there exists a continuous function hε on Rn such that hε is equal
to f on Ac and supx |hε(x)| ≤ supx |f(x)|. We now have

|Ef(a+ dX)− Ehε(a+ dX)| ≤
∫
{x:a+dx∈A}

|f(a+ dx)− hε(a+ dx)|dµX(x)

≤ 2 sup
y
|f(y)|µX({x : a+ dx ∈ A})

≤ 2 sup
y
|f(y)|

∞∑
k=1

µX({x : a+ dx ∈ {z ∈ Rn : ||xk − z|| < δk}})

≤ 2 sup
y
|f(y)|

∞∑
k=1

µX

(
{x ∈ Rn : ||xk − a

d
− x|| < δk

d
}
)
.

Equation (22) now gives us that for all d ≥ d1

|Ef(a+ dX)− Ehε(a+ dX)| ≤ 2 sup
y
|f(y)|ε. (24)

From this we get that for all d ≥ d1
g
X,hε

(d) ≤ g
X,f

(d) + 2 sup
y
|f(y)|ε

g
X,hε

(d) ≥ g
X,f

(d)− 2 sup
y
|f(y)|ε

(25)
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which implies

g
X,hε

(d2)− gX,hε (d1) ≥ gX,f (d2)− gX,f (d1)− 4 sup
y
|f(y)|ε. (26)

Thus if we choose

ε <
g
X,f

(d2)− gX,f (d1)
4 supy |f(y)|

(27)

then we see that (X,hε) is not reasonable.

4 Selfdecomposable distributions are reasonable

We begin this section with proving Theorem 1.7.

Proof of Theorem 1.7. Fix f and s > 0. From X|dX it follows that sX|dsX.
Choose a random variable Z so that if Z andX are independent, then sX+Z
and dsX have the same distribution. By Proposition 2.8 we have that

g
X,f

(s) = g
sX,f

(1) ≥ g
sX+Z,f

(1) = g
dsX,f

(1) = g
X,f

(ds). (28)

Remark 4.1. The point of X|dX is that you can then simulate being at
distance ds when you are standing at distance s by randomizing your target.
Hence you can do at least as well at distance s as at distance ds with respect
to any payoff function.

As all selfdecomposable distributions are infinitely divisible (see [11], p.
93), it is natural to ask whether all darts that have infinitely divisible distri-
butions are reasonable. However, it is immediate from either Theorem 1.8
or Theorem 1.11 that the Poisson distribution (the building block of almost
all infinitely divisible distributions) is not reasonable.

We end this section by listing some examples of selfdecomposable distri-
butions which are not stable. We won’t list the original papers where these
were proved but by looking at [11] and [12] one obtains almost all of these
as well as others.

The list is as follows: all gamma distributions, Laplace distribution,
Pareto distribution, Gumbel distribution, logistic distribution, log-normal
distribution, F-distribution, t-distribution, hyperbolic-sine and hyperbolic-
cosine distributions, the Beta distribution of the second kind (sometimes
called the beta prime distribution, not to be confused with the ordinary Beta
distribution), so-called "generalized Gamma convolutions" (see [2]) and the
half Cauchy distribution (which is interesting in light of the known fact that
the half normal distribution is not even infinitely divisible and hence not
selfdecomposable, as well as not being reasonable as we saw in the introduc-
tion).
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5 Reasonableness with respect to cos(x)

In this section, we will prove Theorem 5.1 (which is a strengthening of The-
orem 1.8), Theorem 1.11, Proposition 1.12 and Theorem 1.13.

5.1 The Cosine payoff function

We now state and prove an extension of Theorem 1.8. It will be an extension
since it will deal with darts in Rn and because we will obtain an explicit
formula for g

X,f
(d) which will lead to a necessary and sufficient condition for

reasonableness with respect to our "cosine function".

Theorem 5.1. Let X be any dart taking values in Rn with characteristic
function φX , and let f(x) := cos

(∑n
j=1 xj

)
. Then for any d > 0 we have

that

Ef(a+ dX) = |φX(d~1)| cos

 n∑
j=1

aj + Arg(φX(d~1))

 , (29)

where ~1 = (1, 1, ..., 1).
In particular this implies that if f(x) = cos

(∑n
j=1 xj

)
, then g

X,f
(d) =∣∣∣φX(d~1)∣∣∣, and hence (X, f) is reasonable if and only if

∣∣∣φX(d~1)∣∣∣ is decreasing
in d on (0,∞).

Proof. We have that

Ef(a+ dX) = E cos

 n∑
j=1

aj + d~1 ·X

 = Re

Eexp

i n∑
j=1

aj + id~1 ·X


= Re

(
ei

∑n
j=1 ajEeid

~1·X
)
= Re

(
ei

∑n
j=1 ajφX(d~1)

)
= Re

(
ei

∑n
j=1 aj |φX(d~1)|eiArg(φX(d~1))

)
= |φX(d~1)| cos

 n∑
j=1

aj +Arg(φX(d~1))


(30)

and thus
g
X,f

(d) = |φX(d~1)|. (31)

Besides giving us the means to investigate reasonableness, Theorem 5.1
also implicitly tells us in one dimension which a’s maximize E cos(a+ dX).
Note that the points of maximization can move around in a discontinuous
way, as the following example demonstrates.
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Example 5.2. Let X be a dart taking values in R such that P (X = 1) =
P (X = −1) = 1/2. The characteristic function of X is φX(t) = cos(t), and
by Theorem 5.1 we see that X is not reasonable. Furthermore, by the same
theorem, E(cos(a + dX)) is always optimized at a = −Arg(φX(d)) + 2kπ,
k ∈ Z, and so as d changes, the optimal place to aim switches back and forth
between 2kπ and π + 2kπ.

Remark 5.3. (i) Note that when d ≥ 2 the set of a’s which maximizes (29) is
very large. For any fixed a1, ..., an−1, there are infinitely many an such that
a = (a1, ..., an) maximizes Ef(a+ dX).
(ii) Theorem 5.1 implies that if φX(d~1) = 0, then it does not matter where
we aim when we are at distance d.

There are two simple ways of combining random variables, adding in-
dependent copies or taking convex combinations. Using Theorem 5.1 and
elementary properties of characteristic functions (including the fact that the
characteristic function of a symmetric random vector is real-valued) one eas-
ily obtains the following two corollaries.

Corollary 5.4. Let X and Y be two independent darts taking values in Rn

and let f(x) := cos
(∑n

j=1 xj

)
. If (X, f) and (Y, f) are both reasonable, then

(X + Y, f) is also reasonable.

Corollary 5.5. Let X and Y be two independent darts taking values in Rn

which are symmetric about the origin and let f(x) := cos
(∑n

j=1 xj

)
. If

(X, f) and (Y, f) are both reasonable, then (Z, f) is also reasonable, where
Z is any convex combination of X and Y .

Remark 5.6. A special case would be if X is a point mass of weight 1 at 0
and Y is a standard normal distribution. Then any convex combination of
them would be reasonable with respect to cos(x). However, one can check
(by computing the characteristic function) that if we modify Y by adding a
constant but leave X as is, then any nontrivial convex combination will not
be reasonable with respect to cos(x).

5.2 Two point masses and almost periodicity

We now move on to the proof of Theorem 1.11 and Proposition 1.12.

Proof of Theorem 1.11. We first prove the first statement concerning ran-
dom variables.

We begin by giving the idea of the proof. The characteristic function
φd(t) for the (normalized) discrete component of the distribution is what is
called almost periodic. This means it is periodic up to a small error. Since
there is at least two point masses, |φd(t)| becomes less than 1. Therefore,
by almost periodicity, |φd(t)| is not monotone. We now need to make sure,
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in view of Theorem 1.8, that the contribution of the continuous part of
the characteristic function, |φc(t)|, does not destroy this nonmonotonicity.
However, it is known that |φc(t)| goes to 0 in a Cesaro sense. Finally, the
almost periodicity gives us that the nonmonotonicity of |φd(t)| occurs on a
periodic basis and hence can be shown to occur when |φc(t)| is small, thereby
not destroying the nonmonotonicity.

We now begin the proof. Partition the distribution of X, µX , into its
atomic and continuous pieces

µX = pµd + (1− p)µc

where µd and µc are then probability measures. We then have

φX(t) = pφd(t) + (1− p)φc(t)

where φd and φc are the characteristic functions corresponding to µd and µc.
First, we know from [3] (Theorem 6.2.5, p. 164) that

lim
T→∞

1

T

∫ T

0
|φc(t)|2dt = 0. (32)

Since φc(t) is also uniformly continuous, it follows that for every ε > 0, L
and M , there exists x = x(ε, L,M) ≥M so that

|φc(t)| ≤ ε on [x, x+ L].

Next, since there are at least two point masses, µd is nondegenerate and
hence |φd(t)| is not constant. In particular, there exists t0 > 0 and ε0 > 0 so
that

|φd(t0)| < 1− ε0.

Next it is known (see [1], p.43-44) that φd(t) is an almost periodic function.
This implies (see [1], p.43-44) that there exists L so that every interval of
length L in R contains a τ so that

‖φd(t+ τ)− φd(t)‖∞ <
ε0
10
. (33)

With this L, by the above, choose x = x(pε010 , L, t0) ≥ t0 so that

|φc(t)| ≤
pε0
10

on [x, x+ L]. (34)

Choosing now τ ≥ 0 as above in the interval [x− t0, x− t0 +L], we have by
(33) that

|φd(t0 + τ)| < 1− 3ε0
4
.

This implies, using (34), that

|φX(t0 + τ)| < p(1− 3ε0
4

) +
(1− p)pε0

10
≤ p(1− ε0

2
).
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Next, choose y = y(pε010 , L, t0 + τ) ≥ t0 + τ so that

|φc(t)| ≤
pε0
10

on [y, y + L]. (35)

Choosing now τ ′ as above in the interval [y, y + L], we have by (33) that

|φd(τ ′)| > 1− ε0
10
.

This implies, using (35) that

|φX(τ ′)| > p(1− ε0
10

)− (1− p)pε0
10

≥ p(1− ε0
5
).

We therefore have that τ ′ ≥ t0 + τ > 0 but

|φX(τ ′)| ≥ p(1−
ε0
5
) > p(1− ε0

2
) ≥ |φX(t0 + τ)|.

This implies that |φX(t)| is not decreasing in t and hence by Theorem 5.1,
(X, cos(x)) is not reasonable.

The random vector case easily follows from the 1-dimensional case just
proved, the fact that if X has at least two point masses, then at least one of
the marginals has two point masses and Proposition 2.9.

Proof of Proposition 1.12. Assume thatX is reasonable with respect to cos(x).
Then, by Theorem 1.8, |φX(t)| must be decreasing in t on [0,∞). However,
by [3] (Theorem 6.2.5, p. 164) we have, since the distribution is continuous,
that

lim
T→∞

1

T

∫ T

0
|φX(t)|2dt = 0. (36)

Together these imply that φX(t) goes to zero as t → ∞, which gives a
contradiction. Thus X is not reasonable with respect to cos(x).

5.3 An example with a phase transition

We now move on to the proof of Theorem 1.13.

Proof of Theorem 1.13. By Theorem 5.1 X is reasonable with respect to
cos(x) if and only if |φX(d)| is decreasing in d, d > 0. Due to independence,
the characteristic function of X is

φX(d) = φX1(d)φX2(d) = (1− p+ peid)exp(−σ2d2/2). (37)

The absolute value of this is decreasing if and only if

|φX(d)|2 =
(
p2 + (1− p)2 + 2(1− p)p cos(d)

)
exp(−σ2d2) (38)
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is decreasing. This in turn is decreasing if and only if its derivative with
respect to d is nonpositive on [0,∞). We have that

d
dd
(
|φX(d)|2

)
= −2exp(−σ2d2)

[
σ2d
(
p2+(1−p)2+2(1−p)p cos(d)

)
+(1−p)p sin(d)

]
(39)

and thus X is reasonable with respect to cos(x) if and only if

σ2d
(
p2 + (1− p)2 + 2(1− p)p cos(d)

)
+ (1− p)p sin(d) ≥ 0, ∀d ≥ 0. (40)

Note that if p = 1/2, then it is easy to see that |φX(π + 2mπ)| = 0 for all
m ∈ N, but the characteristic function is still not identically zero, and is
thus not decreasing. Now assume that p 6= 1/2. We have that

p2 + (1− p)2 + 2(1− p)p cos(d) = |1− p+ peid|2 ≥ |1− 2p|2 > 0, ∀d. (41)

Thus

σ2d
(
p2+(1−p)2+2(1−p)p cos(d)

)
+(1−p)p sin(d) ≥ σ2d|1−2p|2+(1−p)p sin(d).

(42)
As sin(d) ≥ 0 for d ∈ [0, π], it is easy to see that if σ2π|1 − 2p|2 ≥ (1 − p)p
then

σ2d
(
p2 + (1− p)2 + 2(1− p)p cos(d)

)
+ (1− p)p sin(d) ≥ 0, ∀d ≥ 0. (43)

Thus p 6= 1/2 and σ2 ≥ (1− p)p/(π|1− 2p|2) is a sufficient condition for X
to be reasonable with respect to cos(x).

Since, for all p ∈ (0, 1), the Fourier transform of Bern(p) has a zero in
the complex plane, the final claim follows from Theorem 1.15.

6 Compactly supported darts

In this section, we prove Theorems 1.14 and 1.15.

Proof of Theorem 1.14. In view of Proposition 3.1, it is sufficient to find a
bounded continuous payoff function with respect to which X is not reason-
able. Next, by Proposition 2.9, it then suffices to show that this holds in one
dimension.

By [7] (see Theorem 7.2.3, p. 202) we have that the characteristic func-
tion of X, φX , is an entire function with infinitely many zeros, none of which
of course lie on the imaginary axis. Let z0 be any zero of φX . As the char-
acteristic function is entire, all of its zeros are isolated, and thus there exists
a d0 > 1 such that φX(d0z0) 6= 0.

Now let c, ω ∈ R be defined so that

z0 = ω − ic, ω 6= 0 (44)
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and define the function f : R→ R by

f(x) := ecx cos(ωx) = Re
(
e(c+iω)x

)
= Re

(
eiz0x

)
. (45)

Note that f is not bounded. For any d > 0 and a ∈ R we have that

Ef(a+ dX) = ecaRe
(
eiωaEeiz0dX

)
= ecaRe

(
eiωaφX(dz0)

)
(46)

and so by taking d = 1 we get

Ef(a+X) = 0, ∀a. (47)

Furthermore, for a0 := −Arg (φX(d0z0)) /ω this gives us

Ef (a0 + d0X) = exp
(
−cArg (φX(d0z0))

ω

)
|φX(d0z0)| > 0 (48)

Since d0 > 1, this gives us the type of nonreasonable behavior we are after.
We now however have to modify f so that it is bounded while maintaining
this behavior.

As X is bounded, there is a B > 0 such that P (d0|X| ≤ B) = 1. Now let
us define the payoff function h by h(x) := f(x) for |x| ≤ |a0| + B, h(x) :=
− sup|y|≤|a0|+10B(|f(y)|) for |a0|+2B ≤ |x|, and for |a0|+B ≤ |x| ≤ |a0|+2B
it is defined as

h(x) :=
|x| − (|a0|+B)

B

(
−f(x)− sup

|y|≤|a0|+10B
(|f(y)|)

)
+ f(x). (49)

Note that h is continuous and bounded and that

h(x) ≤ f(x), |x| ≤ |a0|+ 10B

h(x) ≤ 0, |a0|+ 2B ≤ |x|.
(50)

To see the first of these inequalities, note that for |a0|+B ≤ |x| ≤ |a0|+2B,
h(x) is equal to f(x) plus a nonpositive term.

With this definition we have that

Eh(a0 + d0X) = Ef(a0 + d0X) > 0 (51)

and
Eh(a+X) ≤ Ef(a+X) = 0, 0 ≤ |a| ≤ |a0|+ 9B

Eh(a+X) ≤ 0, |a0|+ 9B ≤ |a|.
(52)

Thus g
X,h

(1) ≤ 0 but g
X,h

(d0) > 0 implying that (X,h) is not reasonable.
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Remark 6.1. 1. Note that in (46), if c and φX(dz0) are nonzero, then one can
make Ef(a+ dX) arbitrarily large by choosing a appropriately. Thus if we
allowed for unbounded payoff functions, we would have that g

X,f
(d) ∈ {0,∞}

for all d > 0.
2. The second half of the proof applies more generally and shows that if
one has a compact dart and a continuous function which is "nonreasonable",
then f can be modfied to be bounded and continuous.

Proof of Theorem 1.15. The same proof works for both statements. By the
proof of Theorem 1.14, we have that if z0 = ω − ic, ω 6= 0 is a zero of the
Fourier transform within its strip of analyticity and

f(x) := ecx cos(ωx) = Re
(
e(c+iω)x

)
= Re

(
eiz0x

)
, (53)

then
sup
a∈R

Ef(a+X) = 0 (54)

and for d slightly larger than 1,

sup
a∈R

Ef(a+ dX) > 0. (55)

We can now apply Proposition 3.2 to conclude that X is not reasonable
against some continuous payoff function.

7 Having a point mass implies not reasonable

In this section, we prove Theorem 1.16.

Proof of Theorem 1.16. In view of Proposition 3.1, it is sufficient to find a
bounded continuous payoff function with respect to which X is not reason-
able.

We assume without loss of generality that P (X = 0) > 0. Since X =
(X1, ..., Xn) is nondegenerate, at least one of X1, ..., Xn must be nondegen-
erate which we assume to be X1. Let h be defined by h(x) = x1. If we
find a payoff function k for X1 so that (X1, k) is not reasonable, then by
Proposition 2.9, we will have that (X, k ◦ h) is not reasonable. Also, k be-
ing bounded and continuous implies that k ◦ h is also. Hence it suffices to
consider the 1-dimensional case.

If X1 has two or more point masses, then Theorem 1.11 yields our func-
tion k. Otherwise, we may assume that X1 has only 0 as a point mass.
In view of Proposition 3.1, we need only find a continuous bounded payoff
function with respect to which X1 is not reasonable.
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In this case, for all δ ∈ (0, 1/2) we define

kδ(x) =


1− |x|δ , |x| ≤ δ
0, δ < |x| < 1− δ
P (X1=0)

2 · ( |x|δ + 1− 1
δ ), 1− δ ≤ |x| ≤ 1

P (X1=0)
2 , |x| ≥ 1.

(56)

Note that kδ is continuous and bounded by 1 in absolute value for all δ. It
is easy to show that for any fixed δ

lim
d→∞

g
X,kδ

(d) ≥ P (X1 = 0) +
P (X1 = 0)

2
, (57)

and so we only need to show that there exist d > 0 and δ such that g
X1,kδ

(d) <

P (X1 = 0) + P (X1=0)
2 . We will do this by showing that we can find d > 0

and δ so that g
X1,kδ

(d) is arbitrarily close to P (X1 = 0).
For any ε > 0 we can choose a d0 > 0 such that

P

(
|d0X| >

1

2

)
< ε. (58)

Next, using Lemma 2.7, it can easily be shown that

lim
δ→0

(
g
X1,kδ

(d0)
)
≤ P (X1 = 0) +

P (X1 = 0)

2
ε. (59)

Thus there exist d > 0, δ ∈ (0, 1/2) such that

g
X1,kδ

(d) < P (X1 = 0) +
P (X1 = 0)

2

as desired.

The following example demonstrates other interesting things which can
occur with a single point mass. Namely, there is a pair (X, f) with f bounded
such that g

X,f
(d) is strictly increasing in d. Let X have law

µX =
δ0
2

+
µZ
2

where Z is N(0, 1). Let f be a payoff function on R defined by

f(x) =


1, x = 0

0, 0 < |x| < 1
1
2 , |x| > 1.
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It is elementary and left to the reader to check that

g
X,f

(d) =
1

2
+

1

4
P (|Z| > 1

d
). (60)

Note that it is impossible to construct an example of a strictly increasing
g
X,f

(d) where f is bounded and continuous, as it can be shown that for any
dart X and any bounded continuous payoff function f

lim
d→0

g
X,f

(d) = sup
x
f(x) = sup

d>0
g
X,f

(d).

8 Singular measures and reasonableness

In this section, we prove Theorem 1.17. We mention that the proof is similar
to the proof of Theorem 1.16.

Proof of Theorem 1.17. In view of Proposition 3.1, it is sufficient to find a
bounded payoff function with respect to which X is not reasonable.

Write the distribution of X as pµs + (1 − p)µac where p > 0, µs is
a singular probability measure, µac is an absolutely continuous probability
measure and N is a Lebesgue null set on which µs is concentrated. Without
loss of generality N ⊆ [−1, 1]. We can assume that p < 1 and µac is not
compactly supported since otherwise the result would follow from Theorem
1.14.

We consider the payoff function f which is 2/p on N , 1 on [−2, 2]c and
0 otherwise.

From distance 1, we can get payoff 2 + P(|X| > 2) by aiming at the
origin. Assume now that we are at distance t < 1. If we aim at some point
in [−1− t, 1+ t]c, then we cannot hit the set N noting that any translate and
scaling of µac gives probability 0 to N . Therefore, in this case, our expected
payoff would be at most 1. On the other hand, if we aim at some point
in [−1 − t, 1 + t], our payoff would be at most 2 + P(|X| > 1

t − 1). For t
sufficiently small, 1

t − 1 > 2 and X will have some mass between distance 2
and distance 1

t − 1. For such t we will score worse at distance t than at the
larger distance 1, and therefore (X, f) is not reasonable.

9 Closure properties

In this section, we prove Theorems 1.20 and 1.21.
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9.1 Independent sum of reasonable darts

Proof of Theorem 1.20. The theorem in fact is true for any class F satisfying
the following property.{

h : Rn → R | h(x) := Ef(x+

m∑
i=1

diXi), di ≥ 0 ∀i, f ∈ F ,

}
⊆ F , (61)

for any independent darts X1, ...., Xm. One easily checks that the classes
of payoff functions listed in the statement of the theorem all satisfy this
property. We now prove the theorem for any class F satisfying this property.

It is easily seen by induction that it suffices to prove the m = 2 case.
Let X,Y ∈ XF . Fix an f ∈ F , and choose d1, d2, D1, D2 ≥ 0 such that
d1 ≤ D1, d2 ≤ D2 and define the function

h(x) = Ef(x+ d1X). (62)

Since h ∈ F by assumption, we have that Y is reasonable with respect to h,
and thus

sup
a
Eh(a+ d2Y ) ≥ sup

a
Eh(a+D2Y ) (63)

and from this we get, using the independence of X and Y , that

sup
a
Ef(a+ d1X + d2Y ) = sup

a

∫
Ef(a+ d1X + d2y)dµY (y)

= sup
a

∫
h(a+ d2y)dµY (y) = sup

a
Eh(a+ d2Y )

≥ sup
a
Eh(a+D2Y ) = sup

a

∫
h(a+D2y)dµY (y)

= sup
a

∫
Ef(a+ d1X +D2y)dµY (y)

= sup
a
Ef(a+ d1X +D2Y ).

(64)
And by using the same argument again with X and Y reversed, it follows
that

sup
a
Ef(a+ d1X + d2Y ) ≥ sup

a
Ef(a+D1X +D2Y ) (65)

as desired. This clearly implies that X + Y ∈ XF .

9.2 Convergence in distribution

Proof of Theorem 1.21. (i) Let f ∈ C0(Rn) and fix d > 0. We will begin
by showing that lim infj→∞ gXj,f (d) ≥ g

X,f
(d) which holds even if f is only

bounded. To see this, one fixes a ∈ Rn, notes that

lim inf
j→∞

g
Xj,f

(d) ≥ lim inf
j→∞

Ef(a+ dXj) = Ef(a+ dX) (66)
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and then takes a supremum over a.
The other direction requires a little more work and uses the fact that

f ∈ C0(Rn). One first notes (by aiming near infinity) that for any dart Y ,
g
Y,f

(d) ≥ 0. One also easily notes that if g
Y,f

(d) > 0, then the supremum in
the definition of g

Y,f
(d) is obtained.

Now if g
Xj,f

(d) does not go to g
X,f

(d), then there exists ε0 > 0 and some
subsequence {jk} such that

lim
k→∞

g
Xjk

,f
(d) = g

X,f
(d) + ε0. (67)

By the above statements, the supremum in the definition of g
Xjk

,f
(d) is

obtained for large k; let ajk be some such point. Using tightness of {Xn}∞n=1,
one has that

lim
a→∞

Ef(a+ dXj) = 0

uniformly in j from which it easily follows that {ajk} is contained in a
bounded set. One can therefore extract a further subsequence which con-
verges to some a∞. We may assume to simplify the notation that the whole
sequence converges.

We now have that ajk + Xjk converges to a∞ + X in distribution and
hence

lim
k→∞

g
Xjk

,f
(d) = lim

k→∞
Ef(ajk + dXjkt

) = Ef(a∞ + dX) ≤ g
X,f

(d)

giving a contradiction.

(ii) Let Xk be uniform distribution on {0, 1/k, 2/k, . . . , 1} and X be
uniform distribution on [0, 1]. Let f be the following bounded continuous
function. It will be zero on

(⋃∞
m=0[2m−

1
10 , 2m+ 1 + 1

10 ]
)c and on [2m −

1
10 , 2m+ 1+ 1

10 ] it will be any bounded continuous function satisfying (1) it
takes values in [0, 1], (2) it takes the value 1 at each of the points {2m, 2m+
1/m, 2m + 2/m, . . . , 2m + 1}, (3) it takes the value 0 at the two endpoints
of the interval and (4) the set of points in the interval where f is zero, has
Lebesgue measure at least .9. We will then have that for every k, g

Xk,f
(1) = 1

(by aiming at 2k) while it is clear that g
X,f

(1) ≤ 1/2.

(iii) is very easy and left to the reader.

(iv) By (i), it follows that X is reasonable with respect to C0(Rn). It
follows now from Proposition 3.1 thatX is reasonable with respect to Cb(Rn)
as desired.

10 Reasonable payoff functions

In this section, we prove Proposition 1.23
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Proof of Proposition 1.23. Fix a dart X taking values in Rn. For any 0 <
d1 < d2 we have by the weak unimodality of f that

g
X,f

(d1) = sup
a
Ef(a+ d1X) = sup

a
Ef

(
d1a

d2
+ d1X

)
= sup

a
Ef

(
d1
d2

(a+ d2X)

)
≥ sup

a
Ef(a+ d2X) = g

X,f
(d2).

(68)

Remark 10.1. If f : Rn → R has the property that there exists y in Rn such
that f(rx + y) is decreasing in r, where r in [0,∞), for all x in Rn, then f
is of the same type as a weakly unimodal function, and is thus reasonable.

Note also that if f(x) = arctan(||x||), then it is easy to check that for
any dart X, g

X,f
(d) = supx f(x) for all d implying that (X, f) is reasonable.

The example can be extended by noting that any payoff function f with
the property that there exist arbitrarily large balls in Rn where f(x) is
arbitrarily close to supx∈Rn f(x) would also be reasonable for any dart X
and that g

X,f
(d) = supx f(x) for all d.

11 Questions

Question 11.1. Is there a dart which is reasonable w.r.t. all bounded payoff
functions, but not all payoff functions?

Question 11.2. Is there a dart which is reasonable w.r.t. all (bounded) con-
tinuous payoff functions, but not all (bounded) payoff functions?

Question 11.3. If (X, f) and (Y, f) are reasonable, does it follow that (X+
Y, f) is reasonable (where of course X and Y are independent)?

Question 11.4. Are there reasonable payoff functions which are not of the
same type as a weakly unimodal function nor have the behavior exemplified
by arctan(x)?

Question 11.5. Is the second statement in Theorem 1.21(i) true if the payoff
function is only assumed to be continuous and bounded?

Question 11.6. Is there an example of a reasonable dart which is not self-
decomposable?

Question 11.7. Is there an example of a reasonable one-dimensional dart
which is not unimodal?

Question 11.8. Is there an example of a reasonable dart which is not in-
finitely divisible?
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Question 11.9. Is there an example of a reasonable nondegenerate one-
dimensional dart which is not absolutely continuous?

Note that if the answer to Question 11.7, 11.8, or 11.9 is yes, then this would
imply that the answer to Question 11.6 is also yes.
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