
Noise Sensitivity and Stability of Deep Neural Networks for
Binary Classification

Johan Jonasson ∗ Jeffrey E. Steif † Olof Zetterqvist ‡

Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden

Abstract

A first step is taken towards understanding often observed non-robustness phenomena of deep
neural net (DNN) classifiers. This is done from the perspective of Boolean functions by asking if
certain sequences of Boolean functions represented by common DNN models are noise sensitive
or noise stable, concepts defined in the Boolean function literature. Due to the natural random-
ness in DNN models, these concepts are extended to annealed and quenched versions. Here we
sort out the relation between these definitions and investigate the properties of two standard DNN
architectures, the fully connected and convolutional models, when initiated with Gaussian weights.

Keywords: Boolean functions, Noise stability, Noise sensitivity, Deep neural networks, Feed
forward neural networks

1 Introduction
The driving question of this paper is how robust a typical binary neural net classifier is to input
noise, i.e. for a typical neural net classifier and a typical input, will tiny changes to that input make
the classifier change its mind? When asking this, we take inspiration from phenomena observed for
deep neural networks (DNN) used in practice and use that inspiration to give mathematically rigorous
answers for some simple DNN models under one (of several possible) reasonable interpretations of the
question. It is not a prerequisite for the reader to be familiar with DNNs to find the topic interesting
and any Machine Learning lingo will be explained shortly.

DNNs have shown results that range from good to staggering in many different data-driven areas,
e.g. for prediction and classification. One of many reasons for this is that with sufficiently large models,
neural networks can approximate any function [?]. However, there is much to be discovered about
these black box models, two concerns being about robustness and optimal model design. Studies have
shown that DNNs are vulnerable to various attacks, where adding small noise to inputs can lead to
significant differences in the output [? ?]. For example, an image that is clearly of a fish which a
DNN classifier also strongly believes is a fish can be such that only changing it by a tiny amount of
random noise suddenly makes the classifier assign high probability to that it is now a dog. This raises
the question of how stable DNN models tend to be under small perturbations such as these. Obviously,
any non-trivial classification function must have the property that for some input, only a tiny amount
of change leads to a different output. However, how typical is an input ω such that the output f(ω)
changes from tiny amounts of change in ω? In this formulation, one can clearly interpret the word
“typical” in many different ways and also consider many different ways of defining what a tiny change
is.

∗jonasson@chalmers.se
†steif@chalmers.se
‡olofze@chalmers.se

1

To take some small but rigorous steps towards answers, we will in this paper focus on the setting
where the input into the DNN is a vector ω of binary bits: ω ∈ {−1, 1}n, and the output is binary
classification, f(ω) ∈ {−1, 1}.

This point of view is not new and can be seen in Boolean networks. Here some research has been
done for different noise settings, but to the best of our knowledge, it seems that none of it is close to
what we propose, and little is strictly rigorous. To mention a few, [?] and [?] work in a Boolean
network setting. In terms of DNNs, one is then considering a recurrent neural network model with the
exact same weight matrix at each layer. The first of these papers considers small changes in the input,
and the second paper considers small changes in the network structure. Both conclude that the final
output (i.e. the fixed point) is robust to these changes.

The perhaps most natural way to talk about a “typical input”, and the one that we are going to
adopt, is to consider an input generated at random from a given probability distribution on {−1, 1}n
(e.g. if we are considering one of the standard benchmark problems of classifying handwritten digits,
we would e.g. consider inputting handwritten digits drawn from a probability distribution reflecting
how people actually write digits). Then one asks what the probability is that the input is such that
the DNN model changes its classification by changing the input in a tiny way.

We prove results for a fully connected DNN architecture with input noise which are valid for arbi-
trary probability distributions over the input and the noise (as long as the noise with high probability
actually produces a change of at least one input bit). However, since the concepts studied are usually
understood to assume uniform input distribution and pure noise, i.e. each input bit changes with some
tiny predetermined probability independently over the bits, the presentation will be made under these
conditions. However, in Sections 3.1 and 3.2, it becomes apparent that the sensitivity properties for
fully connected DNN models hold under the most general conditions possible on the input distribution
and the noise as will be commented on there. The later section’s results rely however on uniform input
and pure noise.

In summary, we intend to analyse robustness of DNNs to noise from the perspective of Boolean
functions, i.e. to consider those feed-forward DNNs that represent functions with input in {−1, 1}n and
output in {−1, 1} and analyse how sensitive these are to small random noise to random input. Doing
this, we find ourselves in, or at least very close to, the setting of the research field of noise sensitivity
and noise stability of Boolean functions, concepts introduced in [?]. The standard references nowadays
to these concepts are the textbooks [? ?]. We will return with exact definitions and extensions of the
concepts shortly, but in short, noise sensitivity means what we already said: a Boolean function f is
noise sensitive if for large n, ω ∈ {−1, 1}n uniformly random and η that differs from ω by changing
a tiny random amount of randomly chosen bits, then f(ω) and f(η) are virtually uncorrelated. One
says that f is noise stable if such tiny changes are very unlikely to change the output of f . (Clearly, a
rigorous definition must be in terms of asymptotics as n→ ∞). The question in focus now becomes

Is a Boolean function represented by a given DNN noise sensitive or noise stable?

To further restrict the setting, the activation function will at all layers be assumed to be the sign
function, and the linear transformation at a given node will always be without a bias term. Neither
of these restrictions is common in practice, of course. Still, one can at least arguably claim that since
the idea of feeding the output of a neuron into an activation function is to decide if that neuron fires
or not, the sign function is “the ideal” activation (but, of course, not used in practice because of the
difficulty in training).

All in all, precisely and in a way that explains the DNN lingo, each model we consider will be
such that there is a given Boolean function h, a given so called depth T and given so called layer sizes
n1, n2, . . . , nT . With those given, we are considering Boolean functions f on Boolean input strings
ω ∈ {−1, 1}n = {−1, 1}n0 that can be expressed by a choice of matrices W1, . . . ,WT , Wt ∈ Rnt×nt−1

for t = 1, . . . , T and for ω = ω0 ∈ {−1, 1}n taking

ωt = sign(Wtωt−1), t = 1, . . . , T (1)

2

and
f(ω) = h(ωT) (2)

where the sign is taken point-wise. The most common h is of the form sign(wωT) for some row vector
w, i.e. a prediction made from standard logistic regression on ωT .

As already stated and from what is apparent from the restrictions made, i.e. Boolean input, sign
activation functions, no bias terms and, in particular, uniform probability measure over inputs and
noise, makes the setting fairly far removed from practical settings. Moreover, we will not consider
models that have been fit to data in any way other than a loose motivation for one of our model
choices when it comes to modelling randomness in the coefficients of the Wt-matrices.

To consider the matrices as random is natural when taking inspiration from DNNs in practice, since
when one trains the model to fit with data, i.e. minimise the loss function at hand, one usually starts
the optimisation algorithm by taking the initial coefficients to be random, often i.i.d. normal. Also
during training, further randomness is often brought into the picture by the use of stochastic gradient
descent. In the end of course, the training algorithm converges, but since there are usually many local
minima for the loss function, the randomness in the coefficients at the start makes it random which local
maximum one converges to. Furthermore, convergence is almost never reached and this is on purpose,
since it is common practice to use early stopping, i.e. stop training well before convergence, to avoid
overfitting. As already declared though, we will not consider any data and model fitting, only observe
that any training of course produces correlation between the random weight matrix components and
suggest and analyse a tractable model of such correlation.

Hence, in summary, we regard this paper as mostly a contribution to the field of noise sensi-
tivity/stability of Boolean functions inspired by an interesting and important phenomenon of DNN
prediction models, rather than to applied machine learning. Nevertheless, it is a first step towards
an understanding of the non-robustness phenomena of DNNs and, to our knowledge, the first strictly
rigorous contribution.

Observe that when considering the Wt’s as random, the precise predictor function f that comes
out of it is in itself a random object. This is not the case in the field of noise sensitivity/stability
and one can now ask two different things: (i) will the predictor be noise sensitive when taking both
the randomness in the predictor itself and the randomness in the input and the noise into account?,
(ii) will the random predictor after the weights have been drawn, with high probability become noise
sensitive in the usual sense? This leads us to extend the standard definitions of noise sensitivity and
noise stability to also encompass these aspects.

The paper is structured as follows. Section 2 focuses on the relevant concepts and states the
relations between them. The remaining sections each focus on selected examples of models of the
family of DNN architectures given by (1) and (2) with natural assumptions on the randomness of the
weights.

Section 3.1: Fully connected DNN with Tn layers of equal width n. All weights are assumed to
be standard normal and mutually independent. This is a standard configuration of the DNN at
the start of training. We prove that as soon as limn→∞ Tn = ∞, the weights will with very high
probability be such that the resulting classifier is very strongly sensitive to perturbations of the
input no matter the input distribution and noise distribution. If Tn is bounded, the resulting
DNN will produce a noise stable classifier.

Section 3.2: All weights are once again standard normal, but some of them are now correlated:
the columns of each Wt are multivariate normal with all correlation being ρn. The columns are
mutually independent within and across the Wt’s. We show that with ρn converging to 1 suffi-
ciently fast, the resulting DNN becomes noise stable with high probability. If ρn converges to 1
slowly enough, the resulting classifier is with high probability strongly sensitive to perturbations.

Section 4: 2k+1-majority on “2k+1-trees with overlaps”, i.e. the graph where the vertices/neu-
rons in each generation share some children, see Figures 2a, 2c. It is proved that if the number

3

of children shared by two parents next to each other is 2k (corresponding to stride s = 1), then
the resulting Boolean function is noise stable, whereas if the number of children shared is less
than 2k (stride s ≥ 2), then we get a noise sensitive Boolean function.
These models are convolutional neural nets where, in machine learning language, each filter
represents a regular majority of the input bits. It will be observed that the results easily extend
to the case where the weights of the filters are random under the only condition that there is at
least some chance that a filter represents regular majority.

In the sections on the fully connected models, analysis of a certain Markov chain on {0, 1, . . . , n−
1, n}, which is symmetric around n/2 and absorbs in 0 and n, plays a central role. We believe that
the structure of this Markov chain makes it interesting in its own right.

2 Different notions of noise sensitivity and noise stability
Let ω ∈ {±1}n be an i.i.d. (1/2,1/2) Boolean row vector and let {fn} be a sequence of Boolean
functions from {±1}n to {±1}. Additionally let ωϵ be a Boolean row vector such that ωϵ(i) = ω(i)
with probability 1− ϵ and ωϵ(i) = −ω(i) with probability ϵ independently for different i. View ωϵ as
a small perturbation of ω. In this context, we can now define noise sensitivity and noise stability of a
sequence of Boolean functions fn. In [?] these are defined as

Definition 2.1. The sequence {fn} is noise sensitive if for every 0 < ϵ ≤ 1/2,

lim
n→∞

Cov (fn(ω), fn(ω
ϵ)) = 0

Definition 2.2. The sequence {fn} is noise stable if

lim
ϵ→0

sup
n

P(fn(ω) ̸= fn(ω
ϵ)) = 0.

The definition of noise stability is easily seen to be equivalent with the condition limϵ→0 lim supn P(fn(ω)
̸= fn(ω

ϵ)) = 0. An example of a noise stable sequence is the weighted majority functions

majθ(n)(ω) = sign

 n∑
j=1

θ
(n)
j ω(j)

 ,

where θ(n)1 , . . . , θ
(n)
n are arbitrary given constants [?]. An example of a noise sensitive sequence is

the parity functions [?],

par(ω) =

n∏
j=1

ωj .

For noise sensitivity, there is a more general and often much stronger concept, which will turn out
to be interesting here since most fully connected and sufficiently deep neural nets will turn out to be
noise sensitive in a very strong way. If a sequence of functions {fn} is noise sensitive as defined above,
then one can always find a sequence ϵn ≤ 1/2 tending to 0 with n slowly enough such that

lim
n→∞

Cov(fn(ω), fn(ω
ϵn)) = 0.

Since Cov(fn(ω), fn(ω
ϵ)) is well known to be decreasing in ϵ on [0, 1/2], the faster ϵn can be taken to

decrease, the stronger the statement. This leads to the following definition,

Definition 2.3. Let ϵn ≤ 1/2 be non-increasing in n with ϵn → 0. The sequence {fn} is quantita-
tively noise sensitive (QNS) at level {ϵn} if,

lim
n→∞

Cov (fn(ω), fn(ω
ϵn)) = 0.

4

The definitions of noise sensitivity and stability are by now standard when describing properties
of deterministic sequences of Boolean functions. However, when dealing with randomness within the
functions themselves we need a more general definition. This more general setup occurs in Boolean
neural networks, where the network parameters Θ can be seen as random elements (usually depending
on randomness in what training data is presented to the network and the initial values of the parameters
before training). Let Fn be the set of all Boolean function from {±1}n to {±1} and let πn be a
arbitrary probability measure on Fn. Recall that for 0 ≤ ϵ ≤ 1/2 and each function f , we have
Covω,ωϵ(f(ω), f(ωϵ)) ≥ 0, and hence Covf,ω,ωϵ(f(ω), f(ωϵ)) ≥ 0. We can then define both quenched
and annealed versions of noise sensitivity and noise stability as follows.

Definition 2.4. πn is quenched QNS at level {ϵn} if for every δ > 0 and 0 < ϵn ≤ 1/2, there is an
N such that for all n ≥ N

πn{fn : Covω,ωϵ(fn(ω), fn(ω
ϵn)) ≤ δ} ≥ 1− δ.

Definition 2.5. πn is annealed noise QNS at level {ϵn} if for every 0 < ϵn ≤ 1/2

lim
n→∞

Covfn,ω,ωϵn (fn(ω), fn(ω
ϵn)) = 0.

Definition 2.6. πn is quenched noise stable if for every δ there is an ϵ > 0 such that for all n,

πn{fn : Pω,ωϵ(fn(ω) ̸= fn(ω
ϵ)) < δ} ≥ 1− δ

Definition 2.7. πn is annealed noise stable if

lim
ϵ→0

sup
n

Pfn,ω,ωϵ(fn(ω) ̸= fn(ω
ϵ)) = 0

This notion of quenched noise sensitivity has arisen elsewhere; see [? ? ? ?]. Notice that if πn
has support on only one Boolean function, then these definitions are equivalent to the usual ones in
Definition 2.1 and 2.2. In Theorem 2.1 we show which relations there are between these definitions.

Theorem 2.1. Let Fn be the set of all Boolean functions on {−1, 1}n → {−1, 1} and let πn be a
probability measure on Fn. Then the following are true

(i) {πn} is annealed QNS at level {ϵn} iff {πn} is quenched QNS at level {ϵn} and Varfn(Eω[fn(ω)]) →
0 as n→ ∞.

(ii) {πn} is annealed noise stable iff {πn} is quenched noise stable.

Proof. To prove the first statement we use the conditional covariance formula that for any random
variables X,Y and Z

Cov(X,Y) = E[Cov(X,Y |Z)] + Cov(E[X|Z],E[Y |Z])

to observe that

Covf,ω,ωϵ(f(ω), f(ωϵn)) = Ef [Covω,ωϵn (f(ω), f(ωϵn))] + Covf (Eω[f(ω)],Eωϵn [f(ωϵn)]). (3)

Now observe the following. First, the first term on the right is always non-negative. Secondly, since ω
and ωϵn are equal in distribution, the second term on the right is equal to Varf (Eω[f(ω)]).

We now prove (i) starting with that quenched QNS at level {ϵn} and Varf (Eω[fn(ω)]) → 0 as
n→ ∞ leads to annealed QNS at level {ϵn}. Fix δ ∈ (0, 1]. We know that there exists an N such that
for all n > N

πn{f : Covω,ωϵn (f(ω), f(ωϵn)) ≤ δ

4
} ≥ 1− δ

4

5

and
Varf (Eω[f(ω)]) <

δ

2
.

Using (3) this leads to

Covf,ω,ωϵn (f(ω), f(ωϵn)) < Ef

[
δ

4
ICovω,ωϵn (f(ω),f(ωϵn))≤ δ

4
+ ICovω,ωϵn (f(ω),f(ωϵn))> δ

4

]
+
δ

2
< δ

This proves the first direction of (i). For the other direction, fix δ ∈ (0, 1]. Since πn is annealed QNS
at level {ϵn} there exists an N such that ∀n > N

Covf,ω,ωϵn (f(ω), f(ωϵn)) < δ2.

Now, using (3) and the fact that Covω,ωϵn (f(ω), f(ωϵn)) ≥ 0 for all f it must be that

Varf (Eω[f(ω)]) < Covf,ω,ωϵn (f(ω), f(ωϵn)) < δ2 < δ.

Hence the variances converge to zero. Additionally, for such n we have that 0 ≤ Covf,ω,ωϵn (f(ω), f(ωϵn))
≤ δ2. Now using Markov’s inequality and (3) we get

πn{f : Covω,ωϵn (f(ω), f(ωϵn)) ≥ δ} ≤ δ

which concludes (i).
Next we prove (ii). We start by showing that quenched noise stability leads to annealed noise

stability. Fix δ > 0. πn being quenched noise stable means that there exist an ϵ > 0 such that for all n

πn{f : P(f(ω) ̸= f(ωϵ)) <
δ

2
} ≥ 1− δ

2
.

Hence

Pf,ω,ωϵ (f(ω) ̸= f(ωϵ)) = Ef

[
Eω,ωϵ [If(ω)̸=f(ωϵ)]

]
≤

Ef

[
δ

2
IEω,ωϵ [If(ω)̸=f(ωϵ)]≤ δ

2
+ IEω,ωϵ [If(ω)̸=f(ωϵ)]>

δ
2

]
< δ.

This proves the first part. Now we prove that annealed noise stable implies quenched noise stable.
Fix δ > 0 and pick an ϵ > 0 sufficiently small such that Pf,ω,ωϵ(f(ω) ̸= f(ωϵ)) < δ2. Such an ϵ are

guaranteed to exist since πn are annealed noise stable. Then due to Markov´s inequality

πn(f : Pω,ωϵ(f(ω) ̸= f(ωϵ)) > δ) < δ

which gives us quenched noise stable. This proves (ii).

As seen from statement (ii), πn being annealed noise stable is equivalent to πn being quenched
noise stable. Therefore we will further on only refer it as πn being noise stable.

3 Random Boolean feed forward neural networks
In this section, we investigate a Boolean function structure f(ω,Θ) inspired by feed-forward neural
networks. Let ω0 ∈ {−1, 1}n be the input bits as a column vector. Then we can recursively define
ωt = sign(θtωt−1) where θt ∈ Rn×n and sign acts pointwise. In the deep learning literature, the θ’s
and sign would be referred to as the weights of f and the activation function respectively. In the
Neural Network literature, each t corresponds to a layer where ωt are seen as the bits, or nodes, at
layer t. The iteration is done for t = 1, . . . , T for some predetermined number T = Tn giving us the

6

final output h(ωT) where h = hn is some Boolean function {−1, 1}n → {−1, 1}. A known fact is that
a typical Neural Network can approximate any function to arbitrary accuracy as long as the amount of
tunable parameters (a.k.a. weights), Θ = {θ1, . . . , θT }, is large enough. In the Boolean setting, these
models can still represent a huge number of Boolean functions. However, there are some limitations
since no bias term is present in our Boolean Network, which typically is in Neural Networks in practice.
Typically Θ is determined by some training algorithm based on the observation data, which maximises
the likelihood of the model. This means that Θ is not deterministic since there is both randomness in
the observed data and in the optimisation algorithm. Therefore we can consider a probability measure
πn on all f where the randomness comes from Θ.

Here we consider cases where the θt’s are independent and, for each t, the columns of θt are
independent and jointly normal N(0,Σ) with two different versions of Σ. These cases, which thus
induce their respective measures {πn} on the set of Boolean function, are

1. Σ = In×n.

2. Σ = ρ + (1 − ρ)In×n. A useful way to construct such θt’s is to define θt(i, j) =
√
ρνt(j) +√

1− ρψt(i, j) where νt(i), ψt(i, j) ∼ N(0, 1) all being independent.

The case ρ = 0 represents a typical starting state for the network before training. After some training,
we expect the parameters of the network to be dependent. The cases ρ > 0 are examples of such
dependence. Of course, we do not expect that the true dependence after training is represented
in this way. Our assumptions should therefore be viewed as a simplifying mathematical framework
under which our theorems can be proved. Somewhat related to this question of the behaviour of the
parameters, in [?], a particular statistical structure for the values of intermediate layers in some
convolution codes was discovered.

The following lemma is crucial.

Lemma 3.1. Let x, y ∈ {−1, 1}n be column vectors such that |i : x(i) ̸= y(i)| = nv for some v ∈ [0, 1]
and let θ be a random row vector such that θ ∼ N(0, In×n). Then

P (sign(θx) ̸= sign(θy)) =
2

π
arctan

(√
v

1− v

)
Proof. Let C be the set of indices where x and y differ. Notice that |C| = nv. Consider the line
segment between x and y defined as y+x

2 + τ y−x
2 , τ ∈ [−1, 1]. Then sign(θx) ̸= sign(θy) if there is a

solution to
θT
(
y + x

2
+ τ

y − x

2

)
= 0 (4)

for some τ ∈ [−1, 1].
Now, let AΛ,k = {j : j ∈ Λ, x(j) = k} for some set Λ. Since both x and y are in the hypercube

{−1, 1}n, the condition can be rewritten as∣∣∣∣∣∣
∑

j∈ACc,1

θ(j)−
∑

j∈ACc,−1

θ(j)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

j∈AC,1

θ(j)−
∑

j∈AC,−1

θ(j)

∣∣∣∣∣∣ . (5)

Define X and Y from the following equations

√
nvX =

∑
j∈AC,1

θ(j)−
∑

j∈AC,−1

θ(j)

and √
n− nvY =

∑
j∈ACc,1

θ(j)−
∑

j∈ACc,−1

θ(j).

7

Then it is easy to check that X and Y are standard independent normal and that the event in (5) can
be rewritten as

−
√

v

1− v
|X| ≤ Y ≤

√
v

1− v
|X|.

Due to symmetry around Y = 0, this results in

P

(
−
√

v

1− v
|X| ≤ Y ≤

√
v

1− v
|X|
)

=

∫ ∞

−∞

∫ √
v

1−v |x|

−
√

v
1−v |x|

1

2π
e−(x2+y2)/2dydx

= 2

∫ arctan(
√

v
1−v)

− arctan(
√

v
1−v)

∫ ∞

0

r

2π
e−r2/2dφdr =

∫ arctan(
√

v
1−v)

− arctan(
√

v
1−v)

1

π
dφ =

2

π
arctan

(√
v

1− v

)
where the second equality is due to the substitution x = r cos(φ) and y = r sin(φ). This concludes the
proof.

In both noise parameter settings 1 and 2, we have independence between the weights leading into
a node. This means, according to Lemma 3.1, that given ωt−1 and (ωϵ)t−1 differ at nv bits the
probability that ωt(i) and (ωϵ)t(i) differ is 2

π arctan(
√

v
1−v) for all i. The difference between the two

parameter settings is that in 2 the output bits of a layer are usually correlated. Also, due to symmetry,
the probability of a disagreement at a fixed point, i.e. ωt(i) ̸= (ωϵ)t(i), at layer t depends only on the
number of disagreements between ωt−1 and (ωϵ)t−1 and not where they disagree. This means that the
number of disagreements at layer t, which we denote by Dt = Dϵ

t = Dϵn
t , can in both cases be seen

as a Markov chain with n+ 1 states, where Dt = 0 and Dt = n are absorbing states. Notice that Dt

depends on the initial noise ϵ since D0 corresponds to the number of bit disagreements created by the
initial noise. However, for the sake of lighter notation we will not have a specific suffix showing this
dependence.

3.1 Uncorrelated networks
In the uncorrelated case, Dt is binomially distributed according to (Dt|Dt−1 = nv) ∼ Bin(n, g(v))

where g(v) := 2
π arctan

(√
v

1−v

)
. Note that if ϵn is of order 1/n or lower, then P(D1 = 0) does not get

to 0 at the same time as P (D1 > n/2) → 0, which by symmetry implies that there cannot be QNS at
that level. Hence one must have at least nϵn → ∞ for QNS to be possible.

The following theorem almost entirely considers the sensitivity properties of fn,Tn and shows that
under very mild assumptions for Tn larger than a specified function of n, {fn,Tn

} is QNS in this the
strongest possible sense (in particular that fn,Tn

is noise sensitive in the original sense as soon as
Tn → ∞). Indeed, since the distribution of θt is such that even if we know ω and ωϵ, any trace of that
knowledge is forgotten after the first layer, fn,Tn

has very strong sensitivity properties even for fixed
input and fixed noise. What we mean precisely with this is formulated separately in Theorem 3.2.
Note in particular part (ii) implies that the input and noise distribution do not need to be uniform
but can indeed be taken to reflect what is realistic in the application at hand, e.g. a distribution over
images of real handwritten digits.

Parts of Theorem 3.2 are clearly stronger than their counterparts in Theorem 3.1, but we find it
natural to state and prove the weaker statements first and then extend them by pointing out the fairly
minor extra observations that need to made in the proof.

Theorem 3.1. Consider the above fully connected network with i.i.d. normal entries in each θt and
i.i.d. θt’s. Let 1/2 ≥ ϵn ↓ 0 be such that nϵn → ∞ and let limn→∞Kn/ log(1/ϵn) = ∞. Then

(i) if limn→∞ bn = 0, limn→∞ nbn = ∞ and Tn ∈ [Kn, e
bnn], then for any Boolean functions {hn},

the resulting {fn,Tn} is annealed QNS at level {ϵn} with respect to {πn},

8

(ii) if the hn’s are odd and Tn ≥ Kn, then {fn,Tn
} is annealed QNS at level {ϵn},

(iii) if Tn ≥ Kn then for any {hn}, {fn,Tn
} is quenched QNS at level {ϵn},

(iv) there are Boolean functions {hn} such that for Tn growing sufficiently fast with n, {fn,Tn
} is not

annealed noise sensitive.

In addition,

(v) if hn is noise stable and Tn is bounded, then {fn,Tn
} is annealed (and hence quenched) noise

stable.

Remark. If one randomly chooses a sequence of Boolean functions uniformly among all Boolean
functions, it is known that the sequence will asymptotically almost surely be noise sensitive; see
Exercise 1.14 in [?]. While the Boolean functions arising in Theorem 3.1 here are also random, they
have a very specific form.

Theorem 3.2. Consider the above fully connected network with i.i.d. normal entries in each θt and
i.i.d. θt’s. Let 1/2 ≥ ϵn ↓ 0 be such that nϵn → ∞ and let limn→∞Kn/ log(1/ϵn) = ∞. Then

(i) under the assumptions of either (i) or (ii) in Theorem 3.1, for any fixed ω, η ∈ {−1, 1}n with
ω ̸∈ {η,−η},

lim
n→∞

CovΘ(fn,Tn(ω), fn,Tn(η)) = 0.

(ii) under the assumptions of either (i) or (ii) in Theorem 3.1, for any probability measure Qn on
{−1, 1}n × {−1, 1}n such that limn→∞ Qn({(ω, η) : η ∈ {ω,−ω}}) = 0.

lim
n→∞

CovQn,Θ(fn,Tn
(ω), fn,Tn

(η)) = 0.

(iii) Assume that hn is odd and fix any k ∈ {1, 2, . . . , n − 1} and δ > 0. Fix also ω ∈ {−1, 1}n

and let Mk = M
(n)
k (ω) be the number of η with η(i) ̸= ω(i) for exactly k indexes i, such that

fn,Tn
(η) ̸= fn,Tn

(ω). Then for Tn ≥ Kn,

lim
n→∞

P

(
Mk(
n
k

) ̸∈
(
1− δ

2
,
1 + δ

2

))
= 0.

Proof of Theorem 3.1. Recall Dt = Dϵn
t from above. In the sequel in (i)-(iii), to not burden the

notation, write just ϵ for ϵn with the understanding that ϵ = ϵn.
The conditional distribution of (ωT , (ω

ϵ)T) given FT−1 := σ(ω0, (ω
ϵ)0, θ1, . . . , θT−1) equals that of

(ω0, (ω
g(DT−1/n))0). In other words; to determine the distribution of (ωT , ω

ϵ
T) given FT−1, we only

need to know DT−1. Consequently, E[f(ω0)f((ω
ϵ)0)|DT−1 = d] = E[h(ωT)h((ω

ϵ)T)|DT−1 = d] =
E[h(ω0)h((ω

g(d/n))0)]. Let us study how Dt behaves, started from D0 ∼ Bin(n, ϵ). First observe that
g(v)/v is decreasing on (0, 1/2). This holds as g(0) = 0 and an easy computation shows g′′(v) < 0 for
v ∈ [0, 1/2]. Since g′(1/2) = 2/π, it follows from Taylor’s formula that

g

(
1

2
− δ

)
>

1

2
− 2

3
δ

for sufficiently small δ > 0. Fixing such a δ, it then follows that g(d/n) > (1 + 2δ/3)d/n whenever
1 ≤ d < n/2 − δn. This means by Chernoff bounds and the fact that g is increasing that there is
κ = κ(δ, ϵ) > 0 such that

• for ϵn/2 < d < (1/2− δ)n/2, P(Dt+1 < (1 + 2δ/3)d|Dt = d) < e−κ
√
n,

• for d > (1/2− δ)n, P(Dt+1 < (1/2− δ)n|Dt = d) < e−κn.

9

(Here the
√
n in the exponent in the first point follows from that g(1/n) is of order 1/

√
n and ϵn > 1/n

for n large.) Combining these two points and the symmetry of g around 1/2,

P

(
∃t ∈

[
log 1−2δ

ϵ

log
(
1 + 2δ

3

) , T] : Dt ̸∈
[(

1

2
− δ

)
n,

(
1

2
+ δ

)
n

])
< Te−κn.

To prove (i), let Ln = ebnn. Take now T ∈
[
1 +

log 1−2δ
ϵn

log(1+ 2δ
3)
, Ln

]
. Conditionally on DT−1 = d ∈

[(1/2− δ)n, (1/2 + δ)n], we have that (ωT , (ω
ϵ)T) equals in distribution (ω0, (ω

α)0) for α = g(d/n) ∈
[1/2 − δ, 1/2 + δ]. Equation (4.2) in Section 4.3 in [?] implies that for ρ > 0, there exists δ > 0 so
that for all Boolean functions h and for all α ∈ [1/2− δ, 1/2 + δ],

Cov(h(ω), h(ωα)) < ρ.

Hence for ρ > 0 and δ > 0 sufficiently small it follows from the above that Cov(f(ω0), f((ω
ϵ)0)|DT−1

∈ [(1/2− δ)n, (1/2 + δ)n]]) < ρ/2. Since P(DT−1 ∈ [(1/2− δ)n, (1/2 + δ)n]) > 1− Lne
−κn > 1− ρ/8

for large n, we get
Cov(f(ω0), f((ω

ϵ)0)) < ρ.

To see this, let B be the event {DT−1 ∈ [(1/2−δ)n, (1/2+δ)n]} and recall that Cov(f(ω0), f((ω
ϵ)0))

= E[Cov(f(ω0), f((ω
ϵ)0)|IB)] + Var(E[f(ω0)|IB]). Since P(Bc) < ρ/8, it is easy to see that the first

term is bounded by Cov(f(ω0), f((ω
ϵ)0)|B) + ρ/4 and the second term is bounded by ρ/2.

This proves that for some constantK = K(ρ, ϵ), T ∈ [K,Ln] and n sufficiently large, Cov(f(ω), f(ωϵ))
< ρ. In particular if Kn → ∞ and T ∈ [Kn, Ln], then f is annealed QNS. This proves (i).

Next consider (ii) and (iii). This amounts to considering what happens to Dt in the long run. We
have argued that with overwhelming probability, Dt will quickly approach n/2 and stay there for a
very long time. However, after an even longer time, Dt will end up in one of the absorbing states
0 or n. Then the above argument for annealed QNS does not hold (since it is no longer true that
Dt ∈ [(1/2− δ)n, (1/2 + δ)n] with high probability).

Let {D′
t} be a copy of {Dt} but started with D′

0 ∼ Bin(n, 1/2). We can couple (D0, D
′
0) so that

D0 ≤ D′
0, so do that.

Since g is increasing, the distribution of Dt given Dt−1 = d is increasing in d. Hence, since we
have coupled so that D0 ≤ D′

0, there is a further coupling (D,D′) such that D′
t ≥ Dt for every t.

Use such a coupling from now on and note that a consequence is that if at some point D′
t = Dt, then

also D′
s = Ds for all s ≥ t. By the above with t0 = 1 + log(4ϵ)/ log(6/7), P (∀t ∈ [t0, Ln] : Dt, D

′
t ∈

[n/4, 3n/4]) > 1− Lne
−κn > 1− e−κn/2 for large n. For all d, d′ ∈ [n/4, 3n/4] and d ≤ d′,

E[D′
t −Dt|Dt−1 = d,D′

t−1 = d′] = n

(
g

(
d′

n

)
− g

(
d

n

))
<

3

4
(d′ − d),

where the last inequality follows on observing that g′(v) < 3/4 for v ∈ [1/4, 3/4]. This gives for
t ∈ [t0, Ln],

E[D′
t −Dt] ≤ ne−κn/2 + E

[
D′

t −Dt|Dt−1, D
′
t−1 ∈

[
n

4
,
3n

4

]]
≤ 2ne−κn/2 +

3

4
E[D′

t−1 −Dt−1].

For such t, E[D′
t−1 − Dt−1] ≥ 1/n and the right hand side is smaller than (4/5)E[D′

t−1 − Dt−1] for
large n. By induction we thus get E[D′

t0+t −Dt0+t] ≤ max(1/n, (4/5)tn) for t0 + t ≤ Ln. This gives
E[D′

t0+t − Dt0+t] ≤ 1/n whenever Ln ≥ t ≥ 9 log n and n large. Hence E[D′
t − Dt] ≤ 1/n for all

10

Ln ≥ t ≥ 10 log n and n large. By Markov’s inequality, P(D′
t ̸= Dt) ≤ 1/n for all Ln ≥ t ≥ 10 log n

and n large. Since if D′
t = Dt for some t, then D′

s = Ds for all s ≥ t, we get P(D′
t ̸= Dt) ≤ 1/n for all

t ≥ 10 log n.
Thus, taking T ≥ 10 log n, P(DT ̸= D′

T) < 1/n. This means that the total variation distance
between the distribution of DT and D′

T is less than 1/n, i.e.
∑n

d=0 |P(D′
T = d) − P(DT = d)| < 2/n.

This gives for T ≥ 10 log n+ 1

E[f(ω0)f((ω
1/2)0] = E[h(ωT)h((ω

1/2)T)]

=
∑
d

E[h(ωT)h((ω
1/2)T)|D′

T−1 = d]P (D′
T−1 = d)

≥
∑
d

E[h(ωT)h((ω
ϵ)T)|DT−1 = d]P(DT−1 = d)−

∑
d

|P(D′
T−1 = d)− P(DT−1 = d)|

≥ E[h(ωT)h((ω
ϵ)T)]−

2

n

= E[f(ω0)f((ω
ϵ)0)]−

2

n
,

where the first inequality follows from that |h| ≤ 1. To now prove quenched QNS for all h and
T ≥ 10 log n observe that we now have

E[Cov(f(ω0), f((ω
ϵ)0)|Θ)] = E[Cov(f(ω0), f((ω

ϵ)0)|Θ)− Cov(f(ω0), f((ω
1/2)0)|Θ)]

= E[E[f(ω0)f((ω
ϵ)0)|Θ]− E[f(ω0)f((ω

1/2)0)|Θ]]

= E[f(ω0)f((ω
ϵ)0)]− E[f(ω0)f((ω

1/2)0)]

<
2

n
.

Since for any fixed f , Cov(f(ω), f(ωϵ)) ≥ 0, this implies quenched QNS for T ≥ 10 log n. Combining
with (i), this gives (iii).

If h is also odd and T ≥ 10 log n, we have h(−(ω1/2)T) = h((−ω1/2)T) = −h((ω1/2)T) and since
(ω, ω1/2) =d (ω,−ω1/2), we have E[h(ωT)h((ω

1/2)T)] = 0. Thus

E[f(ω0)f((ω
ϵ)0] ≤

2

n
.

Since h odd implies E[f(ω0)] = 0, this proves annealed QNS for all odd h and T ≥ 10 log n and
combining with (i) we get (ii).

To prove (iv), we need an example of an h that is not odd and where annealed noise sensitiv-
ity does not hold for large T . To achieve this, first observe that at each t, P(Dt ∈ {0, n}|Dt−1) ≥
2−n+1. Hence, as Dt ∈ {0, n} implies that Dt′ = Dt for all t′ ≥ t, for Tn such that Tn2−n → ∞,
P(DTn

̸∈ {0, n}) → 0. This entails P((ωϵ)Tn
= ±ωTn

) → 1. Now let hn be any even func-
tion. Then P(hn(ωTn) ̸= hn((ω

ϵ)Tn)) → 0 and so in fact fn is annealed noise stable. If also
−1 < lim infn E[hn(ω)] ≤ lim supn E[hn(ω)] < 1, then {fn} is not annealed noise sensitive.

For (v), assume for simplicity that Tn equals the constant T ; going from this to general bounded
Tn is easy and left to the reader. Fix a small δ > 0. Since hn is stable one can pick ρ > 0 small
enough that supn P(hn(ω) ̸= hn(ω

ξ)) < δ whenever ξ < ρ. Pick such a ρ and let ϵ = ρ2
T

. We have
g(v) = (2/π) arctan

√
v/(1− v) < (2/3)

√
v for v < ρ and ρ small enough. By Chernoff bounds we

then have that there is a κ > 0 independent of n such that

P(Dϵ
T−1 ≥ nρ2) < e−κn.

Given DT−1 = nv for v < ρ2, the conditional distribution of (ωT , (ω
ϵ)T) is that of (ω, ωg(v)) and since

g(v) < ρ, we get by noise stability of hn that

P(fn,Tn(ω) ̸= fn,Tn(ω
ϵ)|Dϵ

T−1 < ρ2) < δ.

11

Summing up, this now gives
P(fn,Tn

(ω) ̸= fn,Tn
(ωϵ)) < e−κn + δ

This easily implies noise stability.

Proof of Theorem 3.2. Starting with (i), this follows from the simple observation that if d is the number
of disagreements between ω and η, then ω1 is a vector i.i.d. fair coin flips and given ω1, η1 differs from
ω1 in uniformly random positions whose number is binomial with parameters n and g(d/n). Hence all
arguments from (i) or (ii) in Theorem 3.1 can be copied from above from t = 1.

Part (ii) is an immediate corollary of (i) on observing that

CovQn,Θ(fn,Tn
(ω), fn,Tn

(η)) = EQn
[CovΘ(fn,Tn

(ω), fn,Tn
(η))] + CovQn

(EΘ[fn,Tn
(ω)],EΘ[fn,Tn

(η)])

and by the invariance and symmetry properties of Θ, EΘ[fn,Tn
(ω)] is independent of ω and thus a

constant and hence CovQn
(EΘ[fn,Tn

(ω)],EΘ[fn,Tn
(η)]) = 0.

Now for (iii) fix ω, let Ak be the set of η′ that each differs from ω at k positions and take η ∈ Ak.
We have by (i), since hn odd implies E[fn,Tn

(ω)] = E[fn,Tn
(η)] = 0, that |E[fn,Tn

(ω)fn,Tn
(η)]| < δ4,

i.e. P(fn,Tn(ω) ̸= fn,Tn(η)) ∈ (1/2− 1/2δ4, 1/2 + 1/2δ4), for n large.
Now let M̄k = M̄

(n)
k (ω) = |{(η, ξ) ∈ Ak : fn,Tn(η) ̸= fn,Tn(ξ)}|. It follows that

E[M̄k] ∈
(
(1− δ4)

1

2

((n
k

)
2

)
, (1 + δ4)

1

2

((n
k

)
2

))
⊆

(
(1− δ4)

1

4

(
n

k

)2

, (1 + δ4)
1

4

(
n

k

)2
)
.

Let M be the maximum value that M̄k can take on, so that

M ≤

((
n
k

)
2

)2

=
1

4

(
n

k

)2

.

Since M − M̄k is nonnegative, it follows from Markov’s inequality that

P

(
M̄k ≤ (1− δ2)

1

4

(
n

k

)2
)
< δ2.

Also if M̄k > (1 − δ2) 14
(
n
k

)2, we have X+
k ∈ ((1 − δ) 12

(
n
k

)
, (1 + δ) 12

(
n
k

)
), where X+

k is the number of
η ∈ Ak with fn,Tn

(η) = 1. This gives Mk ∈ ((1−δ) 12
(
n
k

)
, (1+δ) 12

(
n
k

)
) and hence for n sufficiently large,

P

(
Mk(
n
k

) ̸∈
(
1− δ

2
,
1 + δ

2

))
< δ2.

This proves (iii).

(The property described in the statement (ii) in Theorem 3.4 could be referred to as fn,Tn being
annealed noise sensitive with respect to Qn.)

3.2 Correlated networks
In this section we will investigate the noise sensitivity of a deep network where the network weights θ
are sampled from a correlated normal distribution, i.e. Case 2 in the introduction.

More precisely, the model is that the random matrices θ1, θ2, . . . , θT are independent and for given
t, the columns θt(·, 1), . . . , θt(·, n) are independent. However, each column θt(·, j) of each θt is now

12

assumed to be n-dimensional Gaussian with expectation 0 and covariance matrix Σ, where Σi,i = 1,
i = 1, . . . , n and Σi,i′ = ρ, 1 ≤ i < i′ ≤ n. Here ρ = ρn is a positive given correlation and we are
interested in providing conditions on ρ that ensure noise stability or noise sensitivity of f = fn = fn,Tn

defined as in the previous section.

To model the vectors θt(·, j), we let θt(i, j) =
√
ρνt(j) +

√
1− ρψt(i, j), where the νt(j)’s and

ψt(i, j)’s are all independent standard Gaussian.
Since the entries in any given row of θt are i.i.d. standard normals, Lemma 3.1 still says that

P(Ft(i)|Dt−1 = d) = g(d/n), where Ft(i) = {ωt(i) ̸= (ωϵ)t(i)}. However the events Ft(i) and Ft(i
′)

are not, as in Section 2, conditionally independent given Dt−1.
Recall the proof of Lemma 3.1, where the following observation was made. Here we recall that

C = {j : ωt−1(j) ̸= (ωϵ)t−1(j)}, AΛ,k = {j : j ∈ Λ, ω(j) = k} and

Ft(i) =

∣∣∣∣∣∣
∑

j∈ACc,1

θ(i, j)−
∑

j∈ACc,−1

θ(i, j)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

j∈AC,1

θ(i, j)−
∑

j∈AC,−1

θ(i, j)

∣∣∣∣∣∣
 .

Using the above representations of θt(i, j) this becomes

Ft(i) =

∣∣∣∣∣∣
∑

j∈ACc,1

(√
ρνt(j) +

√
1− ρψt(i, j)

)
−

∑
j∈ACc,−1

(√
ρνt(j) +

√
1− ρψt(i, j)

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

j∈AC,1

(√
ρνt(j) +

√
1− ρψt(i, j)

)
−

∑
j∈AC,−1

(√
ρνt(j) +

√
1− ρψt(i, j)

)∣∣∣∣∣∣
 .

Make the following substitutions

√
dUC

t =
∑

j∈AC,1

νt(j)−
∑

j∈AC,−1

νt(j)

√
n− dUCc

t =
∑

j∈ACc,1

νt(j)−
∑

j∈ACc,−1

νt(j)

√
dV C

t (i) =
∑

j∈AC,1

ψt(i, j)−
∑

j∈AC,−1

ψt(i, j)

√
n− dV Cc

t (i) =
∑

j∈ACc,1

ψt(i, j)−
∑

j∈ACc,−1

ψt(i, j)

and notice that UC
t , UCc

t , V C
t (i) and V Cc

t (i) are all independent standard Gaussians for all t and
i. This gives, with v = d/n,

Ft(i) =

{∣∣∣∣√ ρ

1− ρ
UCc

t + V Cc

t (i)

∣∣∣∣ ≤√ v

1− v

∣∣∣∣√ ρ

1− ρ
UC
t + V C

t (i)

∣∣∣∣}
and hence also

P(Ft(i)|ωt−1, (ω
ϵ)t−1) = P

(∣∣∣∣√ ρ

1− ρ
UCc

t + V Cc

t (i)

∣∣∣∣ ≤√ v

1− v

∣∣∣∣√ ρ

1− ρ
UC
t + V C

t (i)

∣∣∣∣) .
The dependence between different i’s is captured by the common variables UC

t and UCc

t . Conditioning
on Wt =

√
ρ/(1− ρ)(UC

t , U
Cc

t) in addition to the condition Dt−1 = d, one gets that Ft(1), . . . , Ft(n)
are conditionally independent and, writing w = (wC , wCc

),

P(Ft(i)|Dt−1 = d,Wt = w) = P

(
|Y | ≤

√
v

1− v
|X|
)
, (6)

13

where X and Y are independent normals with unit variance and means wC and wCc

respectively.
Write gw(v) for the right hand side of (6). Summing up, by letting D̃t = Dt/n, we have shown that
the conditional distribution (Dt|D̃t−1 = v,W = w) is binomial with parameters n and gw(v).

Indeed given D̃t−1 = v, Dt can be determined in two steps. First sample W from the two dimen-
sional independent Gaussian with covariance

√
ρ/(1− ρ)I2. Then given W = w, Dt is determined as

the number of independent two-dimensional Gaussian’s (Xi, Yi) with mean w and Xi and Yi of unit
variance and independent that end up in the region At = {(x, y) : |y| ≤

√
v

1−v |x|}. The probability
of a given sample in the second step ending up in At is gw(v). From this it is easy to see that gw(v) is
increasing in v for all values of w. An illustration of At and W is seen in figure 1.

(a) W = (0, 0). Corresponds to the uncorre-
lated case.

(b) W = (1.5, 2). One realisation of the cor-
related case.

Figure 1: An illustration of how Dt is sampled given D̃t−1 = v. First sample W from a independent
two dimensional Gaussian with covariance matrix

√
ρ/(1− ρ)I2. Then given W = w, Dt is determined

as the number of independent Gaussian’s with mean w and unit variance that end up in the region
Av.

We will need the following definition.

Definition 3.1. A sequence of Boolean function {hn} has a sharp threshold at 1/2 if {hn} is such
that for ω being i.i.d. Bernoulli(pn) and if {pn−1/2} is bounded away from 0, then limn→∞ P(hn(ω) =
sign(pn − 1/2)) = 1.

One among many examples of Boolean functions that has a sharp threshold at 1/2 is the majority
function. It can be shown that this also is true for the weighted majority function when the weights
θi > 0 are such that limn→∞

maxi θi√
nmini θi

= 0.
Let τ ϵc = τ ϵnc = min{t : gWt

(D̃t−1) ≥ c} with τ ϵc = ∞ if gWt
(D̃t−1) < c for all t. The following

lemma is crucial. It shows that noise sensitivity or noise stability almost entirely come down to if
D̃ started from arbitrary small ϵ hits 1/2 before 0 (which gives rise to sensitivity results) or vice
versa (giving rise to stability results). In both of these cases, the rest of the arguments come down
to adopting suitable conditions on hn to go along with that. Therefore and since we are also of the
opinion that D̃ is a very natural Markov process that is interesting in its own right, we will later on
state the results for D̃ explicitly along with sensitivity/stability results.

Lemma 3.2. Let 1/2 ≥ ϵn ↓ 0. Assume {hn} has a sharp threshold at 1/2, ρn > δ for some δ > 0.
Then the following statements hold.

14

(i) If for all ϵn, limn→∞ P(τ ϵn1/2 ≥ Tn) = 0 and {hn} is odd, then {fn,Tn
} is annealed, and hence

quenched, QNS at level {ϵn}.

(ii) If for all ϵ > 0 sufficiently small, limn→∞ P(τ ϵ2ϵ ≤ Tn) = 0, then {fn,Tn
} is annealed, and hence

quenched, noise stable.

Proof. Let T = Tn and f = fn,T . As before, write θt(i, j) =
√
ρνt(j) +

√
1− ρψt(i, j), which in row

vector form becomes θt(i, ·) =
√
ρνt +

√
1− ρψt(i, ·), so that

ωT (i) = sign
(
(
√
ρνT +

√
1− ρψT (i, ·)) · ωT−1

)
.

This means that conditionally on ωT−1 and νT , ωT (i) are i.i.d. Bernoulli with probability p(νT , ωT−1)
:= P(ωT (i) = 1|νT , ωT−1) = P((

√
ρνT +

√
1− ρψT (i, ·)) · ωT−1 > 0), which equals

P

(
X > −

√
ρ

1− ρ

1√
n
νT · ωT−1

)
where X is a standard normal random variable. Notice that p(νT , ωT−1) >

1
2 if and only if

νT · ωT−1 > 0. Fix γ1 > 0. Since ρn > δ for some δ, there is for every γ1 > 0 an γ2 > 0 independently
of ρ and ωT−1 such that for n large

P

(
p(νT , ωT−1) ∈

[
1

2
− γ2,

1

2
+ γ2

] ∣∣∣ωT−1

)
< γ1. (7)

Let us now also include the process (ωϵ)t = (ωϵn)t. By (6), P(Ft(i)|D̃t−1 = v) is increasing in v,
which means that the conditional distribution (D̃t|D̃t−1 = v) is stochastically increasing in v. Hence
inductively for t ≤ T − 1, (D̃T−1|D̃t−1 = v) is stochastically increasing in v. Additionally, as in the
proof of Lemma 3.1, writing BT for the event {sign(νT · ωT−1) ̸= sign(νT · (ωϵ)T−1},

P (BT |ωT−1, (ω
ϵ)T−1) = g(D̃T−1) (8)

from which it follows by symmetry that for all η ∈ [0, 1/2]

P

(
BT |D̃t =

1

2
− η

)
+ P

(
BT |D̃t =

1

2
+ η

)
= 1.

It follows directly that if n is even P(BT |D̃t = 1/2) = 1/2 and if n is odd, since P(BT |D̃t = 1/2−η) <
P(BT |D̃t = 1/2 + η), that P(BT |D̃t = 1/2 + 1/2n) ≥ 1/2. Assume for simplicity for the rest of the
proof of (i) that n is even; for the case with n odd just replace any conditioning on D̃t = 1/2 with
conditioning on D̃t = 1/2 + 1/2n.

Since (D̃T−1|D̃t−1 = v) is increasing in v, we now get

P(BT |τ ϵ1/2 = t) ≥ P

(
BT |D̃t =

1

2

)
=

1

2
.

Now let AT = BT \ CT , where

CT = {p(νT , ωT−1) ∈ [1/2− γ2, 1/2 + γ2]} ∪ {p(νT , (ωϵ)T−1) ∈ [1/2− γ2, 1/2 + γ2]}.

By (7) and the fact that AT ⊂ BT , it now follows for t < T

P
(
AT |τ ϵ1/2 = t

)
≥ 1

2
− P(CT |τ ϵ1/2 = t) >

1

2
− 2γ1.

By the assumptions on {hn}, for sufficiently large n and t < T , E[f(ω)f(ωϵ)|AT , τ
ϵ
1/2 = t] <

−1 + γ1.We then get

15

E
[
f(ω)f(ωϵ)|τ ϵ1/2 = t

]
= E

[
f(ω)f(ωϵ)|AT , τ

ϵ
1/2 = t

]
P
(
AT |τ ϵ1/2 = t

)
+ E

[
f(ω)f(ωϵ)|Ac

T , τ
ϵ
1/2 = t

]
P
(
Ac

T |τ ϵ1/2 = t
)

< (−1 + γ1)

(
1

2
− 2γ1

)
+

1

2
+ 2γ1 < 5γ1.

Finally this means that for n sufficiently large,

0 ≤ E [f(ω)f(ωϵ)]

=

T−1∑
t=0

E
[
f(ω)f(ωϵ)|τ ϵ1/2 = t

]
P
(
τ ϵ1/2 = t

)
+ E

[
f(ω)f(ωϵ)|τ ϵ1/2 ≥ T

]
P
(
τ ϵ1/2 ≥ T

)
< 5γ1 + P

(
τ ϵ1/2 ≥ T

)
.

Since h is assumed odd, so is f and hence Cov(f(ω), f(ωϵ)) = E[f(ω)f(ωϵ)]. Since γ1 is arbitrary,
(i) follows.

To prove (ii), fix γ1, pick ϵ such that g(2ϵ) < γ1 and pick γ2 such that (7) holds. Notice that due
to (8) and the fact that g is increasing, we have

P
(
BT |D̃T−1 ≤ 2ϵ

)
≤ g(2ϵ) < γ1.

Hence by (7)
P(BT ∪ CT |D̃T−1 ≤ 2ϵ) < 3γ1.

Additionally for n large and ϵ sufficiently small, due to hn having a sharp threshold at 1/2,

P
(
f(ω) ̸= f(ωϵ)|Bc

T ∩ Cc
T , D̃T−1 ≤ 2ϵ

)
< γ1.

This results in

P
(
f(ω) ̸= f(ωϵ)|D̃T−1 ≤ 2ϵ

)
= P

(
f(ω) ̸= f(ωϵ)|BT ∪ CT , D̃T−1 ≤ 2ϵ

)
P
(
BT ∪ CT |D̃T−1 ≤ 2ϵ

)
+ P

(
f(ω) ̸= f(ωϵ)|Bc

T ∩ Cc
T , D̃T−1 ≤ 2ϵ

)
P
(
Bc

T ∩ Cc
T |D̃T−1 ≤ 2ϵ

)
< 3γ1 + P

(
f(ω) ̸= f(ωϵ)|Bc

T ∩ Cc
T , D̃T−1 ≤ 2ϵ

)
< 4γ1.

Since limn→∞ P(τ ϵ2ϵ ≤ T) = 0, we have for n sufficiently large that P(D̃T−1 > 2ϵ) ≤ P(τ ϵ2ϵ ≤ T) <
γ1.

It now follows that for n large,

P (f(ω) ̸= f(ωϵ))

< P
(
f(ω) ̸= f(ωϵ)|D̃T−1 ≤ 2ϵ

)
+ P

(
D̃T−1 > 2ϵ

)
< 5γ1

Since γ1 is arbitrary, this concludes (ii).

16

We are now ready to start the proof that D̃ hits 1/2 before 0 and f = fn,Tn
is annealed (and thus

quenched) QNS for a large range of ρ if Tn is suitably large. The results are stated in Theorem 3.3.

We are going to make several observations concerning the behaviour of gW (v). Since we will for
the most parts only be considering a single t, we will in such cases drop t from the notation.

Before going on, recall that the sum of the squares of two independent standard normal random
variables is exponential with mean 2. This also means that r2 := ||W ||22 is exponential with mean
2ρ/(1− ρ).

Lemma 3.3. Let r = ||w||2. Then

gw(v) ≥
2

π
arctan

(√
v

1− v

)
e−r2/2 = g(v)e−r2/2.

Proof. Let w = (a, b). Then

gw(v) =
1

2π

∫ ∞

−∞

∫ √
v

1−v |x|

−
√

v
1−v |x|

e−((x−a)2+(y−b)2)/2dydx =
e−

a2+b2

2

2π

∫ ∞

−∞

∫ √
v

1−v |x|

−
√

v
1−v |x|

e−(x2+y2)/2exa+ybdydx

≥ e−
r2

2

2π

∫ ∞

−∞

∫ √
v

1−v |x|

−
√

v
1−v |x|

e−(x2+y2)/2dydx =
2

π
arctan

(√
v

1− v

)
e−

r2

2

where the inequality follows from symmetry of the integrated function around the origin and that
ex + e−x ≥ 2. The last equality follows from the computation in the proof of Lemma 3.1.

Lemma 3.4. Assume that v ≤ 1/2 and that w = (wC , wCc

) satisfies |wCc | ≤
√
v/(1− v)|wC | − 2.

Then gw(v) > 1/2.

Proof. Let X ∼ N(wC , 1) and Y ∼ N(wCc

, 1) be independent and write X = wC +ξ and Y = wCc

+η
for independent standard normal ξ and η. We have

gw(v) = P

(
|Y | ≤

√
v

1− v
|X|
)

= P((X,Y) ∈ Av)

where

Av =

{
(x, y) : |y| ≤

√
v

1− v
|x|
}
.

Since v ≤ 1/2, it is easily seen that the L2 distance between (wC , wCc

) and Ac
v is smaller or equal to√

2 whenever |wCc | ≤
√
v/(1− v)|wC | − 2. Hence

gw(v) ≥ P(ξ2 + η2 ≤ 2) = 1− e−1 >
1

2
.

Lemma 3.5. Let as above W = Wt = (WC ,WCc

) for t < T , where WC and WCc

are independent
normals with means 0 and variance ρ/(1− ρ). Then for v ≤ 1/2,

P

(
gW (v) >

1

2

)
>

1

2π

√
v

1− v
e−

8(1−ρ)
ρ

1−v
v .

17

Proof. By Lemma 3.4, P(gW (v) > 1/2) ≥ P(|WCc | ≤
√
v/(1− v)|WC | − 2). Writing (r, φ) for

the polar coordinates of W , it is straightforward by back substitution to see that it is sufficient for
|WCc | ≤

√
v/(1− v)|WC | − 2 that

r2 > 16(1− v)/v

and

|φ| < arctan

(
1

2

√
v

1− v

)
and the latter in turn occurs whenever |φ| < 1

4

√
v/(1− v). Since r2 and |φ| are independent and

exponential((1− ρ)/2ρ) and uniform on [0, π/2] respectively, we thus get

P

(
gW (v) >

1

2

)
> e−

8(1−ρ)
ρ

1−v
v

2

π

1

4

√
v

1− v

which is the desired bound.

We are now ready to state the first main results of this section.

Theorem 3.3. Let {ϵn} be such that 1/2 ≥ ϵn ↓ 0 and nϵn → ∞. Assume that for some δ > 0

independent of n, δ < ρ < 1− 4(log logn)3

logn and Tn ≥ e4(log logn)2 . Then the following statements hold.

(i) limn→∞ P(τ ϵn1/2 > Tn) = 0,

(ii) If hn is odd and has a sharp threshold at 1/2, then {fn,Tn
} is annealed QNS and hence also

quenched QNS at level {ϵn}.

(iii) If hn is odd and Tn grows sufficiently large with n, then {fn,Tn
} is annealed QNS and hence also

quenched QNS at level {ϵn}.

As in the uncorrelated case, we can prove even stronger versions.

Theorem 3.4. Let {ϵn} be such that 1/2 ≥ ϵn ↓ 0 and nϵn → ∞. Assume that for some δ > 0

independent of n, δ < ρ < 1− 4(log logn)3

logn and Tn ≥ e4(log logn)2 . Then the following statements hold.

(i) Fix ω, η ∈ {−1, 1}n arbitrarily such that η ̸∈ {ω,−ω}. Then if hn is odd and either has a sharp
threshold at 1/2 or Tn is sufficiently large, then

lim
n→∞

CovΘ(fn,Tn
(ω), fn,Tn

(η)) = 0.

(ii) Let Qn be any probability measure on {−1, 1}n×{−1, 1}n such that limn→∞ Qn(η ∈ {ω,−ω}) =
0, Then if hn is odd and either has a sharp threshold at 1/2 or Tn is sufficiently large, then

lim
n→∞

CovQn,Θ(fn,Tn(ω), fn,Tn(η)) = 0.

(iii) Assume that hn is odd and either has a sharp threshold at 1/2 or Tn is sufficiently large. Fix
any k ∈ {1, 2, . . . , n− 1} and δ > 0. Fix also ω ∈ {−1, 1}n and let Mk =M

(n)
k (ω) be the number

of η with η(i) ̸= ω(i) for exactly k indexes i, such that fn,Tn(η) ̸= fn,Tn(ω). Then for Tn ≥ Kn,

lim
n→∞

P

(
Mk(
n
k

) ̸∈
(
1− δ

2
,
1 + δ

2

))
= 0.

18

Proof of Theorem 3.3. Let us first outline the strategy of the proof of (i). We will run the D̃-process
for a predetermined time s. In doing so, we will prove that (a) regardless of ϵ ∈ (0, 1/2], the probability
that D̃ hits 0 during time s is very small regardless of the value of D̃0 as long as it is nonzero, and
(b) the probability that D̃ hits 1/2 during time s is of much higher order. Having done that allows us
to repeatedly run the process for s units of time and use the Markov property to draw the conclusion
that with very high probability, D̃ hits 1/2 before 0 for sufficiently fast growing Tn. The final part (c)
upper bounds the time it takes to hit either 1/2 or 0.

To avoid confusion we point out that it will be easy for the reader to see that many of the bounds
given are far from optimal and thus to some extent arbitrary; they are simply good enough for their
purpose.

Let s = sn = log2 log n and fix ϵ > 0. We start by giving an upper bound on P (D̃s = 0). We have
for large n and all t < Tn,

P(D̃t+1 = 0|D̃t > 0) ≤ P

(
D̃t+1 = 0

∣∣∣D̃t =
1

n

)
≤ P

(
||W ||22

2
>

2 log n

log logn

)
+

(
1− g

(
1

n

)
e−

2 log n
log log n

)n

< e−
4(log log n)3

log n
2 log n

log log n +

(
1− 1

n2/3

)n

< e−8(log logn)2 + e−n1/3

< e−7(log logn)2 ,

where the second inequality uses Lemma 3.3 for the second term. By the Markov property of D̃ and
Bonferroni, we get

P(D̃s = 0) < (log2 log n)e
−7(log logn)2 < e−6(log logn)2 . (9)

This concludes part (a) in the sketch.
Next, we lower bound P(gWs

(Ds−1) > 1/2). There is κ > 0 such that for any v ∈ [1/n, 1/2),

P

(
D̃t+1 ≥

√
v

20

∣∣∣D̃t = v

)
≥ P

(
gW (v) >

√
v

20

)
P

(
D̃t+1 ≥

√
v

20

∣∣∣gW (v) >

√
v

10

)
> P

(
||W ||22

2
≤ 1

)(
1− e−κ

√
n
)

=
(
1− e−

1−ρ
ρ

)(
1− e−κ

√
n
)

> 1− e−
1
2

4(log log n)3

log n

>
(log log n)3

log n
.

Here the second inequality is Lemma 3.3 and Chernoff bounds. This gives, provided that D̃0 ≥ 1/n,

P

(
∀t = 0, . . . , s− 2 : D̃t+1 ≥ min

(
1

2
,

√
D̃t

20

))
>

(
(log log n)3

log n

)log2 logn

> e−2(log logn)2 . (10)

If the event in the left hand side occurs, then

D̃s−1 ≥ 1

400

(
1

n

)2− log2 log n

=
1

400
e−1 >

1

1200
.

By Lemma 3.5,

P

(
gWs

(D̃s−1) >
1

2

∣∣∣D̃s−1 >
1

1200

)
>

1

40π
e−

9600(1−ρ)
ρ ≥ 1

40π
e−

9600(1−δ)
δ =: a.

19

Combining with (10), it follows that

P

(
gWs

(D̃s−1) >
1

2

∣∣∣D̃0 > 0

)
> ae−2(log logn)2 > e−3(log logn)2 . (11)

Comparing (9) and (11) we see that the conditional probability that gWs(D̃s−1) reaches 1/2 before
absorbing at zero given D̃0 > 0 is at least 1 − e−3(log logn)2 , finishing part (b) of the sketch. Finally
the time to either hitting 1/2 or absorbing at 0 is dominated by a geometric random variable with
parameter e−3(log logn)2 , so with probability going to 1 this will happen before time Tn whenever
Tn > e4(log logn)2 . Adding the fact that since ϵn > 1/n for n large, P(D̃0 = 0) < e−

√
n, this concludes

the proof of (i). Now (ii) immediately follows from part (i) of Lemma 3.2.
For (iii), observe that by (i) and since D̃ absorbs when it hits 0 or 1, we get by symmetry of D̃

that limn→∞ P(D̃Tn = 0) = limn→∞ P(D̃Tn = 1) = 1/2 for {Tn} growing sufficiently large. Since hn
is odd (iii) follows for such {Tn}.

Proof of Theorem 3.4. The proof is very similar to the proof of Theorem 3.2. A quick glance back at
the proof of (i) in Theorem 3.3 shows that D̃ with high probability hits 1/2 before 0 also if the input
(ω, ωϵn) is replaced with (ω, η). Now (i) follows from exactly the same proof as that of part (i) of
Lemma 3.2. Finally, both (ii) and (iii) follows from (i) in the same way as (ii) and (iii) follow from (i)
in Theorem 3.2.

Next we move to proving that for sufficiently large ρ, {fn,Tn} is noise stable. First we need an
upper bound on gw(v):

Lemma 3.6. Let w ∈ R2 and let (r, θ) be its polar coordinates and let φ = arctan
√
v/(1− v).

Assume that |θ| ≥ φ and |θ − π| ≥ φ. Then

gw(v) ≤ e−
1
2 r

2 sin2(|θ|−φ).

Proof. As in the proof of Lemma 3.4, let

Av =

{
(x, y) : |y| ≤

√
v

1− v
|x|
}
,

so that
gw(v) = P((wC + ξ, wCc

+ η) ∈ Av),

where ξ and η are independent standard normal. Without loss of generality, we assume that θ ∈ [0, π/2].
By assumption, w ̸∈ Av. and the Euclidean distance from w to Av is r sin(θ − φ), so for w + (ξ, η) to
be in Av, it is necessary that ξ2 + η2 ≥ r2 sin2(θ − φ). The left hand side is exponential with mean 2,
so

gw(v) ≤ e−
1
2 r

2 sin2(θ−φ).

Theorem 3.5. Assume that ρ > 1− log log n/18 log n. Then the following holds.

(i) For T = Tn ≥ (log n)1/4 and for all δ > 0, it holds for all sufficiently small ϵ > 0 that if
D̃0 = v < ϵ2/2, then

lim sup
n

P

(
{D̃T > 0} ∪

{
∃t ∈ {1, . . . , T} : D̃t >

ϵ2

2

})
< δ.

In particular,

lim sup
n

P

(
∃t ≥ 1 : D̃t >

ϵ2

2

)
< δ.

20

(ii) fn,Tn
is annealed and quenched noise stable if either hn has a sharp threshold at 1/2 or Tn ≥

(log n)1/4.

Proof. This proof will start with showing that with high probability, D̃ immediately drops to less than
1/(log n)1/2 and then stays there for a time of order at least (log n)1/16. Having done that, it will be
shown that during that time, D̃ will in fact have hit 0. As in previous proofs, many inequalities used
are obviously far from optimal, but simply good enough for their purpose.

Consider now the first step of D̃. Write (r, θ) for the polar coordinates of W = W1. We have by
Lemma 3.6, since arctan

√
(ϵ2/2)/(1− (ϵ2/2)2) < ϵ

P

(
gW (v) < e−

18ϵ3 log n
log log n

)
> P

(
gW

(
ϵ2

2

)
< e−

18ϵ3 log n
log log n

)
> P

(
e−

1
2 r

2 sin2(|θ|−ϵ) < e−
18ϵ3 log n
log log n

)
> P

(
|θ| > 3ϵ, |θ − π| > 3ϵ,

1

2
r2 >

18ϵ log n

log log n

)
>

(
1− 18ϵ

π

)
e−ϵ

> 1− 4ϵ

and given that gW (v) < e−
18ϵ3 log n
log log n , we get for large n,

D̃1 < 2e−
18ϵ3 log n
log log n <

1

(log n)1/2

with conditional probability at least 1− ϵ. Taken together, the last two inequalities give,

P

(
D̃1 ≥ 1

(log n)1/2

)
< 5ϵ. (12)

Let Et = {D̃t < 1/(log n)1/2}; this notation will be convenient as we are going to do much conditioning
on this event from here on.

Next consider the distribution of D̃t+1 given D̃t = α2/2 < 1/(log n)1/2. Let as before (r, θ) = (rt, θt)
be the polar coordinates of Wt, t = 1, 2,

Let
B =

{
e−

1
2 r

2 sin2(|θ|−α) <
1

2(log n)1/2

}
.

It is sufficient for B to occur that |θ| ≥ 3/(log n)1/4 and r2 ≥ (log n)1/2 log log n. Since 1 − ρ <
log log n/300 log n, this gives for large n,

P

(
B
∣∣∣ D̃t =

α2

2

)
= P(B) >

(
1− 6

π(log n)1/4

)
e−

log log n
36 log n (logn)1/2 log logn > 1− 3

(log n)1/4
. (13)

When B occurs,

gW

(
α2

2

)
<

1

2(log n)1/2

according to Lemma 3.6. Hence for n large by Chernoff bounds,

P

(
D̃t+1 <

1

(log n)1/2

∣∣∣D̃t =
α2

2
, B

)
> 1− e−

n
log n > 1− 1

(log n)1/4
.

21

Since α2/2 is an arbitrary number in [0, 1/(log n)1/2), we get

P

(
D̃t+1 <

1

(log n)1/2

∣∣∣D̃t <
1

(log n)1/2
, B

)
> 1− 1

(log n)1/4

and hence on combining with (13),

P

(
D̃t+1 <

1

(log n)1/2

∣∣∣Et

)
> 1− 4

(log n)1/4
. (14)

Next let A = At+1 = {|θt+1| − ϵ > π/4, r2t+1 > 6 log n}. Then since 1 − ρ < log log n/18 log n,
provided that ϵ < π/12,

P(A) >
1

3
e−

log log n
6 >

2

(log n)1/5
.

If A occurs, Lemma 3.6 implies for v < ϵ2/2

gW (v) < e−
1
4 r

2

< e−
3
2 logn =

1

n3/2
.

That entails in turn that

P(D̃t+1 = 0|A) >
(
1− 1

n3/2

)n

> 1− 1√
n
.

Hence

P
(
D̃t+1 = 0|Et

)
> P

(
D̃t+1 = 0|A ∩ Et

)
P (A|Et−1) = P

(
D̃t+1 = 0|A

)
P (A)

>
2

(log n)1/5

(
1− 1√

n

)
>

1

(log n)1/5
. (15)

By taking (14) and (15) together, it now easily follows that the conditional probability given E1

that D̃ for t ≥ 1 hits 0 before (log n)1/2 exceeds 1 − 1/(log n)1/4−1/5 = 1 − 1/(log n)1/20 and with
probability exceeding 1− e−(logn)1/20 it happens before time (log n)1/4.

Combining this with (12) and taking ϵ < δ/6 we get

lim sup
n

P

(
{D̃Tn > 0} ∪ {∃t ∈ {1, . . . , Tn} : D̃t >

1

(log n)1/2
}
)
< δ.

This obviously implies

lim sup
n

P
(
{D̃Tn

> 0} ∪ {∃t ∈ {1, . . . , Tn} : D̃t > ϵ}
)
< δ.

For (ii) assume first that hn has a sharp threshold at 1/2 and Tn is arbitrary. Fix κ > 0. Then
(i) tells us that for sufficiently small ϵ > 0 and sufficiently large n, P (∀t : D̃t < 2ϵ) > 1 − κ/2. In
particular

lim sup
n

P(τ ϵ2ϵ ≤ Tn) <
κ

2
.

Since the final output is fn,Tn
(ω) = hn(ωT) and hn has a sharp threshold at 1/2, the result follows

from Lemma 3.2.
Finally if Tn ≥ (log n)1/4, then by (i), limϵ→0 P(D̃Tn = 0) = 1, i.e. limϵ→0 P(ωTn = (ωϵ)Tn) = 1,

which implies noise stability.

22

4 Convolutional treelike networks
Above we have studied a Boolean representation of randomised feed forward neural networks. Another
common architecture of neural networks is convolutional neural networks, ConvNet, where the output
of each layer is the convolution between the input and some filter of size d through some activation
function. The learnable parameters in the model will be those in the filter. If we study a one dimen-
sional input and if no padding is used, the output of each convolution is of length (n− d)/s+1 where
s is the stride and n the number of inputs. As previously, we consider the activation function to be
the sign function. We also limit ourselves to a filter size of length d = 3 (but the technique used will
with a few observations easily generalise to some other settings, which we point out and state at the
end of this section). Stacking many of these convolutional layers our networks can be seen as a graph
Gn = (Vn, En). From this graph we induce a Boolean function fn that goes from {−1, 1}n to {-1,1}.
The graphs that we consider here, and soon give proper definitions of, can be seen in Figure 2.

With filter size 3, the value of each node at layer t in Gn is the weighted 3-majority function, where
the weights are the parameters in the filter θt. These weights are the same for all triples of nodes
next to each other on the same layer on which the filter is applied. A weighted 3-majority function
can only express either a regular 3-majority, negative 3-majority, a dictator function or a negative
dictator function. Clearly, reversing the signs of all values in a layer does not have anything to do
with stability questions, so we may assume that the filter at a given layer either expresses a dictator
or a regular majority. In each setting analysed here, we will at first assume that each layer expresses a
regular majority, i.e. θt = (1, 1, 1) ∀t. It will then be easy to see that the arguments used can be easily
extended to the setting where some layers are dictator layers under the very mild assumption that the
distribution of the θt’s is such that there is a probability bounded away from 0 that θt expresses a
regular majority. Each θt is here assumed to be independent across t. First, notice that if the stride
s > 2, Gn would be the iterated 3-majority function with no overlap, which is known to be sensitive,
so we will only consider s = 1 and s = 2.

This leaves us with four different structures of interest. There corresponding graph Gn are illus-
trated in Figure 2 and have the following formal definitions of them:

(a) Convolutional iterated 3-majority with stride 1, G(1)
n = (V,E), where

V = {vn,0, vn−1,−1, vn−1,0, vn−1,1, vn−2,−2, vn−2,−1, vn−2,0, vn−2,1, vn−2,2, . . . , v0,−n, . . . , v0,n} and
E = {(vk,i, vk−1,j) : k = n, . . . , 1, j = i− 1, i, i+ 1}.

(b) Convolutional iterated 3-majority with stride 1 on an n-cycle, G(1′)
n = (V,E), where

V = {vK,−n, vK−1,−(n−1), . . . , vK−1,n, . . . , v0,−n, . . . , v0,n}, E = {(vK,1, vK−1,i) : i = 1, . . . , n} ∪
{vk,i, vk−1,j : k = K − 1, . . . , 1, |i− j| ≤ 1 mod n}.

(c) Convolutional iterated 3-majority with stride 2, G(2)
n = (V,E), where

V = {vn,1, vn−1,1, vn−1,2, vn−1,3, . . . , v0,1, . . . , v0,2n+1−1}, E = {(vn−k,i, vn−k−1,j) : k = 0, . . . , n−
1, |j − 2i| ≤ 1}.

The graph in (d) will not be treated any more than that in the end it will be obvious that the
results for (c) are valid there too, so the formal definition is skipped.

Given one of these Gn, let fn be the Boolean function induced by Gn where the value of each node
v, f(v), is evaluated as the majority of the evaluation of the three connected nodes below it (where
“below” refers to the standard tree convention of thinking of nodes vk+1,i as sitting immediately below
the nodes vk,i). The nodes of layer 0 are considered to output the input ω into the ConvNet, where
ω(j), j ∈ L0, corresponds to bit j in the Boolean input vector. For example, for a node vk,i ∈ G1

n,
f(vk,i) can be evaluated recursively using f(vk,i) = sign (f(vk−1,i) + f(vk−1,i+1) + f(vk−1,i+2)) and
f(v0,j) = ω(j), ∀k, j : 1 ≤ k ≤ n, 1 ≤ j ≤ 2n + 1. We will denote the set of nodes at layer k as Lk,
k = 0, . . . , n. In terms of the formal definition, Lk = {vk,i : vk,i ∈ V }. Note that the layers/generations
are numbered bottom up, which is unconventional in the graph sense, but is the “right thing” to do in
the neural net sense. For any i such that vk,i and vk,i+1 are both in V , we say that those two vertices

23

(a) Convolutional iterated 3-majority func-
tion with stride 1.

(b) Convolutional iterated 3-majority func-
tion with stride 1 on an n-cycle.

(c) Convolutional iterated 3-majority func-
tion with stride 2.

(d) Convolutional iterated 3-majority func-
tion with stride 2 on an n-cycle.

Figure 2: The graphs G(1)
n ,G(1′)

n ,G(2)
n and G(2′)

n .

are next to each other or a closest pair or, sometimes, neighbours in Lk even though they are strictly
speaking not neighbours in Gn. For G(1′)

n and G
(2′)
n , the nodes vk,1 and vk,n are also said to be next

to each other.
For each node u ∈ Gn, in layer k, let Du denote its set of descendants, i.e. the set of nodes in

layers k − 1, . . . , 0 defined recursively that the descendants in Lk−1 are u’s three neighbours (in the
graph sense) in Lk−1 and then the descendants in Lk−j are the set nodes there that have an edge
to at least one descendant in Lk−j−1. Observe that to determine f(u) it is sufficient to study the
subgraph Du. When v is a descendant of u, we equivalently say that u is an ancestor of v. Let Au be
the set of ancestors of u, i.e. Au is the set of nodes v such that u ∈ Dv. Write Du,k = Du ∩ Lk, and
Au,k = Au ∩ Lk, and write A+

u,k for the union of Au,k and the set of nodes in Lk that are next to a
node in Au,k. If v ∈ Au, we say that v is a parent of u or that u is a child of v if the graphical distance
between u and v is 1. Also define DΛ = ∪u∈ΛDu for a set of nodes Λ.

The following subsections prove the different noise properties of fn induced by the different convo-
lutional graphs.

4.1 Convolutional iterated 3-majority with stride 1

Let Gn = G
(1)
n = (Vn, En) i.e. the 3-iterated majority network with stride 1, Figure 2a. Then the

induced Boolean functions {fn} requires N = 2n+1 input bits which we label in accordance with how
the network is defined: ω(−n), . . . , ω(n).

Write f = fn. The key observation to make is that if f(v0,i) = ω(i) and f(v0,i+1) = ω(i + 1) are
equal, then f(vt,i) = f(vt,i+1) for all t such that vt,i and vt,i+1 exist. If only one of them, say vt,i
exists, then f(vt,i) = f(vt−1,i) = f(vt−1,i+1). In particular if ω(−1) = ω(0) or ω(i+1) or ω(0) = ω(1),
then f(ω) = f(vn,0) = ω(0). Obviously this generalises the statement that if f(vs,0) and f(vs,1) are
equal, then f(vt,0) = f(vt,1) for all t ≥ s.

If we instead have ω(−1) ̸= ω(0) ̸= ω(1) and ω(2) = ω(1), then f(v1,0) = f(v1,1) = ω(1) = ω(2)

24

and it then follows in the same way that f(ω) = ω(1).
An inductive structure suggests itself. Let K be the smallest positive integer such that either

ω(−K) = ω(−(K − 1)) ̸= ω(−(K − 2) ̸= . . . ̸= ω(K − 1) or ω(−(K − 1)) ̸= ω(−(K − 2) ̸= . . . ̸=
ω(K−1) = ω(K), if such an K exists. In other words K is the distance from 0 to a closest pair of input
bits with the same value. (There may be two such pairs. If so, by parity ω(−K) = ω(−(K − 1)) =
ω(K − 1) = ω(K) with the input alternating between −(K − 1) and K − 1.) If no such i exists, set
K = n+ 1.

Assume without loss of generality that, unless K = n + 1, ω(K − 1) = ω(K). It follows from the
definition of K, ω(−(K − 1)) ̸= ω(−(K − 2)) ̸= . . . ̸= ω(K − 2) ̸= ω(K − 1), This clearly holds also
for K = n+ 1. If K ≤ n, we then get f(v1,−(K−2)) ̸= f(v1,−(K−3)) ̸= . . . ̸= f(v1,K−3) ̸= f(v1,K−2) =
f(v1,K−1). This means that in layer 1, the closest pair of input bits with the same value is one step
closer to 0 than in layer 0. It now follows from induction that fn(ω) = f(vn,0) = ω(K). Of particular
importance here is to observe that in particular fn(ω) does not depend on ω(j), j ̸∈ [−K,K].

It remains to understand what happens if K = n + 1, i.e when the whole input is alternating:
ω(−n) = ω(−(n − 1)) = . . . ̸= ω(n − 1) ̸= ω(n). However then f will be alternating at all layers and
f(ω) = ω(−n) = ω(n).

We have established the following lemma.

Lemma 4.1. (Closest pair lemma)
The induced Boolean function f = "iterated 3-majority with stride 1" on G

(1)
n is the same as the

function g with the following description:
Given the input bit vector ω of length 2n + 1, let K be the smallest positive integer i such that

ω(−i) = ω(−(i− 1)) or ω(i− 1) = ω(i) and set g(ω) = ω(−K) or g(ω) = ω(K) in the respective cases.
If no such pair exists, set g(ω) = ω(n).

With this lemma we can state the following theorem.

Theorem 4.1. The iterated 3-majority function with stride 1 is noise stable.

Proof. According to Lemma 4.1 we can translate the iterated 3-majority with stride 1 function to the
closest pair function.

Let K be the distance between the closest pair and the mid input vertex 0. Since each bit is i.i.d.,
K is geometric with parameter 3/4 truncated at n+ 1:

P(K = k) =
3

4

(
1

4

)k−1

= 3

(
1

4

)k

,

k = 1, . . . , n and P(K = n+ 1) = (1/4)n.
Since fn does not depend on ω outside [−K,K], for fn(ωϵ) ̸= fn(ω) to hold there must at least be

a disagreement in the interval [−K,K], i.e. a j ∈ [−K,K] with ω(j) ̸= ωϵ(j). This gives

P(fn(ω) ̸= fn(ω
ϵ)|K = k) ≤ 1− (1− ϵ)2k+1,

k = 1, . . . , n+ 1 and P((fn(ω) ̸= fn(ω
ϵ)|K = n+ 1) ≤ 1− (1− ϵ)2n+1.

Putting this into Definition (2.2) we see that

lim
ϵ→0

lim sup
n

P(fn(ω
ϵ) ̸= fn(ϵ)) ≤ lim

ϵ→0
lim sup

n

n∑
k=1

3

(
1

4

)k (
1− (1− ϵ)2k+1

)
≤ lim

ϵ→0

∞∑
k=1

3

(
1

4

)k (
1− (1− ϵ)2k+1

)
= lim

ϵ→0
3

[
4

3
− 4(1− ϵ)4

4− (1− ϵ)2

]
= 0

25

This concludes the proof.

Let us now consider when the filter weights θt are random. Then θt represents either a regular
majority or a dictator function. If θt represents a dictator function each node u at layer t only depends
on one node v at layer t−1 and the values fn(u) and fn(v) are the same. This means we can effectively
skip that layer on noticing that either the leftmost or the rightmost node of layers t − 1, t − 2, . . . , 0
can no longer affect anything and can be removed. Removing all dictator layers results in an ordinary
stride 1 iterated 3-majority with fewer layers. Hence Theorem 4.1 applies and we can conclude the
following.

Corollary 4.1. The iterated 3-majority function with stride 1 is annealed and quenched noise stable
under any probability distribution on θt.

4.2 Convolutional iterated 3-majority with stride 1 on the n-cycle

Consider now G
(1′)
n , Figure 2b, the network where each layer has n nodes with circular convention so

that the first node at each layer is considered next to the last node in that layer. We assume that
n is odd. Each output from node i in layer t is the majority of nodes i − 1, i, i + 1 in layer t − 1.
The final output of the network is the majority of ωT for some T = Tn. The starting configuration is
ω0 ∈ {−1, 1}n.

Theorem 4.2. For any T = Tn, the convolutional iterated 3-majority function with stride 1 on an
n-cycle is noise stable.

Proof. Let . . . , X(−1), X(0), X(1), X(2), . . . be independent Bernoulli(1/2) random variable and model
(ω, ωϵ) in terms of these by taking ω = ω0 = (X(1), . . . , X(n)) and ωϵ = (Xϵ(1), . . . , Xϵ(n)). Let
τ0 = min{i > 1 : X(i− 1) = X(i) = Xϵ(i− 1) = Xϵ(i)}. Then recursively, let

τj = min{i > τj−1 + 1 : X(i) = X(i− 1) = Xϵ(i− 1) = Xϵ(i) = −X(τj−1)}, j = 1, 2,

Observe that if one writes X0 = X, one can then define X1, X2, . . . in complete analogy with how
ω1, ω2, . . . are defined, i.e. Xt+1(i) = sign(Xt(i− 1) +Xt(i) +Xt(i+ 1)), t = 0, 1, 2,

Let V0 = [1, τ0] and then Vj = [τj−1 +1, τj]. Let S = max{j ≥ 0 : τj ≤ n} (with S = −1 if τ0 > n).
Let also Ṽ = [τS + 1, n] (with τ−1 taken to be 0). Note that Ṽ ⊆ VS+1 (and Ṽ may also be empty).
In short, this divides [1, n] into chunks, where each chunk ends with two consecutive indexes i− 1 and
i where Xt(i − 1) = Xt(i) = Xϵ

t (i − 1) = Xϵ
t (i) for all t plus a chunk Ṽ at the end, which is empty

precisely if τS = n. On the circle, i.e. where ω and ωϵ are defined, V0 and Ṽ are next to each other in
a natural way.

Note that XT and ωT are equal on each Vj , j = 1, . . . , S. They may differ on V0 and Ṽ , but
this difference will not need to be controlled in any other way than the simple observation that their
cardinalities are bounded.

Stability will be proven by proving that, for sufficiently small ϵ > 0, the number of bits where ωT

and (ωϵ)T differ is with high probability smaller than the difference between the number of 1’s in ωT

and n/2.
For subsets I of [n] and y ∈ {−1, 1}n, let y(I) = (y(i))i∈I . Let s(y(I)) =

∑
i∈I y(i) and s(y) =

s(y([n])). Let Cj = s((ωϵ)T (Vj))− s(ωT (Vj)), j = 0, 1, 2, . . . , S, CṼ = s((ωϵ)T (V))− s(ωT (Ṽ)) so that
CṼ +

∑S
j=0 Cj = s((ωϵ)T) − s(ωT). Let also C ′

j = s((Xϵ)T (Vj)) − s(XT (Vj)), j = 1, 2, . . . and note
that the C ′

j ’s are i.i.d. and that Cj = C ′
j for j = 1, . . . , S, so that s((ωϵ)T (Vj))− s(ωT (Vj)) also equals

C0 + CṼ +
∑S

j=1 C
′
j .

Clearly all moments of |Vj | are uniformly bounded. Let ν = E[|V1|] and let m = ⌊n/ν⌋. Fix
arbitrarily small ρ > 0 and δ > 0. By the Central Limit Theorem, there is a constant K1 < ∞

26

independent of n such that with K− = m−K1
√
n and K+ = m+K1

√
n, for large n

P

K−∑
j=0

|Vj | ≥ n

 <
1

8
δ, P

K+∑
j=0

|Vj | ≤ n

 <
1

8
δ

so that
P(K− ≤ S ≤ K+) > 1− 1

4
δ. (16)

The C ′
j ’s by symmetry have mean 0. Take some j ≥ 1 and fix it until (17). Let F = Fj be the event

that there exists an index i ∈ Vj with X(i) ̸= Xϵ(i). On F c
j , XT (i) = (Xϵ)T (i) for all T and i ∈ Vj .

Thus C ′
j = 0 on F c. Let

χϵ = χϵ
j = min{r > 0 : X(τj−1 + 2r) ̸= Xϵ(τj−1 + 2r) or X(τj−1 + 2r + 1) ̸= Xϵ(τj−1 + 2r + 1)}

χ = χj = min{r > 0 : X(τj−1+2r) = Xϵ(τj−1+2r) = X(τj−1+2r+1) = Xϵ(τj−1+2r+1) ̸= X(τj−1)}.

Then χ and χϵ are geometric random variables that cannot take on the same value and χ ≥ |Vj |/2.
Also, F ⊂ G := {χϵ < χ} and it is standard that G is independent of min(χ, χϵ) and

P(G) =
2ϵ− ϵ2

2ϵ− ϵ2 + 1
4 (1− ϵ)2

< 10ϵ.

Hence

Var(C ′
j) ≤ E[C ′

j
2
] ≤ 4E[|Vj |21F] ≤ 4E[χ21G]

= 4E[E[χ21G|min(χ, χϵ)]]

= 4E[P(G|min(χ, χϵ))E[χ|min(χ, χϵ), G]]

= 4P(G)E[(min(χ, χϵ) + Y)2]

< 40ϵE[(min(χ, χϵ) + Y)2],

where Y is a copy of χ that is independent of (χ, χϵ). This gives

Var(C ′
j) < 160ϵE[χ2] < 16000ϵ. (17)

It follows that

Var

K−∑
j=1

C ′
j

 < 16000ϵm.

By the Central Limit Theorem, for sufficiently large constant M5

P

∣∣∣∣∣∣
K−∑
j=1

C ′
j

∣∣∣∣∣∣ > M5ϵ
1/2

√
n

 <
δ

4
.

Taking ϵ sufficiently small, we get

P

∣∣∣∣∣∣
K−∑
j=1

C ′
j

∣∣∣∣∣∣ < 1

2
ρ
√
n

 > 1− 1

4
δ. (18)

Kolmogorov’s inequality gives

P

max
K

∣∣∣ K∑
j=K−

C ′
j

∣∣∣ > n1/3

 <
1

4
ρ (19)

27

for n large. Adding that P(|C0 + CṼ | > an) ≤ P(|V0| + |Ṽ | > an) → 0 for any an → ∞ to (16), (18)
and (19) and summarising and recalling Cj = C ′

j for 1 ≤ j ≤ S, we get

P

∣∣∣∣∣∣C0 + CṼ +

S∑
j=1

C ′
j

∣∣∣∣∣∣ < ρ
√
n

 = P
(
|s(ωϵ)T)− s(ωT)| < ρ

√
n
)
> 1− δ (20)

for ϵ sufficiently small and n sufficiently large.

The second part is very similar, but slightly easier. Let ξ+−1 = 0. Define for j = 0, 1, 2, . . . recursively

ξ−j = min{i > ξ+j−1 + 1 : X0(i− 1) = X0(i) = −1}, ξ+j = min{i > ξ−j + 1 : X0(i− 1) = X0(i) = 1}.

Let Uj = [ξ+j−1 + 1, ξ+j], j = 0, 1, 2, . . ., and let µ = E[|Uj |]. Let R = max{j : ξ+j ≤ n}. Let also
Ũ = [ξ+R + 1, n]. Since |Uj | is clearly bounded stochastically by two times a sum of two independent
geometric(1/4) random variables, all moments of |Uj | are finite. Let m = ⌊n/µ⌋ and fix an arbitrarily
small δ > 0. The Central Limit Theorem gives that for a sufficiently large constant K2,

P(L− < R < L+) > 1− 1

4
δ, (21)

where L− = m − K2
√
n and L+ = m + K2

√
n. Let Dj = s(ωT (Uj)) =

∑ξj
i=ξj−1+1 ωT (i), j =

0, 1, 2, . . . , R, DŨ = s(ωT (Ũ)) and D′
j = s(XT (Uj)), j = 1, 2, The Dj are i.i.d. with mean 0 (by

symmetry) and, since |Dj | ≤ |Uj |, finite and clearly nonzero variance. Since XT = ωT on U1, . . . , UR,
it also holds that D′

j = Dj for j = 1, . . . , R and s(ωT) = D0 +DŨ +
∑R

j=1D
′
j . By the Central Limit

Theorem and sufficiently small ρ > 0,

P

∣∣∣∣∣∣
L−∑
j=1

D′
j

∣∣∣∣∣∣ > 3ρ
√
n

 > 1− 1

4
δ. (22)

Also, for large n by Kolmogorov’s inequality

P

max
L

∣∣∣ L∑
j=L−

D′
j

∣∣∣ < n1/3

 > 1− 1

4
δ. (23)

Summing up (21), (22) and (23), we get for large n and sufficiently small ρ > 0,

P

∣∣∣ R∑
j=1

Dj

∣∣∣ > 2ρ
√
n

 > 1− 3

4
δ. (24)

Also, for any an → ∞, P (|U1|+ |UR+1| < an) → 1. This gives in conjunction with (24) for sufficiently
large n,

P
(
|s(ωT)| > 2ρ

√
n
)
> 1− δ.

Taking ρ also small enough to satisfy (20), we get for sufficiently large n

P(maj(ωT) ̸= maj((ωϵ)T)) < 2δ.

This proves noise stability.

28

Remark. With similar arguments as for the non-cycle case, it is easy to see that the outputs from
each layer will soon freeze in a configuration that is easily determined by the following observation.
Suppose ω0(k − 1) = ω0(k) = 1 and let l = min{j ≥ k + 2 : ω0(j − 1) = ω0(j) = −1}. Let
also m = max{k + 2 ≤ j ≤ l − 2 : ω0(j − 1) = ω0(j) = 1}. Then for t ≥ d (note that l − m is
even), we have ωt(k + 1) = . . . = ωt((l + m − 2)/2) = 1, ωt((l + m)/2) = . . . = ωt(l) = −1, where
d = (1/2)max{j − i : k+2 ≤ i ≤ j ≤ ℓ : ω0(i) = −1, ω0(i+1) = 1, . . . , ω0(j − 1) = −1, ω0(j) = 1}. Of
course the analogous thing with signs reversed holds. Taking d̄ as the maximum of all such d’s over
the whole input, ωt = ωd̄ for all t ≥ d̄. It is easy to see that d̄ is of order log n.

As in Section 4.1, the result can be generalised to random θt. This is easily done by noticing that if
θt represents a dictator function, each note at layer t only has one input from layer t−1 with no overlap
between nodes. This means that we can effectively skip that layer and indeed the whole graph can be
collapsed into a less deep graph with the same width where each layer expresses regular 3-majority.
The result is summarised in the following corollary.

Corollary 4.2. The iterated 3-majority with stride 1 and with random θt chosen according to any
probability distribution on the n-cycle is quenched and annealed noise stable.

4.3 Convolutional iterated 3-majority with stride 2

Here Gn = G
(2)
n , i.e. the graph in Figure 2c, and fn induced by Gn are considered, but as we will see

in the end, the results are easily extended to G(2′)
n . There are a few crucial observations to make about

Gn. First that at each layer k, |Aj,k| ≤ 2 for every input node j ∈ L0. This follows, by the definition
of Gn, from the easily checked fact that the union of the sets of parents of two neighbouring nodes are
either two neighbouring nodes or a single node. Secondly, for two nodes u, u′ ∈ Lk Du ∩Du′ = ∅ if u
and u′ are not next to each other since the set of children of u and u′ are disjoint and no child of u is
next to any child of u′. This means f(u) and f(u′) are measurable with respect to two disjoint subsets
of ω and are hence independent. We can now formulate the following lemma.

Lemma 4.2. Fix an arbitrary layer Lk and let uj = vk,j be the nodes in Lk enumerated from left to
right. Also, let S ⊆ {1, . . . , |Lk|}. Then

P(∀j ∈ S : f(uj) = 1) ≥ 1

2|S| .

Proof. Since f(uj) is an increasing function of ω, this follows from Harris inequality.

Now, let A be some randomised algorithm to determine the value of fn(ω) by querying necessary
values from ω one by one. Let JA be the set of ωi that are queried to determine f(ω). As in ([?]) p
90, we make the following definition

Definition 4.1. The revealment of a randomised algorithm A for a Boolean function f , denoted δA,
is defined by

δA = max
j∈1,...,2n+1−1

P(j ∈ JA)

and the revealment of a Boolean function f is defined as

δf = inf
A
δA.

The following crucial fact holds [?] p 93.

Theorem 4.3. If the revealments satisfy

lim
n→∞

δfn = 0

then {fn} is noise sensitive.

29

We can now state the following theorem.

Theorem 4.4. The sequence of convolutional iterated 3-majority function on G
(2)
n with stride 2 is

noise sensitive. This also holds on G
(2′)
n .

Proof. Let n be fixed, and for now, a multiple of three. We recursively define an algorithm A(m,W)
that for all m = 0, . . . , n/3 and all W ⊆ L3m, finds f(w), w ∈ W in random order. The algorithm
goes as follows.

Starting step: A(0,W): Query all bits in W ⊆ L0 in a random uniform order.
Inductive step: A(m + 1,W): Let o be a uniform random permutation of W . Now recursively

find f(o(ℓ)), ℓ = 1, . . . , |W | by querying nodes in Do(ℓ),3m with A(m,Do(ℓ),3m) with the modification
that when and if, in the process of doing so, encountering a node v ∈ Do(ℓ),3m such that f(v) has no
information to give on f(o(ℓ)), then skip the query of v. When querying each f(o(ℓ)), do not use any
information gained when querying f(o(1)), . . . , f(o(ℓ− 1)).

In other words, by this definition a node v ∈ DW,3m that has two ancestors, a1 and a2, in W may
have been queried to find f(a1) previously, but the knowledge of f(v) is not used if one later needs to
query f(a2) until the turn comes to v in A(m,Da2,m) (if f(v) can influence f(a2) at that point.) We
refer to this as the algorithm is forgetful; when querying each f(o(ℓ)), no input is known at the start
of doing that. (Of course, when the turn comes to v, do not query f(v) again, but simply do not use
the knowledge of f(v) until this precise moment.)

Note that by forgetfulness, the permutation o is independent of which input bits are queried in the
end. Refer to this as the algorithm being permutation independent.

Let Rm,W,j be the event that A(m,W) queries j and let qm = maxW maxj P(Rm,W,j).
Fix an arbitrary leaf j and assume that W ⊆ L3(m+1) and W ∩ Aj,3(m+1) ̸= ∅. We claim that

P(Rm+1,W,j) ≤ P(Rm,DW,3m,j). This follows directly from the forgetfulness of A(m+ 1,W) which im-
plies that since the full algorithm A(m,DW,3m) queries every node in DW,3m whereas its modification
when applied in A(m+ 1,W) generally does not and then the forgetfulness implies that deterministi-
cally, for every possible input ω, the modification only queries a subset of the input nodes of the ones
queried by the full algorithm.

In order to ever query j by A(m+ 1,W) it must be the case that

(a) At least one a ∈ Aj,3m is queried when querying w for some w ∈ Aa,3(m+1) and

(b) for at least one such a, j is queried for finding f(a).

For an ancestor a ∈ Aj,3(m+1), let o′a be the permutation of Da,3m that is included by recursion in
Algorithm A(m,Da,3m). Let Ea be the event that o′a(u) < o′a(h) < o′v(v) for all u ∈ Da,3m \ A+

j,3m,
h ∈ Aj,3m ∩Da,3m and v ∈ A+

j,3m ∩Da,3m \Aj,3m. Let E =
⋂

a∈Aj,3(m+1)
Ea.

Let us lower bound P(Ea). Now Da,3m can contain either one or two ancestors of j and A+
j,3m

could be included in Da,m or one node in A+
j,3m \ Aj,3m could be outside Da,m. The “worst case” for

the present purpose is when j has two ancestors, h1, h2 ∈ Aj,3m and A+
j,3m ⊂ Da,3m. Since Da,3m

contains 15 nodes we get in this case

P(Ea) =
1

6
(
15
4

) .
It is easy to see that in the other cases, P(E) is larger than the right hand side. Since W may contain
two ancestors of j, we get

P(E) ≥ 1(
6
(
15
4

))2 .
Since the fact that probability of A(m,DW,3m) querying j is independent of of the order in which the
nodes in DW,3m are queried (i.e. the permutation independence) and the above claim,

P(Rm+1,W,j |Ec) ≤ P(Rm,DW,3m,j) ≤ qm.

30

Let F be the event that f(u) = f(v) for all u, v ∈ DAj,3(m+1),3m \ A+
j,3m. Then, according to Lemma

4.2, P(F) ≥ 1/218. On E, for j to be queried, F c ∩ Rm,DW,3m,j must necessarily occur. Also, F and
Rm,DW,3m,j are independent. This holds since Rm,DW,3m,j by forgetfulness depends only on the leafs in
DAj,3m

and the randomness in the implicit random permutations when A(m, a), a ∈ Aj,3m are carried
out, whereas F depends on none of that. Clearly the two events are also independent of E. Hence we
get

P(Rm+1,W,j) ≤ P(Ec)qm + P(E)P(F c)P(Rm,DW,3m,j |E) ≤ (P(Ec) + P(E)P(F c))qm.

Since this bound is independent of W and j,

qm+1 ≤ (P(Ec) + P(E)P(F c))qm ≤

(
1− 1

36
(
15
4

)2
218

)
qm.

Hence

qn/3 ≤

(
1− 1

36
(
15
4

)2
218

)n/3

→ 0

as desired. Cases when n is not a multiple of 3 can be completed by e.g. querying everything in layers
0, . . . , 3(n/3− ⌊n/3⌋) and then using the above algorithm from there. This gives

qn/3 ≤

(
1− 1

36
(
15
4

)2
218

)⌊n/3⌋

→ 0

which in combination with Theorem 4.3 proves the theorem.

The arguments in the proof are easily adapted to when θt are random and we get the following
corollary.

Corollary 4.3. The iterated 3-majority function with stride 2 is annealed and quenched noise sensitive
if the distribution of θt is such that the probability of representing a majority is bounded away from
zero.

Proof. We show that with a very high probability, {fn} will be such that the revealment converges to
zero as n grows. As previously discussed, θt represents either a majority or dictator function. Using
the same algorithm as in Theorem 4.4, qm is now random depending on the filter structure, and we
get that for a fixed iteration m

qm+1 ≤

(
1− 1

36
(
15
4

)2
218

)
qm

if the layers 3m, 3m+1 and 3m+2 all represent majority layers. If this is not the case, i.e. if at least
one of the layers represents a dictator, we instead just use that qm+1 ≤ qm. Letting

Cn = |{m ∈ {1, . . . ⌊n/3⌋} : θ3m, θ3m+1 and θ3m+2 represents majority functions.}|

we get

qn/3 ≤

(
1− 1

36
(
15
4

)2
218

)Cn

.

Since the probability of a given θt representing a majority is bounded away from zero, Cn → ∞ in
probability as n grows and hence the right hand side converges to 0. This proves quenched noise
sensitivity. Finally, using Theorem 2.1 and the fact that Eω[fn(ω)] = 0 for all θt, annealed noise
sensitivity follows.

31

4.4 Extensions to convolutional iterated 2k + 1 majority with overlap
Obviously the problems just treated for convolutional iterated 3-majority are equally interesting with 3
replaced with 2k+1 for some integer k ≥ 2. In this case the sensitivity is trivial if the stride s > 2k+1
since this would correspond to the regular 2k+1 iterated majority with no charred nodes. For smaller
s the corresponding graph Gn,k,s is defined as Gn,k,s = (Vn,k,s, En,k,s), where

Vn,k,s = {vn,0, vn−1,−k, vn−1,−(k−1), . . . , vn−1,k, vn−2,−2k, . . . , vn−2,2k, . . . , v0,−kn, . . . , v0,kn} and
En,k,s = {(vt,i, vt−1,j) : t = n, . . . , 1, |i− j| ≤ k, vt,i and vt−1,j exist}

if s = 1 and

Vn,k,s = {vn,1, vn−1,1, vn−1,2, . . . , vn−1,2k+1, vn−2,1, . . . , vn−2, 2ks2−2k+s−1
(s−1)

, . . . , v0,1, . . . , v0, 2ksn−2k+s−1
(s−1)

} and

En,k,s = {(vt,i, vt−1,j) : t = 1, . . . , n, j − s(i− 1) ∈ [1, 2k + 1], vt,i and vt−1,j exist}

if 1 < s < 2k + 1.
When s > 1, the crucial condition for the algorithm in Theorem 4.4 for proving noise sensitivity is

that each input node has at most two ancestors at any generation. This can in fact be generalised to
the 2k + 1 iterated majority with stride s ≥ 2. This is shown in Lemma 4.3.

Lemma 4.3. Let Gn,k,s be the corresponding graph to the convolutional iterated 2k+1-majority with
stride s ≥ 2. Then |At,S | ≤ 2k, for every t and every S of m ≤ 2k nodes next to each other.

Proof. Notice that if s > 2k, the corresponding graph Gn,k,s would be such that |At,j | = 1 for each t
and j, making the result trivial. Therefore, assume 2 ≤ s ≤ 2k. Now observe that given a node vt,i
at layer t > 0 has 2k + 1 children which are {vt−1,s(i−1)+j : j ∈ {1, . . . 2k + 1}}. So, for a node vt+1,i

to be a parent to vt,j it must be that j = s(i− 1) + i′ for some i′ ∈ {1, . . . 2k + 1}. Consequently, the
parents to vt,j is vt+1,i such that ⌈

j − 2k

s

⌉
+ 1 ≤ i ≤

⌊
j − 1

s

⌋
+ 1

such that vt,i exists. Let S = {vt,u, vt,u+1, . . . , vt,u+m} where u > 0 and 0 ≤ m ≤ 2k− 1 such that vt,u
and vt,u+m exist. Then

|At+1,S | =
⌊
u+m− 1

s

⌋
−
⌈
u− 2k − 1

s

⌉
+ 1 ≤

⌊
u+ 2k − 2

2

⌋
−
⌈
u− 2k − 1

2

⌉
+ 1 = 2k

The lemma now follows by using this argument recursively over t.

From Lemma 4.3 it follows that |At, j| ≤ 2k for all t and j. With that condition satisfied, the proof
of Theorem 4.4 easily generalises. Without supplying further details, we state the following theorem.

Theorem 4.5. The convolutional iterated 2k + 1-majority function with stride s is noise sensitive if
s ≥ 2.

The results for noise stability also go through very easily if the stride is 1 when θt are non-random.
This by noticing that if there are k+1 sequentially equal input bits with the same sign, no information
can be transferred from one side to the other. In the non cyclic case, input bits "outside" such a
sequence has no influence on the final result. So by a high probability, the function is determined by
the central bits, which with a high probability does not have a disagreement between ω and ωϵ.

A similar result can be stated for the cyclic case where the proof unfolds in a similar fashion but
with a slightly different definition on τj . All in all, we can state the following theorem.

32

Theorem 4.6. The convolutional iterated 2k + 1-majority function with stride 1 is noise stable both
with and without cyclical convention.

When considering random weights for s ≥ 2, noise sensitivity still holds as long as the distribution of
θt is such that with probability bounded away from 0, θt represents ordinary majority. The arguments
are identical to that of k = 1. Thus, we can state the following corollary.

Corollary 4.4. If θt is such that the probability of representing a majority is bounded away from zero,
then the convolutional iterated 2k + 1-majority function with stride s ≥ 2 and random weights θt is
annealed and hence also quenched noise sensitive.

Remark. For stride one, the arguments with random weights do not generalise well when k > 1.

5 Open problems and research directions
We have taken inspiration from observed non-robustness phenomena for DNN classifiers and have de-
termined when a few common DNN architectures give rise to noise sensitive or noise stable classifiers.
Going on focusing on the non-robustness phenomena, there are numerous further avenues to be ex-
plored. First of all, of course, there are many other DNN architectures that can be considered. Can
noise sensitivity/stability results be achieved for (some of) them? If so, will that help us to design
powerful DNN architectures that are robust to noise?

Besides that, here are a first few questions concerning the fully connected DNN models.

• In this paper, the activation function is the sign function for all layers. Will replacing them
with activation functions used in practice, such as the arctan function, the sigmoid function, the
ReLU function, etc, cause different properties with respect to noise sensitivity/stability?

• Above, all layers are of equal width. Does it make a difference if the layers are allowed to be of
different widths? Does it then matter how unequal the widths are, e.g. of vastly different orders
as functions of n? Here we believe that having varying widths, does not matter no matter how
much they vary, and that would be a fairly easy task to prove.

• In Section 3.2 it is shown that under weak assumptions, if 1 − ρn shrinks as log n/n or faster,
then the resulting Boolean function will almost certainly be noise stable. On the other hand,
if 1 − ρn shrinks as (log n)3/n, then we typically get a noise sensitive sequence of functions. Is
there a cutoff between the two cases and if so, where between log n/n and (log n)3/n is it?

• What happens if one has access to data and train the network to fit with that? This could be
interpreted in many different ways. For example the setting could be the following. Suppose
that data are generated by a particular fully connected DNN of the kind in Section 3.1 and
suppose that this particular DNN expresses a noise stable function. Assume further that we
get data-points one by one, where each data-point is a uniform random input together with its
output. According to Theorem 3.1, the network will almost certainly be noise sensitive at the
start of training and in the end, after having seen all possible inputs, the DNN has learnt to
express the true noise stable function behind the data. Where along this process does the DNN
turn from sensitive to stable? Can it also flip back and forth between noise sensitive and noise
stable along the way?

Concerning the convolutional models, there is also more to be done for k ≥ 2, i.e. for filters of size
at least 5. We have already observed that when the filter size is at least 5, a filter can express many
things besides (anti)majority and (anti)dictator function. For example with five input bits, a filter
could express “the first input bit unless all the other bits agree on the opposite”. For stride s ≥ 2, we
showed that if the filter with at least some probability expresses a majority, then the resulting network
is noise sensitive. However if regular majority is never expressed, then what?

33

Also, for k ≥ 2 and stride 1, it remains open if the resulting network is noise stable as we believe
it is.

The noise sensitivity properties in Section 3.1 and 3.2 are very strong and one can even input two
strings from any joint distribution over {−1, 1}n × {−1, 1}n such that with probability tending to
1 with n the two strings neither equal nor completely opposite. With probability 1/2, the function
described by the resulting DNN will produce different results for the two different strings. However,
this is in a nonadversarial setting, i.e. the joint distribution of the input strings is independent of the
network weights. Suppose an adversary gets information about the network weights and one of the
input strings. Can he produce the second string by flipping bits of his own choice of the first string,
with no other restriction than the expected number of flips has to be very small, so that the output of
the second string differs from that of the first string? None of the results in this paper are concerned
with questions such as these, and it would certainly be very interesting to look at that.

Achnowledgement
The first and third authors were supported by the Wallenberg AI, Autonomous Systems and Soft-
ware Program (WASP) funded by the Knut and Alice Wallenberg Foundation. The second author
acknowledges the support of the Swedish Research Council, grant no. 2020-03763.

34

