
A study of distributional complexity measures for Boolean

functions

Laurin Köhler-Schindler∗ Jeffrey E. Steif†

August 23, 2024

Abstract

A number of complexity measures for Boolean functions have previously been in-
troduced. These include (1) sensitivity, (2) block sensitivity, (3) witness complexity,
(4) subcube partition complexity and (5) algorithmic complexity. Each of these is
concerned with “worst-case” inputs. It has been shown that there is “asymptotic sep-
aration” between these complexity measures and very recently, due to the work of
Huang, it has been established that they are all “polynomially related”. In this paper,
we study the notion of distributional complexity where the input bits are independent
and one considers all of the above notions in expectation. We obtain a number of re-
sults concerning distributional complexity measures, among others addressing the above
concepts of “asymptotic separation” and being “polynomially related” in this context.
We introduce a new distributional complexity measure, local witness complexity, which
only makes sense in the distributional context and we also study a new version of algo-
rithmic complexity which involves partial information. Many interesting examples are
presented including some related to percolation. The latter connects a number of the
recent developments in percolation theory over the last two decades with the study of
complexity measures in theoretical computer science.

Contents

1 Introduction 2

2 Definition and hierarchy of complexity measures 4
2.1 Deterministic complexity measures . 4
2.2 Distributional complexity measures . 7
2.3 A geometric perspective on subcube partitions and algorithms 13
2.4 A stopping set perspective on subcube partitions and local sets 14

∗ETH Zürich, Zürich, Switzerland. Email: laurin.koehler.schindler@gmail.com
†Chalmers University of Technology and Gothenburg University, Gothenburg, Sweden. Email:

steif@chalmers.se

1

3 Boolean function composition 16
3.1 Review of the deterministic case . 16
3.2 Composition results for distributional complexities 17

4 Examples 21
4.1 Classical examples . 22
4.2 Percolation functions . 24

5 Asymptotic separations 27
5.1 Review of the deterministic case . 27
5.2 Asymptotic separation for distributional complexities 28

6 Polynomial relations 29
6.1 Review of the deterministic case . 29
6.2 Polynomial relations for distributional complexities 30

7 Distributional algorithmic complexity with partial information 31
7.1 Distributional Γ-algorithmic complexity . 32
7.2 Distributional (p, κ)-algorithmic complexity 33

8 Distributional algorithmic complexity under composition and an outlook
on asymptotic separation 39

1 Introduction

A Boolean function is an arbitrary function

f : {0, 1}n → {0, 1}.

Boolean functions arise in a number of areas of mathematics including theoretical computer
science and its role in the latter will be the main topic of this paper. A number of con-
cepts have been previously introduced which are designed to measure the “complexity” of
a Boolean function; see Subsection 2.1 for five of the standard complexity measures which
have been intensively studied (see, e.g., [BdW02,ABDK+21]). These are (1) sensitivity, (2)
block sensitivity, (3) witness complexity, (4) subcube partition complexity and (5) algorith-
mic complexity. In all of these cases, the definition is given in terms of “worst case” over the
possible input strings from {0, 1}n. There is an ordering of these complexity notions which
holds for all Boolean functions; see Proposition 2.1. We will often use the term determin-
istic complexity measures in order to distinguish these from the distributional complexity
measures introduced further down. Two particular directions which have been successfully
investigated within this field are (1) asymptotic separation and (2) polynomial relations.
Asymptotic separation means that for any two of the complexity measures (1)–(5), there
exists a sequence of Boolean functions (fn)n≥1 so that the ratio of these two complexity
measures applied to fn approaches ∞ (or zero); see Theorem 5.1. The term “polynomial

2

relations” means that all of these complexity measures are related by universal polynomial
factors; more precisely, there is a constant C so that each complexity measure is at most any
other complexity measure raised to the power C; see Theorem 6.1. Recently in 2019, Huang
obtained the final step of this result by proving the so-called sensitivity conjecture [Hua19].

Rather than considering “worst-case” input strings, which is done in the above notions,
one can measure complexity in an average sense. One of the main books on Boolean func-
tions when one considers “average case” notions is [O’D14]. Here one assumes that the
input string {0, 1}n is chosen randomly; usually one assumes that the bits are chosen inde-
pendently, 1 or 0, with probabilities p and 1−p for a given p. Then one considers the various
notions mentioned earlier ((1) sensitivity, (2) block sensitivity, (3) witness complexity, (4)
subcube partition complexity and (5) algorithmic complexity) on expectation rather than
on a “worst-case” input string. We use the term distributional complexity in this context;
see Subsection 2.2 for the precise definitions. One of the various goals of this paper is to
study the notions of “asymptotic separation” and “polynomial relations” in the context of
distributional complexity; see Theorem 5.3 for the former and Subsection 6.2 for the latter.
Some other related references are [BKST24] and [San24].

In Subsection 2.2, we also introduce a new complexity measure, called local witness
complexity, which does not have an analogue in the deterministic (worst-case) setting.
This notion of local witness complexity is very natural from a probabilistic perspective,
seemingly more natural than the closely aligned notion of subcube partition. In addition,
it often captures the minimal structure needed for certain arguments to work; see Theorem
5.2 for an example of this. An analogous notion of local sets also arises in the study of the
so-called Gaussian Free Field.

As in the deterministic case, there is an ordering of these distributional complexity
measures, including local witness complexity, which holds for all Boolean functions; see
Proposition 2.3. We also give examples demonstrating that this new notion of local witness
complexity is distinct from all of the other complexity measures.

We proceed to give a brief summary of different parts of the paper. First, many inter-
esting examples of Boolean functions together with either their deterministic complexity
measures or their distributional complexity measures (or both) are given throughout the
text. A particularly interesting class of Boolean functions is the class of percolation func-
tions; see Subsection 4.2 where these are studied. Within these, the sequence corresponding
to crossings of a square is especially interesting (see Example 4.5) since many deep results in
percolation theory lead to fairly detailed information concerning the various distributional
complexity measures. Second, there is a natural notion of composing Boolean functions,
and this naturally gives rise, by iteration, to various sequences of Boolean functions. How
these different complexity measures, both in the deterministic and in the distributional
sense, behave under composition is recalled (for deterministic) and studied (for distribu-
tional) in Section 3. In Subsection 2.3, we examine the distinction between algorithmic and
subcube partition complexity using a geometric perspective. In particular, we will see that
for subcube partition complexity, one can consider the two parts of the cube where f is 1,
respectively 0, separately, but this cannot be done for algorithms. In Subsection 2.4, we

3

introduce a unifying perspective on both subcube partitions and local sets. This is done
via the concept of a stopping set which is analogous to the concept of a stopping time in
probability theory. In Section 7, we introduce a new notion of distributional algorithmic
complexity with partial information which appears interesting and has certain similarities
with the notion of fractional query algorithms introduced in [Gro22]. In addition, it is po-
tentially relevant for studying asymptotic separation of two of the notions of distributional
complexity, namely algorithmic and subcube partition; see end of Section 5.

Results from theoretical computer science have in recent years led to new results (or
simplifications of older results) in percolation theory and statistical mechanics, such as so-
called sharp thresholds for various models. We therefore hope that this paper will motivate
the percolation community to look more systematically at distributional complexity mea-
sures and at the same time to motivate the theoretical computer science community to
study distributional complexity measures (not only worst-case) even more systematically
given that these are very relevant from a probabilistic perspective. In addition, a systematic
study of distributional complexities for non-product measures would also be an interesting
direction to pursue in future research. For example, an important inequality, called the
OSSS inequality, has recently been extended in this direction, leading to the resolution of
important conjectures in statistical mechanics [DCRT19].

2 Definition and hierarchy of complexity measures

2.1 Deterministic complexity measures

In this subsection, we review deterministic complexity measures for Boolean functions. We
refer to the coordinates of the n-dimensional hypercube {0, 1}n as bits. An algorithm A is
an order of querying the bits (i.e. asking for the values) one by one, where the next query is
allowed to depend on the outcome of all previous queries. Note that an algorithm will have
queried all bits eventually. For a Boolean function f : {0, 1}n → {0, 1} and a realization of
the bits x ∈ {0, 1}n, we write cf (A, x) for the number of queries made by A on x until f is
determined. The deterministic algorithmic complexity of f is defined as

aD(f) = min
A

max
x

cf (A, x). (1)

A subcube partition C is a partition of the hypercube {0, 1}n into subcubes. It will be
convenient to identify a subcube C ⊆ {0, 1}n with a sequence (c1, . . . , cn) ∈ {0, 1, ?}n, where
ci ∈ {0, 1} means that bit i is fixed to be 0 respectively 1, and ci = ? means that bit i is not
fixed. We write IC for the set of bits fixed by C. Given a subcube partition C, we denote
the subcube containing x by C(x) ∈ C and its co-dimension by

c(C, x) = n− log2(|C(x)|).

In other words, c(C, x) equals |IC(x)|, the number of bits fixed by C(x), and log2(|C(x)|)
is the number of bits not fixed by C(x). We say that a subcube partition C determines

4

f , denoted by C ∼ f , if it is constant on each subcube C ∈ C. The deterministic subcube
partition complexity of f is defined as

scD(f) = min
C∼f

max
x

c(C, x). (2)

A set W ⊆ [n] is called a witness set for f and x if x|W determines f . Given x, we refer
to the minimum of |W | over all witness sets W for f and x as the minimum witness size
and denote it by wf (x). The deterministic witness complexity of f is defined as

wD(f) = max
x

wf (x).

We denote by bf (x) the maximum number m of disjoint blocks B1, . . . , Bm ⊆ [n] such
that

f(xBi) 6= f(x), ∀ 1 ≤ i ≤ m, (3)

where xBi denotes the realization of the bits obtained from x by flipping all bits in Bi. The
deterministic block sensitivity of f is defined as

bD(f) = max
x

bf (x).

Finally, we denote by sf (x) the number of bits i such that f(xi) 6= f(x), where xi := x{i}.
These bits are called pivotal for f at x. The deterministic sensitivity of f is defined as

sD(f) = max
x

sf (x).

Although well-known, we give the proof of the following proposition for the sake of the
reader.

Proposition 2.1. For every Boolean function f , the deterministic complexities satisfy

aD(f) ≥ scD(f) ≥ wD(f) ≥ bD(f) ≥ sD(f).

Proof. We prove the four inequalities one by one. First, consider an algorithm A achieving
the minimum in (1). When stopped at the moment of determining f , it induces a subcube
partition C(A) ∼ f with c(C(A), x) = cf (A, x) for every x. Taking the maximum over x,
this implies aD(f) ≥ scD(f).

Second, consider a subcube partition C ∼ f achieving the minimum (2). For every x,
the fixed coordinates of C(x) are a witness set Wx(C) for f and x. Since c(C, x) = |Wx(C)| ≥
wf (x), taking the maximum over x yields scD(f) ≥ wD(f).

Third, fix any x and consider a maximal collection of blocks B1, . . . , Bm as in the
definition of bf (x). We note that any witness set W for f and x must intersect Bi for every
1 ≤ i ≤ m. This implies wf (x) ≥ m = bf (x) and hence, wD(f) ≥ bD(f).

Finally, for every x, the pivotal bits provide sf (x) disjoint blocks B1, . . . , Bsf (x) of size
1 satisfying (3). This implies sf (x) ≤ bf (x), and hence sD(f) ≤ bD(f).

5

The following examples show that the five complexity measures are all distinct.

Example 2.1. For n being a multiple of 4, define the Boolean function g on n bits by

g(x1, . . . , xn) =

{
1 if

∑n
i=1 xi ∈ {

n
2 ,

n
2 + 1},

0 otherwise.

This function appeared in [Nis89] to show that wD(g) > bD(g) > sD(g). It has deterministic
complexities

sD(g) =
n

2
+ 2, bD(g) = max

{
3n

4
,
n

2
+ 2

}
, and wD(g) = n− 1.

To see this, note that sg(x) = n
2 + 2 if x has exactly n

2 + 2 bits with value 1. Moreover,
bg(x) = 3n

4 and wg(x) = n− 1 if x has exactly n
2 bits with value 1.

We note that the following small proposition also implies aD(g) = n, which could oth-
erwise be seen using an adversary argument.

Proposition 2.2. For Example 2.1, scD(g) = n.

Proof. Denote by Si the set containing all x having exactly i bits with value 1. Towards
a contradiction, assume that there exists a subcube partition C containing only subcubes
fixing at most n− 1 bits. Note that for any x ∈ Sn/2, C(x) must fix all n/2 bits with value
1 and exactly n/2 − 1 bits with value 0 since g would otherwise not be constant on C(x).
Therefore, C(x) 6= C(y) for all x, y ∈ Sn/2 with x 6= y. However, note that every such cube
C(x) contains an element x′ ∈ Sn/2+1. Since |Sn/2+1| < |Sn/2|, the cubes cannot be disjoint,
a contradiction.

Example 2.2. Savický’s function on n = 4 bits, which was introduced in [SS00,Sav02] and
which we call MAJ4 according to [KRDS15], is defined by

MAJ4(x1, x2, x3, x4) =

{
1 if 2x1 +

∑4
i=2 xi ≥ 3,

0 otherwise.

Note that this is a majority function with the first bit being decisive in the case of a tie. It
is easy to see that the deterministic complexities are as follows:

sD(MAJ4) = bD(MAJ4) = wD(MAJ4) = scD(MAJ4) = 3,

aD(MAJ4) = 4,

once one observes that

C := {(?, 1, 1, 1), (?, 0, 0, 0), (1, 1, 0, ?), (0, 1, 0, ?), (1, ?, 1, 0), (0, ?, 1, 0), (1, 0, ?, 1), (0, 0, ?, 1)}

is a subcube partition.

6

2.2 Distributional complexity measures

In this subsection, we define distributional complexity measures. We denote the product
measure on {0, 1}n with marginal p ∈ [0, 1] by πp. We begin with introducing the distribu-
tional analogues of the five deterministic complexity measures encountered in the previous
subsection. The πp-distributional algorithmic complexity is defined as

a(f, πp) = min
A

Ex∼πp [cf (A, x)] ,

the πp-distributional subcube partition complexity as

sc(f, πp) = min
C∼f

Ex∼πp [c(C, x)] ,

the πp-distributional witness complexity as

w(f, πp) = Ex∼πp [wf (x)] ,

the πp-distributional block sensitivity as

b(f, πp) = Ex∼πp [bf (x)] ,

and the πp-distributional sensitivity as

s(f, πp) = Ex∼πp [sf (x)] .

The bits queried by an algorithm A until f is determined and the bits fixed by a subcube
partition naturally form random subsets of [n] which are measurable with respect to x. In
the following, we also consider random sets I ⊆ [n] which are not necessarily measurable
with respect to x. However, any random set is implicitly assumed to be defined on the same
probability space as x, and we continue to write Ex∼πp for the corresponding expectation.
A random set I ⊆ [n] is called a witness set for f , denoted I ∼ f , if x|I almost surely
determines f . Clearly, we have w(f, πp) = minI∼f Ex∼πp [|I|].

We call a random set I ⊆ [n] local if for every fixed J ⊆ [n],

σ ({I = J}, (xi : i ∈ J)) is independent of σ (xi : i /∈ J) .

In words, conditional on the random set I being equal to J and on the values of x on J ,
the bits outside of J are still independent Ber(p)-distributed. We are now in position to
define a sixth distributional complexity measure, which has no deterministic analogue. The
πp-distributional local witness complexity is defined as

`(f, πp) = min
I∼f, I local

Ex∼πp [|I|] .

Proposition 2.3. For every Boolean function f and for every p ∈ [0, 1], the distributional
complexities satisfy

a(f, πp) ≥ sc(f, πp) ≥ `(f, πp) ≥ w(f, πp) ≥ b(f, πp) ≥ s(f, πp).

7

Proof. The inequalities a(f, πp) ≥ sc(f, πp) and w(f, πp) ≥ b(f, πp) ≥ s(f, πp) can be ob-
tained analogously to the deterministic case in Proposition 2.1, by simply replacing taking
the maximum over x by expectations with respect to πp. The inequality `(f, πp) ≥ w(f, πp)
is immediate from the definition. Finally, we establish the inequality sc(f, πp) ≥ `(f, πp).
Given a subcube partition C, we write IC for the random set defined by IC(x) := IC(x). It
is straightforward to check that IC is local. As C ∼ f implies IC ∼ f , the desired inequality
follows.

Examples 2.3, 2.4 and 2.5 show that the six complexity measures are all distinct. In
Section 5, we will study the stronger notion of asymptotic separation.

Example 2.3. The MAJORITY function on n = 3 bits, defined by

MAJ3(x1, x2, x3) =

{
1 if

∑3
i=1 xi ≥ 2,

0 if
∑3

i=1 xi ≤ 1,

has distributional complexities

s(MAJ3, πp) = 2− 2p3 − 2(1− p)3,

b(MAJ3, πp) = 2− p3 − (1− p)3,

w(MAJ3, πp) = 2,

sc(MAJ3, πp) = a(MAJ3, πp) = 2 + 2p(1− p).

Since the notion of local witness complexity involves an infinite number of choices for the
joint distribution of (I, x), its computation seems to be more difficult than the other distri-
butional complexities. However, in some cases, this complexity can be computed explicitly
as the following proposition demonstrates.

Proposition 2.4. `(MAJ3, πp) = 2 + 2p(1− p).

Proof. The upper bound follows directly from Proposition 2.3 and the value of sc(MAJ3, πp)
given above. For the lower bound, let I be a local witness set for MAJ3. We analyze the
constraints on the joint distribution of (I, x) imposed by being a witness set and by locality.
First, since I is a witness set for MAJ3, we must have {i, j} ⊆ I for some i 6= j ∈ [3]
satisfying xi = xj . Thus, there are two possibilities for I if the bits are not all equal (e.g.,
I = {1, 2} or I = {1, 2, 3} if x = (1, 1, 0)), and four possibilities for I if the bits are all
equal. Second, since I is local, we have for every permutation (i, j, k) of (1, 2, 3) and every
z ∈ {0, 1},

Px∼πp [I = {i, j}, xi = xj = z, xk = 1] =
p

1− p
·Px∼πp [I = {i, j}, xi = xj = z, xk = 0] . (4)

For abbreviation, we define

βz{i,j} := Px∼πp [I = {i, j}, xi = xj = z, xk = 1− z] ∈ [0, p1+z(1− p)2−z],

8

where (i, j, k) is a permutation of (1, 2, 3) and z ∈ {0, 1}, and βz := βz{1,2} + βz{2,3} + βz{1,3}.

The main observation is now that (4) implies

p

1− p
β1 = Px∼πp [|I| = 2, x = (1, 1, 1)] ≤ p3 ⇐⇒ β1 ≤ p2(1− p),

and analogously, β0 ≤ p(1− p)2.
Finally, we express the expected size of I in terms of β1 and β0.

Ex∼πp [|I|] = 2β1 + 3
(
3p2(1− p)− β1

)
+ 2

p

1− p
β1 + 3

(
p3 − p

1− p
β1

)
+ 2β0 + 3

(
3p(1− p)2 − β0

)
+ 2

1− p
p

β0 + 3

(
(1− p)3 − 1− p

p
β0

)
= 3−

(
β1 +

p

1− p
β1

)
−
(
β0 +

1− p
p

β0

)
= 3− β1

1− p
− β0

p
.

Using the previously obtained upper bounds on β1 and β0, we conclude that

Ex∼πp [|I|] ≥ 3− p2 − (1− p)2 = 2 + 2p(1− p),

and the lower bound on `(MAJ3, πp) follows.

It remains to separate sc(·, πp) and a(·, πp) as well as `(·, πp) and sc(·, πp), which we will
do in the following two examples.

Example 2.4. The ALL-EQUAL function on n = 3 bits, defined by

A-EQ3(x1, x2, x3) =

{
1 if x1 = x2 = x3,

0 otherwise,

has distributional complexities

s(A-EQ3, πp) = 1 + 2p3 + 2(1− p)3,

b(A-EQ3, πp) = w(A-EQ3, πp) = `(A-EQ3, πp) = sc(A-EQ3, πp) = 2 + p3 + (1− p)3,

a(A-EQ3, πp) = 2 + p2 + (1− p)2.

An optimal subcube partition is given by

C = {(0, 0, 0), (1, 0, ?), (?, 1, 0), (0, ?, 1), (1, 1, 1)}.

Example 2.5. The Boolean function g on n = 4 bits, defined by

g(x1, . . . , x4) =

{
1 if (x1, . . . , x4) ∈ {(1, 0, 0, 1), (0, 0, 0, 1), (0, 1, 0, 1), (0, 1, 1, 0)},
0 otherwise,

has distributional complexities

s(g, π1/2) = 3/2, b(g, π1/2) = 9/4, and w(g, π1/2) = 37/16.

9

Proposition 2.5. For Example 2.5, `(g, π1/2) ≤ 21/8 and a(g, π1/2) = sc(g, π1/2) = 11/4.

Proof. To see this, we first construct a local witness set of expected size 21/8. Define

I0(x1, . . . , x4) =



{1, 2} if x1 = x2 = 1,

{2, 3} if x2 = 0, x3 = 1,

{1, 2, 3, 4} if x1 = 0, x2 = 1,

{2, 3, 4} if x2 = x3 = 0, x4 = 1,

{2, 4} if x2 = x3 = x4 = 0,

and

I1(x1, . . . , x4) =


{3, 4} if x3 = x4,

{1, 2, 3, 4} if x2 = 1, x3 6= x4,

{2, 3, 4} if x2 = x3 = 0, x4 = 1,

{2, 4} if x2 = x4 = 0, x3 = 1.

It is easy to see that I0 and I1 are witness sets of size Ex∼π1/2 [|I0|] = Ex∼π1/2 [|I1|] = 21/8,
but not local. However, for a Ber(1/2)-distributed random variable G that is independent
of x, one can check that the random set IG is a local witness set.

Second, we describe an algorithm whose expected number of queries is 11/4. The
algorithm begins with querying x3 and x4. Note that f = 0 if x3 = x4. The algorithm then
queries x1. Note that f = 0 (resp. f = 1) if (x1, x3, x4) = (1, 1, 0) (resp. (0, 0, 1)). Lastly,
the algorithm queries x2.

Third, we need to argue that every subcube partition determining f fixes on average
at least 11/4 bits. We study the subcube partitions of {x : f(x) = 1} and {x : f(x) = 0}
separately. It is easy to see that {(?, 0, 0, 1), (0, 1, 0, 1), (0, 1, 1, 0)} is an optimal subcube
partition of {x : f(x) = 1}, and it fixes on average 7/2 bits (conditional on f = 1). Since
11/4 = (1/4) · (7/2) + (3/4) · (5/2), we are thus left with showing that an optimal subcube
partition of {x : f(x) = 0} fixes on average at least 5/2 bits (conditional on f = 0). We first
observe that every subcube in {x : f(x) = 0} must fix at least 2 bits, i.e. has size at most 4.
Next, if a subcube partition of {x : f(x) = 0} contains only one (resp. no) subcube of size
4, it fixes on average at least 8/3 (resp. 3) bits, which is larger than 5/2. Otherwise, the
subcube partition of {x : f(x) = 0} contains at least two subcubes of size 4. A case-by-case
analysis allows to verify that for all possible combinations of two subcubes of size 4, the
remaining 4 configurations can neither be combined into one subcube of size 4 nor into two
subcubes of size 2. This establishes that any subcube partition of {x : f(x) = 0} fixes on
average at least (2 · 8 + 3 · 2 + 4 · 2)/12 = 5/2 bits, and thereby completes the argument.

We note that for any Boolean function f , the separation sD(f) < bD(f) < wD(f)
directly implies the separation s(f, πp) < b(f, πp) < w(f, πp) for p ∈ (0, 1) since these three
complexity measures are ordered pointwise for every x. However, the converse is generally
not true which can be seen, for example, by considering the majority function on three

10

bits satisfying s(MAJ3, πp) < b(MAJ3, πp) < w(MAJ3, πp) but sD(MAJ3) = bD(MAJ3) =
wD(MAJ3) = 2.

We also note that the separation scD(MAJ4) < aD(MAJ4) in Example 2.2 does not
imply the corresponding separation in the distributional case, and it can be checked that
sc(MAJ4, π1/2) = a(MAJ4, π1/2).

We will see in Proposition 4.3 that distributional witness complexity and block sensi-
tivity are equal for a large class of functions. However, asking for equality of distributional
sensitivity and block sensitivity severely restricts which Boolean function we have and we
will prove below that this equality implies that the function is a parity function (or nega-
tive parity) on some collection of the bits. Note that s(f, πp) = b(f, πp) implies that the
sensitivity and block sensitivity agree on every bit string which in term implies that every
bit string has a pivotal bit (unless f is constant). The last thing certainly does not imply
we are a parity function on some subset of the bits since we can take any Boolean function
and XOR it with one bit, guaranteeing at least one pivotal bit.

Proposition 2.6. Let f be a Boolean function and p ∈ (0, 1). The following are equivalent:

(i) f or 1− f is the PARITY function on some subset of the bits,

(ii) b(f, πp) = s(f, πp).

In particular, b(f, πp) = s(f, πp) implies that all distributional complexity measures for
f are equal. It would be interesting to obtain approximate versions of this result. However,
note that for the MAJORITY function on n bits, the distributional sensitivity and block
sensitivity differ only by a multiplicative factor log(n) whereas the distributional sensitivity
and witness complexity differ by a multiplicative factor

√
n (see Example 4.3).

Proof. The implication (i) =⇒ (ii) being trivial, we only need to prove (ii) =⇒ (i).
Without loss of generality, fix a Boolean function f that depends on every bit and let n
denote the number of bits. First, since bf (x) ≥ sf (x) for every x ∈ {0, 1}n, the equality in
(ii) implies that for every x ∈ {0, 1}n,

bf (x) = sf (x).

We remind the reader that a Boolean function f can naturally be viewed as a site percolation
configuration on the hypercube {0, 1}n. Denote by D(x) the connected component of x and
by Sf (x) the set of pivotal bits for f at x. Now, let us argue that for every x ∈ {0, 1}n,

D(x) = {y ∈ {0, 1}n : yi = xi,∀i ∈ Sf (x)} =: D̃(x). (5)

To this end, we fix any x ∈ {0, 1}n. Since sf (x) = bf (x), we must have f(xB) = f(x)

for every B ⊆ [n] \ Sf (x), and so it follows that D̃(x) ⊆ D(x). Note that this implies

Sf (y) ⊆ Sf (x) for every y ∈ D̃(x). Towards a contradiction, assume that j ∈ Sf (x) \Sf (y).
Then the block

B := {j} ∪ {i ∈ [n] \ Sf (x) : xi 6= yi}

11

satisfies f(y) = f(x) 6= f(xj) = f(yB) and B ∩ Sf (y) = ∅, which contradicts bf (y) = sf (y).

Thus, Sf (y) = Sf (x) for every y ∈ D̃(x) and so (11) follows. In other words, we have
established that every connected component is a subcube.

To conclude from here, we assume without loss of generality that f(0) = 0 and define
for every I ⊆ Sf (0),

DI := {y ∈ {0, 1}n : yi = 0,∀i ∈ Sf (x) \ I, and yi = 1,∀i ∈ I}.

Note that D∅ = D(0) and that the graph distance between DI and DJ is equal to |I4J |.
Using (5), it is now straightforward to check by induction on |I| that

f |DI ≡ |I| mod 2, ∀I ⊆ Sf (0). (6)

Hence, f does not depend on the bits in [n] \ Sf (0), which implies that Sf (0) = [n].
Combining this with (6), we conclude that f is the PARITY function.

For monotone Boolean functions, the next proposition shows that asking for equality
of distributional witness complexity and subcube partition complexity implies that the
function is a dictator function on one of its bits. It would be interesting to know if equality
of distributional witness complexity and local witness complexity is sufficient.

Proposition 2.7. Let f be a monotone, non-constant Boolean function and let p ∈ (0, 1).
The following are equivalent:

(i) f is a DICTATOR function (i.e. f(x) = xi for some i ∈ [n]),

(ii) sc(f, πp) = w(f, πp).

Proof. The implication (i) =⇒ (ii) being trivial, we proceed with proving (ii) =⇒ (i).
Assume that f is not a DICTATOR function. Fix an arbitrary subcube partition C ∼ f ,
and denote by C0 (resp. C1) the subcube containing (0, . . . , 0) (resp. (1, . . . , 1)). Since f is
monotone and non-constant, we have f |C0 ≡ 0 and f |C1 ≡ 1. Since f is not a DICTATOR
function, it is easy to see that C 6= {C0, C1}. Now, let C ′ ∈ C be a subcube different from
C0 and C1, and assume without loss of generality that f |C′ ≡ 0. Since C ′ ∩ C0 = ∅, the
set IC′ of bits fixed by C ′ must contain some bit i′ that is fixed to be 1. However, by
monotonicity of f , the set IC′ \ {i′} is a witness set for f and x ∈ C ′. This establishes that
sc(f, πp) > w(f, πp).

Question 2.1. Does a(f, πp) = sc(f, πp) hold for every monotone Boolean function f and
for every p ∈ (0, 1)?

The following standard example shows why monotonicity is needed in the above propo-
sition.

Example 2.6. The ADDRESS function on n = m+ 2m bits, defined by

ADDRESSm(x1, . . . , xm, y0, . . . , y2m−1) = y∑m−1
i=0 xi2i

,

has distributional complexities

w(ADDRESSm, πp) = a(ADDRESSm, πp) = m+ 1.

12

(1, 1, 1)

(0, 0, 0)
(0, 1, 0)

(1, 0, 0)

(0, 0, 1)

(a) (b)

Figure 1: Illustrations of (a) the ALL-EQUAL function on n = 3 bits (see Example 2.4) and
(b) the function h on n = 4 bits (see Equation (7)) by marking inputs with function value
1 (resp. 0) using a disk with black (resp. white) filling. In (b), the first three directions are
as in (a) and additionally the three-dimensional cube in the front (resp. back) contains the
inputs with x4 = 1 (resp. 0). The illustrations also show optimal subcube partitions for
the respective functions with respect to π1/2.

2.3 A geometric perspective on subcube partitions and algorithms

In this subsection, we follow a more geometric approach. One of the first things we want to
understand is when a particular subcube partition arises from an algorithm. We make the
following observation: If a subcube partition arises from an algorithm, then it must be the
case that (1) there is some hyperplane orthogonal to one of the coordinate directions that
splits the cube in half and crosses no edge with endpoints belonging to the same subcube and
(2) each of the two subcube partitions induced by this splitting arises from an algorithm.
Therefore, Figure 1a illustrates a subcube partition that does not arise from an algorithm.

It follows that in order to show that sc(f, πp) < a(f, πp) for a given Boolean function
f , one needs to show that no optimal subcube partition with respect to πp determining f
arises from an algorithm. Since it is easy to verify that there are only two optimal subcube
partitions for the ALL-EQUAL function on n = 3 bits from Example 2.4 (see Figure 1a for a
representation of the optimal subcube partition {(0, 0, 0), (1, 0, ?), (?, 1, 0), (0, ?, 1), (1, 1, 1)};
the second one being essentially the same), we see that sc(A-EQ3, πp)) < a(A-EQ3, πp).

We now point out an interesting difference between subcube partitions and algorithms
for Boolean functions. Any subcube partition of {0, 1}n which determines a Boolean func-
tion f induces in a natural way a subcube partition of the subset f−1(1) and a subcube
partition of the subset f−1(0). Moreover, it is clear that when trying to find an optimal
subcube partition for a Boolean function f (either deterministically in worst case or distri-

13

butionally with respect to some πp), one can work separately on f−1(1) and f−1(0), finding
optimal solutions for the two parts separately and then just combining them. When we
move to algorithms, while it does make sense to talk about optimal algorithms on f−1(1)
and f−1(0) separately, one cannot combine such algorithms into an algorithm for the whole
cube in the same way. (For distributional complexity, optimal algorithms on f−1(1) and
f−1(0) means precisely finding algorithms which minimize the expected number of queries
made conditional on f−1(1) and f−1(0) respectively.) The following interesting example on
4 bits illustrates such an example.

Define the Boolean function h on n = 4 bits by

h(x1, . . . , x4) =

{
1 if (x1, . . . , x4) ∈ {(?, ?, 0, 1), (1, 1, 1, ?), (1, 0, 0, 0), (0, 0, 1, 1)},
0 otherwise.

(7)

We refer the reader to Figure 1b for an illustration of h and the unique optimal subcube
partition with respect to π1/2. We leave it to the reader to check that sc(h, π1/2) = 11/4 and
that a(h, π1/2) = 3 > 11/4, the latter being obtained by a case-by-case analysis. However,
if we condition on h−1(1) or h−1(0), one can check that the conditional subcube partition
complexities are still 11/4 but more interestingly, the optimal algorithms on the two pieces
also achieve 11/4. On h−1(1), one sees this by taking the algorithm which first queries
x3, second x1 (resp. x4) if x3 = 1 (resp. 0) and then continues in the obvious way. On
h−1(0), one sees this by taking the same algorithm but with the roles of x1 and x3 being
switched. However, there is no meaningful way to combine these algorithms for the whole
cube. Note that the optimal algorithm on h−1(1) above yields an (non-optimal) expected
number of queries of 13/4 on h−1(0) and vice versa. In contrast, for the ALL-EQUAL
function, on A-EQ−1

3 (0), the optimal subcube cube and algorithmic costs differ (but are
equal on A-EQ−1

3 (1)).

2.4 A stopping set perspective on subcube partitions and local sets

In the proof of Proposition 2.3, we have already seen that any subcube partition naturally
induces a local set, and this allowed us to establish the comparison sc(f, πp) ≥ `(f, πp).
Here, we develop a unifying perspective on subcube partitions and local sets.

For the following discussion, we fix a general probability space (Ω,F ,P) on which the
bits x ∼ πp are defined. A collection F := (FJ)J⊆[n] of sub-σ-algebras of F is a filtration
if FJ1 ⊆ FJ2 for all J1 ⊆ J2, and a random set I is a stopping set with respect to F if
{I = J} ∈ FJ for every fixed J ⊆ [n]. In addition, we call x an independent field with
respect to F if for every fixed J ⊆ [n],

σ (xi : i ∈ J) ⊆ FJ , and σ (xi : i /∈ J) is independent of FJ .

Proposition 2.8. Fix (Ω,F ,P) on which the bits x ∼ πp are defined. For a random set
I ⊆ [n], the following are equivalent:

(i) There exists a filtration F such that I is a stopping set with respect to F and x is an
independent field with respect to F,

14

(ii) I is local.

Proof. The implication (i) =⇒ (ii) is straightforward from the definitions. To establish
the converse, we define the filtration F := (FJ)J⊆[n] by

FJ := σ
(
({I = J ′} : J ′ ⊆ J), (xi : i ∈ J)

)
.

I is clearly a stopping set with respect to F, and we are left with showing that x is an
independent field with respect to F. First, σ(xi : i ∈ J) ⊆ FJ follows from the definition.
Second, we fix any A ∈ FJ and B ∈ σ(xi : i /∈ J) and, using locality, aim to show P[A∩B] =
P[A] ·P[B]. It is possible to choose, for J ′ ⊆ J , sets Y(J ′, A) ⊆ {0, 1}J and Y∗(A) ⊆ {0, 1}J
such that

A =

 ⊔
J ′⊆J

⊔
y|J∈Y(J ′,A)

{I = J ′} ∩ {x|J = y|J}

 t
 ⊔
y|J∈Y∗(A)

{I 6⊆ J} ∩ {x|J = y|J}

 ,

and Y(B) ⊆ {0, 1}Jc
such that

B =
⊔

y|Jc∈Y(B)

{x|Jc = y|Jc} .

Using these partitions of A and B, we get

P[A ∩B] =
∑

J ′:J ′⊆J

∑
y|J∈Y(J ′,A)

∑
y|Jc∈Y(B)

P
[
{I = J ′} ∩ {x = y}

]
+

∑
y|J∈Y∗(A)

∑
y|Jc∈Y(B)

P [{I 6⊆ J} ∩ {x = y}] . (8)

Now, for every J ′ ⊆ J and y ∈ {0, 1}n,

P
[
{I = J ′} ∩ {x = y}

]
= P

[
{I = J ′} ∩ {x|J ′ = y|J ′}

]
· P
[
x|(J ′)c = y|(J ′)c

]
= P

[
{I = J ′} ∩ {x|J ′ = y|J ′}

]
· P
[
x|J\J ′ = y|J\J ′

]
· P [x|Jc = y|Jc]

= P
[
{I = J ′} ∩ {x|J = y|J}

]
· P [x|Jc = y|Jc] ,

where we used in the first and third equality that I is local. Using the above, one can also
show that P[{I 6⊆ J}∩{x = y}] = P[{I 6⊆ J}∩{x|J = y|J}] ·P [x|Jc = y|Jc]. Plugging these
back into (8), one deduces that P[A ∩B] = P[A] · P[B] and this concludes the proof.

The following simple proposition is left to the reader.

Proposition 2.9. There is a natural bijection between subcube partitions and stopping sets
with respect to the canonical filtration (σ(xi : i ∈ J))J⊆[n].

15

Note that x is an independent field with respect to the canonical filtration since the
bits are independent. The two previous propositions shed light on the relation between
subcube partitions and local sets by viewing the two concepts from the unifying perspective
of stopping sets and independent fields.

We conclude this subsection with a brief discussion of randomized subcube partitions.
We recall for a subcube partition C, the random set IC , defined by IC(x) = IC(x), is a
stopping set with respect to the canonical filtration. A randomized subcube partition is a
probability measure µ on the space of subcube partitions. If G ∼ µ is independent of x, we
observe that IG is a stopping set with respect to the filtration

(σ ((xi : i ∈ J), G))J⊆[n] ,

and x is an independent field with respect to this filtration. Thus, IG is a local set by
Proposition 2.8. This particular local set has a “product form” and Example 2.5 shows
that not every local set can be constructed in this way since, in this case, the expected size
of the local set is strictly smaller than the distributional subcube partition complexity.

Going the other way around, let G be a σ-algebra that is independent of σ(xi : i ∈ [n]).
If we are now given a stopping set I with respect to the filtration

(σ ((xi : i ∈ J),G))J⊆[n] ,

then we have that x is an independent field with respect to this filtration and I naturally
gives rise to a randomized subcube partition.

3 Boolean function composition

In this section, we analyze the behavior of complexity measures under compositions of
Boolean functions. This will be very useful to bound or even compute complexities of more
complicated Boolean functions which are constructed using compositions. For two Boolean
functions f , g on n respectively m bits, the composition f ◦ g is the Boolean function on
n ·m bits defined by

f ◦ g(x1
1, . . . , x

1
m, . . . , x

n
1 , . . . , x

n
m) = f

(
g(x1

1, . . . , x
1
m), . . . , g(xn1 , . . . , x

n
m)
)
.

3.1 Review of the deterministic case

Boolean function composition is well-understood with respect to deterministic complexity
measures.

Proposition 3.1. For all Boolean functions f and g,

(i) sD(f ◦ g) ≤ sD(f) · sD(g),

(ii) wD(f ◦ g) ≤ wD(f) · wD(g),

16

(iii) scD(f ◦ g) ≤ scD(f) · scD(g),

(iv) aD(f ◦ g) = aD(f) · aD(g).

We refer to [Tal13, Lemma 3.1] for a proof of (i), (ii) and (iv), and to [KRDS15, Prop.
3] for a proof of (iii). The reader will immediately notice that block sensitivity is missing in
the above proposition. While one might guess that bD(f ◦g) ≤ bD(f)·bD(g), it was observed
in [Tal13, Example 5.8] that this inequality is false. The following simple example shows
that the first two inequalities can be strict. In the case of subcube partition complexity, we
are not aware of an example showing that the inequality in (iii) can be strict.

Example 3.1. The OR-function on n bits is defined by

ORn(x1, . . . , xn) =

{
1 if xi = 1 for some i ∈ [n],

0 otherwise.

The AND-function on n bits is defined by

ANDn(x1, . . . , xn) =

{
1 if xi = 1 for all i ∈ [n],

0 otherwise.

It is easy to see that all deterministic complexity measures of ORn and of ANDn are equal
to n. Now, let f be the OR-function on ` bits and let g be the AND-function on m bits.
Then f ◦ g is the well-known TRIBES-function with ` tribes of size m on n = `m bits. The
deterministic complexity measures are given by

aD(f ◦ g) = scD(f ◦ g) = n and sD(f ◦ g) = bD(f ◦ g) = wD(f ◦ g) = max{`,m}.

These are easily justified, except perhaps scD(f ◦ g) which can be argued as follows: By
[RV75, Lemma 1], for any Boolean function h, if {x : h(x) = 1} is odd, then the deterministic
subcube partition complexity equals the number of bits. For the TRIBES function f ◦ g as
above, it is easy to see that

|{x : f ◦ g(x) = 1}| =
∑̀
k=1

(−1)k+1

(
`

k

)
(2m)`−k ,

which is odd since the summands corresponding to k = 1, . . . , ` − 1 are even and the
summand corresponding to k = ` is odd.

3.2 Composition results for distributional complexities

The behavior of distributional complexity measures under Boolean function composition
differs considerably from the deterministic case as the next result summarizes.

Proposition 3.2. Set g(p) := Px∼πp [g(x) = 1]. Then for all Boolean functions f and g,

17

(i) s(f ◦ g, πp) = s(f, πg(p)) · s(g, πp),

(ii) `(f ◦ g, πp) ≤ `(f, πg(p)) · `(g, πp),

(iii) sc(f ◦ g, πp) ≤ sc(f, πg(p)) · sc(g, πp),

(iv) a(f ◦ g, πp) ≤ a(f, πg(p)) · a(g, πp).

These results are proven at the end of this subsection. We will often make use of the
following immediate corollary.

Corollary 3.3. If a Boolean function f satisfies Px∼πp [f(x) = 1] = p, then for every k ≥ 1,

(i) s(fk, πp) = s(f, πp)
k,

(ii) `(fk, πp) ≤ `(f, πp)k,

(iii) sc(fk, πp) ≤ sc(f, πp)k,

(iv) a(fk, πp) ≤ a(f, πp)
k,

The previous proposition makes no statement about the distributional block sensitivity
or witness complexity of composed Boolean functions. The next example in fact shows that
submultiplicativity does not necessarily hold for these two complexities.

Example 3.2. Choose f = OR2 and g = AND2 so that f ◦ g is the TRIBES-function
with ` = m = 2 (see also Example 3.1). On the one hand, it immediately follows from
the formulas in Example 4.1 (for the OR function, the complexities are the same as for the
AND function with p replaced by 1− p) and g(p) = p2 that

b(f, πg(p)) · b(g, πp) = w(f, πg(p)) · w(g, πp) = (1 + (1− p2)2) · (1 + p2).

On the other hand, it is easy to see that bf◦g(x) = wf◦g(x) = 2 for every x ∈ {0, 1}4 and
thus,

b(f ◦ g, πp) = w(f ◦ g, πp) = 2.

Since 2 > (1 + (1− p2)2) · (1 + p2) for every p ∈ (0, 1), this example shows that neither the
distributional block sensitivity nor the witness complexity of f ◦ g can be bounded from
above by the product of the respective complexities of f and g.

Not surprisingly, a general lower bound in terms of the product of the respective com-
plexities cannot hold either for distributional block sensitivity and witness complexity. This
can easily be checked by considering f = g = AND2.

Remark 3.4. It is no coincidence that the distributional block sensitivity and distributional
witness complexity are equal in the previous example. We will get back to this in Subsection
4.2.

18

Finally, let us mention that the inequalities in parts (ii)–(iv) of Proposition 3.2 can be
strict. This can be seen by taking f = g = MAJ3, for which we have seen in Example
2.3 that `(MAJ3, π1/2) = sc(MAJ3, π1/2) = a(MAJ3, π1/2) = 5/2. It is well-known and can
easily be checked that a(f ◦ g, π1/2) < (5/2)2.

Proof of Proposition 3.2. Let f be a Boolean function on n bits, g on m bits.
We begin with part (i) which is a consequence of the standard fact that being pivotal is

independent of the bit’s value. Note that

sf◦g
(
x1

1, . . . , x
1
m, . . . , x

n
1 , . . . , x

n
m

)
=

n∑
i=1

1i pivotal for f · sg
(
xi1, . . . , x

i
m

)
.

Taking expectations and using the fact that the event {i pivotal for f} is measurable with
respect to the bits xi

′
j with j ∈ [m] and i′ ∈ [n] \ {i}, we get

s(f ◦ g, πp) =
n∑
i=1

Ex∼πp
[
1i pivotal for f · sg

(
xi1, . . . , x

i
m

)]
=

n∑
i=1

Px∼πp [i pivotal for f] · s(g, πp) = Ex∼πp

[
n∑
i=1

1i pivotal for f

]
︸ ︷︷ ︸

=s(f,πg(p))

·s(g, πp).

For the rest of the proof, let us write x = (xB1 , . . . , xBn) with xBi := (xi1, . . . , x
i
m) and

y = y(x) := (g(xB1), . . . , g(xBn)). To prove part (ii), we proceed in three steps.
Step 1: Construction of a natural witness set If ◦Ig ∼ f ◦ g from two witnesses sets If ∼ f
and Ig ∼ g

Given a witness set Ig for g and x ∼ πp, we denote by µg the joint distribution of (Ig, x).
Moreover, given a witness set If for f and x ∼ πg(p), we denote the conditional distribution
of If given x by µxf . We now construct If ◦ Ig. Let I1

g , . . . , Ing be random sets such that

Iig is a witness set for g on xBi for every i ∈ [n], and the pairs (Iig, xBi)ni=1 are i.i.d. with
distribution µg. Conditional on y, we now choose I?f ⊆ [n] with conditional law µyf . Note

that by construction, I?f is conditionally independent of x and I1
g , . . . , Ing given y. We now

define
If ◦ Ig := {(i− 1)m+ j : i ∈ I?f , j ∈ Iig} .

Note that If ◦ Ig is a witness set for f ◦ g.
Step 2: If If is local for x ∼ πg(p) and Ig is local for x ∈ πp, then If ◦Ig is local for x ∼ πp.

We need to show that for every J ⊆ [nm], conditional on If ◦ Ig = J and on x|J , we
have x|Jc ∼ πp. To this end, we partition Jc into J1 and J2 defined by

J1 := {(i− 1)m+ j : i 6∈ I?f , j ∈ [n]}, J2 := {(i− 1)m+ j : i ∈ I?f , j 6∈ Iig}.

First, by the construction of If ◦ Ig and the locality of If , it follows that x|J1 ∼ πp given
If ◦ Ig = J and x|J . Second, again by the construction of If ◦ Ig and by the locality of Ig,
it follows that x|J2 ∼ πp given If ◦ Ig = J , x|J , and x|J1 .

19

Step 3: Ex∼πp [|If ◦ Ig|] = Ex∼πg(p) [|If |] · Ex∼πp [|Ig|].
It follows immediately from the construction of If ◦ Ig that

|If ◦ Ig| =
n∑
i=1

1i∈I?f · |I
i
g|. (9)

We first note that for every i ∈ [n],

Ex∼πp
[
1i∈I?f · |I

i
g|
]

= Ex∼πp
[
Ex∼πp

[
1i∈I?f | xBi , I

i
g

]
︸ ︷︷ ︸

=Py∼πg(p) [i∈I
?
f |yi]

·|Iig|
]

= Py∼πg(p)
[
1i∈I?f

]
· Ex∼πp

[
|Iig|
]
,

where in the last equality we used that yi is independent of 1i∈I?f by locality. Summing

over i ∈ [n] and using (9), we get

Ex∼πp [|If ◦ Ig|] =
n∑
i=1

Py∼πg(p)
[
1i∈I?f

]
· Ex∼πp

[
|Iig|
]

= Ex∼πg(p) [|If |] · Ex∼πp [|Ig|],

yielding step 3. To conclude the proof of (ii), we take optimal local witness sets If ∼ f for
x ∼ πg(p) and Ig ∼ g for x ∼ πp, and deduce from step 3 that

`(f ◦ g, πp) ≤ Ex∼πp [|If ◦ Ig|] = Ex∼πg(p) [|If |] · Ex∼πp [|Ig|] = `(f, πg(p)) · `(g, πp).

To prove part (iii), we follow a similar strategy in two steps.
Step 1: Construction of a natural subcube partition Cf ◦Cg ∼ f◦g from two subcube partitions
Cf ∼ f and Cg ∼ g

Let C(y) ∈ Cf be the subcube containing y. For every x ∈ {0, 1}n·m, we now define
C(x) :=

∏n
i=1Ci(x), where

Ci(x) :=

{
C(xBi) ∈ Cg if i is fixed by C(y),

{0, 1}m if i is not fixed by C(y).

It now remains to show that {C(x)}x∈{0,1}n·m is a subcube partition for f ◦ g, which we
will denote by Cf ◦ Cg. First, note that C(y) ∩ C(y′) = ∅ implies C(x) ∩ C(x′) = ∅. Hence,
if C(x) ∩ C(x′) 6= ∅, then C(y) = C(y′). Hence, C(xBi) = C(x′Bi) for every i that is fixed
by C(y), and so C(x) = C(x′). Finally, we observe that the constructed subcube partition
satisfies Cf ◦ Cg ∼ f ◦ g.
Step 2: The equality sc(Cf ◦ Cg, πp) = sc(Cf , πg(p)) · sc(Cg, πp) holds, where we used the
notation sc(C, πp) = Ex∼πp [c(C, x)].

It follows immediately from the construction of Cf ◦ Cg that

c(Cf ◦ Cg, x) =

n∑
i=1

1i is fixed by C(y) · c(Cg, xBi) (10)

20

We first note that for every i ∈ [n],

Ex∼πp
[
1i is fixed by C(y) · c(Cg, xBi)

]
= Ex∼πp

[
Ex∼πp

[
1i is fixed by C(y) | xBi

]︸ ︷︷ ︸
=Py∼πg(p) [i is fixed by C(y)|yi]

·c(Cg, xBi)
]

= Py∼πg(p) [i is fixed by C(y)] · sc(Cg, πp),

where in the last equality we used that yi is independent of {i is not fixed by C(y)}. Now,
taking Ex∼πp in (10), we get

sc(Cf ◦ Cg, πp) =

n∑
i=1

Py∼πg(p) [i is fixed by C(y)] · sc(Cg, πp) = sc(Cf , πg(p)) · sc(Cg, πp),

yielding step 2. To conclude the proof of (iii), we take optimal subcube partitions Cf ∼ f
and Cg ∼ g and deduce from step 2 that

sc(f ◦ g, πp) ≤ sc(Cf ◦ Cg, πp) = sc(Cf , πg(p)) · sc(Cg, πp) = sc(f, πg(p)) · sc(g, πp).

Finally, we show part (iv). We choose an optimal algorithm Af for f and an optimal
algorithm Ag for g, and define an algorithm for f ◦ g, denoted by Af ◦ Ag, as follows:
Whenever the algorithm Af queries a bit i ∈ [n], the algorithm Af ◦ Ag determines the
value of yi by using the algorithm Ag on the bits corresponding to (xi1, . . . , x

i
m), and as

soon as yi = g(xBi) is determined, Af ◦Ag proceeds analogously with the next query of Af .
Clearly, this algorithm determines f ◦ g and from here, we conclude as in part (ii).

Remark 3.5. Analogously to part (i) of the last proof, one can show that for all Boolean
functions f and g,

b(f ◦ g, πp) ≥ s(f, πg(p)) · b(g, πp).

Remark 3.6. Under the additional assumption that

Ex∼πp [wg(x) | g(x) = 1] = Ex∼πp [wg(x) | g(x) = 0],

one can prove that w(f ◦ g, πp) ≤ w(f, πg(p)) · w(g, πp).

4 Examples

In the first subsection here, we consider classical examples of Boolean functions and study
their distributional complexities. In the second subsection, we consider examples related to
percolation theory.

21

4.1 Classical examples

Example 4.1. Concerning the AND-function on n bits (see Example 3.1), it is easy to see
that some of its distributional complexities are given by

s(ANDn, πp) = n · pn−1,

b(ANDn, πp) = w(ANDn, πp) = n · pn + (1− pn),

a(ANDn, πp) =
1− pn

1− p
.

For the distributional subcube partition complexity, we have the following partial result.

Proposition 4.1. For p ≤ 1/2, we have sc(ANDn, πp) = a(ANDn, πp).

Proof. We prove by induction on n that sc(ANDn, πp) = 1−pn
1−p with n = 1 being obvious.

Let C by a subcube partition C achieving the minimum sc(ANDn+1, πp). Since p ≤ 1/2, we
have a(ANDn, πp) < 2 for every n ≥ 1, and hence C must contain a subcube with only 1
fixed bit. Without loss of generality, C contains the subcube (0, ?, . . . , ?). We are thus left
with choosing an optimal subcube partition of (1, ?, . . . , ?), which is equivalent to choosing
an optimal subcube partition for ANDn. Using the induction hypothesis,

Ex∼πp [c(C, x)] = (1− p) · 1 + p ·
(

1− pn

1− p
+ 1

)
=

1− pn+1

1− p
.

Example 4.2. Iterated 3-MAJORITY is the Boolean function fk on n = 3k bits defined
by f := MAJ3 (see Example 2.3) and iteratively by fk := f ◦ fk−1 for k ≥ 2. Fix p = 1/2
and recall that the distributional complexities of f = MAJ3 are given by

s(MAJ3, π1/2) = 3/2, b(MAJ3, π1/2) = 7/4, w(MAJ3, π1/2)) = 2,

and `(MAJ3, π1/2) = sc(MAJ3, π1/2) = a(MAJ3, π1/2) = 5/2.

We note that f = MAJ3 is balanced, i.e. Px∼π1/2 [f(x) = 1] = 1/2. Hence, by part (i) of
Corollary 3.3,

s(fk, π1/2) = (3/2)k.

Moreover, we note that wfk(x) = 2k for all x ∈ {0, 1}3k and so

w(fk, π1/2) = 2k.

From the inequality of O’Donnell-Servedio (see Theorem 5.2) and part (iii) of Corollary 3.3,
we get

(5/2)k ≥ a(fk, π1/2) ≥ sc(fk, π1/2) ≥ `(fk, π1/2)
(OS)

≥
(
s(fk, π1/2)

)2
= (9/4)k .

22

Example 4.3. The MAJORITY function on n bits (with n odd) is defined by

MAJn(x1, . . . , xn) =

{
1 if

∑n
i=1 xi ≥

n+1
2 ,

0 if
∑n

i=1 xi ≤
n−1

2 .

For p = 1/2, it is balanced and its distributional sensitivity is given by

s(MAJn, π1/2) =
n+ 1

2
· Px∼π1/2

[n∑
i=1

xi ∈
{
n−1

2 , n+1
2

}]
∼
√

2/π ·
√
n.

Next, we compute its distributional block sensitivity. Let 2` + 1 with ` ∈ {0, . . . , n−1
2 } be

the difference between the number of 1’s and 0’s in x with MAJn(x) = 1. Then

bMAJn(x) = bmax{# of 1′s in x, # of 0′s in x}
`+ 1

c = bn+ 2`+ 1

2`+ 2
c

and so

b(MAJn, π1/2) = 2

n−1
2∑
`=0

(
n

n+2`+1
2

)
· 2−n · bn+ 2`+ 1

2`+ 2
c � log(n) ·

√
n.

Since wMAJn(x) = n+1
2 for every x, the distributional witness complexity is

w(MAJn, π1/2) =
n+ 1

2
.

Finally, we note that the distributional algorithmic complexity is

a(MAJn, π1/2) = n− o(n).

Example 4.4. TRIBES with ` tribes of size m is the Boolean function on n = ` ·m bits
defined by

TRIBES`,m = OR` ◦ANDm.

We fix p = 1/2 and ` = 2m, and note that for these choices

Px∼π1/2
[
TRIBES2m,m(x) = 1

]
= 1− (1− 1

2m)2m → 1− e−1 as m→∞.

It is easy to see that the distributional complexities are given by

s
(
TRIBES2m,m, π1/2

)
= m · 2m · 1

2m−1

(
1− 1

2m

)2m−1 ∼ 2m · e−1 ∼ 2

e
log2(n),

b
(
TRIBES2m,m, π1/2

)
= w

(
TRIBES2m,m, π1/2

)
∼ 2m · e−1 +m · (1− e−1) � n

log2(n)
,

a
(
TRIBES2m,m, π1/2

)
� n

log2(n)
.

Thus, we also have sc(TRIBES2m,m, π1/2) � n
log2(n) and `(TRIBES2m,m, π1/2) � n

log2(n) .

23

4.2 Percolation functions

Let G = (V,E) be a finite multigraph. A percolation configuration ω ∈ {0, 1}E declares
edges open if ω(e) = 1 or closed if ω(e) = 0. We identify ω with the subgraph of open edges
Gω := (V,Eω), where Eω := {e ∈ E : ω(e) = 1}, and introduce some notation to describe
its connectivity properties. A path γ = (γi)

n
i=0 ⊆ V of length n is a sequence of distinct

vertices with {γi−1, γi} ∈ E for all 1 ≤ i ≤ n, and the path is called open if ω({γi−1, γi}) = 1
for all 1 ≤ i ≤ n. We say that two subsets A,B ⊆ V are connected if there exists an open
path that starts in A and ends in B, and denote this event by {A↔ B}.

Definition 4.1. A Boolean function f : {0, 1}n → {0, 1} is called a percolation function if
it is of the form

f(ω) =

{
1 if ω ∈ {A↔ B},
0 otherwise,

for some multigraph G = (V,E) with n edges and some A,B ⊆ V .

Remark 4.2. We note that the function AND2 ◦OR2 is a percolation function according to
the previous definition, but it cannot be represented by a simple graph.

AND-functions, OR-functions and TRIBES-functions are percolation functions. How-
ever, MAJORITY-functions are not percolation functions. We recall from Example 4.1 that
for every p ∈ (0, 1) and n ≥ 1,

a(ANDn, πp) > w(ANDn, πp) = b(ANDn, πp) > s(ANDn, πp).

In fact, Corollary 4.4 will show that the above comparisons are general properties of perco-
lation functions.

Proposition 4.3. For every percolation function f and for every ω ∈ {0, 1}n,

wf (ω) = bf (ω).

In particular, for every p ∈ [0, 1], we have w(f, πp) = b(f, πp).

Proof. Let ω be such that f(ω) = 1. Since f is monotone, it suffices to consider witnesses
W ⊆ Eω and blocks that are subsets of Eω. The witness sets of minimum size are now the
shortest open paths from A to B and so wf (ω) is the length of a shortest path from A to B
in the multigraph Gω. The maximum number bf (ω) of disjoint blocks that flip the outcome
of f is thus equal to the maximum number of disjoint (A,B)-edge-cutsets for Gω. While
the inequality bf (ω) ≤ wf (ω) holds for every Boolean function f and every ω, the inequality
bf (ω) ≥ wf (ω) follows by considering the disjoint (A,B)-edge-cutsets for Gω defined by

{e ∈ Eω : dGω(e,A) = i}

for 0 ≤ i ≤ wf (ω)− 1.

24

Now, let ω be such that f(ω) = 0. Since f is monotone, it suffices to consider witnesses
W ⊆ E \Eω and blocks that are subsets of E \Eω. By collapsing each connected component
of Gω into a single vertex, we define a new multigraph Ĝ = (V̂ , Ê) whose vertices V̂
correspond to the connected components of Gω and whose edges Ê correspond to the closed
edges E \ Eω in the original multigraph G. wf (ω) is now equal to the size of a minimum

(A,B)-edge-cutset for Ĝ and bf (ω) is equal to the maximal number of edge-disjoint paths

from A to B in Ĝ. The equality wf (ω) = bf (ω) follows from Menger’s Theorem.

The following corollary is a direct consequence of Propositions 2.6, 2.7, and 4.3.

Corollary 4.4. For every percolation function f which depends on at least 2 bits, we have
that

sc(f, πp) > w(f, πp) = b(f, πp) > s(f, πp).

We are not aware of any monotone Boolean function f satisfying a(f, πp) > sc(f, πp) (see
Question 2.1) or sc(f, πp) > `(f, πp), and thus also not of a percolation function satisfying
this.

Example 4.5. Consider the square lattice Z2 and for m ≥ 1, let Gm = (Vm, Em) be the
graph containing the vertices and edges in the square [0,m + 1] × [0,m]. We define the
square-crossing function fm : {0, 1}Em → {0, 1} by

fm(ω) = 1 ⇐⇒ ωn ∈
m + 1

m ,

where the drawing represents a connection from the left side to the right side. This cor-
responds to choosing A = {(0, 0), . . . , (0,m)} and B = {(m + 1, 0), . . . , (m + 1,m)}. We
point out that Pω∼π1/2 [fm = 1] = 1/2 for all m by symmetry and planar duality, and that
Pω∼πp [fm = 1] is known to go to 0 (resp. 1) as m→∞ for p < 1/2 (resp. p > 1/2).

Proposition 4.5. Fix p ∈ (0, 1) such that p 6= 1/2.

(i) There exist constants c, c′ > 0 depending only upon p such that for every m ≥ 1,

e−cm ≤ s(fm, πp) ≤ e−c
′m.

(ii) There exists a constant C <∞ depending only upon p such that for every m ≥ 1,

m+ 1 ≤ b(fm, πp) = w(fm, πp) ≤ `(fm, πp) ≤ sc(fm, πp) ≤ a(fm, πp) ≤ Cm.

Proof. By duality, it suffices to consider p ∈ (0, 1/2). For the lower bound in (i), consider
the event that all edges of the form {(x, 0), (x+1, 0)} with 0 ≤ x ≤ m are open and all edges
of the form {(0, y), (1, y)} with 1 ≤ y ≤ m are closed. Note that on this event, the edge
{(0, 0), (1, 0)} is guaranteed to be pivotal and that this event has probability pm+1(1− p)m.

25

For the upper bound in (i), note that for any edge e ∈ Em, e being pivotal essentially
implies the existence of a left-right crossing. The probability of the latter is exponentially
small in m (see [Gri99]). Since we only have order m2 edges, the upper bound follows.

For the first inequality in (ii), we actually show that bfm(ω) ≥ m + 1 for every ω. To
see this, if fm(ω) = 1, we obtain m+ 1 disjoint blocks

Bi := {{(i, y), (i+ 1, y)} ∈ Em : ω({(i, y), (i+ 1, y)}) = 1} , 0 ≤ i ≤ m,

whose flipping changes the value of fm. Similarly, if fm(ω) = 0, we obtain m + 1 disjoint
blocks

Bi := {{(x, i), (x+ 1, i)} ∈ Em : ω({(x, i), (x+ 1, i)}) = 0} , 0 ≤ i ≤ m,

whose flipping changes the value of fm. The equality b(fm, πp) = w(fm, πp) follows from
Proposition 4.3. All the other inequalities follow from the hierarchy (see Proposition 2.3),
except the last which we now argue by describing a suitable algorithm: Fixing an arbitrary
ordering of the m+1 vertices on the left side of the square, the algorithm explores the cluster
of each vertex one-by-one, thereby checking if this vertex is connected to the right side of
the square. Since the expected size of the cluster of any vertex is of order 1 (see [Gri99]),
the result follows.

We now look at the distributional complexities at the critical point pc = 1/2.

Proposition 4.6. Let p = 1/2. There exists c > 0 such that

(i) mc . s(fm, π1/2) . m1−c,

(ii) m1+c . b(fm, π1/2) = w(fm, π1/2) ≤ `(fm, πp) ≤ sc(fm, π1/2) ≤ a(fm, π1/2) . m2−c.

Proof. For (i), we refer to Lemma 6.5 in [GS14] for the lower bound and to Proposition 6.6
in [GS14] for the upper bound.

For the upper bound in (ii), we make use of a standard algorithm that determines fm
by exploring the cluster of each of the points on the left side. We note that an edge e ∈ Em
is queried by this algorithm before determining fm only if there is an open path in Gm from
one of the endpoints of e to the left side of the square. Therefore,

a(fm, π1/2) ≤
∑
e∈Em

Px∼π1/2
[
e

Gm←−→ {0} × [0,m]
]

≤ (2m+ 1) ·
m∑
k=0

Px∼π1/2

[
(0, 0)

Z2

←−→ ∂
(
[k, k]2

)]
,

where the k-th summand accounts for the edges with minimal x-coordinate k. By Theorem
11.89 in [Gri99], there are constants c, C ∈ (0,∞) such that for every k ≥ 1,

Px∼π1/2

[
(0, 0)

Z2

←−→ ∂
(
[−k, k]2

)]
≤ Ck−c.

26

From this, the upper bound in (ii) follows.
The equality b(fm, π1/2) = w(fm, π1/2) in (ii) follows from Proposition 4.3, and all the

other inequalities, except the first, follow from the hierarchy (see Proposition 2.3). Finally,
the fact that w(fm, π1/2)] & m1+c is stated in (1.1) in [DHS17].

Critical percolation on the square lattice is conjectured to be conformally invariant,
which would yield exact values for the so-called arm exponents. Using these conjectured
values, we arrive at the following conjecture. We note that in the case of critical site
percolation on the triangular lattice, conformal invariance is known, and hence so are the
arm exponents [SW01].

Conjecture 4.7.

(i) s(fm, π1/2) = m3/4+o(1),

(ii) w(fm, π1/2) ≤ m4/3+o(1)

(iii) `(fm, π1/2) ≥ m3/2+o(1),

(iv) a(fm, π1/2) ≤ m7/4+o(1).

We now comment on this conjecture: For (i), the probability of being pivotal is essen-
tially m−α4 where the four-arm exponent α4 is conjectured to be 5/4. Using the inequality
of O’Donnell-Servedio (see Theorem 5.2), (iii) follows immediately from (i). For (ii), one
first notes that wfm(ω) is at most the length of the lowest crossing (when fm(ω) = 1). Since
an edge being on the lowest crossing entails a three-arm event starting at that edge and
since the three-arm exponent is conjectured to be 2/3, the result would follow. For (iv),
one makes use of an algorithm that “follows the interface”. Being queried then corresponds
to the two-arm exponent which is conjectured to be 1/4 (see [GS14, Theorem 8.4]).

Non-rigorous arguments suggest that w(fm, π1/2) behaves like m1.130··· and a(fm, π1/2)
behaves like mα with α ∈ [1.5, 1.6] (see [PSSW07]). Finding the exact exponents in these
two cases are well-known open problems.

5 Asymptotic separations

In Section 2, we have seen examples showing that the five complexity measures are distinct,
both in the deterministic and distributional case. In this section, we study asymptotic
separations.

5.1 Review of the deterministic case

Asymptotic separations are well-studied in the deterministic case and we refer the reader
to the recent paper [ABDK+21] (see, in particular, Table 1) for an excellent overview. We
summarize a small fraction of the known results in the following theorem.

27

Theorem 5.1. There exist sequences of Boolean functions (f
(i)
n)n≥1, 1 ≤ i ≤ 4, such that

asymptotically as n→∞,

aD(f
(1)
n)

scD(f
(1)
n)
→∞, scD(f

(2)
n)

wD(f
(2)
n)

→∞, wD(f
(3)
n)

bD(f
(3)
n)

→∞, and
bD(f

(4)
n)

sD(f
(4)
n)
→∞.

We refer to [AK15,KRDS15] for the first, to [GSS13] for the third, and to [Rub95] for the
fourth separation. For the second, the TRIBES function (see Example 3.1) with ` tribes
of size m provides such an example assuming min{`,m} → ∞ since wD(TRIBES`,m) =
max{`,m} and scD(TRIBES`,m) = n = ` ·m.

5.2 Asymptotic separation for distributional complexities

The following theorem yields a first general asymptotic separation [OS07].

Theorem 5.2 (O’Donnell-Servedio). For every monotone Boolean function f and for every
p ∈ [0, 1],

sc(f, πp) ≥ 4p(1− p) ·
(
s(f, πp)

)2
.

In fact, the same inequality holds with the left-hand side replaced by `(f, πp). The
easiest way to see this is by adapting the proof given in [GS14, Thm. 8.8].

Based on the examples studied in Subsection 4.1, we obtain the following result.

Theorem 5.3. There exist sequences of Boolean functions (f
(i)
n)n≥1, 1 ≤ i ≤ 3, such that

asymptotically as n→∞,

`(f
(1)
n , π1/2)

w(f
(1)
n , π1/2)

→∞,
w(f

(2)
n , π1/2)

b(f
(2)
n , π1/2)

→∞, and
b(f

(3)
n , π1/2)

s(f
(3)
n , π1/2)

→∞.

The reader will immediately notice that asymptotic separations between distributional
algorithmic complexity, subcube partition complexity and local witness complexity are miss-
ing. Before discussing the difficulties in asymptotically separating distributional algorithmic
complexity and subcube partition complexity, we prove the three asymptotic separations.

Proof. 1. Consider iterated 3-MAJORITY fk on n = 3k bits as defined in Example 4.2.
Then we have

`(fk, π1/2)

w(fk, π1/2)
≥ (9/8)k = nlog3(9/8) →∞ as n→∞.

2. Consider MAJn on n bits (with n odd) as defined in Example 4.3. Then we have

w(MAJn, π1/2)

b(MAJn, π1/2)
�
√
n

log(n)
→∞, as n→∞.

28

3. Consider TRIBES2m,m with 2m tribes of size m as studied in Example 4.4. Then we
have

b
(
TRIBES2m,m, π1/2

)
s
(
TRIBES2m,m, π1/2

) � n

log(n)2
→∞, as n→∞.

We end this section with a proposed example for asymptotically separating distributional
algorithmic complexity and distributional subcube partition complexity. Let f be the ALL-
EQUAL function on n = 3 bits (see Example 2.4). We want to iterate f but since f is
not balanced, it makes things simpler to XOR f with one bit so that it is balanced and
hence all its iterates are balanced. In fact, we believe that in order for this example to have
a chance of working, we need to take f and XOR it with a large number of bits. Denote
by f ⊕ PARk the function on 3 + k bits which is f XORed with k bits. Clearly, when
p = 1/2, the distributional algorithmic complexity and distributional subcube partition
complexity are 5/2 + k and 9/4 + k respectively. We now consider the sequence of Boolean
functions (f ⊕ PARk)

` with k fixed and indexed by `. By Corollary 3.3, we know that the
distributional subcube partition complexity of (f ⊕PARk)

` is at most (9/4 +k)`. The hope
is that for k large, the distributional algorithmic complexity of (f ⊕ PARk)

` is precisely
(5/2 + k)` for every ` ≥ 1. If this were the case, we would have the desired separation. The
above would correspond to the optimal algorithm for (f ⊕ PARk)

` just being the optimal
algorithm for (f ⊕ PARk)

` iterated ` times. The reason this might be believable is that
whenever one deviates from the latter, one has an initial cost of k corresponding to looking
at the k added XOR bits which one always needs to do first. If k is very large, this cost is
too much and it is not worth deviating from the simple ”iterative” algorithm.

This approach will naturally lead to Section 7 where we introduce the notion of partial
information revealment. The connection arises by viewing the querying of the k parity bits
of f ⊕PARk as providing partial information on the value of f ⊕PARk. We will revisit this
approach in Section 8.

6 Polynomial relations

In 2019, Huang proved the long-standing sensitivity conjecture [Hua19], which, given pre-
vious results, implies that aD(f) ≤ sD(f)C for every Boolean function f . In other words,
all deterministic complexity measures are polynomially related to each other. We first re-
view the polynomial relations in the deterministic case and then move to the distributional
setting.

6.1 Review of the deterministic case

The five deterministic complexity measures discussed so far are actually part of a larger
family studied in computational complexity theory. Let us introduce one additional com-
plexity measure which was particularly important in the proof of the sensitivity conjecture.

29

We denote by deg(f) the degree of the multilinear polynomial p that represents f , i.e.
p(x) = f(x) for all x ∈ {0, 1}n.

Theorem 6.1. For every Boolean function f ,

aD(f)
(1)

≤ wD(f) ·bD(f), wD(f)
(2)

≤ bD(f) ·sD(f), bD(f)
(3)

≤ deg(f)2 and deg(f)
(4)

≤ sD(f)2.

In particular, all these deterministic complexity measures are polynomially related.

Inequality (1) was proven in [BBC+01], (2) in [Nis89], (3) in [Nis89] with an extra
factor 2 and then improved to the above in [Tal13], and (4) in [Hua19]. We refer to the
survey [BdW02] and to [ABDK+21] for more background.

Moreover, Nisan showed equality of witness complexity and sensitivity for monotone
Boolean functions [Nis89, Proposition 2.2].

Proposition 6.2. For every monotone Boolean function f ,

wD(f) = bD(f) = sD(f).

6.2 Polynomial relations for distributional complexities

We begin by considering the AND-function on n bits from Example 4.1 whose distributional
sensitivity and block sensitivity are given by

s(ANDn, πp) = n · pn−1, and b(ANDn, πp) = 1 + (n− 1) · pn ≥ 1.

Hence, for any p ∈ (0, 1), we do not have a polynomial relation between s(ANDn, πp) and
b(ANDn, πp). However, note that for any p ∈ (0, 1), Varp(ANDn)→ 0 as n→∞.

Our goal is thus to obtain polynomial relations for Boolean functions with variances
bounded away from 0.

Question 6.1. Fix c > 0. Are there any polynomial relations between

a(f, πp), sc(f, πp), `(f, πp), w(f, πp), b(f, πp), and s(f, πp)

for general Boolean functions f satisfying Varp(f) ≥ c?

We are also interested in such relations for restricted classes of Boolean functions, for
example when restricting to monotone, transitive, or symmetric Boolean functions.

A first negative answer to this question is given by the function TRIBES2m,m with 2m

tribes of size m (see Example 4.4). It is transitive, monotone, and for p = 1/2,

Var1/2

(
TRIBES2m,m

)
→ e−1(1− e−1) as m→∞.

However, its distributional sensitivity and block sensitivity are not polynomially related
since

s
(
TRIBES2m,m, π1/2

)
� log2(n), but b

(
TRIBES2m,m, π1/2

)
� n

log2(n)
.

A first positive answer under certain conditions follows from the so-called OSSS inequal-
ity [OSSS05].

30

Theorem 6.3 (O’Donnell-Saks-Schramm-Servedio). Let f be a Boolean function on n bits.
For every algorithm A and for every p ∈ (0, 1),

Varp(f) ≤ 4p(1− p)
n∑
i=1

Px∼πp [i ∈ AT (f)] · Px∼πp [i pivotal for f],

where AT (f) denotes the (random) set of bits queried by A before determining f .
In particular, for every transitive f ,

n ·Varp(f) ≤ 4p(1− p) · a(f, πp) · s(f, πp).

We deduce the following immediate corollary.

Corollary 6.4. Let p ∈ (0, 1) and let (fn)n≥1 be a sequence of transitive Boolean functions
(with fn on n bits) satisfying for some c, ε > 0 and C <∞,

Varp(fn) ≥ c and a(f, πp) ≤ C · n1−ε, ∀n ≥ 1.

Then,

s(fn, πp) ≥
c

C
1

1−ε
·
(
a(fn, πp)

) ε
1−ε

and hence s(fn, πp) and a(fn, πp) are polynomially related.

Remark 6.5. In the case of critical planar percolation, this corollary can be used to show
polynomial relations at criticality (see Example 4.5).

We close this section with a geometric perspective on the ratio of sc(f, π1/2) and
s(f, π1/2), namely

sc(f, π1/2)

s(f, π1/2)
=

infC:E(C)⊆E(f)|∆E(C)|
|∆E(f)|

=: γ(f),

where En denotes the edges of the cube {0, 1}n, E(f) := {{x, y} ∈ En : f(x) = f(y)},
E(C) := {{x, y} ∈ En : C(x) = C(y)}, and the two edge boundaries are defined as ∆E(f) =
En \ E(f) and ∆E(C) = En \ E(C). The equality above is relatively straightforward to
check and Theorem 5.2 immediately yields γ(f) ≥ s(f, π1/2). Establishing upper bounds
on γ(f) in terms of other distributional complexity measures could then be a way to obtain
polynomial relations.

7 Distributional algorithmic complexity with partial infor-
mation

In this section, we will only be dealing with the product measure π1/2. A standard algorithm
queries the bits one by one and pays a cost of 1 for each query. Our goal is to allow
algorithms to ask for partial information concerning the value of a bit at a cost depending
on the amount of information asked for.

31

7.1 Distributional Γ-algorithmic complexity

Consider x = (x1, . . . , xn), where each

xi = (xi(t))
T{0,1}
t=0

is an independent Brownian motion started at 1/2 and stopped when hitting the set {0, 1}.
A generalized algorithm A starts in the state (1/2, . . . , 1/2) and initially picks some i ∈ [n]
and p ∈ (1/2, 1]. To obtain the new state, we let xi evolve up to time T{1−p,p}, the hitting
time of {1− p, p}. The new state is then(

1/2, . . . , 1/2, xi(T{1−p,p}), 1/2, . . . , 1/2
)
.

At any later stage, if the present state is (p1, . . . , pn), A chooses some j ∈ [n] and p ∈
(max{1 − pj , pj}, 1], and goes to state (p1, . . . , pj−1, xj(T{1−p,p}), pj+1, . . . , pn). Note that

pj → 1 − p with probability
p−pj

p−(1−p) and pj → p with probability
pj−(1−p)
p−(1−p) . The algorithm

continues until reaching a state (p1, . . . , pn) ∈ {0, 1}n. We will only consider algorithms
that almost surely terminate after finitely many steps. Note that standard algorithms as
defined in Section 2 correspond to those algorithms which always pick p = 1.

A cost function Γ : [1/2, 1] → [0, 1] is a non-decreasing function satisfying Γ(1/2) = 0
and Γ(1) = 1. Given a Boolean function f on n bits and a cost function Γ, we define the
Γ-cost of A for determining f as

cΓ(A, f) = Ex

[
n∑
i=1

Γ(max{1− p̄i, p̄i})

]
,

where p̄i is the state of bit i at the first moment at which the pj ’s that are 0 or 1 determine
f . The motivation for this cost function is to assign a cost Γ(p)−Γ(max{1−pi, pi}) for the
transition from pi or 1− pi to {p, 1− p}. Finally, we define the distributional Γ-algorithmic
complexity as

aΓ(f, π1/2) = inf
A
cΓ(A, f). (11)

We note that w(f, π1/2) ≤ aΓ(f, π1/2) ≤ a(f, π1/2) for all Γ and for all f . Note that for
the trivial choice Γ = 1(1/2,1] (respectively Γ = 1{1}), the right (respectively left) inequality
saturates. We recall that for PARITY functions and ADDRESS functions (see Example
2.6), w(f, π1/2) = a(f, π1/2). The next example illustrates that this new complexity measure
can have more interesting behavior.

Example 7.1. The AND function on n = 2 bits (see Examples 3.1 and 4.1) has distribu-
tional complexities

a(AND2, π1/2) = 3/2 and w(AND2, π1/2) = 5/4.

For some fixed p0 ∈ (1/2, 1], we consider the generalized algorithm Ap0 which initially
asks the (1 − p0)/p0 question for bit 1 (meaning that it picks bit 1 and goes to the state

32

(x1(T{1−p0,p0}), 1/2)). If x1(T{1−p0,p0}) = 1 − p0, it asks the 0/1 question for bit 1 in the
second step, and then the 0/1 question for bit 2. If x1(T{1−p0,p0}) = p0, it asks the 0/1
question for bit 2 in the second step, and then the 0/1 question for bit 1. One can check
that the Γ-cost of Ap0 for determining AND2 is

cΓ(Ap0 ,AND2) = 3/2 +
Γ(p0)− 2p0 + 1

4
.

We deduce that aΓ(AND2, π1/2) < a(AND2, π1/2) if Γ(p0) < 2p0 − 1.

We are interested in the following question.

Question 7.1. Given a Boolean function f , for which cost functions Γ do we have

aΓ(f, π1/2) = a(f, π1/2) ?

It is interesting to compare our notion of distributional Γ-algorithmic complexity with
the notion of Gross [Gro22]. On the one hand, his concept of “fractional query algorithms”
is more general than the “generalized algorithms” defined above since it allows for queries,
starting at pi, that let xi evolve up to the hitting time T{q,p}, where pi ∈ (q, p). Unlike in
our model, the amount of information revealed by the algorithm is therefore not monotone
in time. On the other hand, Gross assumes cost to be quadratic which corresponds to the
specific choice of Γ(p) = (2p − 1)2 in our model. We also refer the reader to [JWW11]
where, again considering more general algorithms and quadratic cost, the authors study the
special case of the MAJORITY function on n = 3 bits.

7.2 Distributional (p, κ)-algorithmic complexity

In this subsection, we study the family of generalized algorithms

Ap = {algorithms which are only allowed to ask (1− p)/p or 0/1 questions}

for some fixed p ∈ (1/2, 1). We note that the Γ-cost of an algorithm A ∈ Ap depends on
Γ only through Γ(p) ∈ [0, 1]. Hence, we can represent the cost of a (1 − p)/p question by
a number κ ∈ [0, 1]. We write cp,κ(A, f) for cΓ(A, f) and naturally define the distributional
(p, κ)-algorithmic complexity of f as

ap,κ(f, π1/2) = min
A∈Ap

cp,κ(A, f).

An algorithm A ∈ Ap is called (p, κ)-optimal for f if it achieves the above minimum. We
ask the analogue of Question 7.1 in this simplified setting.

Question 7.2. Given a Boolean function f , for which p and κ do we have

ap,κ(f, π1/2) = a(f, π1/2) ?

33

It will be convenient to define for 1 ≤ i ≤ n, the random variables

Zi := 1xi(T{1−p,p})=p and Xi := xi(T{0,1}).

We note that the answers to the questions that any algorithm A ∈ Ap asks only depend
on these random variables. Zi and Xi are Ber(1/2)-distributed, but not independent as
Px[Xi = Zi] = p. We now give an alternative description of algorithms in Ap, which will
turn out to be useful.

Definition 7.1. A sequence of random partitions A = (At)0≤t≤2n = (A0
t , A

1
t , A

2
t)0≤t≤2n of

[n] is an algorithm if

(i) A0 = ([n], ∅, ∅) and A2n = (∅, ∅, [n]),

and for every t ∈ {1, . . . , 2n},

(ii) At is obtained from At−1 by either moving an element from A0
t−1 to A1

t−1 or from
A1
t−1 to A2

t−1,

(iii) At is measurable with respect to At−1, (Zi)i∈A1
t−1

, and (Xi)i∈A2
t−1

.

The random partition represents bits for which we have no information (A0), bits for
which we have partial information (A1), and bits for which we have full information (A2).
Moving bit i from A0 to A1 corresponds to querying Zi or equivalently asking the (1− p)/p
question for bit i, thereby providing partial information about Xi. Also moving bit i from
A1 to A2 corresponds to querying Xi after already having queried Zi, or equivalently asking
the 0/1 question for bit i after already having asked the (1− p)/p question for bit i.

An algorithm A is called induced if it always queries Xi immediately after Zi; equiva-
lently A1

t has at most one element for every t. Clearly, there is a one-to-one correspondence
between the subfamily of induced algorithms, denoted by I ⊆ Ap, and the family of stan-
dard algorithms for f . Given a Boolean function f on n bits and an algorithm A ∈ Ap, we
define the (random) first time at which the algorithm determines f as

TA = TA(f) := min
{
t ≥ 0 : f is determined by (Xi)i∈A2

t

}
.

We note that the cost of A ∈ Ap to determine f is given by

cp,κ(A, f) = Ex
[
κ · |A1

TA
|+ |A2

TA
|
]
.

Remark 7.1. For κ = 1 and any p ∈ (1/2, 1), we have ap,1(f, π1/2) = a(f, π1/2) since asking
a 0/1 question after the corresponding (1− p)/p question is of no disadvantage as it has no
additional cost. In other words,

min
A∈Ap

Ex
[
|A1

TA
|+ |A2

TA
|
]

= min
I∈I

Ex
[
|I2
TI
|
]
.

The next easy proposition establishes monotonicity in p and κ with respect to Question
7.2.

34

Proposition 7.2. Consider (p, κ), (p′, κ′) ∈ (1/2, 1)× [0, 1]. If p ≥ p′ and κ′ ≥ κ, then we
have

ap,κ(f, π1/2) = a(f, π1/2) =⇒ ap′,κ′(f, π1/2) = a(f, π1/2)

Proof. First, fix p, let κ′ ≥ κ and assume that there exists an induced (p, κ)-optimal al-
gorithm I ∈ I for f . We note that the cost of any algorithm A ∈ Ap to determine f
is non-decreasing in κ, and so also the distributional (p, κ)-algorithmic complexity of f .
Moreover, the cost of any induced algorithm to determine f is constant in κ. Therefore,

ap,κ(f, π1/2) ≤ ap,κ′(f, π1/2) ≤ cp,κ′(I, f) = cp,κ(I, f),

and we deduce from the (p, κ)-optimality of I that both inequalities are in fact equalities.
Hence, a(f, π1/2) = ap,κ(f, π1/2) implies a(f, π1/2) = ap,κ′(f, π1/2).

Second, fix κ and let p ≥ p′. Since ap′,κ(f, π1/2) ≤ a(f, π1/2), it suffices to show that
ap,κ(f, π1/2) ≤ ap′,κ(f, π1/2). To this end, we consider the family Ap′,p of generalized al-
gorithms, which are only allowed to ask (1 − p′)/p′, (1 − p)/p or 0/1 questions, and we
associate cost κ to asking a (1− p′)/p′ question, cost 0 to asking a (1− p)/p question (after
the corresponding (1− p′)/p′ question), and cost 1− κ to asking a 0/1 question (after the
corresponding (1 − p)/p question). Since it is clearly optimal for any algorithm A ∈ Ap′,p
to always ask the (1 − p)/p question directly after the (1 − p′)/p′ question, we have using
obvious notation

ap′,κ(f, π1/2) = min
A∈Ap′

cp′,κ(A, f) ≥ min
A∈Ap′,p

cp′,p,κ(A, f) = min
A∈Ap

cp,κ(A, f) = ap,κ(f, π1/2).

For p ∈ (1/2, 1) and κ ∈ [0, 1], we define

κc(f, p) = inf
{
κ : ap,κ(f, π1/2) = a(f, π1/2)

}
,

and
pc(f, κ) = sup

{
p : ap,κ(f, π1/2) = a(f, π1/2)

}
.

By the previous proposition p 7→ κc(f, p) and κ 7→ pc(f, κ) are (weakly) increasing functions.
For the AND function on n = 2 bits, it can easily be shown based on the computations in
Example 7.1 that κc(AND2, p) = 2p− 1.

Theorem 7.3. For every Boolean function f on n ≥ 1 bits and p ∈ (1/2, 1),

κc(f, p) ≤ κ0(n, p) :=
1

1 + 1
n

(
1−p

2

)n .

We divide the proof into two lemmas.

35

Lemma 7.4. Let f be a Boolean function on n ≥ 1 bits. If κ > κ0(n, p), then every
algorithm A ∈ Ap that is (p, κ)-optimal for f satisfies

Ex
[
|A1

TA(f)|+ |A
2
TA(f)|

]
= min

I∈I
Ex
[
|I2
TI(f)|

]
. (12)

Moreover, if (12) holds and if Zi is a (p, κ)-optimal first query among all algorithms in Ap,
then Zi is also an optimal first query among all algorithms in I.

By Remark 7.1, the inequality ≥ in (12) holds for all κ. AND2 provides an easy coun-
terexample showing that equality can fail for small κ. The following example shows that
κ large is also a necessary assumption to ensure that an optimal first query among all
algorithms in Ap is also an optimal first query among all algorithms in I.

Example 7.2. Consider a variant of the ADDRESS function on n = 7 bits, defined by

f(x1, . . . , x7) =

{
x1 ⊕ x2 if x5 ⊕ x6 ⊕ x7 = 1,

x3 ⊕ x4 if x5 ⊕ x6 ⊕ x7 = 0.

On the one hand, the algorithm I which first queries X5, X6, X7, and then either X1, X2 or
X3, X4 depending on the value of X5⊕X6⊕X7, has cost 5. In fact, every induced algorithm
that is optimal among I starts with querying X5, X6 and X7 in some order. On the other
hand, consider the algorithm A which first queries Z1, Z2, Z3, Z4. If Z1 ⊕Z2 = Z3 ⊕Z4, it
then queries X1, X2, X3, X4 and if needed also X5, X6, X7. Otherwise, it queries X5, X6,
X7 , and then either X1, X2 or X3, X4 depending on the value of X5⊕X6⊕X7. Note that
A has expected cost 9/2 + κ + 6p(1 − p)(p2 + (1 − p)2), which is strictly smaller than 5 if
κ < 1/2− 6p(1− p)(p2 + (1− p)2). Furthermore, for such κ, one can check that Z1, Z2, Z3,
Z4 are the only optimal first queries among Ap.

To prove the lemma, it will be convenient to define for 1 ≤ i ≤ n,

Yi := 1Zi=Xi .

Note that Yi = 0 means the Brownian motion xi terminated at 0 (respectively 1) even
though it hit p ∈ (1/2, 1) before 1− p (respectively 1− p before p).

Proof of Lemma 7.4. Fix a Boolean function f on n ≥ 1 bits. By Remark 7.1,

min
B∈Ap

Ex
[
|B1

TB
|+ |B2

TB
|
]

= min
J∈I

Ex
[
|J2
TJ
|
]
, (13)

and in the same way, we have for every y1, . . . , yn ∈ {0, 1},

min
B∈Ap

Ex
[
|B1

TB
|+ |B2

TB
| | Y1 = y1, . . . , Yn = yn

]
= min

J∈I
Ex
[
|J2
TJ
| | Y1 = y1, . . . , Yn = yn

]
.

(14)

36

We now fix a (p, κ)-optimal algorithm A ∈ Ap and an induced algorithm I ∈ I achieving
the minimum in the right-hand side of (13). Since the cost of an induced algorithm is
independent of (Yi)

n
i=1, I also achieves the minimum in the right-hand side of (14) for all

y1, . . . , yn ∈ {0, 1}. Thus, for every y1, . . . , yn ∈ {0, 1},

Ex
[
|A1

TA
|+ |A2

TA
| | Y1 = y1, . . . , Yn = yn

]
≥ Ex

[
|I2
TI
| | Y1 = y1, . . . , Yn = yn

]
(15)

= Ex
[
|I2
TI
|
]
.

Towards a contradiction, assume that κ > κ0(n, p) and that in (12), the left-hand side
is strictly larger than the right-hand side. Then inequality (15) must be strict for some
ŷ1, . . . , ŷn ∈ {0, 1} and so we must have

Ex
[
|A1

TA
|+ |A2

TA
| | Y1 = ŷ1, . . . , Yn = ŷn

]
≥ 2−n + Ex

[
|I2
TI
| | Y1 = ŷ1, . . . , Yn = ŷn

]
(16)

since the conditional expectations are multiples of 2−n. Indeed, they only depend on the
randomness of Z1, . . . , Zn, which are independent of Y1, . . . , Yn. Comparing the (p, κ)-costs
of A and I, we obtain

cp,κ (A, f)− cp,κ (I, f)

= (1− κ) ·
(
Ex
[
|A2

TA
|
]
− Ex

[
|I2
TI
|
])︸ ︷︷ ︸

≥−n

+κ ·
(
Ex
[
|A1

TA
|+ |A2

TA
|
]
− Ex

[
|I2
TI
|
])︸ ︷︷ ︸

≥2−n(1−p)n

≥ −n+ κ ·
(
n+ 2−n(1− p)n

)
> 0,

where we bounded the difference Ex[|A1
TA
| + |A2

TA
|] − Ex[|I2

TI
|] from below using (15) and

(16) and Px [Y1 = ŷ1, . . . , Yn = ŷn] ≥ min{1− p, p}n = (1− p)n. This contradicts the (p, κ)-
optimality of A. This concludes the proof of (12). The final statement is straightforward
and left to the reader.

Lemma 7.5. Let f be a Boolean function on n ≥ 1 bits. For every algorithm A ∈ Ap,

Ex
[
|A1

TA(f)|+ |A
2
TA(f)|

]
= min

I∈I
Ex
[
|I2
TI(f)|

]
=⇒ Ex

[
|A1

TA(f)|
]

= 0.

Proof. Recall that for p ∈ (1/2, 1), we have defined the random variables

Zi = 1xi(T{1−p,p})=p, Xi = xi(T{0,1}), and Yi = 1Zi=Xi

for 1 ≤ i ≤ n. We naturally extend these definitions to p = 1/2 by choosing (Zi)1≤i≤n
to be Ber(1/2)-distributed random variables that are independent of each other and of the
Brownian motions (xi)1≤i≤n in this case. For every p ∈ [1/2, 1), we note that Yi ∼ Ber(p),
Yi is independent of Zi, and Xi = Zi · Yi + (1− Zi) · (1− Yi).

Fix a Boolean function f on n ≥ 1 bits, an algorithm A ∈ Ap and an algorithm I ∈ I
that is optimal among all induced algorithms. As argued at the beginning of the proof of
Lemma 7.4 (see (14)), we have

Ex
[
|A1

TA
|+ |A2

TA
| | Y1 = y1, . . . , Yn = yn

]
≥ Ex

[
|I2
TI
| | Y1 = y1, . . . , Yn = yn

]
(17)

37

for every y1, . . . , yn ∈ {0, 1}. From now on, we assume Ex[|A1
TA
|+ |A2

TA
|] = minI∈I Ex[|I2

TI
|].

Equation (17) then implies

Ex
[
|A1

TA
|+ |A2

TA
| | Y1 = y1, . . . , Yn = yn

]
= Ex

[
|I2
TI
| | Y1 = y1, . . . , Yn = yn

]
(18)

for every y1, . . . , yn ∈ {0, 1}. Viewed as a sequence of random partitions (see Definition 7.1),
it makes sense to also consider the algorithm A for other values of p ∈ [1/2, 1). Neither of
the two sides in (18) depends on p and we thus deduce that for every p ∈ [1/2, 1), we have

Ex
[
|A1

TA
|+ |A2

TA
|
]

= Ex
[
|I2
TI
|
]
.

However, for p = 1/2, we actually have no information about the values of the bits in
A1, meaning that given the Zi’s with i ∈ A1, the Xi’s with i ∈ A1 are still independent
and Ber(1/2)-distributed. Hence, the algorithm A can be viewed as a randomized algorithm
where the external randomness is coming from the Zi bits. It now follows from the optimality
of I among all induced algorithms that we must have

Ex
[
|A2

TA
|
]
≥ Ex

[
|I2
TI
|
]
, and thus, Ex

[
|A1

TA
|
]

= 0.

We deduce that for every y1, . . . , yn ∈ {0, 1} and p = 1/2,

Ex
[
|A1

TA
| | Y1 = y1, . . . , Yn = yn

]
= 0.

This implies Ex[|A1
TA
|] = 0 for every p ∈ [1/2, 1), thereby concluding the proof.

We are now ready to prove the theorem.

Proof of Theorem 7.3. We need to show that for any Boolean function f on n ≥ 1 bits and
κ > κ0(n, p), we have

ap,κ(f, π1/2) = a(f, π1/2). (19)

Now, fix such an f and κ. Combining Lemmas 7.4 and 7.5, we deduce that every (p, κ)-
optimal algorithm A ∈ Ap for f satisfies

Ex
[
|A1

TA(f)|
]

= 0.

Hence, for every (p, κ)-optimal algorithm A ∈ Ap for f , we have

cp,κ(A, f) = Ex
[
|A2

TA(f)|
]

= cp,1(A, f),

and so
ap,κ(f, π1/2) = ap,1(f, π1/2) = a(f, π1/2),

where the last equality is due to Remark 7.1. This concludes the proof.

Remark 7.6. Equality (19) implies that for κ > κ0(n, p), any optimal first query among I
is also an optimal first query among Ap. However, Example 7.2 shows that this might not
be the case for κ small.

38

Recall that we have seen that κc(AND2, p) = 2p− 1. Moreover, one can check that for
any permutation invariant Boolean function f on n = 3 bits, κc(f, p) ∈ {0, 2p − 1}. This
naturally leads to the following questions.

Question 7.3. Let S denote the set of permutation invariant Boolean functions. Do we
have

sup
f∈S

κc(f, p) = 2p− 1 ?

Question 7.4. Do we have

sup
f

κc(f, p) = 2p− 1 or sup
f

κc(f, p) <∞ ?

8 Distributional algorithmic complexity under composition
and an outlook on asymptotic separation

While this section does not contain theorems, it provides a natural conjecture together with
a connection to asymptotic separation of distributional algorithmic and subcube partition
complexity. It also brings us back to the discussion at the end of Sections 5.

Recall that for two Boolean functions f , g on n resp., m bits, the composition f ◦ g is
the Boolean function on n ·m bits defined by

f ◦ g(x1
1, . . . , x

1
m, . . . , x

n
1 , . . . , x

n
m) = f

(
g(x1

1, . . . , x
1
m), . . . , g(xn1 , . . . , x

n
m)
)
.

Moreover, recall that the PARITY function on n bits is defined by

PARn(x1, . . . , xn) =

{
1 if

∑n
i=1 xi is odd,

0 if
∑n

i=1 xi is even.

We believe that the ideas of the proof of Theorem 7.3 could lead to the following result
which we therefore state as a conjecture.

Conjecture 8.1. For every n,m ≥ 1, there exists k0(n,m) ∈ N, such that for any Boolean
functions f and g on n ≥ 1 respectively m ≥ 1 bits and for any k ≥ k0(n,m), we have

a
(
f ◦ (g ⊕ PARk), π1/2

)
= a(f, π1/2) · a(g ⊕ PARk, π1/2).

The above conjecture would then imply that for every n ≥ 1 and for every L ≥ 1, there
exists k1(n,L) ∈ N such that for every Boolean function f on n ≥ 1 bits and for every
k ≥ k1(n,L), we have

a
(

(f ⊕ PARk)
`, π1/2

)
=
(
a(f ⊕ PARk, π1/2)

)`
, ∀1 ≤ ` ≤ L.

This naturally leads to the next question.

39

Question 8.1. For which Boolean functions f does there exist k1(f) ∈ N such that for
every k ≥ k1(f), we have

a
(

(f ⊕ PARk)
`, π1/2

)
=
(
a(f ⊕ PARk, π1/2)

)`
, ∀1 ≤ ` <∞?

In particular, does this hold for f = A-EQ3 (see Example 2.4)?

While the parity function trivially provides such an example, one approach in achieving
asymptotic separation of algorithmic and subcube partition complexity is to find an example
of a Boolean function f for which sc(f, πp) < a(f, πp) and which satisfies the above. As
explained at the end of Section 5, our hope would be that the second question has a positive
answer, implying that the sequence(

(A-EQ3 ⊕ PARk)
`
)
`≥1

asymptotically separates distributional algorithmic and subcube parition complexity for
some sufficiently large k ≥ 1.

Acknowledgments

In 2004, Oded Schramm and the second author began to look at some of the questions
addressed in this paper and obtained some preliminary results and examples. The project
was put on ice in 2005. When the second author visited Zurich in 2019, it turned out that the
first author was looking at similar questions during a semester project in 2018 supervised by
Vincent Tassion and also had some preliminary results. It then became natural to combine
forces. We hereby acknowledge Oded for his contributions to this paper.

The first author is grateful to Vincent Tassion for inspiring questions and discussions,
and for supporting his visits to Gothenburg. Both authors would like to thank Vincent
Tassion and Aran Raoufi for stimulating discussions during the second author’s visits to
Zurich, as well as the Forschungsinstitut für Mathematik (FIM) at ETH Zurich for its
hospitality during these visits.

The first author is part of NCCR SwissMAP and has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
program (grant 851565). The second author acknowledges the support of the Swedish
Research Council (grant 2020-03763).

References

[ABDK+21] Scott Aaronson, Shalev Ben-David, Robin Kothari, Shravas Rao, and Avishay Tal. De-
gree vs. approximate degree and quantum implications of huang’s sensitivity theorem.
In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2021, page 1330–1342, New York, NY, USA, 2021. Association for Computing
Machinery.

40

[AK15] Andris Ambainis and Martins Kokainis. Almost quadratic gap between partition com-
plexity and query/communication complexity. arXiv preprint arXiv:1512.00661, 2015.

[BBC+01] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf.
Quantum lower bounds by polynomials. J. ACM, 48(4):778–797, 2001.

[BdW02] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complex-
ity: a survey. Theoret. Comput. Sci., 288(1):21–43, 2002.

[BKST24] Guy Blanc, Caleb Koch, Carmen Strassle, and Li-Yang Tan. A strong direct sum
theorem for distributional query complexity. arXiv preprint arXiv:2405.16340, 2024.

[DCRT19] Hugo Duminil-Copin, Aran Raoufi, and Vincent Tassion. Sharp phase transition for the
random-cluster and Potts models via decision trees. Ann. of Math. (2), 189(1):75–99,
2019.

[DHS17] Michael Damron, Jack Hanson, and Philippe Sosoe. On the chemical distance in critical
percolation. Electron. J. Probab., 22:Paper No. 75, 43, 2017.

[Gri99] G. Grimmett. Percolation, volume 321 of Grundlehren der mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag,
Berlin, second edition, 1999.

[Gro22] Renan Gross. Noise sensitivity from fractional query algorithms and the axis-aligned
laplacian. arXiv preprint arXiv:2201.10350, 2022.

[GS14] Christophe Garban and Jeffrey E. Steif. Noise Sensitivity of Boolean Functions and
Percolation. Institute of Mathematical Statistics Textbooks. Cambridge University
Press, 2014.

[GSS13] Justin Gilmer, Michael Saks, and Srikanth Srinivasan. Composition limits and separat-
ing examples for some boolean function complexity measures. In 2013 IEEE Conference
on Computational Complexity, pages 185–196, 2013.

[Hua19] Hao Huang. Induced subgraphs of hypercubes and a proof of the sensitivity conjecture.
Ann. of Math. (2), 190(3):949–955, 2019.

[JWW11] Saul Jacka, Jon Warren, and Peter Windridge. Minimizing the time to a decision. Ann.
Appl. Probab., 21(5):1795–1826, 2011.

[KRDS15] Robin Kothari, David Racicot-Desloges, and Miklos Santha. Separating decision tree
complexity from subcube partition complexity. In Approximation, randomization, and
combinatorial optimization. Algorithms and techniques, volume 40 of LIPIcs. Leibniz
Int. Proc. Inform., pages 915–930. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern,
2015.

[Nis89] Noam Nisan. Crew prams and decision trees. In Proceedings of the twenty-first annual
ACM symposium on Theory of computing, pages 327–335, 1989.

[O’D14] Ryan O’Donnell. Analysis of Boolean functions. Cambridge University Press, New
York, 2014.

[OS07] Ryan O’Donnell and Rocco A. Servedio. Learning monotone decision trees in polyno-
mial time. SIAM Journal on Computing, 37(3):827–844, 2007.

41

[OSSS05] R. O’Donnell, M. Saks, O. Schramm, and R.A. Servedio. Every decision tree has an
influential variable. In 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’05), pages 31–39, 2005.

[PSSW07] Yuval Peres, Oded Schramm, Scott Sheffield, and David B. Wilson. Random-turn hex
and other selection games. Amer. Math. Monthly, 114(5):373–387, 2007.

[Rub95] David Rubinstein. Sensitivity vs. block sensitivity of Boolean functions. Combinatorica,
15(2):297–299, 1995.

[RV75] Ronald L. Rivest and Jean Vuillemin. A generalization and proof of the Aanderaa-
Rosenberg conjecture. In Seventh Annual ACM Symposium on Theory of Computing
(Albuquerque, N.M., 1975), pages 6–11. Assoc. Comput. Mach., New York, 1975.

[San24] Swagato Sanyal. Randomized query composition and product distributions. arXiv
preprint arXiv:2401.15352, 2024.

[Sav02] Petr Savickỳ. On determinism versus unambiquous nondeterminism for decision trees.
In Electronic Colloquium on Computational Complexity (ECCC), volume 9, 2002.

[SS00] P. Savický and J. Sgall. Dnf tautologies with a limited number of occurrences of every
variable. Theoretical Computer Science, 238(1):495–498, 2000.

[SW01] Stanislav Smirnov and Wendelin Werner. Critical exponents for two-dimensional per-
colation. Math. Res. Lett., 8(5-6):729–744, 2001.

[Tal13] Avishay Tal. Properties and applications of Boolean function composition. In
ITCS’13—Proceedings of the 2013 ACM Conference on Innovations in Theoretical
Computer Science, pages 441–454. ACM, New York, 2013.

42

	Introduction
	Definition and hierarchy of complexity measures
	Deterministic complexity measures
	Distributional complexity measures
	A geometric perspective on subcube partitions and algorithms
	A stopping set perspective on subcube partitions and local sets

	Boolean function composition
	Review of the deterministic case
	Composition results for distributional complexities

	Examples
	Classical examples
	Percolation functions

	Asymptotic separations
	Review of the deterministic case
	Asymptotic separation for distributional complexities

	Polynomial relations
	Review of the deterministic case
	Polynomial relations for distributional complexities

	Distributional algorithmic complexity with partial information
	Distributional -algorithmic complexity
	Distributional (p,)-algorithmic complexity

	Distributional algorithmic complexity under composition and an outlook on asymptotic separation

