Percolation

Lecture 1

Notes by Jeffrey Steif, transcribed by Oskar Sandberg

The goal of the first lecture is to introduce the fundamental elements of percolation, and to show that bond percolation on \mathbb{Z}^d has a non-trivial critical value.

Graph Theoretic Basics

As usual, we let $\mathbb{Z}^d = \{(x_1, x_2, \dots, x_n) : x_i \in \mathbb{Z}\}$. On this we will use two different norms, the L^1 norm:

$$|x| = \sum_{i=1}^{d} |x_i|$$

and the L^{∞} norm:

$$||x|| = \max_{i=1...d} \{|x_i|\}.$$

 \mathbb{Z}^d becomes a graph when we place edges between all $x, y \in \mathbb{Z}^d$ with |x - y| = 1 (that is, we 2d edges from each point to its neighbors following each axis). We call this graph:

$$L^d = (\mathbb{Z}^d, E^d).$$

Definition 1. A path is an alternating sequence of vertices and edges

$$x_0, e_0, x_1, e_1, \dots, x_{n-1}, e_{n-1}, x_n$$

where all the x_i are distinct, and each $e_i = \{x_i, x_i + 1\}$. Paths may also be infinite.

Definition 2. A circuit is a sequence:

$$x_0, e_0, x_1, e_1, \dots, x_{n-1}, e_n, x_0$$

such that $x_0, e_0, \ldots, x_{n-1}$ is a path, and $e_n = \{x_{n-1}, x_0\}$.

Additionally, let the boundary of a subset $A \in \mathbb{Z}^d$, denoted by ∂A , be

$$\partial A = \{x \in A : \exists y \in A^c \text{ with } \{x,y\} \in E^d\}$$

and:

$$B(n) = [-n, n]^d = \{x : ||x|| \le n\}$$

$$S(n) = \{x : |x| < n\}$$

The first is denoted by B for Ball, but is, in fact, a square in the plane (and a cube elsewhere). The second is denoted by S for sphere. Both sets are filled - their respective boundaries are denoted by ∂B and ∂S .

Bond Percolation

For some parameter $p \in [0, 1]$, bond percolation assigns each edge in L^d as open (a.k.a. retained) independently with probability p. Otherwise it is closed (removed). An open

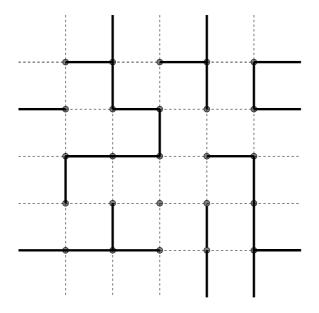


Figure 1: Bond percolation on L^2 .

edge is also said to have state 1, a closed edge has state 0. Z^d together with the set of open edges forms a new, random, graph, whose properties we study.

Short Formality

The sample space for percolation is:

$$\Omega = \prod_{e \in E^d} \{0, 1\}.$$

An element of Ω is of the form:

$$\omega = \{\omega(e) : e \in E^d\}$$

where $\omega(e) = \{0,1\}$. The probability measure that allows edges to be open or closed independently is given by the product measure over all the edges:

$$P_p = \prod_{e \in E^d} (p\delta_1 + (1-p)\delta_0).$$

There is a one-to-one correspondence between elements of Ω and subsets of \mathbf{E}^d given by:

$$\omega \in \Omega \leftrightarrow K(\omega) = \{e \in E^d : \omega(e) = 1\}.$$

That is $K(\omega)$ is simply the set of edges which are open in ω (the rest are closed).

We now fix $p \in [0, 1]$. Consider the random subgraph of L^d consisting of vertices Z^d and the open edges. The components of this graph are called (open) clusters.

For $A, B \subseteq \mathbb{Z}^d$ we let $A \leftrightarrow B$ denote the event that there exists an open path from some vertex in A to some vertex in B.

Definition 3. For $x \in \mathbb{Z}^d$, C(x) is the cluster containing x. That is:

$$C(x) = \{ y \in \mathbb{Z}^d : \{x\} \leftrightarrow \{y\} \}.$$

Note that C(x) is random.

Clearly, $C(x) = \{x\}$ iff all of the edges adjacent to x are closed. The distribution of the size of C(x) does not depend on x, and so we concentrate on studying C(0).

The Object of Principle Interest

Definition 4. The percolation function, $\theta(p)$ is given by:

$$\theta(p) = \mathbf{P}_p(|C(0)| = \infty).$$

It is clear that $\theta(0) = 0$ (since C(0) is always $\{0\}$ in this case), and $\theta(1) = 1$ (since then $C(0) = \mathbb{Z}^d$). Also $\theta(p) < 1$ if p < 1.

Exercise 1: Show that $\theta(p)$ is non-decreasing in p.

A bigger question is: Is $\theta(p)$ continuous? This question is not completely resolved, and is the main open question in the field.

Since $\theta(p)$ is increasing, and since $\theta(0) = 0$ and $\theta(1) = 1$, there must be a critical value, p_c , after which $\theta(p)$ takes positive values. That is:

$$\exists p_c(d) : \theta(p) = \begin{cases} 0 & \text{for } p < p_c(d) \\ > 0 & \text{for } p > p_c(d) \end{cases}$$

We can thus also define the critical value by:

$$p_c = \sup\{p : \theta(p) = 0\}$$
$$= \inf\{p : \theta(p) > 0\}.$$

It is of course possible that $p_c = 0$ or that $p_c = 1$, but that would not make for a very interesting subject of study. In fact, this is not the case:

Theorem 1. $\forall d \geq 2$ the critical value for bond percolation in non-trivial:

$$p_c(d) \in (0,1).$$

Exercise 2: $\theta(p)$ is non-decreasing in d, which implies that $p_c(d)$ is non-decreasing in d.

Proof. (Of Theorem 1.) We must show two things:

- 1. For sufficiently small p > 0, $\theta(p) = 0$.
- 2. For sufficiently large p < 1, $\theta(p) > 0$.

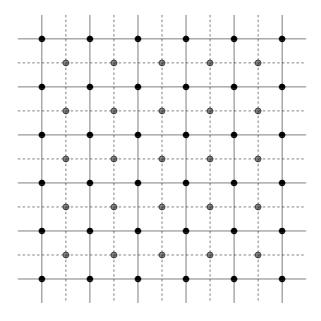


Figure 2: A section of L^2 and its dual $(L^2)^*$.

We do each in turn:

1. In particular, we will show that if p < 1/2d then $\theta(p) = 0$.

Let $\sigma(n)$ be the number of paths in L^d of length n starting from 0. This value is very hard to calculate, but we can easily bound it by looking at the number of choices in each step:

$$\sigma(n) \leq (2d)^n$$
.

Let the random variable N_n be the number of paths which are open. Since each bond is open or closed independently with probability p, it follows that:

$$E_p[N_n] = \sigma(n)p^n \le (2dp)^n$$

Since we have chosen p < 1/2d, the right hand side $\to 0$ as $n \to \infty$. Now for all natural numbers n it holds that:

$$\begin{array}{lcl} \theta(p) & = & \mathbf{P}_p(|C(0)| = \infty) \\ & \leq & \mathbf{P}(N_n \ge 1) \\ & \leq & E[N_n] \end{array}$$

whence it follows that $\theta(p)$ is smaller than any positive number, and thus $\theta(p) = 0$.

2. In view of Exercise 2, it is enough to show that $p_c(2) < 1$ for the same thing to hold in all dimensions.

To do this, we define the dual graph of L^2 , $(L^2)^*$, as follows. In each quadrant of L^2 , we place a vertex and then we connect each vertex with the ones above, below, and to the left and right. In other words, the dual graph is L^2 shifted by [1/2, 1/2], and each edge in $(L^2)^*$ crosses one edge in L^2 . See Figure 2.

There is a one-to-one correspondence between E^2 and $(E^2)^*$ defined by letting each edge correspond to the one it crosses. We can define a coupled percolation on $(L^2)^*$ as follows: each edge in $e^* \in (E^2)^*$ is open iff the corresponding edge in E^2 is closed.

Lemma 1. (Due to Whitney) For any configuration of open and closed edges:

$$|C(0)| < \infty \Leftrightarrow \exists \text{ an open circuit in } (L^2)^* \text{ surrounding } 0.$$

Now, let $\rho(n)$ be the number of circuits of length n in $(L^2)^*$ surrounding 0. It is not difficult to see that $\rho(n) \leq n4^{n-1}$. Thus:

$$\mathbf{P}_p(|C(0)| < \infty) = \mathbf{P}_p(\exists \text{ an open circuit in } (L^2)^* \text{ surrounding } 0.)$$
 (1)

$$\leq E_p$$
 (Number of open circuits around 0.) (2)

$$= \sum_{n=1}^{\infty} \rho(n)(1-p)^n \tag{3}$$

$$= \sum_{n=1}^{\infty} n4^{n-1} (1-p)^n < \infty \tag{4}$$

where the last inequality holds if p > 3/4. That a probability is less than infinity is perhaps not surprising, but as $p \to 1$, the final, bounded, sum $\to 0$. Hence there $\exists p < 1$ such that $\mathbf{P}_P(|C(0)| < \infty) < 1$, which implies:

$$\theta(p) = P_p(|C(0)| = \infty) > 0.$$