
Percolation
Lecture 1

Notes by Jeffrey Steif, transcribed by Oskar Sandberg

The goal of the first lecture is to introduce the fundamental elements of percolation, and
to show that bond percolation on Zd has a non-trivial critical value.

Graph Theoretic Basics

As usual, we let Zd = {(x1, x2, . . . , xn) : xi ∈ Z}. On this we will use two different norms,
the L1 norm:

|x| =
d∑

i=1

|xi|

and the L∞ norm:
||x|| = max

i=1...d
{|xi|}.

Zd becomes a graph when we place edges between all x, y ∈ Zd with |x− y| = 1 (that is,
we 2d edges from each point to its neighbors following each axis). We call this graph:

Ld = (Zd, Ed).

Definition 1. A path is an alternating sequence of vertices and edges

x0, e0, x1, e1, . . . , xn−1, en−1, xn

where all the xi are distinct, and each ei = {xi, xi + 1}. Paths may also be infinite.

Definition 2. A circuit is a sequence:

x0, e0, x1, e1, . . . , xn−1, en, x0

such that x0, e0, . . . , xn−1 is a path, and en = {xn−1, x0}.

Additionally, let the boundary of a subset A ∈ Zd, denoted by ∂A, be

∂A = {x ∈ A : ∃y ∈ Ac with {x, y} ∈ Ed}

and:

B(n) = [−n, n]d = {x : ‖x‖ ≤ n}
S(n) = {x : |x| ≤ n}

The first is denoted by B for Ball, but is, in fact, a square in the plane (and a cube
elsewhere). The second is denoted by S for sphere. Both sets are filled - their respective
boundaries are denoted by ∂B and ∂S.

Bond Percolation

For some parameter p ∈ [0, 1], bond percolation assigns each edge in Ld as open (a.k.a.
retained) independently with probability p. Otherwise it is closed (removed). An open
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Figure 1: Bond percolation on L2.

edge is also said to have state 1, a closed edge has state 0. Zd together with the set of
open edges forms a new, random, graph, whose properties we study.

Short Formality

The sample space for percolation is:

Ω =
∏

e∈Ed

{0, 1}.

An element of Ω is of the form:

ω = {ω(e) : e ∈ Ed}

where ω(e) = {0, 1}. The probability measure that allows edges to be open or closed
independently is given by the product measure over all the edges:

Pp =
∏

e∈Ed

(pδ1 + (1− p)δ0) .

There is a one-to-one correspondence between elements of Ω and subsets of Ed given by:

ω ∈ Ω ↔ K(ω) = {e ∈ Ed : ω(e) = 1}.

That is K(ω) is simply the set of edges which are open in ω (the rest are closed).

We now fix p ∈ [0, 1]. Consider the random subgraph of Ld consisting of vertices Zd and
the open edges. The components of this graph are called (open) clusters.

For A,B ⊆ Zd we let A ↔ B denote the event that there exists an open path from some
vertex in A to some vertex in B.
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Definition 3. For x ∈ Zd, C(x) is the cluster containing x. That is:

C(x) = {y ∈ Zd : {x} ↔ {y}}.

Note that C(x) is random.

Clearly, C(x) = {x} iff all of the edges adjacent to x are closed. The distribution of the
size of C(x) does not depend on x, and so we concentrate on studying C(0).

The Object of Principle Interest

Definition 4. The percolation function, θ(p) is given by:

θ(p) = Pp(|C(0)| = ∞).

It is clear that θ(0) = 0 (since C(0) is always {0} in this case), and θ(1) = 1 (since then
C(0) = Zd). Also θ(p) < 1 if p < 1.

Exercise 1: Show that θ(p) is non-decreasing in p.

A bigger question is: Is θ(p) continuous? This question is not completely resolved, and is
the main open question in the field.

Since θ(p) is increasing, and since θ(0) = 0 and θ(1) = 1, there must be a critical value,
pc, after which θ(p) takes positive values. That is:

∃pc(d) : θ(p) =

{
0 for p < pc(d)
> 0 for p > pc(d)

We can thus also define the critical value by:

pc = sup{p : θ(p) = 0}
= inf{p : θ(p) > 0}.

It is of course possible that pc = 0 or that pc = 1, but that would not make for a very
interesting subject of study. In fact, this is not the case:

Theorem 1. ∀d ≥ 2 the critical value for bond percolation in non-trivial:

pc(d) ∈ (0, 1).

Exercise 2: θ(p) is non-decreasing in d, which implies that pc(d) is non-decreasing in d.

Proof. (Of Theorem 1.) We must show two things:

1. For sufficiently small p > 0, θ(p) = 0.

2. For sufficiently large p < 1, θ(p) > 0.
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Figure 2: A section of L2 and its dual (L2)∗.

We do each in turn:

1. In particular, we will show that if p < 1/2d then θ(p) = 0.

Let σ(n) be the number of paths in Ld of length n starting from 0. This value is very
hard to calculate, but we can easily bound it by looking at the number of choices in
each step:

σ(n) ≤ (2d)n.

Let the random variable Nn be the number of paths which are open. Since each
bond is open or closed independently with probability p, it follows that:

Ep[Nn] = σ(n)pn ≤ (2dp)n

Since we have chosen p < 1/2d, the right hand side → 0 as n → ∞. Now for all
natural numbers n it holds that:

θ(p) = Pp(|C(0)| = ∞)
≤ P(Nn ≥ 1)
≤ E[Nn]

whence it follows that θ(p) is smaller than any positive number, and thus θ(p) = 0.

2. In view of Exercise 2, it is enough to show that pc(2) < 1 for the same thing to hold
in all dimensions.

To do this, we define the dual graph of L2, (L2)∗, as follows. In each quadrant of
L2, we place a vertex and then we connect each vertex with the ones above, below,
and to the left and right. In other words, the dual graph is L2 shifted by [1/2, 1/2],
and each edge in (L2)∗ crosses one edge in L2. See Figure 2.

There is a one-to-one correspondence between E2 and (E2)∗ defined by letting each
edge correspond to the one it crosses. We can define a coupled percolation on (L2)∗

as follows: each edge in e∗ ∈ (E2)∗ is open iff the corresponding edge in E2 is closed.
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Lemma 1. (Due to Whitney) For any configuration of open and closed edges:

|C(0)| < ∞⇔ ∃ an open circuit in (L2)∗ surrounding 0.

Now, let ρ(n) be the number of circuits of length n in (L2)∗ surrounding 0. It is not
difficult to see that ρ(n) ≤ n4n−1. Thus:

Pp(|C(0)| < ∞) = Pp

(∃ an open circuit in (L2)∗ surrounding 0.
)

(1)
≤ Ep (Number of open circuits around 0.) (2)

=
∞∑

n=1

ρ(n)(1− p)n (3)

=
∞∑

n=1

n4n−1(1− p)n < ∞ (4)

where the last inequality holds if p > 3/4. That a probability is less than infinity
is perhaps not surprising, but as p → 1, the final, bounded, sum → 0. Hence there
∃p < 1 such that PP (|C(0)| < ∞) < 1, which implies:

θ(p) = Pp(|C(0)| = ∞) > 0.
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