
Percolation
Lecture 2

Notes by Jeffrey Steif, transcribed by Oskar Sandberg

Last time, we defined A↔ B as the event:

U = {∃a ∈ A, b ∈ B, and an open path from a to b}.

That U is an event means, of course, that U ⊆ {0, 1}Ed
.

Exercise 3: Show that U is open in the product toplogy.

Now the solution to one of the exercises from last time:

Proposition 1. If p1 ≤ p2 then θ(p1) ≤ θ(p2).

We will prove this by superimposing the two objects on the same probability space. This
proof method is called a “coupling” and it is a very common and powerful tool in proba-
bility theory. The coupling used here is very direct, but they can be more involved.

Proof. Let (Xe, Ye)e∈Ed be independent random vectors with the following distribution:

(Xe, Ye) Probability
(1, 1) p1

(0, 1) p2 − p1

(0, 0) 1− p2

Note that, in particular, P(Xe) = p1 and P(Ye) = p2. Also, because the value (1, 0) never
occurs, it holds that:

Xe = 1 ⇒ Ye = 1. (1)

Define the following events:

U =
{ ∃ an infinite path in Zd starting at 0

where Xe = 1 ∀e in the path.

}

V =
{ ∃ an infinite path in Zd starting at 0

where Ye = 1 ∀e in the path.

}

Because the distribution of open edges in each case is the same as if they had been defined
separately, it holds that P(U) = θ(p1) and P(V ) = θ(p2). From (1) we know that U ⊆ V ,
and hence

θ(p1) = P(U) ≤ P(V ) = θ(p2).

Last time we showed that ∀d ≥ 2 there is a critical value pc(d) ∈ (0, 1) such that:

θ(p) =

{
0 for p < pc(d)
> 0 for p > pc(d)

.
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Until now, we have been dealing with θ(p) which gives the probability that 0 is part of an
infinite cluster. One can define a similar function ψ(p) by:

ψ(p) = Pp(∃ an infinite cluster somewhere in Ld).

Proposition 2. With the above definitions, it holds that:

1. θ(p) = 0 ⇒ ψ(p) = 0.

2. θ(p) > 0 ⇒ ψ(p) = 1.

Proof. 1. This follows from countable additivity:

ψ(p) = Pp(∃ an infinite cluster)

= Pp(
⋃

x∈Zd

{C(x) = ∞})

≤
∑

x∈Zd

Pp(|C(x)| = ∞) = 0.

2. In order to show this, one actually shows that ψ(p) must be either 0 or 1, with the
help of a so-called 0-1 law. Since ψ(p) ≥ θ(p), it then follows that ψ(p) = 1 when
p > pc(d).

To do this, we need the concept of a tail event. Formally, tail events are defined
in terms of σ-algebras and alike, but intuitively it is a clear concept. If we have
a infinite sequence of random variables, then a tail event is an event for which we
can determine if it occurs even when any finite set of variables is excluded from
knowledge. The simplest example is whether an independent sequence converges -
not knowing the values of a finite number of variables cannot change whether we
know this is true. In light of this, we have:

Theorem 1. (Kolmogorov’s 0-1 Law) Consider a sequence of independent random
variables (Xi)i>0. Any tail event of this sequence has probability either 0 or 1.

That ψ(p) is 0 or 1 follows by application of this law: Take any ordering of the Ed,
and let Xn be an indicator that the n-th edge is on. This is a sequence of independent
random variables, and one can see that the existence of an infinite cluster is a tail
event.

What vital questions can we ask about the critical value?

• What is the value of pc(d)?

It is known that pc(2) = 1/2, but the value is not known for any d > 2, nor believed
to be easily expressible. pc(d) is known to have asymptotic order of about 1/2d (the
lower bound from the last lecture) as d→∞.
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Figure 1: Finite percolation used in motivating the FKG inequality.

• What is θ(pc)?

θ(pc) is known to be 0 when d = 2 and d ≥ 19. All other cases are still open,
though they are very strongly believed to be 0 as well. The proof of this is the big
open question in the field (it turns out to be the same question as whether θ(p) is
continuous everywhere).

The FKG Inequality

Motivation: Consider percolation in a finite grid, and let x, y, z, and w be points in the
grid. We can consider two events:

A = x↔ y

B = z ↔ w.

See Figure 1. Note that in this case ↔ means that the points are connected by an open
path within the finite grid.

The events A and B are not independent. They are, however, positively correlated in the
sense that:

P(A ∩B) ≥ P(A)P(B)

or (trivially) equivalently:
P(A|B) ≥ P(A).

This fact is a special case of the FKG inequality.

For a countable set S let Ω = {0, 1}S , and use the usual product measure:

Pp =
∏

s∈S

(pδ1 + (1− p)δ0).
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We define a partial order on the configurations by ω ≤ ω′ if ω(s) ≤ ω′(s) for all x ∈ S.
This ordering is only partial – many configurations are not comparable – but there is a
smallest configuration ω ≡ 0 and a largest ω ≡ 1.

Definition 1. A function f : Ω → R is increasing if ω ≤ ω′ implies that f(ω) ≤ f(ω′). A
subset A of Ω is said to be increasing if IA is (i.e. ω ∈ A,ω ≤ ω′ ⇒ ω′ ∈ A).

Theorem 2. (FKG)

1. If X,Y are increasing functions in L2(Ω) (that is, they have finite second moments)
then Ep(XY ) ≥ Ep(X)Ep(Y ).

In particular, if A,B are increasing events, then P(A ∩B) ≥ P(A)P(B).

Corollary 1. If A1, . . . , An are increasing, then:

P

(
n⋂

i=1

Ai

)
=

n∏

i=1

P(Ai).

An application: Consider an arbitrary connected graph G, and let x be a vertex. Then
pc(x) = sup{p : Pp(|C(x)| = ∞) = 0} does not depend on our choice of x.

Proof. Let x and y be arbitrary vertices, we will show that pc(x) ≥ pc(y), whence the result
follows by symmetry. Assume that pc(x) < 1 (if pc(x) = 1 there is nothing to prove), and
choose p > pc(x). We then have:

Pp(|C(y)| = ∞) ≥ Pp(y ↔ x, and |C(x)| = ∞)
≥ Pp(y ↔ x)Pp(|C(x)| = ∞)

where the last step is an application of the FKG inequality, possible because both events
are indeed increasing. Pp(y ↔ x) > 0 whenever p > 0, and Pp(|C(x)| = ∞) > 0 by
our choice of p. This shows that p ≥ pc(y), and since this holds for any p < pc(x), the
inequality is obtained.

We will now prove FKG for variables X,Y which depend only on the variables at finitely
many elements of S. The generalization to the full theorem uses Martingale convergence
theorem and can be found in Grimmet’s book.

Lemma 1. Let f, g ∈ L2(R) be increasing functions (in the usual sense), and let Z be a
random variable. Then

E[f(Z)g(Z)] = E[f(Z)]E[g(Z)].

Proof. Let Z1, Z2 be independent random variables with the same distribution as Z. Then

(f(Z1)− f(Z2))(g(Z1)− g(Z2)) ≥ 0

Since this statement is necessarily non-negative, so is its expectation, whence it follows
that

E[f(Z1)g(Z1)] + E[f(Z2)g(Z2)]− E[f(Z2)]E[g(Z1)]− E[f(Z1)]E[g(Z2)] ≥ 0.

Each term is unchanged if Z1 and Z2 are replaced with Z, so the inequality holds for Z
alone, and the result follows.
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Proof. (Of finite case FKG) Assume (WLG) that X,Y depend on the same set of variables
at s1, . . . , sn. The proof works by induction on the number variables.

n = 1 is a special case of the previous lemma. Now assume that the statement holds if X,
and Y depend on ω’s value at s1, . . . , sn−1.

E[XY ] = E[E[XY |ω(s1), . . . , ω(sn−1)]]

Applying the case for n = 1, and that X and Y are still increasing after conditioning,
gives

E[XY |ω(s1), . . . , ω(sn−1)] ≥ E[X|ω(s1), . . . , ω(sn−1)]E[Y |ω(s1), . . . , ω(sn−1)].

Therefore:

E[XY ] ≥ E [E[X|ω(s1), . . . , ω(sn−1)]E[Y |ω(s1), . . . , ω(sn−1)]]
≥ E [E[X|ω(s1), . . . , ω(sn−1)]]E [E[Y |ω(s1), . . . , ω(sn−1)]]
= E[X]E[Y ]

where the last inequality is the application of the induction hypothesis, possible since the
conditional expectations are increasing functions of n− 1 variables.

Russo’s Formula

Let Ω = {0, 1}S for a finite set S, and A ⊆ Ω be increasing. Then Pp(A) is an increasing
function in p, which tells us that:

dPp(A)
dp

≥ 0.

We are interested in finding an explicit formula for this derivative: the rate at which the
probability of an event increases with p.

Definition 2. For s ∈ S and A ⊆ Ω, the event “s is pivotal for A” is the subset of all
configurations for which changing the state at s changes whether the event occurs.

That is:

{ω ∈ Ω : IA(ω) 6= IA(ωs) where ωs(j) = ω(j) ∀s 6= j, ωs(s) = 1− ω(s)}

Example: Let S be edges in a three-by-three lattice, and let the points x, y and edge e
be as in the picture.
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Now let A = x ↔ y. Of the four configurations shown, e is pivotal for A in 1 and 2
(which become one another when s is changed), but not in 3 and 4, where x and y remain
connected regardless of edge e.

Theorem 3. (Margulis, Russo (indep.)) Let A ⊆ {0, 1}S and |S| < ∞. Let NA be the
number of elements that are pivotal for A. If A is increasing, then

dPp(A)
dp

=
∑

s∈S

Pp(s is pivotal for A)

= E[NA]

Two examples follow, the first silly and the second trivial. Consider first:

A = {e is open}

for some edge e in finite percolation. The Pp(A) = p and the number of pivotal edges is
of course always 1.

If we instead consider two edges e1 and e2 and let

A = {Both e1 and e2 are open}

then Pp(A) = p2, and
dPp(A)
dp

= 2p.

Now consider the conditions under which e1 and e2 are pivotal. Both edges are pivotal
exactly when the other is open, because that is when changing their state changes the
truth value of A. Since this occurs with probability p for each edge, E[NA] = 2p.
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