Part I: Some Ergodic T heory

I hope this is éll the ergodic theory we'll need. Let vp be product measure on

d
{O,I}Z = X where the 1's have probability p, i.e.,

v.= 1 ,((1-p) 6+p &)
p xEZd( 0 1

In other words, we have independent and identically distributed r.v. indexed by Zd

-where each r.v. is 1 with probability p and 0 with probability 1-p.

N.B. There are d canonical transformations Tl"'Td on X, the i:th such moving a

configuration -1 unit in the i:th direction.

Theorem: Let A C {0,1}% be such that T,A = A. Then A has measure Oor 1 ie.
z/p(A) =0 or 1. |
74

An example of such a A is the set of elements in {0,1}“ which have infinitely many

1's surrounded by 0's.

Proof of Theorem: We give a "picture proof" and note that such a picture proof can be

used to prove Kolmogorov's 0-1 law and the Hewitt—Savage 0-1 law. |
If A does not have measure 0 or 1, then it looks like this.

Basic facts from measure theory tell us that 3 a

cylinder set BCX (i.e. B is of the form

{rr (%) =, i=1..k} where x,..x € zd

jprem d €{0,1}) 3 Vp(AAB) is small.




Now choose 2 high enough power of Ty, say T7' so
that the coordinates determining TT(B) are

distinct from those of B. AThen TTB and B are

independent.

Since T, is measure preserving (i.e. up(TlC) = up(C) Y C C X), up(TT(AAB)) is
small 2 vp(TTA ATTB) is small 2 v p(AATI?B) is small as A isinvariant. Hence

;(5_%
/[ f

/

ie. B and TrlnB are close. But independent sets do not look like this, they look like




That's the proof. You can fill in the €'s + &'s if you want. QED
We now state a special case of the "ergodic theorem", a very important and useful

theorem.

Theorem: Consider up as above. Let A C X. Then for "p a.e. weX,
L Gy g ig) €[0 n-l]d-TilTiZ Tid(w)eA]—»u(A)
A U Ay L "1 2 ot d p\/

In 1-dimension, we have only T1 which we call T, which simply shifts the

: n-1

configuration over to the left one unit. Then% X1 . —P(A) v as.
i=0 {T'weA} P

Corollary: Strong law of large #'s.

Proof: Let A = {: 7(0) = 1}. Then

I . ={1 ifwi=1'
{T'weA} Y0 if w=0

Hence 1'% o =175 1 P(A E

ence = == i QED

0¢ a 0 “ =1 20 {T'weA} ™ (A) ¢
Some more ergodic theory background. (related to the existence of stationary

distribution for Markov processes).

Theorem. Let T be a continuous transformation on a compact metric space X. Then
3 a T-invariant prob. measure p on X, i.e. a measure p3 p(T_lA) = u(A) VA.
Background on weak convergence of measures (generalizes convergence in distribution of
I.v.) |

Let X be a compact metric space.

Definition._ #y, — p weakly if [f du, ™, ffdy
V .continuous f



Theorem. If {un} is a sequence of pm on X, then 3 a subsequence unk that

convergeé to some L.
“In words, the set of probability measures on a compact metric space is weakly

compact." No proof but you should know this. (It's false for R).

-1
i 1" . .
Proof. Choose x € X. Let p =< : _—2:0 6Tlx' Let unk be a subsequence converging to
some /.
We need to show

JfoTdu = [fdy YV cont. {.

| [foTdy - fidp| < Ufon,unk - jfdpnkl +€

N U S
=~ Y T(Tx)-£ X f(T'x)| +.¢€
k i= k i=0
0y
< KT K(x) - £(x)] + €= 0 QED
k

Theorem. Consider a discrete time Feller Markov process (MP) with compact metric
state space X. Let Tu denote the distribution of the process at time 1 if the initial
distiribution is x. Then any subsequential limit of the sequence
102t L
5 Y Ty is astationary distribution (S.D.)
i=0"

(In particular Stationary distributions exist).

NB: Consider a continuous time feller MP with compact State space X. Let Ttu

denote the distribution at time t when the initial distribution is p. Then any

4T
subsequential limit of % / Ttp dt is a stationary distribution.
O .
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Part II: Percolation

1. Bond percolation.
Define 1) finite graphs 2) connectedness (components)
3)infinite graphs. 4) connectedness (components) 5) subgraph

Perc. is the study of random graphs.

Define the model. Start with Z2. We will construct a random subgraph of 72 as
follows: Fix p € (0,1). Let each edge be open with probability p and be closed with
probability 1-p.

What is the probability #(p) that 0 can reach infinitely many vertices along

the open bonds?

NB: If no edges are kept, this does not happen.
If all edges are kept, this does not happen.
So this might or might occur - it is random.
i

More rigorously. Let E denote the edge set of 72 Let 0= 1 {0,1}.¢a—algebra
' ecE -

generated by the cylinder sets. Let Pp = 1 ”p where ty is the measure on {0,1},
ecE

#p(1) =p, #(0) = 1-p.

Let C(x) denote the cluster (component) containing x: (depends on w). C = C(0).
What is Pp(ICI = w)? (Same as 4(p)).

Easy Problem: For any sg of 2%, |C| = w, iff 30=xp, X;, Xy,... all distinct

3 {x;, X1} €E Vi |

Exercise. f(p) is nondecreasing.

Theorem 1. If p < 1/3, 6(p) = 0

Let Fn be the event there is a path of length n starting at 0. For any such path in
ZQ, the prob that it is a-path in the random graph is pn. The number of such paths is
<43"1 3 Prob(F ) < 43" 1 p"0 as n= Since {|C| =} C F, V.,



Prob {|C| = »} = 0,i.e. 6(p)=0 and no percolation. QED

¢ 9]
Theorem 2. If X n43n'1(1-p)11 < 1, then 64(p) > 0 (so the model is interesting).
n=4

NB: 6(p) cannot be 1 for p <1

Proof. Introduce dual graph vi=72+ (—%—, %), and the edge set is
0 N T E+ (% , %). There is an obvious
(‘*“X’-«vﬂ R
. 5 5 ] 1-1 correspondence between the edges of
‘;ZM,_{_" ,__%,? V and those of V*. For any subgraph of
2 * o
7“, we get a subgraph of V" by callin
N an edge open if and only if the
< —7
l/’ i L N corresponding edge is open.

NB: If a subgraph of 72 is chosen acco\rding to P D then the corresponding subgraph

of V¥ also has distribution P "

Lemma 1. Whitney (pure graph theory, no probability.)

|C| < iff 3 a simple closed path in V* surrounding 0 consisting of all closed

|

edges.

s el

|
o

P(|C| < ) = Prob (3 a simple closed path in V* surrounding 0

(¢ ) .
consisting of all closed edges) < X n43n_1(1—p)n.
n=4 '



Since the sumis < w if p > %— , it can be made arbitrarily small if p is close to 1. In
particular, the sum can be made < 13 P(|C| =) >0 for p closeto 1. QED

NB: Weshowed f(p)-1 as p-1.

NB: This argument is called a contour argument and variants of it are used often.

NB: The above proof can be modified to give 6(p) >0 for p > %— .

Proof. Fix p > 7 a.nd choose N> EN n43"” 1(1 p) <1
n>

Let E; be the event that all bonds are open in [-N,N] x [-N,N]
Let E, be the event that there are no simple closed loops in V* surrounding [-N,N] :
consisting of closed edges. |

1) {IC| ==} 2E; NE, 2) E;, E, independent

| 3) P(E,) > 0 trivially while P(E,) >0 by choiceof N 2 P(|C] =w) >0. QED

It is natural to define the critical value P, by

—sup{p f(p) = 0} = inf{p: 6(p) > 0}

P

What is p, ? Is 8(p) continuous?

Theorem 3. P, = 1/2.

Theorem 4. 6(p) is cont on [0,1].

Theorem 5. §(p) is inf. diff. on [, 1]

Open Question 1: Is #(p) analytic in (%—, 1. NB: obviously not at 1/2.

Everything trivially generalizes to 74,
NB: It is clear that 8341(P) 2 04(p) Vp Vd



3 po(d+1) £ p.(d)-
NB: If 6(p) =0, then Pp (some C(x) is infinite) =0 since Pp (U {|C(x)| = »})
X
<LP
X

pICx)] =) = 0.

Theorem 6. If 6(p) > 0, then Pp (some C(x) is infinite) = 1.

Proof. Let F be the event that some C(x) is infinite. F is 2% invariant » P(F) =0

or 1. Since P@ %) >0, P(F) > 03 P(F) = 1. QED

Theorem 7. 4 d(p) is right continuous on [0,1].

Theorem 8. 6 d(p) is continuous on (pc(d)’ 1]. (Vanden Berg-Keane)
Motivates the Question.

Is there a jump at p(d) oris Hd(pc(d)) = 0.

Conjecture 2: Hd(p) is continuous at p, (i.e. no percolation at the critical value).

Theorem 9. 6,4(p) is continuous at p c(d) vd > 48.

(so called mean field behaviour).
Open Problem 3: Find p c(d). NB: probably impossible.

Proof of Theorem 7. Let gn(p) = Pp (there is a path of length n starting from the
origin.) g (p) is a polynomial in p and g (p) 1 6(p) as n-o.

Now a decreasing limit of continuous fq*nctions is always upper semi-continuous and a
nondecreasing upper senﬁ—continuousgfggtr;;;t continuous. ' QED
Before proving Tﬁeorem 8, we need to enter the next area. Uniqueness of the infinite

cluster.

Switch to site percolation. Methods are the same but conceptually easier to apply our
developed ergodic theory. Now sites are on or off (all bonds are on) |

pi(?) > p.(2) but its exact value is unknown. (s stands for site).



Theorem 9. Theorem 6 holds verbatum.

Soif p< P,y NO infinite cluster.
if p> P at least one infinite cluster.

Natural Question: How many infinite clusters.

NB: There are realizations with any number of clusters.

Theorem 10. If 6(p) > 0, Pp (3 a unique infinite cluster) = 1.
NB: First proofs were quite long and difficult. A number of papers have been written.

Finally the canonical proof by Burton and Keane was obtained which we will do.
Warm UP

The number of infinite clusters is nonrandom, i.e. it is constant a.s.
Let E, = {# of inf. cluster is k}.
E, is 2%-invariant 3 Prob (E;) = 0 or 1.

0
Since @ = U Ek , some Ek has probability 1 = # of infinite clusters is a.s. that
k=0 )

value of k.

Here is a good exercise in applying the ergodic theorem.

|x € [O,n—l]d: x__belongs to an infinite cluster|
n

Theorem 11.

—— 4(p) as n-o Pp- a.s.

Warm up Theorem due to Newman and Schulman.
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Theorem 12. The number of infinite clusters is either 0 a.s.1 a.s. or o a.s.

NB: We rule out that the number of cluster is > 1 but finite.

Proof. We show P(# of infinite clusters = 5) = 0, other cases similar.

Assume P(# inf cluster = 5) > 0 and so 1.

Let E = {there are 5 inf cluster and each intersects [- M,M]d}.

E, CE, C..C UE, = {there are 5 infinite clusters}.

So P(E;) 22,1, Choose N3 P(Ey) > 0.

Let Ex = {w w can be changed on [—N,N]d tobein Ey)
Ey CEy# P(Ey) >0 and Ey is measurable with respect to {ohigrn Ny
Let F={w=1 on [—N,N]d} 3> P(Fn EN) > 0 by independence.
F n Ey C {there is 1 infinite cluster} 2 P(1 infinite cluster) > 0 contradicting

. P(5 infinite clusters) = 1.
QED

It is much harder to rule out infinitely many infinite clusters, which we do now. This
proof is due to Burton-Keane. Let N be the # of infinite clusters. Assume P(N=w) =
1 and we will get a contradiction. We call z an "encounter point" (for w) if

1. z belongs to an infinite cluster C.

2. C ~ z has no finite components and exactly 3 infinite components.

Lemma. Prob 0 is an encounter point (ep) is > 0.

Proof. Let E,; = {at least 3 infinite clusters intersect [—M,M]d}
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Since E; CE, C... and UE; = {32 3 infinite clusters}.

P(E;) % 1 and so we can choose N 3 P(Ey) > 0.

- Let EN = {w w can be changed in [—N,N]d tobein Ey}

EN CEy=P(Ey) >0 and Ey is measurable with respect to {“’i}ig[—N,N]d'
Geometry and thinking tells us that if we€ Ey, then thereis w' which satisfies
1) o =w outside [-N,N]4

2) 0 is an encounter point for w'.

So, first we pick w outside [--N,N]d and this is in EN with positive probability. Then
)d

using independence, with probability > (EI%TI , we choose w inside [—N,N]d so that

we have an encounter point at 0. QED

Let §= Prob (0 is an encounter point).

The ergodic theorem =2

lim

|x € [—N,N]d: x__is an encounter point for w| _ 5 pp a.s. (w).
N-w (2N+1)d

We now show that no configuration at all can have this property. This follows .from the
following lemma.

Lemma: For any configuration the number of encounter points in [-N,N]d is less than
the number of boundary points of [-N,N]d. - |

NB: At this point, there is no probability at all.

Proof. First note each "e.p" is associated to an infinite cluster. Let Cl’ Cz,..., Ck be
the infinite clusters that intersect [—N,N]d. Let Y,,... Y, be defined by Y. =C;n
3[—N,N]d. Each "e.p" in [—N,N]d is associated to one of the C.'s.

We show that the number of e.p. assoicated with C, is < |Y;| (actually we will

k
show < |Y;| - 2). Then total number of "e.p." in [—N,N]d IR AT [—N,N]dl,
: , =1

1=
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as desired. Without loss of generality, we show that the number of e.p. for C1 is €
|Y1 |. From now on, all e.p. will be e.p's for Cl' Each e.p. by definition partitions C1
into 3 pieces and 80 partitions Y1 into 3 pieces, say (Pl’ P2, P3). If we take
a.nothér e.p., it partitions Y1 into V(Ql, Q2, Q3). Note by drawing a picture,

Q2 U Q3 c P1 after relabeling. The lemma now follows from the following wierd

combinational lemma. ' QED.

Lemma. Let P1» PopesPy be a collection of partitions of a set S where each P
partitions S into 3 nonempty sets. Assume that they are compatible in the sense that if
(Pl’ P, P3) and ‘(Ql, Qz, Q3) are 2 of the partitions, then after relabeling

QyU Qg CP;. Then, n< |S] - 2.

Proof. This is not real hard but not real easy. It should be done by induction and is left

to the reader. QED.

Proof of Theorem 8. (We are back in bond pgrcolation.) Let p>p c We need to show

lim 6(7) = 6(p). The idea is to couple all percolations realizations (for various p) on
P

the same probability space. This is easy. Let {X(e): e € Ed} be a collection of r.v.
indexed by'the bonds of Zd and having uniform distribution on [0,1). Wesay e € Ed
is p-open if X(e) < p.

NBI1: Prob (e is p-open) = p and these events are independent for different e's. Here
the set of e's which are p-open is just a percolation realization with parameter p.

NB2: If Py < Py, {e: e is P; open} C {e: e is Dy open}. Now, let Cp be the p-open

cluster of the origin. Obvious C_ CC_ if p; < p,.
Py 1 2

Py
(5) = P(IC5| = =)
and

lim () = 1im P(|C_| = w) = P(|C_| =« for some 7 < p).
T P TrP
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Since {|C_| = for some 7 < p}C {ICI-)I = w}, we need to show
ICﬁI =w 3 |C_| = for some <P (as.)

Let o be such that p, < @ < p. Then there is an infinite a-open cluster I_ (not
c a

necessarily containing the origin).

Now, if ICﬁ' =, then I e Cf) a.s. since there is a unique infinite cluster a.s.
a If 0el o Weare of course done with 7 = . Otherwise, there is a p-open path ¢ from
the origin to I . Let p= max{X(e): e € {} whichis <p.

Now, if g, < 7 < p, then thereisa = open path from 0 to I o and

|C.| =, as we wanted to show. QED

Part III: Interacting Partide Systems

d ,
These are continuous time Markov processes on {O,I}Z . For countable state. Markov

: d
processes, irreducibility 2 at most 1 s.d. This is false for {0,1}Z (nb: uncountable)

and is what causes the richness of the theory. .

Contact Process

Start with finite state space.

X = {0,1}2/2 n-1. 9


Stefan Eng
Finite??
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Dynamics: Each 1 waits an exp (1) random time and becomes a 0.

Each 1 also waits an indep exp(A) amount of time and gives birth to a 1 and then
places this 1 at random (% , %) at either of her 2 neighbors. If there is already a 1
there, the birth is suppressed (not counted).

The dynamics look like

101 1 01
001 \ 1 01
3

4;1

A
001 111
001 > 004

if » and 4 differ at more than 1 lattice point, q(7,6) = 0.
If n and 6 differ only at x with p(x) =1, &x) =0, then q(n,6) = 1.
If 7 and 6 differ at x with g(x) =0, dx) =1,

mm®=AP@4)§mmn}

NB: all 0's is absorbing and everything can reach all 0's. Hence - 0 with
probability 1 and the only S.D. is the trivial one, 60.

NB: true Vn and VA.

Now we do this on {O,I}Z. We think of A as a parameter just as p in the percolation

model.

Question 1: Does 3A sufficiently large 3
Prob, {7, # 0Vt starting with only one 1 at 0) > 0.
Question 2: Does 3\ sufficiently large 3

there exists a nontrivial s.d; i.e. # 60.
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it is interesting to compare to a branching process. Each individual is dying at rate 1
and giving birth at rate A. BUT sometimes the birth is suppressed. If the birth was not
suppressed, then if A > 1,

Prob(17t # 0 Vt starting with only one 1 at 0) > 0.
(This follows immediately from basic branching process theory).
So there is complicated geometrical structure involved. Since the branching process dies
out if A < 1, the above proves (using an elementary coupling of a Branching Process

with the total # of 1's in the contact process) that if A <1,

P(7, # 0 Vt starting with only one 1 at 0) = 0.

(We call this event "survival" some times)
Also, this probability is nondecreasing in A and this is easy to show.

Theorem 1. If welet A ¢ = sup{X: P(survival) = 0}, then X ¢ <® ie. for sufficiently
large A, P(survival) > 0.
NB: P(survival) <1 always.

Theorem 2. P ) (survival) > 0 & 3 a nontrivial S.D. at A.
NB: Theorem 2 is not true for general particle systems but holds for the contact process

due to a self-duality property of the contact process.

Method of Proof: "Show the contact process for large A dominates ORIENTED

Percolation".
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ORIENTED PERC

Let G = {(x,y) € 72. x+y is everi}
(-1,1) (L)

20 00 (@0

As in percolation, each point is designated to be open with prob p and closed with prob

(1-p), all independently.

Definition: x »y (y can be reached from x), if there is an open path from x to vy,
that is, there is a sequence Xg = X, X5 Xgyeors xj =yin G3
each X; is open and

x;=x_p+(L1) or x_,+ (-1,1) for i=1,...J.

Let C(O,O) = {x: (0,0) - x}.

Theorem: If p>1-37°, then P(IC(g gl =) > 0.
We will not give the proof. It is similar to the contour argument given for percolation
but the geometry a little messier. See Durrett's book. We now show that for large A, the
contact process survives (with positive prob.) |

Before doing this, we introduce the "Graphical Representation". This is an

extremely important tool for analyzing paiticle systems.

Vxe€Z, VyeZ with |y-x| =1
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let TY be a Poisson processes with ré,te é\- and let all these Poisson processes for
different (x,y) be independent.

"The points of the Poisson process T>*Y will be the "random times" at which x
gives birth onto y".

We place around from x to y at these random times.

’\/\—Ty Time

X Xt i

We also have Vx € Z, independent Poisson Processes T> with rate 1.
"These correspond to the times at which x dies i.e. a 1 switches to 0". We place §'s at

these points.

Definition: There is a path from (x,0) to (y,t) if there is a sequence of times 5o =0
<8; <8y << Sy <8p41 = t and spacial locations X) =X, Xy Xg oo X =Y 50 that
1) fori=1,..n thereis an arrow from X;_1 to x; attime s.
2)  the vertical segments {x} x (8;8;47) i=0,...,n containsno 's.
i.e. if there is a path from (x,0) to (y,t) moving up vertical lines and across arrows
never going through a d.

We identify subsets of Z with elements of {0,1}Z by
if nE {0,1}Z, let A={x€eZ: px)=1}

The "formal" definition of our process is as follows. Let A C Z be our initial

configuration. Let
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n‘:‘ = {y: forsome x € A, thereisa path from (x,0) to (y,t)}.

NB: One must think for a few minutes to see that {17‘?} is what we want it to be.

NB: Since X is uncountable, there is no Q-matrix anymore. One can generalize

Q-matrices to this setting but this involves fairly complicated functional analysis. The

“graph rep." allows us to define our process without running into such technicalities.
Theorem 1 can now be stated as follows.

For A large,

Pl 40 wi)>o.
(By above, nio} means the contact process starting with only one 1 at 0).
Proof. Choose & so small that the prob that a 1-0 intime 26 is < % 3736 (ie. 0
is so small that the prob an exponential r.v. with parameter 1 takes a value < 2§ is
1,-3
Next, choose A so big that the prob a point gives birth to both its neighbors in § units
of timeis > 1 - %3'36 (i.e. X is so large that if we take 2 independent exponential r.v.

with parameter A, then with Prob > 1 - % 3—36 each will take a value < §). We claim
that this A suffices for survival (having positive probability) of the contact process. The

next step is to relate OP (oriented percolation) with the contact process.
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i
\
—
>
e
=
o

N

m

" From our arrow realization we define an OP realization as follows.

[
[ ]
[ ]
[ J

(m,n) is on'iff f
certain "good things" occur in the graphical representation at site m between times
(n-1)6 and (n+1)8. Namely

1) no §&'s on this vertical segment (we have 2 {§'s so be careful one was chosen
small, the other is used to indicate deaths)

2) on the top half of the segment between né and (n+1)é there are arrows
from m to both m-1 and m+l (when n=0, the obvious slight
modification should be made).

We claim the following

1) This yields an OP realization with p > 1 - 3736,

2) If in this OP realization, the cluster containing the origin is infinite, then

nEO} #0 Vt.
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The theorem then immediately follows since by our OP theorem together with

-36

p>1-3"°"3 the cluster containing the origin is infinite with positive prob.

3 (by 2) néo} # 0 Vt with positive prob.

1) The fact that the (m,n)'s being on or off are independent follows from the fact
that they use different parts of the graphical representation. The fact that
p>1- 3-36 follows from the definition of A and é.

2)  follows from a picture and a little thought.

——

|
!

A —

>
<
QED
Self Duality
The main application of the self-duality equation is
Theorem: ’\{n{o} #0 Vt} >0 & 3 anontrivial startionary dist (i.e. # 60) for A.

Let n’:‘ be the process starting rom A occupied.
Duality Equation: ~ P{nf nB#0} =P{1y nA#0}.

The Duality Equation also has a picture proof. (Think about it.)
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Definition: If 7, is any process taking values in X, we say - b in distribution if

v xl,..., Xy €2 le,..., ji € {0,1},

t~00 :
; P(Ut(xi) = ji for i=1,..k} - u(n: n(xi) = ji for i=1,...,k}.

In words, the finite dimensional distributions converge.

NB: This does not imply P(r]t €A)-u(A) VA CX.

Theorem : f% 3 7 in distribution (+ ¥ is a stationary distribution).

Proof. YACZ, Wt
P(ry #0} =P({riZn A #0)
by setting B = Z in the duality equation. The LHS is clearly | in t and so
P{n%NA+#0} — some limit
t t=o0 )
Since every event of the form {n%(xl) =J; i=1,...;,k} can be expressed in terms of
{17% NA#0} for various A's, the theorem is proved. QED
Setting A = {0}, B = Z in the duality equation gives

P1%) 0} = Poe o).

Letting t- o gives
P{ri% 40 ¥t} = 5 {5 n(0) = 1).

If LHS > 0, then 7 is a nontrivial S.D. If 7 isa nontrivial S.D., then RHS > 0 =2
LHS > 0. .
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This shows the constant process survives & 7 is a nontrivial distribution.
To prove our main theorem, we need to show that if 7 is trivial, then all stationary
distributions are trivial; To do this, requires a detour into partial orders on measures.
Recall a partially ordered space is a set with a relation called < such that
1) a<b, b<aza=b

2) a<b, b<c 3afc

We need to generalize the usual notion of stochstic ordering of rv's.

Recall if X,Y are r.v, (not necessarily defined on the same space.),

*) X<Y if FX(t) > FY(t) vt
"X tends to be smaller than Y".

This is equivalent to the existence of 2rv. X, Y defined on the same space so that
g 9

1) X=X,Y=Y

o]

2) <Y

Note {O,I}S, S finite or countable, has a natural partial order defined by
n< 8 if n(x) <§x) VYxeS.

Definition: f: {0,1}° = R is increasing if
n< 8= 1(n) <1(6).

Definition: If v,u arein P({O,l}s), v<pif

[fdv < [ fdu V increasing f.

NB: This is in spirit the analogue of (*) and says "p concentrates its mass on larger

~ elements than »". It can be shown to be equivalent to
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Definition. v < g if 3 variables n and 6 (defined on the same prob space) taking

values in {0,1}S 3

1) The distribution of 7 is v
2) The distribution of 6 is u
3) n<é as.

In other words, 3 a measure m on {0,1}S x {0,1}S 3
i) the first marginal (projection) of m is v
2) the second marginal (projection) of m is u.
3) {(n,6): n < 6} has full m-measure. i.e. m{(#,6): n< §} = 1.

We say v can be coupled below .

Back to the contact process, it is believable that if A C B, then n’:‘ < 1;],63 as measures.

In fact the graph rep. proves this since if we use the same graphical representation for

the 2 initial configurations A, B then in fact
A
My €y

(The point is that the graph representation allows us to couple all contact processes

(with different initial distributions) on the same probability space.)

Finally, if 7 is trivial, then

72~ 6, and so VA

n‘? -+ 60 since 60 < n‘z‘ < 17%.
(i-e. n‘? is trapped below r]%).
Similarly if we start with an initial distribution g (rather than a fixed

«configuration), we also have n’t‘ - '60 3 no nontrivial S.D.

. QED
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Z

Exercise: Show 7 is decreasing (in t) as a sequence of measures and also that it

therefore converges reproving a previous theorem.

Voter Model

Finite voter model, X = {0,1}Z/ I Each i€ Z/n waits an exp (1) random time,
picks a neighbor at random and forces that person to conform to the value at i. (If they
are already the same value, nothing changes).

In terms of the Q-matrix,

q(n,6) = 0 if n,§ differ in more than 1 place,

q(n,6) = 1/2 if n,é agree except at x, and
n(x-1)  a(x)  n(x+1)

1 0 0
either 0 0 1
1 1 0
0 1 1
q(n,6) =1
if n,d disagree at x and
_ 1 0 1
either 01 0

NB: 1) all 0's 0 andall1's ] are absorbing.
2) every state except 1 can reach 0
3) every state except 0 can reach 1.

So the behavior is trivial, eventually the system will get stuck in either 0 or 1.
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Hence, the only stationary distributions are 6, 61 or convex combinations /\60 +

(1-A)8, 0€A<1.

Now, what happens if we do this on {O,I}Z? More generally what happens in

, zd
d-dimensions, X = {0,1}~ ?

0 and 1 are still absorbing and anything except 1 "can reach" 0.

But, the space is not countable and so one cannot conclude that the only SD are 60, 6

(and their convex combinations).

Theorem: 3 a nontrivial S.D. for the voter model in d-distribution iff d > 3.
- NB: Very nice - says that there is a lot of structure.

~ Proof. Introduce the graphical representation

'* ‘\ M"L

X-1
d d . _
VxeZ-, VyeZ" with |y-x| =1,let

T*Y be a Poisson process with rate EIH and such that the various Poisson

processes are independent.

“The points of the Poisson process T**¥ will be the "random times" and which x

forces y to conform".
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At the points of the T*Y Poisson process, we place arrows from x to y.

At each time point of T,

y will change its value to that of x.
A little thought (using basic properties of Poisson processes) shows that each lattice
point x ‘waits an exponential (1) random time and then chooses one of its 2d neighbors
at random to force to conform.

The above should convince us that we should define the process as follows. Let

. . 17 .
1 € X be arbitrary which will be our intitial state. Then let nto(x) be the value 7
obtained when sliding down the time axis, backwards along arrows until we get to time
0.

U depends only on the Poisson processes where all the randomness is coming in.
"o

NB: By using the same Poisson process realization, we get all the process {qt } n€X
0
defined on the same prob space (i.e. coupled).
EXTREMELY IMPORTANT OBSERVATION
Start at the point (x,t) in the space-time diagram. Let {Y’s"t} be the

0<s<t
location of where we are as we slide down the time line moving backwards on arrows.

Note

Y’O(’t = x and the process is only defined for t units of time.



27

NB: {Y)S(’t‘} 0<s<t 1S @ continuous time random walk which jumps at rate 1 and chooses
each of its 2d neighbors with equal probability. Moreover, if z # x, then {Y}S{’t} 0<s<t
and {Y>"}) .., areindependent random walks UNTIL they meet.

S
rate 2 (and moves to a randomly (uniform) chosen neighbor) UNTIL it hits 0.

Hence {Y)S(’t - Yz’t}0<s<t is a random walk starting at x-z which jumps at

Theorem: If d = 1,2, there are no nontrivial stationary distributions; i.e.

I= {)\69 + (1—/\)(5l } A€[0,1] where 1 is the set of stationary distributions.

Proof. The work is in showing the following lemma. After this, it is more abstract (soft)

arguing.
Lemma. Vpe X, Vx,y € Z(Zz)

Prob (n(x) # 7(y)) =2 o.
(Of course the superscript 7 is the initial configuration and so in

particular Ny = 1)
Proof. Fix t.

If Yg’x = Yg’y for any s € [0,t] then nY(x) = n{(y)
by definition of the process.
= P(77(x) # n(y)) <P(YoX - YSY 20 Vo <s<t)

= Prob(a rate 2 random walk starting at x-y does not hit 0 by time t).

Finally, the last expression — 0 as t -+ o by reccurence of 1 or 2 dimensional random
walk = lemma. QED
NB1: The lemma clearly holds uniformly in 7.
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NB2: Once Yo* = Y'Y, they stay =
This perhaps seems to imply that P(n?(x) = n?(y) Vt > T) T, .
This is wrong and you should think through why.

Proof of Theorem: Let g be a nontrivial S.D. Then 3x#y and p(n(x)# n(y)) > 0.
Consider the stationary process 17‘t‘
[For any measure Vv, q’t’ means the process where the initial distribution is chosen
according to v. Of course for any set A C X, P(n't/ €A) =[x P(ng € A)du(ng
dis

So r]‘t‘ = pu Yt andso

Prob(n’:(x) # n@‘(y)) = p(n(x) # n(y)) Vt. But LHS-0 as t- o by the lemma which
clearly holds for randomly chosen 7 as well. (Why?). : QED

Theorem: If d > 3, 3 nontrivial S.D.
Proof: Let g /2 be product measure with density 1/2 (i.e. each x € Zd independently

flips a fair coin to decide its initial state).

* (Of course the initial configuration chosen according to py /2 should be

independent of the graphical representation.)

/2 Lt by bt o Mgty
Now Vxy {Ut (x) # s ()} = Q{YS "‘Ys #0 V0<S<t} n {770 (Y/g ) # T (YX’ )}
S¥v0 0N 90y -~
Now by * (and some thoughts the Jast )fﬁb eventergredageg=o € t

Con i ’D‘N:_L_? o (" ]siévw‘} = \//’L L

1

U
P{Tlt%(x) # ﬂt%(y)} = P(random walk starting at x-y which jumps at rate 2 does not hit

0 by time t) - % The RHS decreases as t o t0

(random walk starting at x-y which jumps at rate 2 never hits 0)

B —

P
i
2

"

g(x-y) > 0 by transience of random walk for d > 3.

For arbitrary v, let T(t)v denote the distribution of 'n't/, that is, the distribution at
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time t if we start with distribution v.

So T(t)uy o {n(x) # n(y)} = P{nf%(X) # nf*(y)} > %g(x-Y) Vt. Let

1 T
mp = é T(t)pé dt.

Then mp{n(x) # n(y)} 2 % g(x-y). Let v, be any subsequential weak limit of
{mq}pyo- Then.(by our general theorem) v is a stationary distribution and

V%{W(X)—# 7(y)} 2 %g(x-y) > 0 since the same is true of mp VT and {n(x) # n(y)} is
both open and closed in the product topology. v% is then our nontrivial stationary

distribution since for any A
(’\50 + (1')‘)51){77()() #n(y)} = 0. QED

NB: v, {n(x) =1} = 1/2 by symmetry.

Exercise: Carry out a similar analysis starting with Lg product measure with density
Vo \0 T
m- U

6 'Actuall.y ”t% -itself converges (i.e. we do not need to take Cesaro averages).. The way |
to show this is via a (non-self) duality equation.

Let Xi‘ be the process obtained by intially putting down particles (1's) at points
of A and letting them do independent continuous time random walks (jumps at rate 1)
but such that if 2 particles land on the same spot, they coalesce (i.e. they become 1).
Duality Equation:

P} NB #0) = P(X> N A # 0). (Think how to prove this!)

- Nowlet A berandom chosen according to g ‘

Then
B
X1

F00B=0)=E[1-0 t]

P(n,

since given |X7| =K, PXBnA =0) = 1-9.
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1XB| | # RHS »3 LHS  to some limit.

this implies as we saw before

o .
n, - some limit.

The interesting facts about the voter model.
Based on what we have done, you should be able to do all of these

1. In 1-dim starting from g,
P(7,(x) # 7,(x+1)) ~ .
t t Jt

Does this imply P(nt(x) = qt(x+1) Vi2T)-1 as T~ |
1. Show S 5\‘0/‘»‘&»3 W{X/L 1/1,/ 1A~ ? JA anoo

€ nih '0'3\ C "%«v 7

2, In 2-dim starting from? g, P(n'-t(x) # nt(x+1)) ~ cflog t (This uses highly
non-trivial facts about random walks in 2-dimensions).

. In d > 3, what type of correlations does v have?

~

In other words,

does B )] - B o] B lns)] 2o

If so, at what rate? exponential? power law?

“Take 6= 1/2 for simplicity.
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Part IV Statistical Mechanics
(No Physics background needed)

From a physics point of view, the Ising Model is a sophisticated model of a magnet and
puts on a rigorous foundation the interesting physical phenomenon of "spontaneous
magnetization". |

From a probabilistic viewpoint, it illustrates the following. First, we saw that
uncountable state MP behave completely differently than countable state.

We now consider MP whose state space is {-1,1} but parameter set is Zd, SO
called "Markov random fields". These exhibit behavior completely different than
ordinary finite state Markov Chains, i.e. with d = 1.

In particular, irreducibility (properly defined) does not imply uniqueness of a S.D.
even though the state space is finite with only 2 states.

We move into the theory of Gibbs states in statistical mechanics.
Boltzmann Distribution

Definition: Let S be a finite set and g be a measure on S. The entropy of u, E(p), is
- I p(x) log p(x).
Xx€S

Exercise: Show E(p) is maximized uniquely at the uniform distribution where the
entropy is log|S|. (Hint: Jensen's <)

Exercise: Think about what entropy "means" /

Now let each x € S have a certain energy H(x) (If you want, you can think of energy
as an arbitrary function from S - R).

"Physics says", the world wants to minimize energy and maximize entropy.

" Definition: The energy of a measure p, H(y), is naturally enough ¥ gu(x) H(x), that
X€S

is the expected energy when x € S is chosen according to g We conclude that the
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world naturally chooses that measure which maximizes E(g) - H(g).
(Note E(u) does not depend on the energy function). We take this as an assumed

physical principle but there is the following theorem.

Theorem 1: Consider the mapping # - E(g) - H(g). This is uniquely maximized at the

so-called Boltzmann distribution,

-H()
) = S

where Z= X e'H(x) is the normalization constant, also called the partition function.
x€S

Note: The lower the energy, the higher the probability.
The proof of this is left as an exercise using Jensens <.
The Ising Model is the simplest example of a Gibb's state and the only such we
will study. | T
This model was introduced in the 30's as a model for the physical phenomenon of
"spontaneous magnization", an experimentally verified phenomenon.
We will now move into mathematics - the connection between what we will do

and magnets probably being completely unclear.

74 d
Let X = {-1,1}* . Each point of Z

will be an atom, and each atom will point
up (+1) or point down (-1).
Adjacent atoms will try to point in the same drection (this is called
ferromagnetism). There will be 2 parameters J and h, called respectively the "coupling
interaction" and the "external field". For each J,h, we will have the Ising Model with
parameters J and h. d = 2 will be assumed for simplicity. Almost all of the theory for
d = 2 extends to d >3 BUT not all. The important phenomenon of “translation

symmetry breaking" requires d > 3 for it to occur and does not occur in d = 2 (a

hig_iﬂy nontrivial theorem due to Michael Aizenman). d=1 is completely different.
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The theory of the Ising Model is an extremely rich theory. We will be going back
and forth between heuristic discussions and mathematics.

Fix J and h. We now define the Ising Model on a finite box with free boundary
conditions".
Let

2
A, = [-n,n] x [-n,n] C Z°.

We will define a probability measure on {-1,1} D Given ne {-1,1} D we will define

Jh
J,hulx;

the energy Hn (n) of =n and our probability measure will be the

corresponding Boltzmann distribution

Jh
-H " (n)

‘]"hyrfl(n) = e—ZJ_’ﬁ— defined in Theorem 1,
n

where

J,h
n : :

ne{-1,1}

o Jb

I
n

, 1 refers to the size of the system, that is An’ and f refers to the fact that
we will use free boundary conditions as described below.

We now define Hf}’h(n).

J,h
H'm)=-J ) a®)ny)-h T px).
! <X,y> XeA,

X ,yEAIl

The notation <x,y> means that we only sum over pairs {x,y} C A n Where x and y

are nearest neighbors. (This is usual physics notation).
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Exercise: Think about the intuitive meaning of Hﬂ’h( 7)-

Here are some comments about Hg’h(n). In the first summand, note

1 if n agrees at x and y

n(x)n(y) = {

-1 if n disagreesat x and y.

We assume J > 0. Since we have a-sign in front of J, each pair x,y which are nearest
neighbor (n.n.) contributes -J to the sum if -17 agrees at them and +J if 7 disagrees at
them. Since the Boltzmann distribution favors "lower energy" configurations, n.n. pairs
x and y will tend to agree rather than disagree.

If J <0, the same argument would imply that n.n. pairs tend to disagree.

J > 0 & ferromagnetism

J < 0 & antiferromagnetism

The second summand is simpler to understand. h canbe >0 or <0. If h >0, each
X € An tends to be bositive since this lowers the second summand in H.

We say there are free boundary conditions since there is no interaction with any
bounda.ry terms.
"The Ising Model on a finite box with boundary conditions".

Let A 1 be as before.

Let OA = {y€ 72 Ay is adjacent to some X € An}.

aAn An
Let 6 € {-1,1} be a "boundary condition". Given g€ {-1,1} , let

B Wiy =-3 ¥ @y -3 Y a)&y)-b T ).
y> <5, y> . xEAn
X ’yEAn XGAn

yEOA
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Exercise: Why do we not bother to mclude the term -h EaA 8(x) in the definition of
X€

J,h,é
H "7

We call the corresponding Boltzmann distribution

J.h,6
~Hp ()

Z?’
n

(the denominator is simply the normalization.)

the Ising Model on An with boundary condition 4. If é6=1, we write ‘]’hu; for

Jh

J’hpg and if 6=-1 we write . These 2 special cases are very important.

In d =2(rd?23), there is a very interesting phenomenon called "Phase

transition". There are 2 different ways to describe this. We can now state one way. The

other way to state it will require more development.

Let.J > 0 and h = 0. It should be obvious that

A
* J’Opfl is {-1,1} symmetric., i.e. if T: {-1,1} "« by

Tn(x) = -n(x) Vx €A,

J,0

(T just flips or reverses a configuration 7) then T takes the measure by to itself.

ie. Moukn) = ol ().

Exercise: Check or convince yourself of the above and show (or at least realize) that if

h# 0, then J’h,u.rfl isnot {-1,1} symmetric.

Exercise: Use the above to show that the expected value at the origin is 0,
ie. E[n(0)] =0

An An J,0 f
(Of course (UEP) = ({-1,1} , P({-1,1} 7), “""p ), E is expected value and 7 -

7(0) is a random variable on Q).
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Exercise: Is the mean still 0 if h # 0 or if we introduce boundary conditions.

It is believable (and provable) that

J’Oﬂ;
Theorem 2: Prob (n(0) =1) > 1/2.

The reason that this is believable is that we are placing 1's around the boundary which
should (since J > 0) tend to create more 1's.

One might think that this "effect coming in from the boundary" should be less
and less as n (or the size of the box An) -+ oo since the boundary gets further away '

from the origin; i.e. one might think

J,0 +
: Py
lim Prob (n(0) =1) =1/2.

N- o

Amazingly, this is not true. (It is true however if J is small.) But

Theorem 3: 3 Jca vl > Jc’

J,0 +

"
liminf Prob ~ Z[n(0) = 1] > 1/2.
-

We are also in a position to prove this. We mention (and prove later) that the above lim
is actually a limit. (This uses monotonicity and couplings as in the Voter Model).

Later on, Theorem 3 will also allow us to show that although a finite state
irreducible aperiodic M.C. has a unique stationary distribution, this is false when the
parameter set Z for the Markov chain is replaced by Zd d > 2 and everything is
appropriately defined. Such things are called Markov ra.n&om fields or pa. infinite

volume Gibbs states.
2 ea\f\am
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We remark that if Theorem 3 were not true, the theory of Gibbs states would
probably not exist.

Theorem 3 is false for d = 1 (as proven by Ising). Ising also proved Theorem 3
was false in d = 2 but fortunately, his proof was wrong.

The proof we give is the so-called Peierls argument which is another type of

contour argument.

Proof of Theorem 3: Consider edges in the dual graph. Fix g €{-1,1} ™ If a dual edge
lies between 2 points which have different values, we draw in this dual edge, otherwise

we don't. If we have

o——

10  we draw the contours LO
PR
01 like o' |

We then obtain a bunch of closed contours which schematically look like:

D O & \
)V \
: Remember:
Q this set of contours
\\ P, depends on 7.

Now the event

{n(0) = -1} € {3 contour of drawn dual edges surrounding 0}.
This is simply a graph theory fact which we won't prove.
Lemma: Let 7 be a contour of length ¢ in the dual graph of An surrounding 0.
Then |

J,0 +
) u _
Prob  "{all the edges of 7 are drawn }<e 2¢

Proof later.
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Since the number of contours around the origin of length ¢ is (see percolation

J,0 +
- © ® ] -
stuff) < ¢3t 1, Prob  “(5(0) = -1) ¢ [ZE e3t1e 2J¢ by the lemma.
=1

It is obvious that for large J, the sum converges, and therefore since the terms - 0 as
J + o, it is clear that this sum is for large J bounded away from 1/2. Since this upper

bound does not depend on n, Theorem 3 follows. QED

A |
Proof of Lemma: Recall 7 is fixed. Let T: {-1,1} " « be defined by flipping the

value at each x inside 7 and not flipping the value at each x outside 7.

i.e.

n(x) x not inside 7
Tn(x) = o
-n(x) x inside 1.

Note T is a bijection. Let E = {all edges of 7 are drawn}. Note T(E)NE = 0.
Let n€ E. We compare H(7) and H(T7). Since the "Hamiltonian" H gives value

-J for equal adjacent pairs and +J for unequal adjacent pairs, H(Tn) = H(n) - 2J[7]. ;

v 0 -H(n)
(]7] = length of 4v). We now write P for P . Therefore P(7) = =—5— =

~2J|4| .-H(T7) .-23¢-H(Tn)
e € e ¢ . It follows that

yAR = v/
i -H(Tn)
P(E)= £ P(g)=e 23 &
neE neE
2 BT oy
> An—'z—_"‘ )
UE{_LI}

the last = following from T being bijective. QED
We now take a quick excursion into Markov Random Fields and then return to
the Ising Model.
First, 1-dimension, which we all know. Let P = (Pij) be an nxn transition matrix

with all positive entries. (n < o).
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Definition: A Stochastic process {Xn} is called a Markov process relative to P if

nez

* P(X, =j| X _; =i, X

n-gr X

n-k) = Pij Vi,j, n,k.
Everyone knows that there is only one such process (i.e. all processes satisfying * have
‘the same finite dimensional distributions).

This is false for Markov Random fields (where Z is replaced by Zd) which we
now define. We take d = 2.
Let B = {(1,0), (-1,0), (0,1), (0,-1)}.
Let P: {-1,1}B - (0,1) be arbitrary. (We will call P a "specification").
(This will be the analogue of the transition matrix in higher dimensions.)
One should think of a specification as follows. It specifies what the co'nditional
distributionx(for some process (Xn)neZ2 taking values 1) of X, gven X +(1,0)’
Xn+(_1,0), Xn+(0’1), Xn+(0,—1) should be: namely:

Prob(X, =1] X X

0+(1,0 Xn+(-1,0) Xn+(0,1) *X0+(0,-1)

should be P(X_, (1 ) Xp4(-1,00 Xn+(0,1) Xn+(0,-1)

This is analogous to a transition matrix where the conditional distribution of

X given XIl is given by the transition matrix.

n+l
Definition: A Stochastic process taking on values -1 and 1 and indexed by 22,

{X,} o, is a Markov random field relative to P if ¥n € 22
nez

m # n}

Pr‘ob{X‘n =1 |Xm,

= P(Xm, m € B+n).
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The definition seems complicated but is quite simple. The idea is that if we condition on
all lattice points except n, the conditional distributions of the process at n only
depends on the 4 nearest neighbors of n and how this depends on these 4 points is given
by P‘, the analogue of the transition matrix. Note P mapping into (0,1) instead of
[0,1] is analogous to having a transition matrix with all positive entries. The point is
“that no matter what we see at points m # n, we always have positive probability of
seeing either a 1 or -1 at n.

We now show that there are specifications which have more than 1 Markov

Random Field associated to them.

NB: If you have not seen this before, you should find this surprising.

We now give a family of specifications indexed by J and h by returning to the Ising
‘Model. We will for each J and h, give a specification PJ’h.

Let d¢€ {—l,l}B. We need to define PJ’h(é). Consider the Ising Model on the box

consisting of only {0} with boundary condition é. This is a measure J’hpg on

Jh §
i
{-1,1}. Let PJ’h(é) =Prob 0 ({1}). This defines the specification

pob
Note: Unfortunately, the notation gets very rnesSy - this is difficult to avoid. Of course,
the best thing is to understand what all the definitions mean - the ideas are simpler than

the notation.

Definition: The Stochastic process (X ) 7o taking values # 1 is called an "infinite
volume Gibbs state with parameter J and h" if it is a Markov random field relative to
the specification PJ’h. |

Let G Ih denote this set of processes. Untangling definitions, {Xn}.e G ih if
the conditional distribution of XD given X ,n#n only depends on the 4 neaiest
neighbors and this conditional distribution of X, given {Xm, m € n+B} is simply the

Ising Model on the finite box {0} with boundary conditions {Xpme n+B},
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ie. Prob(X =1 | Xpm# n)
-JY -h
e here Y ¥ X
= w = .
e—JYn-h+ eJYn+h DT oesB M@

Exercise: Check the above.
We finally prove there can be more than 1 MRF for a specification by showing for some

J and b, |Gyyl>1.

Theorem 4:
a) VIVh#0, |Gyyl=1
b)  3Je(00)3VI<I,|Gygl=1  ¥YI>J [Gyol>1.

In d = 2 it is known that |G JC,OI = 1. It is believed but unproven for d 2 3.

The fact that for h =10, J large |G J,Ol > 1 follows (with some work) from
Theorem 3.

The fact that for h =0, J small |G J,OI = 1 requires the construction of a
certain operator which for small J is a contraction which will then have a unique
solution demonstrating |G J,O' = 1.

a) is the most difficult. It is due to David Ruelle and there are 2 approaches to its
proof, one using convex analysis, the other using normal families in complex analysis.

The rest of the time will be spent to prove Theorem 4. However, we first give
some more general facts. |

We identify processes {Xn}nEz2 taking values #1 with prob measures on
{—1,1}Z2 (by looking at the distribution of {X_}; i.e. by pushing the measure forward).

We can consider G Ih to be a set of measures. In the case |G J,H' > 1, itis
interesting to ask how big |G J,hi is. Since it can be shown G jp I8 @ convex set (in
the space of measures), |G J,h' will be «. Since GJ,h is convex, the right? to ask is

how many extreme points are therein G b
b
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Theorem 5: If d =2, if |G; pl >1 (in which case h =0 by Theorem 4), Gy, has
2 extreme points.

This very deep theorem (due to M. Aizerman) will not be proven.

Theorem 6: In d =3, 3 values of J for which GJ’0 has o many extreme points.
This is due to R. Dobrushin, one of the first developers of the mathematical theory of
Gibbs states.

One can ask if the elements of G Jp &€ translation invariant.

Theorem 5 and what we will do below gives
Theorem 7: In d =2, VJ Vh, all p€ Gy are translation invariant. The proof of
Theorem 6 shows
Theorem 8 In d =3for h=0 andlargeJ, 3p€G 3.0 which are not translation
invariant.

Theorem 7 and 8 allow us to say "one needs 3-dimensions for a translation symmetry
breaking".

In d =2, there are Gibb's states for h = 0 which have mostly 1's. Thisisa =1
symmetry breaking since the specification is -1,1 symmetric (as h = 0) but there are
associated Markov Random Fields (MRF) which are not, i.e. a symmetry of the
specification is broken.

- Symmetry Breaking is a general concept where a specification is invariant under a
certain group action but where there are associated MRF which are not invariant under
the induced group action. The above are 2 examples but Qe will not discuss symmetry
breaking further.

We now return to proving Therorem 4.
Recall J’hu;; is a measrue on {-1,1} B We modify this to be a measure on

2
{—1,1}Z by requiring that all x ¢ A~ are 1 with prob 1.



43

Lemma 1: {J’h 1 J’hp+.

J,h

+ .
7 n} p>] COnVErges as n- o to some measure which we cal
u is defined similarly.

The proof is fairly long: we only sketch it.

A .
Lemma 1: If n< 6 arein {-1,1} D then Vh,VJ

This lemma follows (with a little work) from Holleys < which says
Theorem (Holley <): Let X = {O,I}S, |S| < . Let Iy Ho be strictly positive prob

measures on X. If

py(n A O)ug(nV 8) 2 py (n)ug(d)
V7,6, then 1 £ o

(7 A 6(x) = min{n(x), &x)}, 7V &(x) = max{n(x), 6x)}).

One proves this by intelligently coupling 2 continuous time Markov chains, one with

stationary distribution Iy the other with loy-

Lemma 2: Let n > m. Let §¢€ 6An, neE An - Am and 7 the restriction of 7 to
(')Am.‘Then
Jh 6 ,h 7
py (i) - ="l
A
m

Proof. Computation.
Exercise: Think about what this means. (It is important.)

J,h

Theorem: Let p; be considered to be a p.m on {-1,1}Z by letting the random

- configuration be =1 outside An'
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Then {‘]’h u;} g>] 1S @ decreasing sequence of measures (and hence converges to
some V' ).
Proof: This follows (with some work) from Lemmas 1 and 2. QED
Exercise: Why does the fact that it decreases imply that it converges?
At this point, we need on equivalent formulation of an infinite volume Gibbs state.

J.h
Ihyy ={" 6.

Let M by 6€v6An}.

Let ‘]’th = closed convex hull of J’th .

EQUIVALENCE THEOREM:

[+ ]

Jh — Jh
C™'M, and GJ,h" nn M.

J,h
Mn+ =1 n

1
(We do not prove this - see Liggett.)

In view of the equivalence theorem together with Lemma 1 and 2 it follows:

Theorem 2: J’hu- and J’hu+ arein Gj, and moreover

h -~ Jh +
L.

Y ve GJ,h’ 3 p Svg

J,h

Exercise: Show *'p" is Z?—inva:iaht (i.e. stationary)

Corollary: In view of Lemma 2, we have that for any h and J,
|Gyl =1 if Ihy = TRyt
We can now prove a part of Theorem 4.

Lemma 3: 3J,3VJ >J, |GJ’0| > 1.

“Proof. It suffices to show

J,0 +
U
* Prob (n(0) = 1) > 1/2
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since by symmetry,

J,Op— | J,Oﬂ+
Prob (n(0) = -1) = Prob (n(0)=1)>1/2

J.0 +
while Prob  "(5(0) = -1) would be < 1 /2 3 J’O;f' and J’O;[ give different prob to

the event {n(0) = -1) % by the corollary that |G jol > 1. * follows from Theorem 3

as follows.
30u* 39" by Lemma 1 which implies (why ?)
J,0 + J,0 +
~ Prob %(7(0) = 1) - Prob # (n(0) =1).
Theorem 3 now immediately implies . QED

We have now shown that for h =0 andlargeJ, |Gj,| > 1. We now show that for J

small and h = 0.
'GJ,Ol = 1.

Kirkwood Salzburg Equation approach:
Let pe }GJ,O‘ Let p(A)=pm(w=1lon A) for AC 72 with |A] <, called the
correlation function for p. (Inclusion - Exclusion = x is determined by p).

The KS-Equation tells us that there is some "finite integral operator" 3 the
correlation function for any Gibbs state is fixed by this operator. If this operator is a

contraction, we get uniqueness.
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Theorem. V A finite and x € A,

pA)= 5 K (ADWD)
D
|D|<w

where

(IG5 B
D e N ) = e

D = (A\x)UC with CCN(x,A) = {yfA,y~x}

K_(AD) =

0 0.WwW.

(A\x)UB is the Gibbs measure on the 1 point set {x} with boundary condition given as

"{x}

follows:

If z~x, putal atzif z€e (A\x)UB and a -1 otherwise.

‘Theorem: Assume 3 A <13 VA finite 3x €A 3

X IKX(A,D)I < A. Then the Gibbs measure is unique.
D .

NOTE: The kernels KX(A,D) only depend on the specification.

Proof. Let p, 1€ G J"O’ and p, p be the corresponding correllation functions. Let A be

arbitrary and x € A as above. Then

[p(A) - p(A) = IB K, (A,D)[p(D) - (D)]|

<sup |p(D) - p(D)[A.
D .

Now taking sup over A2 (as A < 1)
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p(A) =p(A) VAz p=p QED

Theorem: If J is sufficiently small, |Gj,|=1.
Proof: Choose J so that —J Kk

-J¢
=Jk e 1
sup - - —7 <
k,? e+ e e A ejzl 949t
k,¢=0,1,2,3,4

We now apply the previous theorem.

(A\x)UB
sk AD) =Y  1nlel Y BT T (g = 1)
D CCN(x,A) BCC
(A\x)uB
=Y |2 nBlE T e =)
CCN(x,A) BEC
(A\x)uB 1
By the way we chose J, all the terms T, (n(x) = 1) are within ——7 of each
272
other. Hence (think combinatorially)
A\x)uB |C|
B| ( 2lCl 4
g (BT ) = 1)] « B
BCC ) o 2*2
4
27 1 1
$HF 4= as |[C| <4
72424 25
Since |N(x,A)| <4 = all of the above is$2415-'=%. QED
2 )

Derivation of K-S Equation
Lemma: Let P be an arbitrary p.m. on {-1,1}A. Let R, TCA, RnT=¢, SCT.
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Then
P(n=1 on RUS, n=-1 on T\S)

= 2 P(n=1 on RUQ)(~1)|S“1’QI
ScQCT

Proof. Left the reader BUT it is easy - it is simply basi¢ inclusion - exclusion.

QED
Proof of K-S Equation
p(A) = pglw=1 on A]
= ¥ plw=1 on AUB, w=-1on N\B]
BCN

= ¥ =1 A B 1on N\B (A\)U(B) =1
= Ben plo=1 on (A\{x})JUB, w=-10on N\B] 7., (n(x)=1)
Lemma (A\x)uB
- Ty 09=D ] ela\xhuo)-n!Plenl®

e
_ o)) €! % 0 = 1)) B
= CEN p(A\X)UC)(-1) BEC Mgy (o) =1)( }) |
= g p(D) K_(A.D). QED

Exercise: There is nothing special about h =0 here. Show that Vh, for small J, there
is a unique Gibbs state.

" To finish b) and prove the existence of such a J ,, it suffices to show

J; <Jqy and |GJ1,0| >12 IGJ2’0| > 1.

This will follow from one of the "Griffith inequalities" which we state but do not prove.
(It is not easy, not real hard and in [Liggett)).
Consider {—1,1}8,‘ |S| < . We now et the coupling constant J depend on the

edge and the external field depend on the edge.
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Theorem: If all couplings and external fields are positive, then if J B s the coupling at

some edge B, -
9_P(n0)=1)20
g P 20.

Some comments:

1) The Ising model on {-1,1}S with + boundary conditions is the same as the Ising
Model with free boundary conditions if we increase the external field by 1 unit for

points in S adjacent to 4S.

i.e. If we consider Ising Models with varying external field, we can always take

free boundary conditions.

2) Why does Griffith's <2 J; < J,, IGJ Ol >13 IGJ O| > 1.
I 2

As above, by thinking of + boundaries as incréasing.the external field at the

boundary points of S, Griffith 2

Py 0 4+ (M0)=1) <Py o (n(0) =1).
‘un ”n

By assumption the LHS -+ C > 1/2 % same for RHS 2 IGJ O' >1. QED
2’

Exercise: Using Griffith's <, show that if |G J 0[ > 1,  then the same is true in
k]
3-dimensions. (i.e. if there is phase transition at J in d-dimensions, then there is also -

phase transition at J in d+1-dimensions.)
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Finally Proof of Theorem 4(a). This is the most difficult part of Theorem 4,
proven by Ruelle. This is very long but introduces a number of important concepts. The

first is the so-called partition function

J X gx)n(y)+h T nx)
<X,y> xeAn

J,h _ X,yEA
Zn - 2 Ane !
ne{-1,1}

We want to look at Zg’h for large n. This will - w. To figure out the correct

normalization, note that if J =0 = h, then

t

. i )
Wal s
ngh —_ ﬁ‘ ’)_ -~ 2

J,h
log Z:°
n =PJ’h.

| We therefore look at T Et o Tn

hy;6
g -
More generally, recall “>"'Z_ = ¥ A€ .
n n
UE{—I’l}
J,h, 6

Ler PYBEZ® Pn e g
et PO —W,c ed the pressure.
Theorem A: 1im Pg’h"s exists and is independent of §(é can be free here).

N-o0

Let P(J,h) be this limit.

Theorem B: VJ P(J,h) is convex (and hence continuous) in h.

Theorem C:- ¥J,h,

1G; | =1 & P(J;h) is differentiablein h at h = h,
0



o1

. pd.h,é
[NB: P

is analyticin h for all n but the limit need not be].

Corollary: VJ, |G J,h' =1 V but at most countably many values of h.

Proof. A convex function on R -is differentiable at all but at most countably many
_points. , - QED
Theorem D: VJ, P(J,h) is differentiable at all h # 0.

As far as difficulty, we give them respectively 5, 3, 7 and 10 points, that is, showing
P(J,h) is differentiable in h Yh # 0 is the most difficult part.

Time constraints (on perhaps laziness) will make this very sketchy.

The Proof of Theorem A we skip -- a good proof is in "Entropy, Large Deviations, and

Statistical Mechanics" by Ellis.

Proof of Theorem B: Since a limit of convex functions is convex, it suffices to show that

Pl is convex in b for each n. This is algebraic manipulation plus Holder's <. We

need to show (we suppress f for free now)

log Zn(J,/\hl+(1—/\)h2) <A1 log Zn(J,hl) (1-2) log Z (J;h,)
n = n n

or equivalently.
Z_ (3, Ah+ (1-M)h,) € Z(3,0,)*Z. (3,h) 12
n‘"* 1 2/ = n\""1 Tn\vm2 :

Z_(3,Ah +(1-A)by) =

IS ax)ny) + (Aby+(1-)hy) T n(x)
2 e <X,y> X€EAL
An X,YEAp
ne{-1,1}
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I T gx)ny) Ay I on(x) (1-Aby T n(x)
_ 2 e SX,¥> e  XEAn e x€A,
- An X,yEAn
UE{_LI}

Now apply Holder's < to the measure space {-1,1} D with 7 being given measure

3 ax)ny)

m
e SX:¥=2 . Calling this measure &, the above is then
X,y€Ap

A, T og(x) (1-A\h, T g(x)
j \ o 1xEAn e 2xeAn dm(n)
{’1’1} .

h; ¥ nx)

) [[ . Ixehy dm] ,\[I ehz xg A ﬂ(X)] 1-A

Xy
hy T a()J3 T ax)n) , by T () J 2@

_ X€EA <x,y> xeA <X,y>
_[;\'*;e ’ € X,y€A, [i:]e ’ € X,Y€An ]

=7 (3 2 (3, ). QED
Proof of Theorem C
Lemma 1. Vn, V boundary conditions 4,

L n(x)
8 plhb_ g xeh,
dh'n J,hﬂ& | Knl .

n

 (called the expected value of the magnetism).
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_ 0
Proof. BH n —-aH-—TK-;[———

[z nx)n(y) +J X +h I gx)]

<x,y> <xX,y> x€A,
X,y€EA, X€EAq
(i TIS o) yeoks
= n(x)]e
n' 7 xeA
n
J,h,0
Zy
T g(x)
=E;, [XAn___ QED
= J,hﬂ& |Kn|
n

Lemma2 lim 7% P*(n,Jd,h) = ”j,h (n(0) = 1).

1=
Proof. By lemma 1, we need to show

L k)

€A
E;f [—x—-n“;;r—] - ﬂ},h [n(0) = 1].
J,h,n

One has to be a little careful here - I will leave it as an exercise. The main idea is that
using monotonicity (the corollary of Holley's theorem), one shows that when n is large,

most (NOT ALL!) x € A satisfy

E J’hu+ [1(x)] € [y [(0) = 1), 3 [0(0) = 1] + €].
n
QED (sort of)
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We now prove theorem (C) but only one direction, which is the direction we need to
J,h

complete Theorem 4(c). Namely 'BH P(J,h) Ih exists 3 |G 0] = 1.

7=hy

We need a lemma from elementary real analysis.

Lemma. Let { (/\) be a sequence of differentiable convex functions on an interval

I>{0}. Assume { (A)- f(A) VA and f'(0) exists. Then lim f (0) = 1'(0).

nN- o0

Proof. Left as an exercsie.

Proof. P*(n,J;h) 222 P(J h). If —%IMI h exists, the above lemma =

QED

Exercise: In the last line of this proof, we assumed

i3 pln(0) = 1) = 4 y[n(0)=1] 2 gy = b7 .

Why is this true?

There are 2 approaches to the proof of Theorem D. The first approach will be
discussed verv roughly. The first step is to allow the external field to be complex. Then
J hPéS is a complex analytic function of h ¥n. Fix hy > 0.

* One then shows that 3 some neighborhood of h0 in (.

£ where the functions
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{ J’hPrI:} _a%e ‘a normal family. Before telling you what normal family is, ope
should be aware that fact * takes some work to show but once one has that the proof is
easy. “Norm_al family" is a compactness criterion in g certain function Space. We all
know that in R® being closed and bounded is the compactness criterion.

Ascoli's theorem gives a compactness criterion for C[0,1], the space of continuous
functions on [0,1], namely, closed, bounded, and equicontinuity.

For analytic functions, the correct convergence is uniform convergence on
compact sets. "Normality" then just means compactness (or actually bre-compactness) -
in the space of analytic functions on 5 domain with the above convergence. One actually

allows the limit to be o, One shows that 3 ap open neighborhood ¢ of h0 and a

constant C 3
ReJ’hPé(z) <C ¥YnVYze g

This is known to imply that { J;hp ;: (z)} is a normal family and hence hag g convergence
Séquence. Since on. ¢n {Real line}, the Séquence converges to a finite #, the limit
cannot be = , ’

Hence some subsequence of J’hPIf (z) converges uniformly on compact sets in o
to some h(z). h(z) must therefore be analytic but on the other hand must agree with

P(J,h) on ¢n {Real'line}. Hence P(J,h) has an analytic extension to some complex

the Lee-Yang Circle Theorem.

The second approach is as follows.

o e . :
Lemma 1.3 ah- Pf(n,.],h) = EJ,h ( [LEI!\TH;I—]

which we write ag M(n,h). Hence

=



5 . h
« Pl - Plm,,0) = [ M(n,s)ds.
0 =

We will skip the following lemma which is proven from the so-called GHS < which is
definitely non-trivial.
g
Lemrna. M(n,s) is for fixed n concavein s.
Since -1 < M(n,s) < 1, using a standard diagnalization argument, 3n; - w3V rational

s €[0,h],

M(ny, 5) ¥ some limit which we call M(s).
e
Since each M(n,s) is conyex in s, a geometrical argument implies that we have that
M(ny.s) converges Vs. Hence M(ny.s) ko, (s) Vs.
We let n -« along the sequence ny in * using bounded convergence on the

RHS to conclude
h
P(J,h) - P(J,0) = [ M(s)ds.
0

Since M(ny.s) is concave VK, M(s) is concave on [0,h] and hence continuous in (0,h).
Since P(J,h) can be represented by an integral of a continuous function on (0,h), and
h is arbitrary, we conclude that P(J,s) is differentiablein s Vs> 0, as we wanted to

show. - “ ) QED

Note: M(s) need not be continuous at 02 P(J,s) need not be differentiable at 0.

“In fact if J is large, we know P(J,s) is not differentiable at 0 and so M(s) is not

continuous at 0.

[



