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Part I

1 Background

While of course one needs to have various prerequisites for this course, I only
mention here one thing which you might not have seen. That is the notion
of a lim sup and lim inf of a sequence which does not necessarily converge.
This is described in Chapter 0 of Folland, which one should look through.

2 Motivation

It turns out that Riemann integration is insufficient for many purposes; it
does not behave well with respect to limiting operations. Lebesgue invented
in 1902 what would be called Lebesgue measure which will play a central role
here.
Goal: We want to assign a “length” or a “size” ` to all subsets of R satisfying
the following three reasonable properties.
1. If A = [a, b], then `(A) = b − a. (` should correspond to length for
intervals.)
2. If A1, A2, . . . are disjoint sets, then

`(
⋃
i

Ai) =
∑
i

`(Ai).

(The size of a disjoint union of sets is the sum of the sizes of the pieces.)
3. For all sets A ⊆ R and x ∈ R,

`(A+ x) = `(A).

This is called translation invariance and just means if you shift a set to the
right or left, its size should not change. A+x is “A translated by x”; formally
A+ x = {a+ x : a ∈ A}.
This is a natural thing to try and hope for. Unfortunately, we will see
that such a length notion does not exist, assuming the axiom of choice.
We will need to drop some assumption. What we will do is to drop the
assumption that ` is defined for ALL subsets. However, it will be defined for
all subsets you could ever imagine and it will satisfy 1-3 for them. This will
then be called Lebesgue measure.

The following question is some motivation for the theory of Lebesgue inte-
gration and demonstrates the subtleties that arise with elementary limiting
operations.
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Question: If fn is a nonnegative continuous function on [0, 1] for each n and
if

lim
n→∞

fn(x) = 0

for all x ∈ [0, 1] (we say fn goes to 0 pointwise in this case), does it follow
that

lim
n→∞

∫ 1

0

fn(x)dx = 0?

It seems natural that the answer is yes, but in fact it is false. Let fn be a
“sharply pointed tent” function which starts at 0 at 0, increases linearly at
rate 4n2 until 1/(2n) (at which point the function has value 2n) and then
decreases linearly at rate 4n2 until 1/n where it hits 0 and then stays at 0
on [1/n, 1]. (See picture.)

Exercise: Verify that this sequence works; i.e., fn goes to 0 pointwise but
each of the integrals is 1.
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Question: When will we be able to conclude from the fact that fn goes to
0 pointwise that the integrals converge to 0?

We will see an answer to this question later on.

Another motivation for Lebesgue integration, which we will not go into detail
in these notes, but will just mention here is the following.

First, let us recall how the real numbers arise. The integers are a natural
construction and from these it is natural that the rationals arise simply be-
cause of division. Now it is difficult to do ”analysis” with the rationals since
it has ”lots of holes”. More rigorously, it is not a complete metric space and
we obtain the real numbers by ”filling in these holes” or more rigorously, by
taking the completion of the metric space of rationals. The completeness of
the real numbers is a crucial property which allows us to do ”analysis”. For
example, we would often not have solutions to x2 = a for a > 0 if we did not
do this completion.

Now consider the space of continuous functions on [0, 1] together with the
metric

d(f, g) :=

∫ 1

0

|f(x)− g(x)| dx.

It it easy to find Cauchy sequences in this metric space which don’t converge.
Therefore, just as we completed the rationals to obtain the real numbers, it
is natural to take this metric space and complete it (as a metric space).
When one does this, one obtains essentially what will be called the space of
”measurable functions” and the Lebesgue integral which we will get to later
on.
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3 Measure Theory

3.1 Algebras and σ-algebras

Question: What properties should we expect for the collection of subsets
of R or of [0, 1] to which we will assign a “length”?

Definition 3.1. Let X be a nonempty set. An algebra or field of subsets of
X is a collection A of subsets of X which is “closed under finite set theoretic
operations”; i.e.
(1). X ∈ A, ∅ ∈ A
(2). A1, A2, . . . , An each in A implies that

⋃n
i=1Ai ∈ A (A is closed under

finite unions)
(3). A ∈ A implies that Ac ∈ A (A is closed under complementation)

Exercise: Show (a) that it is enough to assume that the property in (2) holds
for n = 2 to conclude it for all n and (b) that (2) and (3) imply that A is
closed under finite intersections.

Definition 3.2. Let X be a nonempty set. A σ-algebra or σ-field of subsets
of X is a collection M of subsets of X which is an algebra and in addition,
(2) above is replaced by the stronger
(2’). A1, A2, . . . each in M implies that

⋃∞
i=1Ai ∈ M (M is closed under

countable unions)

So, in words, a σ-algebra is closed under countable set theoretic operations.

Exercise: Show that a σ-algebra is also closed under finite unions.
Exercise: Show that a σ-algebra is also closed under countable intersections.
Exercise: Find an algebra which is not a σ-algebra.
Exercise: Find all algebras on X where X = {1, 2, 3}.

Remark: The number of σ-algebras on a set of size n are called the Bell
numbers and are much studied in combinatorics (motivated by other things
than σ-algebras). These numbers are known to grow very rapidly in n, faster
than any exponential function.

Here are three examples of σ-algebras on an arbitrary set X.

Example 3.3.
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1. F1 = {X, ∅}
2. F2 = {A : A is countable or Ac is countable} (finite sets are considered
countable)
3. F3 consists of all subsets of X (called the powerset of X, denoted P(X)).

Remark: If Ac is countable, we say that A is cocountable.

Exercises.
1. Verify that each of these examples are a σ-algebra.
2. For which X does one have F1 = F2?
3. For which X does one have F2 = F3? (This might be harder than it
sounds. Think about it at your own risk.)

Proposition 3.4. Given a collection E of subsets of X (i.e., a subset of
P(X)), there is a smallest σ-algebra containing E, denoted by σ(E), called
the σ-algebra generated by E.

Proof:
Consider

σ(E) :=
⋂

F⊇E:F is a σ-algebra

F .

This is the same as

{A : A is an element of every σ-algebra which contains E}.

1. This is a nonempty intersection since P(X) ⊇ E
2. σ(E) contains E by construction.
3. σ(E) is a σ-algebra (Check this. It is easier than it might look; it is just
very elementary set theory).

This is clearly the smallest σ-algebra containing E since it is, by construction,
contained inside of every σ-algebra which contains E .
QED

Remarks: The construction above is identical to similar constructions one
makes in linear algebra or group theory. Eg., the subgroup generated by a
bunch of elements in a group is the intersection of all subgroups containing
those elements. Similar for vector spaces.

(THIS IS A LONG OPTIONAL ASIDE.)
Remark: We have built the σ-algebra σ(E) “from the outside”. One may
hope that you can build σ(E) “from the inside”. This is possible but much
harder.
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You might try to do this as follows. You start with E and first add all
complements of the sets in E since they would have to be in σ(E). (One
says “we close under complementation”.) Then, starting from there, you
take all possible countable unions since they must belong to σ(E). (One
says “we close under countable unions”.) But now you are not closed under
complementation and so you have to close again under complements. Now
you are not closed under countable unions and so you have to close again
under countable unions, etc., etc and you have to “keep going”....forever.
And then start again! And it is technical. But it can be done. But we don’t
here.

It is interesting to compare this with building a topology from a collection
of sets which is surprisingly much easier. If I am given a collection E of subsets
of a set X, the topology generated by E is the collection of all arbitrary unions
of finite intersections of sets in E . I.e., you first take all finite intersections of
sets in E since these must be there and then you take arbitrary unions of this
latter collection since all these must also be in the generated topology. But
now you verify that what you now have is a topology and so you are done.
(END OF LONG ASIDE.)

Recall the definition of an open set in R: O is open if for all x ∈ O, there
exists ε > 0 so that (x− ε, x+ ε) ⊆ O.

Definition 3.5. The σ-algebra generated by the open subsets of R is called
the Borel σ-algebra of R and is denoted by B. The sets in B are called Borel
sets.

Exercise: Show that B is also (1) the σ-algebra generated by the open inter-
vals and (2) the σ-algebra generated by the closed intervals.

Most sets (and very likely all sets) that you have seen are Borel sets.

There are other notions of sets “being closed under certain operations” which
turn out to be useful. Here are two such.

Definition 3.6. Let X be a nonempty set.
A nonempty collection I of subsets of X is called a π-system if it is closed
under finite intersections; i.e., A,B ∈ I implies A ∩B ∈ I.

Definition 3.7. Let X be a nonempty set.
A nonempty collection D of subsets of X is called a D-system if
a. X ∈ D
b. E,F ∈ D and E ⊆ F imply F\E(= F ∩ Ec) ∈ D
and
c. E1 ⊆ E2 ⊆ E3, . . . and Ei ∈ D for all i imply

⋃
iEi ∈ D.
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(Note that a D-system is closed under complementation. Why?)

It is natural to ask why in the world we would introduce such crazy classes
of sets. We will see later that they will be very useful.

Theorem 3.8. (Theorem 3.8 in JJ). If M is a collection of subsets of a set
X, then M is a σ-algebra if and only if M is a π-system and a D-system.

Proof:
The right (only if) implication is immediate which you should check and the
left (if) implication is left as a good exercise. (The proof is in JJ).
QED

Given a collection of E of subsets of X, we have previous defined σ(E) as the
smallest σ-algebra containing. We do something similar here.

Definition 3.9. We let π(E) (D(E) ) be the smallest π-system (D-system)
containing E.

Exercise: Show that these exist and how to construct them. (Hint: The
proof is exactly the same as is done for σ(E) .)

The next theorem is a very important tool. It is called Dynkin’s π − λ
Theorem (A D-system is sometimes called a λ-system.) The proof is sort of
messy set theory and is not so intuitive. We probably will not do the proof
but we certainly will apply it on two occasions. We will see later on why it
is useful.

Theorem 3.10. (Theorem 3.9 in JJ). If I is a π-system, then

D(I) = σ(I) .

Note that ⊆ is trivial.

3.2 Some General Measure Theory

Definition 3.11. If M is a σ-algebra of subsets of X, then (X,M) is called
a measurable space. (Not a measure space since there is no measure yet!)

We will want to define a “size” to each subset which belongs to M but
not to all subsets of X. The following is the crucial definition.

Definition 3.12. If (X,M) is a measurable space, a measure m on (X,M)
is a mapping from M to [0,∞] satisfying the following.
1. m(∅) = 0
2. If A1, A2, . . . , are (pairwise) disjoint elements of M, then

m(
⋃
i

Ai) =
∑
i

m(Ai).
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Remarks: 1. The crucial second property is called countable additivity
and implies finite additivity using 1. (Check this.)
2. For A ∈ M, m(A) is thought of as either the (a) measure, (b) size, (c)
length or (d) probability of A.

Definition 3.13. A measure space (X,M,m) is a measurable space (X,M)
together with a measure m on it.

Example. Let X = {1, 2, 3, . . . } and consider a vector p1, p2, . . . of nonneg-
ative numbers with

∑∞
i=1 pi = 1. Then let M be all subsets of X and for

S ⊆ X, let

m(S) :=
∑
i∈S

pi.

Exercise. Verify that (X,M,m) is a measure space. Does it have any prob-
abilistic interpretation?

Theorem 1.8 in Folland gives a number of relatively easy properties of mea-
sures.

Theorem 3.14. Let (X,M,m) be a measure space.
a. (Monotonicity) E,F ∈M, E ⊆ F implies m(E) ≤ m(F ).
b. (Continuity from below) E1 ⊆ E2 ⊆ E3, . . . with each Ei ∈M implies that

m(
∞⋃
i

Ei) = lim
n→∞

m(En).

c. (Subadditivity) E1, E2, . . . ∈M, then

m(
∞⋃
i

Ei) ≤
∞∑
i

m(Ei).

d. (Continuity from above) E1 ⊇ E2 ⊇ E3, . . . with each Ei ∈ M implies
that

m(
∞⋂
i

Ei) = lim
n→∞

m(En)

provided m(E1) <∞.

Proof:
a. Using finite additivity in the first step and m ≥ 0 in second step gives

m(F ) = m(E) +m(F\E) ≥ m(E).
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b. By (a), m(Ei) is a (weakly) increasing sequence and hence the limit exists
(possibly ∞ which is fine). Let (see picture)

F1 := E1, F2 := E2\E1, Fn := En\En−1, . . .

and observe that (1) the Fi’s are disjoint, (2) En =
⋃n
i=1 Fi and (3)

⋃∞
i=1Ei =⋃∞

i=1 Fi.
We then have, using countable and finite additivity

m(
∞⋃
i

Ei) = m(
∞⋃
i

Fi) =
∞∑
i

m(Fi) = lim
n→∞

n∑
i

m(Fi) = lim
n→∞

m(En).

c. Let

F1 := E1, F2 := E2\E1, F3 := E3\(E1∪E2), . . . Fn := En\(E1∪. . .∪En−1), . . .

and observe that (1) the Fi’s are disjoint, (2)
⋃n
i=1Ei =

⋃n
i=1 Fi and (3)⋃∞

i=1Ei =
⋃∞
i=1 Fi.
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We then have

m(
∞⋃
i=1

Ei) = m(
∞⋃
i=1

Fi) =
∞∑
i=1

m(Fi) ≤
∞∑
i=1

m(Ei).

d. Exercise.
QED

Exercise: (a). Prove part (d) above. (Hint: Apply the increasing sequence
result to the complements and subtract. How are you using the assumption
that m(E1) <∞?)
b. Check (d) is false without the extra assumption. (Hint: Consider Lebesgue
measure (length) on R (which we have NOT proved exists yet) and take
En = [n,∞).)

Remark: If you are doing probability theory, then this extra assumption will
always hold.

Where are we now? We have defined a measure space, proved one theorem
about them and constructed one where X is countable. But, we haven’t
yet given a single example of an interesting measure space. Before
remedying this situation, we need to give some more definitions.

Definition 3.15. A measure space (X,M,m) is complete if (i) B ∈ M,
(ii) m(B) = 0 and (iii) A ⊆ B imply that A ∈ M (which then of course
implies that m(A) = 0).

Definition 3.16. Given a measure space (X,M,m), a property (formally a
subset of X) is said to occur almost everywhere abbreviated a.e. (almost
surely abbreviated a.s. if one is doing probability theory) if the set of x’s
where the property fails is contained inside of a set of measure 0.

Remark: If (X,M,m) were complete, we could have just written that “the
set of x’s where the property fails has measure 0” but if the space is not
complete, “the set of x’s where the property fails” might not belong to M
and that is why we needed the definition above.

This issue that a measure space might not be complete will not arise many
times at all. It also turns out that you can always “complete a measure
space”, “adding some sets and extending the measure” and making it com-
plete. We will not discuss this but mention that (R,B,m), where m is
Lebesgue measure, is not complete and when you complete it, you get (R,M,m)
whereM is the collection of ”Lebesgue measurable sets” which we have not
yet defined.

We end with a few more standard definitions associated to measures.
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Definition 3.17. A measure space (X,M, µ) is called finite if µ(X) <∞.
(If µ(X) = 1, it is called a probability space.)

Definition 3.18. A measure space (X,M, µ) is called σ-finite if there exist
subsets A1, A2, . . . so that X =

⋃
iAi and µ(Ai) <∞ for all i.

Exercises:
1. Show Lebesgue measure on R is σ-finite.
2. Can one take the Ai’s in the definition of σ-finiteness to be disjoint?
3. Construct an example of a measure space which is not σ-finite.

Remark: We will see that a number of theorems in this course require the
measure space to be σ-finite (which of course includes the finite case).

Definition 3.19. Assume (X,M, µ) is a measure space with all single points
being measurable. An atom is a point x with µ({x}) > 0. Letting A be the set
of atoms, (X,M, µ) is called atomic if A ∈ M and µ(Ac) = 0. (X,M, µ)
is called continuous if there is no atom.

Remarks: The definition of an atomic space is sometimes more general than
given here but that won’t concern us.

Exercise:
If an atomic measure space is σ-finite, then A must be countable and hence
automatically measurable.

3.3 The construction of Lebesgue Measure

We now begin the journey to prove the existence of so-called Lebesgue mea-
sure.

Theorem 3.20. There exists a translation invariant measure m on (R,B)
such that m([a, b]) = b − a for all a < b. (m will then be Lebesgue measure
restricted to B.)

This says we can almost do what we originally asked; the difference is that
our “length” is not defined for all subsets but all reasonable ones.

People have different approaches to measure theory; does one develop things
explictly for Lebesgue measure or more generally? Here we will follow a
hybrid which I think works well.
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It is important to have the general plan or big picture on how we construct
Lebesgue measure before diving into the details. There will be 5 steps.

STEP 1: Define the general concept of outer measure.

STEP 2: Using the notion of length for intervals in R, we construct Lebesgue
outer measure which will be an outer measure (as will be defined in STEP
1). This will be defined for ALL subsets and should be viewed as the first
attempt to construct Lebesgue measure. It will not be countably additive.

STEP 3: Show that the Lebesgue outer measure of an interval is its length.

STEP 4: (Caratheodory’s Extension theorem). Given an outer measure m?

on an arbitrary set X, there is a σ-algebra M so that m? restricted to M
is a complete measure. (This statement as stated here is completely trivial
since we could take M to be {∅, X}; the proper version of this theorem will
be stated later when we introduce some more concepts.)

STEP 5: Show that for Lebesgue outer measure on R, the M which will be
constructed in Step 4 contains B.

As we will show, these steps readily yield Theorem 3.20.

STEP 1: Define the concept of outer measure.

Definition 3.21. An outer measure on a set X is a function µ? from
P(X) to [0,∞] satisfying
(i). µ?(∅) = 0.
(ii). A ⊆ B implies that µ?(A) ≤ µ?(B).
(iii). Given A1, A2, . . .

µ?(
∞⋃
n=1

An) ≤
∞∑
n=1

µ?(An).

Remark: (ii) and (iii) are called, as before, monotonicity and subadditivity.
µ? is not required to be countably additive, so µ? is not usually a measure
on P(X).

STEP 2: Definition of Lebesgue outer measure. (If I is an interval, we let |I|
denote its length.)
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Let X = R, A ⊆ X and define

µ?(A) := inf{
∞∑
i=1

|Ii| : I1, I2, . . . are open intervals with A ⊆
⋃
i

Ii}.

Idea: You want to cover A by intervals as “efficiently as possible” making
the sum of the lengths as small as possible.

µ? is called Lebesgue outer measure and our first task is to prove it is in fact
an outer measure as defined in STEP 1.

Theorem 3.22. µ? is an outer measure on R.

Proof:
(i). This is trivial.
(ii). This is essentially trivial since any interval covering of B is an interval
covering of A and hence in the definition of µ?(A), one is taking an infimum
over a larger collection and hence the infimum is no larger.
(iii). (This takes a little more work.)

Case 1. µ?(An) =∞ for some n.
Then the inequality trivially holds.

Case 2. µ?(An) <∞ for all n.
Let ε > 0. For each Aj, choose open intervals Ij1 , I

j
2 , I

j
3 , . . . so that Aj ⊆⋃∞

i=1 I
j
i and

∞∑
i=1

|Iji | ≤ µ?(Aj) + ε/2j.

Now consider the countable collection of open intervals {Iji }i,j≥1. Since the
union of these contain each Aj, they contain

⋃
j Aj. We therefore have

µ?(
⋃
j

Aj) ≤
∑
i,j=1

|Iji | =
∑
j=1

(
∑
i=1

|Iji |) ≤
∑
j=1

(µ?(Aj) + ε/2j) =
∑
j=1

µ?(Aj) + ε.

Looking at the first and last term, since this inequality holds for all ε > 0,
we get

µ?(
⋃
j

Aj) ≤
∑
j=1

µ?(Aj).

QED

STEP 3: Show that the Lebesgue outer measure of an interval agrees with
its length.
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Theorem 3.23. For each finite interval I, we have

µ?(I) = |I|.

Proof:
It is enough to prove this for closed intervals I = [a, b]. (Why is this enough?)

≤ is easy. For each ε, [a, b] ⊆ (a − ε, b + ε) and hence µ?(I) ≤ b − a + 2ε.
Since this inequality is true for each ε, we get µ?(I) ≤ b− a.

The reverse inequality is a little harder since one needs to show that you
cannot cover an interval [a, b] by a union of intervals in some tricky way so
that the sum of the lengths of these intervals is less than b− a.

Assume [a, b] ⊆
⋃
i Ii. By compactness we can find an integer N so that

[a, b] ⊆
⋃N
i=1 Ii. To complete the proof we need to show that

b− a ≤
N∑
i=1

|Ii|

which is very believable to say the least. See the picture for the proof.
QED

STEP 4: Caratheodory’s Theorem (This is the most difficult step.) Before
we can even state this (recall that we mentioned earlier that the version given
earlier was trivial and that we would have to modify it), we need to introduce
some crucial definitions.
We assume here that we have a set X (not necessarily R) and an outer
measure µ? on X.

Definition 3.24. If µ? is an outer measure on X, we call a subset A ⊆ X
µ?-measurable (see picture) if for all E ⊆ X,

µ?(E) = µ?(E ∩ A) + µ?(E ∩ Ac).

Remark: ≤ holds by subadditivity for all A and E. The reverse inequality
holds trivially if µ?(E) =∞ and so we can assume that µ?(E) is finite.

Now we can state

Theorem 3.25. (Caratheodory’s Theorem) If µ? is an outer measure on X,
then the collection M of µ?-measurable sets is a σ-algebra and µ? restricted
to M is a measure, which is also complete.
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The proof of this takes some time and so it will be given its own subsec-
tion after this and right now we continue with the rest of the argument
for constructing Lebesgue measure. It is also important to separate out
Caratheodory’s Theorem since then it will be available to us beyond just
constructing Lebesgue measure.

STEP 5: Show that for Lebesgue outer measure on R, the M which was
constructed in Step 4 contains B.

So we need to show that each Borel set in R is µ?-measurable (as defined in
STEP 4) where µ? is the Lebesgue outer measure on R defined in STEP 2.

SinceM is a σ-algebra (once we have proved STEP 4) and B is the smallest
σ-algebra containing the open intervals, we just need to show that each open
interval belongs to M. To do that, it is enough to show each (−∞, a) and
(b,∞) are inM (since we can get any interval by intersecting two of these).
We just do this for (−∞, a).

Let E ⊆ R and we many assume a 6∈ E as one point won’t affect outer
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measure. So we need to show

µ?(E) ≥ µ?(E ∩ (−∞, a)) + µ?(E ∩ (a,∞)). (1)

Let {Ii} be an arbitrary covering of E by open intervals. Let I ′i :=
Ii ∩ (−∞, a) and I ′′i := Ii ∩ (a,∞) and note that {I ′i} ({I ′′i }) is an interval
covering of E ∩ (−∞, a) (E ∩ (a,∞)) by open intervals. Hence we obtain∑
i

|Ii| =
∑
i

|I ′i|+|I ′′i | =
∑
i

|I ′i|+
∑
i

|I ′′i | ≥ µ?(E∩(−∞, a))+µ?(E∩(a,∞)).

Since the LHS is ≥ the RHS for all coverings of E by open intervals, we can
take the infimum of the LHS over all such coverings and obtain (1).
QED

FINAL STEP: PUTTING IT ALL TOGETHER TO CONSTRUCT LEBESGUE
MEASURE.
On R, we defined an outer measure µ? (Lebesgue outer measure) in STEP 2.
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By STEP 4, we obtain a measure space (R,M, µ?|M) whereM is the set of
µ?-measurable sets. By STEP 3, µ?(I) = |I| for all intervals I. By STEP 5,
B ⊆M. Hence we can restrict µ? from M down to B obtaining the desired
measure space (R,B, µ?|B).

Finally, it is clear from the definition of the outer measure that µ?(A+ x) =
µ?(A) for all sets A and x ∈ R. Hence µ?|B (as well as µ?|M) is translation
invariant.
QED

Remark: When someone refers to ”Lebesgue measure on R”, they may either
be referring to (R,B, µ?|B) or to (R,M, µ?|M).

3.4 Proof of Caratheodory’s Theorem

The proof of this is broken into a number of steps.

a. M is an algebra.
(i). ∅ ∈ M is immediate.
(ii). M is closed under complementation since the definition is symmetric in
A and Ac.
(iii). We need to show A,B ∈M implies A ∪B ∈M.
Fix E ⊆ X. Noting that

A ∪B = (A ∩B) ∪ (Ac ∩B) ∪ (A ∩Bc)

and that this is a disjoint union, we have, using subadditivity,

µ?(E ∩ (A ∪B)) + µ?(E ∩ (A ∪B)c) ≤

µ?(E ∩ (A∩B)) + µ?(E ∩ (Ac ∩B)) + µ?(E ∩ (A∩Bc)) + µ?(E ∩ (Ac ∩Bc)).

Using measurability of A applied to E ∩B for the sum of the first two terms
and applied to E ∩Bc for the sum of the second two terms, this equals

µ?(E ∩B) + µ?(E ∩Bc) = µ?(E)

where the last equality follows from the measurability of B. Hence A ∪B ∈
M.

b. µ? is finitely additive on M.
If A,B ∈M are disjoint, then using measurability of A, we have

µ?(A ∪B) = µ?((A ∪B) ∩ A) + µ?((A ∪B) ∩ Ac) = µ?(A) + µ?(B).
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Now use induction. (Note that only one of the two sets was required to be
measurable for this.)

c. M is a σ-algebra .
Since M is an algebra, it suffices (why??) to show that if A1, A2, . . . ∈ M
are disjoint, then

⋃
iAi ∈ M. Now, let Bn :=

⋃n
i=1Ai and B :=

⋃
iAi. We

have, using measurability of An, that for all E ⊆ X,

µ?(E∩Bn) = µ?(E∩Bn∩An)+µ?(E∩Bn∩Acn) = µ?(E∩An)+µ?(E∩Bn−1).

This argument can be repeated inductively to obtain

µ?(E ∩Bn) =
n∑
i=1

µ?(E ∩ Ai). (2)

(Note that this is a slight variation of the finite additivity established in the
previous step.)

Now, using measurability of Bn together with (2), we have that for any n

µ?(E) = µ?(E ∩Bn) + µ?(E ∩Bc
n) =

n∑
i=1

µ?(E ∩ Ai) + µ?(E ∩Bc
n) ≥

n∑
i=1

µ?(E ∩ Ai) + µ?(E ∩Bc).

Now looking at the left side and the right side and letting n→∞, we obtain

µ?(E) ≥
∞∑
i=1

µ?(E ∩ Ai) + µ?(E ∩Bc) ≥ µ?(E ∩B) + µ?(E ∩Bc) (3)

where we used subadditivity and the definition of B in the last inequality.
This establishes that B ∈M and therefore that M is a σ-algebra .

d. µ? is countably additive onM; i.e. (X,M, µ?) is a measure space.
Let A1, A2, . . . ∈M be disjoint and let Bn and B be as defined in the previous
step.

Note that by subadditivity, the last two terms in (3) is ≥ µ?(E) and so we
conclude we must have equalities everywhere. In particular, taking E = B,
we obtain

µ?(B) =
∑
i

µ?(Ai)

as desired.
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e. The measure space (X,M, µ?) is complete.
One first observes that any A ⊆ X with µ?(A) = 0 is µ?-measurable since
for any subset E

µ?(E ∩ A) + µ?(E ∩ Ac) = µ?(E ∩ Ac) ≤ µ?(E).

Hence if we have B ∈ M, µ?(B) = 0 and A ⊆ B, it follows that µ?(A) = 0
and hence from the above A ∈M, as desired.
QED

Remark: Clearly any countable subset of R has Lebesgue measure 0. One
might contemplate whether there are also uncountable subsets of R which
have Lebesgue measure 0.

Historical remark: Lebesgue’s original construction of Lebesgue measure was
slightly more complicated that this approach. Caratheodory developed this
approach some years after Lebesgue.

3.5 Relation between B and M
For R, we know that B ⊆ M and it is natural to ask if the two classes are
the same. It turns out they are not. There are Lebesgue measurable sets
which are not Borel sets. We won’t prove this. There are different ways to do
this: one can show that the two collection of sets have different cardinalities
or one can show that (R,B,m) is not a complete measure space. Both take
some work.

3.6 Uniqueness of Lebesgue measure on B
We restrict to [0, 1] for simplicity. We have constructed a measure on B[0,1]
which agrees with “length” on intervals. It is natural to ask if this measure
is unique or whether there could exist a different measure on ([0, 1],B[0,1])
which agrees with “length” on intervals. It turns out that it is unique and
Dynkin’s π − λ Theorem will allow us to conclude this.

Theorem 3.26. (Uniqueness of Lebesgue measure on the Borel sets)
Let X be a set and I be a π-system on X. If µ1 and µ2 are two measures
on (X, σ(I) ) such that

µ1(X) = µ2(X) <∞

and
µ1(I) = µ2(I) ∀I ∈ I
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Then µ1 = µ2.
Applying this to X = [0, 1] and I being the set of open intervals implies

that there is only one measure on ([0, 1],B[0,1]) which agrees with “length” on
intervals.

Proof:
Assume µ1 and µ2 are two such measures. Let

D := {A ∈ σ(I) : µ1(A) = µ2(A)}.

Our goal is to show that D = σ(I) . (Of course we have ⊆.)

Step 1: D is a D-system. (Proof at end.)

Step 2. Observe that I ⊆ D by assumption.

Step 3. Using Dynkin’s π − λ Theorem for the equality and steps 1 and 2
for the containment below, we have

σ(I) = D(I) ⊆ D

and hence µ1 = µ2.

Lastly, we verify Step 1.
a. X ∈ D by assumption.
b. A,B ∈ D with A ⊆ B implies that

µ1(B\A) = µ1(B)− µ1(A) = µ2(B)− µ2(A) = µ2(B\A)

and hence B\A ∈ D.
c. If E1 ⊆ E2 ⊆ E3, . . . and Ei ∈ D for all i, then using continuity from
below for both measures, we have

µ1(
⋃
i

Ei) = lim
n→∞

µ1(En) = lim
n→∞

µ2(En) = µ2(
⋃
i

Ei)

and hence
⋃
iEi ∈ D.

a,b, and c imply that D is a D-system.
QED

One might guess that if one has two finite measures on X with the same
total mass which agree on a collection of sets E , then they agree on σ(E) .

Exercise: Find a counterexample to such a statement. It suffices to use an
X with four elements.
(Hint: If you know some probability, one such example corresponds to the
fact that a 2-dimensional random vector is not determined by its two 1-
dimensional marginal distributions.)

This exercise illustrates the importance of the notion of a π-system.
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3.7 Nonmeasurable sets

It is natural, for the case of Lebesgue outer measure, to ask if M contains
all sets, that is, whether all sets are Lebesgue measurable.

Recall also our question at the start of these notes which asked if we could
assign a “length” ` to all subsets of R satisfying
1. `([a, b]) = b− a.
2. If A1, A2, . . . are disjoint sets, then

`(
⋃
i

Ai) =
∑
i

`(Ai)

3.
`(A+ x) = `(A)

for all sets A ⊆ R and x ∈ R.

These turn out to be closely related questions. We will prove the answer
to the second question is no (assuming the axiom of choice). Note that
this immediately implies that M cannot be everything since if it were, then
(R,M,m) would be an example of a translation invariant measure on all
subsets agreeing with length on intervals.

Theorem 3.27. There does not exist a translation invariant measure on all
subsets of R which gives length for intervals.

Proof:
Assume µ is such a measure. Define an equivalence relation ∼ on [0, 1] by

x ∼ y if x− y ∈ Q (Q denotes the rational numbers)

Each equivalence class is countable and so the number of equivalence classes
is uncountable. Let A consist of one element from each of the equivalence
classes. (The Axiom of Choice allows us to contruct the set A; you can read
about this axiom in Folland.) We now ask what must µ(A) be.

Step 1. µ(A) > 0.
Subproof.
We claim that

[0, 1] ⊆
⋃

q∈[−1,1]∩Q

(A+ q) (4)

To see this, if x ∈ [0, 1], choose y ∈ A with x−y ∈ Q. Then x = y+(x−y) ∈
A+ (x− y). Since x− y ∈ [−1, 1]∩Q, we obtain (4). Now µ(A+ q) = µ(A)
for all q by the assumed translation invariance. Therefore, if µ(A) = 0,
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then, by countable additivity, the measure of the RHS of (4) would be 0, a
contradiction, since µ of the LHS is 1. Hence µ(A) > 0.

Step 2. µ(A) = 0.
Subproof.
Clearly ⋃

q∈[0,1]∩Q

(A+ q) ⊆ [0, 2] (5)

The sets arising in the union on the left hand side are disjoint since if some
element u belonged to both A+ q1 and A+ q2, we would have u = a1 + q1 =
a2+q2 with a1, a2 ∈ A. Then a1−a2(= q2−q1) ∈ Q which implies a1 ∼ a2 and
hence a1 = a2. This then gives q1 = q2 also. Hence the sets are disjoint. Each
of the sets on the left hand side has measure µ(A) and hence if µ(A) > 0, then
the LHS would have infinite measure, contradicting the RHS has measure 2.
Hence µ(A) = 0.

The two steps obviously give us a contradiction.
QED

We have used (uncountable) Axiom of Choice to show there cannot be a
translation invariant measure on all subsets of R. What happens if we don’t
allow the axiom of choice? The following statement (taken from Wikipedia
which I hereby credit) is a perhaps cryptic answer to this question.

Wikipedia quotation
In 1970, Robert M. Solovay constructed Solovay’s model, which shows that
it is consistent with standard set theory, excluding uncountable choice, that
all subsets of the reals are measurable. However, Solovay’s result depends
on the existence of an inaccessible cardinal, whose existence and consistency
cannot be proved within standard set theory.

If you are not interested in set theory, you are probably satisfied with this
and do not want to dig any deeper.

3.8 Finitely additive measures: An interesting aside

I will just touch on this interesting topic briefly so that people are aware of
it. I will simply mention a few facts to whet your appetite.

1. There exists a finitely additive “measure” on all subsets of R which is
translation invariant and assigns length to intervals.

I put measure in quotes since it is only finitely additive and not countable
additive. One can prove this by using some version of what is called the
Hahn-Banach Theorem from functional analysis.
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2. There exists a finitely additive “measure” on all subsets of R2 which
is invariant under all isometries of space and assigns standard volume to
squares.

3. There does NOT exist a finitely additive “measure” on all subsets of R3

which is invariant under all isometries of space and assigns standard volume
to cubes.

Exercise: Show that the existence of the Banach-Tarski Paradox implies 3
above. (2 would then imply that there are no Banach-Tarski Paradoxes in
the plane.)

Remark: There is something interesting and nontrivial going on here. It
turns out that the group theoretic properties of the isometry group of R3 is
very different from the group theoretic properties of the isometry group of R2

and this is what is lying behind the fact that one needs to go to 3 dimensions
to obtain Banach-Tarski Paradoxes.

3.9 Other important constructions of measures

The following definition and theorem might seem a little abstract but it is
very useful for constructing various measure spaces such as finite product
spaces as well as infinite product spaces, the latter being needed for con-
structing an infinite number of independent random variables in probability
theory.

Definition 3.28. If X is a set and A is an algebra on X, a function µ0 from
A to [0,∞] is called a premeasure if
1. m(∅) = 0 and
2. If A1, A2, . . . , are (pairwise) disjoint elements of A and

⋃
iAi ∈ A, then

m(
⋃
i

Ai) =
∑
i

m(Ai).

Remark: If A were a σ-algebra , then this would just be a measure.

Theorem 3.29. (Theorem 1.14 in F) If µ0 is a premeasure on (X,A), then
there exists a measure µ on (X, σ(A)) with µ(A) = µ0(A) for all A ∈ A. If
µ0 is σ-finite on X, then µ is unique. (Uniqueness can fail in the non-σ-finite
case.)

Outline of the Proof:
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1. Define an outer measure on all subsets of X by

µ?(E) := inf{
∞∑
i=1

µ0(Ai) : A1, A2, . . . ∈ A, E ⊆
⋃
i

Ai}.

Verify, exactly as for Lebesgue outer measure, that this yields an outer mea-
sure.

2. Caratheodory’s Theorem implies that (X,M, µ) is a measure space where
M is the σ-algebra of µ?-measurable sets and µ := µ?|M.

3. Are we done with the proof? NO! We need to know that A ⊆ M and
that µ(A) = µ0(A) for A ∈ A and then we would be almost done. Did we
have to do these two steps for the construction of Lebesgue measure? Yes!
They were precisely STEPS 3 and 5. These two facts are proved in a very
similar way here using the fact that we have a premeasure. Proposition 1.13
in Folland does exactly this. Finally we just restrict the measure obtained
on M to σ(A), completing the first statement.

For the second statement, if the measure space is finite, one can use the
Dynkin’s π − λ Theorem to prove it using exactly the argument we gave
for uniqueness of Lebesgue measure on the unit interval. Given the result
for finite measure spaces, one can easily extend it to the σ-finite case by
applying the above to each “finite piece”. (The argument for this given in F
is different.)
QED

3.10 Distribution functions for Borel measures on [0, 1]
and R; an application of the previous section

In this subsection, for simplicity, we stick to [0, 1] (rather than R) and con-
sider finite measures on ([0, 1],B[0,1]) which are called Borel measures.

The following pretty easy proposition will start us off on this discussion.

Proposition 3.30. Let µ be a finite Borel measure on [0, 1] and define F :
[0, 1]→ [0, µ([0, 1])] by

F (x) := µ([0, x]).

Then F is a weakly increasing and right continuous.

Proof:
Monotonicity of measures implies F is weakly increasing. The right continu-
ity of F follows from continuity from above. For fixed t,

lim
s↓t

F (s) = lim
s↓t

µ([0, s]) = µ([0, t]) = F (t). (6)
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QED

Exercises:
1. Verify the middle equality in detail.
2. Show that we don’t necessarily have left continuity of F and moreover
that

F (t)− lim
s↑t

F (s) = µ({t}). (7)

The next result allows us to go the other way around.

Proposition 3.31. Let F be a nonnegative weakly increasing and right con-
tinuous function on [0, 1] mapping into [0,∞). Then there exists a unique
finite Borel measure µ on [0, 1] satisfying

F (x) := µ([0, x]).

Outline of Proof:
We consider the algebra A of subsets of [0, 1] consisting of a finite union of
disjoint intervals which are open on the left and closed on the right and we
also allow the set {0}. One checks that this is an algebra. Given a half open
interval I = (a, b], we let

µ0(I) := F (b)− F (a)

and we define µ0 of a finite number of disjoint intervals just by adding up the
above. (Technical messy point: you can represent a set by a union of disjoint
such intervals in different ways and one needs to check that you always get
the same number when you add these up. It’s intuitive, easy to check but
one should be aware that one needs to check it.) Also let µ0({0}) := F (0).
Then one has to check that this is a premeasure on A. Having done that,
one can apply Theorem 3.29 to give us a unique measure µ on the Borel sets
and then one checks that

F (x) := µ([0, x]).

QED

Remark:
If F (x) = x, we get Lebesgue measure from this.

The bottom line of 2 which we should keep in mind is that there is a 1-1
correspondence between finite Borel measures on [0, 1] and functions F with
the properties described above. Once we develop integration theory, this
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correspondence will basically define for us the so-called Lebesgue-Stieltjes
integral.

Notation The F corresponding to a measure µ as above will be denoted by
Fµ and the µ corresponding to a given F as above will be denoted by µF .

More remarks:
1. (6) and (7) imply that µ is continuous on (0, 1], meaning no atoms, if and
only if Fµ is continuous. (Note that since F is only defined on [0, 1], an atom
at 0 would not correspond to a discontinuity of F ; e.g., F ≡ 1 corresponds
to δ0, a point mass at 0.)
2. If µ is a finite measure on (R,B), one can define F : R → [0, µ(R)] by
F (x) := µ((−∞, x]) and one can go the other way in an analogous way.
3. Lebesgue measure on R does not satisfy the above; however, even for
infinite measures, provided they are finite on compact sets, one can define
an associated F , but now it is well defined only up to an additive constant.
Therefore, for simplicity, we are sticking to [0, 1] with a finite measure.
4. If X is a “random variable” (whatever that means), its “law” or “distribu-
tion” is a measure on R with total measure 1 and the associated F is known
as the “distribution function of X”.

We end this subsection with a nice example to keep in mind. There are three
types of distributions and we will explain later on that every distribution is
a combination (more precisely a convex combination) of three distributions
of these types. The first type is called absolutely continuous (this will be
defined later) and is exemplified by Lebesgue measure corresponding F (x) =
x. From a probability point of view, these correspond to having a probability
density function. The second type are called the atomic distributions which
is exemplified by the example right below. The third (and most subtle) type
are called continuous singular and will exemplified by the Cantor ternary
function in the next subsection.

We now give one example of an atomic measure. Order the rational numbers
in [0, 1], q1, q2, . . . and we want to put a weight of 1/2n on qn. This yields the
measure µ which satisfies

µ(A) :=
∑
i:qi∈A

1/2i

for all Borel sets A (check this).

Exercises:
1. Check that the corresponding distribution function F satisfies

F (x) =
∑
i:qi≤x

1/2i.
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2. Check that this is right continuous at all points and is discontinuous from
the left at exactly the rational numbers.
3. Observe or check that this measure is atomic (as defined earlier in the
chapter) since µ(Qc) = 0 and the atoms are exactly Q.

Remark: It will be a consequence of Lebesgue’s Theorem (much later on)
that F is differentiable Lebesgue-a.e. However it is not the case that we have
differentiability at all of the irrational numbers.

3.11 An overview of the Cantor set, the Cantor ternary
function and the “Cantor measure”

The last term is put in quotes since I don’t think that is a standard expression.

We will now see the previous section (where we associate Borel measures
on [0, 1] with weakly increasing right continuous functions) come alive by
looking at a very specific but enlightening example. This section will be an
overview and details can be obtain in F. It is also a teaser for what will be
coming later on.

We first tell/remind the reader what the Cantor set is; it is constructed
iteratively.

Let C0 = [0, 1].
Let C1 be C0 with the middle third removed (= [0, 1]\(1/3, 2/3)).
Let C2 be obtained from C1 by removing the middle third of each interval.
One continues defining C3, . . .. (See picture). Note Cn consists of 2n disjoint
closed intervals each of length 1/3n.

Definition 3.32. The Cantor set, C, is defined to be
⋂
nCn.

The following proposition gives the main important properties of C.

Proposition 3.33. 1. C is a nonempty compact set.
2. The Lebesgue measure of C is 0.
3. It has no isolated points. (If A is set, x ∈ A is called isolated if for some
ε > 0, A ∩ (x− ε, x+ ε) = {x}.)
4. 1 and 3 together mply that C is uncountable.
5. C is also the set of points in [0, 1] whose ternary expansion (which consists
of 0’s, 1’s and 2’s) only contains 0’s and 2’s. (When the ternary expansion
is not unique, eg. 1/3, we require that only one of the two expansions has
this property, which would then be the nonterminating one.)
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Proof outline of some parts:
1. Cn is closed and hence, by elementary topology, C is a nonempty compact
set.
2. From the observation earlier, Cn has Lebesgue measure (2/3)n and hence
C has measure 0.
3. and 5. skip.
QED

Exercise: First note that C cannot contain an interval since its Lebesgue mea-
sure is 0. Interestingly, there also exist closed sets with positive Lebesgue
measure which do not contain an interval. Construct one by modifying the
construction of the Cantor set by removing ”centered” intervals of length
smaller than 1/3. Such sets are called ”fat Cantor sets”. Another con-
struction, perhaps simpler, is simply to remove smaller and smaller intervals
around the rational numbers.

There is a natural measure of total weight 1 on C. It gives measure (1/2)n to
each of the 2n intervals of length 1/3n. Note each of these “level-n” intervals
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are given a measure which is much more than its length. They are given a
measure which is (3/2)n times its length. One can with some work construct
this measure µC by defining it as above on our “basic intervals” and extending
it to all Borel sets.

The important feature of this measure is that it will have no atoms and it
will give all of its weight to C (meaning no weight to Cc), a set of Lebesgue
measure 0. Such measures are called continuous singular (a concept we
will come back to later on) and it might be surprising that they exist if you
have not seen them before.

The Cantor Ternary function is then the distribution function, as defined
in the previous subsection, of µC . This function, which we call FC , has the
fascinating properties that
(i). F is a weakly increasing function on [0, 1] with F (0) = 0 and F (1) = 1.
(ii). F is continuous.
(iii). F ′ = 0 (Lebesgue)-a.e. on [0, 1]. (Why?)

Remarks:
a. Somehow the values of F manage to go from 0 up to 1 continuously as we
move along [0, 1] even though the derivative is 0 Lebesgue-a.e.
b. Note that the fundamental theorem of calculus∫ 1

0

F ′dx = F (1)− F (0)

fails here! This failure of the fundamental theorem of calculus will be put
into a more general context later on but we wanted to introduce this example
already here.
c. The behavior of F ′ on the Cantor set itself is discussed in research papers.

3.11.1 The ”dimension” of the Cantor set An interesting Aside

It is often said that the Cantor set has ”dimension” log 2
log 3

. To state this

precisely, one can introduce the precise notion of Hausdorff dimension (or
of Minkowski dimension) and prove that these give log 2

log 3
for the Cantor set.

However, we don’t want to introduce these concepts in these notes. Rather,
I will convince you that it is reasonable to conclude that the dimension of
the Cantor set is log 2

log 3
without giving any precise definitions.

The first key observation is that if we take a cube in Rd and scale it by the
integer k, the number of copies of the cube we get is kd . If want to recover d
(the dimension), we can say that if we scale the cube by k and let N = N(k)
be the number of copies of the cube we get, then d = log(N)/ log(k) (and the
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d didn’t really depend on k). If we now look at the Cantor and scale it by
3 (so k = 3), what do we get? After a moment of thought, 3C consists of 2
copies of C, one being the original C and the other simply being C translated
to the right by 2 and so sitting inside [2, 3]. There is nothing in (1, 2) since
the Cantor set doesn’t intersect (1/3, 2/3). So, by scaling by k = 3, we get
N = 2 copies and so the dimension d ”should be”, using the above formula,
log 2
log 3

.

Bottom line: Just because a set has Lebesgue measure 0 does not mean
that it is ”trivial” and of no interest to us. Quite to the contrary, it can
still have very interesting structure and there is much research studying the
dimensions (and other properties) of various sets all of which might have
measure 0.

3.12 The Borel-Cantelli Lemma

We almost end this chapter with the Borel-Cantelli Lemma, which is useful
in many different situations, not the least of which is probability theory.

Definition 3.34. If E1, E2, . . . is a sequence of measurable sets in a measure
space, we let

lim supEi :=
∞⋂
n=1

(
∞⋃
k=n

Ek)

which is also often written as (En i.o.) with i.o. meaning infinitely often
since it means that x is contained inside of infinitely many En’s.

Exercise: If we consider instead

lim inf Ei :=
∞⋃
n=1

(
∞⋂
k=n

Ek),

how does this differ from the above? Which is larger? What is an example
where they differ?

Lemma 3.35. ((First) Borel-Cantelli Lemma)
Let E1, E2, . . . be a sequence of measurable sets in the measure space (X,M,m).
If

∑
im(Ei) <∞, then

m(lim supEi) = 0.
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Proof:
For each n, we have by subadditivity that

m(lim supEi) ≤ m(
∞⋃
k=n

Ei)) ≤
∞∑
k=n

m(Ei).

Since this holds for each n and the RHS is the tail of a convergent series, we
have that m(lim supEi) = 0.
QED

Remark: The following example shows that
∑

im(Ei) <∞ is not necessary
for m(lim supEi) = 0. Consider the unit interval with Lebesgue measure and
let En := [0, 1/n]. (Check this!)

3.13 An application of the Borel-Cantelli Lemma to
diophantine approximation: An interesting Aside

Since the rationals Q are dense in R, we can approximate any number as
well as we want by elements of Q. To make the question of approximation
more quantitative (and more interesting!), we can ask instead whether we
can approximate a real number x by a rational p/q where the approximation
is small relative to the denominator q or some function of q. Here is a our
first nontrivial result of this kind.

Theorem 3.36. For every δ > 0, the set

Aδ := {x ∈ R : |x−p
q
| ≤ 1

q2+δ
for infinitely many positive integer pairs (p, q)}

has Lebesgue measure 0. (In words, almost no real number can be ”well
approximated by rationals” if ”well approximated by rationals” means that
there are infinitely many positive integer pairs (p, q) with |x− p

q
| ≤ 1

q2+δ
.)

Proof: It is enough to show that m(Aδ ∩ [0, 1]) = 0 since the same argument
shows we can replace [0, 1] by [n, n + 1] and then we can use countable
additivity. This will now follow very easily from the Borel-Cantelli Lemma.
For positive integer pairs (p, q), we let

Ep,q := {x ∈ [0, 1] : |x− p

q
| ≤ 1

q2+δ
}

and note that clearly m(Ep,q) ≤ 2
q2+δ

. By the Borel-Cantelli Lemma, it
suffices to show that ∑

p,q

m(Ep,q) <∞.
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Note that for each fixed q, Ep,q is nonempty for at most, say, 4q + 1 values
of p since certainly p must belong to [−2q, 2q] for Ep,q to be nonempty. This
gives, as needed, ∑

p,q

m(Ep,q) ≤
∑
q

4q + 1

q2+δ
<∞.

QED

One can either stop reading this subsection now or continue and read more
about this interesting story.

Note that if δ1 < δ2, Aδ2 ⊆ Aδ1 so that the statement becomes stronger as
δ goes to 0. The following result complements the above result. We do not
prove it but mention that it is fairly elementary and uses the pigeon hole
principle from combinatorics.

Theorem 3.37. Every irrational number belongs to

A0 := {x ∈ R : |x− p

q
| ≤ 1

q2
for infinitely many integer pairs (p, q)}

and so in particular a.e. x belongs to A0. (In words, almost every real
number can be ”well approximated by rationals” if ”well approximated by
rationals” now means that there are infinitely many integer pairs (p, q) with
|x− p

q
| ≤ 1

q2
.)

Interestingly, the story does not end here. It would seem that nothing grows
faster than q2 but slower than q2+δ for every δ > 0 and so it seems we now
know everything that needs to be know. But this is not true. q2(log q)` grows
between these two rates and one can ask whether

A0,` := {x ∈ R : |x− p

q
| ≤ 1

q2(log q)`
for infinitely many integer pairs (p, q)}

has 0 measure or full measure (meaning the complement has measure 0).
Keep in mind that for any `1 < `2 and any δ > 0, we have

Aδ ⊆ A0,`2 ⊆ A0,`1 ⊆ A0

and so the above results do not answer this question. It turns out that A0,`

has measure 0 if if ` > 1 and full measure if ` ≤ 1. This is a quite a refined
picture but it can be made more refined. If we now replace q2(log q)` by
q2(log q)(log log q)`, again the answer to the question depends on whether
` > 1 or ` ≤ 1. And one can keep going getting more and more refined
results. What is really going on here? It turns out there is an ”integrability
condition” going on here which answers everything. The following is the
definitive result and includes the above results.
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Theorem 3.38. Let f := f(q) be an increasing sequence and consider

Af := {x ∈ R : |x− p

q
| ≤ 1

q2f(q)
for infinitely many integer pairs (p, q)}

Then Af either has measure 0 or full measure and these correspond exactly
to the cases

∞∑
q=1

1

qf(q)
<∞ or =∞.

The proof for the summable case is carried out exactly as was done for the
proof of Theorem 3.36. The other direction is more difficult and we don’t
discuss.

Is that the whole story now? Not really! All the sets Aδ for δ > 0 have
measure 0 but as we mentioned in the section on the Cantor set, measure 0
sets can still be worthy of investigation. In particular, one can still ask how
”large” Aδ is (in some sense) even though the Lebesgue measure of it is 0.
Our last result tells us what the ”fractal size” of Aδ is and more precisely
what its Hausdorff dimension is. Although we are not defining the Hausdorff
dimension of a set, it has a precise definition which one can google.

Theorem 3.39. (Jarnik, Besicovitch) For each δ > 0, the Hausdorff dimen-
sion of Aδ is given by 2

2+δ
.

3.14 Baire Category and topologically big: An inter-
esting aside

If we have a measure space with total measure 1 and if we call a set large if
its measure is 1, then clearly a countable intersection of large sets is large. In
general, it seems reasonable to call a property of sets ”large” if whenever we
intersect a countable number of large sets, we get something which is large.

It turns out that there is a useful notion of ”large” for complete metric
spaces. One calls a set ”large” if it contains a dense Gδ where we recall
that a Gδ is, by definition, a countable intersection of open sets. For this to
be a reasonable definition of being large, we should have that a countable
intersection of such sets is itself one of these sets. This is true and nontrivial
and is called the Baire Category Theorem which we will not prove. (We state
it in a slightly stronger way than it is usually stated; however this version
follows immediately from the usual version.)
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Theorem 3.40. Let X be a complete metric spaces and for each n, let Un
be a dense Gδ. Then

∞⋂
n=1

Un

is a dense Gδ. (The fact it is a Gδ is trivial; the content is that it is dense.)

Being a complete metric space is crucial for this theorem. To see this, let
X := Q = {q1, q2, . . .} be the rational numbers in [0, 1] and let An := Q\{qn}.
Clearly each An is a dense Gδ (in fact dense and open). However

⋂
n Un = ∅

which is certainly not dense.

So we now have two different notions of ”large” for subsets of [0, 1], namely
having Lebesgue measure 1 and containing a dense Gδ. It turns out that these
two notions are completely different. (The expression ”large in the category
sense” is sometimes used for the latter: this is not the same ”category” in
”category theory”.)

Theorem 3.41. There exists a set A ⊆ [0, 1] which is a dense Gδ in [0, 1] of
Lebesgue measure 0.

Remark: So A is large in the topological sense and small in the measure
theoretic sense while its complement will be small in the topological sense
and large in the measure theoretic sense.

Proof:
Let Q = {q1, q2, . . .} and let Un :=

⋃∞
i=1(qi−

1
n2i
, qi +

1
n2i

). Note that each Un
is a dense open set and hence (by the Baire Category Theorem)

⋂
n Un is a

a dense Gδ. What is its Lebesgue measure? It is immediate that for each n,
m(Un) ≤ 2

n
implying that

⋂
n Un has zero Lebesgue measure.

QED

Oxtoby has written a beautiful book ”Category and Measure” which studies
at length the relationship between these two notions of largeness.

Another nice example where these two different notions of being large differ is
in diophantine approximation which we just discussed in the previous section.
It turns out that the sets Aδ (δ > 0) defined in Theorem 3.36, while having
measure zero, contain in fact a dense Gδ. Hence although they are measure
theoretically small, they are topologically large.

One calls an irrational number x Liouville if for all n, there are integers p
and q such that

|x− p

q
| < 1

qn
.
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It is easy to see that the set of Liouville numbers is contained in each Aδ
and hence has measure 0 (and even Hausdorff dimension 0). (In fact, the
Liouville numbers is just

⋂
δ Aδ.)

On the other hand, the Liouville numbers can be expressed as

([0, 1]\Q) ∩
⋂
n

⋃
p,q

(
p

q
− 1

qn
,
p

q
+

1

qn
).

This is clearly a dense Gδ.

3.15 Additive vs. Linear functions: An interesting
Aside; this subsection actually requires the no-
tion of a measurable function from the next chap-
ter

We end this section with a fun application of exercise 31 in Chapter 2 of F.
As we know, f : R→ R is linear if

1. f(x+ y) = f(x) + f(y) for all x, y ∈ R

and
2. f(cx) = cf(x) for all x, c ∈ R

In fact, in 1-d, it is easy to check that (2) implies (1) (even if you assume
(2) for only one nonzero x). The question here is whether (1) implies (2).
We call f additive if it satisfies (1) and so this question is whether being
additive implies being linear. It turns out the answer is no but that if you
make some very weak assumptions on f , then the answer becomes yes. We
are more concerned with the latter here but we first show (1) does not imply
(2). One needs to know something about abstract vector spaces.

Proposition 3.42. There exists f : R→ R which is additive but not linear.

Proof outline:
View R as a vector space over Q (which is then infinite dimensional). One
checks that the set {1,

√
2} is linearly independent. (This follows easily from

the fact that
√

2 is irrational.) Extend this set to a basis B for R (as a
Q-vector space). Let f be a function from B to R which takes 1 to 1,

√
2 to

3 and is arbitrary on the other elements of B. By linear algebra, f can be
extended to a Q-linear transformation from R to R, meaning (1) holds and
(2) holds for c ∈ Q. In particular, f is additive. But f cannot be R-linear,
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since any such map x→ ax which takes 1 to 1 is the identity.
QED
Remark:
The Axiom of choice is used here to construct the basis B.

Our main theorem here is the following.

Theorem 3.43. If f : R→ R is additive and measurable, then f is linear.

Before we prove this, we begin with a warm up which is weaker.

Proposition 3.44. If f : R→ R is additive and continuous, then f is linear.

Proof:
One first observes that (1) implies (2) for rational c. To see this, (1) implies
by induction that for positive integer n, f(nx) = nf(x). Therefore if n,m
are positive integers, then

f(m
n

m
x) = mf(

n

m
x)

giving

f(
n

m
x) =

1

m
f(nx) =

n

m
f(x).

(1) easily gives (why?) f(−x) = −f(x) for all x and from this it is easy to
see that (2) is true for all rational c, positive or negative.
It therefore follows that f(x) = xf(1) for all rational x. Since Q is dense
and the two sides are continuous in x (the first by assumption), they must
be equal for all x. Hence f is linear.
QED

To prove Theorem 3.43, we begin with a lemma.

Lemma 3.45. If f is additive but not linear, then f is unbounded in every
interval about 0.

Proof:
By scaling f and multiplying by−1 if necessary, we can assume that f(1) = 1.
Fix the interval (−ε, ε) around 0. If f is not linear, then there must exist x
such that f(x) 6= x. We have seen above that (1) implies (2) for rational c
and hence x must be irrational. Without loss of generality x > 0 (otherwise,
one does a similar argument). We now use (without proof) an elementary
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fact (called Kronecker’s Theorem): namely, there exist integers n and m
arbitrarily large so that

|nx−m| < ε.

(Note that this is certainly implied by Theorem 3.37.) We then have

f(nx−m) = nf(x)−m = nx−m+ n(f(x)− x).

If n,m are very large and |nx−m| < ε, then, since f(x)− x 6= 0, we have a
point in (−ε, ε) whose f value becomes in absolute value as large as we want.
QED

Proof of Theorem 3.43:
By the previous lemma, it suffices to show that f is bounded in some interval
(−ε, ε) around 0. Let An = {x : |f(x)| ≤ n}. By our measurability assump-
tion, the An’s are measurable, clearly increasing and their union is R. By
continuity of measure from below, m(An) > 0 for some n. Fixing such an n,
by exercise 31 of chapter 2 in F, (−ε, ε) ⊆ An−An for some ε > 0. Then for
all x ∈ (−ε, ε), x = a− b with a, b ∈ An implying that

|f(x)| = |f(a− b)| = |f(a)− f(b)| ≤ |f(a)|+ |f(b)| ≤ 2n.

QED
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4 The Lebesgue Integral and Integration The-

ory

4.1 A little on Riemann integration and the loose idea
of Lebesgue integration

The Lebesgue integral, while it takes some time to define, is based on a very
simple idea. This idea is to make a simple but essential modification to the
construction of the Riemann integral.

Little reminder about the Riemann integral

I won’t define or remind you of Riemann integration (look it up) but in a
nutshell, the Riemann integral of a function f defined on [0, 1] is obtained
by partitioning the domain [0, 1] into very small intervals, constructing an
approximating Riemann sum and hoping that the limit exists as the length
of these small intervals goes to 0, no matter how you take your Riemann
sum. If the limit exists, then the function is called Riemann integrable (RI).
The crucial fact is that one is breaking up the x-axis.

In calculus courses, it is stated without proof that continuous functions
on [0, 1] are RI. Also RI functions are necessarily bounded.

It turns out that if f is a bounded function on [0, 1], then there is an
interesting necessary and sufficient condition for f to be RI which was proved
by Lebesgue.

Theorem 4.1. If f is a bounded function, then f is RI if and only if the set
{x : f is not continuous at x} has Lebesgue measure 0.

Exercise: Show that for any function f on [0, 1], {x : f is continuous at x}
is a Borel set in [0, 1].

Remarks:
1. The classic example of a function which is not RI is IQ, which is 1 on
the rationals and 0 on the irrationals. (Of course, this is discontinuous at
every point.) It will turn out that IQ will be trivially Lebesgue integrable.
2. Interestingly, there is a function on [0, 1] which is continuous at precisely
the irrational numbers but there is no function on [0, 1] which is continuous
at precisely the rational numbers.

Idea of the Lebesgue integral on [0, 1]
Instead of breaking up the x-axis, we break up the y-axis. Let’s say that
f takes values in [0, 1]. We partition the y-axis [0, 1] into 0 = a0 < a1 <

41



a2 < . . . < an = 1 and approximate (see picture or draw some pictures for
yourself) “the integral” by

n−1∑
i=0

aim({x : f(x) ∈ [ai, ai+1)})

where m is Lebesgue measure (and we take the final interval to be closed on
the right). If the maximum increment maxi{ai+1 − ai} is small, we should
get a good approximation of the “the integral”.

Remark: When you break up the y-axis, then the structure of the domain
is irrelevant which is why we can do this kind of integration on any measure
space.

4.2 Measurable functions

We now introduce the class of functions that we will consider and which we
will eventually assign an integral to. These are called “measurable” functions.
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Exactly as you have seen that “almost all” sets are measurable, it is also the
case that “almost all” functions are measurable (almost all here is not being
used in a technical sense.)

Definition 4.2. If (X,M) is a measurable space, a mapping f : X → R is
called measurable if for all B ∈ B (recall that B is the collection of Borel
sets in R), we have that (see picture)

f−1(B) := {x ∈ X : f(x) ∈ B} ∈ M.

Definition 4.3. More generally, if (X,M) and (Y,N ) are measurable spaces,
a mapping f : X → Y is called measurable if for all E ∈ N

f−1(E) ∈M.
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The next proposition demonstrates that to check measurability, one does not
always have to check the above property for all E ∈ N but just some suitable
subclass.

Proposition 4.4. Assume we have measurable spaces (X,M) and (Y,N )
and a mapping f : X → Y . Assume also that E ⊆ N is some collection of
sets which generates N (i.e. σ(E) = N ). Then f : X → Y is measurable if
for all E ∈ E

f−1(E) ∈M.

(The proof is not so hard but the proof technique is very important to un-
derstand as it is used quite often.)

Proof:
Let

F := {E ∈ N : f−1(E) ∈M}
Our goal is to show that F = N and by assumption, E ⊆ F . If we can show
that F is a σ-algebra , then it will follow that F ⊇ σ(E) = N and we would
be done.

The fact that F is a σ-algebra follows from easy set theory together with the
fact that M is a σ-algebra . X, ∅ ∈ F is left to the reader.

Next, we have

E ∈ F implies f−1(E) ∈M implies (f−1(E))c ∈M implies f−1(Ec) ∈M

implies Ec ∈ F noting that (f−1(E))c = f−1(Ec) (Check this!).

Finally, we have

E1, E2, . . . ∈ F implies f−1(E1), f
−1(E2), . . . ∈M implies

⋃
i

(f−1(Ei)) ∈M

implies f−1(
⋃
i

Ei) ∈M implies
⋃
i

Ei ∈ F

noting that
⋃
i(f
−1(Ei)) = f−1(

⋃
iEi) (Check this!).

QED

Remark: f−1 behaves much nicer than f in the sense that f−1 behaves well
with respect to set theoretic operations while f does not.

Exercise:
1. Show f−1(A) ∩ f−1(B) = f−1(A ∩B).
2. How do f(A) ∩ f(B) and f(A ∩B) relate to each other?
3. How do (f(A))c and (f(Ac)) relate to each other? How about if we assume
f is surjective?
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Corollary 4.5. A function f : (X,M) → R is measurable if f−1(U) ∈ M
for all half infinite open intervals U . Note that this implies that a continuous
function from R to R is Borel-measurable; i.e. f : (R,B)→ R is measurable.

Since we will now only consider measurable functions, one would hope that
when we apply simple operations to measurable functions, the result is still
a measurable function. The following is a first step in this direction.

Proposition 4.6. If f, g : (X,M) :→ R are measurable, then f + g and fg
are measurable.

Proof:
For all a ∈ R, we have

{x : (f + g)(x) > a} =
⋃
q∈Q

({x : f(x) > q} ∩ {x : g(x) > a− q}) . (8)

⊇ is trivial. To see the opposite containment, if x ∈ LHS, choose q ∈ Q so
that

0 < f(x)− q < f(x) + g(x)− a.
Then for this q, x will be in the corresponding set on the RHS establishing (8).
Now, f, g being measurable implies each of the terms in the union are inM
and since we have a countable union, the RHS and hence the LHS belong to
M. Hence f + g is measurable.

For the second statement, one first observes that

fg = 1/2[(f + g)2 − f 2 − g2].

In view of the first part (and some trivial things like the negative of a mea-
surable function is measurable and multiplying by a constant also results in
a measurable function), it suffices to show that if f is measurable, then f 2 is
measurable. To verify this, we note that

{x : f 2(x) ≥ c} = X if c ≤ 0

and

{x : f 2(x) ≥ c} = {x : f(x) ≥ c1/2} ∪ {x : f(x) ≤ −c1/2} if c > 0.

QED

Remark: A key feature of the first part of the above proof is that we always
have to express things in terms of countable operations since these are the
only things allowed in measure theory.
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It sometimes becomes natural (among other reasons since we are taking limits
of various things) to consider mappings from (X,M) to R := R∪{−∞,∞}.
Measurability is defined as before: for all c ∈ R,

{x ∈ X : f(x) > c} ∈ M.

Exercise: Show that if f : (X,M)→ R is measurable, then {x ∈ X : f(x) =
∞} ∈M.

Limiting procedures are going to be central to this whole theory; hence we
would want that limits of measurable functions are measurable. We will see
this fact soon.

Proposition 4.7. If f1, f2, . . . is a sequence of measurable functions, then
supj fj is a measurable function where supj fj is defined (being a bit pedantic)
by

(sup
j
fj)(x) := sup

j
(fj(x)).

The same result holds for infj fj defined in the obvious way.

Proof:
This follows immediately from

{x ∈ X : (sup
j
fj)(x) > a} =

⋃
j

{x ∈ X : fj(x) > a}

which is easily checked. (Do it.)
QED

Exercise: Would the above equality of sets hold if the > in the two places
were both replaced by ≥?

Proposition 4.8. If f1, f2, . . . is a sequence of measurable functions, then
lim supj fj is a measurable function where this is of course defined by

(lim sup
j

fj)(x) := lim sup
j

(fj(x)).

In particular, if (fk) converges to the function f∞ pointwise, then f∞ is
measurable.
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Proof:
One notes first that

lim sup
j

fj = inf
k

(sup
n≥k

fn).

Applying the previous proposition twice, we obtain the result. The last
statement follows as a special case.
QED

The following definition starts us off on our way.

Definition 4.9. A simple function on (X,M) is a function of the form

f(x) =
n∑
i=1

ciIEi

where c1, . . . , cn are real numbers, E1, . . . , En are disjoint sets in M and IEi
is the indicator function of Ei which means it is 1 on Ei and 0 otherwise.

Note that the indicator function of the rationals, which was not Riemann
integrable, is simple in this sense, even with n being 1 (despite the fact
that it looks sort of complicated!) Simple functions can approximate any
measurable function in a pointwise sense as the following theorem indicates.

Theorem 4.10. (Folland Theorem 2.10) If (X,M) is a measurable space
and f : X → [0,∞] is measurable, then there exists a sequence (φn) of simple
functions such that 0 ≤ φ1 ≤ φ2 ≤ . . . so that φn approaches f pointwise.
Moreoever φn approaches f uniformly on any set where f is bounded.

Proof:
We don’t do the proof. It is a good exercise to think how you would do it;
the idea is to break up the y-axis rather than the x-axis. The details are in
F if you don’t manage to do it on your own.
QED

4.3 The Lebesgue Integral and the main convergence
theorems: Monotone Convergence Theorem, Fa-
tou’s Lemma and the Lebesgue Dominated Con-
vergence Theorem

We now finally begin to introduce the Lebesgue integral which we will do in
steps. Our measure space is (X,M,m).
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We first need to consider the class of nonnegative measurable functions

L+((X,M,m)) := {f : X → [0,∞], f is measurable}

Definition of the integral for nonnegative simple functions

Definition 4.11. If φ is a simple function in L+((X,M,m)),

φ(x) =
n∑
i=1

ciIEi (ci ≥ 0 ∀i),

then we define the integral of φ by∫
φ(x) dm(x) :=

n∑
i=1

cim(Ei).

It is “obvious” this is the right definition. But one needs to check that the
integral is independent of the representation since a simple function can be
written as a sum in more than one way. (Playing with a few examples will
convince you that this is fine).

Definition 4.12. If φ is a simple function in L+((X,M,m)) and A ∈M,

we define

∫
A

φ(x) dm(x) :=

∫
φ(x)IA dm(x)

(noting that the RHS is a simple function and hence the integral of the RHS
is defined).

The following gives some simple properties of our integral for simple func-
tions. The first three parts should be viewed as “obvious”.

Proposition 4.13. (Proposition 2.13 in Folland)
Let φ and ψ be simple nonnegative functions. Then the following hold.
a.

∫
cφ(x) dm(x) = c

∫
φ(x) dm(x) ∀c ≥ 0.

b.
∫

(φ(x) + ψ(x)) dm(x) =
∫
φ(x) dm(x) +

∫
ψ(x) dm(x).

c. φ ≤ ψ implies that
∫
φ(x) dm(x) ≤

∫
ψ(x) dm(x).

d. The mapping fromM to [0,∞] given by A→
∫
A
φ(x) dm(x) is a measure

on M.
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(Note a and b say that integration is “linear” for nonnegative simple func-
tions. d will return to us when we prove the Radon-Nikodym Theorem much
later on.)

Proof:
a-c are pretty straightforward and so we just do d. Fix a simple function
φ(x) =

∑n
i=1 ciIEi with Ei’s disjoint and ci ≥ 0 for all i. Let A1, A2, . . . be

disjoint elements in M and let A :=
⋃
iAi. Observe that for any B ∈ M,

one has

φIB =
n∑
i=1

ciIEi∩B and hence

∫
A

φ dm =

∫
φIA dm =

∫ n∑
i=1

ciIEi∩Adm =
n∑
i=1

cim(Ei∩A) =
n∑
i=1

ci

∞∑
j=1

m(Ei∩Aj) =

∞∑
j=1

n∑
i=1

cim(Ei∩Aj) =
∞∑
j=1

∫ n∑
i=1

ciIEi∩Aj dm =
∞∑
j=1

∫
φIAj dm =

∞∑
j=1

∫
Aj

φ dm.

QED

We now define the integral for all functions in L+((X,M,m)).

Definition 4.14. (Definition of the integral for nonnegative measurable func-
tions)
If f ∈ L+((X,M,m)), we define∫

f(x)dm(x) := sup{
∫
φ dm : 0 ≤ φ ≤ f, φ simple }.

Note this integral is certainly allowed to be ∞. It is easy to see (check this)
that if f, g ∈ L+((X,M,m)), then

f ≤ g →
∫
fdm ≤

∫
gdm (9)

and for c ≥ 0 ∫
cfdm = c

∫
fdm.

We would think that integration should be a linear operation and in fact, it
is true that with f, g as above, one has∫

(f + g)dm =

∫
fdm+

∫
gdm. (10)
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While this is true, we will need to develop our first convergence theorem to
verify this; however the ≥ in (10) can be established fairly easily.

Exercise: Prove ≥ in (10).

We now come to our first convergence theorem. It is the key step leading to
all of our convergence theorems.

Theorem 4.15. (Monotone Convergence Theorem) Given a measure space
(X,M,m), let (fn) be a sequence of functions in L+((X,M,m)) satisfying

0 ≤ f1 ≤ f2 ≤ f3 . . . (meaning that these inequalities hold for every x)

and define f by
f(x) := lim

n→∞
fn(x) = sup

n
fn(x).

Then ∫
fdm = lim

n→∞

∫
fndm. The two sides might certainly be ∞

Proof:
By (9),

∫
fndm is increasing and hence has a limit. For the same reason∫

fdm ≥
∫
fndm for every n and hence∫

fdm ≥ lim
n→∞

∫
fndm.

(Now the real argument starts; it will use measure theory and the definition
of the integral.) To prove the reverse inequality, we need to show, according
to the definition of

∫
fdm, that for every simple function φ ≤ f ,∫

φ dm ≤ lim
n→∞

∫
fndm. (11)

Fix such a φ. Now let α < 1 and define

En := {x : fn(x) ≥ αφ(x)}.

On observes that E1 ⊆ E2 ⊆ E3 . . . and X =
⋃
nEn. (To see the latter claim,

it is simplest to consider two cases: f(x) = 0 and f(x) > 0.) We now have
for every n ∫

fndm ≥
∫
fnIEndm ≥

∫
αφIEndm = α

∫
En

φ dm
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Let n→∞ and use Proposition 4.13(d) together with continuity from below
for measures to obtain

lim
n→∞

∫
fndm ≥ α

∫
φ dm.

Since this inequality holds for every α < 1, we obtain (11).
QED

Before we continue to our two other major converence theorem results (Fa-
tou’s Lemma and the Lebesgue Dominated Convergence Theorem), we give
two corollaries of the Monotone Convergence Theorem.

Corollary 4.16. (Linearity) If f1 and f2 and in L+((X,M,m)), then∫
(f + g)dm =

∫
fdm+

∫
gdm.

Proof:
By Theorem 4.10, choose φn and ψn to be simple functions increasing upward
to f1 and f2 respectively. Then φn + ψn is a sequence of simple functions
increasing upward to f1 + f2. This gives∫

f1 + f2 dm = lim
n→∞

∫
φn + ψn dm = lim

n→∞

∫
φn +

∫
ψndm =

∫
f1 +

∫
f2

where the MCT was used in the outer most equalities and Proposition 4.13(b)
was used in the middle equality.
QED

Corollary 4.17. If f1, f2 . . . in L+((X,M,m)), then∫
(
∞∑
i=1

fi)dm =
∞∑
i=1

(

∫
fidm)

Proof:
By the previous corollary, we have that for every N ,∫

(
N∑
i=1

fi)dm =
N∑
i=1

(

∫
fidm).

We want to let N → ∞. The RHS goes to the RHS further up (just by
definition of an infinite sum) while the LHS goes to the LHS further up by
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the MCT.
QED

We prove one more elementary fact before moving on to our other conver-
gence theorems.

Proposition 4.18. If f ∈ L+((X,M,m)), then∫
fdm = 0 if and only if f = 0 a.e.

Proof:
The “if” direction is easier and left to the reader. For the “only if” direction,
if we assume the RHS does not hold, then we have

m(x : f(x) > 0) > 0.

Let En := {x : f(x) > 1/n} and observe that E1 ⊆ E2 ⊆ E3 . . . and⋃
nEn = {x : f(x) > 0}. Since m(

⋃
nEn) > 0, continuity from below yields

that there exists N with m(EN) > 0.

Now consider the nonnegative simple function

φ :=
1

N
IEN .

We have φ ≤ f and so∫
f dm ≥

∫
φdm =

1

N
m(EN) > 0.

QED

An alternative and perhaps easier proof of the “only if” direction is to use
Markov’s inequality which comes later in this chapter.

We now move to our second convergence theorem.

Theorem 4.19. (Fatou’s Lemma)
If (fn) is a sequence of functions in L+((X,M,m)), then∫

lim inf
n→∞

fn dm ≤ lim inf
n→∞

∫
fn dm.
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Proof:
Fix an integer k. Now for all j ≥ k, we have

inf
n≥k

fn ≤ fj

and hence ∫
inf
n≥k

fn ≤
∫
fj.

Since this is true for all j ≥ k, we have∫
inf
n≥k

fndm ≤ lim inf
n→∞

∫
fndm. (12)

We have what we want on the RHS and now we take k → ∞. Note that
infn≥k fn is an increasing sequence in k and converges to lim inf fn. Hence
by the MCT, the LHS in (12) converges, as k → ∞, to

∫
lim infn→∞ fndm,

completing the proof.
QED

Remark:
1. Of course if fn ∈ L+((X,M,m)) converges to some function f pointwise,
this simply yields ∫

fdm ≤ lim inf
n→∞

∫
fndm.

2. We do not necessarily have equality in Fatou’s Lemma even in the spe-
cial case of the previous line. On [0, 1] with Lebesgue measure, letting
fn = nI(0,1/n], one notes that fn converges to the function 0 pointwise, but∫
fndm = 1 for every n.

3. Fatou’s Lemma is very often used in analysis.
4. For finite measure spaces, uniform convergence would suffice for conver-
gence of the integrals but not for infinite measure spaces. However, we will
prove something much stronger than this.

Before moving on to the important Lebesgue Dominated Convergence The-
orem, we need to define the integral for general functions, not only for non-
negative functions, which we do now.

We need to break up a general function into its so-called positive and negative
parts which are defined as follows (see picture).

f+(x) = max{f(x), 0}, f−(x) = max{−f(x), 0}.

Note that both f+ and f− are nonnegative, f = f+− f− and |f | = f+ + f−.
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Definition 4.20. (Definition of the integral for general measurable func-
tions) If f : (X,M,m)→ R, define∫

f(x)dm(x) :=

∫
f+(x)dm(x)−

∫
f−(x)dm(x)

provided that at least one of the two terms on the RHS is finite. (Otherwise,
the integral is not defined).

Note that the integral can be ∞ or −∞ but we avoid ∞−∞ by requiring
at least one of the two integrals to be finite.

Definition 4.21. If f is a measurable function on (X,M,m) and
∫
fdm

is defined and finite, we say that f is Lebesgue integrable. (This is the
same as having

∫
|f |dm being finite.)

Notation: We let

L1((X,M,m)) := {f : (X,M,m)→ R :

∫
|f |dm <∞}
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and more generally, for p ≥ 1, we let

Lp((X,M,m)) := {f : (X,M,m)→ R :

∫
|f |pdm <∞}.

These so called “ Lp spaces” can be made into so-called Banach spaces and
L2 into a Hilbert space but we certainly will not get into this here.

Example: Is f(x) = sinx/x integrable on (0,∞) with Lebesgue measure?
It turns out that

lim
N→∞

∫ N

0

sinx

x
dx exists and is finite (and even is π/2).

Does that answer our question?
No. sinx/x is not integrable on (0,∞) since one can check that∫ ∞

0

|sinx
x
|dx =∞.

The integrals of both the positive and negative parts are infinite but some
cancellation allows the earlier integral to converge. It is analogous to the
alternating series

∞∑
n=1

(−1)n

n

which converges but not absolutely. (So called conditional but not abso-
lute convergence requires a “predecided order” on the domain ([0,∞) in the
previous case, N in this case).)

Remark: As one would expect, integration is linear for functions in L1. This
is proved in Proposition 2.21 in F. It it not so interesting and basically, one
just uses the definition of the general integral, linearity of the integral for
positive functions and moves things around. We will use this linearity in our
next theorem.

Theorem 4.22. (Lebesgue Dominated Convergence Theorem) Let (fn) be
a sequence of functions in L1((X,M,m)) which converges pointwise to a
function f . Assume that there exists g ∈ L1((X,M,m)) such that for all n

|fn| ≤ g.

Then f ∈ L1((X,M,m)) and∫
fdm = lim

n→∞

∫
fndm.
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Proof:
Since |fn| ≤ g for all n and fn → f , we also have |f | ≤ g and hence
f ∈ L1((X,M,m)). Observe that for all n

g + fn ≥ 0 and g − fn ≥ 0 and hence

g + f ≥ 0 and g − f ≥ 0.

Applying Fatou’s Lemma to (g + fn) (and using linearity twice), we get∫
g dm+

∫
fdm =

∫
g+f dm ≤ lim inf

n→∞

∫
g+fndm =

∫
g dm+lim inf

n→∞

∫
fndm.

Subtracting
∫
gdm from both sides gives∫

f dm ≤ lim inf
n→∞

∫
fndm.

Similarly, we have∫
g dm−

∫
fdm =

∫
g−fdm ≤ lim inf

n→∞

∫
g−fn dm =

∫
g dm−lim sup

n→∞

∫
fn dm

(Why did the lim inf becomes a lim sup?) Subtracting
∫
gdm from both sides

gives ∫
fdm ≥ lim sup

∫
fndm.

So we have∫
fdm ≤ lim inf

∫
fndm ≤ lim sup

∫
fndm ≤

∫
fdm.

Hence the limit exists and is
∫
fdm as claimed.

QED

Exercises:

1. Find an example of functions (fn) with 0 ≤ fn ≤ 1 for all n, fn converges
to 0 uniformly but

∫
fn does not go to 0. Why can you not apply the LDC

Theorem here? (Hint: You will need to use an infinite measure space.)

2. Find an example of nonnegative functions (fn) with fn converging to 0
uniformly,

∫
fn goes to 0 but such that there does not exist a function g as

in the assumptions of the LDC Theorem. (Hint: You will need to use an
infinite measure space.)
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3. Find an example of functions (fn) on a finite measure space with fn
converging to 0 pointwise so that

∫
fn goes to 0 but such that there does not

exist a function g as in the assumptions of the LDC Theorem.

The LDC can sometimes be used to justify the interchanging of differentiation
and integration under some assumptions. For example, in justifying

d

dt

∫ 1

0

f(x, t)dx =

∫ 1

0

df(x, t)

dt
dx

under some assumptions. Read Theorem 2.2.7 in F.

4.4 Different notions of convergence

In this subsection, we will introduce two natural notions of convergence.
Before doing that, we first give a lemma.

Lemma 4.23. If the sequence (fn) and f are measurable functions on (X,M,m),
then

{x : fn(x)→ f(x)} ∈ M.

Proof:
Untangling what the definition of a limit is (and thinking a bit), it is not
hard to see that the set above is the same as

∞⋂
m=1

∞⋃
k=1

∞⋂
n=k

{x : |fn(x)− f(x)| < 1/m}.

This belongs toM since the events on the RHS do and then we are applying
countable set operations.
QED

Exercise: Modify the proof of the above result to prove that

{x : fn(x) converges to a finite value } ∈ M.

The following are important notions of convergence.

Definition 4.24. If the sequence (fn) and f are measurable functions on
(X,M,m), then we say
(i) fn converges to f a.e. if

m({x : fn(x) 6→ f(x)}) = 0 (note the previous lemma showed this set is in M)

(ii) fn converges to f in measure if for every ε > 0,

lim
n→∞

m({x : |fn(x)− f(x)| ≥ ε}) = 0.
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Remarks:
1. These notions are central concepts. In the various convergence theorems
that we have seen, like the LDC, one does not require convergence for all x,
but only convergence a.e. In fact, one only requires convergence in measure
in the LDC!
2. These two notions in probability theory are called “almost sure” conver-
gence and “convergence in probability”.

Proposition 4.25. 1. There is an example where convergence a.e. occurs
but not convergence in measure.
2. Convergence a.e. implies convergence in measure if the measure space is
finite.
3. Convergence in measure, does not imply convergence a.e. even if the mea-
sure space is finite.
4. Convergence in measure implies that there exists a subsequence for which
one has convergence a.e.

Proof:
1. On [0,∞) with Lebesgue measure, let fn = I[n,n+1]. Check fn goes to 0
for every x but not in measure.
2. Fix ε > 0. Let

EN = {x : |fn(x)− f(x)| ≥ ε some n ≥ N}.

Observe that E1 ⊇ E2 ⊇ E3 . . . and that⋂
k

Ek ⊆ {x : fn(x) 6→ f(x)}

and hence by assumption m(
⋂
k Ek) = 0. By continuity from above (which

requires that the measure space be finite!), we get

m({x : |fN(x)− f(x)| ≥ ε}) ≤ m(EN)→ 0 as n→∞.

3. This is best described by a picture. See the (admittedly terrible) picture.
4. Assume (fn) converges to f in measure. Then for each integer k, we can
choose nk so that

m({x : |fnk(x)− f(x)| ≥ 1

k
}) ≤ 1

2k

and we can assume the nk’s are increasing in k. Letting

Bk := {x : |fnk(x)− f(x)| ≥ 1

k
},
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we have∑
k

m(Bk) <∞ and hence from the Borel-Cantelli Lemma, we have

m(Bk i.o.) = 0.

Now, if x is not in (Bk i.o.), meaning x ∈ Bk for only finitely many k, then
|fnk(x)− f(x)| ≥ 1

k
for only finitely many k and hence

fnk(x)→ f(x).

QED

Exercise: Use the LDC Theorem and Proposition 4.25(d) to prove that the
LDC Theorem is still true if we only assume convergence in measure.

The following theorem is often quoted. We might not have need for it and/or
skip it but we state and prove it.
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Theorem 4.26. (Egoroff’s Theorem)
If (fn) is a sequence of measurable functions defined on a finite measure space
(X,M,m) which converges to f pointwise (or a.e.). Then for all ε > 0, there
exists E ∈M so that m(E) < ε and

fn → f uniformly on Ec.

Proof:
Let

En(k) := {x : |fm(x)− f(x)| ≥ 1

k
for some m ≥ n}

With k fixed, the above sets are decreasing in n and by assumption⋂
n

En(k) = ∅.

Since the measure space is finite, we have by continuity from above that

lim
n→∞

m(En(k)) = 0.

This is now been established for each k.
Now fix ε > 0. For each k, choose nk so that

m(Enk(k)) <
ε

2k

and let
E :=

⋃
k

Enk .

Note that m(E) < ε and that if x 6∈ E, then

|fm(x)− f(x)| < 1

k
for all m ≥ nk,

proving uniform convergence on Ec.
QED

4.5 Some inequalities: Markov and Chebyshev

Theorem 4.27. (Markov’s Inequality) Let f be a nonnegative measurable
function on (X,M,m). Then for every α > 0, one has

m({x : f(x) ≥ α}) ≤
∫
fdm

α
.
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Proof:
We have ∫

fdm =

∫
fI{x:f(x)≥α}dm+

∫
fI{x:f(x)<α}dm ≥∫

αI{x:f(x)≥α}dm = αm({x : f(x) ≥ α}).

QED

Theorem 4.28. (Chebyshev’s Inequality) Let f be a measurable function on
(X,M,m) with

∫
|f |dm <∞. Then for any α > 0, one has

m({x : |f(x)−
∫
fdm| ≥ α}) ≤

∫
(f −

∫
f dm)2dm

α2

Proof:
Apply Markov’s inequality to the nonnegative function (f(x)−

∫
fdm)2.

QED

Remark: Chebyshev’s inequality is central and a key tool in probability
theory.
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5 Product Measures and The Fubini and Tonelli

Theorems

5.1 Definition of a product measure

Goal: Given two measure spaces (X,M, µ) and (Y,N , ν), define a product
of them. (The notion of a product exists for most mathematical objects, e.g.
groups).

For the product space, we (obviously) should use as our set X × Y . For
the σ-algebra , we take it to be the smallest σ-algebra which contains the
so-called “rectangles”

R := {A×B : A ∈M, B ∈ N}

and we denote this σ-algebra σ(R) by M×N .

(Note for the Borel sets on [0, 1], R contains many things which don’t look
like ordinary rectangles; e.g. ([0, 1

4
] ∪ [5

7
, 6
7
])× ([1

3
, 2
3
] ∪ 10

12
, 11
12

]) ∈ R).

It is quite clear that if we did have a “product” measure µ× ν onM×N , it
should satisfy (µ× ν)(A× B) = µ(A)ν(B) for all A ∈ M and B ∈ N . The
existence of a product measure is given by the following theorem.

Theorem 5.1. (Existence of Product Measures) There exists a measure µ×ν
on (X × Y,M×N ) so that for all A×B ∈ R,

(µ× ν)(A×B) = µ(A)ν(B).

Moreover, µ × ν is the unique measure satisfying these properties if both µ
and ν are σ-finite.

Proof outline:

Step 1. The collection of finite unions of disjoint rectangles is an algebra A.
To see this, one first shows/observes that the intersection of two elements in
R is in R and that the complement of a set in R is the union of two elements
in R. From here, one can either apply Proposition 1.7 in F or try to do the
rest yourself.

Step 2. Define a function (µ× ν)0 on A by

(µ× ν)0(
n⋃
i=1

(Ai ×Bi)) :=
n∑
i=1

µ(Ai)ν(Bi).
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One needs to check that this is well-defined since there is usually more than
one way to represent a disjoint union of rectangles. The type of thing to
check is that when one rectangle is a union of say four rectangles, then the
above formula gives the same thing in both cases.

Step 3. (µ× ν)0 is a premeasure on A.
The key step to prove this is to show that if we have a disjoint union

A×B =
⋃
i

(Ai ×Bi) (an infinite union is allowed here)

then
(µ× ν)0(A×B) =

∑
i

(µ× ν)0(Ai ×Bi). (13)

It is then not so hard but tedious to check that (13) implies that (µ× ν)0 is
a premeasure on A. We now verify (13). For each (x, y) ∈ X × Y , we have

IA(x) · IB(y) = IA×B(x, y) =
∑
j

IAj×Bj(x, y) =
∑
j

IAj(x)IBj(y).

Fix y ∈ Y and integrate both sides with respect to x using µ. This yields,
using MCT on the RHS

µ(A)IB(y) =
∑
j

µ(Aj)IBj(y).

Now integrate both sides with respect to y using ν, using MCT on the RHS
to get

µ(A)ν(B) =
∑
j

µ(Aj)ν(Bj).

Step 4. We can now apply Theorem 3.29 to complete the proof. Note that
this also yields the uniqueness part.
QED

5.2 Sections/Projections

Definition 5.2. If E ⊆ X × Y , the x-section of E (see picture) is

Ex := {y ∈ Y : (x, y) ∈ E}

and the y-section of E is

Ey := {x ∈ X : (x, y) ∈ E}.
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Definition 5.3. If f : X × Y → R, we let, for fixed x ∈ X,

fx : Y → R given by fx(y) := f(x, y)

and for fixed y ∈ Y ,

f y : X → R given by f y(x) := f(x, y).

Exercise: Check that if f = IE, then fx = IEx

Proposition 5.4. (i). If E ∈ M×N , then for all x ∈ X, Ex ∈ N and for
all y ∈ Y , Ey ∈M.
(ii). If f : X × Y → R is M× N -measurable, then for all x ∈ X, fx is
N -measurable and for all y ∈ Y , f y is M-measurable.

Proof:
(i) The proof idea is to show that the sets E for which the statement is true
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contains R and is a σ-algebra . Let

G := {E ⊆ X × Y : the claim holds }

Now R ⊆ G since

(A×B)x =

{
B if x ∈ A
∅ if x 6∈ A

and similarly for the other case. We next claim that G is a σ-algebra .

Exercise: Show G is a σ-algebra .
Hint: The two crucial but simple observations (which of course you check)
are that

(Ex)
c = (Ec)x and

⋃
i

(Ei)x = (
⋃
i

Ei)x.

It now follows from these two claims that G ⊇ σ(R) =M×N as desired.

(ii) This follows immediately from (i) and the observation (of course which
needs to be checked) that

(fx)
−1(A) = (f−1(A))x.

QED

5.3 Fubini’s Theorem for sets

Theorem 5.5. (Fubini’s Theorem for sets)
Let (X,M, µ) and (Y,N , ν) be σ-finite measure spaces. If E ∈M×N , then
the maps

x→ ν(Ex) and y → µ(Ey) (well defined by the previous result)

are measurable functions on X and Y respectively. Furthermore

µ× ν(E) =

∫
X

ν(Ex)dµ(x) =

∫
Y

µ(Ey)dν(y).

Proof:
We first prove it where we assume the spaces are finite. By symmetry, it is
enough to show that x→ ν(Ex) is measurable and µ×ν(E) =

∫
X
ν(Ex)dµ(x).

Let
C := {E ∈M×N : the above claim holds }.
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The goal is to show that C =M×N .

STEP 1: R ⊆ C.

ν((A×B)x) =

{
ν(B) if x ∈ A
0 if x 6∈ A

= IA(x)ν(B)

Hence x→ ν((A×B)x) is measurable. In addition

µ× ν(A×B) =

∫
X

IA(x)ν(B)dµ(x) =

∫
X

ν((A×B)x)dµ(x).

STEP 2: C is a D-system.

We leave this to the reader. It is proved very similarly to Theorem 3.26. One
needs to observe that A ⊆ B implies that (B\A)x = Bx\Ax and to use the
MCT.

Step 3. Using the fact that R is a π-system, Dynkin’s π − λ Theorem gives
the second equality below and steps 1 and 2 give the containment.

M×N = σ(R) = D(R) ⊆ C.

That proves the finite case.

Moving to the σ-finite case, let X1 ⊆ X2 ⊆ . . . have finite measure with
X =

⋃
Xi and Y1 ⊆ Y2 ⊆ . . . have finite measure with Y =

⋃
Yi. Consider

the measure (µ× ν)|Xn×Yn which is a finite measure on (X ×Y,M×N ). By
looking at rectangles, it is easy to see that

(µ× ν)|Xn×Yn = µ|Xn × ν|Yn .

By the finite case, for each E ∈M×N , the map x→ ν|Yn(Ex) = ν(Yn∩Ex)
is measurable on (X,M) and

µ×ν((Xn×Yn)∩E) = (µ×ν)|Xn×Yn(E) =

∫
X

ν|Yn(Ex)dµ|Xn(x) =

∫
X

IXnν(Yn∩Ex)dµ(x).

Using continuity from below and letting n→∞, we conclude that x→ ν(Ex)
is measurable on (X,M). Also, letting n → ∞ in the above display, using
continuity from below and the MCT, we conclude that

(µ× ν)(E) =

∫
X

ν(Ex)dµ(x),

as desired. We can of course now switch x and y.
QED
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5.4 Counterexample without σ-finiteness

The following example shows that Theorem 5.5 without the σ-finite assump-
tion is false. Let (X,M, µ) and (Y,N , ν) each be [0, 1] with the Borel sets
with µ being Lebesgue measure and ν being counting measure (the latter not
being σ-finite).

Let D := {(x, x) : x ∈ [0, 1]} be the diagonal. It is easy to check that
D ∈M×N since Dc, which is open, can be expressed as a countable union
of products of open intervals. (Why?)

Note Dx = {x} for each x ∈ X and Dy = {y} for each y ∈ Y . Note that
the map x → ν(Dx) is the constant function 1 (which is measurable), and
y → µ(Dy) is the constant function 0 (which is measurable). However, we
now have ∫

X

ν(Dx)dµ(x) = 1 6= 0 =

∫
Y

µ(Dy)dν(y).

Moreover, we claim that
(µ× ν)(D) =∞

so that all three expressions in Theorem 5.5 are different.

First, what is the definition of (µ× ν)(D)? Recalling its definition, we need
to show that if the union of a countable set of rectangles {Ai × Bi} covers
D, then

∑
i µ(Ai)× ν(Bi) =∞

To prove this, one needs to break up these rectangles into 3 types.

Type 1: Rectangles where Bi is finite
Type 2: Rectangles where Bi is infinite and Ai has 0 Lebesgue measure.
Type 3: Rectangles whereBi is infinite andAi has positive Lebesgue measure.

One general observation to keep in mind is that for any collection of rectangles
Si × Ti ⋃

i

(Si × Ti) ⊆ (
⋃
i

Si)× (
⋃
i

Ti)

(with strict containment typically occurring).

Case 1: There exists a rectangle Ai×Bi of type 3. Then µ(Ai)×ν(Bi) =∞.

Case 2: There is no rectangle of type 3. In this case, we will show that the
rectangles cannot in fact cover D, which then would complete the proof.

Assume that they do cover. Let B be the union of all the Bi’s coming from
type 1 rectangles. Clearly B is countable and hence the Lebesgue measure
of Bc is 1.
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By the general observation above, the union of all the type 1 rectangles is
contained in [0, 1]×B. Therefore for each x 6∈ B, (x, x) must be contained in
a type 2 rectangle Ai ×Bi. Hence Bc must be contained in the union of the
Ai’s coming from the type 2 rectangles. However, all such Ai’s have Lebesgue
measure 0 and hence so does their union. We have that Bc is contained in
a set of Lebesgue measure 0 but we have seen it has Lebesgue measure 1.
Contradiction.
QED

Remark: The fact that Ex is measurable for every measurable E did not
require σ-finiteness. However, it turns out that without σ-finiteness, not only
can Fubini’s Theorem fail as we just saw, but it can also happen that the
mapping x→ ν(Ex), which is well-defined, is not measurable. (An example
of this was pointed out to me by David Fremlin.)

5.5 The Fubini and Tonelli Theorems

We now state the Fubini and Tonelli Theorems; Theorem 5.5 was an im-
portant special case and we obtain the general version by taking limits and
doing a little work.

Theorem 5.6. Let (X,M, µ) and (Y,N , ν) be σ-finite measure spaces.
(a) (Tonelli)
If f ∈ L+(X × Y ), then

g(x) :=

∫
Y

fx(y)dν(y) ∈ L+(X)

and ∫
X×Y

f(x, y)d(µ× ν)(x, y) =

∫
X

g(x)dµ(x)

i.e., ∫
X×Y

f(x, y)d(µ× ν)(x, y) =

∫
X

∫
Y

fx(y)dν(y)dµ(x)

(b) (Fubini)
If f ∈ L1(X × Y ), then

fx ∈ L1(Y,N , ν) for µ-a.e. x ∈ X.

Furthermore,

g(x) :=

∫
Y

fx(y)dν(y) (which is defined µ-a.e.) belongs to L1(µ)
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and ∫
X×Y

f(x, y)d(µ× ν)(x, y) =

∫
X

g(x)dµ(x).

i.e., ∫
X×Y

f(x, y)d(µ× ν)(x, y) =

∫
X

∫
Y

fx(y)dν(y)dµ(x)

(Same if we switch y and x.)

Outline of Proof:

(a) Unravelling definitions, the case where f is simply an indicator function
is precisely what is covered by Theorem 5.5. The statements are closed
under positive linear combinations and hence we have the result for all simple
functions f . For a general f ∈ L+, choose simple functions (fn) converging
upwards to f . Applying the result to each fn and taking limits, everything
goes through for f by using, among other things, MCT and sometimes using
it twice. (Check the details.)

(b) Part (a) shows that if f ∈ L+ ∩ L1, then

g(x) =

∫
Y

fx(y)dν(y) <∞ for µ-a.e. x and g ∈ L1(µ) (14)

We now want to move from this to f ∈ L1 in which case we write f = f+−f−
with f+, f− ∈ L+ ∩ L1. We then have from (14) that

g+(x) :=

∫
Y

f+(x, y)dν(y) and g−(x) :=

∫
Y

f−(x, y)dν(y)

are each finite for µ-a.e. x and hence fx ∈ L1(Y,N , ν) for µ-a.e. x ∈ X, which
is the first claim. We also have from (14) that both g+(x) and g−(x) are in
L1(µ) and hence so is

g+(x)− g−(x) =

∫
Y

f+(x, y)− f−(x, y)dν(y) =

∫
Y

f(x, y)dν(y),

which was the second claim. Finally, using (a),∫
X×Y

f(x, y)d(µ×ν)(x, y) =

∫
X×Y

f+(x, y)d(µ×ν)(x, y)−
∫
X×Y

f−(x, y)d(µ×ν)(x, y)

=

∫
X

∫
Y

f+
x (y)dν(y)dµ(x)−

∫
X

∫
Y

f−x (y)dν(y)dµ(x) =

∫
X

∫
Y

fx(y)dν(y)dµ(x)

by linearity twice.
QED
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6 Weak and Strong Laws of Large Numbers

in Probability Theory

6.1 The standard concepts from probability (including
independence) placed into our measure theoretic
context

Kolmogorov in around the 1930’s placed probability theory on a firm mathe-
matical basis; the mathematics which was used was measure and integration
theory.

Definition 6.1. A probability space is a measure space (Ω,M, P ) with P (Ω) =
1.

The philosophy or interpretations are as follows:
Ω is the set of “outcomes” of some “random” experiment.
M is the set of “events” to which we will assign a “probability”. For A ∈M,
P (A) is the “probability that the event A occurs”; i.e., the probability that
our “randomly chosen” ω ∈ Ω falls in A.

So, (Ω,M, P ) describes or governs a “random experiment” where P tells us
the “likelihood” that ω (chosen “randomly”) falls in different sets.

Definition 6.2. Given a probability space (Ω,M, P ), a random variable
is a measurable real-valued function X on (Ω,M, P ).

So a random variable is not really random as it is just a function. However, if
ω is “random”, then X(ω) is “random”. Hence we call it a random variable.

Definition 6.3. If X is a random variable on a probability space (Ω,M, P ),
its expectation, denoted E(X), is simply defined by

E(X) =

∫
XdP

provided this exists, meaning at least one of
∫
X+dP and

∫
X−dP is finite.

Definition 6.4. Given a random variable X on a probability space (Ω,M, P ),
the distribution or law of X (see picture) is the probability measure µ on
(R,B) given by

µ(A) := P (X−1(A)).
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Exercise: Prove that µ above is a probability measure.

Remark: The distribution of X contains all the essential information of X.

Definition 6.5. n random variables X1, X2 . . . , Xn on a probability space
(Ω,M, P ) are called independent if for all Borel sets B1, B2 . . . , Bn

P (
n⋂
i=1

X−1i (Bi)) =
n∏
i=1

P (X−1i (Bi)).

The notation is a little messy but the idea not hard: think carefully through
it.

Definition 6.6. An infinite collection of random variables on a probability
space (Ω,M, P ) is called independent if each finite collection is independent
as above.
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6.2 The Laws of Large Numbers

Laws of large numbers say things like “If we flip an infinite number of fair
coins, we obtain half heads in the limit”. However such a statement seems
more philosophical than mathematical. Of course, we now turn this into
mathematics.

Theorem 6.7. (Weak and Strong Law of Large Numbers in a special case)
Let X1, X2, . . . be independent random variables on some probability space
such that the distribution of each Xi is (δ1 + δ−1)/2; i.e., for all i,

P ({ω : Xi(ω) = 1}) = P ({ω : Xi(ω) = −1}) = 1/2.

Then (WLLN)
(i).

Sn
n

:=

∑n
i=1Xi

n
converges in measure (in probability) → 0.

and (SLLN)
(ii).

Sn
n

:=

∑n
i=1Xi

n
converges almost everywhere (almost surely) → 0.

Remarks:
1. Since a.e. convergence implies convergence in measure on finite measure
spaces, (ii) of course implies (i). Nonetheless, it is important to distinguish
them (a) for historical reasons, (b) the proof of WLLN is a little simpler than
that for SLLN and (3) the WLLN holds in certain cases where the SLLN does
not hold. Also, both in fact hold under much weaker assumptions than those
given here but we don’t want to go into that in these notes.
2. The WLLN in this special case could be formulated in the 19th century
since one just needed the concept of a limit of real numbers as each of the
terms looked at concern a finite probability space. However, one did not have
the conceptual framework in the 19th century to even state the SLLN.
3. It is good to ponder over which of these results is more natural from
an applied or even philosophic point of view. I believe the WLLN is more
natural than the SLLN for the following reason. The WLLN tells us that if
you were to flip a coin a zillion times, then with very high probabilty, the
percentage of heads will be in the interval [.499, .5001]. The SLLN tells us
that if you were (for some reason!) to stand and flip a coin an infinite number
of times, then with probability 1, the percentage of heads would converge to
1/2.
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Proof:
We first compute E(S2

n). We have

E(S2
n) = E((

n∑
i=1

Xi)(
n∑
j=1

Xj)) =
n∑

i,j=1

E(XiXj) = n+
n∑

i,j=1,i 6=j

E(XiXj).

Each Xi has expectation 0 (check!) and due to independence E(XiXj) = 0
when i 6= j (convince yourself of this from first principles; you do not need
to use a theorem from probability about the expectation of a product of
independent random variables). We therefore obtain

E(S2
n) = n

and hence, by linearity
E((Sn/n)2) = 1/n.

Finally, fixing ε > 0, we have

P (|Sn/n| ≥ ε) = P ((Sn/n)2 ≥ ε2) ≤ E((Sn/n)2)

ε2
=

1

nε2

where Markov’s inequality was used for the only inequality above. Since the
last term goes to 0 when n→∞ and ε is arbitrary, we have Sn/n goes to 0
in probability. This yields (i).

We now move to (ii) which is a little more involved. It turns out that it
would be useful if we could show that for every ε > 0∑

n

P (|Sn/n| ≥ ε) <∞. (15)

Notice that the upper bound from (i) of 1
nε2

on the summands does not imply
convergence since the harmonic series

∑
1
n

diverges. Let’s however not give
up hope on proving (15) and let’s for the moment see how we can prove (ii)
assuming we can obtain (15) somehow.

Assuming (15), the Borel-Cantelli Lemma tells us that for every ε > 0,

P (|Sn/n| ≥ ε i.o.) = 0.

For integer k, letting Ak := (|Sn/n| ≥ 1/k i.o.), we therefore have P (Ak) =
0 and hence P (

⋃
k Ak) = 0 by countable additivity. This is the same as

P (
⋂
k A

c
k) = 1. Finally, one observes (check this) that

⋂
k A

c
k is exactly the

event that Sn/n converges to 0; i.e., ω ∈
⋂
k A

c
k if and only Sn(ω)/n converges

to 0. Hence P (Sn(ω)/n→ 0) = 1.
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We now need to obtain (15) which we will prove by improving our estimates.
The trick here is to use 4th moments rather than second moments as we had
done in (i). We will show that we can replace the E(S2

n) = n above by

E(S4
n) ≤ 3n2 (16)

which gives E((Sn/n)4) ≤ 3/n2. Assuming this, we fix ε > 0 and we obtain
similar to (i),

P (|Sn/n| ≥ ε) = P ((Sn/n)4 ≥ ε4) ≤ E((Sn/n)4)

ε4
≤ 3

n2ε4
.

This yields (15) as desired.
So we are left with proving (16). Similar to before, we obtain

E(S4
n) =

∑
i,j,k,`

E(XiXjXkX`).

We break the index set into three groups, (a) i = j = k = `, (b) two of i, j, k, `
take one value and two take another value and (c) all other possibilities.
Each of the terms in (a) or (b), which are of the form E(X4

i ) and E(X2
iX

2
j )

respectively, are 1. Note that the terms in (c) include the case where i, j, k, `
are all distinct and things like E(X2

iXjXk) or E(X3
iXj) where i, j, k are

distinct and it is easy to check all of these terms are 0. (Check this.) Hence
E(S4

n) is n + n(n − 1)3 ≤ 3n2 once one combinatorially checks (it can be a
little confusing) that the number of terms of type (b) is n(n− 1)3.
QED

Remark: While we do not need it in these notes, we mention that, while
we have seen much earlier that the converse of the Borel-Cantelli Lemma is
not true, it is true that for independent events

∑
i P (Ei) = ∞ implies that

P (lim supEi) = 1. This is even true under somewhat weaker conditions (for
example pairwise independence) which is crucial for lots of applications.

We mentioned above that the strong law of large numbers holds under much
weaker conditions. We will state but not prove the (almost) optimal result.

Theorem 6.8. (Strong Law of Large Numbers: General case) Let X1, X2, . . .
be independent random variables with the same distribution (on some proba-
bility space) with E(|X|) <∞. Then

Sn
n

:=

∑n
i=1Xi

n
converges a.e. to E(X).
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6.3 Are our Laws of Large Numbers vacuous?

We have proved the laws of large numbers where there was an assumption
that we had an infinite number of independent random variables. However,
do we know that we can even have a probability space with an infinite number
of independent variables? Maybe we cannot and our theorems are vacuous.
Of course, fortunately one can (or otherwise I would be out of a job).

The point of this section is not to do things rigorously with all details but
more to give a flavor of how this is done. I will mention two approaches.

Approach 1: Constructing an infinite product space.
We have seen how to construct the product of a finite number of measure
spaces. It turns out that you can construct even an infinite product of prob-
ability spaces. (It is natural to stick with probability spaces since the total
measure of a finite product is the product of the total measures of each com-
ponent. In order to avoid getting 0 or∞ in an infinite product, it is therefore
natural to take our measures to have total measure 1.) The construction of
such an object uses Theorem 3.29 where the algebra there will be sets de-
scribable by just finitely many coordinates. It takes some work to verify that
the natural ”measure” on this algebra is in fact a premeasure but can be
carried out. Once one has an infinite product space, if we take a sequence of
random variables where the nth one just depends on the nth coordinate of
the infinite product space, then one can check that these random variables
will be independent (this basically follows from the definition of a product
space).

Approach 2: Using the unit interval with Lebesgue measure.
We already have a probability space all set up for us. Consider ([0, 1],B[0,1],m)
where m is Lebesgue measure. Given x ∈ [0, 1], x has a binary expansion

x =
∞∑
n=1

an(x)

2n

where each an(x) ∈ {0, 1}. This is unique except for countably many x’s and
so we can ignore this point. Now, for each n ≥ 1, define the random variable

Xn(x) = 1 if an(x) = 1 and − 1 if an(x) = 0.

Exercise: Convince yourself that these are random variables and that these
random variables X1, X2, . . . are independent and each has distribution (δ1 +
δ−1)/2.
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Concerning the second approach, what does the SLLN say in this case? It
says that a.e. point in [0, 1] (with respect to Lebesgue measure) has asymp-
totically 1/2 1’s in their binary expansion. This statement has nothing to
do with probability and this statement would have made sense to Lebesgue
even before probability theory was formalized.

6.4 Random Series: An interesting aside

The point of this subsection is to state an interesting special case of a theorem
on random series.

Of course we all know that
∑

n
1
n

diverges while
∑

n
(−1)n
n

converges. What
happens if we put a random sign in front of 1

n
? In other words, let {Xn} be

independent random variables with P (Xn = 1) = P (Xn = −1) = 1
2

for each
n and we ask whether

∞∑
n=1

Xn

n

converges. Well if all the Xn’s are 1, then no and if they alternate, then yes.
We should ask what happens a.e. (or a.s.) Interesting we have

Theorem 6.9.
∑∞

n=1
Xn
n

converges a.e.

One can consider a slight variant by considering
∑

n
Xn
nα

instead where α ∈
(0, 1) but the Xn’s are the same as above. Again of course, if the Xn’s
are all 1’s, then we have divergence and if the Xn’s alternate, then we have
convergence. But what do we have a.s.? One obtains the following interesting
theorem showing that α = 1

2
is a ”critical value” for the question.

Theorem 6.10. (i) If α > 1/2, then
∑∞

n=1
Xn
nα

converges a.e.
(ii) If α ∈ (0, 1/2], then

∑∞
n=1

Xn
nα

diverges a.e.. More specificially, one has

that a.e., lim supn→∞
∑n

k=1
Xk
kα

=∞ and lim infn→∞
∑n

k=1
Xk
kα

= −∞.

What is happening that makes α = 1
2

so special? (Disclaimer: The following
explanation uses words and concepts we have not done and so this is not self
contained: the point is just to give a flavor of things).

Answer: It is immediate to check that the variance of
∑n

k=1
Xk
kα

is
∑n

k=1
1
k2α

.
Hence the sum of the variances of the summands is finite if α > 1/2 and
infinite if α ≤ 1/2. That seems like an important difference that could easily
explain the above theorem. It is in fact the reason and certainly gives an
explanation of why α = 1

2
is special. But it doesn’t prove things.

76



For (i), one could start to argue as follows. The fact that the sum of
the variances converges when α > 1/2 implies that the sequence of partial
sums

∑n
k=1

Xk
kα

(indexed by n) is a Cauchy sequence in L2, the Hilbert space of
square integrable functions. Since this is a complete space, this sequence must
converge to something in L2. L2 convergence is stronger than convergence
in measure (convergence in probability) and so one can conclude that these
partial sums converge in probability to something. This still does not yield
the a.e. convergence of the random sum. To obtain this, one needs to use an
inequality by Kolmogorov, (not surprisingly called Kolmogorov inequality)
which does the trick after some work.

For (ii), one needs to use a generalization of the Central Limit Theorem
called the Lindenberg-Feller Central Limit Theorem. This theorem can be
used to show that ∑n

k=1
Xk
kα∑n

k=1
1
k2α

converges in distribution to a standard normal random variable. Since the
denominator approaches ∞, this precludes the a.e. convergence of the ran-
dom series.
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Part II

7 The Lebesgue-Radon-Nikodym Decompo-

sition Theorem

In this second part, we will move into deeper aspects of measure theory. This
chapter will provide a proof of the important Lebesgue-Radon-Nikodym De-
composition Theorem, which can be viewed as two theorems, namely the
Radon-Nikodym Theorem and the Lebesgue Decomposition Theorem. Be-
fore that, we will first have to develop the so-called Hahn and Jordan De-
compositions.

7.1 Signed measures, mutual singularity and the Hahn
and Jordan Decomposition Theorems

Signed measures are something we introduce not so much for generalization
(although there is motivation for that) but as a tool to analyze ordinary
measures. First the definition.

Definition 7.1. If (X,M) is a measurable space, a signed measure is a
map ν from M to [−∞,∞] satisfying
(i) ν(∅) = 0.
(ii) At most one of the values ±∞ are assumed.
(iii) If A1, A2, . . . , are (pairwise) disjoint elements of M, then

ν(
⋃
i

Ai) =
∑
i

ν(Ai)

where the sum on the RHS converges absolutely when the LHS is finite.

Remarks:
a. A measure is a signed measure.
b. If µ1 and µ2 are finite measures (or if at least one is a finite measure),
then µ1 − µ2 is a signed measure. (Prove this!).
c. Condition (ii) is there to avoid having ∞−∞. To see this more clearly,
let X := N with all subsets being measurable. Each k ∈ N has (possibly
negative) measure or weight ν({k}) = ak. If A ⊆ X, we want to define

ν(A) :=
∑
k∈A

ak.
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However, this will only make sense if either the sum of the positive terms or
the sum of the negative terms is finite. (Conditional convergence makes no
sense in this general context since that requires some arbitrary given ordering
on the elements.)

One of the purposes of this subsection is to prove that every signed measure
has the form µ1 − µ2 with µ1 and µ2 being measures with at least one being
a finite measure. This is the so-called Jordan Decomposition Theorem which
proves in fact something stronger, namely that µ1 and µ2 can also be taken
to be mutually singular, a concept we will come to shortly. The hard work
for this result is to first prove the so-called Hahn Decomposition Theorem
which we will do first.

Definition 7.2. If ν is a signed measure on (X,M), a set A ∈M is called
a positive set if ν(B) ≥ 0 for all B ⊆ A with B ∈ M. A is called a
negative set (a null set) if the ≥ is replaced by ≤ (=). (Note that a set is
null if and only if it is both a positive and a negative set.)

Remark: A being a positive set is a strictly stronger statement than ν(A) ≥ 0.
Exercise: Show this with an example.

Theorem 7.3. (Hahn Decomposition Theorem) If ν is a signed measure on
(X,M), then X can be partitioned into two sets P,N (P∪N = X, P∩N = ∅)
with P,N ∈ M where P is a positive set and N is a negative set. There is
“almost uniqueness” in that if (P ′, N ′) is another such partition, then P4P ′
and N4N ′ are each null sets.

Simple Example: Consider ([0, 1],B[0,1]) and we denote m by Lebesgue
measure. Let

ν(A) := m(A ∩ [0,
3

4
])−m(A ∩ (

3

4
, 1]).

Then it is (hopefully) clear that a Hahn decomposition is given by ([0, 3
4
], (3

4
, 1]).

In this case, the Hahn decomposition is essentially “given to you”. The the-
orem says that such a decomposition always exists even though it might not
be apparent from the start.

We separate the slightly harder part into a lemma. Before even this, we
state two easy facts about signed measures which we won’t prove; these are
Propositions 3.1 and Lemma 3.2 in F.
(i) The continuity from below and from above for measures applies to signed
measures as well.
(ii) A measurable subset of a positive set is a positive set (trivial) and a

79



countable union of (not necessarily disjoint) positive sets is a positive set
(easy).

Lemma 7.4. Let ν be a signed measure on (X,M) which does not take the
value ∞. If ν(A) > 0, then there exists a measurable B ⊆ A where ν(B) > 0
and B is a positive set.

Proof:
Observe that any set E with strictly positive ν-measure which is not a positive
set contains a subset B with ν(B) > ν(E). This is because if E is not a
positive set, it contains a set C with strictly negative measure and then, by
finite additivity, E\C would have measure strictly larger than that of E.

Now if the set A is a positive set, we are done. Otherwise, by the previous
paragraph, we have subsets of A with strictly larger measure. We then let
n1 be the smallest possible integer so that there exists A1 ⊆ A so that
ν(A1) ≥ ν(A) + 1

n1
and we then take any such set A1.n If A1 is a positive set,

we are done. Otherwise, let n2 be the smallest possible integer so that there
exists A2 ⊆ A so that ν(A2) ≥ ν(A1) + 1

n2
and we then take any such set

A2. If A2 is a positive set, we are done. Otherwise, we continue inductively
in the same way, constructing (n3, A3), (n4, A4), . . .. The ν-measures of the
An’s are strictly increasing. If some Ak is a positive set, we stop then and
we have what we want. Otherwise this continues forever and we define

A∞ :=
⋂
k

Ak.

We will eventually prove that A∞ is a positive set. We first claim that the
ni’s must go to ∞. To see this, note that for every k,

ν(Ak) ≥ ν(Ak−1) +
1

nk
≥ . . . ≥ ν(A) +

k∑
i=1

1

ni

and hence, by continuity from above and the fact that ν(A) is finite, we have

ν(A∞) = lim
k→∞

ν(Ak) ≥ ν(A) +
∞∑
i=1

1

ni
.

Since ν(A∞) <∞, we obtain that the ni’s must go to ∞.

We now claim that A∞ is a positive set. If not, there would again exist a
subset B of A∞ and an integer ` such that ν(B) ≥ ν(A∞) + 1

`
. Since the
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nk’s are going to ∞, we can choose nk0 > `. This now contradicts the way
Ak0 and nk0 were chosen since we could have chosen B and ` instead of Ak0
and nk0 since

ν(B) ≥ ν(A∞) +
1

`
≥ ν(Ak0−1) +

1

`
.

QED

Proof of Theorem 7.3:
Assume WLOG ∞ is not obtained by ν. Let

m = sup{ν(E) : E is a positive set}.

If m = 0, then Lemma 7.4 implies that X is a negative set (i.e., ν is a negative
measure) and we would be done. Otherwise, we choose a sequence of positive
sets (Pj) so that

lim
j→∞

ν(Pj) = m.

Letting P =
⋃
j Pj, we have that P is a positive set and we have ν(P ) = m.

(Why?) (Note that this implies that m < ∞.) If we can show that P c is a
negative set, we would be done. However, if P c is not a negative set, then
there exists E ⊆ P c with ν(E) > 0. By Lemma 7.4, E would then contain a
measurable subset F which is a positive set and with ν(F ) > 0. This would
imply that P ∪F would be a positive set with ν-measure larger than m. This
is a contradiction and hence we conclude that P c is a negative set.

Finally, for the essential uniqueness, assume that (P ′, N ′) is another such
partition. Since P\P ′ ⊆ P ∩ Q′, P\P ′ is both a positive and a negative set
and hence a null set. The same argument shows that P ′\P is a null set and
hence P4P ′ is a null set. For showing that N4N ′ is a null set one can either
“apply the exact same argument” or better yet, observe that

N4N ′ = P4P ′.

QED

The following definition is a very important definition. We state it for mea-
sures only. The definition for signed measures needs to be slightly modified.

Definition 7.5. Two measures µ and ν on (X,M) are mutually singular
if X can be partitioned into two disjoint sets E and F in M so that µ(E) =
0 = ν(F ). (Loosely speaking, µ “lives on F” and ν “lives on E”.) This is
denoted by µ⊥ν.
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Exercises:
1. If µ and ν are measures on (X,M) where X is a finite set andM consists
of all subsets, characterize exactly when µ⊥ν.
2. Show that any two of the following measures on [0, 1] are mutually singular.
(i) An atomic measure with a countable number of atoms (ii) the Cantor
measure and (iii) Lebesgue measure.
3. It is trivial to find an uncountable number of measures on [0, 1] which are
mutually singular, namely {δx}x∈[0,1]. However, one can in fact also find an
uncountable number of measures on [0, 1] which are mutually singular, none
of which have an atom. Try to do this.
Hint: [0, 1] can be represented by infinite binary sequences and one might
consider the strong law of large numbers with the probability of a 1 varying,
being any number p ∈ [0, 1].

Theorem 7.6. (Jordan Decomposition Theorem) If ν is a signed measure
on (X,M), then there exist unique measures ν+ and ν− so that ν+ and ν−

are mutually singular and
ν = ν+ − ν−.

(The measure ν+ + ν− is called the total variation of ν and is denoted by |ν|;
it is also important.)

Proof:
This is essentially a corollary of the Hahn Decomposition Theorem. Let P,N
be a Hahn decomposition of ν. Let ν+ be the “restriction of ν to P”, meaning

ν+(A) := ν(A ∩ P )

and let ν− be the “restriction of ν to N” but “reversed”, meaning

ν−(A) := −ν(A ∩N).

Then one easily checks that ν+ and ν− are mutually singular measures (do
this!) with

ν = ν+ − ν−.

We skip the uniqueness part; see Theorem 3.4 in F.
QED

The best way (in my opinion) to learn general concepts is to look at lots of
examples.
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Exercises:
1. Consider the signed measure ν on ([0, 1],B[0,1]) given by

ν(A) =

∫
A

(2x− 1)dx.

Find explicitly the Hahn and Jordan decompositions of ν.
2. Consider the signed measure ν on ([0, 1],B[0,1]) given by

ν(A) =

∫
A

(sin(2πx)− cos(2πx))dx.

Find explicitly the Hahn and Jordan decompositions of ν.

7.2 Absolute continuity and the Lebesgue-Radon-Nikodym
Decomposition Theorem

Besides mutual singularity of measures, the following concept will be another
(perhaps even more) central concept in measure theory. We again give the
definition only for measures but it extends fairly easily to signed measures;
see F.

Definition 7.7. Given two measures ν and µ on (X,M), we say that ν is
absolutely continuous with respect to µ, written ν � µ, if for all A ∈M,

µ(A) = 0 implies that ν(A) = 0.

So it says that whenever µ gives a set measure 0, then ν also does. It does
not mean that ν ≤ µ. For example if µ is Lebesgue measure on [0, 1] and ν is
two times Lebesgue measure on [0, 1], then we have ν � µ as well as µ� ν.

The following is a simple but central example illustrating this concept. Con-
sider a measure space (X,M, µ) and a function f ∈ L+((X,M, µ)). Define
ν on (X,M) by

ν(A) :=

∫
A

f(x)dµ(x).

The fact that ν is a measure follows from linearity of the integral together
with the MCT. Note that we already proved this in Proposition 4.13(d) in
the special case that f is a simple function. Next, the fact that ν � µ is
immediate. We will abbreviate this measure by fµ. Amazingly, any measure
which is absolutely continuous with respect to µ has this form, subject to a
σ-finiteness assumption. This is the content of the next theorem.
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Theorem 7.8. (The Radon-Nikodym Theorem) Let ν and µ be two measures
on (X,M) with ν � µ and with ν and µ being σ-finite. Then there exists a
measurable function f0 : (X,M)→ [0,∞) such that for all A ∈M,

ν(A) :=

∫
A

f0(x)dµ(x).

Moreover, f0 is unique in the sense that if g0 is another such function, then

µ{x : f0(x) 6= g0(x)} = 0.

(Of course, modifying f0 on a set of µ-measure 0 still works.)

Remarks: 1. The f0 above is called the Radon-Nikodym Derivative of ν with
respect to µ.
2. If µ is Lebesgue measure on (R,B) and ν is the distribution (or law) of a
random variable which is absolutely continuous with respect to µ, then the
Radon-Nikodym Derivative of ν with respect to µ is simply the “probability
density function” from elementary probability.
3. The theorem is false in general without the σ-finite assumption on µ.
Exercise: Show this by considering the Borel sets on [0, 1] with ν being
Lebesgue measure and µ being counting measure.
4. It turns out however that σ-finiteness of ν is not actually needed as an
assumption provided that f0 is allowed to take the value ∞.

Proof:
We prove this under the assumption that both µ and ν are finite and just
outline the extension to the σ-finite case, leaving the details of the extension
to the reader. Define

F := {f : X → [0,∞) :

∫
A

f(x)dµ(x) ≤ ν(A) ∀A ∈M}.

Note F is nonempty since f ≡ 0 is in F . Let

m := sup{
∫
f(x)dµ(x) : f ∈ F}.

Note that m ≤ ν(X)(<∞).

claim: There exists f0 ∈ F for which
∫
f0(x)dµ(x) = m; i.e. the supremum

above is achieved.

A key observation in proving this is to show that if h1, h2 belong to F , then
max{h1, h2} ∈ F . One sees this by noting that for all A ∈M,∫

A

max{h1, h2}dµ(x) =

∫
A∩{h1≥h2}

h1(x)dµ(x) +

∫
A∩{h1<h2}

h2(x)dµ(x)
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≤ ν(A ∩ {h1 ≥ h2}) + ν(A ∩ {h1 < h2}) = ν(A).

Now choose h1, h2, . . . ⊆ F so that

lim
n→∞

∫
hn(x)dµ(x) = m

If we let
gn := max{h1, h2, . . . , hn}

we have that (1) each gn ∈ F from the above, (2) g1 ≤ g2 ≤ g3 . . . and

lim
n→∞

∫
gn(x)dµ(x) = m

since
∫
hn(x)dµ(x) ≤

∫
gn(x)dµ(x) ≤ m. Finally, letting

f0 := lim
n→∞

gn,

we have (why?) by MCT that f0 ∈ F and that
∫
f0(x)dµ(x) = m, proving

the claim.

Now, letting
ν0 := ν − f0µ

we have that ν0 is a measure and our goal is to show that it is the zero
measure. The idea is to show that if it were not the 0 measure, then we can
push m up a bit, giving a contradiction.

Now, if it were the case that ν0(X) > 0, then there would exist ε > 0 so that

ν0(X)− εµ(X) > 0. (17)

Let (P,N) be a Hahn decomposition for the signed measure ν0 − εµ.

Case 1: µ(P ) = 0. Then, since ν � µ, we have that ν(P ) = 0 and hence
(ν0 − εµ)(P ) = 0, contradicting (17).
Case 2: µ(P ) > 0. Note that

g0 = f0 + εIP ∈ F (this statement is also true in Case 1)

since for all A ∈M∫
A

(f0 + εIP )dµ(x) =

∫
A

f0dµ(x) + εµ(P ∩ A) ≤
∫
A

f0dµ(x) + ν0(P ∩ A)
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≤
∫
A

f0dµ(x) + ν0(A) = ν(A).

Next, since µ(P ) > 0, we have that∫
g0dµ(x) = m+ εµ(P ) > m

contradicting the definition of m. Hence ν0 is the zero measure and we are
done.

For uniqueness, one notes that if µ{x : f0(x) 6= g0(x)} > 0, then WLOG
µ{x : f0(x) > g0(x)} > 0 which yields∫

{x:f0(x)>g0(x)}
f0(x)dµ(x) >

∫
{x:f0(x)>g0(x)}

g0(x)dµ(x)

contradicting the fact that each integral equals ν{x : f0(x) > g0(x)}.
Outline for the σ-finite extension:
For the σ-finite case, one can break up X into countably many pieces each of
which has both finite µ and ν measure. Then one can do the above on each
piece separately and put them altogether.
QED

Exercise: If µ and ν are measures on (X,M) where X is a finite set and
M consists of all subsets, characterize exactly when ν � µ and describe the
Radon-Nikodym derivative.

We will now move to the Lebesgue Decomposition Theorem. F combines the
Radon-Nikodym Theorem and the Lebesgue Decomposition Theorem into
one theorem. I find it clearer pedogogically to separate them although the
proof of the second result will be heavily based on the proof of the first result.
Again, we stick to measures instead of signed measures.

Theorem 7.9. (Lebesgue Decomposition Theorem) Let ν and µ be two mea-
sures on (X,M) with ν and µ being σ-finite. Then there exist unique mea-
sures νac and νs so that

ν = νac + νs

and
νac � µ and νs⊥µ.

In words, given two measures, one can break up the first into two pieces, one
piece which is absolutely continuous with respect to the other measure and
one piece which is singular with respect to the other measure.
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Proof:
We do this only in the case that µ and ν is finite and we also leave the
uniqueness to the reader; see F. We will modify the last part of the proof of
the Radon-Nikodym Theorem and hence one must know the details of that.

We follow the proof of the RNT until and including the definition of ν0. Now,
rather than proving that ν0 is the 0 measure, we will prove it is mutually
singular with respect to µ; this would complete the proof with νac := f0µ
and νs := ν0.

Let (εn) be a decreasing sequence of numbers in (0, 1) converging to 0. Let
(Pn, Nn) be a Hahn decomposition for the signed measure ν0 − εnµ. If there
exists n with µ(Pn) > 0, then we would be in Case (2) of the previous
argument and that argument would lead to a contradiction. Hence we must
have

µ(Pn) = 0 for each n.

Finally, let P :=
⋃
Pn and N :=

⋂
Nn, which gives a partition of X. By

countable additivity, µ(P ) = 0. Also, for each n, we have

ν0(N) ≤ ν0(Nn) ≤ εnµ(Nn) ≤ εnµ(X)

from which it follows that ν0(N) = 0 by letting n → ∞. Hence ν0⊥µ, as
desired.
QED

There are a number of different proofs of the two previous theorems. We give
here an alternative proof of LDT.

Alternative Proof of LDT using the statement of RNT but not its
proof:
Clearly µ� µ+ν and we let f be the corresponding RN derivative. Partition
X by defining X0 := {x : f(x) = 0} and X+ := {x : f(x) > 0} and then we
decompose ν by

ν = ν|X0 + ν|X+

where these two measures are simply ν restricted to X0 and X+ respectively.
Clearly ν|X0(X+) = 0 and µ(X0) = 0 since f vanishes on X0. Hence ν|X0⊥µ.

We now need to show that ν|X+ � µ. We have

µ(A) = 0 implies

∫
A

fd(µ+ν) = 0 implies

∫
A

fdν = 0 implies

∫
A∩X+

fdν = 0

implies ν(A ∩X+) = 0 implies ν|X+(A) = 0.
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QED

Exercises:
1. If µ and ν are measures on (X,M) where X is a finite set andM consists
of all subsets, describe exactly the Lebesgue decomposition of ν with respect
to µ and find the RN derivative for the absolutely continuous piece.
2. Consider the measurable space (R,B) with the two finite measures µ and
ν given below. (m denotes Lebesgue measure here).

ν =
2

3
δ−7 + 100δ4 + 3δ5.5 + (x2)m|[4,6] µ =

1

4
δ4 +

1

2
δ5.5 + δ5.6 + (3x3)m|[5,7].

Determine the Lebesgue decompositions of ν with respect to m (Lebesgue
measure) and with respect to µ and find the RN derivatives for the absolutely
continuous pieces in each case. (One needs to use the fact (see Proposition
3.9 in F) that if m1 � m2 with RN derivative f , then∫

g dm1 =

∫
gf dm2.

Note that when g is an indicator function, then this is just the definition of
the RN derivative; one proves this by extending it to simply functions g by
linearity and then all functions by taking limits.)

We mention here another important but fairly simple decomposition. Given
any σ-finite measure space (X,M, µ) with single points being measurable,
we can always decompose µ into an atomic piece and a continuous piece as
follows. If A is the set of atoms, we can write

µ = µ|A + µ|Ac

and it is immediate to check that µ|A is atomic, µ|Ac is continuous and these
measures are mutually singular.

We end this subsection with one other result which characterizes absolute
continuity in many cases. It will also be used later on.

Proposition 7.10. Let µ and ν be measures with ν finite. Then ν � µ if
and only if for every ε > 0, there exists δ > 0 so that

µ(A) < δ implies that ν(A) < ε.

Proof:
The “if” direction is essentially immediate (and does not require that ν be
finite). Of course, check this.
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The “only if” direction is more work and will use the fact that ν is finite.
We prove the contrapositive. If the statement on the RHS fails, then there
would exist an ε0 > 0 and sets (An) with µ(An) ≤ 1/2n and ν(An) ≥ ε0. Now
consider A := lim supAn. The Borel Cantelli Lemma tells us that µ(A) = 0.
On the other hand, ν(A) ≥ ε0 since for every n

ν(
∞⋃
k=n

Ak) ≥ ε0

and then we let n→∞ using continuity from above for ν which is valid since
ν is a finite measure. This shows that it is not the case that ν � µ.
QED

Remark:
1. Consider the integers with all sets measurable. Let ν be counting measure
and let µ(i) = 1/i. Then ν � µ but the condition on the RHS above fails.
This shows ν being finite is a necessary condition.
2. The argument that ν(A) ≥ ε0 is basically a version of Fatou’s Lemma,
something which is called ”Reverse Fatou” which states that for finite mea-
sure spaces

m(lim supEn) ≥ lim sup
n→∞

m(En).

7.3 What is happening on (R,B)?

It is insightful to see what happens in concrete cases. The following theorem
describes what happens in the case of (R,B).

Theorem 7.11. Let µ be a measure on (R,B) which is finite on compact
sets. Then µ can be decomposed uniquely as

µ = µd + µsc + µac

where µd is an atomic measure (“d” for discrete), µsc is a continuous mea-
sure which is mutually singular with respect to Lebesgue measure and µac is
absolutely continuous with respect to Lebesgue measure.

Proof:
We saw near the end of the previous subsection that we can decompose µ
into an atomic measure which we call µd and a continuous measure µc. We
now apply the Lebesgue Decomposition Theorem with ν being µc and µ being
Lebesgue measure in order to further decompose µc into µsc+µac, completing
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the proof.
QED

Remarks concerning elementary probability: In elementary probability
courses, the distributions of random variables that occur usually either (1)
only have an atomic part µd (so-called discrete random variables, like Pois-
son and geometric distributions) or (2) only have an absolutely continuous
part µac (so-called “continuous” random variables, like exponential and nor-
mal distributions). Sometimes, one might even have both of these parts.
However, from the elementary probability level point of view, one is usually
quite surprised that there are distributions that have a continuous singular
part. Recall the Cantor measure is of this form which has only a continuous
singular piece in the decomposition above. These would be random variables
which are continuous, in the sense that there are no atoms, but which don’t
possess an ordinary probability density function (w.r.t. Lebesgue measure).
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8 Theory of Differentiation in Rn

We now will move into Rn rather than studying measure theory at a more
abstract level. When one moves from the general to the more concrete, one
can obtain deeper results but they require more work.

8.1 Historical comments and the first Lebesgue differ-
entiation theorem

In the middle of the 19th century, mathematicians were attempting to prove
that a continuous function must be differentiable at some point. Weierstrass
then shocked the community when he constructed a continuous nowhere dif-
ferentiable function on [0, 1]. It seems Bolzano also might have constructed
such an object some years earlier. As a side comment, not only do continuous
nowhere differentiable functions exist but most continuous functions are in
fact nowhere differentiable in two different technical senses. First, most con-
tinuous functions are nowhere differentiable in a topological sense: the set of
nowhere differentiable functions contains a dense Gδ (see Subsection 3.14).
Secondly, most continuous functions are nowhere differentiable in a measure-
theoretic or probabilistic sense: there is a natural probability measure on the
space of continuous functions (which is called Brownian Motion and is the
most important process in probability theory) and it is the case that almost
every function (with respect to this measure) is nowhere differentiable.

Given these crazy functions, it is reported to have been a relief when Lebesgue
proved that, on the other hand, increasing functions behave much more
nicely.

Theorem 8.1. (Lebesgue) Let f : [0, 1] → R be monotone (x ≤ y implies
that f(x) ≤ f(y)), then for a.e. x, f is differentiable with a finite derivative.

We will follow F where a more general version concerning measures in Rn is
obtained and then the above will be a corollary. This will involve, among
other things, a so-called covering lemma and the so-called Hardy Littlewood
maximal function.

8.2 The fundamental theorem of calculus

In a certain sense, most of the rest of notes concerns the question of how
one can generalize the fundamental theorem of calculus. Let’s first state the
usual versions of this which are given in calculus classes.
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Theorem 8.2. 1. (First fundamental theorem of calculus).
If f is a continuous function on [a, b] and

F (x) :=

∫ x

a

f(t) dt,

then F ′(x) = f(x) for all x.
2. (Second fundamental theorem of calculus).
If f is a continuously differentiable function on [a, b], then∫ b

a

f ′(x) dx = f(b)− f(a).

We first discuss the first fundamental theorem. First, we will argue that
this cannot possibly hold for all measurable bounded functions. Let f be
a continuous function on [a, b] and let g be any measurable function which
agrees with f a.e. We then have that

∫ x
a
f(t) dt =

∫ x
a
g(t) dt for every x.

Hence we get for every x

(

∫ x

a

g(t) dt)′(x) = f(x)

and therefore

(

∫ x

a

g(t) dt)′(x) = g(x)

will fail at every point x where f(x) 6= g(x). Nonetheless, observe that in
this case we do have, since f = g a.e.,

(

∫ x

a

g(t) dt)′ = g(x) a.e.

So the most one can hope for in general, say for bounded measurable f ,
is that the first fundamental theorem of calculus holds at a.e. x. We will in
fact show this and even obtain a version of this in higher dimensions. This
higher dimensional analogue is called Lebesgue’s Differentiation Theorem,
see Theorem 8.10. We mention that even in 1-d dimension not only can it
happen that (

∫ x
a
g(t) dt)′(x) 6= g(x) but it can also happen that the indefinite

integral
∫ x
a
g(t) dt is not differentiable at certain points. However, a.e., it will

be differentiable AND the derivative will agree with g. This starts to sound a
bit like Theorem 8.1. However the proof of Theorem 8.1 requires something
stronger than Theorem 8.10; it requires a version of this for measures which
is given in Theorem 8.14. This can be a subtle point.
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As far as the second fundamental theorem of calculus, we will stick to 1
dimension but try to understand exactly when it holds. Recall for the Cantor
ternary function, it failed. The answer to when it holds will be intimately
connected to the concept of absolute continuity which we have encountered
in the previous chapter. Unlike the first fundamental theorem of calculus,
we will not look for a generalization of the second fundamental theorem of
calculus in higher dimensions. In nice cases, this would correspond to Stokes
Theorem in vector calculus.

8.3 Approximations by sets and by continuous func-
tions

The following discussion appeared much earlier in F but we have postponed
it since we didn’t need it until now. We will state the results clearly but we
will not cover the proofs. They are not so difficult in any case. They are very
related to exercise 18 in Chapter 1 of F which we presented in the exercises.

First some background: the Borel σ-algebra on Rn, denoted by Bn, can be
equivalently described as either (1) the σ-algebra generated by the open sets
in Rn or (2) the product σ-algebra coming from (R,B). Proposition 1.5 in F
says that these are equivalent.

Theorem 8.3. Let m be Lebesgue measure on Rn.
1. (Theorem 2.40 in F) For any Borel set E ⊆ Rn (and even for any Lebesgue
measurable set), we have

m(E) = sup{m(K) : K ⊆ E,K compact }.

2. (Theorem 2.41 in F) If f ∈ L1(Rn,Bn,m) and ε > 0, then there exists a
continuous function g on Rn so that∫

Rn
|f(x)− g(x)|dm(x) < ε

We will also need to approximate sets with respect to other measures.

Definition 8.4. A Borel measure ν on Rn (meaning a measure on (Rn,Bn))
is regular if ν(K) <∞ for all compact sets K ⊆ Rn.

Theorem 8.5. Let ν be a regular Borel measure on Rn. If E is a Borel set,
then

ν(E) = inf{ν(O) : O ⊇ E,O open }.
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It is the case that the statements in Theorem 8.3 are also true for all Borel
measures on Rn but I wanted to just write down the minimum which we
need.

8.4 A covering lemma

There are many types of so-called covering lemmas in analysis. The one
which will be useful for our purposes here is the following. m will always
denote Lebesgue measure.

Theorem 8.6. (A covering lemma)
Let C be a collection of open balls in Rn with U being their union. For all
c < m(U), there exist B1, B2, . . . , Bk ∈ C which are disjoint satisfying

k∑
i=1

m(Bi) ≥
c

3n
.

Note that in the special case that C is finite, this says that we can cover a
fixed uniform proportion of U by disjoint balls from C.
Proof:
By Theorem 8.3(1), choose K ⊆ U compact so that m(K) > c and by
compactness, choose A1, . . . , Am ∈ C which cover K. Now, restricting to
A1, . . . , Am, we choose B1 among these to have maximal size. Then choose
B2 among these to have maximal size but disjoint from B1. Then choose B3

among these to have maximal size but disjoint from B1 ∪ B2. Continue as
far as possible. Let B1, B2, . . . , Bk be the obtained sets which are certainly
disjoint.

Claim: If Ai is not in the final list B1, B2, . . . , Bk, then for some j

Ai ⊆ B∗j (18)

where B∗j is the ball concentric with Bj but with three times the radius.
To see this, since Ai was not chosen, it must have intersected one of the
Bj’s. The first Bj which Ai intersects must be at least as large as Ai since
otherwise we would have chosen Ai instead of Bj at that stage. (18) now
follows geometrically.

(18) implies that
⋃k
j=1B

∗
j ⊇ K which in turn yields

c < m(K) ≤ m(
k⋃
j=1

B∗j ) ≤
k∑
j=1

m(B∗j ) = 3n
k∑
j=1

m(Bj).

QED
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8.5 The Hardy-Littlewood Maximal Theorem in Eu-
clidean Space

B(x, r) will denote the open ball about x with radius r.

Definition 8.7. A function f : Rn → R is said to be in L1
loc if f is inte-

grable with respect to Lebesgue measure when restricted to any compact set
(equivalently, if for every x, there is an r so that f is integrable on B(x, r)
with respect to Lebesgue measure).

For f ∈ L1
loc, x ∈ Rn and r > 0, we define

Arf(x) :=
1

m(B(x, r))

∫
B(x,r)

f(y)dm(y)

which is simply the average of f over the ball around x with radius r.

Remarks:
1. If f is continuous at x, it is easy to see (check this) that

lim
r→0

Arf(x) = f(x).

2. It is clear that this cannot occur for all f and for all x since if we modify
a continuous function by changing its value at one point, this convergence
would clearly fail at that point.
3. Perhaps one would hope that the above convergence would occur at a.e.
x for any f ; this is indeed the case and one of the things that we want to
prove.
4. It is believable and not so hard to prove that for any f ∈ L1

loc, Arf(x) is
a continuous function of (r, x); we will not prove this, see Lemma 3.16 in F.

The following so-called Hardy-Littlewood Maximal function and its subse-
quent theorem will be crucial to prove our first “differentiation theorem”.

Definition 8.8. If f ∈ L1
loc(R

n), then the Hardy-Littlewood Maximal
function Hf is defined by

Hf(x) := sup
r>0

Ar|f |(x).

Exercise: If f ∈ L1(Rn), then for all x one has limr→∞Ar|f |(x) = 0.

One checks that Hf is a measurable function by noting that

(Hf)−1(α,∞) =
⋃
r>0

(Ar|f |)−1(α,∞)

is open by remark 4 above.

95



Theorem 8.9. (Hardy-Littlewood Maximal Theorem)
If f ∈ L1(Rn), then for all α > 0,

m({x : Hf(x) > α}) ≤ 3n

α

∫
|f |dm(x)

Proof:
Let Eα := {x : Hf(x) > α}. For each x ∈ Eα, there exists rx > 0 so that

Arx|f |(x) > α.

Given c < m(
⋃
x∈Eα B(x, rx)), Theorem 8.6 allows us to find x1, . . . , xk in Eα

so that the k balls {B(xi, rxi)} are disjoint and

c

3n
≤

k∑
i=1

m(B(xi, rxi)).

However, by the way we have chosen the rx’s, we have

k∑
i=1

m(B(xi, rxi)) ≤
k∑
i=1

1

α

∫
B(xi,rxi )

|f |(x)dm(x) ≤ 1

α

∫
|f |(x)dm(x)

where the last inequality follows from the disjointness of the balls. Since this
is true for all c < m(Eα), we are done.
QED

8.6 Differentiation of functions with respect to Lebesgue
measure in Rn

Theorem 8.10. (The differentiation theorem for functions)
If f ∈ L1

loc(R
n), then for Lebesgue a.e. point x

lim
r→0

Arf(x) = f(x).

Remarks before starting the proof.
(i) The proof uses the notion of a lim sup for functions, not just sequences;
this is done in the “obvious” way, see F, pg 96 if not clear.
(ii) In the proof, we will introduce a set called Eα; this is not the same Eα
which was defined in the previous proof. However, since these sets are only
“locally defined” in a proof, no confusion should arise.
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Proof:
It suffices to show this for a.e. point in [−N,N ]n and therefore we may assume
f is 0 outside of [−N − 1, N + 1]n in which case we have that f ∈ L1(Rn).
Fix α and let

Eα := {x : lim sup
r→0

|Arf(x)− f(x)| > α}.

If we can show that m(Eα) = 0 for each α, then this implies the theorem
since the set of points where the conclusion of the theorem fails is exactly
equal to

⋃
nE 1

n
which then also has measure 0. (Note that it is not apriori

obvious that Eα is Lebesgue measurable; however the proof will show that it
is contained inside measurable sets of arbitrarily small measure. It will then
follow that its outer measure is zero and hence by completeness it will be
Lebesgue measurable. The same comment applies to the rest of the chapter.)

We now fix α > 0 and show m(Eα) = 0. Fix ε > 0. By Theorem 8.3, we can
find a continuous integrable function g with∫

Rn
|f(x)− g(x)|dm(x) < ε.

Observe that

lim sup
r→0

|Arf(x)−f(x)| = lim sup
r→0

|Arf(x)−Arg(x)+Arg(x)−g(x)+g(x)−f(x)| =

lim sup
r→0

|Ar(f − g)(x) + Arg(x)− g(x) + g(x)− f(x)| ≤

lim sup
r→0

|Ar(f − g)(x)|+ lim sup
r→0

|Arg(x)− g(x)|+ lim sup
r→0

|g(x)− f(x)|.

The first term is at most H(f − g)(x) and the second term is 0 since the
theorem is easily checked for continuous functions (details in F if needed).
Hence

lim sup
r→0

|Arf(x)− f(x)| ≤ H(f − g)(x) + |g(x)− f(x)|.

If the first term is larger than α, then at least one of the terms on the RHS
have to be larger than α/2, i.e.,

Eα ⊆ {x : H(f − g)(x) >
α

2
} ∪ {x : |g(x)− f(x)| > α

2
}.

Hence

m(Eα) ≤ m({x : H(f − g)(x) >
α

2
}) +m({x : |g(x)− f(x)| > α

2
}).
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Using Theorem 8.9 for the first term and Markov’s inequality on the second
term, we get

m(Eα) ≤ 2(3n)

α
ε+

2

α
ε.

Since this is true for every ε > 0, we can conclude m(Eα) = 0.
QED

8.7 The Lebesgue set of a function and other ”small
sets shrinking nicely”

Theorem 8.10 which states that for any function f which is locally integrable,
one has for Lebesgue a.e. point x

lim
r→0

1

m(B(x, r))

∫
B(x,r)

(f(y)− f(x))dm(y) = 0

this might be due to some cancellation. The following stronger result shows
that this is not the case.

Theorem 8.11. (Lebesgue points)
For any function f which is locally integrable, one has for Lebesgue a.e. point
x

lim
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)|dm(y) = 0. (19)

(The set of x where this holds is called the Lebesgue set of f and is denoted
by Lf .)

Proof:
For each q ∈ Q, let gq(x) := |f(x) − q|. By Theorem 8.10 applied to gq, we
have

lim
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− q|dm(y) = |f(x)− q|

for all x except a set Eq of Lebesgue measure 0. Since m(
⋃
q∈QEq)) = 0, it

is enough to show that (19) holds for x 6∈
⋃
q∈QEq. Fix such an x and let

q ∈ Q. We have

lim sup
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)|dm(y) ≤

lim sup
r→0

1

m(B(x, r))

∫
B(x,r)

(|f(y)− q|+ |f(x)− q|)dm(y) ≤
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lim sup
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− q|dm(y) + |f(x)− q| =

|f(x)− q|+ |f(x)− q|.

Since this inequality holds for all q ∈ Q, the LHS is 0.
QED

Having this stronger version allows us to replace the balls {B(x, r)} by other
types of sets. This will be useful when we prove Lebesgue’s Theorem for
monotone functions in one dimension, Theorem 9.1.

Definition 8.12. A collection of Borel sets {Er}0<r≤1 is said to shrink
nicely to x if for all r ∈ (0, 1], Er ⊆ B(x, r) and there exists α > 0 so
that m(Er) ≥ αm(B(x, r)) for all r. (The second condition says that each
Er occupies a substantial proportion of B(x, r); also there is no requirement
that x ∈ Er.)

Exercise: Show that in R2, Er := [0, r
2
] × [0, r

200
] shrinks nicely to (0, 0) but

Er := [0, r
2
]× [0, r

2

2
] does not shrink nicely to (0, 0).

Corollary 8.13. Let f be locally integrable. If x belongs to the Lebesgue set
Lf (and hence for m a.e. x) and {Er}0<r≤1 are Borel sets shrinking nicely
to x, then

lim
r→0

1

m(Er))

∫
Er

|f(y)−f(x)|dm(y) = 0 and lim
r→0

1

m(Er))

∫
Er

f(y)dm(y) = f(x).

(20)

Proof:
The second statement follows from the first and the first follows immediately
from observing

1

m(Er))

∫
Er

|f(y)− f(x)|dm(y) ≤ 1

αm(B(x, r))

∫
B(x,r)

|f(y)− f(x)|dm(y).

QED

As a special case, if f ∈ L1([0, 1]), letting Er(x) := [x, x+ r], one has that

(

∫ x

0

f(t)dm(t))′(x) = f(x) for a.e. x.
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8.8 Differentiation of measures with respect to Lebesgue
measure in Rn

Theorem 8.14. (The differentiation theorem for measures)
Let ν be a regular Borel measure on Rn whose Lebesgue decomposition with
respect to Lebesgue measure is given by νs + fm. Then

lim
r→0

ν(B(x, r))

m(B(x, r))
= f(x) exists for Lebesgue a.e. x.

Remark: If ν � m, this reduces to Theorem 8.10.

Proof:
By writing

ν(B(x, r)) = νs(B(x, r)) +

∫
B(x,r)

f(y)dm(y),

it suffices, in view of Theorem 8.10, to prove that for any regular Borel
measure λ singular with respect to Lebesgue measure we have

lim
r→0

λ(B(x, r))

m(B(x, r))
= 0 for Lebesgue a.e. x. (21)

By mutual singularity, there is a Borel set A with λ(A) = 0 = m(Ac). By
countable additivity, it is enough to show that for each `

F` := {x ∈ A : lim sup
r→0

λ(B(x, r))

m(B(x, r))
>

1

`
}

has Lebesgue measure 0.

Fix now ε > 0 and by Theorem 8.5, choose an open set Uε ⊇ A with λ(Uε) < ε.
For each x ∈ F` (⊆ A ⊆ Uε), choose rx > 0 such that B(x, rx) ⊆ Uε and

λ(B(x, rx)) >
m(B(x, rx))

`
.

Given c < m(
⋃
x∈F` B(x, rx)), Theorem 8.6 allows us to find x1, . . . , xk in F`

so that the k balls B(xi, rxi) are disjoint and

c

3n
≤

k∑
i=1

m(B(xi, rxi)).
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However, by the way we have chosen these balls, we have

k∑
i=1

m(B(xi, rxi)) ≤
k∑
i=1

`λ(B(xi, rxi)) ≤ `λ(Uε) < `ε

where the second to last inequality follows from the disjointness of the balls.
Hence c < 3n`ε for all c < m(

⋃
x∈F` B(x, rx)) and so

m(
⋃
x∈F`

B(x, rx)) ≤ 3n`ε.

Finally, since F` ⊆
⋃
x∈F` B(x, rx), we have that

m(F`) ≤ 3n`ε

for all ε > 0. This gives m(F`) = 0 as desired.
QED

Remark: Sometimes it is important for understanding to take a step back
and try to see what is happening at a more heuristic level. The key part is
to show that m(F`) = 0. Why should this be true? At each point of F`, λ is
giving small balls measure at least 1

`
times their Lebesgue measure. In other

words, near each point of F`, λ is ”expanding” things by a factor of at least
1
`
. Since this is happening at every point of F`, it is reasonable that

λ(F`) ≥
1

`
m(F`). (22)

If one had this, one is done since F` ⊆ A implying the LHS is 0 and hence
m(F`) = 0. Finally, the point of the covering lemma is to allow us to rigor-
ously go from the ”local information” that we have to ”global information”
given by some weaker variant of (22).

In the exact same way that Corollary 8.13 was proved, one can obtain the
following corollary from Theorem 8.14.

Corollary 8.15. Let ν be a regular Borel measure on Rn whose Lebesgue
decomposition with respect to Lebesgue measure is given by νs + fm. Then
for Lebesgue a.e. x, we have that if {Er}0<r≤1 are Borel sets shrinking nicely
to x, then

lim
r→∞

ν(Er)

m(Er)
= f(x).
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8.9 What is happening on the singular set itself? An
interesting aside

In this section, we give a result complementary to our last result. More
specifically, (21) tells us that for a singular measure, the limit of the ratios
of the measures of the balls is 0 for a typical point with respect to Lebesgue
measure. One can now ask how the limit of the ratios of the measures of
the balls behave for a typical point with respect to the singular measure
λ instead. The next result tells us this is ∞ and the proof is similar to
obtaining (21).

Theorem 8.16. (The differentiation theorem on a singular set)
Let λ be a regular Borel measure on Rn singular with respect to Lebesgue
measure. Then

lim
r→0

λ(B(x, r))

m(B(x, r))
=∞ for λ a.e. x.

Proof:
By mutual singularity, there is a Borel set S with λ(Sc) = 0 = m(S). By
countable additivity, it is enough to show that for each `

F` := {x ∈ S : lim inf
r→0

λ(B(x, r))

m(B(x, r))
< `}

has λ measure 0. It suffices by Theorem 8.3(1) (using the comment later
that this result applies to all Borel measures), to show that for all compact
C ⊆ F`, λ(C) = 0.

Fix now ε > 0 and by Theorem 8.5 (or directly from the definition of Lebesgue
measure), choose an open set Uε ⊇ S with m(Uε) < ε. For each x ∈ C (⊆
F` ⊆ S ⊆ Uε), choose rx > 0 such that B(x, rx) ⊆ Uε and

λ(B(x, rx)) ≤ `m(B(x, rx)).

By compactness, there exist x1, . . . , xn ∈ C so that C ⊆
⋃n
i=1B(xi,

rxi
3

).
By the proof of Theorem 8.6, one can find a subcollection of these balls,
corresponding to y1, . . . , ym ∈ C, so that these balls are disjoint and C ⊆⋃m
j=1B(yj, ryj).

We now have, using disjointness for the last equality,

λ(C) ≤ λ(
m⋃
j=1

B(yj, ryj)) ≤
m∑
j=1

λ(B(yj, ryj)) ≤ `
m∑
j=1

m(B(yj, ryj))

= `3n
m∑
j=1

m(B(yj,
ryj
3

)) = `3nm(
m⋃
j=1

B(yj,
ryj
3

)) ≤ `3nm(Uε) ≤ `3nε.

QED
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8.10 An alternative proof of the Differentiation of func-
tions with respect to Lebesgue measure in Rn

avoiding the Hardy-Littlewood Maximal inequal-
ity and approximation by continuous functions:
An interesting aside

There are other possible approaches to the differentiation theorems than
those which were presented here. Some can avoid both the Hardy-Littlewood
Maximal inequality and approximation by continuous functions. Here we
follow an approach by Rudin (Real and Complex Analysis, second but not
third edition).

The first step is in fact part of the proof of Theorem 8.14; this will not be a
circular argument.

Lemma 8.17. Let λ be a Borel measure on Rn and let A be a Borel set with
λ(A) = 0. Then there exists A′ ⊆ A so that

(i) m(A\A′) = 0

and

(ii) lim
ε→0

λ(B(x, ε))

m(B(x, ε))
= 0 for x ∈ A′.

Proof:
The proof of this is contained in the second half of the proof of Theorem 8.14,
starting from (21). Looking at this proof, it shows exactly that for any A with
λ(A) = 0 (not assuming any mutual singularity), we obtain A′ as claimed in
the lemma, namely A′ = A\ (

⋃
`=1 F`).

QED
Note that this uses Theorems 8.5 and 8.6 but avoids the Hardy-Littlewood
Maximal inequality and approximation by continuous functions.

Alternative Proof of Theorem 8.10 avoiding HLM and approximation:
Let λ := fdm so that f is the Radon-Nikodym derivative of λ with respect
to Lebesgue measure. We need to show that

lim
ε→0

λ(B(x, ε))

m(B(x, ε))
= f(x) for m− a.e. x

Fix r ∈ Q and let Ar := {x : f(x) < r} and Br := {x : f(x) ≥ r}(= Acr).
Define the Borel measure λr by

λr(E) :=

∫
E∩Br

(f(x)− r)dm(x).
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In words, λr is the measure concentrated on Br with Radon-Nikodym deriva-
tive (f(x)−r)IBr with respect to Lebesgue measure. Note that λr is a positive
measure. Since λr(Ar) = 0, by the previous lemma, there exists A′r ⊆ Ar
with

m(Ar\A′r) = 0

and

lim
ε→0

λr(B(x, ε))

m(B(x, ε))
= 0 for x ∈ A′r. (23)

Letting Y :=
⋃
r∈Q (Ar\A′r), we have m(Y ) = 0. It now suffices to show that

lim
ε→0

λ(B(x, ε))

m(B(x, ε))
= f(x) for x 6∈ Y.

Fix x 6∈ Y and and choose r > f(x) with r ∈ Q. Note that for any set E

λ(E)− rm(E) =

∫
E

(f(y)− r)dm(y) ≤ λr(E)

the inequality holding since λr(E) is a restriction of the integral to where the
integrand is nonnegative. This yields

λ(B(x, ε))

m(B(x, ε))
≤ λr(B(x, ε))

m(B(x, ε))
+ r.

Since x ∈ Ar\Y , we have x ∈ A′r and hence, using (23), we obtain

lim sup
ε→0

λ(B(x, ε))

m(B(x, ε))
≤ r.

Since this is true for all r > f(x) with r ∈ Q, we obtain

lim sup
ε→0

λ(B(x, ε))

m(B(x, ε))
≤ f(x).

So this inequality holds for m-a.e. x.
Applying the same argument to −f which corresponds to −λ, we have

lim sup
ε→0

−λ(B(x, ε))

m(B(x, ε))
≤ −f(x)

or

lim inf
ε→0

λ(B(x, ε))

m(B(x, ε))
≥ f(x)

for m-a.e. x.
QED
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9 Differentiation in 1-dimension: Lebesgue’s

famous Theorem, Bounded variation, ab-

solute continuity

We begin this section with proving Lebesgue’s Theorem.

9.1 Lebesgue’s differentiation theorem in 1-dimension

Theorem 9.1. Let F be a right continuous increasing function on [0, 1].
Then F has a finite derivative at Lebesgue a.e. x.

Remarks:
(1). The theorem is true without the right continuity assumption (see The-
orem 3.23 in F.); however this assumption makes things simpler.
(2). Before starting the proof, we point out that there is an issue here which
can be confusing. Even though we are looking at differentiation of the par-
ticular function F , it is not Theorem 8.10 and Corollary 8.13 which will be
used but rather Theorem 8.14 and Corollary 8.15.

Proof:
Let ν be the Borel measure on [0, 1] associated with F so that

ν((a, b]) = F (b)− F (a).

Let ν = νs + fdm be the Lebesgue decomposition of ν with respect to m.
We have that for h > 0

F (x+ h)− F (x)

h
=

ν((x, x+ h])

m((x, x+ h])

and so Corollary 8.15 (with Er = (x, x+ r]) tells us that

lim
h↓0

F (x+ h)− F (x)

h
= f(x)

for Lebesgue a.e. x. Next, for h < 0

F (x+ h)− F (x)

h
=

ν((x+ h, x])

m((x+ h, x])

and so Corollary 8.15 (with Er = (x− r, x]) tells us that

lim
h↑0

F (x+ h)− F (x)

h
= f(x)
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for Lebesgue a.e. x.
QED

Remark: The proof shows that the derivative of F corresponds a.e. to the
Radon-Nikodym derivative of the absolute continuous part of ν with respect
to m. This corresponds to the fact in elementary probability that, in nice
cases, the probability density function is simply the derivative of the distri-
bution function.

Remark: The following fact is not covered in most books. It turns out that
if F is monotone increasing on [0, 1] and is discontinuous at a dense set of
points, then, although F is differentiable a.e., it is necessarily the case that
the set of points where F is not differentiable is very large topologically in
that it contains a dense Gδ (see Subsection 3.14).

9.2 Bounded variation and absolute continuity

We now begin to study some important properties of functions from [0, 1] to
R. We will also be discussing the relationship between these properties and
properties of the associated measures in the sense of Subsection 3.10.

Definition 9.2. If f : [0, 1] → R, we define the total variation of f on
[a, b] ⊆ [a, b] to be

TV[a,b](f) := sup{
n∑
i=1

|f(xi)− f(xi−1)| : a = x0 < x1 < x2 < . . . < xn = b}.

(24)
We say f is of bounded variation on [a, b] if TV[a,b](f) < ∞; otherwise
we say f is of unbounded variation on [a, b].

Remarks:
(i). If f is monotone increasing, then TV[a,b](f) = f(b)− f(a).
(ii). TV[a,b](−f) = TV[a,b](f).
(iii). If f is the indicator function of the rationals, then f is of unbounded
variation on every (nontrivial) interval.

Exercises:
1. Check all the remarks above.
2. If f has a continuous derivative on [a, b], then f is of bounded variation
on [a, b].
3. If f is Lipschitz continuous on [a, b], then f is of bounded variation on
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[a, b].
4. Show that the continuous function

f(x) = x cos(
π

2x
) (defined to be 0 at 0)

is of unbounded variation on [0, 1] but of bounded variation on [ε, 1] for each
ε > 0. (So the “problem” is occuring at 0.)

The following is the key characterization of functions of bounded variation.

Theorem 9.3. f is of bounded variation on an interval if and only if there
exist increasing functions g and h so that f = g − h.

Proof Outline:

The “if” direction is quite easy and left as an exercise. The “only if” direction
is more difficult and more interesting.

Step 1: Claim:
TV[a,c](f) = TV[a,b](f) + TV[b,c](f).

Every partition of [a, b] and [b, c] yields a partition of [a, c] which easily yields
≥. Next, using the fact that the sums in (24) can only increase with a finer
partition, we can assume all partitions of [a, c] which we consider include b
which then easily yields ≤. In particular TV[a,x](f) is an increasing function
of x.

Step 2: TV[0,x](f) + f(x) is an increasing function of x.
subproof: If 0 ≤ x < y ≤ 1,

f(x)− f(y) ≤ |f(x)− f(y)| ≤ TV[x,y](f) = TV[0,y](f)− TV[0,x](f)

where the last equality comes from Step 1. Now rewrite. subQED

Step 3: Note that

f(x) =
TV[0,x](f) + f(x)

2
−
TV[0,x](f)− f(x)

2
.

The two summands are increasing in x by Step 2, where for the second term
we also use the fact that TV[0,x](−f) = TV[0,x](f).
QED
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There is a 1-1 correspondence between signed measures and functions of
bounded variation. The bijection is given by µ a signed measure on [0, 1] is
sent to the bounded variation function

Fµ(x) := µ([0, x].

This is elaborated in the following discussion.

Exercise: Prove the claim above.

Discussion: If f is of bounded variation, then one can define the so-called
Lebesgue-Stieltjes integral of a function r with respect to f which is defined
as ∫

r(x)df(x) :=

∫
r(x)dµg(x)−

∫
r(x)dµh(x)

where g, h are increasing, f = g−h and µg and µh are the measures associated
to g and h. If f is not of bounded variation, then

∫
r(x)df(x) is not defined.

In nice cases, for example if f is continuously differentiable, then it turns out
that ∫

r(x)df(x) =

∫
r(x)f ′(x)dx. (25)

In addition, by Theorems 9.1 and 9.3 when f is of bounded variation, f ′ ex-
ists and is finite a.e. Therefore the RHS of (25) is then defined but nonethe-
less (25) may fail. (This is similar to the failure of the fundamental theorem
of calculus for the Cantor function defined earlier.) To understand when (25)
will hold brings us to our next important concept.

Definition 9.4. f : [0, 1] → R is absolutely continuous if for all ε > 0,
there exists δ > 0 so that if 0 ≤ x1 < y1 < x2 < y2 < . . . , xn < yn ≤ 1 and

n∑
i=1

(yi − xi) < δ,

then
n∑
i=1

|f(yi)− f(xi)| < ε.

Clearly absolute continuity implies continuity and hence uniformity continu-
ity since we are in a compact interval.

Exercise: Show that the Cantor ternary function, which is continuous, is not
absolutely continuous.

The expression “absolute continuity” has been used in two completely differ-
ent contexts. The next proposition justifies this terminology.
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Proposition 9.5. (Proposition 3.32 in F.) Let f be a nonnegative monotone
increasing function on [0, 1] with f(0) = 0. Then f is absolutely continuous
if and only if µf � m where m is Lebesgue measure.

Proof:
First, note that f is continuous if and only if µf has no atoms. If these
equivalent conditions fail, then both sides in the proposition fail. Hence we
can assume that f is continuous or equivalently µf is continuous (i.e. no
atoms).

Now, the “if” direction is fairly straightforward. Let ε > 0 and choose δ > 0
using Proposition 7.10 so that

m(A) < δ implies that µf (A) < ε.

Now if 0 ≤ x1 < y1 < x2 < y2 < . . . , xn < yn ≤ 1 with
∑n

i=1(yi − xi) < δ,
then we have that

m(
n⋃
i=1

(xi, yi)) < δ

implying that

µf (
n⋃
i=1

(xi, yi)) < ε

which is equivalent to
n∑
i=1

|f(yi)− f(xi)| < ε.

To prove the ”only if” direction, assume that m(A) = 0 for some Borel set A.
We need to show that µf (A) = 0. Fix ε > 0 and choose the corresponding δ
in the definition of absolute continuity of f . Let U be an open set containing
A with m(U) < δ and write U as a disjoint union of open intervals {(ai, bi)}.
Since we have for any N

N∑
i=1

(bi − ai) < δ,

it follows that
N∑
i=1

|f(bi)− f(ai)| < ε

and so µf (
⋃N
i=1(ai, bi)) < ε. By letting N → ∞, we have µf (U) ≤ ε. Since

A ⊆ U , this gives µf (A) ≤ ε and since ε is arbitrary, we get µf (A) = 0, as
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desired.
QED

The following easy result relates Bounded Variation and absolute continuity.

Proposition 9.6. If f : [0, 1] → R is absolutely continuous, then it has
bounded variation.

Proof:
Let δ correspond to ε = 1 in the definition of absolute continuity for f .
Choose N to be an integer larger than 1/δ. Choose an arbitrary partition
0 = x0 < x1 < x2 < . . . < xn = 1. Since refining a partition only increases
the sum in the definition of total variation, we can assume that x0 < x1 <
x2 < . . . < xn contain the points k/N for each integer k. Then by breaking

n∑
i=1

|f(xi)− f(xi−1)|

into pieces corresponding to [0, 1/N ], [1/N, 2/N ], . . . , [(N −1)/N, 1], the sum
over each piece is at most ε = 1 since the length of each interval is less than
δ. Since there are N intervals, we get a bound of N on the total variation.
QED

Remark: The Cantor Ternary function has bounded variation being increas-
ing, showing that bounded variation does not imply absolute continuity.

9.3 The fundamental theorem of calculus

Recall that an increasing function has a derivative a.e. One can ask if the
fundamental theorem of calculus holds.
Question: If f : [0, 1]→ R is increasing, does∫ 1

0

f ′(x) = f(1)− f(0)?

Note that for the Cantor Ternary function, the LHS is 0 and the RHS is
1. This is indicative of how this inequality may fail for monotone increasing
functions.

Proposition 9.7. If f : [0, 1]→ R is monotone increasing, then∫ 1

0

f ′(x) ≤ f(1)− f(0).
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We will see later why this is true by interpreting everything in terms of
measures. Here we give a fairly easy direct proof based upon Fatou’s Lemma.

Proof:
Given any increasing f and h ∈ (0, 1), we let, for x ∈ [0, 1],

Diffhf(x) :=
f(x+ h)− f(x)

h

be a discrete approximation to the derivative. In order that Diffhf(x) is
defined for all x, we extend f to have value f(1) on [1, 1 + h]. (Since h will
go to 0, this will be of no significance.)

Next let, for h ∈ (0, 1),

Avhf(x) :=
1

h

∫ x+h

x

f(t)dt

be the average of f on [x, x + h]. It is elementary to check that for each
h ∈ (0, 1), ∫ 1

0

Diffhf(x) = Avhf(1)− Avhf(0).

Now, we have that for a.e. x

lim
h→0

Diffh(x) = f ′(x)

and all functions are nonnegative since f is increasing. It then follows from
Fatou’s Lemma that∫ 1

0

f ′(x)dx ≤ lim inf
h→0

∫ 1

0

Diffh(x)dx

and the RHS equals by the above

lim inf
h→0

(Avhf(1)− Avhf(0)) ≤ f(1)− f(0).

QED

The following theorem is a consequence of a number of the theorems we have
previously proved.

Remark: To keep things simpler, we assumed that f is monotone. Things
can also be done when f is of bounded variation in which case µf is defined
but is a signed measure. The formulation of the result in that more general
case is however a little bit different.
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Theorem 9.8. Let f be a nonnegative monotone increasing function on [0, 1]
with f(0) = 0. Let µf be the associated measure on [0, 1] and consider the
Lebesgue decomposition of µf with respect to Lebesgue measure

µf = µs + µac.

Then the following hold.
1. The Radon-Nikodym derivative of µac with respect to Lebesgue measure is
given by f ′.
2.

µac[0, 1] =

∫ 1

0

f ′(x)dx.

3. f is absolutely continuous if and only if
∫ 1

0
f ′(x)dx = f(1)−f(0). (So the

second fundamental theorem of calculus holds if and only if f is absolutely
continuous.)
4. µf is singular if and only if f ′(x) = 0 a.e.

Proof:
The first statement is stated in the remark right after Theorem 9.1. This
immediately implies the second statement. For the third statement, using
Proposition 7.10, we have that f is absolutely continuous if and only if µf
is absolutely continuous with respect to Lebesgue measure if and only if
µf = µac if and only if µf [0, 1] = µac[0, 1] (since we are dealing with measures
and not signed measures) if and only if f(1)− f(0) = µac[0, 1] if and only if

(step 2)
∫ 1

0
f ′(x)dx = f(1) − f(0). For the fourth statement, µf is singular

if and only µac[0, 1] = 0 if and only if (step 2)
∫ 1

0
f ′(x)dx = 0 if and only if

f ′(x) = 0 a.e.
QED
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