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Total Variation

Definition
If f : [a, b]→ R , we define the total variation of f on [a, b] ⊆ [0, 1]

to be

TV[a,b](f ) := sup{
n∑

i=1

|f (xi )−f (xi−1)| : a = x0 < x1 < x2 < . . . < xn = b}.

(1)
We say f is of bounded variation on [a, b] if TV[a,b](f ) <∞; otherwise
we say f is of unbounded variation on [a, b].

Remarks:
(i). If f is monotone increasing, then TV[a,b](f ) = f (b)− f (a).
(ii). TV[a,b](−f ) = TV[a,b](f ).
(iii). If f is the indicator function of the rationals, then f is of unbounded
variation on every (nontrivial) interval.

November 2, 2020 2 / 14



Total Variation

Definition
If f : [a, b]→ R , we define the total variation of f on [a, b] ⊆ [0, 1] to be

TV[a,b](f ) := sup{
n∑

i=1

|f (xi )−f (xi−1)| : a = x0 < x1 < x2 < . . . < xn = b}.

(1)

We say f is of bounded variation on [a, b] if TV[a,b](f ) <∞; otherwise
we say f is of unbounded variation on [a, b].

Remarks:
(i). If f is monotone increasing, then TV[a,b](f ) = f (b)− f (a).
(ii). TV[a,b](−f ) = TV[a,b](f ).
(iii). If f is the indicator function of the rationals, then f is of unbounded
variation on every (nontrivial) interval.

November 2, 2020 2 / 14



Total Variation

Definition
If f : [a, b]→ R , we define the total variation of f on [a, b] ⊆ [0, 1] to be

TV[a,b](f ) := sup{
n∑

i=1

|f (xi )−f (xi−1)| : a = x0 < x1 < x2 < . . . < xn = b}.

(1)
We say f is of bounded variation on [a, b] if TV[a,b](f ) <∞;

otherwise
we say f is of unbounded variation on [a, b].

Remarks:
(i). If f is monotone increasing, then TV[a,b](f ) = f (b)− f (a).
(ii). TV[a,b](−f ) = TV[a,b](f ).
(iii). If f is the indicator function of the rationals, then f is of unbounded
variation on every (nontrivial) interval.

November 2, 2020 2 / 14



Total Variation

Definition
If f : [a, b]→ R , we define the total variation of f on [a, b] ⊆ [0, 1] to be

TV[a,b](f ) := sup{
n∑

i=1

|f (xi )−f (xi−1)| : a = x0 < x1 < x2 < . . . < xn = b}.

(1)
We say f is of bounded variation on [a, b] if TV[a,b](f ) <∞; otherwise
we say f is of unbounded variation on [a, b].

Remarks:
(i). If f is monotone increasing, then TV[a,b](f ) = f (b)− f (a).
(ii). TV[a,b](−f ) = TV[a,b](f ).
(iii). If f is the indicator function of the rationals, then f is of unbounded
variation on every (nontrivial) interval.

November 2, 2020 2 / 14



Total Variation

Definition
If f : [a, b]→ R , we define the total variation of f on [a, b] ⊆ [0, 1] to be

TV[a,b](f ) := sup{
n∑

i=1

|f (xi )−f (xi−1)| : a = x0 < x1 < x2 < . . . < xn = b}.

(1)
We say f is of bounded variation on [a, b] if TV[a,b](f ) <∞; otherwise
we say f is of unbounded variation on [a, b].

Remarks:
(i). If f is monotone increasing, then TV[a,b](f ) = f (b)− f (a).

(ii). TV[a,b](−f ) = TV[a,b](f ).
(iii). If f is the indicator function of the rationals, then f is of unbounded
variation on every (nontrivial) interval.

November 2, 2020 2 / 14



Total Variation

Definition
If f : [a, b]→ R , we define the total variation of f on [a, b] ⊆ [0, 1] to be

TV[a,b](f ) := sup{
n∑

i=1

|f (xi )−f (xi−1)| : a = x0 < x1 < x2 < . . . < xn = b}.

(1)
We say f is of bounded variation on [a, b] if TV[a,b](f ) <∞; otherwise
we say f is of unbounded variation on [a, b].

Remarks:
(i). If f is monotone increasing, then TV[a,b](f ) = f (b)− f (a).
(ii). TV[a,b](−f ) = TV[a,b](f ).

(iii). If f is the indicator function of the rationals, then f is of unbounded
variation on every (nontrivial) interval.

November 2, 2020 2 / 14



Total Variation

Definition
If f : [a, b]→ R , we define the total variation of f on [a, b] ⊆ [0, 1] to be

TV[a,b](f ) := sup{
n∑

i=1

|f (xi )−f (xi−1)| : a = x0 < x1 < x2 < . . . < xn = b}.

(1)
We say f is of bounded variation on [a, b] if TV[a,b](f ) <∞; otherwise
we say f is of unbounded variation on [a, b].

Remarks:
(i). If f is monotone increasing, then TV[a,b](f ) = f (b)− f (a).
(ii). TV[a,b](−f ) = TV[a,b](f ).
(iii). If f is the indicator function of the rationals, then f is of unbounded
variation on every (nontrivial) interval.

November 2, 2020 2 / 14



Characterization of functions with finite Total Variation

Theorem

f is of bounded variation on an interval if and only if there exist increasing
functions g and h so that f = g − h.

Proof outline: IF:
n∑

i=1

|(g −h)(xi )− (g −h)(xi−1)| ≤
n∑

i=1

|g(xi )− g(xi−1)|+ |h(xi )−h(xi−1)|

= g(b)− g(a) + h(b)− h(a)
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Characterization of functions with finite Total Variation

Step 1:
TV[a,c](f ) = TV[a,b](f ) + TV[b,c](f ).

In particular TV[a,x](f ) is an increasing function of x .

Step 2: TV[0,x](f ) + f (x) is an increasing function of x .
subproof: If 0 ≤ x < y ≤ 1,

f (x)− f (y) ≤ |f (x)− f (y)| ≤ TV[x ,y ](f ) = TV[0,y ](f )− TV[0,x](f )

where the last equality comes from Step 1. Now rewrite. subQED

Step 3: Note that

f (x) =
TV[0,x](f ) + f (x)

2
−

TV[0,x](f )− f (x)

2
.

The two summands are increasing in x by Step 2, where for the second
term we also use the fact that TV[0,x](−f ) = TV[0,x](f ).
QED
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Signed measures and function of finite Variation

There is a 1-1 correspondence between signed measures and functions of
bounded variation. The bijection is given by µ a signed measure on [0, 1] is
sent to the bounded variation function

Fµ(x) := µ([0, x ].
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Absolute continuity

Definition
f : [0, 1]toR is absolutely continuous if for all ε > 0, there exists δ > 0 so
that if 0 ≤ x1 < y1 < x2 < y2 < . . . , xn < yn ≤ 1 and

n∑
i=1

(yi − xi ) < δ,

then
n∑

i=1

|f (yi )− f (xi )| < ε.

n = 1 corresponds to uniformity continuity.

The Cantor Ternary function is not absolutely continuous.
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How do our two definitions of absolute continuity relate?

Proposition: Let f be a nonnegative monotone increasing function on [0, 1]
with f (0) = 0. Then f is absolutely continuous if and only if µf � m
where m is Lebesgue measure on [0, 1].

Proof:
First, note that f is continuous if and only if µf has no atoms. If these
equivalent conditions fail, then both sides in the proposition fail. Hence we
can assume that f is continuous or equivalently µf is continuous (i.e. no
atoms).
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atoms).
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Proof of the equivalence of the two definitions of absolute
continuity

If µf � m, then f is absolutely continuous.
Proof: Let ε > 0 and choose δ > 0 so that

m(A) < δ implies that µf (A) < ε.

Now if 0 ≤ x1 < y1 < x2 < y2 < . . . , xn < yn ≤ 1 with
∑n

i=1(yi − xi ) < δ,
then we have that

m(
n⋃

i=1

(xi , yi )) < δ

implying that

µf (
n⋃

i=1

(xi , yi )) < ε

which is equivalent to
n∑

i=1

|f (yi )− f (xi )| < ε.
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Proof of the equivalence of the two definitions of absolute
continuity

If f is absolutely continuous, then µf � m.
Proof: Assume that m(A) = 0 for some Borel set A. We need to show that
µf (A) = 0. Fix ε > 0 and choose the corresponding δ in the definition of
absolute continuity of f . Let U be an open set containing A with
m(U) < δ and write U as a disjoint union of open intervals {(ai , bi )}.
Since we have for any N

N∑
i=1

(bi − ai ) < δ,

it follows that
N∑
i=1

|f (bi )− f (ai )| < ε

and so µf (
⋃N

i=1(ai , bi )) < ε. By letting N →∞, we have µf (U) ≤ ε. Since
A ⊆ U, this gives µf (A) ≤ ε and since ε is arbitrary, we get µf (A) = 0.
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Finite total variation and absolute continuity
Proposition If f : [0, 1]→ R is absolutely continuous, then it has bounded
variation.

Proof:
Let δ correspond to ε = 1 in the definition of absolute continuity for f .

Choose N to be an integer larger than 1/δ. Choose an arbitrary partition
0 = x0 < x1 < x2 < . . . < xn = 1. Since refining a partition only increases
the sum in the definition of total variation, we can assume that
x0 < x1 < x2 < . . . < xn contain the points k/N for each integer k . Then
by breaking

n∑
i=1

|f (xi )− f (xi−1)|

into pieces corresponding to [0, 1/N], [1/N, 2/N], . . . , [(N − 1)/N, 1], the
sum over each piece is at most ε = 1 since the length of each interval is
less than δ. Since there are N intervals, we get a bound of N on the total
variation.
QED (Recall the Cantor Ternary function)
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The second fundamental theorem of calculus

Recall that an increasing function has a derivative a.e. One can ask if the
second fundamental theorem of calculus holds.
Question: If f : [0, 1]→ R is increasing, does∫ 1

0
f ′(x) = f (1)− f (0)?

Note that for the Cantor Ternary function, the LHS is 0 and the RHS is 1.
This is indicative of how this inequality may fail for monotone increasing
functions.

Proposition: If f : [0, 1]→ R is monotone increasing, then∫ 1

0
f ′(x) ≤ f (1)− f (0).
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Proof of
∫ 1

0 f ′(x) ≤ f (1)− f (0)
Extend f to be f (1) to the right of 1.

For h ∈ (0, 1) and x ∈ [0, 1], let

Diffhf (x) :=
f (x + h)− f (x)

h
and Avhf (x) :=

1
h

∫ x+h

x
f (t)dt

One has
∫ 1

0
Diffhf (x)dx = Avhf (1)−Avhf (0).

Now, we have that for a.e. x

lim
h→0

Diffh(x) = f ′(x).

Also all functions are nonnegative since f is increasing. It then follows from
Fatou’s Lemma that∫ 1

0
f ′(x)dx ≤ lim inf

h→0

∫ 1

0
Diffh(x)dx = f (1)− f (0).

QED

November 2, 2020 12 / 14



Proof of
∫ 1

0 f ′(x) ≤ f (1)− f (0)
Extend f to be f (1) to the right of 1. For h ∈ (0, 1) and x ∈ [0, 1],

let

Diffhf (x) :=
f (x + h)− f (x)

h
and Avhf (x) :=

1
h

∫ x+h

x
f (t)dt

One has
∫ 1

0
Diffhf (x)dx = Avhf (1)−Avhf (0).

Now, we have that for a.e. x

lim
h→0

Diffh(x) = f ′(x).

Also all functions are nonnegative since f is increasing. It then follows from
Fatou’s Lemma that∫ 1

0
f ′(x)dx ≤ lim inf

h→0

∫ 1

0
Diffh(x)dx = f (1)− f (0).

QED

November 2, 2020 12 / 14



Proof of
∫ 1

0 f ′(x) ≤ f (1)− f (0)
Extend f to be f (1) to the right of 1. For h ∈ (0, 1) and x ∈ [0, 1], let

Diffhf (x) :=
f (x + h)− f (x)

h
and

Avhf (x) :=
1
h

∫ x+h

x
f (t)dt

One has
∫ 1

0
Diffhf (x)dx = Avhf (1)−Avhf (0).

Now, we have that for a.e. x

lim
h→0

Diffh(x) = f ′(x).

Also all functions are nonnegative since f is increasing. It then follows from
Fatou’s Lemma that∫ 1

0
f ′(x)dx ≤ lim inf

h→0

∫ 1

0
Diffh(x)dx = f (1)− f (0).

QED

November 2, 2020 12 / 14



Proof of
∫ 1

0 f ′(x) ≤ f (1)− f (0)
Extend f to be f (1) to the right of 1. For h ∈ (0, 1) and x ∈ [0, 1], let

Diffhf (x) :=
f (x + h)− f (x)

h
and Avhf (x) :=

1
h

∫ x+h

x
f (t)dt

One has
∫ 1

0
Diffhf (x)dx = Avhf (1)−Avhf (0).

Now, we have that for a.e. x

lim
h→0

Diffh(x) = f ′(x).

Also all functions are nonnegative since f is increasing. It then follows from
Fatou’s Lemma that∫ 1

0
f ′(x)dx ≤ lim inf

h→0

∫ 1

0
Diffh(x)dx = f (1)− f (0).

QED

November 2, 2020 12 / 14



Proof of
∫ 1

0 f ′(x) ≤ f (1)− f (0)
Extend f to be f (1) to the right of 1. For h ∈ (0, 1) and x ∈ [0, 1], let

Diffhf (x) :=
f (x + h)− f (x)

h
and Avhf (x) :=

1
h

∫ x+h

x
f (t)dt

One has
∫ 1

0
Diffhf (x)dx = Avhf (1)−Avhf (0).

Now, we have that for a.e. x

lim
h→0

Diffh(x) = f ′(x).

Also all functions are nonnegative since f is increasing. It then follows from
Fatou’s Lemma that∫ 1

0
f ′(x)dx ≤ lim inf

h→0

∫ 1

0
Diffh(x)dx = f (1)− f (0).

QED

November 2, 2020 12 / 14



Proof of
∫ 1

0 f ′(x) ≤ f (1)− f (0)
Extend f to be f (1) to the right of 1. For h ∈ (0, 1) and x ∈ [0, 1], let

Diffhf (x) :=
f (x + h)− f (x)

h
and Avhf (x) :=

1
h

∫ x+h

x
f (t)dt

One has
∫ 1

0
Diffhf (x)dx = Avhf (1)−Avhf (0).

Now, we have that for a.e. x

lim
h→0

Diffh(x) = f ′(x).

Also all functions are nonnegative since f is increasing. It then follows from
Fatou’s Lemma that∫ 1

0
f ′(x)dx ≤ lim inf

h→0

∫ 1

0
Diffh(x)dx = f (1)− f (0).

QED

November 2, 2020 12 / 14



Proof of
∫ 1

0 f ′(x) ≤ f (1)− f (0)
Extend f to be f (1) to the right of 1. For h ∈ (0, 1) and x ∈ [0, 1], let

Diffhf (x) :=
f (x + h)− f (x)

h
and Avhf (x) :=

1
h

∫ x+h

x
f (t)dt

One has
∫ 1

0
Diffhf (x)dx = Avhf (1)−Avhf (0).

Now, we have that for a.e. x

lim
h→0

Diffh(x) = f ′(x).

Also all functions are nonnegative since f is increasing.

It then follows from
Fatou’s Lemma that∫ 1

0
f ′(x)dx ≤ lim inf

h→0

∫ 1

0
Diffh(x)dx = f (1)− f (0).

QED

November 2, 2020 12 / 14



Proof of
∫ 1

0 f ′(x) ≤ f (1)− f (0)
Extend f to be f (1) to the right of 1. For h ∈ (0, 1) and x ∈ [0, 1], let

Diffhf (x) :=
f (x + h)− f (x)

h
and Avhf (x) :=

1
h

∫ x+h

x
f (t)dt

One has
∫ 1

0
Diffhf (x)dx = Avhf (1)−Avhf (0).

Now, we have that for a.e. x

lim
h→0

Diffh(x) = f ′(x).

Also all functions are nonnegative since f is increasing. It then follows from
Fatou’s Lemma that

∫ 1

0
f ′(x)dx ≤ lim inf

h→0

∫ 1

0
Diffh(x)dx = f (1)− f (0).

QED

November 2, 2020 12 / 14



Proof of
∫ 1

0 f ′(x) ≤ f (1)− f (0)
Extend f to be f (1) to the right of 1. For h ∈ (0, 1) and x ∈ [0, 1], let

Diffhf (x) :=
f (x + h)− f (x)

h
and Avhf (x) :=

1
h

∫ x+h

x
f (t)dt

One has
∫ 1

0
Diffhf (x)dx = Avhf (1)−Avhf (0).

Now, we have that for a.e. x

lim
h→0

Diffh(x) = f ′(x).

Also all functions are nonnegative since f is increasing. It then follows from
Fatou’s Lemma that∫ 1

0
f ′(x)dx ≤ lim inf

h→0

∫ 1

0
Diffh(x)dx

= f (1)− f (0).

QED

November 2, 2020 12 / 14



Proof of
∫ 1

0 f ′(x) ≤ f (1)− f (0)
Extend f to be f (1) to the right of 1. For h ∈ (0, 1) and x ∈ [0, 1], let

Diffhf (x) :=
f (x + h)− f (x)

h
and Avhf (x) :=

1
h

∫ x+h

x
f (t)dt

One has
∫ 1

0
Diffhf (x)dx = Avhf (1)−Avhf (0).

Now, we have that for a.e. x

lim
h→0

Diffh(x) = f ′(x).

Also all functions are nonnegative since f is increasing. It then follows from
Fatou’s Lemma that∫ 1

0
f ′(x)dx ≤ lim inf

h→0

∫ 1

0
Diffh(x)dx = f (1)− f (0).

QED
November 2, 2020 12 / 14



Putting it all together

Theorem

Let f be nonnegative monotone increasing on [0, 1] with f (0) = 0. Write

µf = µs + µac .

Then the following hold.
1. The Radon-Nikodym derivative of µac with respect to Lebesgue measure
is given by f ′.
2.

µac [0, 1] =
∫ 1

0
f ′(x)dx .

3. f is absolutely continuous if and only if
∫ 1
0 f ′(x)dx = f (1)− f (0). (So

the second fundamental theorem of calculus holds if and only if f is
absolutely continuous.)
4. µf is singular if and only if f ′(x) = 0 a.e.
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Proof of "putting it all together"

µac [0, 1] =
∫ 1

0
f ′(x)dx .

Proof:
We have seen the first statement. Second statement follows.

For the third statement, f is absolutely continuous if and only if µf � m if
and only if µf = µac if and only if µf [0, 1] = µac [0, 1] if and only if
f (1)− f (0) = µac [0, 1] if and only if (step 2)

∫ 1
0 f ′(x)dx = f (1)− f (0).

For the fourth step, µf is singular if and only µac [0, 1] = 0 if and only if
(step 2)

∫ 1
0 f ′(x)dx = 0 if and only if f ′(x) = 0 a.e.

QED
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f (1)− f (0) = µac [0, 1] if and only if (step 2)

∫ 1
0 f ′(x)dx = f (1)− f (0).

For the fourth step, µf is singular if and only µac [0, 1] = 0 if and only if
(step 2)

∫ 1
0 f ′(x)dx = 0

if and only if f ′(x) = 0 a.e.
QED
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